Package ‘caretEnsemble’
February 19, 2015

Type Package
Title Ensembles of Caret Models
Version 1.0.0
Date 2015-01-14
URL https://github.com/zachmayer/caretEnsemble

Description Functions for creating ensembles of caret models: caretList, caretEnsemble, and caretStack. caretList is a convenience function for fitting multiple caret::train models to the same dataset. caretEnsemble will make a linear combination of these models using greedy forward selection, and caretStack will make linear or non-linear combinations of these models, using a caret::train model as a meta-model.

Depends R (>= 3.1.0), caret
Suggests testthat, randomForest, rpart, kernlab, nnet, e1071, ipred, pROC, knitr, mlbench, MASS, gbm, klaR

Imports caTools, pbapply, ggplot2, digest, plyr, grid, lattice, gridExtra
License MIT + file LICENSE
VignetteBuilder knitr

Author Zachary A. Mayer [aut, cre], Jared E. Knowles [aut]

Maintainer Zachary A. Mayer <zach.mayer@gmail.com>
NeedsCompilation no

Repository CRAN
Date/Publication 2015-01-16 22:19:29

R topics documented:

 autoplot.caretEnsemble .. 3
caretEnsemble .. 4
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>caretList</td>
<td>5</td>
</tr>
<tr>
<td>caretModelSpec</td>
<td>6</td>
</tr>
<tr>
<td>caretStack</td>
<td>6</td>
</tr>
<tr>
<td>check_bestpreds_indexes</td>
<td>7</td>
</tr>
<tr>
<td>check_bestpreds_obs</td>
<td>8</td>
</tr>
<tr>
<td>check_bestpreds_preds</td>
<td>8</td>
</tr>
<tr>
<td>check_bestpreds_resamples</td>
<td>8</td>
</tr>
<tr>
<td>check_caretList_classes</td>
<td>9</td>
</tr>
<tr>
<td>check_caretList_model_types</td>
<td>9</td>
</tr>
<tr>
<td>dotplot.caretStack</td>
<td>9</td>
</tr>
<tr>
<td>extractBestPreds</td>
<td>10</td>
</tr>
<tr>
<td>extractCaretTarget</td>
<td>10</td>
</tr>
<tr>
<td>extractCaretTarget.default</td>
<td>11</td>
</tr>
<tr>
<td>extractCaretTarget.formula</td>
<td>11</td>
</tr>
<tr>
<td>extractModelTypes</td>
<td>12</td>
</tr>
<tr>
<td>extractModFrame</td>
<td>12</td>
</tr>
<tr>
<td>extractModRes</td>
<td>13</td>
</tr>
<tr>
<td>fortify.caretEnsemble</td>
<td>13</td>
</tr>
<tr>
<td>getMetric</td>
<td>14</td>
</tr>
<tr>
<td>getMetricSD</td>
<td>15</td>
</tr>
<tr>
<td>greedOptAUC</td>
<td>15</td>
</tr>
<tr>
<td>greedOptRMSE</td>
<td>16</td>
</tr>
<tr>
<td>makePredObsMatrix</td>
<td>17</td>
</tr>
<tr>
<td>methodCheck</td>
<td>17</td>
</tr>
<tr>
<td>multiResiduals</td>
<td>17</td>
</tr>
<tr>
<td>plot.caretEnsemble</td>
<td>18</td>
</tr>
<tr>
<td>plot.caretStack</td>
<td>19</td>
</tr>
<tr>
<td>predict.caretEnsemble</td>
<td>19</td>
</tr>
<tr>
<td>predict.caretList</td>
<td>20</td>
</tr>
<tr>
<td>predict.caretStack</td>
<td>21</td>
</tr>
<tr>
<td>print.caretStack</td>
<td>22</td>
</tr>
<tr>
<td>residuals.caretEnsemble</td>
<td>22</td>
</tr>
<tr>
<td>safeOptAUC</td>
<td>23</td>
</tr>
<tr>
<td>summary.caretEnsemble</td>
<td>24</td>
</tr>
<tr>
<td>summary.caretStack</td>
<td>24</td>
</tr>
<tr>
<td>trControlCheck</td>
<td>25</td>
</tr>
<tr>
<td>tuneCheck</td>
<td>25</td>
</tr>
<tr>
<td>varImp.caretEnsemble</td>
<td>26</td>
</tr>
<tr>
<td>wtd.sd</td>
<td>26</td>
</tr>
<tr>
<td>Index</td>
<td>27</td>
</tr>
</tbody>
</table>
Description

This function provides a more robust series of diagnostic plots for a caretEnsemble object.

