Package 'CompMix'

May 22, 2024

Type Package

Title A Comprehensive Toolkit for Environmental Mixtures Analysis ('CompMix')

Version 0.1.0

Description Quantitative characterization of the health impacts associated with exposure to chemical mixtures has received considerable attention in current environmental and epidemiological studies. 'CompMix' package allows practitioners to estimate the health impacts from exposure to chemical mixtures data through various statistical approaches, including Lasso, Elastic net, Bayeisan kernel machine regression (BKMR), hierNet, Quantile g-computation, Weighted quantile sum (WQS) and Random forest. Hao W, Cathey A, Aung M, Boss J, Meeker J, Mukherjee B. (2024) ``Statistical methods for chemical mixtures: a practitioners guide''. <DOI:10.1101/2024.03.03.24303677>.

License GPL-3

Imports Matrix, mvtnorm, gglasso, higlasso, hierNet, glmnet, SuperLearner, bkmr, qgcomp, gWQS, pROC, randomForest, devtools

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Wei Hao [aut, cre]

Maintainer Wei Hao <weihao@umich.edu>

Repository CRAN

Date/Publication 2024-05-22 12:10:02 UTC

R topics documented:

	Comp.Mix	2
	lmi_simul_dat	4
	simul_x_block	5
(7

Index

Comp.Mix

Description

A comprehensive toolkit for environmental mixtures analysis

Usage

```
Comp.Mix(
 у,
 х,
 z = NULL,
 y.type,
  test.pct = 0.5,
 var.select = NULL,
  interaction = NULL,
  interaction.exp.cov = NULL,
  covariates.forcein = NULL,
  bkmr.pip = 0.5,
 bkmr.iter = 500,
  formula = NULL,
  expnms = NULL,
  seed = 1234,
  verbose = TRUE
)
```

Arguments

У	A vector of either continuous or binary values to indicate the health outcome			
х	A matrix of numeric values to indicate the chemical mixtures			
Z	A matrix of numeric values to indicate the covariates			
y.type	A character value of either "continuous" or "binary"			
test.pct	A numeric scalar between 0 and 1 to indicate the proportion allocated as test samples			
var.select	A logical value to indicate whether to perform variable selection			
interaction	A logical value (TRUE/FALSE) to indicate whether to include pairwise interac- tion terms between all the chemical mixtures x			
interaction.exp.cov				
	A logical value (TRUE/FALSE) to indicate whether to include pairwise inter- action terms between all the chemical mixtures x and covariates z. If interac- tion.exp.cov=TRUE, interaction=TURE or interaction=FALSE will be ignored			
covariates.forcein				
	A logical value (TRUE/EALSE) to indicate whether to force in any according			

A logical value (TRUE/FALSE) to indicate whether to force in any covariates

Comp.Mix

bkmr.pip	A numeric scalar between 0 and 1 to indicate the cutoff for the posterior inclusion probability in BKMR
bkmr.iter	A positive integer to indicate the number of MCMC iterations for bkmr
formula	the formula for qgcomp and wqs
expnms	a vector of characters for names of exposure variables
seed	an integer value for seed
verbose	a logical value to show information

Value

A list object which may contain up to 8 cases

Case 1 variable selection on main effects for exposures and confounders

Each case may contain some of the following elements

betaest a numeric vector of coeffcients for the exposures

z_betaest a numeric vector of coeffcients for the covariates

sse A positive scalar to indicate sum of squares error

corr A numeric scalar between -1 and 1 to indicate correlation coefficient

Author(s)

Wei Hao <weihao@umich.edu>

Examples

Description

Simulate data from linear model with interactions

Usage

```
lmi_simul_dat(
    n,
    p,
    q,
    block_idx = c(1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3),
    sigma2_x = 1,
    within_rho = 0.6,
    btw_rho = 0.2,
    R2 = 0.8,
    effect_size = 1,
    effect_size_i = 1,
    cancel_effect = TRUE
)
```

Arguments

n	a positive integer to indicate sample size
р	a positive integer to specify the number of exposures
q	a positive integer to specify the number of non-zero effects
block_idx	a vector of positive integers to indicate the block IDs. The length of the vector is p.
sigma2_x	a positive numeric scalar for variance of the covariates
within_rho	a numeric scalar between 0 and 1 for the within block correlation
btw_rho	a numeric scalar between 0 and 1 for the between block correlation
R2	a numeric scalar for R-squared
effect_size	a numeric scalar for effect size for main effect
effect_size_i	a numeric scalar for effect size for interaction effect
cancel_effect	a logic value to indicate whether there is effect cancelation

Value

a list object of the following

- **x** covariate matrix of dimension n by p
- **n** sample size

p number of covariates
sigma2_x variance
within_rho within block correlation
btw_rho between block correaltion
block_idx block indices

Author(s)

Wei Hao <weihao@umich.edu>

simul_x_block Simulate covariate matrix with block structure

Description

Simulate covariate matrix with block structure

Usage

simul_x_block(n, p, block_idx, sigma2_x = 1, within_rho = 0.6, btw_rho = 0.2)

Arguments

n	a positive integer to indicate sample size
р	a positive integer to specify the number of covariates
block_idx	a vector of positive integers to indicate the block IDs. The length of the vector is p.
sigma2_x	a positive numeric scalar for variance of the covariates
within_rho	a numeric scalar between 0 and 1 for the within block correlation
btw_rho	a numeric scalar between 0 and 1 for the between block correlation

Value

a list object of the following

- x covariate matrix of dimension n by p
- **n** sample size
- **p** number of covariates

 $sigma2_x$ variance

within_rho within block correlation

btw_rho between block correaltion

block_idx block indices

Author(s)

Wei Hao <weihao@umich.edu>

Examples

dat <- simul_x_block(n = 1000, p = 10, block_idx = rep(1:4,length=10))</pre>

Index

Comp.Mix, 2

lmi_simul_dat,4

simul_x_block, 5