Package ‘corHMM’

February 19, 2015

Version 1.15
Date 2014-9-3
Title Analysis of binary character evolution
Author Jeremy M. Beaulieu <jbeaulieu@nimbios.org>, Jef-
frey C. Oliver <jeffreycoliver@gmail.com>, Brian O’Meara <bomeara@utk.edu>
Maintainer Jeremy Beaulieu <jbeaulieu@nimbios.org>
Depends ape, nloptr
Imports expm, numDeriv, corpcor, phangorn, rgenoud, parallel
Description Fits a hidden rates model that allows different transition rate classes on different por-
tions of a phylogeny by treating rate classes as hidden states in a Markov process and vari-
ous other functions for evaluating models of binary character evolution.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-09-18 07:31:01

R topics documented:

ancRECON ... 2
corDISC ... 4
corHMM ... 6
corPAINT ... 9
examples ... 11
plotRECON ... 12
rate.mat.maker ... 13
rayDISC ... 14

Index 18
Ancestral state reconstruction

Description

Infers ancestral states based on a set of model parameters

Usage

ancRECON(phy, data, p, method=c("joint", "marginal", "scaled"), hrm=FALSE, rate.cat, ntraits=NULL, charnum=NULL, rate.mat=NULL, model=c("ER", "SYM", "ARD"), root.p=NULL)

Arguments

- **phy**: a phylogenetic tree, in ape "phylo" format.
- **data**: a data matrix containing species information (see Details).
- **p**: a vector of transition rates to be used to estimate ancestral states.
- **method**: method used to calculate ancestral states at internal nodes (see Details).
- **hrm**: a logical indicating whether the underlying model is the hidden rates model (HRM). The default is FALSE.
- **rate.cat**: specifies the number of rate categories in the HRM.
- **ntraits**: specifies the number of traits in the data file if the underlying model is not the HRM.
- **charnum**: specifies the number of characters in the data file used in rayDISC.
- **rate.mat**: a user-supplied rate matrix index of parameters to be optimized.
- **model**: if the model is not HRM, specifies the underlying model.
- **root.p**: a vector used to fix the probabilities at the root, but “maddfitz” can also be supplied to use the method of Maddison et al (2007) and FitzJohn et al (2009) (see details).

Details

This is a stand alone function for computing the marginal, joint, or scaled likelihoods of internal nodes for a given set of transition rates. Like all other functions contained in corHMM, the tree does not have to be bifurcating in order for analyses to be carried out. IMPORTANT: If the corDISC, corHMM, and rayDISC functions are used they automatically provide a tree with the likeliest states as internal node labels. This function is intended for circumstances where the user would like to reconstruct states based on rates estimated elsewhere (e.g. BayesTraits, Mesquite, ape).

The algorithm based on Pupko et al. (2000, 2002) is used to calculate the joint estimates of ancestral states. The marginal method was originally based on a description of an algorithm by Yang (2006). The basic idea of Yang (2006) is that the tree is rerooted on each internal node, with the marginal likelihood being the probabilities of observing the tips states given that the focal node is the root. However, this takes a ton of time as the number of nodes increase. But more importantly,
this does not work easily when the model contains asymmetric rates. Here we use the same dynamic
programming algorithm as Mesquite (Maddison and Maddison, 2011) and diversitree (FitzJohn
et al. 2009), which is time linear with the number of species and calculates the marginal probability
at a node using an additional up and down pass of the tree. If scaled, the function uses the same
algorithm from ace(). Note that the scaled method of ace() is simply the conditional likelihoods of
observing everything at or above the focal node and these should generally not be used for ancestral
state estimation.

The user can fix the root state probabilities by supplying a vector to root.p. For example, in the two
trait case, if the hypothesis is that the root is 00, then the root vector would be root.p=c(1,0,0,0)
for state combinations 00, 01, 10, and 11, respectively. If the user supplies the flag root .p="maddfitz"
the same procedure described by Maddison et al (2007) and FitzJohn et al (2009) is used. Note,
however, that the default root.p=NULL assumes equal weighting among all possible states.

Value

For the joint, a vector of likeliest states at internal nodes and tips. For either marginal or scaled,
a matrix of the probabilities of each state for each internal node are returned.