Usage

```r
## S3 method for class 'caretEnsemble'
autoplot(object, which = c(1:6), mfrow = c(3, 2),
         xvars = NULL, ...)
```

Arguments

- `object`: a caretEnsemble object
- `which`: an integer index for which of the plots to print
- `mfrow`: an integer vector of length 2 specifying the number of rows and columns for plots
- `xvars`: a vector of the names of x variables to plot against residuals
- `...`: additional arguments to pass to autoplot

Value

A grid of diagnostic plots. Top left is the range of the performance metric across each component model along with its standard deviation. Top right is the residuals from the ensembled model plotted against fitted values. Middle left is a bar graph of the weights of the component models. Middle right is the disagreement in the residuals of the component models (unweighted) across the fitted values. Bottom left and bottom right are the plots of the residuals against two random or user specified variables.

Examples

```r
## Not run:
set.seed(42)
models <- caretList(
  iris[1:50,1:2],
  iris[1:50,3],
  trControl=trainControl(method='cv'),
  methodList=c('glm', 'rpart'))
ens <- caretEnsemble(models)
autoplot(ens)

## End(Not run)
```
caretEnsemble

Combine several predictive models via weights

Description

Find a good linear combination of several classification or regression models, using either linear regression, elastic net regression, or greedy optimization.

Usage

caretEnsemble(all.models, optFUN = NULL, ...)

Arguments

- `all.models`: an object of class `caretList`
- `optFUN`: the optimization function to use
- `...`: additional arguments to pass to the optimization function

Details

Every model in the "library" must be a separate train object. For example, if you wish to combine a random forests with several different values of mtry, you must build a model for each value of mtry. If you use several values of mtry in one train model, (e.g. `tuneGrid = expand.grid(.mtry=2:5)`), caret will select the best value of mtry before we get a chance to include it in the ensemble. By default, RMSE is used to ensemble regression models, and AUC is used to ensemble Classification models. This function does not currently support multi-class problems

Value

- a `caretEnsemble` object

Note

Currently when missing values are present in the training data, weights are calculated using only observations which are complete across all models in the library. The optimizer ignores missing values and calculates the weights with the observations and predictions available for each model separately. If each of the models has a different pattern of missingness in the predictors, then the resulting ensemble weights may be biased and the function issues a message.

References

[Link to reference](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.2859&rep=rep1&type=pdf)
caretList

Create a list of several train models from the caret package

Description

Build a list of train objects suitable for ensembling using the `caretEnsemble` function.

Usage

caretList(..., trControl = trainControl(), methodList = NULL,
 tuneList = NULL)

Arguments

... arguments to pass to `train`. These arguments will determine which train method gets dispatched.

trControl a `trainControl` object. We are going to intercept this object check that it has the "index" slot defined, and define the indexes if they are not.

methodList optional, a character vector of caret models to ensemble. One of methodList or tuneList must be specified.

tuneList optional, a NAMED list of caretModelSpec objects. This much more flexible than methodList and allows the specificaiton of model-specific parameters (e.g. passing trace=FALSE to nnet)

Value

A list of `train` objects

Examples

Not run:
myControl <- trainControl(method='cv', number=5)
caretList(
 Sepal.Length ~ Sepal.Width,
 head(iris, 50),
 methodList=c('glm', 'lm'),
 trControl=myControl
)
caretList(
 Sepal.Length ~ Sepal.Width,
 head(iris, 50), methodList=c('lm'),
 tuneList=list(
 nnet=caretModelSpec(method='nnet', trace=FALSE, tuneLength=1)
),
 trControl=myControl
)

End(Not run)

caretModelSpec

Generate a specification for fitting a caret model

Description

A caret model specification consists of 2 parts: a model (as a string) and the arguments to the train call for fitting that model

Usage

caretModelSpec(method = "rf", ...)

