Package ‘fda’

February 19, 2015

Version 2.4.4
Date 2014.05.03
Title Functional Data Analysis
Author J. O. Ramsay <ramsay@psych.mcgill.ca>, Hadley Wickham
<h.wickham@gmail.com>, Spencer Graves
<spencer.graves@prodsyse.com>, Giles Hooker <gjh27@cornell.edu>
Maintainer J. O. Ramsay <ramsay@psych.mcgill.ca>
Depends R (>= 2.10.0), splines, Matrix, graphics
Suggests deSolve, R.matlab, quadprog, nlme, lattice, RCurl, zoo
Description These functions were developed to support functional data
analysis as described in Ramsay, J. O. and Silverman, B. W.
(2005) Functional Data Analysis. New York: Springer. They were
ported from earlier versions in Matlab and S-PLUS. An
introduction appears in Ramsay, J. O., Hooker, Giles, and
Graves, Spencer (2009) Functional Data Analysis with R and
Matlab (Springer). The package includes data sets and script
files working many examples including all but one of the 76
figures in this latter book. Matlab versions of the code and
sample analyses are no longer distributed through CRAN, as they
were when the book was published. For those, ftp from
http://www.psych.mcgill.ca/misc/fda/downloads/FDAfuns/
There you find a set of .zip files containing the functions and
sample analyses, as well as two .txt files giving instructions for
installation and some additional information.
The changes from Version 2.4.1 are fixes of bugs in density.fd and
removal of functions create.polynomial.basis, polymompen, and
polynomial. These were deleted because the monomial basis
does the same thing and because there were errors in the code.
License GPL (>= 2)
URL http://www.functionaldata.org
LazyData true
Repository CRAN
R topics documented:

- fda-package
- AmpPhaseDecomp
- argval.sy.swap
- arithmetic.basisfd
- arithmetic.fds
- as.array3
- as.fds
- as.POSIXct1970
- axisIntervals
- basisfd.product
- bifd
- bifdPar
- bsplinepen
- bsplineS
- CanadianWeather
- cca.fd
- center.fds
- checkDims3
- checkLogicalInteger
- coef.fds
- cor.fds
- CRAN
- create.basis
- create.bspline.basis
- create.constant.basis
- create.exponential.basis
- create.fourier.basis
- create.monomial.basis
- create.polyonal.basis
- create.power.basis
- CSTR
- cycleplot.fd
- Data2fd
- dateAccessories
- density.fds
- deriv.fds
- df.residual.fRegress
- df2lamda

Repository/R-Forge/Project fda
Repository/R-Forge/Revision 761
Repository/R-Forge/DateTimeStamp 2014-12-10 23:04:14
Date/Publication 2014-12-16 17:59:38
NeedsCompilation no
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dirs</td>
<td>84</td>
</tr>
<tr>
<td>Eigen</td>
<td>85</td>
</tr>
<tr>
<td>eigen.pda</td>
<td>87</td>
</tr>
<tr>
<td>eval.basis</td>
<td>88</td>
</tr>
<tr>
<td>eval.bifd</td>
<td>91</td>
</tr>
<tr>
<td>eval.fd</td>
<td>93</td>
</tr>
<tr>
<td>eval.monfd</td>
<td>96</td>
</tr>
<tr>
<td>eval.penalty</td>
<td>98</td>
</tr>
<tr>
<td>eval.posfd</td>
<td>99</td>
</tr>
<tr>
<td>evaldiag.bifd</td>
<td>101</td>
</tr>
<tr>
<td>expon</td>
<td>101</td>
</tr>
<tr>
<td>exponentiate.fd</td>
<td>102</td>
</tr>
<tr>
<td>exponpen</td>
<td>105</td>
</tr>
<tr>
<td>fbplot</td>
<td>106</td>
</tr>
<tr>
<td>fd2list</td>
<td>109</td>
</tr>
<tr>
<td>fdaMatlabPath</td>
<td>110</td>
</tr>
<tr>
<td>fdlabels</td>
<td>111</td>
</tr>
<tr>
<td>fdPar</td>
<td>112</td>
</tr>
<tr>
<td>file.copy2</td>
<td>114</td>
</tr>
<tr>
<td>fourier</td>
<td>115</td>
</tr>
<tr>
<td>fourierpen</td>
<td>116</td>
</tr>
<tr>
<td>Fperm.fd</td>
<td>117</td>
</tr>
<tr>
<td>fRegress</td>
<td>121</td>
</tr>
<tr>
<td>fRegress.CV</td>
<td>130</td>
</tr>
<tr>
<td>fRegress.stderr</td>
<td>131</td>
</tr>
<tr>
<td>Fstat.fd</td>
<td>132</td>
</tr>
<tr>
<td>gait</td>
<td>133</td>
</tr>
<tr>
<td>geigen</td>
<td>134</td>
</tr>
<tr>
<td>getbasismatrix</td>
<td>135</td>
</tr>
<tr>
<td>getbasispenalty</td>
<td>136</td>
</tr>
<tr>
<td>getbasisrange</td>
<td>137</td>
</tr>
<tr>
<td>growth</td>
<td>138</td>
</tr>
<tr>
<td>handwrit</td>
<td>139</td>
</tr>
<tr>
<td>infantGrowth</td>
<td>140</td>
</tr>
<tr>
<td>inprod</td>
<td>141</td>
</tr>
<tr>
<td>inprod.bspline</td>
<td>142</td>
</tr>
<tr>
<td>int2Lfd</td>
<td>143</td>
</tr>
<tr>
<td>intensity.fd</td>
<td>144</td>
</tr>
<tr>
<td>is.basis</td>
<td>146</td>
</tr>
<tr>
<td>is.eqbasis</td>
<td>146</td>
</tr>
<tr>
<td>is.fd</td>
<td>147</td>
</tr>
<tr>
<td>is.fdPar</td>
<td>147</td>
</tr>
<tr>
<td>is.fdSmooth</td>
<td>148</td>
</tr>
<tr>
<td>is.Lfd</td>
<td>148</td>
</tr>
<tr>
<td>knots.fd</td>
<td>149</td>
</tr>
<tr>
<td>lambda2df</td>
<td>150</td>
</tr>
<tr>
<td>lambda2gcv</td>
<td>151</td>
</tr>
<tr>
<td>landmark.reg.expData</td>
<td>152</td>
</tr>
</tbody>
</table>
R topics documented:

- landmarkreg ... 152
- Lfd ... 155
- lines.fd .. 156
- linmod .. 157
- lip ... 159
- lmeWinsor .. 160
- lmWinsor .. 162
- lmWinsor12 ... 166
- matplot ... 167
- mean.fd ... 169
- melanoma .. 171
- monfn ... 172
- monomial ... 173
- monomialpen .. 174
- MontrealTemp .. 175
- nondurables ... 176
- norder ... 176
- objAndNames .. 178
- odesolv ... 179
- onechild .. 180
- pca.fd ... 181
- pda.fd .. 182
- pda.overlay ... 189
- phaseplanePlot ... 190
- pinch ... 192
- plot.basisfd ... 193
- plot.cca.fd ... 194
- plot.fd .. 195
- plot.Lfd ... 198
- plot.lmWinsor .. 199
- plot.pca.fd ... 201
- plot.pda.fd ... 202
- plotbeta ... 204
- plotfit ... 205
- plotreg.fd .. 209
- plotscores .. 210
- polyg ... 211
- polygpen ... 212
- powerbasis ... 213
- powerpen ... 214
- ppBspline .. 215
- predict.fRegress .. 216
- predict.lmeWinsor 218
- predict.lmWinsor 220
- project.basis .. 222
- quadset .. 223
- readHMD ... 224
- refinery ... 227
Description

Details
Author(s)

J. O. Ramsay, <ramsay@psych.mcgill.ca>, Hadley Wickham <h.wickham@gmail.com>, Spencer Graves <spencer.graves@prodsyse.com>, Giles Hooker <gjh27@cornell.edu>
Maintainer: J. O. Ramsay <ramsay@psych.mcgill.ca>

References

Examples

```r
##
## As noted in the Preface to Ramsay, Hooker and Graves (p. v),
## the fda package includes scripts to reproduce all but one of the
## figures in the book.
##
## These figures can be found and run as follows:
##
## Not run:
scriptsDir <- system.file('scripts', package='fda')
Rscripts <- dir(scriptsDir, full.names=TRUE, pattern='R$')
fdarm <- grep('fdarm', Rscripts, value=TRUE)
chapters <- length(fdarm)
# NOTE: If R fails in any of these scripts,
# this for loop will not end normally,
# and the abnormal termination will be displayed:
for(ch in 1:chapters){
  cat('Running', fdarm[ch], 'n')
  invisible(source(fdarm[ch]))
}
## End(Not run)
##
```
Simple smoothing

```r
girlGrowthSm <- with(growth, smooth.basisPar(argvals="age", y=hgtf, lambda=.1))
plot(girlGrowthSm$x, ylab="height (cm)", main="Girls in Berkeley Growth Study")
plot(deriv(girlGrowthSm$x), ylab="growth rate (cm / year)", main="Girls in Berkeley Growth Study")
plot(deriv(girlGrowthSm$x, 2), ylab="growth acceleration (cm / year^2)", main="Girls in Berkeley Growth Study")
```

Simple basis

```r
bspl1.2 <- create.bspline.basis(norder=1, breaks=c(0,.5, 1))
plot(bspl1.2)
# 2 bases, order 1 = degree 0 = step functions:
# (1) constant 1 between 0 and 0.5 and 0 otherwise
# (2) constant 1 between 0.5 and 1 and 0 otherwise.

fd1.2 <- Data2fd(0:1, basisobj=bspl1.2)
op <- par(mfrow=c(2,1))
plot(bspl1.2, main='bases')
plot(fd1.2, main='fit')
par(op)
# A step function: 0 to time=0.5, then 1 after
```

Description

Registration is the process of aligning peaks, valleys and other features in a sample of curves. Once the registration has taken place, this function computes two mean squared error measures, one for amplitude variation, and the other for phase variation. It also computes a squared multiple correlation index of the amount of variation in the unregistered functions is due to phase.

Usage

```r
AmpPhaseDecomp(xfd, yfd, hfd, rng=xrng, returnMatrix=FALSE)
```

Arguments

- **xfd**: a functional data object containing the unregistered curves.
- **yfd**: a functional data object containing the registered curves.
- **hfd**: a functional data object containing the strictly monotone warping functions $h(t)$. This is typically returned by the functions `landmarkreg` and `register.fd`.

AmpPhaseDecomp

Decomposition for Amplitude and Phase Variation

Description

Registration is the process of aligning peaks, valleys and other features in a sample of curves. Once the registration has taken place, this function computes two mean squared error measures, one for amplitude variation, and the other for phase variation. It also computes a squared multiple correlation index of the amount of variation in the unregistered functions is due to phase.

Usage

```r
AmpPhaseDecomp(xfd, yfd, hfd, rng=xrng, returnMatrix=FALSE)
```

Arguments

- **xfd**: a functional data object containing the unregistered curves.
- **yfd**: a functional data object containing the registered curves.
- **hfd**: a functional data object containing the strictly monotone warping functions $h(t)$. This is typically returned by the functions `landmarkreg` and `register.fd`.
rng

a vector of length 2 specifying a range of values over which the decomposition is to be computed. Both values must be within the range of the functional data objects in the argument. By default the whole range of the functional data objects is used.

returnMatrix

logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Details

The decomposition can yield negative values for MS.phas if the registration does not improve the alignment of the curves, or if used to compare two registration processes based on different principles, such as is the case for functions landmarkreg and register.fd.

Value

a named list with the following components:

- MS.amp: the mean squared error for amplitude variation.
- MS.phas: the mean squared error for phase variation.
- RSQR: the squared correlation measure of the proportion of the total variation that is due to phase variation.
- C: a constant required for the decomposition. Its value is one if the derivatives the warping functions are independent of the squared registered functions.

See Also

landmarkreg, register.fd, smooth.morph

Examples

#See the analysis for the growth data in the examples.

argvalsy.swap

Swap argvals with y if the latter is simpler.

Description

Preprocess argvals, y, and basisobj. If only one of argvals and y is provided, use it as y and take argvals as a vector spanning basisobj[['rangreval']]. If both are provided, the simpler becomes argvals. If both have the same dimensions but only one lies in basisobj[['rangreval']], that becomes argvals.

Usage

argvalsy.swap(argvals=NULL, y=NULL, basisobj=NULL)
Arguments

argvals a vector or array of argument values.
y an array containing sampled values of curves.
basisobj One of the following:
 • basisfd a functional basis object (class basisfd).
 • fd a functional data object (class fd), from which its basis component is extracted.
 • fdPar a functional parameter object (class fdPar), from which its basis component is extracted.
 • integer an integer giving the order of a B-spline basis, create.bspline.basis(argvals, norder=basisobj)
 • numeric vector specifying the knots for a B-spline basis, create.bspline.basis(basisobj)
 • NULL Defaults to create.bspline.basis(argvals).

Details

1. If y is NULL, replace by argvals.
2. If argvals is NULL, replace by seq(basisobj[['rangeval']][1], basisobj[['rangeval']][2], dim(y)[1]) with a warning.
3. If the dimensions of argvals and y match and only one is contained in basisobj[['rangeval']], use that as argvals and the other as y.
4. If y has fewer dimensions than argvals, swap them.

Value

da list with components argvals, y, and basisobj.

See Also

Data2fd smooth.basis, smooth.basisPar

Examples

##
one argument: y
##
argvalsy.swap(1:5)
warning ...

##
(argvals, y), same dimensions: retain order
##
argy1 <- argvalsy.swap(seq(0, 1, .2), 1:6)
argy1a <- argvalsy.swap(1:6, seq(0, 1, .2))

call.equal(argy1[[1]], argy1a[[2]]) &&
argvaly.swap

all.equal(argy1[,2], argy1a[,1])
TRUE; basisobj different

lengths do not match
Not run:
argvaly.swap(1:4, 1:5)
End(Not run)

##
two numeric arguments, different dimensions: put simplest first
##
argy2 <- argvaly.swap(seq(0, 1, .2), matrix(1:12, 6))

all.equal(argy2,
argvaly.swap(matrix(1:12, 6), seq(0, 1, .2)))
TRUE with a warning ...

Not run:
argvaly.swap(seq(0, 1, .2), matrix(1:12, 2))
ERROR: first dimension does not match
End(Not run)

##
one numeric, one basisobj
##
argy3 <- argvaly.swap(1:6, b=4)
warning: argvals assumed seq(0, 1, .2)
argy3. <- argvaly.swap(1:6, b=create.bspline.basis(breaks=0:1))
warning: argvals assumed seq(0, 1, .2)
argy3.6 <- argvaly.swap(seq(0, 1, .2), b=create.bspline.basis(breaks=1:3))
warning: argvals assumed seq(1, 3 length=6)

##
two numeric, one basisobj: first matches basisobj
##
OK
argy3a <- argvaly.swap(1:6, seq(0, 1, .2),
create.bspline.basis(breaks=c(1, 4, 8)))

Swap (argvals, y)

all.equal(argy3a,
argvaly.swap(seq(0, 1, .2), 1:6,
create.bspline.basis(breaks=c(1, 4, 8)))
TRUE with a warning
arithmetic.basisfd

Arithmetic on functional basis objects

Description
Arithmetic on functional basis objects

Usage
S3 method for class 'basisfd'
basis1 == basis2

Arguments
basis1, basis2 functional basis object

Value
basisobj1 == basisobj2 returns a logical scalar.

References

See Also
basisfd, basisfd.product arithmetic.fd
Description

Arithmetic on functional data objects

Usage

S3 method for class 'fd'
e1 + e2
S3 method for class 'fd'
e1 - e2
S3 method for class 'fd'
e1 * e2
plus.fd(e1, e2, basisobj=NULL)
minus.fd(e1, e2, basisobj=NULL)
times.fd(e1, e2, basisobj=NULL)

Arguments

e1, e2
 object of class 'fd' or a numeric vector. Note that 'e1+e2' will dispatch to
 plus.fd(e1, e2) only if e1 has class 'fd'. Similarly, 'e1-e2' or 'e1*e2' will dis-
 patch to minus.fd(e1, e2) or time.fd(e1, e2), respectively, only if e1 is of class
 'fd'.

basisobj
 reference basis; defaults to e1[['basis']] * e2[['basis']]; ignored for plus.fd
 and minus.fd.

Value

A function data object corresponding to the pointwise sum, difference or product of e1 and e2.

If both arguments are functional data objects, the bases are the same, and the coefficient matrices
are the same dims, the indicated operation is applied to the coefficient matrices of the two objects.
In other words, e1+e2 is obtained for this case by adding the coefficient matrices from e1 and e2.

If e1 or e2 is a numeric scalar, that scalar is applied to the coefficient matrix of the functional data
object.

If either e1 or e2 is a numeric vector, it must be the same length as the number of replicated functional
observations in the other argument.

When both arguments are functional data objects, they need not have the same bases. However, if
they don't have the same number of replicates, then one of them must have a single replicate. In
the second case, the singleton function is replicated to match the number of replicates of the other
function. In either case, they must have the same number of functions. When both arguments are
functional data objects, and the bases are not the same, the basis used for the sum is constructed
to be of higher dimension than the basis for either factor according to rules described in function
TIMES for two basis objects.
See Also

basisfd, basisfd.product exponentiate.fd

Examples

```r
## add a parabola to itself
bspl4 <- create.bspline.basis(nbasis=4)  
parab4.5 <- fd(c(3, -1, -1, 3)/3, bspl4)

coef2 <- matrix(c(6, -2, -2, 6)/3, 4)
dimnames(coef2) <- list(NULL, 'reps 1')

all.equal(coef(parab4.5+parab4.5), coef2)

## Same example with interior knots at 1/3 and 1/2
bspl15.3 <- create.bspline.basis(breaks=c(0, 1/3, 1))  
plot(bspl15.3)
x. <- seq(0, 1, .1)
parab4.5.3 <- smooth.basis(x., 4*(x-.5)^2, fdParobj=bspl15.3)[['fd']]  
plot(parab4.5.3)

parab4.5.2 <- smooth.basis(x., 1*(x-.5)^2, fdParobj=bspl15.2)[['fd']]  
plot(parab4.5.2)

all.equal(coef(parab4.5.3-parab4.5.2), coef2)

## product
quart <- para4.5.3*para4.5.2

all.equal(knots(quart), c(knots(para4.5.3), knots(para4.5.2)))

# norder(quart) = norder(para4.5.2)+norder(para4.5.3)-1 = 7
```
norder(quart) == (norder(para4.5.2)+norder(para4.5.3)-1)

para4.5.2 with knot at 0.5 and para4.5.3 with knot at 1/3
both have (2 end points + 1 interior knot) + norder-2
= 5 basis functions
quart has (2 end points + 2 interior knots)+norder-2
= 9 basis functions
coefficients look strange because the knots are at
(1/3, 1/2) and not symmetrical

all.equal(as.numeric(coef(quart)),
0.1*c(90, 50, 14, -10, 6, -2, -2, 30, 90)/9)

plot(para4.5.3*para4.5.2) # quartic, not parabolic ...

###
product with Fourier bases
###
f3 <- fd(c(0,0,1), create.fourier.basis())
f3*2 # number of basis functions = 7?

###
fd+numeric
###
coef1 <- matrix(c(6, 2, 2, 6)/3, 4)
dimnames(coef1) <- list(NULL, 'reps 1')

all.equal(coef(parab4.5+1), coef1)

all.equal(1+parab4.5, parab4.5+1)

###
fd-numeric
###
coefneg <- matrix(c(-3, 1, 1, -3)/3, 4)
dimnames(coefneg) <- list(NULL, 'reps 1')

all.equal(coef(-parab4.5), coefneg)

plot(parab4.5-1)

plot(1-parab4.5)
as.array3

Reshape a vector or array to have 3 dimensions.

Description

Coerce a vector or array to have 3 dimensions, preserving dimnames if feasible. Throw an error if length(dim(x)) > 3.

Usage

as.array3(x)

Arguments

x A vector or array.