Author(s)

Jeremy M. Beaulieu and Jeffrey C. Oliver

References

extinction rates from incompletely resolved phylogenies. Systematic Biology 58:595-611.
Version 2.75 http://mesquiteproject.org
Pupko, T., I. Pe’er, R. Shamir, and D. Graur. 2000. A fast algorithm for joint reconstruction of
Pupko, T., I. Pe’er, D. Graur, M. Hasegawa, and N Friedman. 2002. A branch-and-bound algo-
rithm for the inference of ancestral amino-acid sequences when the replacement rate varies among
sites: application to the evolution of five gene families. Bioinformatics 18:1116-1123.

Examples

Not run
Load tree and trait
data(primates)
Obtain the marginal reconstruction for a set of parameters:
param<-c(0.05,10,0.01,0.01,0.06,0.02,51.2)
states<-ancRECON(primates$tree,primates$trait,p=param,method="marginal",
hrm=FALSE,ntraits=2,model="ARD")
Put likeliest states on the tree:
pr<-apply(states$lik.anc.states,1,which.max)
primates$tree$node.label <- pr
Description

Fits a model of correlated evolution between two or three binary traits

Usage

corDISC(phy, data, ntraits=2, rate.mat=NULL, model=c("ER","SYM","ARD"), node.states=c("joint","marginal","scaled"), p=NULL, root.p=NULL, ip=NULL, lb=0, ub=100, diag=FALSE)

Arguments

phy a phylogenetic tree, in ape “phylo” format.
data a data matrix containing species information (see Details).
ntraits specifies the number of traits to be included in the analysis.
rate.mat a user-supplied rate matrix index of parameters to be optimized.
model specifies the underlying model.
node.states method used to calculate ancestral states at internal nodes (see Details).
p a vector of transition rates. Allows the user to calculate the likelihood given a specified set of parameter values to specified as fixed and calculate the likelihood.
root.p a vector used to fix the probabilities at the root, but “maddfitz” can also be supplied to use the method of Maddison et al (2007) and FitzJohn et al (2009) (see details).
ip initial values used for the likelihood search. Can be a single value or a vector of unique values for each parameter. The default is ip=1.
lb lower bound for the likelihood search. The default is lb=0.
ub upper bound for the likelihood search. The default is ub=100.
diagn logical indicating whether diagnostic tests should be performed. The default is FALSE.

Details

The function takes a tree and a trait file and estimates transition rates and ancestral states for two or three binary characters (see Pagel 1994). Note, however, that rayDISC can be used to evaluate the same models as in corDISC, with the major difference being that, with rayDISC, the rate matrix would have to be manipulated using rate.mat-maker in order to remove parameters associated with dual transitions. With corDISC, the input phylogeny need not be bifurcating as the algorithm is implemented to handle multifurcations. Polytomies are allowed by generalizing Felsenstein’s (1981) pruning algorithm to be the product of the probability of observing the tip states of n descendant nodes, rather than two, as in the completely bifurcating case. For the trait file, the first column of
the trait file must contain the species labels to match to the tree, with the second column onwards corresponding to the binary traits of interest. The user can fix the root state probabilities by supplying a vector to root.p. For example, in the two trait case, if the hypothesis is that the root is 00, then the root vector would be root.p=c(1,0,0,0) for state combinations 00, 01, 10, and 11, respectively. If user supplies the flag root.p="maddfitz" the same procedure described by Madison et al (2007) and FitzJohn et al (2009) is used. Note, however, that the default root.p=NULL assumes equal weighting among all possible states.

We also note that scoring information that is missing for a species can be incorporated in the analysis by including an NA for that particular trait. corDISC will then set the trait vector so that the tip vector will reflect the probabilities that are compatible with our observations. For example, if the scoring for trait 1 is missing, but trait 2 is scored as 0, then the tip vector would be (1,0,1,0), for state combinations 00, 01, 10, and 11 respectively, given our observation that trait 2 is scored 0 (for a good discussion see Felsenstein 2004, pg. 255).