Arguments

- `method` the modeling method to pass to caret::train
- `...` Other arguments that will eventually be passed to caret::train

Value

a list of lists

Examples

caretModelSpec('rf', tuneLength=5, preProcess='ica')

caretStack

Combine several predictive models via stacking

Description

Find a good linear combination of several classification or regression models, using either linear regression, elastic net regression, or greedy optimization.

Usage

caretStack(all.models, ...)

Arguments

- `all.models` a list of caret models to ensemble.
- `...` additional arguments to pass to the optimization function

Details

Check the models, and make a matrix of obs and preds

Value

S3 caretStack object

References

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.2859&rep=rep1&type=pdf

Examples

```r
## Not run:
library('rpart')
models <- caretList(
  x=iris[1:50,1:2],
  y=iris[1:50,3],
  trControl=trainControl(method='cv'),
  methodList=c('rpart', 'glm')
)
caretStack(models, method='glm')

## End(Not run)
```

`check_bestpreds_indexes`

Check row indexes

Description

Check that the row indexes from a caretList are valid

Usage

`check_bestpreds_indexes(modelLibrary)`

Arguments

- `modelLibrary` a list of predictions from caret models
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Usage</th>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>check_bestpreds_obs</td>
<td>Check that a list of observed values from a caretList are valid</td>
<td>check_bestpreds_obs(modellibrary)</td>
<td>modellibrary: a list of predictions from caret models</td>
</tr>
<tr>
<td>check_bestpreds_preds</td>
<td>Check that a list of predictions from a caretList are valid</td>
<td>check_bestpreds_preds(modellibrary)</td>
<td>modellibrary: a list of predictions from caret models</td>
</tr>
<tr>
<td>check_bestpreds_resamples</td>
<td>Check resamples from a caretList are valid</td>
<td>check_bestpreds_resamples(modellibrary)</td>
<td>modellibrary: a list of predictions from caret models</td>
</tr>
</tbody>
</table>
check_caretList_classes

Checks caretList model classes

Description
This function checks caretList classes

Usage
check_caretList_classes(list_of_models)

Arguments
list_of_models a list of caret models to check

check_caretList_model_types

Checks that caretList models are all of the same type.

Description
Checks that caretList models are all of the same type.

Usage
check_caretList_model_types(list_of_models)

Arguments
list_of_models a list of caret models to check

dotplot.caretStack

Comparison dotplot for a caretStack object

Description
This is a function to make a dotplot from a caretStack. It uses dotplot from the caret package on all the models in the ensemble, plus the final ensemble model. At the moment, this function only works if the ensembling model has the same number of resamples as the component models.

Usage
S3 method for class 'caretStack'
dotplot(x, data = NULL, ...)
extractCaretTarget

Arguments

- `x` An object of class caretStack
- `data` passed to dotplot
- ... passed to dotplot

Examples

```r
## Not run:
set.seed(42)
library('rpart')
models <- caretList(
  x=iris[1:100,1:2],
  y=iris[1:100,3],
  trControl=trainControl(method='cv'),
  methodList=c('rpart', 'glm')
)
meta_model <- caretStack(models, method='lm', trControl=trainControl(method='cv'))
dotplot.caretStack(meta_model)

## End(Not run)
```

extractBestPreds Extract the best predictions from a list of train objects

Description

Extract predictions for the best tune from a list of caret models

Usage

```r
extractBestPreds(list_of_models)
```

Arguments

- `list_of_models` an object of class caretList

extractCaretTarget Extracts the target variable from a set of arguments headed to the caret::train function.