Details

1. dimx <- dim(x); ndim <- length(dimx)
2. if(ndim==3)return(x).
3. if(ndim>3)stop.
4. x2 <- as.matrix(x)
5. dim(x2) <- c(dim(x2), 1)
6. xnames <- dimnames(x)
7. if(is.list(xnames))dimnames(x2) <- list(xnames[[1]], xnames[[2]], NULL)

Value

A 3-dimensional array with names matching x

Author(s)

Spencer Graves

See Also

dim, dimnames, checkDims3

Examples

vector -> array
as.array3(c(a=1, b=2))
##
matrix -> array
as.fd

##
as.array3(matrix(1:6, 2))
as.array3(matrix(1:6, 2, dimnames=list(letters[1:2], LETTERS[3:5])))

##
array -> array
##
as.array3(array(1:6, 1:3))

##
4-d array
##
Not run:
as.array3(array(1:24, 1:4))
Error in as.array3(array(1:24, 1:4)):
 length(dim(array(1:24, 1:4)) = 4 > 3

End(Not run)

```r
as.fd(x, ...)  
## S3 method for class 'fdSmooth'
as.fd(x, ...)  
## S3 method for class 'function'
as.fd(x, ...)  
## S3 method for class 'smooth.spline'
as.fd(x, ...)
```

Arguments

- **x**
 - an object to be converted to class `fd`.

- **...**
 - optional arguments passed to specific methods, currently unused.

Details

The behavior depends on the class and nature of `x`.

- `as.fd.fdSmoothextract the fd component`
• as.fd.dierckx The 'fda' package (as of version 2.0.0) supports B-splines with coincident boundary knots. For periodic phenomena, the DierckxSpline packages uses periodic spines, while fda recommends finite Fourier series. Accordingly, as.fd.dierckx if x[['periodic']] is TRUE.

The following describes how the components of a dierckx object are handled by as.dierckx(as.fd(x)):

- xlost. Restored from the knots.
- y lost. Restored from spline predictions at the restored values of 'x'.
- wlost. Restored as rep(1, length(x)).
- from, tofd[['basis']][['rangeval']] - k coded indirectly as fd[['basis']][['nbasis']] - length(fd[['basis']][['params']]) - 1.
- slost, restored as 0.
- nestlost, restored as length(x) + k + 1
- n coded indirectly as 2*fd[['basis']][['nbasis']] - length(fd[['basis']][['params']]).
- knots The end knots are stored (unreplicated) in fd[['basis']][['rangeval']], while the interior knots are stored in fd[['basis']][['params']].
- fplost. Restored as 0.
- wrk, lwrk, iwrk lost. Restore by refitting to the knots.
- ierlost. Restored as 0.
- messagelost. Restored as character(0).
- gstored indirectly as length(fd[['basis']][['params']]).
- methodlost. Restored as "ss".
- periodic 'dierckx2fd' only translates 'dierckx' objects with coincident boundary knots. Therefore, 'periodic' is restored as FALSE.
- routinelost. Restored as 'curfit.default'.
- xlabfd[['fdnames']][['args']]
- ylabfd[['fdnames']][['funs']]

• as.fd.function Create an fd object from a function of the form created by splinefun. This will translate method = 'fmn' and 'natural' but not 'periodic': 'fmn' splines are isomorphic to standard B-splines with coincident boundary knots, which is the basis produced by create.bspline.basis. 'natural' splines occupy a subspace of this space, with the restriction that the second derivative at the end points is zero (as noted in the Wikipedia spline article). 'periodic' splines do not use coincident boundary knots and are not currently supported in fda; instead, fda uses finite Fourier bases for periodic phenomena.

• as.fd.smooth.spline Create an fd object from a smooth.spline object.

Value

as.fd.dierckx converts an object of class 'dierckx' into one of class fd.

Author(s)

Spencer Graves
References

See Also

`fd splinefun`

Examples

```r
## as.fd.fdSmooth
##
girlGrowthSm <- with(growth, smooth.basisPar(argvals=age, y=hgtf, lambda=0.1))
girlGrowth.fd <- as.fd(girlGrowthSm)

## as.fd.function(splinefun(...), ...)
##
x2 <- 1:7
y2 <- sin((x2-0.5)*pi)
f <- splinefun(x2, y2)
fd. <- as.fd(f)
x. <- seq(1, 7, .02)
fx. <- f(x.)
fdx. <- eval.fd(x., fd.)

# range(y2, fx., fdx.) generates an error 2012.04.22
rfdx <- range(fdx.)

plot(range(x2), range(y2, fx., rfdx), type='n')
points(x2, y2)
lines(x., sin((x.-0.5)*pi), lty='dashed')
lines(x., f(x.), col='blue')
lines(x., eval.fd(x., fd.), col='red', lwd=3, lty='dashed')
# splinefun and as.fd(splineful(...)) are close
# but quite different from the actual function
# apart from the actual 7 points fitted,
# which are fitted exactly
# ... and there is no information in the data
# to support a better fit!

# Translate also a natural spline
fn <- splinefun(x2, y2, method='natural')
```
fn. <- as.fd(fn)
lines(x, fn(x.), lty='dotted', col='blue')
lines(x, eval.fd(x., fn.), col='green', lty='dotted', lwd=3)

Not run:
Will NOT translate a periodic spline
fp <- splinefun(x, y, method='periodic')
as.fd(fp)
Error in as.fd.function(fp) :
x (fp) uses periodic B-splines, and as.fd is programmed
to translate only B-splines with coincident boundary knots.

End(Not run)

##
as.fd.smooth.spline
##
cars.spl <- with(cars, smooth.spline(speed, dist))
cars.fd <- as.fd(cars.spl)

plot(dist~speed, cars)
lines(cars.spl)
sp. <- with(cars, seq(min(speed), max(speed), len=101))
d. <- eval.fd(sp., cars.fd)
lines(sp., d., lty=2, col='red', lwd=3)

as.POSIXct1970

as.POSIXct for number of seconds since the start of 1970.

Description

as.POSIXct.numeric requires origin to be specified. This assumes that is the start of 1970.

Usage

as.POSIXct1970(x, tz="GMT", ...)

Arguments

x
a numeric vector of times in seconds since the start of 1970. (If x is not numeric, call as.POSIXct.)

tz
A timezone specification to be used for the conversion, if one is required. System-specific (see time zones), but "" is the current timezone, and "GMT" is UTC (Universal Time, Coordinated).

... optional arguments to pass to as.POSIXct.
axisIntervals

Details

```r
```

Value

Returns a vector of class POSIXct.

Author(s)

Spencer Graves

See Also

as.POSIXct, ISOdate, strptime as.Date1970

Examples

```r
sec <- c(0, 1, 60, 3600, 24*3600, 31*24*3600, 365*24*3600)
Sec <- as.POSIXct(1970)(sec)

all.equal(sec, as.numeric(Sec))
```

axisIntervals **Mark Intervals on a Plot Axis**

Description

Adds an axis (axisintervals) or two axes (axesIntervals) to the current plot with tick marks delimiting
interval described by labels

Usage

```r
axisIntervals(side=1, atTick1=fda::monthBegin.5, atTick2=fda::monthEnd.5,
atLabels=fda::monthMid, labels=month.abb, cex.axis=0.9, ...)
```

```r
axesIntervals(side=1:2, atTick1=fda::monthBegin.5, atTick2=fda::monthEnd.5,
atLabels=fda::monthMid, labels=month.abb, cex.axis=0.9, las=1, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>side</td>
<td>an integer specifying which side of the plot the axis is to be drawn on. The axis is placed as follows: 1=below, 2=left, 3=above and 4=right.</td>
</tr>
<tr>
<td>atTick1</td>
<td>the points at which tick-marks marking the starting points of the intervals are to be drawn. This defaults to ‘monthBegin.5’ to mark monthly periods for an annual cycle. These are constructed by calling axis(side, at=atTick1, labels=FALSE, ...). For more detail on this, see ‘axis’.</td>
</tr>
</tbody>
</table>
atTick2 the points at which tick-marks marking the ends of the intervals are to be drawn. This defaults to 'monthEnd.5' to mark monthly periods for an annual cycle. These are constructed by calling axis(side, at=atTick2, labels=FALSE, ...). Use atTick2=NA to rely only on atTick1. For more detail on this, see 'axis'.

atLabels the points at which 'labels' should be typed. These are constructed by calling axis(side, at=atLabels, tick=FALSE, ...). For more detail on this, see 'axis'.

labels Labels to be typed at locations 'atLabels'. This is accomplished by calling axis(side, at=atLabels, labels=labels, tick=FALSE, ...). For more detail on this, see 'axis'.

cex.axis Character expansion (magnification) used for axis annotations ('labels' in this function call) relative to the current setting of 'cex'. For more detail on this, see 'par'.

las line axis style; see par.

... additional arguments passed to axis.

Value

The value from the third (labels) call to 'axis'. This function is usually invoked for its side effect, which is to add an axis to an already existing plot.

axesIntervals calls axisIntervals(side[1], ...) then axis(side[2], ...).

Side Effects

An axis is added to the current plot.

Author(s)

Spencer Graves

See Also

axis, par monthBegin.5 monthEnd.5 monthMid month.abb monthLetters

Examples

daybasis65 <- create.fourier.basis(c(0, 365), 65)

daytempfd <- with(CanadianWeather, smooth.basis(
 day.5, dailyAv[,"Temperature.C"],
 daybasis65, fdnames=list("Day", "Station", "Deg C"))$fd)

with(CanadianWeather, plotfit.fd(
 dailyAv[,"Temperature.C"], argvals=day.5,
 daytempfd, index=1, titles=place, axes=FALSE))

Label the horizontal axis with the month names
axisIntervals(1)
axis(2)
Depending on the physical size of the plot,
axis labels may not all print.
In that case, there are 2 options:
(1) reduce 'cex.lab'.
(2) Use different labels as illustrated by adding
such an axis to the top of this plot

with(CanadianWeather, plotfit.fd(
 dailyAv[,]"Temperature.C", argvals=day.5,
 daytempfd, index=1, titles=place, axes=FALSE)
Label the horizontal axis with the month names
axesIntervals()

axisIntervals(3, labels=monthLetters, cex.lab=1.2, line=-0.5)
'line' argument here is passed to 'axis' via '...'"
See Also

 basisfd

Examples

```r
f1 <- create.fourier.basis()
f1.2 <- f1*f1
all.equal(f1.2, create.fourier.basis(nbasis=5))
```

bifd

Create a bivariate functional data object

Description

This function creates a bivariate functional data object, which consists of two bases for expanding a functional data object of two variables, s and t, and a set of coefficients defining this expansion. The bases are contained in "basisfd" objects.

Usage

```r
bifd (coef=matrix(0,2,1), sbasisobj=create.bspline.basis(),
     tbasisobj=create.bspline.basis(), fdnames=defaultnames)
```

Arguments

- `coef` a two-, three-, or four-dimensional array containing coefficient values for the expansion of each set of bivariate function values=terms of a set of basis function values

 If `coef` is two dimensional, this implies that there is only one variable and only one replication. In that case, the first and second dimensions correspond to the basis functions for the first and second argument, respectively.

 If `coef` is three dimensional, this implies that there are multiple replicates on only one variable. In that case, the first and second dimensions correspond to the basis functions for the first and second argument, respectively, and the third dimension corresponds to replications.

 If `coef` has four dimensions, the fourth dimension corresponds to variables.

- `sbasisobj` a functional data basis object for the first argument s of the bivariate function.

- `tbasisobj` a functional data basis object for the second argument t of the bivariate function.

- `fdnames` A list of length 4 containing dimnames for `coef` if it is a 4-dimensional array.

 If it is only 2- or 3-dimensional, the later components of fdnames are not applied to `coef`. In any event, the components of fdnames describe the following:

 1. The row of `coef` corresponding to the bases in sbasisobj. Defaults to sbasisobj["names"] if non-null and of the proper length, or to existing dimnames(coefs)[1] if non-null and of the proper length, and to ‘s1’, ‘s2’, ..., otherwise.
(2) The columns of 'coefs' corresponding to the bases in tbasisobj. Defaults to tbasisobj[['names']] if non-null and of the proper length, or to existing dimnames(coefs)[[2]] if non-null and of the proper length, and to 't1', 't2', ..., otherwise.

(3) The replicates. Defaults to dimnames(coefs)[[3]] if non-null and of the proper length, and to 'rep1', ..., otherwise.

(4) Variable names. Defaults to dimnames(coefs)[[4]] if non-null and of the proper length, and to 'var1', ..., otherwise.

Value

A bivariate functional data object = a list of class 'bifd' with the following components:

- **coefs**: the input 'coefs' possible with dimnames from dfnames if provided or from sbasisobj$names and tbasisobj$names
- **sbasisobj**: a functional data basis object for the first argument s of the bivariate function.
- **tbasisobj**: a functional data basis object for the second argument t of the bivariate function.
- **bifdnames**: a list of length 4 giving names for the dimensions of coefs, with one or two unused lists of names if length(dim(coefs)) is only two or one, respectively.

Author(s)

Spencer Graves

See Also

- **basisfd objAndNames**

Examples

```r
Bspl2 <- create.bspline.basis(nbasis=2, norder=1)
Bspl3 <- create.bspline.basis(nbasis=3, norder=2)

(bBspl2.3 <- bifd(array(1:6, dim=2:3), Bspl2, Bspl3))
str(bBspl2.3)
```

bifdPar

Define a Bivariate Functional Parameter Object

Description

Functional parameter objects are used as arguments to functions that estimate functional parameters, such as smoothing functions like `smooth.basis`. A bivariate functional parameter object supplies the analogous information required for smoothing bivariate data using a bivariate functional data object \(x(s, t)\). The arguments are the same as those for `fdPar` objects, except that two linear differential operator objects and two smoothing parameters must be applied, each pair corresponding to one of the arguments \(s\) and \(t\) of the bivariate functional data object.
Usage

bifdPar(bifdobj, Lfdobjs=int2Lfd(2), Lfdobjt=int2Lfd(2), lambdas=0, lambdat=0, estimate=TRUE)

Arguments

bifdobj a bivariate functional data object.
Lfdobjs either a nonnegative integer or a linear differential operator object for the first argument s.
If NULL, Lfdobjs depends on bifdobj[['sbasis']][['type']]:
 • bspline Lfdobjs <- int2Lfd(max(0, norder-2)), where norder = norder(bifdobj[['sbasis']]).
 • fourier Lfdobjs = a harmonic acceleration operator:
 Lfdobj <- vec2Lfd(c(0, (2*pi/diff(rngs))^2, 0), rngs)
 where rngs = bifdobj[['sbasis']][['rangeval']].
 • anything elseLfdobj <- int2Lfd(0)
Lfdobjt either a nonnegative integer or a linear differential operator object for the first argument t.
If NULL, Lfdobjt depends on bifdobj[['tbasis']][['type']]:
 • bspline Lfdobj <- int2Lfd(max(0, norder-2)), where norder = norder(bifdobj[['tbasis']]).
 • fourier Lfdobj = a harmonic acceleration operator:
 Lfdobj <- vec2Lfd(c(0, (2*pi/diff(rngt))^2, 0), rngt)
 where rngt = bifdobj[['tbasis']][['rangeval']].
 • anything elseLfdobj <- int2Lfd(0)
lambdas a nonnegative real number specifying the amount of smoothing to be applied to the estimated functional parameter $x(s,t)$ as a function of s.
lambdat a nonnegative real number specifying the amount of smoothing to be applied to the estimated functional parameter $x(s,t)$ as a function of t.
estimate not currently used.

Value

a bivariate functional parameter object (i.e., an object of class bifdPar), which is a list with the following components:

bifd a functional data object (i.e., with class bifd)
Lfdobjs a linear differential operator object (i.e., with class Lfdobjs)
Lfdobjt a linear differential operator object (i.e., with class Lfdobjt)
lambdas a nonnegative real number
lambdat a nonnegative real number
estimate not currently used
Source

See Also
linmod

Examples

```r
# See the prediction of precipitation using temperature as
# the independent variable in the analysis of the daily weather
# data, and the analysis of the Swedish mortality data.
```

bsplinepen

B-Spline Penalty Matrix

Description
Computes the matrix defining the roughness penalty for functions expressed in terms of a B-spline basis.

Usage

```r
bsplinepen(basisobj, Lfdobj=2, rng=basisobj$rangeval, returnMatrix=FALSE)
```

Arguments

- `basisobj`: a B-spline basis object.
- `Lfdobj`: either a nonnegative integer or a linear differential operator object.
- `rng`: a vector of length 2 defining range over which the basis penalty is to be computed.
- `returnMatrix`: logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Details
A roughness penalty for a function $x(t)$ is defined by integrating the square of either the derivative of $x(t)$ or, more generally, the result of applying a linear differential operator L to it. The most common roughness penalty is the integral of the square of the second derivative, and this is the default. To apply this roughness penalty, the matrix of inner products of the basis functions (possibly after applying the linear differential operator to them) defining this function is necessary. This function just calls the roughness penalty evaluation function specific to the basis involved.
Value

A symmetric matrix of order equal to the number of basis functions defined by the B-spline basis object. Each element is the inner product of two B-spline basis functions after applying the derivative or linear differential operator defined by `lfdobj`.

Examples

```r
c # bsplinepen with only one basis function
c
cpl1.1 <- create.bspline.basis(nbasis=1, norder=1)
cpen1.1 <- bsplinepen(cpl1.1, 0)

c # bspline pen for a cubic spline with knots at seq(0, 1, .1)
c
cbasisobj <- create.bspline.basis(c(0,1),13)
c # compute the 13 by 13 matrix of inner products of second derivatives
cpenmat <- bsplinepen(basisobj)

c # with rng of class Date or POSIXct
c
c Date
c
cinvasion1 <- as.Date('1775-09-04')
cinvasion2 <- as.Date('1812-07-12')
cearlyUS.Canada <- c(invasion1, invasion2)
cBspInvade1 <- create.bspline.basis(earlyUS.Canada)
cbrevmat <- bsplinepen(BspInvade1)

c # POSIXct
cAmpRev.ct <- as.POSIXct('1776-07-04', '1789-04-30')
cBspRev1.ct <- create.bspline.basis(AmpRev.ct)
cbrevmat <- bsplinepen(BspRev1.ct)
```

bsplineS

B-spline Basis Function Values

Description

Evaluates a set of B-spline basis functions, or a derivative of these functions, at a set of arguments.

Usage

```r
bsplineS(x, breaks, norder=4, nderiv=0, returnMatrix=FALSE)
```
Arguments

- **x**: A vector of argument values at which the B-spline basis functions are to be evaluated.
- **breaks**: A strictly increasing set of break values defining the B-spline basis. The argument values x should be within the interval spanned by the break values.
- **norder**: The order of the B-spline basis functions. The order less one is the degree of the piece-wise polynomials that make up any B-spline function. The default is order 4, meaning piece-wise cubic.
- **nderiv**: A nonnegative integer specifying the order of derivative to be evaluated. The derivative must not exceed the order. The default derivative is 0, meaning that the basis functions themselves are evaluated.
- **returnMatrix**: logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Value

A matrix of function values. The number of rows equals the number of arguments, and the number of columns equals the number of basis functions.

Examples

```r
# Minimal example: A B-spline of order 1 (i.e., a step function)
# with 0 interior knots:
bs <- bsplineS(seq(0, 1, .2), 0:1, 1, 0)

# check
call.equal(bs, matrix(1, 6))

# set up break values at 0, .0, .2, .4, .6, .8, 1.0.
boks <- seq(0, 1, 0.2)
# set up a set of 11 argument values
x <- seq(0, 1, .1)
# the order will be 4, and the number of basis functions
# is equal to the number of interior break values (4 here)
# plus the order, for a total here of 8.
norder <- 4
# compute the 11 by 8 matrix of basis function values
basismat <- bsplineS(x, breaks, norder)

# use sparse Matrix representation to save memory
Basismat <- bsplineS(x, breaks, norder, returnMatrix=TRUE)

# check
class(Basismat)=='dgCMatrix'
```
Canadian average annual weather cycle

Description

Daily temperature and precipitation at 35 different locations in Canada averaged over 1960 to 1994.

Usage