Value
corDISC returns an object of class corDISC. This is a list with elements:

$Dloglik the maximum negative log-likelihood.
$DAIC Akaike information criterion.
$DAICc Akaike information criterion corrected for sample size.
$ntraits The number of traits specified.
$solution a matrix containing the maximum likelihood estimates of the transition rates.
$solution.se a matrix containing the approximate standard errors of the transition rates. The standard error is calculated as the square root of the diagonal of the inverse of the Hessian matrix.
$index.mat The indices of the parameters being estimated are returned. The numbers correspond to the row in the eigvect and can useful for identifying the parameters that are causing the objective function to be at a saddlepoint.
$opts Internal settings of the likelihood search
$data User-supplied dataset.
$phy User-supplied tree.
$states The likeliest states at each internal node.
$tip.states NULL
$iterations The number of iterations used by the optimization routine.
$eigval The eigenvalues from the decomposition of the Hessian of the likelihood function. If any eigval<0 then one or more parameters were not optimized during the likelihood search
$eigvect The eigenvectors from the decomposition of the Hessian of the likelihood function is returned

Author(s)
Jeremy M. Beaulieu
References

Examples

```r
## Not run
## Load tree and data
# data(primates)

## Obtain the fit for two binary characters
# pp<-corDISC(primates$tree,primates$trait,ntraits=2,model="ARD",
# node.states="marginal", diag=FALSE)
# pp

## State combination three is not an observed state, so for fun, let's remove
## these transitions:
# new.mat <- rate.mat-maker(hrm=FALSE, ntraits=2, model="ARD")
# new.mat <- rate.par.drop(new.mat, c(2,8,5,6))
# pp<-corDISC(primates$tree,primates$trait,ntraits=2,rate.mat=new.mat,model="ARD",
# node.states="marginal", diag=FALSE)
# pp
```

corHMM

Hidden Rates Model

Description

Estimates hidden rates underlying the evolution of a binary character

Usage

```r
corHMM(phy, data, rate.cat, rate.mat=NULL, node.states=c("joint", "marginal","scaled"), optim.method=c("subplex"), p=NULL, root.p=NULL, ip=NULL, nstarts=10, n.cores=NULL, lb=0, ub=100, diag=FALSE)
```
Arguments

- **phy**: a phylogenetic tree, in ape “phylo” format.
- **data**: a data matrix containing species information (see Details).
- **rate.cat**: specifies the number of rate categories in the HRM.
- **rate.mat**: a user-supplied rate matrix index of parameters to be optimized.
- **node.states**: method used to calculate ancestral states at internal nodes (see Details).
- **optim.method**: method used to perform optimization. The default is subplex.
- **p**: a vector of transition rates. Allows the user to calculate the likelihood given a specified set of parameter values to specified as fixed and calculate the likelihood.
- **root.p**: a vector used to fix the probabilities at the root, but “maddfitz” can also be supplied to use the method of Maddison et al (2007) and FitzJohn et al (2009) (see details).
- **ip**: initial values used for the likelihood search. Can be a single value or a vector of unique values for each parameter. The default is ip=1.
- **nstarts**: the number of random restarts to be performed. The default is nstarts=10.
- **n.cores**: the number of processor cores to spread out the random restarts.
- **lb**: lower bound for the likelihood search. The default is lb=0.
- **ub**: upper bound for the likelihood search. The default is ub=100.
- **diag**: logical indicating whether diagnostic tests should be performed. The default is FALSE.

Details

The function takes a tree and a trait file and estimates transition rates and ancestral states for a single binary character using the hidden rates model (HRM). The HRM is a generalization of the covarion model that allows different rate classes to be treated as "hidden" states in reconstructing ancestral character states. For example, for a model with two rate classes, slow (S) and fast (F), underlie each observed state of 0 and 1. Since we only observe states, we treat each observation as having a probability of 1 for being either in the F and S categories. In other words, a character state 0 at a tip is assumed to have a probability of 1 for being 0_S and 0_F. The likelihood function is then maximized using the bounded subplex optimization routine (optim.method=subplex) implemented in the R package nloptr, which provides a common interface to NLopt, an open-source library for nonlinear optimization. Users can also set optim.method=rgenoud to specify that likelihood function is to maximized using a genetic algorithm. In the former case, however, it is recommended that nstarts is set to a large value (e.g. 100) to ensure that the maximum likelihood solution is found. Users can set n.cores to parse the random restarts onto multiple processors.