Description

This function extracts the y variable from a set of arguments headed to a caret::train model. Since there are 2 methods to call caret::train, this function also has 2 methods.
extractCaretTarget.default

Usage

extractCaretTarget(...)

Arguments

... a set of arguments, as in the caret::train function

Description

This function extracts the y variable from a set of arguments headed to a caret::train.default model.

Usage

Default S3 method:
extractCaretTarget(x, y, ...)

Arguments

x an object where samples are in rows and features are in columns. This could be a simple matrix, data frame or other type (e.g. sparse matrix). See Details below.
y a numeric or factor vector containing the outcome for each sample.
... ignored

extractCaretTarget.formula

Extracts the target variable from a set of arguments headed to the caret::train.formula function.

Description

This function extracts the y variable from a set of arguments headed to a caret::train.formula model.

Usage

S3 method for class 'formula'
extractCaretTarget(form, data, ...)
extractModFrame

Arguments

form A formula of the form y ~ x1 + x2 + ...
data Data frame from which variables specified in formula are preferentially to be taken.
... ignored

extractModelTypes Extracts the model types from a list of train model

Description

Extracts the model types from a list of train model

Usage

extractModelTypes(list_of_models)

Arguments

list_of_models an object of class caretList

extractModFrame Extract a dataframe of all predictors used in a caretEnsemble object.

Description

This function constructs a dataframe consisting of the outcome and all of the predictors used in any of the models ensembled in a caretEnsemble object.

Usage

extractModFrame(model)

Arguments

model a caretEnsemble to extract predictors from

Value

A data.frame combining all of the variables used across all models.
extractModRes

Description

Extract the model accuracy metrics of the individual models in an ensemble object.

Usage

```r
extractModRes(ensemble)
```

Arguments

- `ensemble` a caretEnsemble to make predictions from.

fortify.caretEnsemble

Description

Supplement the data fitted to a caret ensemble model with model fit statistics.

Usage

```r
## S3 method for class 'caretEnsemble'
fortify(model, data = NULL, ...)
```

Arguments

- `model` a caretEnsemble to extract predictors from
- `data` a data set, defaults to the data used to fit the model
- `...` additional arguments to pass to fortify

Value

The original data with extra columns for fitted values and residuals
getMetric

Extract a model accuracy metric from an S3 object.

Description

Extract a model accuracy metric from an S3 object.

Extract a model accuracy metric from a `train` object.

Extract the AUC metric from a `train` object.

Extract the RMSE metric from a model object.

Usage

```r
getMetric(x, metric)

## S3 method for class 'train'
getMetric(x, metric = c("AUC", "RMSE"))

getAUC(x)

getRMSE(x)
```

Arguments

- `x`: an object with model performance metrics
- `metric`: a character, either "RMSE" or "AUC" indicating which metric to extract

Value

- A numeric representing the metric desired metric.
- A numeric for the AUC of the best model
- A numeric for the RMSE of the best model

Note

AUC extracted from a train object is for all resamples pooled, not the average of the AUC for each resample.

RMSE extracted from a train object is for all resamples pooled, not the average of the RMSE for each resample. All missing values are ignored.
getMetricSD

Extract the standard deviation from resamples for an accuracy metric from a model object.

Description
Extract the standard deviation from resamples for an accuracy metric from a model object.

Usage
getMetricSD(x, metric, which = c("all", "best"))

Arguments
- **x**: an object with model performance metrics
- **metric**: a character, either "RMSE" or "AUC" indicating which metric to extract
- **which**: a character, either "all" or "best", default is best, see details

Details
Which allows the user to select whether to generate a standard deviation for the performance metric across all values of the tuning parameters and resamples, or only for resamples under the best tuning parameter. Missing values are ignored.

Value
A numeric for the standard deviation of the selected metric across tuning parameters and resamples in the original object.

greedOptAUC
Greedy optimization of the area under the curve

Description
This algorithm optimizes the area under the curve for classification models.