```r
CanadianWeather
daily
```

Format

'CanadianWeather' and 'daily' are lists containing essentially the same data. 'CanadianWeather' may be preferred for most purposes; 'daily' is included primarily for compatibility with scripts written before the other format became available and for compatibility with the Matlab 'fda' code.

- **CanadianWeather** A list with the following components:
 - `dailyAv` a three dimensional array `c(365, 35, 3)` summarizing data collected at 35 different weather stations in Canada on the following:
 - `[.,1]` = `[., 'Temperature.C']`: average daily temperature for each day of the year
 - `[.,2]` = `[., 'Precipitation.mm']`: average daily rainfall for each day of the year rounded to 0.1 mm.
 - `[.,3]` = `[., 'log10precip']`: base 10 logarithm of Precipitation.mm after first replacing 27 zeros by 0.05 mm (Ramsay and Silverman 2006, p. 248).
 - `place` Names of the 35 different weather stations in Canada whose data are summarized in 'dailyAv'. These names vary between 6 and 11 characters in length. By contrast, `daily["place"]` which are all 11 characters, with names having fewer characters being extended with trailing blanks.
 - `province` names of the Canadian province containing each place
 - `coordinates` a numeric matrix giving 'N.latitude' and 'W.longitude' for each place.
 - `region` Which of 4 climate zones contain each place: Atlantic, Pacific, Continental, Arctic.
 - `monthlyTemp` A matrix of dimensions (12, 35) giving the average temperature in degrees celcius for each month of the year.
 - `monthlyPrecip` A matrix of dimensions (12, 35) giving the average daily precipitation in milimeters for each month of the year.
 - `geogindex` Order the weather stations from East to West to North

- **daily** A list with the following components:
 - `place` Names of the 35 different weather stations in Canada whose data are summarized in 'dailyAv'. These names are all 11 characters, with shorter names being extended with trailing blanks. This is different from `CanadianWeather["place"]`, where trailing blanks have been dropped.
tempav a matrix of dimensions (365, 35) giving the average temperature in degrees Celsius for each day of the year. This is essentially the same as CanadianWeather["dailyAv"][, "Temperature.C"].

precipav a matrix of dimensions (365, 35) giving the average temperature in degrees Celsius for each day of the year. This is essentially the same as CanadianWeather["dailyAv"][, "Precipitation.mm"].

Source

See Also

`monthAccessories` `MontrealTemp`

Examples

```r
## 1. Plot (latitude & longitude) of stations by region
with(CanadianWeather, plot(-coordinates[, 2], coordinates[, 1], type='n',
  xlab="West Longitude", ylab="North Latitude",
  axes=FALSE))
Wlon <- pretty(CanadianWeather$coordinates[, 2])
axis(1, -Wlon, Wlon)
axis(2)
rgns <- 1:4
names(rgns) <- c('Arctic', 'Atlantic', 'Continental', 'Pacific')
Rgns <- rgns[CanadianWeather$region]
with(CanadianWeather, points(-coordinates[, 2], coordinates[, 1],
  col=Rgns, pch=Rgns))
legend('topright', legend=names(rgns), col=rgns, pch=rgns)

## 2. Plot dailyAv[, 'Temperature.C'] for 4 stations
data(CanadianWeather)
# Expand the left margin to allow space for place names
op <- par(mar=c(5, 4, 4, 5)+.1)
# Plot
stations <- c("Pr. Rupert", "Montreal", "Edmonton", "Resolute")
matplot(day.5, CanadianWeather$dailyAv[, stations, "Temperature.C"],
  type="l", axes=FALSE, xlab="", ylab="Mean Temperature (deg C)"
axis(2, las=1)
# Label the horizontal axis with the month names
axis(1, monthBegin.5, labels=FALSE)
axis(1, monthEnd.5, labels=FALSE)
```
CCA.FD

CCA.FD is a set of functions for performing Canonical Correlation Analysis on functional data. The functions are part of the 'fda' package and provide methods for analyzing the correlation between two sets of functional data.

Description

CCA.FD is designed to work with functional data objects, allowing for the analysis of the correlation between two sets of functions. The package includes functions for performing the analysis with regularization or roughness penalties, ensuring that the functions are smooth and continuous.

Usage

```r
cca.fd(fdobj1, fdobj2=fdobj1, ncan = 2,
       ccafdPar1=fdPar(basisobj1, 2, 1e-10),
       ccafdPar2=ccafdPar1, centerfns=TRUE)
```

Arguments

- `fdobj1`: a functional data object.
- `fdobj2`: a functional data object. By default this is `fdobj1`, in which case the first argument must be a bivariate functional data object.
- `ncan`: the number of canonical variables and weight functions to be computed. The default is 2.
- `ccafdPar1`: a functional parameter object defining the first set of canonical weight functions. The object may contain specifications for a roughness penalty. The default is defined using the same basis as that used for `fdobj1` with a slight penalty on its second derivative.
- `ccafdPar2`: a functional parameter object defining the second set of canonical weight functions. The object may contain specifications for a roughness penalty. The default is `ccafdPar1`.
- `centerfns`: if TRUE, the functions are centered prior to analysis. This is the default.

Value

An object of class `cca.fd` with the 5 slots:

- `ccwtfd1`: a functional data object for the first canonical variate weight function
- `ccwtfd2`: a functional data object for the second canonical variate weight function

CCA.FD also includes plotting functions to visualize the results of the analysis, allowing for a more intuitive understanding of the correlation structure between the two sets of functional data.
cancorr a vector of canonical correlations
ccavar1 a matrix of scores on the first canonical variable.
ccavar2 a matrix of scores on the second canonical variable.

See Also
plot.cca.fd, varmx.cca.fd, pca.fd

Examples

Canonical correlation analysis of knee-hip curves

gaittime <- (1:20)/21
gaitrange <- c(0,1)
gaitbasis <- create.fourier.basis(gaitrange,21)
lambda <- 10^(-11.5)
harmaccellfd <- vec2Lfd(c(0, 0, (2*pi)^2, 0))

gaitfdPar <- fdPar(gaitbasis, harmaccellfd, lambda)
gaitfd <- smooth.basis(gaittime, gait, gaitfdPar)$fd

ccafdPar <- fdPar(gaitfd, harmaccellfd, 1e-8)
ccafd0 <- cca.fd(gaitfd[,1], gaitfd[,2], ncan=3, ccafdPar, ccafdPar)
display the canonical correlations
round(ccafd0$ccacorr[1:6],3)
compute a VARIMAX rotation of the canonical variables
ccafd <- varmx.cca.fd(ccafd0)
plot the canonical weight functions
plot.cca.fd(ccafd)

Description

Subtract the pointwise mean from each of the functions in a functional data object; that is, to center
them on the mean function.

Usage

center.fd(fdobj)

Arguments

fdobj a functional data object to be centered.

Value

a functional data object whose mean is zero.
checkDims3

Compare dimensions and dimnames of arrays

Description

Compare selected dimensions and dimnames of arrays, coercing objects to 3-dimensional arrays and either give an error or force matching.

Usage

```
checkDim3(x, y=NULL, xdim=1, ydim=1, defaultNames='x',
          subset=c('xiny', 'yinx', 'neither'),
          xName=substring(deparse(substitute(x)), 1, 33),
          yName=substring(deparse(substitute(y)), 1, 33))
checkDims3(x, y=NULL, xdim=2:3, ydim=2:3, defaultNames='x',
           subset=c('xiny', 'yinx', 'neither'),
           xName=substring(deparse(substitute(x)), 1, 33),
           yName=substring(deparse(substitute(y)), 1, 33))
```

Arguments

- `x, y` arrays to be compared. If `y` is missing, `x` is used.

Currently, both `x` and `y` can have at most 3 dimensions. If either has more, an error will be thrown. If either has fewer, it will be expanded to 3 dimensions using `as.array3`.

Examples

```
daytime <- (1:365)-0.5
daybasis <- create.fourier.basis(c(0,365), 365)
harmLcoef <- c(0,(2*pi/365)*2,0)
harmLfd <- vec2Lfd(harmLcoef, c(0,365))
templambda <- 0.01
tempfdPar <- fdPar(daybasis, harmLfd, templambda)

# do not run on CRAN because it takes too long.
if(!CRAN()){
tempfd <- smooth.basis(daytime,
                      CanadianWeather$dailyAv[,"Temperature.C"], tempfdPar)$fd
tempctrfd <- center.fd(tempfd)
plot(tempctrfd, xlab="Day", ylab="deg. C",
     main = "Centered temperature curves")
}
```
For checkDims3, these are positive integers indicating which dimension of x will be compared with which dimension of y.

For checkDims3, these are positive integer vectors of the same length, passed one at a time to checkDim3. The default here is to force matching dimensions for plotfit.fd.

defaultNames
Either NULL, FALSE or a character string or vector or list. If NULL, no checking is done of dimnames. If FALSE, an error is thrown unless the corresponding dimensions of x and y match exactly.

If it is a character string, vector, or list, it is used as the default names if neither x nor y have dimnames for the compared dimensions. If it is a character vector that is too short, it is extended to the required length using paste(defaultNames, 1:n), where n = the required length.

If it is a list, it should have length (length(xdim)+1). Each component must be either a character vector or NULL. If neither x nor y have dimnames for the first compared dimensions, defaultNames[[1]] will be used instead unless it is NULL, in which case the last component of defaultNames will be used. If it is null, an error is thrown.

subset
If 'xiny', and any(dim(y)[ydim] < dim(x)[xdim]), an error is thrown. Else if any(dim(y)[ydim] > dim(x)[xdim]) the larger is reduced to match the smaller. If 'yinx', this procedure is reversed.

If 'neither', any dimension mismatch generates an error.

xName, yName
names of the arguments x and y, used only to in error messages.

Details
For checkDims3, confirm that xdim and ydim have the same length, and call checkDims3 for each pair.

For checkDims3, proceed as follows:
1. if((xdim>3) | (ydim>3)) throw an error.
2. ixperm <- list(1:3, c(2, 1, 3), c(3, 2, 1))[xdim]; iyperm <- list(1:3, c(2, 1, 3), c(3, 2, 1))[ydim];
3. x3 <- aperm(as.array3(x), ixperm); y3 <- aperm(as.array3(y), iyperm)
4. xNames <- dimnames(x3); yNames <- dimnames(y3)
5. Check subset. For example, for subset='xiny', use the following:
 if(is.null(xNames)){if(dim(x3)[1]>dim(y3)[1]) stop } else
 y <- y3[1:dim(x3)[1],,] dimnames(x) <- list(yNames[[1]]
 } else {
 if(is.null(xNames[[1]])){ if(dim(x3)[1]>dim(y3)[1]) stop
 } else
 y <- y3[1:dim(x3)[1],,] dimnames(x3)[[1]] <- yNames[[1]]
 } else {
 if(any(!is.element(xNames[[1]], yNames[[1]])) stop
 y <- y3[xNames[[1]],,]
 }
6. return(list(x=aperm(x3, ixperm), y=aperm(y., iyperm)))

Value
a list with components x and y.
Author(s)
Spencer Graves

See Also
as.array3 plotfit.fd

Examples

Select the first two rows of y
stopifnot(all.equal(
 checkDim3(1:2, 3:5),
 list(x=array(1:2, c(2,1,1), list(c('x1','x2'), NULL, NULL)),
 y=array(3:4, c(2,1,1), list(c('x1','x2'), NULL, NULL))
))

Select the first two rows of a matrix y
stopifnot(all.equal(
 checkDim3(1:2, matrix(3:8, 3)),
 list(x=array(1:2, c(2,1,1), list(c('x1','x2'), NULL, NULL)),
 y=array(c(3:4, 6:7), c(2,2,1), list(c('x1','x2'), NULL, NULL))
))

Select the first column of y
stopifnot(all.equal(
 checkDim3(1:2, matrix(3:8, 3), 2, 2),
 list(x=array(1:2, c(2,1,1), list(NULL, 'x', NULL)),
 y=array(3:5, c(3,1,1), list(NULL, 'x', NULL))
))

Select the first two rows and the first column of y
stopifnot(all.equal(
 checkDim3(1:2, matrix(3:8, 3), 1:2, 1:2),
 list(x=array(1:2, c(2,1,1), list(c('x1','x2'), 'x', NULL)),
 y=array(3:4, c(2,1,1), list(c('x1','x2'), 'x', NULL))
))

Select the first 2 rows of y
x1 <- matrix(1:4, 2, dimnames=list(NULL, LETTERS[2:3]))
x1a <- x1. <- as.array3(x1)
dimnames(x1a)[[1]] <- c('x1', 'x2')
y1 <- matrix(11:19, 3, dimnames=list(NULL, LETTERS[1:3]))
y1a <- y1. <- as.array3(y1)
dimnames(y1a)[[1]] <- c('x1', 'x2', 'x3')

stopifnot(all.equal(
 checkDim3(x1, y1),
 list(x=x1a, y=y1a[1:2, , , drop=FALSE])
))

Select columns 2 & 3 of y
stopifnot(all.equal(
checkLogicalInteger

checkDim3(x1, y1, 2, 2),
list(x=x1, y=y1[, 2:3], drop=FALSE)
)

Select the first 2 rows and columns 2 & 3 of y
stopifnot(all.equal(
 checkDim3(x1, y1, 1:2, 1:2),
 list(x=x1a, y=y1a[1:2, 2:3], drop=FALSE)
)
)

y = columns 2 and 3 of x
x23 <- matrix(1:6, 2, dimnames=list(letters[2:3], letters[1:3]))
x23. <- as.array3(x23)
stopifnot(all.equal(
 checkDim3(x23, xdim=1, ydim=2),
 list(x=x23., y=x23.[, 2:3], drop=FALSE)
)
)

Transfer dimnames from y to x
x4a <- x4 <- matrix(1:4, 2)
y4 <- matrix(5:8, 2, dimnames=list(letters[1:2], letters[3:4]))
dimnames(x4a) <- dimnames(t(y4))
stopifnot(all.equal(
 checkDim3(x4, y4, 1:2, 2:1),
 list(x=as.array3(x4a), y=as.array3(y4))
)
)

as used in plotfit.fd
daybasis65 <- create.fourier.basis(c(0, 365), 65)

daytempfd <- with(CanadianWeather, smooth.basis(
 day, 5, dailyAv[, "Temperature.C"],
 daybasis65, fdnames=list("Day", "Station", "Deg C")$fd)
)
defaultNms <- with(daytempfd, c(fdnames[2], fdnames[3], x='x'))
subset <- checkDim3(CanadianWeather$dailyAv[, "Temperature.C"],
 daytempfd$coef, defaultNms)
Problem: dimnames(...)[[3]] = '1'
Fix:
subset3 <- checkDim3(
 CanadianWeather$dailyAv[, "Temperature.C", drop=FALSE],
 daytempfd$coef, defaultNms)

checkLogicalInteger Does an argument satisfy required conditions?

Description

Check whether an argument is a logical vector of a certain length or a numeric vector in a certain range and issue an appropriate error or warning if not:
checkLogicalInteger throws an error or returns FALSE with a warning unless x is a logical vector of exactly the required length.

checkNumeric throws an error or returns FALSE with a warning unless x is either NULL or a numeric vector of at most length with x in the desired range.

checkLogicalInteger returns a logical vector of exactly length unless x is neither NULL nor logical of the required length nor numeric with x in the desired range.

Usage

```r
checkLogical(x, length., warnOnly=FALSE)
checkNumeric(x, lower, upper, length., integer=TRUE, unique=TRUE,
             inclusion=c(TRUE,TRUE), warnOnly=FALSE)
checkLogicalInteger(x, length., warnOnly=FALSE)
```

Arguments

- `x` an object to be checked
- `length.` The required length for x if logical and not NULL or the maximum length if numeric.
- `lower`, `upper` lower and upper limits for x.
- `integer` logical: If true, a numeric x must be integer.
- `unique` logical: TRUE if duplicates are NOT allowed in x.
- `inclusion` logical vector of length 2, similar to link[ifultools]{checkRange}:
 - if(inclusion[1]) (lower <= x) else (lower < x)
 - if(inclusion[2]) (x <= upper) else (x < upper)
- `warnOnly` logical: If TRUE, violations are reported as warnings, not as errors.

Details

1. `xName <- deparse(substitute(x))` to use in any required error or warning.
2. if(is.null(x)) handle appropriately: Return FALSE for checkLogical, TRUE for checkNumeric and rep(TRUE, length.) for checkLogicalInteger.
3. Check class(x).
4. Check other conditions.

Value

- checkLogical returns a logical vector of the required length., unless it issues an error message.
- checkNumeric returns a numeric vector of at most length. with all elements between lower and upper, and optionally unique, unless it issues an error message.
- checkLogicalInteger returns a logical vector of the required length., unless it issues an error message.

Author(s)

Spencer Graves
See Also

checkVectorType, checkRange checkScalarType isVectorAtomic

Examples

```
##
## checkLogical
##
checkLogical(NULL, length=3, warnOnly=TRUE)
checkLogical(c(FALSE, TRUE, TRUE), length=4, warnOnly=TRUE)
checkLogical(c(FALSE, TRUE, TRUE), length=3)

##
## checkNumeric
##
checkNumeric(NULL, lower=1, upper=3)
checkNumeric(1:3, 1, 3)
checkNumeric(1:3, 1, 3, inclusion=FALSE, warnOnly=TRUE)
checkNumeric(pi, 1, 4, integer=TRUE, warnOnly=TRUE)
checkNumeric(c(π, 1), 1, 4, warnOnly=TRUE)
checkNumeric(c(1, 1), 1, 4, unique=FALSE, warnOnly=TRUE)

##
## checkLogicalInteger
##
checkLogicalInteger(NULL, 3)
checkLogicalInteger(c(FALSE, TRUE), warnOnly=TRUE)
checkLogicalInteger(1:2, 3)
checkLogicalInteger(2, warnOnly=TRUE)
checkLogicalInteger(c(2, 4), 3, warnOnly=TRUE)

##
## checkLogicalInteger names its calling function
## rather than itself as the location of error detection
## if possible
##
tstFun <- function(x, length, warnOnly=FALSE){
  checkLogicalInteger(x, length, warnOnly)
}
tstFun(NULL, 3)
tstFun(4, 3, warnOnly=TRUE)

tstFun2 <- function(x, length, warnOnly=FALSE){
  tstFun(x, length, warnOnly)
}
tstFun2(4, 3, warnOnly=TRUE)
```

`coef.fd`
Extract functional coefficients
Description

Obtain the coefficients component from a functional object (functional data, class \texttt{fd}, functional parameter, class \texttt{fdPar}, a functional smooth, class \texttt{fdSmooth}, or a Taylor spline representation, class \texttt{Taylorg}.

Usage

```r
## S3 method for class 'fd'
coef(object, \ldots)
## S3 method for class 'fdPar'
coef(object, \ldots)
## S3 method for class 'fdSmooth'
coef(object, \ldots)
## S3 method for class 'Taylor'
coef(object, \ldots)
## S3 method for class 'fd'
coefficients(object, \ldots)
## S3 method for class 'fdPar'
coefficients(object, \ldots)
## S3 method for class 'fdSmooth'
coefficients(object, \ldots)
## S3 method for class 'Taylor'
coefficients(object, \ldots)
```

Arguments

- \texttt{object}: An object whose functional coefficients are desired
- \texttt{\ldots}: other arguments

Details

Functional representations are evaluated by multiplying a basis function matrix times a coefficient vector, matrix or 3-dimensional array. (The basis function matrix contains the basis functions as columns evaluated at the \texttt{evalarg} values as rows.)

Value

A numeric vector or array of the coefficients.

See Also

- \texttt{coef}
- \texttt{fd}
- \texttt{fdPar}
- \texttt{smooth}
- \texttt{basisPar}
- \texttt{smooth.basis}

Examples