The input phylogeny need not be bifurcating as the algorithm is implemented to handle multifurcations. Polytomies are allowed by generalizing Felsenstein’s (1981) pruning algorithm to be the product of the probability of observing the tip states of n descendant nodes, rather than two, as in the completely bifurcating case. The first column of the trait file must contain the species labels to match to the tree, with the second corresponding to the binary trait of interest. Any variant of a model that assume either 1, 2, 3, 4, or 5 rate categories underlying the observed data can be evaluated. Note that for a given full model, the different rate classes are ordered from slowest (rate class
R1) to fastest (rate class Rn) with respect to state 0. The user can fix the root state probabilities by supplying a vector to root.p. For example, if the hypothesis is that the root is 0_S in a model with two hidden rates, then the root vector would be root.p=c(1, 0, 0, 0) for state combinations 0_S, 1_S, 0_F, and 1_F, respectively. If the user supplies the flag root.p="maddfitz" the same procedure described by Maddison et al. (2007) and FitzJohn et al. (2009) is used. Note that the default root.p=NULL assumes equal weighting among all possible states.

Value

corHMM returns an object of class corHMM. This is a list with elements:

$loglik$ the maximum negative log-likelihood.

AIC Akaike information criterion.

$AICC$ Akaike information criterion corrected for sample size.

$rate.cat$ The number of rate categories specified.

$solution$ a matrix containing the maximum likelihood estimates of the transition rates. Note that the rate classes are ordered from slowest (R1) to fastest (Rn) with respect to state 0.

$solution.se$ a matrix containing the approximate standard errors of the transition rates. The standard error is calculated as the square root of the diagonal of the inverse of the Hessian matrix.

$index.mat$ The indices of the parameters being estimated are returned. The numbers correspond to the row in the eigvect and can useful for identifying the parameters that are causing the objective function to be at a saddlepoint.

$opts$ Internal settings of the likelihood search.

$data$ User-supplied dataset.

phy User-supplied tree.

$states$ The likeliest states at each internal node. The state and rates reconstructed at internal nodes are in the order of the column headings of the rates matrix.

$tip.states$ NULL

$iterations$ The number of iterations used by the optimization routine.

$eigval$ The eigenvalues from the decomposition of the Hessian of the likelihood function. If any $eigval<0$ then one or more parameters were not optimized during the likelihood search.

$eigvect$ The eigenvectors from the decomposition of the Hessian of the likelihood function is returned.

Author(s)

Jeremy M. Beaulieu
References

Examples
Not run
data(primates)
Obtain the fit of second rate class underlying a binary character:
pp<-corHMM(primates$tree,primates$trait[,c(1,2)],rate.cat=2,node.states="marginal")
pp

corPAINT Binary character evolution with tree painting

Description
Fits multiple rate models of correlated evolution between one, two, or three binary traits to paintings on branches

Usage
corPAINT(phy, data, ntraits=2, rate.mat=NULL, model=c("ER","SYM","ARD"),
node.states=c("joint", "marginal", "scaled"), p=NULL, root.p=NULL, ip=NULL,
lb=0, ub=100, diagn=FALSE)

Arguments
phy a phylogenetic tree, in ape “phylo” format.
data a data matrix containing species information (see Details).
ntraits specifies the number of traits to included in the analysis.
rate.mat a user-supplied rate matrix index of parameters to be optimized.
model specifies the underlying model.
node.states method used to calculate ancestral states at internal nodes (see Details).
p a vector of transition rates. Allows the user to calculate the likelihood given a specified set of parameter values to specified as fixed and calculate the likelihood.
root.p a vector used to fix the probabilities at the root.
ip initial values used for the likelihood search. Can be a single value or a vector of unique values for each parameter. The default is ip=1.
lb lower bound for the likelihood search. The default is lb=0.
ub upper bound for the likelihood search. The default is ub=100.
diagn logical indicating whether diagnostic tests should be performed. The default is FALSE.

Details
The function fits a model that applies different transition models between one, two or three binary characters based on the user-defined painting of branches on the tree of discrete "selective regimes". The trait file must be constructed in the following way: the first column of the trait file must contain the species labels to match to the tree, with the second, and so on, corresponding to the binary traits of interest. The last column in the trait file defines the current "selective regime" for each tip. The user can fix the root state probabilities by supplying a vector to the root.p, otherwise, the program assumes the marginal probability for the root. Also, like all other functions scoring information that is missing for a species can be incorporated in the analysis by including an NA for that particular trait. NOTE THAT ALTHOUGH THIS FUNCTION SHOULD WORK, IT IS CURRENTLY BEING DEVELOPED. SO USE AT YOUR OWN RISK.