Usage
greedOptAUC(X, Y, iter = 100L)

Arguments
- **X**: the matrix of predictors
- **Y**: the dependent variable
- **iter**: an integer for the number of iterations
Details

If the optimization fails to produce an error term better than the best component model, a message is returned and the best optimization after N iterations is returned.

Value

A numeric of the weights for each model.

Examples

```r
x <- matrix(runif(10), ncol=2)
y <- sample(c('Y', 'N'), 5, replace=TRUE)
greedOptAUC(x, y, iter = 2L)
```

greedOptRMSE

Greedy optimization of the reduced mean square error

Description

This algorithm optimizes the RMSE for regression models

Usage

```r
greedOptRMSE(x, y, iter = 100L)
```

Arguments

- **X**
 - the matrix of predictors
- **Y**
 - the dependent variable
- **iter**
 - an integer for the number of iterations

Details

If the optimization fails to produce an error term better than the best component model, a message is returned and the best optimization after iterations is returned.

Value

A numeric of the weights for each model

Examples

```r
x <- matrix(runif(10), ncol=2)
y <- runif(5)
greedOptRMSE(x, y, iter = 2L)
```
makePredObsMatrix

Make a prediction matrix from a list of models

Description

Extract obs from one model, and a matrix of predictions from all other models, a helper function

Usage

```r
makePredObsMatrix(list_of_models)
```

Arguments

- `list_of_models` an object of class caretList

methodCheck

Check that the methods supplied by the user are valid caret methods

Description

This function uses modelLookup from caret to ensure the list of methods supplied by the user are all models caret can fit.

Usage

```r
methodCheck(x)
```

Arguments

- `x` a list of user-supplied tuning parameters and methods

multiResiduals

Calculate the residuals from all component models of a caretEnsemble.

Description

This function calculates raw residuals for both regression and classification train objects within a caretEnsemble.

Usage

```r
multiResiduals(object, ...)
```
Arguments

object a caretEnsemble to make predictions from.
...
other arguments to be passed to residuals

Value

A data.frame in the long format with columns for the model method, the observation id, yhat for the fitted values, resid for the residuals, and y for the observed value.

plot.caretEnsemble Plot Diagnostics for an caretEnsemble Object

Description

This function makes a short plot of the performance of the component models of a caretEnsemble object on the AUC or RMSE metric

Usage

S3 method for class 'caretEnsemble'
plot(x, ...)

Arguments

x a caretEnsemble object
...
additional arguments to pass to plot

Value

A plot

Examples

Not run:
set.seed(42)
models <- caretList(iris[1:50,1:2], iris[1:50,3], methodList=c('glm', 'rpart'))
ens <- caretEnsemble(models)
plot(ens)

End(Not run)
plot.caretStack

Plot a caretStack object

Description

This is a function to plot a caretStack.

Usage

```r
## S3 method for class 'caretStack'
plot(x, ...)
```

Arguments

- `x`: An object of class caretStack
- `...`: passed to `plot`

Examples

```r
## Not run:
library('rpart')
models <- caretList(
  x=iris[1:100,1:2],
  y=iris[1:100,3],
  trControl=trainControl(method='cv'),
  methodList=c('rpart', 'glm')
)
meta_model <- caretStack(models, method='rpart', tuneLength=2)
plot(meta_model)
## End(Not run)
```

predict.caretEnsemble

Make predictions from a caretEnsemble. This function passes the data to each function in turn to make a matrix of predictions, and then multiplies that matrix by the vector of weights to get a single, combined vector of predictions.

Description

Make predictions from a caretEnsemble. This function passes the data to each function in turn to make a matrix of predictions, and then multiplies that matrix by the vector of weights to get a single, combined vector of predictions.
Usage

```r
## S3 method for class 'caretEnsemble'
predict(object, keepNA = TRUE, se = FALSE,
         return_weights = FALSE, ...)
```

Arguments

- `object`: a `caretEnsemble` to make predictions from.
- `keepNA`: a logical indicating whether predictions should be made for all cases where sufficient data exists or only for complete cases across all models. When `TRUE` this does not predict for missing values. When `FALSE`, missing values are overwritten with predictions where possible.
- `se`: logical, should prediction errors be produced? Default is `false`.
- `return_weights`: a logical indicating whether prediction weights for each model for each observation should be returned.
- `...`: arguments (including `newdata`) to pass to `predict.train`. These arguments must be named.