```r
##
## coef.fd
## bspl1.1 <- create.bspline.basis(norder=1, breaks=0:1)
```
cor.fd

fd.bspl1.1 <- fd(0, basisobj=bspl1.1)
coef(fd.bspl1.1)

##
coef.fdPar
##
rangeval <- c(-3,3)
set up some standard normal data
x <- rnorm(50)
make sure values within the range
x[x < -3] <- -2.99
x[x > 3] <- 2.99
set up basis for W(x)
basisobj <- create.bspline.basis(rangeval, 11)
set up initial value for Wfdobj
Wfd0 <- fd(matrix(0,11,1), basisobj)
WfdParobj <- fdPar(Wfd0)
coef(WfdParobj)

##
coef.fdSmooth
##
girlGrowthSm <- with(growth, smooth.basisPar(argvals=age, y=hgtf,
lambda=0.1)$fd)
coef(girlGrowthSm)

##
coef.Taylor
##
coming soon.

cor.fd

Correlation matrix from functional data object(s)

Description

Compute a correlation matrix for one or two functional data objects.

Usage

cor.fd(evalarg1, fdobj1, evalarg2=evalarg1, fdobj2=fdobj1)
Arguments

evalarg1 a vector of argument values for fdobj1.
evalarg2 a vector of argument values for fdobj2.
fdobj1, fdobj2 functional data objects

Details

1. var1 <- var.fd(fdobj1)
2. evalVar1 <- eval.bifd(evalarg1, evalarg1, var1)
3. if(missing(fdobj2)) Convert evalVar1 to correlations
4. else:
 4.1. var2 <- var.fd(fdobj2)
 4.2. evalVar2 <- eval.bifd(evalarg2, evalarg2, var2)
 4.3. var12 <- var.df(fdobj1, fdobj2)
 4.4. evalVar12 <- eval.bifd(evalarg1, evalarg2, var12)
 4.5. Convert evalVar12 to correlations

Value

A matrix or array:

With one or two functional data objects, fdobj1 and possibly fdobj2, the value is a matrix of dimensions length(evalarg1) by length(evalarg2) giving the correlations at those points of fdobj1 if missing(fdobj2) or of correlations between eval.fd(evalarg1, fdobj1) and eval.fd(evalarg2, fdobj2).

With a single multivariate data object with k variables, the value is a 4-dimensional array of dim = c(nPts, nPts, 1, choose(k+1, 2)), where nPts = length(evalarg1).

See Also

mean.fd, sd.fd, std.fd stdev.fd var.fd

Examples

daybasis3 <- create.fourier.basis(c(0, 365))
daybasis5 <- create.fourier.basis(c(0, 365), 5)
tempfd3 <- with(CanadianWeather, smooth.basis(
 day.5, dailyAv[,,"Temperature.C"],
 daybasis3, fdnames=list("Day", "Station", "Deg C"))$fd)
precfd5 <- with(CanadianWeather, smooth.basis(
 day.5, dailyAv[,,"log10precip"],
 daybasis5, fdnames=list("Day", "Station", "Deg C"))$fd)

Correlation matrix for a single functional data object
(tempCor3 <- cor.fd(seq(0, 356, length=4), tempfd3))

Cross correlation matrix between two functional data objects
Compare with structure described above under 'value':
(tempPrecCor3.5 <- cor.fd(seq(0, 365, length=4), tempfd3,
 seq(0, 356, length=6), precfd5))

The following produces contour and perspective plots
daybasis65 <- create.fourier.basis(rangeval=c(0, 365), nbasis=65)
daytempfd <- with(CanadianWeather, smooth.basis(
 day.5, dailyAv[, "Temperature.C"],
 daybasis65, fdnames=list("Day", "Station", "Deg C"))$fd)
dayprecfd <- with(CanadianWeather, smooth.basis(
 day.5, dailyAv[, "log10precip"],
 daybasis65, fdnames=list("Day", "Station", "log10(mm)"))$fd)

str(tempPrecCor <- cor.fd(weeks, daytempfd, weeks, dayprecfd))
dim(tempPrecCor) = c(53, 53)

op <- par(mfrow=c(1,2), pty="s")
contour(weeks, weeks, tempPrecCor,
 xlab="Average Daily Temperature",
 ylab="Average Daily log10(precipitation)",
 main=paste("Correlation function across locations\n",
 "for Canadian Annual Temperature Cycle"),
 cex.main=0.8, axes=FALSE)
axisIntervals(1, atTick1=seq(0, 365, length=5), atTick2=NA,
 atLabels=seq(1/8, 1, 1/4)*365,
 labels=paste("Q", 1:4))
axisIntervals(2, atTick1=seq(0, 365, length=5), atTick2=NA,
 atLabels=seq(1/8, 1, 1/4)*365,
 labels=paste("Q", 1:4))
persp(weeks, weeks, tempPrecCor,
 xlab="Days", ylab="Days", zlab="Correlation")
mtext("Temperature-Precipitation Correlations", line=-4, outer=TRUE)
par(op)

Correlations and cross correlations
in a bivariate functional data object
gaitbasis5 <- create.fourier.basis(nbasis=5)
gaitfd5 <- Data2fd(gait, basisobj=gaitbasis5)

gait.t3 <- (0:2)/2
(gaitCor3.5 <- cor.fd(gait.t3, gaitfd5))
Check the answers with manual computations

gait3.5 <- eval.fd(gait.t3, gaitfd5)
all.equal(cor(t(gait3.5[,1])), gaitCor3.5[,1])
TRUE
all.equal(cor(t(gait3.5[,2])), gaitCor3.5[,3])
TRUE
all.equal(cor(t(gait3.5[,2]), t(gait3.5[,1])),
 gaitCor3.5[,2])
TRUE

NOTE:
dimnames(gaitCor3.5)[[4]]
[1] Hip-Hip
[3] Knee-Knee
If [2] were "Hip-Knee", then
gaitCor3.5[,] would match
cor(t(gait3.5[,1]), t(gait3.5[,2]))
*** It does NOT. Instead, it matches:
cor(t(gait3.5[,2]), t(gait3.5[,1]))

CRAN

Test if running as CRAN

Description

This function allows package developers to run tests themselves that should not run on CRAN or with "R CMD check --as-cran" because of compute time constraints with CRAN tests.

Usage

```r
cran(CRAN_pattern, n_R_CHECK4CRAN)
```

Arguments

- **CRAN_pattern**
 a regular expressions to apply to the names of `Sys.getenv()` to identify possible CRAN parameters. Defaults to `Sys.getenv('_CRAN_pattern_')` if available and `'_R_'` if not.

- **n_R_CHECK4CRAN**
 Assume this is CRAN if at least `n_R_CHECK4CRAN` elements of `Sys.getenv()` have names matching x. Defaults to `Sys.getenv('_n_R_CHECK4CRAN_')` if available and 5 if not.

Details

The "Writing R Extensions" manual says that "R CMD check" can be customized "by setting environment variables _R_CHECK_*_", as described in" the Tools section of the "R Internals" manual.

'R CMD check' was tested with R 3.0.1 under Fedora 18 Linux and with Rtools 3.0 from April 16, 2013 under Windows 7. With the '-as-cran' option, 7 matches were found; without it, only 3 were found. These numbers were unaffected by the presence or absence of the '-timings' parameter. On this basis, the default value of `n_R_CHECK4CRAN` was set at 5.

1. `x. <- Sys.getenv()`
2. Fix CRAN_pattern and n_R_CHECK4CRAN if missing.
3. Let i be the indices of x. whose names match all the patterns in the vector x.
4. Assume this is CRAN if length(i) >= n_R_CHECK4CRAN
Value

A logical scalar with attributes 'Sys.getenv' containing the results of `Sys.getenv()` and 'matches' containing i per step 3 above.

See Also

`Sys.getenv`

Examples

```r
cran <- CRAN()
str(cran)
gete <- attr(cran, 'Sys.getenv')
(ngete <- names(gete))

iget <- grep('^_', names(gete))
gete[iget]

## Not run:
if(CRAN()){
  stop('CRAN')
} else {
  stop('NOT CRAN')
}

## End(Not run)
```

description

Functional data analysis proceeds by selecting a finite basis set and fitting data to it. The current `fda` package supports fitting via least squares penalized with lambda times the integral over the (finite) support of the basis set of the squared deviations from a linear differential operator.

Details

The most commonly used basis in `fda` is probably B-splines. For periodic phenomena, Fourier bases are quite useful. A constant basis is provided to facilitate arithmetic with functional data objects. To restrict attention to solutions of certain differential equations, it may be useful to use a corresponding basis set such as exponential, monomial or power basis sets.

Power bases support the use of negative and fractional powers, while monomial bases are restricted only to nonnegative integer exponents.
The polygonal basis is essentially a B-spline of order 2, degree 1.

The following summarizes arguments used by some or all of the current `create.basis` functions:

- **rangeval** a vector of length 2 giving the lower and upper limits of the range of permissible values for the function argument.
 For bspline bases, this can be inferred from `range(breaks)`. For polygonal bases, this can be inferred from `range(argvals)`. In all other cases, this defaults to 0:1.
- **nbasis** an integer giving the number of basis functions.
 This is not used for two of the `create.basis` functions: For constant this is 1, so there is no need to specify it. For polygonal bases, it is `length(argvals)`, and again there is no need to specify it.
 For bspline bases, if `nbasis` is not specified, it defaults to `(length(breaks) + norder - 2)` if `breaks` is provided. Otherwise, `nbasis` defaults to 20 for bspline bases.
 For exponential bases, if `nbasis` is not specified, it defaults to `length(ratevec)` if `ratevec` is provided. Otherwise, in `fda_RNPNR`, `ratevec` will default to 0:1, so `nbasis` will then default to 2.
 For monomial and power bases, if `nbasis` is not specified, it defaults to `length(exponents)` if `exponents` is provided.
 Otherwise, `nbasis` defaults to 2 for monomial and power bases.
 (Temporary exception: In `fda_2.0.2`, the default `nbasis` for power bases is 1. This will be increased to 2 in `fda_2.0.4`.)

In addition to `rangeval` and `nbasis`, all but constant bases have one or two parameters unique to that basis type or shared with one other:

- **bspline** Argument *norder* = the order of the spline, which is one more than the degree of the polynomials used. This defaults to 4, which gives cubic splines.
 Argument *breaks* = the locations of the break or join points; also called knots. This defaults to `seq(rangeval[1], rangeval[2], nbasis-norder+2)`.
- **polygonal** Argument *argvals* = the locations of the break or join points; also called knots. This defaults to `seq(rangeval[1], rangeval[2], nbasis)`.
- **fourier** Argument *period* defaults to `diff(rangeval)`.
- **exponential** Argument *ratevec*.
 In `fda_2.0.2`, this defaulted to 1. In `fda_2.0.3`, it will default to 0:1.
- **monomial, power** Argument *exponents*. Default = 0:(nbasis-1). For monomial bases, `exponents` must be distinct nonnegative integers. For power bases, they must be distinct real numbers.

Beginning with `fda_2.1.0`, the last 6 arguments for all the `create.basis` functions will be as follows; some but not all are available in the previous versions of `fda`:

- **dropind** a vector of integers specifying the basis functions to be dropped, if any.
- **quadvals** a matrix with two columns and a number of rows equal to the number of quadrature points for numerical evaluation of the penalty integral. The first column of `quadvals` contains the quadrature points, and the second column the quadrature weights. A minimum of 5 values are required for each inter-knot interval, and that is often enough. For Simpson’s rule, these points are equally spaced, and the weights are proportional to 1, 4, 2, 4, ..., 2, 4, 1.
- **values** a list of matrices with one row for each row of `quadvals` and one column for each basis function. The elements of the list correspond to the basis functions and their derivatives evaluated at the quadrature points contained in the first column of `quadvals`.
basisvalues A list of lists, allocated by code such as `vector("list",1)`. This field is designed to avoid evaluation of a basis system repeatedly at a set of argument values. Each list within the vector corresponds to a specific set of argument values, and must have at least two components, which may be tagged as you wish. The first component in an element of the list vector contains the argument values. The second component in an element of the list vector contains a matrix of values of the basis functions evaluated at the arguments in the first component. The third and subsequent components, if present, contain matrices of values their derivatives up to a maximum derivative order. Whenever function `getbasismatrix` is called, it checks the first list in each row to see, first, if the number of argument values corresponds to the size of the first dimension, and if this test succeeds, checks that all of the argument values match. This takes time, of course, but is much faster than re-evaluation of the basis system. Even this time can be avoided by direct retrieval of the desired array. For example, you might set up a vector of argument values called "evalargs" along with a matrix of basis function values for these argument values called "basismat". You might want too use tags like "args" and "values", respectively for these. You would then assign them to `basisvalues` with code such as the following:

```r
basisobj$basisvalues <- vector("list",1)
basisobj$basisvalues[[1]] <- list(args=evalargs, values=basismat)
```

- names either a character vector of the same length as the number of basis functions or a simple stem used to construct such a vector. For bspline bases, this defaults to `paste('bspl', norder, ".", 1:nbreaks, sep="")`. For other bases, there are crudely similar defaults.

- axes an optional list used by selected plot functions to create custom axes. If this `axes` argument is not `NULL`, functions `plot.basisfd`, `plot.fd`, `plot.fdSmooth`, `plotfit.fd`, `plotfit.fdSmooth`, and `plot.Lfd` will create axes via `do.call(x$axes[[1]], x$axes[-1])`. The primary example of this is to create CanadianWeather plots using `listHBaxesintervalsBI`.

Author(s)

J. O. Ramsay and Spencer Graves

References

See Also

`create.bspline.basis`, `create.constant.basis`, `create.exponential.basis`, `create.fourier.basis`, `create.monomial.basis`, `create.polygonal.basis`, `create.power.basis`
create.bspline.basis
Create a B-spline Basis

Description

Functional data objects are constructed by specifying a set of basis functions and a set of coefficients defining a linear combination of these basis functions. The B-spline basis is used for non-periodic functions. B-spline basis functions are polynomial segments jointed end-to-end at argument values called knots, breaks or join points. The segments have specifiable smoothness across these breaks. B-spline basis functions have the advantages of very fast computation and great flexibility. A polygonal basis generated by `create.polygonal.basis` is essentially a B-spline basis of order 2, degree 1. Monomial and polynomial bases can be obtained as linear transformations of certain B-spline bases.

Usage

```r
create.bspline.basis(rangeval=NULL, nbasis=NULL, norder=4, 
  breaks=NULL, dropind=NULL, quadvals=NULL, values=NULL, 
  basisvalues=NULL, names="bspl")
create.bspline.irregular(argvals, 
  nbasis=max(norder, round(sqrt(length(argvals)))), 
  norder=4, 
  breaks=quantile(argvals, seq(0, 1, length.out=nbasis-norder+2)), 
  dropind=NULL, quadvals=NULL, values=NULL, 
  basisvalues=NULL, names="bspl", plot.=FALSE, ...)
```

Arguments

- `rangeval`
 A numeric vector of length 2 defining the interval over which the functional data object can be evaluated; default value is if(is.null(breaks)) 0:1 else range(breaks). If length(rangeval) == 1 and rangeval <= 0, this is an error. Otherwise, if length(rangeval) == 1, rangeval is replaced by c(0, rangeval). If length(rangeval)>2 and neither breaks nor nbasis are provided, this extra long rangeval argument is assigned to breaks, and then rangeval = range(breaks). NOTE: Nonnumerics are also accepted provided sum(is.na(as.numeric(rangeval))) == 0. However, as of July 2, 2012, nonnumerics may not work for argvals in other fda functions.

- `argvals`
 A vector of values used to create rangeval and breaks in a call to `create.bspline.basis`. Must also satisfy sum(is.na(as.numeric(argvals))) == 0 as for rangeval.

- `nbasis`
 An integer variable specifying the number of basis functions. This ‘nbasis’ argument is ignored if breaks is supplied, in which case nbasis = nbreaks + norder - 2, where nbreaks = length(breaks). If breaks is not supplied and nbasis is, then nbreaks = nbasis - norder + 2, and breaks = seq(rangevals[1], rangevals[2], nbreaks).
norder an integer specifying the order of b-splines, which is one higher than their degree. The default of 4 gives cubic splines.

breaks a vector specifying the break points defining the b-spline. Also called knots, these are a strictly increasing sequence of junction points between piecewise polynomial segments. They must satisfy breaks[1] = rangeval[1] and breaks[nbreaks] = rangeval[2], where nbreaks is the length of breaks. There must be at least 2 values in breaks. As for rangeval, must satisfy sum(is.na(as.numeric(breaks))) == 0.

dropind a vector of integers specifying the basis functions to be dropped, if any. For example, if it is required that a function be zero at the left boundary, this is achieved by dropping the first basis function, the only one that is nonzero at that point.

quadvals a matrix with two columns and a number of rows equal to the number of quadrature points for numerical evaluation of the penalty integral. The first column of quadvals contains the quadrature points, and the second column the quadrature weights. A minimum of 5 values are required for each inter-knot interval, and that is often enough. For Simpson's rule, these points are equally spaced, and the weights are proportional to 1, 4, 2, 4, ..., 2, 4, 1.

values a list containing the basis functions and their derivatives evaluated at the quadrature points contained in the first column of quadvals.

basisvalues a vector of lists, allocated by code such as vector("list",1). This argument is designed to avoid evaluation of a basis system repeatedly at a set of argument values. Each list within the vector corresponds to a specific set of argument values, and must have at least two components, which may be tagged as you wish. The first component in an element of the list vector contains the argument values. The second component in an element of the list vector contains a matrix of values of the basis functions evaluated at the arguments in the first component. The third and subsequent components, if present, contain matrices of values their derivatives up to a maximum derivative order. Whenever function getbasismatrix() is called, it checks the first list in each row to see, first, if the number of argument values corresponds to the size of the first dimension, and if this test succeeds, checks that all of the argument values match. This takes time, of course, but is much faster than re-evaluation of the basis system.

names either a character vector of the same length as the number of basis functions or a single character string to which norder, ".", and 1:nbasis are appended as paste(names, norder, ".", 1:nbasis, sep=""). For example, if norder = 4, this defaults to 'bspl4.1', 'bspl4.2', ...

plot. logical: If TRUE, plot argvals and knots.

... optional arguments passed to plot

Details

Spline functions are constructed by joining polynomials end-to-end at argument values called break points or knots. First, the interval is subdivided into a set of adjoining intervals separated the knots. Then a polynomial of order m (degree $m-1$) is defined for each interval. To make the resulting piecewise polynomial smooth, two adjoining polynomials are constrained to have their values and all their derivatives up to order $m-2$ match at the point where they join.
Consider as an illustration the very common case where the order is 4 for all polynomials, so that
degree of each polynomials is 3. That is, the polynomials are cubic. Then at each break point
or knot, the values of adjacent polynomials must match, and so also for their first and second
derivatives. Only their third derivatives will differ at the point of junction.

The number of degrees of freedom of a cubic spline function of this nature is calculated as follows.
First, for the first interval, there are four degrees of freedom. Then, for each additional interval, the
polynomial over that interval now has only one degree of freedom because of the requirement for
matching values and derivatives. This means that the number of degrees of freedom is the number
of interior knots (that is, not counting the lower and upper limits) plus the order of the polynomials:

\[nbasis = norder + \text{length}(breaks) - 2 \]

The consistency of the values of \(nbasis \), \(norder \) and \(breaks \) is checked, and an error message
results if this equation is not satisfied.

\textit{B-splines} are a set of special spline functions that can be used to construct any such piecewise
polynomial by computing the appropriate linear combination. They derive their computational
convenience from the fact that any B-spline basis function is nonzero over at most \(m \) adjacent intervals.
The number of basis functions is given by the rule above for the number of degrees of freedom.

The number of intervals controls the flexibility of the spline; the more knots, the more flexible the
resulting spline will be. But the position of the knots also plays a role. Where do we position the
knots? There is room for judgment here, but two considerations must be kept in mind: (1) you
usually want at least one argument value between two adjacent knots, and (2) there should be more
knots where the curve needs to have sharp curvatures such as a sharp peak or valley or an abrupt
change of level, but only a few knots are required where the curve is changing very slowly.

This function automatically includes \(norder \) replicates of the end points rangeval. By contrast, the
analogous functions \texttt{splineDesign} and \texttt{spline.des} in the \texttt{splines} package do NOT automatically
replicate the end points. To compare answers, the end knots must be replicated manually when
using \texttt{splineDesign} or \texttt{spline.des}.

\texttt{create.bspline.irregular} first calls \texttt{create.bspline.basis} then creates a plot of argvals and breaks vs.
the argvals index.

\textbf{Value}

a basis object of the type \texttt{bspline}

\textbf{References}

Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009), \textit{Functional data analysis with R

\textbf{See Also}

\texttt{basisfd}, \texttt{create.constant.basis}, \texttt{create.exponential.basis}, \texttt{create.fourier.basis},
\texttt{create.monomial.basis}, \texttt{create.polygomaal.basis}, \texttt{create.power.basis}
\texttt{splineDesign}, \texttt{spline.des}
Examples

```r
## The simplest basis currently available with this function:
bspl1.1 <- create.bspline.basis(norder=1)
plot(bspl1.1)

# 1 basis function, order 1 = degree 0 = step function:

# should be the same as above:
b1.1 <- create.bspline.basis(0:1, nbasis=1, norder=1, breaks=0:1)
all.equal(bspl1.1, b1.1)

bspl2.2 <- create.bspline.basis(norder=2)
plot(bspl2.2)

bspl3.3 <- create.bspline.basis(norder=3)
plot(bspl3.3)

bspl4.4 <- create.bspline.basis()
plot(bspl4.4)

bspl1.2 <- create.bspline.basis(norder=1, breaks=c(0,.5, 1))
plot(bspl1.2)