Value
corPAINT returns an object of class corPAINT. This is a list with elements:

$loglik the maximum negative log-likelihood.
$AIC Akaike information criterion.
$AICc Akaike information criterion corrected for sample size.
$ntraits The number of traits specified.
$solution a matrix containing the maximum likelihood estimates of the transition rates.
$solution.se a matrix containing the approximate standard errors of the transition rates. The standard error is calculated as the square root of the diagonal of the inverse of the Hessian matrix.
$index.mat The indices of the parameters being estimated are returned. The numbers correspond to the row in the eigvect and can useful for identifying the parameters that are causing the objective function to be at a saddlepoint.
$opts Internal settings of the likelihood search
$data User-supplied dataset.
$phy User-supplied tree.
$states The likeliest states at each internal node.
$tip.states NULL
$iterations The number of iterations used by the optimization routine.
$eigval The eigenvalues from the decomposition of the Hessian of the likelihood function. If any eigval<0 then one or more parameters were not optimized during the likelihood search.
eigvect The eigenvectors from the decomposition of the Hessian of the likelihood function is returned

Author(s)

Jeremy M. Beaulieu

Examples

Not run
Load tree and data
data(primates.paint)
Obtain the fit for two binary characters
pp.null<-corDISC(primates.paint$tree, primates.paint$trait, ntraits=2, model="ER",
node.states="marginal")
pp.null
pp.paint<-corPAINT(primates.paint$tree, primates.paint$trait, ntraits=2, model="ER",
node.states="marginal")
pp.paint

Example datasets

Description

Example files for running various functions in corHMM. The “primates” dataset comes from the example files provided by BayesTraits, though here we only include a single tree with branch lengths scaled to time. The “primates.paint” dataset is the same, but with the tree painted according to hypothetical regimes. Finally, the “rayDISC.example” dataset provides an example on how polymorphic data can be coded for rayDISC.

Format

a list object that contains a tree of class “phylo” and a dataframe that contains the trait data

References

plotRECON

Plot ancestral state reconstructions

Description

Plots maximum likelihood ancestral state estimates on tree

Usage

plotRECON(phy, likelihoods, piecolors=NULL, cex=0.5, pie.cex=0.25, file=NULL, height=11, width=8.5, show.tip.label=TRUE, title=NULL, ...)

Arguments

phy a phylogenetic tree, in ape “phylo” format.
likelihoods likelihoods for ancestral states (see Details).
piecolors a vector of colors for states.
cex specifies the size of the font for labels (if used).
pie.cex specifies the size of the symbols to plot on tree.
file filename to which a pdf is saved.
height height of plot.
width width of plot.
show.tip.label a logical indicating whether to draw tip labels to tree. The default is TRUE.
title an optional title for the plot.
... Additional arguments to be passed to the plot device

Details

Plots ancestral state estimates on provided tree. The likelihoods can be the states of an object of class rayDISC or class corDISC, or the lik.arc of an object of class ace (from the ape package).

Value

A plot indicating the maximum likelihood ancestral states at each internal node.

Author(s)

Jeffrey C. Oliver

See Also

corDISC, rayDISC
Examples

Not run
Load data
data(rayDISC.example)
Perform ancestral state estimation, using a single rate of evolution and marginal
reconstruction of ancestral states
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,model="ER",
node.states="marginal")
Plot reconstructions on tree
plotRECON(rayDISC.example$tree,recon$states,title="rayDISC Example")

rate.mat.maker \hspace{1cm} Rate matrix maker

Description
Generates and manipulates the index of the rate parameters to be optimized

Usage

rate.mat.maker(rate.cat, hrm=TRUE, ntraits=NULL, nstates=NULL,
model=c("ER", "SYM", "ARD"))
rate.par.drop(rate.mat.index=NULL,drop.par=NULL)
rate.par.eq(rate.mat.index=NULL, eq.par=NULL)

Arguments

rate.cat \hspace{6cm} specifies the number of rate categories in the HRM.
hrm \hspace{6cm} a logical indicating whether the underlying model is the hidden rates model (HRM). The default is FALSE.
ntraits \hspace{6cm} specifies the number of traits in the data file if the underlying model is not the HRM.
nstates \hspace{6cm} specifies the number of characters in the data file used in rayDISC.
model \hspace{6cm} if the model is not HRM, specifies the underlying model.
rate.mat.index \hspace{6cm} A user-supplied rate matrix index to be manipulated.
drop.par \hspace{6cm} a vector of transitions to be dropped from the model. Use rate.mat.index to see what correspond to which transition.
eq.par \hspace{6cm} a vector of transitions pairs to be set equal. Use rate.mat.index to see what correspond to which transition.