Value

If `return_weights = TRUE` a list is returned with a `data.frame` slot for predictions and a `matrix` slot for the model weights. If `return_weights = FALSE` a `data.frame` is returned for the predictions.

Examples

```r
## Not run:
set.seed(22)
models <- caretList(iris[1:50,1:2], iris[1:50,3], methodList=c('glm', 'lm'))
ens <- caretEnsemble(models)
cor(predict(ens, newdata=iris[51:150,1:2]), iris[51:150,3])

## End(Not run)
```

predict.caretList

Create a matrix of predictions for each of the models in a caretList

Description

Make a matrix of predictions from a list of caret models

Usage

```r
## S3 method for class 'caretList'
predict(object, ..., verbose = FALSE)
```
predict.caretStack

Arguments

object an object of class caretList

... additional arguments to pass to predict.train. Pass the newdata argument here, DO NOT PASS the "type" argument. Classification models will return probabilities if possible, and regression models will return "raw".

verbose Logical. If FALSE no progress bar is printed if TRUE a progress bar is shown. Default FALSE.

 predict.caretStack Make predictions from a caretStack

Description

Make predictions from a caretStack. This function passes the data to each function in turn to make a matrix of predictions, and then multiplies that matrix by the vector of weights to get a single, combined vector of predictions.

Usage

S3 method for class 'caretStack'
predict(object, newdata = NULL, ...)

Arguments

object a caretStack to make predictions from.
newdata a new dataframe to make predictions on

... arguments to pass to predict.train.

Examples

Not run:
library('rpart')
models <- caretList(
 x=iris[1:100,1:2],
 y=iris[1:100,3],
 trControl=trainControl(method='cv'),
 methodList=c('rpart', 'glm')
)
meta_model <- caretStack(models, method='lm')
RMSE(predict(meta_model, iris[101:150,1:2]), iris[101:150,3])

End(Not run)
print.caretStack

Print a caretStack object

Description

This is a function to print a caretStack.

Usage

```r
## S3 method for class 'caretStack'
print(x, ...)
```

Arguments

- `x` An object of class caretStack
- `...` ignored

Examples

```r
## Not run:
library('rpart')
models <- caretList(
x=iris[1:100,1:2],
y=iris[1:100,3],
trControl=trainControl(method='cv'),
methodList=c('rpart', 'glm')
)
meta_model <- caretStack(models, method='lm')
print(meta_model)
## End(Not run)
```

residuals.caretEnsemble

Calculate the residuals from a caretEnsemble.

Description

This function calculates raw residuals for both regression and classification caretEnsemble objects.

Usage

```r
## S3 method for class 'caretEnsemble'
residuals(object, ...)
```
Arguments

object a caretEnsemble to make predictions from.
... other arguments to be passed to residuals

Value

A numeric of the residuals.

Description

This algorithm optimizes the AUC for regression models to avoid ensembling where the ensembled model fits worse than any component model

Usage

safeOptAUC(x, y, iter = 100L)

Arguments

X the matrix of predictors
Y the dependent variable
iter an integer for the number of iterations

Details

This optimizer uses a stopping criterion that if the optimized model has an AUC that is worse than any individual model, it continues optimizing until this is no longer the case. If it fails to surpass any component model it issues a warning and weights the best model 1 and all other models 0.

Value

A numeric of the weights for each model

Examples

x <- matrix(runif(10), ncol=2)
y <- sample(c('Y', 'N'), 5, replace=TRUE)
safeOptAUC(x, y, iter = 2L)
summary.caretEnsemble Summarize the results of caretEnsemble for the user.

Description

Summarize the results of caretEnsemble for the user.

Usage

S3 method for class 'caretEnsemble'
summary(object, ...)