# 2 bases, order 1 = degree 0 = step functions:
# (1) constant 1 between 0 and 0.5 and 0 otherwise
# (2) constant 1 between 0.5 and 1 and 0 otherwise.

bspl2.3 <- create.bspline.basis(norder=2, breaks=c(0,.5, 1))
plot(bspl2.3)

# 3 bases: order 2 = degree 1 = linear
# (1) line from (0,1) down to (0.5, 0), 0 after
# (2) line from (0,0) up to (0.5, 1), then down to (1,0)
# (3) 0 to (0.5, 0) then up to (1,1).

bspl3.4 <- create.bspline.basis(norder=3, breaks=c(0,.5, 1))
plot(bspl3.4)

# 4 bases: order 3 = degree 2 = parabolas.
# (1) (x-.5)^2 from 0 to .5, 0 after
# (2) 2*(x-1)^2 from .5 to 1, and a parabola from (0,0 to (.5, .5) to match
# (3 & 4) = complements to (2 & 1).

bspl4 <- create.bspline.basis(c(-1,1))
plot(bspl4)

# Same as bSp14.23 but over (-1,1) rather than (0,1).

# set up the b-spline basis for the lip data, using 23 basis functions,
# order 4 (cubic), and equally spaced knots.
# There will be 23 - 4 = 19 interior knots at 0.05, ..., 0.95
lipbasis <- create.bspline.basis(c(0,1), 23)
```
create.constant.basis

Create a Constant Basis

Description

Create a constant basis object, defining a single basis function whose value is everywhere 1.0.

Usage

create.constant.basis(rangeval=c(0, 1), names="const", axes=NULL)
Arguments

rangeval a vector of length 2 containing the initial and final values of argument t defining the interval over which the functional data object can be evaluated. However, this is seldom used since the value of the basis function does not depend on the range or any argument values.

names a character vector of length 1.

axes an optional list used by selected plot functions to create custom axes. If this axes argument is not NULL, functions plot.basisfd, plot.fd, plot.fdSmooth, plotfit.fd, plotfit.fdSmooth, and plot.Lfd will create axes via do.call(x$axes[[1]], x$axes).

The primary example of this uses list("axesIntervals", ...), e.g., with Fourier bases to create CanadianWeather plots.

Value

a basis object with type component const.

See Also

basisfd, create.bspline.basis, create.exponential.basis, create.fourier.basis, create.monomial.basis, create.polygonal.basis, create.power.basis

Examples

basisobj <- create.constant.basis(c(-1,1))

create.exponential.basis

Create an Exponential Basis

Description

Create an exponential basis object defining a set of exponential functions with rate constants in argument ratevec.

Usage

create.exponential.basis(rangeval=c(0,1), nbasis=NULL, ratevec=NULL, dropind=NULL, quadvals=NULL, values=NULL, basisvalues=NULL, names='exp', axes=NULL)
Arguments

rangeval
a vector of length 2 containing the initial and final values of the interval over
which the functional data object can be evaluated.

nbasis
the number of basis functions. Default = if(is.null(ratevec)) 2 else length(ratevec).

ratevec
a vector of length nbasis of rate constants defining basis functions of the form
exp(rate*x). Default = 0:(nbasis-1).

dropind
a vector of integers specifying the basis functions to be dropped, if any. For
example, if it is required that a function be zero at the left boundary, this is
achieved by dropping the first basis function, the only one that is nonzero at that
point.

quadvals
a matrix with two columns and a number of rows equal to the number of quadra-
ture points for numerical evaluation of the penalty integral. The first column of
quadvals contains the quadrature points, and the second column the quadrature
weights. A minimum of 5 values are required for each inter-knot interval, and
that is often enough. For Simpson’s rule, these points are equally spaced, and
the weights are proportional to 1, 4, 2, 4, ..., 2, 4, 1.

values
a list of matrices with one row for each row of quadvals and one column for
each basis function. The elements of the list correspond to the basis functions
and their derivatives evaluated at the quadrature points contained in the first
column of quadvals.

to any argument values
up to a maximum derivative order. Whenever function getbasismatrix is called,
it checks the first list in each row to see, first, if the number of argument values
corresponds to the size of the first dimension, and if this test succeeds, checks
that all of the argument values match. This takes time, of course, but is much
faster than re-evaluation of the basis system. Even this time can be avoided by
direct retrieval of the desired array. For example, you might set up a vector of
argument values called "evalargs" along with a matrix of basis function values
for these argument values called "basismat". You might want too use names
like "args" and "values", respectively for these. You would then assign them to
basismat values with code such as the following:

basisobj$basisvalues <- vector("list",1)

basisobj$basisvalues[[1]] <- list(args=evalargs, values=basismat)

to any argument values
up to a maximum derivative order. Whenever function getbasismatrix is called,
it checks the first list in each row to see, first, if the number of argument values
corresponds to the size of the first dimension, and if this test succeeds, checks
that all of the argument values match. This takes time, of course, but is much
faster than re-evaluation of the basis system. Even this time can be avoided by
direct retrieval of the desired array. For example, you might set up a vector of
argument values called "evalargs" along with a matrix of basis function values
for these argument values called "basismat". You might want too use names
like "args" and "values", respectively for these. You would then assign them to
basismat values with code such as the following:

basisobj$basisvalues <- vector("list",1)

basisobj$basisvalues[[1]] <- list(args=evalargs, values=basismat)

to any argument values
up to a maximum derivative order. Whenever function getbasismatrix is called,
it checks the first list in each row to see, first, if the number of argument values
corresponds to the size of the first dimension, and if this test succeeds, checks
that all of the argument values match. This takes time, of course, but is much
faster than re-evaluation of the basis system. Even this time can be avoided by
direct retrieval of the desired array. For example, you might set up a vector of
argument values called "evalargs" along with a matrix of basis function values
for these argument values called "basismat". You might want too use names
like "args" and "values", respectively for these. You would then assign them to
basismat values with code such as the following:

basisobj$basisvalues <- vector("list",1)

basisobj$basisvalues[[1]] <- list(args=evalargs, values=basismat)

name
either a character vector of the same length as the number of basis functions or
a simple stem used to construct such a vector.
For exponential bases, this defaults to paste("exp", 0:(nbasis-1), sep="").

axes
an optional list used by selected plot functions to create custom axes. If this
axes argument is not NULL, functions plot.basisfd, plot.fd, plot.fd$Smooth
create.fourier.basis

plotfit.fd, plotfit.fds, and plot.Lfd will create axes via do.call(x$axes[[1]], x$axes[1]). The primary example of this uses list("axesIntervals", ...), e.g., with Fourier bases to create CanadianWeather plots.

Details

Exponential functions are of the type $exp(bx)$ where b is the rate constant. If $b = 0$, the constant function is defined.

Value

a basis object with the type expon.

See Also

basisfd, create.bspline.basis, create.constant.basis, create.fourier.basis, create.monomial.basis, create.polygonal.basis, create.power.basis

Examples

Create an exponential basis over interval [0,5]
with basis functions 1, exp(-t) and exp(-5t)
basisobj <- create.exponential.basis(c(0,5), c(0,1,5))
plot the basis
plot(basisobj)

create.fourier.basis

Create a Fourier Basis

Description

Create an Fourier basis object defining a set of Fourier functions with specified period.

Usage

create.fourier.basis(rangeval=c(0, 1), nbasis=3,
period=diff(rangeval), dropind=NULL, quadvals=NULL,
values=NULL, basisvalues=NULL, names=NULL,
axes=NULL)

Arguments

rangeval a vector of length 2 containing the initial and final values of the interval over which the functional data object can be evaluated.
nbasis

Positive odd integer: If an even number is specified, it is rounded up to the nearest odd integer to preserve the pairing of sine and cosine functions. An even number of basis functions only makes sense when there are always only an even number of observations at equally spaced points; that case can be accommodated using \(\text{dropind} = \text{nbasis}-1 \) (because the bases are \(\text{const, sin, cos, ...} \)).

period

The width of any interval over which the Fourier functions repeat themselves or are periodic.

dropind

An optional vector of integers specifying basis functions to be dropped.

quadvals

An optional matrix with two columns and a number of rows equal to the number of quadrature points for numerical evaluation of the penalty integral. The first column of \(\text{quadvals} \) contains the quadrature points, and the second column the quadrature weights. A minimum of 5 values are required for each inter-knot interval, and that is often enough. For Simpson’s rule, these points are equally spaced, and the weights are proportional to \(1, 4, 2, 4, ..., 2, 4, 1 \).

values

An optional list of matrices with one row for each row of \(\text{quadvals} \) and one column for each basis function. The elements of the list correspond to the basis functions and their derivatives evaluated at the quadrature points contained in the first column of \(\text{quadvals} \).

basisvalues

An optional list of lists, allocated by code such as \(\text{vector}("\text{list},1\) \). This field is designed to avoid evaluation of a basis system repeatedly at a set of argument values. Each sublist corresponds to a specific set of argument values, and must have at least two components: a vector of argument values and a matrix of the values the basis functions evaluated at the arguments in the first component. Third and subsequent components, if present, contain matrices of values their derivatives. Whenever function getbasismatrix is called, it checks the first list in each row to see, first, if the number of argument values corresponds to the size of the first dimension, and if this test succeeds, checks that all of the argument values match. This takes time, of course, but is much faster than re-evaluation of the basis system. Even this time can be avoided by direct retrieval of the desired array. For example, you might set up a vector of argument values called "evalargs" along with a matrix of basis function values for these argument values called "basismat". You might want to use tags like "args" and "values", respectively for these. You would then assign them to \(\text{basisvalues} \) with code such as the following:

\[
\begin{align*}
\text{basisobj}\$\text{basisvalues} & \leftarrow \text{vector}"\text{list},1\) \\
\text{basisobj}\$\text{basisvalues}[1] & \leftarrow \text{list}(\text{args}=\text{evalargs}, \text{values}=\text{basismat})
\end{align*}
\]

names

Either a character vector of the same length as the number of basis functions or a simple stem used to construct such a vector.

If \(\text{nbasis} = 3 \), \(\text{names} \) defaults to \(\text{c('const', 'cos', 'sin')} \). If \(\text{nbasis} > 3 \), \(\text{names} \) defaults to \(\text{c('const', outer(c('cos', 'sin'), 1:((\text{nbasis}-1)/2), paste, sep="\)\)).

If \(\text{names} = \text{NA} \), no names are used.

axes

An optional list used by selected \texttt{plot} functions to create custom axes. If this \texttt{axes} argument is not NULL, functions \texttt{plot.basisfd, plot.fd, plot.fdSmooth, plotfit.fd, plotfit.fdSmooth, and plot.Lfd} will create axes via \texttt{do.call(x$axes[[1]], x$axes[[2]]...)}

The primary example of this is to create \texttt{CanadianWeather} plots using \texttt{list("axesIntervals")}
create.fourier.basis

Details

Functional data objects are constructed by specifying a set of basis functions and a set of coefficients defining a linear combination of these basis functions. The Fourier basis is a system that is usually used for periodic functions. It has the advantages of very fast computation and great flexibility. If the data are considered to be nonperiod, the Fourier basis is usually preferred. The first Fourier basis function is the constant function. The remainder are sine and cosine pairs with integer multiples of the base period. The number of basis functions generated is always odd.

Value

a basis object with the type fourier.

See Also

basisfd, create.bspline.basis, create.constant.basis, create.exponential.basis, create.monomial.basis, create.polygonal.basis, create.power.basis

Examples

Create a minimal Fourier basis for annual data
using 3 basis functions
yearbasis3 <- create.fourier.basis(c(0, 365),
 axes=list("axesIntervals"))

plot the basis
plot(yearbasis3)

Identify the months with letters
plot(yearbasis3, axes=list('axesIntervals', labels=monthLetters))

The same labels as part of the basis object
yearbasis3. <- create.fourier.basis(c(0, 365),
 axes=list("axesIntervals", labels=monthLetters))
plot(yearbasis3.)

set up the Fourier basis for the monthly temperature data,
using 9 basis functions with period 12 months.
monthbasis <- create.fourier.basis(c(0, 12), 9, 12.0)

plot the basis
plot(monthbasis)

Create a false Fourier basis using 1 basis function.
falseFourierBasis <- create.fourier.basis(nbasis=1)

plot the basis: constant
plot(falseFourierBasis)
create.monomial.basis Create a Monomial Basis

Description

Creates a set of basis functions consisting of powers of the argument.

Usage

create.monomial.basis(rangeval=c(0, 1), nbasis=NULL,
exponents=NULL, dropind=NULL, quadvals=NULL,
values=NULL, basisvalues=NULL, names='monomial',
axes=NULL)

Arguments

rangeval a vector of length 2 containing the initial and final values of the interval over
which the functional data object can be evaluated.
nbasis the number of basis functions = length(exponents). Default = if(is.null(exponents))
2 else length(exponents).
exponents the nonnegative integer powers to be used. By default, these are 0, 1, 2, ...,
(nbasis-1).
dropind a vector of integers specifying the basis functions to be dropped, if any. For
example, if it is required that a function be zero at the left boundary when
rangeval[1] = 0, this is achieved by dropping the first basis function, the only
one that is nonzero at that point.
quadvals a matrix with two columns and a number of rows equal to the number of quadra-
ture points for numerical evaluation of the penalty integral. The first column of
quadvals contains the quadrature points, and the second column the quadrature
weights. A minimum of 5 values are required for each inter-knot interval, and
that is often enough. For Simpson’s rule, these points are equally spaced, and
the weights are proportional to 1, 4, 2, 4, ..., 2, 4, 1.
values a list of matrices with one row for each row of quadvals and one column for
each basis function. The elements of the list correspond to the basis functions
and their derivatives evaluated at the quadrature points contained in the first
column of quadvals.
basisvalues A list of lists, allocated by code such as vector("list",1). This field is designed to
avoid evaluation of a basis system repeatedly at a set of argument values. Each
list within the vector corresponds to a specific set of argument values, and must
have at least two components, which may be tagged as you wish. The first com-
ponent in an element of the list vector contains the argument values. The second
component in an element of the list vector contains a matrix of values of the
basis functions evaluated at the arguments in the first component. The third and
subsequent components, if present, contain matrices of values their derivatives
up to a maximum derivative order. Whenever function getbasismatrix is called,
it checks the first list in each row to see, first, if the number of argument values
 corresponds to the size of the first dimension, and if this test succeeds, checks
that all of the argument values match. This takes time, of course, but is much
faster than re-evaluation of the basis system. Even this time can be avoided by
direct retrieval of the desired array. For example, you might set up a vector of
argument values called "evalargs" along with a matrix of basis function values
for these argument values called "basismat". You might want too use names
like "args" and "values", respectively for these. You would then assign them to
basisvalues with code such as the following:

```r
basisobj$basisvalues <- vector("list",1)
basisobj$basisvalues[[1]] <- list(args=evalargs, values=basismat)
```

either a character vector of the same length as the number of basis functions or
a simple stem used to construct such a vector.
For monomial bases, this defaults to paste('monomial', 1:nbreaks, sep="").

axes
an optional list used by selected plot functions to create custom axes. If this
axes argument is not NULL, functions plot.basisfd, plot.fd, plot.fdSmooth
plotfit.fd, plotfit.fdSmooth, and plot.Lfd will create axes via do.call(x$axes[[1]], x$axes)
The primary example of this uses list(\"axesIntervals\", ...), e.g., with
Fourier bases to create CanadianWeather plots

Value
a basis object with the type monom.

See Also

`basisfd`, `link{create.basis}` `create.bspline.basis`, `create.constant.basis`, `create.fourier.basis`,
`create.exponential.basis`, `createpolygonal.basis`, `create.power.basis`

Examples

```r
# simplest example: one constant 'basis function'

m0 <- create.monomial.basis(nbasis=1)
plot(m0)

# Create a monomial basis over the interval [-1,1]
# consisting of the first three powers of t

basisobj <- create.monomial.basis(c(-1,1), 5)
# plot the basis
plot(basisobj)

# rangeval of class Date or POSIXct

# Date
invasion1 <- as.Date('1775-09-04')
```
create.polygonal.basis

Create a Polygonal Basis

Description

A basis is set up for constructing polygonal lines, consisting of straight line segments that join together.

Usage

create.polygonal.basis(rangeval=NULL, argvals=NULL, dropind=NULL, quadvals=NULL, values=NULL, basisvalues=NULL, names='polygon', axes=NULL)

Arguments

rangeval
a numeric vector of length 2 defining the interval over which the functional data object can be evaluated; default value is if(is.null(argvals)) 0:1 else range(argvals).
If length(rangeval) == 1 and rangeval <= 0, this is an error. Otherwise, if length(rangeval) == 1, rangeval is replaced by c(0, rangeval).
If length(rangeval)>2 and argvals is not provided, this extra long rangeval argument is assigned to argvals, and then rangeval = range(argvale).

argvals
a strictly increasing vector of argument values at which line segments join to form a polygonal line.

dropind
a vector of integers specifying the basis functions to be dropped, if any. For example, if it is required that a function be zero at the left boundary, this is achieved by dropping the first basis function, the only one that is nonzero at that point.

quadvals
a matrix with two columns and a number of rows equal to the number of quadrature points for numerical evaluation of the penalty integral. The first column of quadvals contains the quadrature points, and the second column the quadrature weights. A minimum of 5 values are required for each inter-knot interval, and that is often enough. For Simpson’s rule, these points are equally spaced, and the weights are proportional to These are proportional to 1, 4, 2, 4, ..., 2, 4, 1.

values
a list containing the basis functions and their derivatives evaluated at the quadrature points contained in the first column of quadvals.
basisvalues A list of lists, allocated by code such as `vector("list",1)`. This is designed to avoid evaluation of a basis system repeatedly at a set of argument values. Each sublist corresponds to a specific set of argument values, and must have at least two components, which may be named as you wish. The first component of a sublist contains the argument values. The second component contains a matrix of values of the basis functions evaluated at the arguments in the first component. The third and subsequent components, if present, contain matrices of values their derivatives up to a maximum derivative order. Whenever function `getbasismatrix` is called, it checks the first list in each row to see, first, if the number of argument values corresponds to the size of the first dimension, and if this test succeeds, checks that all of the argument values match. This takes time, of course, but is much faster than re-evaluation of the basis system. Even this time can be avoided by direct retrieval of the desired array. For example, you might set up a vector of argument values called "evalargs" along with a matrix of basis function values for these argument values called "basismat". You might want too use tags like "args" and "values", respectively for these. You would then assign them to `basisvalues` with code such as the following:

```r
basisobj$basisvalues <- vector("list",1)
basisobj$basisvalues[[1]] <- list(args=evalargs, values=basismat)
```

names either a character vector of the same length as the number of basis functions or a single character string to which 1:nbasis are appended as `paste(names, 1:nbasis, sep='')`. For example, if `nbasis = 4`, this defaults to `c('polygon1', 'polygon2', 'polygon3', 'polygon4')`.

axes an optional list used by selected plot functions to create custom axes. If this axes argument is not NULL, functions `plot.basisfd`, `plot.fd`, `plot.fdSmooth`, `plotfit.fd`, `plotfit.fdSmooth`, and `plot.lfd` will create axes via `do.call(x$axes[[1]], x$axes[[1]])`. The primary example of this uses `list("axesIntervals", ...)`, e.g., with Fourier bases to create CanadianWeather plots.

Details

The actual basis functions consist of triangles, each with its apex over an argument value. Note that in effect the polygonal basis is identical to a B-spline basis of order 2 and a knot or break value at each argument value. The range of the polygonal basis is set to the interval defined by the smallest and largest argument values.

Value

a basis object with the type `polyg`.

See Also

`basisfd`, `create.bspline.basis`, `create.basis`, `create.constant.basis`, `create.exponential.basis`, `create.fourier.basis`, `create.monomial.basis`, `create.power.basis`

Examples