Details
Outputs the full index of the rate parameters that are to be optimized. The intention is that a user might want to see how the matrix is designed prior to an analysis and perhaps drops a few parameters beforehand due to some hypothesis that he or she might have. The resulting matrix can then be plugged directly into corHMM, corDISC, or rayDISC.
Value

Returns a rate matrix index

Author(s)

Jeremy M. Beaulieu and Jeffrey C. Oliver

Examples

```r
# Generate a matrix for two binary traits:
rate.mat <- rate.mat.maker(hrm=FALSE, ntraits=2, model="ARD")
# Drop parameter 8 from the model
rate.mat <- rate.par.drop(rate.mat, drop.par=c(8))
# Set parameters 1 and 2 equal to one another:
rate.mat <- rate.par.eq(rate.mat, eq.par=c(1,2))

# Precursor model. There are many ways to do this, but here is one way
rate.mat <- rate.mat.maker(hrm=TRUE, rate.cat=2)
rate.mat <- rate.par.drop(rate.mat, c(1,3,4,6,7,8))
rate.mat <- rate.par.eq(rate.mat, c(1,2))
# Now add in a couple more connections:
rate.mat[3,2] <- -1
rate.mat[2,3] <- -1
# Now just use this matrix when using the corHMM function

# Here is a one way of doing a more complicated precursor:
rate.mat[3,2] <- -2
rate.mat[1,3] <- -3
rate.mat[2,3] <- -4
# Again, just use this matrix when using the corHMM function

# Finally, here is an easier way of doing the precursor:
rate.mat <- rate.mat.maker(hrm=TRUE, rate.cat=2)
rate.mat <- rate.par.drop(rate.mat, c(1,3,4,7))
rate.mat[!is.na(rate.mat)] <- 1

# Not run
# pp <- corHMM(primates$tree, primates$trait, rate.cat=2, rate.mat=rate.mat, 
# node.states = "marginal", diagm=FALSE)
```

Description

Fits a model of evolution for categorical traits, allowing for multi-state characters, polymorphisms, missing data, and incompletely resolved trees.
Usage

rayDISC(phy, data, ntraits=1, charnum=1, rate.mat=NULL, model=c("ER", "SYM", "ARD"), node.states=c("joint", "marginal", "scaled"), p=NULL, root.p=NULL, ip=NULL, lb=0, ub=100, diag=FALSE)

Arguments

phy a phylogenetic tree, in ape “phylo” format.
data a data matrix containing species information (see Details).
ntraits specifies the number of traits to included in the analysis.
charnum specified the character to analyze.
rate.mat a user-supplied rate matrix index of parameters to be optimized.
model specifies the underlying model.
node.states method used to calculate ancestral states at internal nodes.
p a vector of transition rates. Allows the user to calculate the likelihood given a specified set of parameter values to specified as fixed and calculate the likelihood.
root.p a vector used to fix the probabilities at the root, but “maddfitz” can also be supplied to use the method of Maddison et al (2007) and FitzJohn et al (2009) (see details).
ip initial values used for the likelihood search. Can be a single value or a vector of unique values for each parameter. The default is ip=1.
lb lower bound for the likelihood search. The default is lb=0.
ub upper bound for the likelihood search. The default is ub=100.
diagn logical indicating whether diagnostic tests should be performed. The default is FALSE.

Details

The function takes a tree and a trait file and estimates transition rates and ancestral states for binary or multistate characters. The first column of the trait file must contain the species labels to match to the tree, with the second, third, fourth, and so on, corresponding to the traits of interest. Use the charnum variable to select the trait for analysis. Also, the input phylogeny need not be bifurcating as the algorithm is implemented to handle multifucations. Polytomies are allowed by generalizing Felsenstein’s (1981) pruning algorithm to be the product of the probability of observing the tip states of n descendant nodes, rather than two, as in the completely bifurcating case.

The user can fix the root state probabilities by supplying a vector to the root.p. If user supplies the flag root.p="maddfitz" calls the same procedure described by Maddison et al (2007) and FitzJohn et al (2009) is used. Note, however, that the default root.p=NULL assumes equal weighting among all possible states.