Arguments

- object: a caretEnsemble to make predictions from.
- ...: optional additional parameters.

Examples

```r
## Not run:
set.seed(42)
models <- caretList(iris[1:50,1:2], iris[1:50,3], methodList=c('glm', 'lm'))
ens <- caretEnsemble(models)
summary(ens)

## End(Not run)
```

summary.caretStack Summarize a caretStack object

Description

This is a function to summarize a caretStack.

Usage

S3 method for class 'caretStack'
summary(object, ...)

Arguments

- object: An object of class caretStack
- ...: ignored
Examples

```r
## Not run:
library('rpart')
models <- caretList(
x=iris[1:100,1:2],
y=iris[1:100,3],
trControl=trainControl(method='cv'),
methodList=c('rpart', 'glm')
)
meta_model <- caretStack(models, method='lm')
summary(meta_model)
## End(Not run)
```

Description

This function checks the user-supplied trainControl object and makes sure it has all the required fields. If the resampling indexes are missing, it adds them to the model. If savePredictions=FALSE, this function sets it to TRUE.

Usage

```r
trControlCheck(x, y)
```

Arguments

- **x**: a trainControl object.
- **y**: the target for the model. Used to determine resampling indexes.

tuneCheck

Description

This function makes sure the tuning parameters passed by the user are valid and have the proper naming, etc.

Usage

```r
tuneCheck(x)
```

Arguments

- **x**: a list of user-supplied tuning parameters and methods
varImp.caretEnsemble Calculate the variable importance of variables in a caretEnsemble.

Description
This function wraps the varImp function in the caret package to provide a weighted estimate of the importance of variables in the ensembled models in a caretEnsemble object. Variable importance for each model is calculated and then averaged by the weight of the overall model in the ensembled object.

Usage
```r
## S3 method for class 'caretEnsemble'
varImp(object, scale = TRUE, weight = TRUE, ...)
```

Arguments
- `object`: a caretEnsemble to make predictions from.
- `scale`: should importance values be scaled 0 to 100?
- `weight`: should a model weighted importance be returned?
- `...`: other arguments to be passed to varImp

Value
A data.frame with one row per variable and one column per model in object

wtd.sd Calculate a weighted standard deviation

Description
Used to weight deviations among ensembled model predictions

Usage
```r
wtd.sd(x, weights = NULL, normwt = FALSE, na.rm = FALSE)
```

Arguments
- `x`: a vector of numerics
- `weights`: a vector of weights equal to length of x
- `normwt`: a logical indicating whether the weights should be normalized to 1
- `na.rm`: a logical indicating how to handle missing values, default = FALSE
Index

autoplot.caretEnsemble, 3

caretEnsemble, 4, 4, 5, 17, 20, 24
caretList, 5
caretModelSpec, 6
caretStack, 6, 21
check_bestpreds_indexes, 7
check_bestpreds_obs, 8
check_bestpreds_preds, 8
check_bestpreds_resamples, 8
check_caretList_classes, 9
check_caretList_model_types, 9
data.frame, 26
dotplot.caretStack, 9

evaluateBestPreds, 10
extractCaretTarget, 10
extractCaretTarget.default, 11
extractCaretTarget.formula, 11
extractModelTypes, 12
extractModFrame, 12
extractModRes, 13

fortify.caretEnsemble, 13

getauc (getMetric), 14
getMetric, 14
getMetricSD, 15
getRMSE (getMetric), 14
greedOptAUC, 15
greedOptRMSE, 16

makePredObsMatrix, 17
methodCheck, 17
multiResiduals, 17

plot.caretEnsemble, 18
plot.caretStack, 19
predict.caretEnsemble, 19
predict.caretList, 20

predict.caretStack, 21
predict.train, 21
print.caretStack, 22

residuals.caretEnsemble, 22

safeOptAUC, 23
summary.caretEnsemble, 24
summary.caretStack, 24

train, 5, 14
trainControl, 5
trControlCheck, 25
tuneCheck, 25

varImp, 26
varImp.caretEnsemble, 26

wtd.sd, 26