```r
# Create a polygonal basis over the interval [0,1]
# with break points at 0, 0.1, ..., 0.95, 1
(basisobj <- createpolygonalbasis(seq(0,1,0.1)))
```
create.power.basis

Description

The basis system is a set of powers of argument x. That is, a basis function would be x^{exponent}, where \text{exponent} is a vector containing a set of powers or exponents. The power basis would normally only be used for positive values of x, since the power of a negative number is only defined for nonnegative integers, and the exponents here can be any real numbers.

Usage

\text{create.power.basis(rangeval=c(0, 1), nbasis=NULL, exponents=NULL, dropind=NULL, quadvals=NULL, values=NULL, basisvalues=NULL, names='power', axes=NULL)}

Arguments

\text{rangeval} \quad \text{a vector of length 2 with the first element being the lower limit of the range of argument values, and the second the upper limit. Of course the lower limit must be less than the upper limit.}

\text{nbasis} \quad \text{the number of basis functions = length(exponents). Default = if(is.null(exponents)) 2 else length(exponents).}

\text{exponents} \quad \text{a numeric vector of length nbasis containing the powers of x in the basis.}

\text{dropind} \quad \text{a vector of integers specifying the basis functions to be dropped, if any. For example, if it is required that a function be zero at the left boundary, this is achieved by dropping the first basis function, the only one that is nonzero at that point.}

\text{quadvals} \quad \text{a matrix with two columns and a number of rows equal to the number of quadrature points for numerical evaluation of the penalty integral. The first column of quadvals contains the quadrature points, and the second column the quadrature weights. A minimum of 5 values are required for each inter-knot interval, and that is often enough. For Simpson’s rule, these points are equally spaced, and the weights are proportional to 1, 4, 2, 4, ..., 2, 4, 1.}

\text{values} \quad \text{a list of matrices with one row for each row of quadvals and one column for each basis function. The elements of the list correspond to the basis functions and their derivatives evaluated at the quadrature points contained in the first column of quadvals.}

\text{basisvalues} \quad \text{A list of lists, allocated by code such as vector("list",1). This field is designed to avoid evaluation of a basis system repeatedly at a set of argument values. Each list within the vector corresponds to a specific set of argument values, and must have at least two components, which may be tagged as you wish. The first component in an element of the list vector contains the argument values. The second}
component in an element of the list vector contains a matrix of values of the basis functions evaluated at the arguments in the first component. The third and subsequent components, if present, contain matrices of values their derivatives up to a maximum derivative order. Whenever function getbasismatrix is called, it checks the first list in each row to see, first, if the number of argument values corresponds to the size of the first dimension, and if this test succeeds, checks that all of the argument values match. This takes time, of course, but is much faster than re-evaluation of the basis system. Even this time can be avoided by direct retrieval of the desired array. For example, you might set up a vector of argument values called "evalargs" along with a matrix of basis function values for these argument values called "basismat". You might want too use names like "args" and "values", respectively for these. You would then assign them to basisvalues with code such as the following:

```r
basisobj$basisvalues <- vector("list",1)
basisobj$basisvalues[[1]] <- list(args=evalargs, values=basismat)
```

For power bases, this defaults to paste(power', 0:(nbasis-1), sep="").

The primary example of this uses list("axesIntervals", ...), e.g., with Fourier bases to create CanadianWeather plots

Details

The power basis differs from the monomial basis in two ways. First, the powers may be nonintegers. Secondly, they may be negative. Consequently, a power basis is usually used with arguments that only take positive values, although a zero value can be tolerated if none of the powers are negative.

Value

a basis object of type power.

See Also

`basisfd`, `create.basis`, `create.bspline.basis`, `create.constant.basis`, `create.exponential.basis`, `create.fourier.basis`, `create.monomial.basis`, `create.polygonal.basis`.

Examples

```r
# Create a power basis over the interval [1e-7,1]
# with powers or exponents -1, -0.5, 0, 0.5 and 1
basisobj <- create.power.basis(c(1e-7,1), 5, seq(-1,1,0.5))
# plot the basis
plot(basisobj)
```
Description

Functions for solving the Continuously Stirred Tank Reactor (CSTR) Ordinary Differential Equations (ODEs). A solution for observations where metrology error is assumed to be negligible can be obtained via lsoda(y, Time, CSTR2, parms); CSTR2 calls CSTR2in. When metrology error can not be ignored, use CSTRfn (which calls CSTRfitLS). To estimate parameters in the CSTR differential equation system (kref, EoverR, a, and / or b), pass CSTRres to nls. If nls fails to converge, first use optim or nlminb with CSTRsse, then pass the estimates to nls.

Usage

CSTR2in(Time, condition =
 c('all.cool.step', 'all.hot.step', 'all.hot.ramp', 'all.cool.ramp',
 'Tc.hot.exponential', 'Tc.cool.exponential', 'Tc.hot.ramp',
 'Tc.cool.ramp', 'Tc.hot.step', 'Tc.cool.step'),
 tau=1)
CSTR2(Time, y, parms)
CSTRfitLS(coef, datstruct, fitstruct, lambda, gradwrd=FALSE)
CSTRfn(parvec, datstruct, fitstruct, CSTRbasis, lambda, gradwrd=TRUE)
CSTRres(kref=NULL, EoverR= NULL, a=NULL, b=NULL,
 datstruct, fitstruct, CSTRbasis, lambda, gradwrd=FALSE)
CSTRsse(par, datstruct, fitstruct, CSTRbasis, lambda)

Arguments

Time The time(s) for which computation(s) are desired
condition a character string with the name of one of ten preprogrammed input scenarios.
tau time for exponential decay of exp(-1) under condition = 'Tc.hot.exponential' or
 'Tc.cool.exponential'; ignored for other values of 'condition'.
y Either a vector of length 2 or a matrix with 2 columns giving the observation(s)
 on Concentration and Temperature for which computation(s) are desired
parms a list of CSTR model parameters passed via the lsoda 'parms' argument. This
 list consists of the following 3 components:

• fitstruct a list with 12 components describing the structure for fitting. This is
 the same as the 'fitstruct' argument of 'CSTRfitLS' and 'CSTRfn' without
 the 'fit' component; see below.
• condition a character string identifying the inputs to the simulation. Current-
 lenly, any of the following are accepted: 'all.cool.step', 'all.hot.step', 'all.hot.ramp',
 'all.cool.ramp', 'Tc.hot.exponential', 'Tc.cool.exponential', 'Tc.hot.ramp',
 'Tc.cool.ramp', 'Tc.hot.step', or 'Tc.cool.step'.

cof

Tlim end time for the computations.

a matrix with one row for each basis function in fitstruct and columns c("Conc", "Temp") or a vector form of such a matrix.

datstruct

a list describing the structure of the data. CSTRfitLS uses the following components:

- basismat, Dbasismat basis coefficient matrices with one row for each observation and one column for each basis vector. These are typically produced by code something like the following:
 basismat <- eval.basis(Time, CSTRbasis)
 Dbasismat <- eval.basis(Time, CSTRbasis, 1)
- Cwt, Twt scalar variances of 'fd' functional data objects for Concentration and Temperature used to place the two series on comparable scales.
- y a matrix with 2 columns for the observed 'Conc' and 'Temp'.
- quadbasismat, Dquadbasismat basis coefficient matrices with one row for each quadrature point and one column for each basis vector. These are typically produced by code something like the following:
 quadbasismat <- eval.basis(quadpts, CSTRbasis)
 Dquadbasismat <- eval.basis(quadpts, CSTRbasis, 1)
- Fc, C0, T0, Tc input series for CSTRfitLS and CSTRfn as the output list produced by CSTR2in.
- quadpts Quadrature points created by 'quadset' and stored in CSTRbasis[["quadvals"]][, "quadpts"].
- quadwts Quadrature weights created by 'quadset' and stored in CSTRbasis[["quadvals"]][, "quadpts"].

fitstruct

a list with 14 components:

- V volume in cubic meters
- Cp concentration in cal/(g.K) for computing betaTC and betaTT; see details below.
- rho density in grams per cubic meter
- delH cal/kmol
- Cpc concentration in cal/(g.K) used for computing alpha; see details below.
- Tref reference temperature.
- kref reference value
- EoverR E/R in units of K/1e4
- a scale factor for Fco in alpha; see details below.
- b power of Fco in alpha; see details below.
- Tcin Tc input temperature vector.
- fit logical vector of length 2 indicating whether Contentration or Temperature or both are considered to be observed and used for parameter estimation.
- coef0 data.frame(Conc = Cfdsmth["coef"], Temp = Tfdsmth["coef"]), where Cfdsmth and Tfdsmth are the objects returned by smooth.basis when applied to the observations on Conc and Temp, respectively.
• estimate logical vector of length 4 indicating which of kref, EoverR, a and b are taken from 'parvec'; all others are taken from 'fitstruct'.

lambda

a 2-vector of rate parameters 'lambdaC' and 'lambdaT'.

gradwrd

a logical scalar TRUE if the gradient is to be returned as well as the residuals matrix.

parvec, par

initial values for the parameters specified by fitstruct[['estimate']] to be estimated.

CSTRbasis

Quadrature basis returned by 'quadset'.

dkref, EoverR, a, b
d the kref, EoverR, a, and b coefficients of the CSTR model as individual arguments of CSTRres to support using 'nls' with the CSTR model. Those actually provided by name will be estimated; the others will be taken from '.fitstruct'; see details.

Details

Ramsay et al. (2007) considers the following differential equation system for a continuously stirred tank reactor (CSTR):

\[
dC/dt = (-betaCC(T, F.in)*C + F.in*C.in)
\]

\[
dT/dt = (-betaTT(Fcvec, F.in)*T + betaTC(T, F.in)*C + alpha(Fcvec)*T.co)
\]

where

\[
\begin{align*}
\beta_{CC}(T, F.in) &= kref*\exp(-1e4*EoverR*(1/T - 1/Tref)) + F.in \\
\beta_{TT}(Fcvec, F.in) &= alpha(Fcvec) + F.in \\
\beta_{TC}(T, F.in) &= (-\delta H/(\rho*Cp))*\beta_{CC}(T, F.in)
\end{align*}
\]

\[
alpha(Fcvec) = \left(a * Fcvec^b + 1 \right) / \left(K1 * (Fcvec + K2 * Fcvec^b) \right)
\]

\[K1 = V*rho*Cp\]
\[K2 = 1/(2*rhoc*Cpc)\]

The four functions CSTR2in, CSTR2, CSTRfitLS, and CSTRfn compute coefficients of basis vectors for two different solutions to this set of differential equations. Functions CSTR2in and CSTR2 work with 'lsoda' to provide a solution to this system of equations. Functions CSTRfitLS and CSTRfn are used to estimate parameters to fit this differential equation system to noisy data. These solutions are conditioned on specified values for kref, EoverR, a, and b. The other function, CSTRres, supports estimation of these parameters using 'nls'.

CSTR2in translates a character string 'condition' into a data.frame containing system inputs for which the reaction of the system is desired. CSTR2 calls CSTR2in and then computes the corresponding predicted first derivatives of CSTR system outputs according to the right hand side of the system equations. CSTR2 can be called by 'lsoda' in the 'deSolve' package to actually solve the system of equations. To solve the CSTR equations for another set of inputs, the easiest modification might be to change CSTR2in to return the desired inputs. Another alternative would be to add an argument 'input.data.frame' that would be used in place of CSTR2in when present.

CSTRfitLS computes standardized residuals for systems outputs Conc, Temp or both as specified by fitstruct[['fit']], a logical vector of length 2. The standardization is sqrt(datstruct[['Cwt']]) and
CSTR

/ or sqrt(datstruct["Twt"]) for Conc and Temp, respectively. CSTRfitLS also returns standardized deviations from the predicted first derivatives for Conc and Temp.

CSTRfn uses a Gauss-Newton optimization to estimates the coefficients of CSTRbasis to minimize the weighted sum of squares of residuals returned by CSTRfitLS.

CSTRres provides an interface between 'nls' and 'CSTRfn'. It gets the parameters to be estimated via the official function arguments, kref, EoverR, a, and / or b. The subset of these parameters to estimate must be specified both directly in the function call to 'nls' and indirectly via fitstruct["estimate"]). CSTRres gets the other CSTRfn arguments (datstruct, fitstruct, CSTRbasis, and lambda) via the 'data' argument of 'nls'.

CSTRsse computes sum of squares of residuals for use with optim or nlminb.

Value

CSTR2in a matrix with number of rows = length(Time) and columns for F, CA0, T0, Tcin, and Fc. This gives the inputs to the CSTR simulation for the chosen 'condition'.

CSTR2 a list with one component being a matrix with number of rows = length(tobs) and 2 columns giving the first derivatives of Conc and Temp according to the right hand side of the differential equation. CSTR2 calls CSTR2in to get its inputs.

CSTRfitLS a list with one or two components as follows:

• res a list with two components
 Sres = a matrix giving the residuals between observed and predicted datstruct["y"] divided by sqrt(datstruct[c("Cwt", "Twt")]) so the result is dimensionless. dim(Sres) = dim(datstruct["y"]). Thus, if datstruct["y"] has only one column, 'Sres' has only one column.
 Lres = a matrix with two columns giving the difference between left and right hand sides of the CSTR differential equation at all the quadrature points. dim(Lres) = c(nquad, 2).

• Dres If gradwrd=TRUE, a list with two components:
 DSres = a matrix with one row for each element of res[Sres] and two columns for each basis function.
 DLres = a matrix with two rows for each quadrature point and two columns for each basis function.
 If gradwrd=FALSE, this component is not present.

CSTRfn a list with five components:

• res the 'res' component of the final 'CSTRfitLS' object reformatted with its component Sres first followed by Lres, using with(CSTRfitLS(...)["res"]), c(Sres, Lres)).

• Dres one of two very different gradient matrices depending on the value of 'gradwrd'.
 If gradwrd = TRUE, Dres is a matrix with one row for each observation value to match and one column for each parameter taken from 'parvec' per fitstruct["estimate"]). Also, if fitstruct["fit"] = c(1,1), CSTRfn tries to match both Concentration and Temperature, and rows corresponding to Concentration come first following by rows corresponding to Temperature.
If gradwrd = FALSE, this is the 'Dres’ component of the final 'CSTRfitLS’ object reformatted as follows:

```
Dres <- with(CSTRfitLS(...)[["Dres"]], rbind(DSres, DLres))
```

- `fitstruct` a list components matching the 'fitstruct’ input, with coefficients estimated replaced by their initial values from parvec and with coef0 replace by its final estimate.
- `df` estimated degrees of freedom as the trace of the appropriate matrix.
- `gcv` the Generalized cross validation estimate of the mean square error, as discussed in Ramsay and Silverman (2006, sec. 5.4).

CSTRres

the 'res’ component of CSTRfd(...) as a column vector. This allows us to use 'nls’ with the CSTR model. This can be especially useful as 'nls’ has several helper functions to facilitate evaluating goodness of fit and and uncertainty in parameter estimates.

CSTRsse

sum(res*res) from CSTRfd(...). This allows us to use 'optim’ or 'nlminb’ with the CSTR model. This can also be used to obtain starting values for 'nls’ in cases where 'nls’ fails to converge from the initial provided starting values. Apart from 'par’, the other arguments 'datstruct’, 'fitstruct’, 'CSTRbasis’, and 'lambda’, must be passed via ‘...’ in 'optim’ or 'nlminb’.

References

See Also

`lsoda`, `nls`

Examples

```r
###
### 1. lsoda(y, times, func=CSTR2, parms=...)
###
# The system of two nonlinear equations has five forcing or
# input functions.
# These equations are taken from
# pages 899-902.
#
# Set up the problem
#
# fitstruct <- list(V = 1.0,# volume in cubic meters
```
Cp = 1.0,# concentration in cal/(g.K)
rho = 1.0,# density in grams per cubic meter
delH = -130.0,# cal/kmol
Cpc = 1.0,# concentration in cal/(g.K)
rhoc = 1.0,# cal/kmol
Tref = 350,# reference temperature

store true values of known parameters
EoverRtru = 0.83301# E/R in units K/1e4
kreftru = 0.4610 # reference value
atru = 1.678# a in units (cal/min)/K/1e6
btru = 0.5# dimensionless exponent

#% enter these parameter values into fitstruct

fitstruct["kref"] = kreftru#
fitstruct["EoverR"] = EoverRtru# kref = 0.4610
fitstruct["a"] = atru# a in units (cal/min)/K/1e6
fitstruct["b"] = btru# dimensionless exponent

Tlim = 64# reaction observed over interval [0, Tlim]
delta = 1/12# observe every five seconds
tspan = seq(0, Tlim, delta)#

coolStepInput <- CSTR2in(tspan, 'all.cool.step')

set constants for ODE solver

cool condition solution

Cinit.cool = 1.5965# initial concentration in kmol per cubic meter
Tinit.cool = 341.3754# initial temperature in deg K
yinit = c(Conc = Cinit.cool, Temp=Tinit.cool)

load cool input into fitstruct

fitstruct["Tcin"] = coolStepInput[, "Tcin"];

solve differential equation with true parameter values

if (require(deSolve)) {
coolStepSoln <- lsoda(y=yinit, times=tspan, func=CSTR2,
 parms=list(fitstruct=fitstruct, condition='all.cool.step', Tlim=Tlim))
}

###
2. CSTRfn
###

See the script in '-R\library\fda\scripts\CSTR\CSTR_demo.R'
for more examples.
cycleplot.fd

Plot Cycles for a Periodic Bivariate Functional Data Object

Description

A plotting function for data such as the knee-hip angles in the gait data or temperature-precipitation curves for the weather data.

Usage

```r
cycleplot.fd(fdobj, matplt=TRUE, nx=201, ...)
```

Arguments

- `fdobj`

a bivariate functional data object to be plotted.

- `matplt`

if TRUE, all cycles are plotted simultaneously; otherwise each cycle in turn is plotted.

- `nx`

the number of argument values in a fine mesh to be plotted. Increase the default number of 201 if the curves have a lot of detail in them.

- `...`

additional plotting parameters such as axis labels and etc. that are used in all plot functions.

Value

None

Side Effects

A plot of the cycles

See Also

`plot.fd, plotfit.fd`, demo(gait)

dataRfd

Create a functional data object from data
Description

This function converts an array \(y \) of function values plus an array \(\text{argvals} \) of argument values into a functional data object. This function tries to do as much for the user as possible in setting up a call to function \(\text{smooth.basis} \). Be warned that the result may not be a satisfactory smooth of the data, and consequently that it may be necessary to use function \(\text{smooth.basis} \) instead, the help file for which provides a great deal more information than is provided here. Also, function Data2fd can swap the first two arguments, \(\text{argvals} \) and \(y \) if it appears that they have been included in reverse order. A warning message is returned if this swap takes place. Any such automatic decision, though, has the possibility of being wrong, and the results should be carefully checked. Preferably, the order of the arguments should be respected: \(\text{argvals} \) comes first and \(y \) comes second.

Usage

\[
\text{Data2fd}(\text{argvals}=\text{NULL}, y=\text{NULL}, \text{basisobj}=\text{NULL}, \text{nderiv}=\text{NULL}, \\
\text{lambda}=3e-8/\text{diff(as.numeric(range(argvals)))}, \\
\text{fdnames}=\text{NULL}, \text{covariates}=\text{NULL}, \text{method}="\text{chol}"$, \\
\text{dfscale}=\text{QI})
\]

Arguments

- \(\text{argvals} \) a set of argument values. If this is a vector, the same set of argument values is used for all columns of \(y \). If \(\text{argvals} \) is a matrix, the columns correspond to the columns of \(y \), and contain the argument values for that replicate or case.

Dimensions for \(\text{argvals} \) must match the first dimensions of \(y \), though \(y \) can have more dimensions. For example, if \(\text{dim}(y) = c(9, 5, 2) \), \(\text{argvals} \) can be a vector of length 9 or a matrix of dimensions \(c(9, 5) \) or an array of dimensions \(c(9, 5, 2) \).

- \(y \) an array containing sampled values of curves.

If \(y \) is a vector, only one replicate and variable are assumed. If \(y \) is a matrix, rows must correspond to argument values and columns to replications or cases, and it will be assumed that there is only one variable per observation. If \(y \) is a three-dimensional array, the first dimension (rows) corresponds to argument values, the second (columns) to replications, and the third (layers) to variables within replications. Missing values are permitted, and the number of values may vary from one replication to another. If this is the case, the number of rows must equal the maximum number of argument values, and columns of \(y \) having fewer values must be padded out with NA's.

- \(\text{basisobj} \) One of the following:
 - \(\text{basisfd} \) a functional basis object (class \(\text{basisfd} \)).
 - \(\text{fd} \) a functional data object (class \(\text{fd} \)), from which its basis component is extracted.
 - \(\text{fdPar} \) a functional parameter object (class \(\text{fdPar} \)), from which its basis component is extracted.
 - integer an integer giving the order of a B-spline basis, create.bspline.basis(argvals, norder=basisobj)
 - numeric vector specifying the knots for a B-spline basis, create.bspline.basis(basisobj)
• NULL Defaults to create.b spline.basis(argvals).

nderiv

Smoothing typically specified as an integer order for the derivative whose square is integrated and weighted by lambda to smooth. By default, if basisobj[['type']] == 'bspline', the smoothing operator is int2Lfd(max(0, norder-2)). A general linear differential operator can also be supplied.

lambda

weight on the smoothing operator specified by nderiv.

dfdnames

Either a character vector of length 3 or a named list of length 3. In either case, the three elements correspond to the following:

• argname name of the argument, e.g. "time" or "age".
• repname a description of the cases, e.g. "reps" or "weather stations"
• value the name of the observed function value, e.g. "temperature"

If fdnames is a list, the components provide labels for the levels of the corresponding dimension of y.

covariates

the observed values in y are assumed to be primarily determined the the height of the curve being estimates, but from time to time certain values can also be influenced by other known variables. For example, multi-year sets of climate variables may be also determined by the presence of absence of an El Nino event, or a volcanic eruption. One or more of these covariates can be supplied as an n by p matrix, where p is the number of such covariates. When such covariates are available, the smoothing is called "semi-parametric." Matrices or arrays of regression coefficients are then estimated that define the impacts of each of these covariates for each cueve and each variable.

method

by default the function uses the usual textbook equations for computing the coefficients of the basis function expansions. But, as in regression analysis, a price is paid in terms of rounding error for such computations since they involved cross-products of basis function values. Optionally, if method is set equal to the string "qr", the computation uses an algorithm based on the qr-decomposition which is more accurate, but will require substantially more computing time when n is large, meaning more than 500 or so. The default is "chol", referring the Choleski decomposition of a symmetric positive definite matrix.

dfscale

the generalized cross-validation or "gcv" criterion that is often used to determine the size of the smoothing parameter involves the subtraction of an measure of degrees of freedom from n. Chong Gu has argued that multiplying this degrees of freedom measure by a constant slightly greater than 1, such as 1.2, can produce better decisions about the level of smoothing to be used. The default value is, however, 1.0.

Details

This function tends to be used in rather simple applications where there is no need to control the roughness of the resulting curve with any great finesse. The roughness is essentially controlled by how many basis functions are used. In more sophisticated applications, it would be better to use the function smooth.basisPar.
Value

an object of the fd class containing:

coeffs the coefficient array
basis a basis object
fdnames a list containing names for the arguments, function values and variables

References

See Also

smooth.basisPar, smooth.basis, project.basis, smooth.fd, smooth.monotone, smooth.pos
day.5

Examples