Ambiguities (polymorphic taxa or taxa missing data) are assigned likelihoods following Felsenstein (2004, p. 255). Polymorphic taxa are coded “&” with all states observed at a tip. For example, if a trait has four states and taxonA is observed to be in state 1 and 3, the character would be coded as “1&3”. rayDISC then uses this information to assign a likelihood of 1.0 to both states. Missing data
are treated as ambiguous for all states, thus all states for taxa missing data are assigned a likelihood of 1.0. For example, for a four-state character (i.e. DNA), a taxon missing data will have likelihoods of all four states equal to 1.0 [e.g. L(A)=1.0, L(C)=1.0, L(G)=1.0, L(T)=1.0].

Value

-rayDISC returns an object of class rayDISC. This is a list with elements:

- $\texttt{Dloglik}$ the maximum negative log-likelihood.
- \texttt{AIC} Akaike information criterion.
- \texttt{AICc} Akaike information criterion corrected for sample size.
- \texttt{traits} The number of traits specified.
- $\texttt{solution}$ a matrix containing the maximum likelihood estimates of the transition rates.
- $\texttt{solution.se}$ a matrix containing the approximate standard errors of the transition rates. The standard error is calculated as the square root of the diagonal of the inverse of the Hessian matrix.
- $\texttt{index.mat}$ The indices of the parameters being estimated are returned. The numbers correspond to the row in the eigvect and can useful for identifying the parameters that are causing the objective function to be at a saddlepoint.
- \texttt{opts} Internal settings of the likelihood search.
- \texttt{data} User-supplied dataset.
- \texttt{phy} User-supplied tree.
- \texttt{states} The likeliest states at each internal node.
- $\texttt{tip.states}$ NULL
- $\texttt{iterations}$ The number of iterations used by the optimization routine.
- \texttt{eigval} The eigenvalues from the decomposition of the Hessian of the likelihood function. If any eigval<0 then one or more parameters were not optimized during the likelihood search.
- $\texttt{eigvect}$ The eigenvectors from the decomposition of the Hessian of the likelihood function is returned.
- $\texttt{bound.hit}$ A logical for diagnosing if rate parameters were constrained by lb or ub values during optimization.
- $\texttt{message.tree}$ A list of taxa which were listed in the data matrix, but were not present in the passed phylo object. These taxa will be excluded from the analysis. message.tree is null if all taxa in data are included in tree.
- $\texttt{message.data}$ A list of taxa which were present in the passed phylo object, but lacked data in the passed data matrix. These taxa will be coded as missing data (all states equally likely). message.data is null if all taxa in tree have entries in data matrix.

Author(s)

Jeffrey C. Oliver and Jeremy M. Beaulieu
References

See Also

plotRECON

Examples

Not run
Example 1
Load data
data(rayDISC.example)

Perform ancestral state estimation, using an asymmetric model of evolution and marginal
reconstruction of ancestral states
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,model="ARD",
node.states="marginal")

Plot reconstructions on tree
plotRECON(rayDISC.example$tree,recon$states)

Example 2
Perform ancestral state estimation on second character, using a single-rate model of
evolution, marginal reconstruction of ancestral states, and setting the lower bound for
parameter estimates to 0.01
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,chnum=2,model="ER",
node.states="marginal",lb=0.01)

Example 3
Perform ancestral state estimation on third character, using a single-rate model of
evolution and joint reconstruction of ancestral states
recon <- rayDISC(rayDISC.example$tree,rayDISC.example$trait,chnum=3,
model="ER",node.states="joint")
Index

*Topic datasets
 examples, 11
*Topic models
 corDISC, 4
 corHMM, 6
 corPAINT, 9
 rate.mat.maker, 13
 rayDISC, 14
*Topic plot
 plotRECON, 12
*Topic reconstructions
 ancRECON, 2

ancRECON, 2

corDISC, 4, 12
corHMM, 6
corPAINT, 9
development rayDISC (rayDISC), 14
examples, 11
plotRECON, 12, 17
primates (examples), 11
rate.mat.maker, 13
rate.par.drop (rate.mat.maker), 13
rate.par.eq (rate.mat.maker), 13
rayDISC, 12, 14
rayDISC.example (examples), 11