```
##
## Simplest possible example: constant function
##
# 1 basis, order 1 = degree 0 = constant function
b1.1 <- create.bspline.basis(nbasis=1, norder=1)
# data values: 1 and 2, with a mean of 1.5
y12 <- 1:2
# smooth data, giving a constant function with value 1.5
fd1.1 <- Data2fd(y12, basisobj=b1.1)
plot(fd1.1)
# now repeat the analysis with some smoothing, which moves the
# toward 0.
fd1.1.5 <- Data2fd(y12, basisobj=b1.1, lambda=0.5)
# values of the smooth:
# fd1.1.5 = sum(y12)/(n+lambda*integral(over arg=0 to 1 of 1))
#
# = 3 / (2+0.5) = 1.2
eval.fd(seq(0, 1, .2), fd1.1.5)

##
## step function smoothing
##
sessionInfo()
find("crossprod")

# 2 step basis functions: order 1 = degree 0 = step functions
b1.2 <- create.bspline.basis(nbasis=2, norder=1)
# fit the data without smoothing
fd1.2 <- Data2fd(1:2, basisobj=b1.2)
# plot the result: A step function: 1 to 0.5, then 2
```
op <- par(mfrow=c(2,1))
plot(b1.2, main='bases')
plot(f1.2, main='fit')
par(op)

##
Simple oversmoothing
##
3 step basis functions: order 1 = degree 0 = step functions
b1.3 <- create.bspline.basis(nbasis=3, norder=1)
smooth the data with smoothing
fd1.3.5 <- Data2fd(y12, basisobj=b1.3, lambda=0.5)
plot the fit along with the points
plot(0:1, c(0, 2), type='n')
points(0:1, y12)
lines(fd1.3.5)
Fit = penalized least squares with penalty =
= lambda * integral(0:1 of basis^2),
which shrinks the points towards 0.
X1.3 = matrix(c(1,0, 0,0, 0,1), 2)
XTX = crossprod(X1.3) = diag(c(1, 0, 1))
penmat = diag(3)/3
= 3x3 matrix of integral(over arg=0:1 of basis[i]*basis[j])
Xt.y = crossprod(X1.3, y12) = c(1, 0, 2)
XTX + lambda*penmat = diag(c(7, 1, 7)/6
so coef(fd1.3.5) = solve(XTX + lambda*penmat, Xt.y)
= c(6/7, 0, 12/7)

##
linear spline fit
##
3 bases, order 2 = degree 1
b2.3 <- create.bspline.basis(norder=2, breaks=c(0, .5, 1))
interpolate the values 0, 2, 1
fd2.3 <- Data2fd(c(0,2,1), basisobj=b2.3, lambda=0)
display the coefficients
round(fd2.3$coefs, 4)
plot the results
op <- par(mfrow=c(2,1))
plot(b2.3, main='bases')
plot(fd2.3, main='fit')
par(op)
apply some smoothing
fd2.3. <- Data2fd(c(0,2,1), basisobj=b2.3, lambda=1)
op <- par(mfrow=c(2,1))
plot(b2.3, main='bases')
plot(fd2.3., main='fit', ylim=c(0,2))
par(op)

##
quadratic spline fit
##
4 bases, order 3 = degree 2 = continuous, bounded, locally quadratic
b3.4 <- create.bspline.basis(norder=3, breaks=c(0, .5, 1))
fit values c(0,4,2,3) without interpolation
fd3.4 <- Data2fd(c(0,4,2,3), basisobj=b3.4, lambda=0)
round(fd3.4$coefs, 4)
op <- par(mfrow=c(2,1))
plot(fd3.4)
plot(points(c(0,1/3,2/3,1), c(0,4,2,3)))
par(op)
try smoothing
fd3.4. <- Data2fd(c(0,4,2,3), basisobj=b3.4, lambda=1)
round(fd3.4.$coef, 4)
plot(fd3.4.) points(seq(0,1,len=4), c(0,4,2,3))
par(op)

###
Two simple Fourier examples
###
gaitbasis3 <- create.fourier.basis(nbasis=5)
gaitfd3 <- Data2fd(gait, basisobj=gaitbasis3)
points(gait, seq(0,1,len=20), gaitfd3)
set up the fourier basis
daybasis <- create.fourier.basis(c(0, 365), nbasis=65)
Make temperature fd object
Temperature data are in 12 by 365 matrix tempav
See analyses of weather data.
tempfd <- Data2fd(CanadianWeather$dailyAv[,,"Temperature.C"],
day.5, daybasis)
plot the temperature curves
par(mfrow=c(1,1))
plot(tempfd)

###
argvals of class Date and POSIXct
###
Date
ingv1 <- as.Date('1775-09-04')
ingv2 <- as.Date('1812-07-12')
earlyUS.Canada <- c(inv1, inv2)
BspInvasion <- create.bspline.basis(earlyUS.Canada)
earlyYears <- seq(earlyUS.Canada, length.out=7)
earlyQuad <- (as.numeric(earlyYears-inv1)/365.24)^2
fitQuad <- Data2fd(earlyYears, earlyQuad, BspInvasion)
POSIXct
AmRev.ct <- as.POSIXct1970(c('1776-07-04', '1789-04-30'))
BspRev.ct <- create.bspline.basis(AmRev.ct)
AmRevYrs.ct <- seq(AmRev.ct[1], AmRev.ct[2], length.out=14)
(AmRevLin.ct <- as.numeric(AmRevYrs.ct-AmRev.ct[1]))
Description

Numeric and character vectors to simplify functional data computations and plotting involving dates.

Format

- dayOfYear a numeric vector = 1:365 with names 'jan01' to 'dec31'.
- dayOfYearShifted a numeric vector = c(182:365, 1:181) with names 'jul01' to 'jun30'.
- day.5 a numeric vector = dayOfYear-0.5 = 0.5, 1.5, ..., 364.5
- daysPerMonth a numeric vector of the days in each month (ignoring leap years) with names = month.abb
- monthEnd a numeric vector of c(182:365, 1:181) with names = month.abb
- monthEnd.5 a numeric vector of the last day of each month with names = month.abb = c(Jan=30.5, Feb=58.5, ..., Dec=364.5)
- monthBegin.5 a numeric vector of the middle of the first day of each month with names = month.abb = c(Jan=0.5, Feb=31.5, ..., Dec=334.5)
- monthMid a numeric vector of the middle of the month = (monthBegin.5 + monthEnd.5)/2
- weeks a numeric vector of length 53 marking 52 periods of approximately 7 days each throughout the year = c(0, 365/52, ..., 365)

Details

Miscellaneous vectors often used in 'fda' scripts.

Source

See Also

axisIntervals month.abb
Examples

daybasis65 <- create.fourier.basis(c(0, 365), 65)
daytempfd <- with(CanadianWeather, smooth.basisPar(day.5,
 dailyAv[,]"Temperature.C"], daybasis65)$fd)
plot(daytempfd, axes=FALSE)
axisIntervals(1)
axisIntervals by default uses
monthBegin.5, monthEnd.5, monthMid, and month.abb
axis(2)

density.fd Compute a Probability Density Function

Description

Like the regular S-PLUS function density, this function computes a probability density function
for a sample of values of a random variable. However, in this case the density function is defined
by a functional parameter object WfdParobj along with a normalizing constant c.

The density function p(x) has the form p(x) = C \exp(W(x)) where function SW(x)S is defined
by the functional data object WfdParobj.

Usage

S3 method for class 'fd'
density(x, WfdParobj, conv=0.0001, iterlim=20,
 active=1:nbasis, dbglev=1, returnMatrix=FALSE, ...)

Arguments

x a set observations, which may be one of two forms:
 1. a vector of observatons x_i
 2. a two-column matrix, with the observations x_i in the first column, and
 frequencies f_i in the second.
The first option corresponds to all $f_i = 1$.

WfdParobj a functional parameter object specifying the initial value, basis object, roughness
penalty and smoothing parameter defining function SW(t).$

conv a positive constant defining the convergence criterion.

iterlim the maximum number of iterations allowed.

active a logical vector of length equal to the number of coefficients defining Wfdobj. If an
entry is TRUE, the corresponding coefficient is estimated, and if FALSE, it
is held at the value defining the argument Wfdobj. Normally the first coefficient
is set to 0 and not estimated, since it is assumed that $W(0) = 0$.

dbglev either 0, 1, or 2. This controls the amount information printed out on each iter-
ation, with 0 implying no output, 1 intermediate output level, and 2 full output.
If levels 1 and 2 are used, it is helpful to turn off the output buffering option in
S-PLUS.
returnMatrix logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

... Other arguments to match the generic function 'density'

Details

The goal of the function is provide a smooth density function estimate that approaches some target density by an amount that is controlled by the linear differential operator Lfdobj and the penalty parameter. For example, if the second derivative of $W(t)$ is penalized heavily, this will force the function to approach a straight line, which in turn will force the density function itself to be nearly normal or Gaussian. Similarly, to each textbook density function there corresponds a $W(t)$, and to each of these in turn there corresponds a linear differential operator that will, when apply to $W(t)$, produce zero as a result. To plot the density function or to evaluate it, evaluate Wfdobj, exponentiate the resulting vector, and then divide by the normalizing constant C.

Value

a named list of length 4 containing:

- Wfdobj a functional data object defining function $W(x)$ that that optimizes the fit to the data of the monotone function that it defines.
- C the normalizing constant.
- Flist a named list containing three results for the final converged solution: (1) f: the optimal function value being minimized, (2) grad: the gradient vector at the optimal solution, and (3) norm: the norm of the gradient vector at the optimal solution.
- iternum the number of iterations.
- iterhist a iternum+1 by 5 matrix containing the iteration history.

See Also

intensity.fd

Examples

```r
# set up range for density
rangeval <- c(-3,3)
# set up some standard normal data
x <- rnorm(50)
# make sure values within the range
x[x < -3] <- -2.99
x[x > 3] <- 2.99
# set up basis for W(x)
basisobj <- create.bspine.basis(rangeval, 11)
# set up initial value for Wfdobj
Wfd0 <- fd(matrix(0,11,1), basisobj)
WfdParobj <- fdPar(Wfd0)
# estimate density
```
deriv.fd

Compute a Derivative of a Functional Data Object

densitylist <- density.fd(x, WfdParobj)
plot density
xval <- seq(-3,3,2)
wval <- eval.fd(xval, densitylist$Wfdobj)
pval <- exp(wval)/densitylist$C
plot(xval, pval, type="l", ylim=c(0,0.4))
points(x,rep(0,50))

Description

A derivative of a functional data object, or the result of applying a linear differential operator to a functional data object, is then converted to a functional data object. This is intended for situations where a derivative is to be manipulated as a functional data object rather than simply evaluated.

Usage

S3 method for class 'fd'
deriv(expr, Lfdobj=int2Lfd(1), returnMatrix=FALSE, ...)

Arguments

expr a functional data object. It is assumed that the basis for representing the object can support the order of derivative to be computed. For B-spline bases, this means that the order of the spline must be at least one larger than the order of the derivative to be computed.

Lfdobj either a positive integer or a linear differential operator object.

returnMatrix logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

... Other arguments to match generic for 'deriv'

Details

Typically, a derivative has more high frequency variation or detail than the function itself. The basis defining the function is used, and therefore this must have enough basis functions to represent the variation in the derivative satisfactorily.

Value

a functional data object for the derivative

See Also

ggbasismatrix, eval.basis deriv
Examples

```r
# Estimate the acceleration functions for growth curves
# See the analyses of the growth data.
# Set up the ages of height measurements for Berkeley data
age <- c(seq(1, 2, 0.25), seq(3, 8, 1), seq(8.5, 18, 0.5))
# Range of observations
rng <- c(1, 18)
# Set up a B-spline basis of order 6 with knots at ages
knots <- age
norder <- 6
nbasis <- length(knots) + norder - 2
hgtbasis <- create.bspline.basis(rng, nbasis, norder, knots)
# Set up a functional parameter object for estimating
# growth curves. The 4th derivative is penalized to
# ensure a smooth 2nd derivative or acceleration.
Lfdobj <- 4
lambda <- 10^(-0.5)  # This value known in advance.
growfdPar <- fdPar(hgtbasis, Lfdobj, lambda)
# Smooth the data. The data for the boys and girls
# are in matrices hgtm and hgtf, respectively.
hgtmfd <- smooth.basis(age, growth$hgtm, growfdPar)$fd
hgtffd <- smooth.basis(age, growth$hgtf, growfdPar)$fd
# Compute the acceleration functions
accmfd <- deriv.fd(hgtmfd, 2)
accffd <- deriv.fd(hgtffd, 2)
# Plot the two sets of curves
par(mfrow=c(2,1))
plot(accmfd)
plot(accffd)
```

df.residual.fRegress Degress of Freedom for Residuals from a Functional Regression

Description

Effective degrees of freedom for residuals, being the trace of the idempotent hat matrix transforming observations into residuals from the fit.

Usage

```r
## S3 method for class 'fRegress'
df.residual(object, ...)
```

Arguments

- object: Object of class inheriting from fRegress
- ...: additional arguments for other methods
Details
1. Determine $N = \text{number of observations}$
2. \text{df.model} <- object\$df
3. \text{df.residual} <- (N - df.model)
4. Add attributes

Value
The numeric value of the residual degrees-of-freedom extracted from \text{object} with the following attributes:

- \text{nobs} \quad \text{number of observations}
- \text{df.model} \quad \text{effective degrees of freedom for the model, being the trace of the idempotent linear projection operator transforming the observations into their predictions per the model. This includes the intercept, so the 'degrees of freedom for the model' for many standard purposes that compare with a model with an estimated mean will be 1 less than this number.}

Author(s)
Spencer Graves

References

See Also
\texttt{fRegress df.residual}

Examples
```r
## example from help('lm')
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 5.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels=c("Ctl", "Trt"))
weight <- c(ctl, trt)
fRegress.D9 <- fRegress(weight ~ group)
dfr.D9 <- df.residual(fRegress.D9)

# Check the answer manually
lm.D9 <- lm(weight ~ group)
dfr.D91 <- df.residual(lm.D9)
attr(dfr.D91, 'nobs') <- length(predict(lm.D9))
attr(dfr.D91, 'df.model') <- 2
```
all.equal(df2.D9, dfr.D9)

##
functional response with (concurrent) functional explanatory variable
##
*** NOT IMPLEMENTED YET FOR FUNCTIONAL RESPONSE
BUT WILL EVENTUALLY USE THE FOLLOWING EXAMPLE:

(gaittime <- as.numeric(dimnames(gait)[[1]])*20)
gaitrange <- c(0,20)
gaitbasis <- create.fourier.basis(gaitrange, nbasis=21)
harmacellfd <- vec2Lf(b(c(0, (2*pi/20)^2, 0), rangeval=gaitrange)
gaitfd <- smooth.basisPar(gaittime, gait,
 gaitbasis, Lfdobj=harmacellfd, lambda=1e-2)$fd
hipfd <- gaitfd[,1]
kneefd <- gaitfd[,2]

knee.hip.f <- fRegress(kneefd - hipfd)

#knee.hip.dfr <- df.residual(knee.hip.f)

Check the answer
#kh.dfr <- knee.hip.f$df ???

df2lambda

Convert Degrees of Freedom to a Smoothing Parameter Value

Description

The degree of roughness of an estimated function is controlled by a smoothing parameter λ that directly multiplies the penalty. However, it can be difficult to interpret or choose this value, and it is often easier to determine the roughness by choosing a value that is equivalent of the degrees of freedom used by the smoothing procedure. This function converts a degrees of freedom value into a multiplier λ.

Usage

```r
df2lambda(argvals, basisobj, wtvec=rep(1, n), Lfdobj=0,
  df=nbasis)
```

Arguments

- `argvals` a vector containing argument values associated with the values to be smoothed.
- `basisobj` a basis function object.
df2lambda

wtvec a vector of weights for the data to be smoothed.
Lfdojb either a nonnegative integer or a linear differential operator object.
df the degrees of freedom to be converted.

Details

The conversion requires a one-dimensional optimization and may be therefore computationally intensive.

Value

a positive smoothing parameter value λ

See Also

lambda2df, lambda2gcv

Examples

Smooth growth curves using a specified value of
degrees of freedom.
Set up the ages of height measurements for Berkeley data
age < - c(seq(1, 2, 0.25), seq(3, 8, 1), seq(8.5, 18, 0.5))
Range of observations
rng < - c(1,18)
Set up a B-spline basis of order 6 with knots at ages
knots < - age
norder < - 6
nbasis < - length(knots) + norder - 2
hgtbasis < - create.bspline.basis(rng, nbasis, norder, knots)
Find the smoothing parameter equivalent to 12
degrees of freedom
lambda < - df2lambda(age, hgtbasis, df=12)
Set up a functional parameter object for estimating
growth curves. The 4th derivative is penalized to
ensure a smooth 2nd derivative or acceleration.
Lfdojb < - 4
growfdPar < - fdPar(hgtbasis, Lfdojb, lambda)
Smooth the data. The data for the girls are in matrix
hgtf.
htffd < - smooth.basis(age, growth$hgtf, growfdPar$fd
Plot the curves
plot(htffd)
Description

If you want only subfolders and no files, use dirs. With recursive = FALSE, dir returns both folders and files. With recursive = TRUE, it returns only files.

Usage

dirs(path='.', pattern=NULL, exclude=NULL, all.files=FALSE, full.names=FALSE, recursive=FALSE, ignore.case=FALSE)

Arguments

path, all.files, full.names, recursive, ignore.case

as for dir

pattern, exclude

optional regular expressions of filenames to include or exclude, respectively.

Details

1. mainDir <- dir(...) without recurse
2. Use file.info to restrict mainDir to only directories.
3. If !recursive, return the restricted mainDir. Else, if length(mainDir) > 0, create dirList to hold the results of the recursion and call dirs for each component of mainDir. Then unlist and return the result.

Value

A character vector of the desired subdirectories.

Author(s)

Spencer Graves

See Also

dir, file.info package.dir

Examples

path2fdaM <- system.file('Matlab/fdaM', package='fda')
dirs(path2fdaM)
dirs(path2fdaM, full.names=TRUE)
dirs(path2fdaM, recursive=TRUE)
dirs(path2fdaM, exclude='^@|'private$', recursive=TRUE)
Eigen

Directories to add to Matlab path
for R.matlab and fda
R.matExt <- system.file('externals', package='R.matlab')
fdaM <- dirs(path2fdaM, exclude='@private', full.names=TRUE,
recursive=TRUE)
add2MatlabPath <- c(R.matExt, path2fdaM, fdaM)

Description

Compute eigenvalues and vectors, assigning names to the eigenvalues and dimnames to the eigenvectors.

Usage

```r
eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE,
       valuenames )
```

Arguments

- `x`: a square matrix whose spectral decomposition is to be computed.
- `symmetric`: logical: If TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and only its lower triangle (diagonal included) is used. If `symmetric` is not specified, the matrix is inspected for symmetry.
- `only.values`: if 'TRUE', only the eigenvalues are computed and returned, otherwise both eigenvalues and eigenvectors are returned.
- `EISPACK`: logical. Should EISPACK be used (for compatibility with R < 1.7.0)?
- `valuenames`: character vector of length nrow(x) or a character string that can be extended to that length by appending 1:nrow(x).

The default depends on `symmetric` and whether `rownames == colnames`: If `rownames == colnames` and `symmetric` = TRUE (either specified or determined by inspection), the default is "paste('ev', 1:nrow(x), sep='')". Otherwise, the default is `colnames(x)` unless this is NULL.

Details

1. Check 'symmetric'
2. `ev <- eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE);` see `eigen` for more details.
3. `rNames = rownames(x); if this is NULL, rNames = if(symmetric) paste('x', 1:nrow(x), sep='')
else paste('xcol', 1:nrow(x)).`
4. Parse 'valuenames', assign to names(ev[['values']]).
5. dimnames(ev["vectors"]) <- list(rNames, valuenames)

NOTE: This naming convention is fairly obvious if ’x’ is symmetric. Otherwise, dimensional analysis suggests problems with almost any naming convention. To see this, consider the following simple example:

\[
X \leftarrow \text{matrix}(1:4, 2, \text{dimnames = list}(\text{LETTERS}[1:2], \text{letters}[3:4]))
\]

\[
\begin{array}{cc}
 c & d \\
 A & 1 & 3 \\
 B & 2 & 4 \\
\end{array}
\]

\[
X.inv \leftarrow \text{solve}(X)
\]

\[
\begin{array}{cc}
 A & B \\
 c & -2 & 1.5 \\
 d & 1 & -0.5 \\
\end{array}
\]

One way of interpreting this is to assume that colnames are really reciprocals of the units. Thus, in this example, X[1,1] is in units of ‘A/c’ and X.inv[1,1] is in units of ‘c/A’. This would make any matrix with the same row and column names potentially dimensionless. Since eigenvalues are essentially the diagonal of a diagonal matrix, this would mean that eigenvalues are dimensionless, and their names are merely placeholders.

Value

a list with components values and (if only.values = FALSE) vectors, as described in eigen.

Author(s)

Spencer Graves

See Also
eigen, svd qr chol

Examples

\[
X \leftarrow \text{matrix}(1:4, 2, \text{dimnames=list}(\text{LETTERS}[1:2], \text{letters}[3:4]))
\]

\[
\text{eigen}(X)
\]

\[
\text{Eigen}(X)
\]

\[
\text{Eigen}(X, \text{valuenames='eigval'})
\]

\[
Y \leftarrow \text{matrix}(1:4, 2, \text{dimnames=list}(\text{letters}[5:6], \text{letters}[5:6]))
\]

\[
\text{Eigen}(Y)
\]
Description

Performs a stability analysis of the result of `pda.fd`, returning the real and imaginary parts of the eigenfunctions associated with the linear differential operator.

Usage

```r
eigen.pda(pdaList, plotresult = TRUE, npts = 501, ...)
```

Arguments

- **pdaList**: a list object returned by `pda.fd`.
- **plotresult**: should the result be plotted? Default is `TRUE`.
- **npts**: number of points to use for plotting.
- **...**: other arguments for `plot`.

Details

Conducts an eigen decomposition of the linear differential equation implied by the result of `pda.fd`. Imaginary eigenvalues indicate instantaneous oscillatory behavior. Positive real eigenvalues indicate exponential increase, negative real eigenvalues correspond to exponential decay. If the principle differential analysis also included the estimation of a forcing function, the limiting stable points are also tracked.

Value

Returns a list with elements

- **argvals**: The evaluation points of the coefficient functions.
- **eigvals**: The corresponding eigenvalues at each time.
- **limvals**: The stable points of the system at each time.

See Also

- `pda.fd`
- `plot.pda.fd`
- `pda.overlay`
Examples

A pda analysis of the handwriting data

reduce the size to reduce the compute time for the example
ni <- 281
indx <- seq(1, 1401, length=ni)
fdaarray = handwrite[indx,]
fdatime <- seq(0, 2.3, len=ni)

basis for coordinates
fdarange <- c(0, 2.3)
basis = seq(0, 2.3, length.out=116)
order = 6
fdabasis = create.bspline.basis(fdarange, order=order, breaks=basis)

parameter object for coordinates
fdaPar = fdPar(fdabasis, int2Lfd(4), 1e-8)

coordinate functions and a list tontaining them
Xfd = smooth.basis(fdatime, fdaarray[,1], fdaPar$f)
Yfd = smooth.basis(fdatime, fdaarray[,2], fdaPar$f)
xfdlist = list(Xfd, Yfd)

basis and parameter object for weight functions
fdabasis2 = create.bspline.basis(fdarange, order=order, nbasis=31)
fdadf2 = fd(matrix(0, 31, 2), fdabasis2)
pdaPar = fdPar(fdadf2, 1, 1e-8)
pdaParlist = list(pdaPar, pdaPar)
bwtlist = list(list(pdaParlist, pdaParlist), list(pdaParlist, pdaParlist))

do the second order pda
pdaList = pda.fd(xfdlist, bwtlist)

plot the results

eigres = eigen.pda(pdaList)

table 1: eval.basis

<table>
<thead>
<tr>
<th>eval.basis</th>
<th>Values of Basis Functions or their Derivatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>ni</td>
<td>281</td>
</tr>
<tr>
<td>indx</td>
<td>seq(1, 1401, length=ni)</td>
</tr>
<tr>
<td>fdaarray</td>
<td>handwrite[indx,]</td>
</tr>
<tr>
<td>fdatime</td>
<td>seq(0, 2.3, len=ni)</td>
</tr>
<tr>
<td>fdarange</td>
<td>c(0, 2.3)</td>
</tr>
<tr>
<td>breaks</td>
<td>seq(0, 2.3, length.out=116)</td>
</tr>
<tr>
<td>order</td>
<td>6</td>
</tr>
<tr>
<td>fdabasis</td>
<td>create.bspline.basis(fdarange, order=order, breaks=basis)</td>
</tr>
<tr>
<td>fdaPar</td>
<td>fdPar(fdabasis, int2Lfd(4), 1e-8)</td>
</tr>
<tr>
<td>Xfd</td>
<td>smooth.basis(fdatime, fdaarray[,1], fdaPar$f)</td>
</tr>
<tr>
<td>Yfd</td>
<td>smooth.basis(fdatime, fdaarray[,2], fdaPar$f)</td>
</tr>
<tr>
<td>xfdlist</td>
<td>list(Xfd, Yfd)</td>
</tr>
<tr>
<td>fdabasis2</td>
<td>create.bspline.basis(fdarange, order=order, nbasis=31)</td>
</tr>
<tr>
<td>fdadf2</td>
<td>fd(matrix(0, 31, 2), fdabasis2)</td>
</tr>
<tr>
<td>pdaPar</td>
<td>fdPar(fdadf2, 1, 1e-8)</td>
</tr>
<tr>
<td>pdaParlist</td>
<td>list(pdaPar, pdaPar)</td>
</tr>
<tr>
<td>bwtlist</td>
<td>list(list(pdaParlist, pdaParlist), list(pdaParlist, pdaParlist))</td>
</tr>
<tr>
<td>pdaList</td>
<td>pda.fd(xfdlist, bwtlist)</td>
</tr>
<tr>
<td>eigres</td>
<td>eigen.pda(pdaList)</td>
</tr>
</tbody>
</table>

Description

A set of basis functions are evaluated at a vector of argument values. If a linear differential object is provided, the values are the result of applying the the operator to each basis function.

Usage

eval.basis(evalarg, basisobj, lfdobj=0, returnMatrix=FALSE)

predict(object, newdata=NULL, lfdobj=0,
 returnMatrix=FALSE, ...)

Arguments

evalarg, newdata
 a vector of argument values at which the basis functiona is to be evaluated.
basisobj
 a basis object defining basis functions whose values are to be computed.
lfdobj
 either a nonnegative integer or a linear differential. operator object.
object
 an object of class basisfd
...
 optional arguments for predict, not currently used
returnMatrix
 logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Details

If a linear differential operator object is supplied, the basis must be such that the highest order derivative can be computed. If a B-spline basis is used, for example, its order must be one larger than the highest order of derivative required.

Value

a matrix of basis function values with rows corresponding to argument values and columns to basis functions.

predict.basisfd is a convenience wrapper for eval.basis.

Source

See Also

gtbasismatrix, eval.fd, plot.basisfd
Examples

```r
# The simplest basis currently available:
# a single step function
bspl1.1 <- create.bspline.basis(norder=1, breaks=0:1)
eval.bspl1.1 <- eval.basis(seq(0, 1, .2), bspl1.1)

# check
eval.bspl1.1. <- matrix(rep(1, 6), 6,
  dimnames=list(NULL, 'bspl'))

all.equal(eval.bspl1.1, eval.bspl1.1.)

# The second simplest basis:
# 2 step functions, [0, .5], [.5, 1]
bspl1.2 <- create.bspline.basis(norder=1, breaks=c(0,.5, 1))
eval.bspl1.2 <- eval.basis(seq(0, 1, .2), bspl1.2)

# Second order B-splines (degree 1: linear splines)
bspl2.3 <- create.bspline.basis(norder=2, breaks=c(0,.5, 1))
eval.bspl2.3 <- eval.basis(seq(0, 1, .1), bspl2.3)

# 3 bases: order 2 = degree 1 = linear
# (1) line from (0,1) down to (0.5, 0), 0 after
# (2) line from (0,0) up to (0.5, 1), then down to (1,0)
# (3) 0 to (0.5, 0) then up to (1,1).

# The false Fourier series with 1 basis function
falseFourierBasis <- create.fourier.basis(nbasis=1)
eval.FFB <- eval.basis(seq(0, 1, .2), falseFourierBasis)

# Simplest real Fourier basis with 3 basis functions
fourier3 <- create.fourier.basis()
eval.fourier3 <- eval.basis(seq(0, 1, .2), fourier3)

# 3 basis functions on [0, 365]
fourier3.365 <- create.fourier.basis(c(0, 365))
eval.F3.365 <- eval.basis(day.5, fourier3.365)
matplot(eval.F3.365, type="l")

# The next simplest Fourier basis (5 basis functions)
fourier5 <- create.fourier.basis(nbasis=5)
eval.F5 <- eval.basis(seq(0, 1, .1), fourier5)
matplot(eval.F5, type="l")

# A more complicated example
```
eval.bifd

```
dayrng <- c(0, 365)
nbasis <- 51
norder <- 6

weatherBasis <- create.fourier.basis(dayrng, nbasis)
basisMat <- eval.basis(day.5, weatherBasis)

matplot(basisMat[, 1:5], type="l")

##
## 3. predict.basisfd
##
basisMat. <- predict(weatherBasis, day.5)

all.equal(basisMat, basisMat.)

##
## 4. Date and POSIXct
##
# Date
July4.1776 <- as.Date("1776-07-04")
Apr30.1789 <- as.Date("1789-04-30")
AmRev <- c(July4.1776, Apr30.1789)
BspRevolution <- create.bspline.basis(AmRev)
AmRevYears <- seq(July4.1776, Apr30.1789, length.out=14)
AmRevBases <- predict(BspRevolution, AmRevYears)
matplot(AmRevYears, AmRevBases, type='b')
# Image is correct, but
# matplot does not recognize the Date class of x

# POSIXct
AmRev.ct <- as.POSIXct1970(c("1776-07-04", "1789-04-30"))
BspRev.ct <- create.bspline.basis(AmRev.ct)
AmRevYrs.ct <- seq(AmRev.ct[1], AmRev.ct[2], length.out=14)
AmRevBas.ct <- predict(BspRev.ct, AmRevYrs.ct)
matplot(AmRevYrs.ct, AmRevBas.ct, type='b')
# Image is correct, but
# matplot does not recognize the POSIXct class of x
```

eval.bifd

Values a Two-argument Functional Data Object

Description

A vector of argument values for the first argument s of the functional data object to be evaluated.
Usage

eval.bifd(sevalarg, tevalarg, bifd, sLfdobj=0, tLfdobj=0,
 returnMatrix=FALSE)

Arguments

sevalarg a vector of argument values for the first argument s of the functional data object to be evaluated.
tevalarg a vector of argument values for the second argument t of the functional data object to be evaluated.
bifd a two-argument functional data object.
sLfdobj either a nonnegative integer or a linear differential operator object. If present, the derivative or the value of applying the operator to the object as a function of the first argument s is evaluated rather than the functions themselves.
tLfdobj either a nonnegative integer or a linear differential operator object. If present, the derivative or the value of applying the operator to the object as a function of the second argument t is evaluated rather than the functions themselves.
returnMatrix logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Value

an array of 2, 3, or 4 dimensions containing the function values. The first dimension corresponds to the argument values in sevalarg, the second to argument values in tevalarg, the third if present to replications, and the fourth if present to functions.

Examples

every-other-day basis to save test time
daybasis <- create.fourier.basis(c(0,365), 183)
harmLcoef <- c(0,(2*pi/365)^2,0)
harmLfd <- vec2Lfd(harmLcoef, c(0,365))
templambda <- 1.0
tempfdPar <- fdPar(daybasis, harmLfd, lambda=1)
tempfd <- smooth.basis(day.5,
 CanadianWeather$dailyAv[,"Temperature.C"], tempfdPar)$fd
define the variance-covariance bivariate fd object
tempvarbifd <- var.fd(tempfd)
evaluate the variance-covariance surface and plot
weektime <- seq(0,365,len=53)
tempvarmat <- eval.bifd(weektime,weektime,tempvarbifd)
make a perspective plot of the variance function
persp(tempvarmat)
Description

Evaluate a functional data object at specified argument values, or evaluate a derivative or the result of applying a linear differential operator to the functional object.

Usage

```r
eval.fd(evalarg, fdobj, Lfdobj=0, returnMatrix=FALSE)
## S3 method for class 'fd'
predict(object, newdata=NULL, Lfdobj=0, returnMatrix=FALSE, ...)
## S3 method for class 'fdPar'
predict(object, newdata=NULL, Lfdobj=0,
    returnMatrix=FALSE, ...)
## S3 method for class 'fdSmooth'
predict(object, newdata=NULL, Lfdobj=0,
    returnMatrix=FALSE, ...)
## S3 method for class 'fdSmooth'
fitted(object, returnMatrix=FALSE, ...)
## S3 method for class 'fdSmooth'
residuals(object, returnMatrix=FALSE, ...)
```

Arguments

- `evalarg`: a vector or matrix of argument values at which the functional data object is to be evaluated. If a matrix with more than one column, the number of columns must match `ncol(fdobj[['coefs']])`.
- `fdobj`: a functional data object to be evaluated.
- `Lfdobj`: either a nonnegative integer or a linear differential operator object. If present, the derivative or the value of applying the operator is evaluated rather than the functions themselves.
- `object`: an object of class `fd`
- `returnMatrix`: logical: Should a 2-dimensional array to be returned using a special class from the `Matrix` package if appropriate?
- `...`: optional arguments for `predict`, not currently used

Details

eval.fd evaluates Lfdobj of fdobj at evalarg.

`predict.fd` is a convenience wrapper for `eval.fd`. If `newdata` is NULL and `fdobj[['basis']][['type']]` is `bspline`, `newdata = unique(knots(fdobj, interior=FALSE))`; otherwise, `newdata = fdobj[['basis']][['rangeval']]`. `predict.fdSmooth`, `fitted.fdSmooth` and `residuals.fdSmooth` are other wrappers for `eval.fd`.
Value

an array of 2 or 3 dimensions containing the function values. The first dimension corresponds to the argument values in evalarg, the second to replications, and the third if present to functions.

Author(s)

Soren Hosgaard wrote an initial version of predict.fdSmooth, fitted.fdSmooth, and residuals.fdSmooth.

See Also

getbasismatrix, eval.bifd, eval.penalty, eval.monfd, eval.posfd

Examples

```r
## eval.fd

# set up the fourier basis
daybasis <- create.fourier.basis(c(0, 365), nbasis=65)
# Make temperature fd object
# Temperature data are in 12 by 365 matrix tempav
# See analyses of weather data.
# Set up sampling points at mid days
# Convert the data to a functional data object
tempfd <- smooth.basis(day.5, CanadianWeather$dailyAv[, "Temperature.C"],
                       daybasis)$fd
# set up the harmonic acceleration operator
Lbasis <- create.constant.basis(c(0, 365))
Lcoef <- matrix(c(0, (2*pi/365)^2, 0, 1, 3)
bfdobj <- fd(Lcoef, Lbasis)
bwtlist <- fd2list(bfdobj)
harmaccelfd <- Lfd(3, bwtlist)
# evaluate the value of the harmonic acceleration operator at the sampling points
Ltempmat <- eval.fd(day.5, tempfd, harmaccelfd)

# Confirm that it still works with
evalarg = a matrix with only one column
# when fdobj[['coefs']] is a matrix with multiple columns
Ltempmat. <- eval.fd(matrix(day.5, ncol=1), tempfd, harmaccelfd)
# confirm that the two answers are the same
all.equal(Ltempmat, Ltempmat.)

# Plot the values of this operator
matplot(day.5, Ltempmat, type="l")
```

predict.fd
pred3. <- matrix(c(0, .5, 0), 3)
dimnames(pred3.) <- list(NULL, 'reps 1')
all.equal(pred3, pred3.)

pred.2 <- predict(fd.bspl3, c(.2, .8))
pred.2. <- matrix(.176, 2, 1)
dimnames(pred.2.) <- list(NULL, 'reps 1')
all.equal(pred.2, pred.2.)

lipSm9 <- smooth.basisPar(liptime, lip, lambda=1e-9)$fd
plot(lipSm9)

lipSm9 <- smooth.basisPar(liptime, lip, lambda=1e-9)$fd
plot(lipSm9)

bsprevolution <- create.bspline.basis(AmRev)
AmRevYears <- seq(July4.1776, Apr30.1789, length.out=14)
(AmRevLinear <- as.numeric(AmRevYears-July4.1776))
fitLin <- smooth.basis(AmRevYears, AmRevLinear, BspRevolution)
AmPred <- predict(fitLin, AmRevYears)

AmRev.ct <- as.POSIXct1970(c('1776-07-04', '1789-04-30'))
BspRev.ct <- create.bspline.basis(AmRev.ct)
AmRevYrs.ct <- seq(AmRev.ct[1], AmRev.ct[2], length.out=14)
(AmRevLin.ct <- as.numeric(AmRevYrs.ct-AmRev.ct[2]))
fitLin.ct <- smooth.basis(AmRevYrs.ct, AmRevLin.ct, BspRev.ct)
AmPred.ct <- predict(fitLin.ct, AmRevYrs.ct)
Values of a Monotone Functional Data Object

Description

Evaluate a monotone functional data object at specified argument values, or evaluate a derivative of the functional object.

Usage

```r
eval.monfd(evalarg, Wfdobj, Lfdobj=int2Lfd(0), returnMatrix=FALSE)
## S3 method for class 'monfd'
predict(object, newdata=NULL, Lfdobj=0, returnMatrix=FALSE, ...)
## S3 method for class 'monfd'
fitted(object, ...)
## S3 method for class 'monfd'
residuals(object, ...)
```

Arguments

- `evalarg`: a vector of argument values at which the functional data object is to be evaluated.
- `Wfdobj`: an object of class `fd` that defines the monotone function to be evaluated. Only univariate functions are permitted.
- `Lfdobj`: a nonnegative integer specifying a derivative to be evaluated. At this time of writing, permissible derivative values are 0, 1, 2, or 3. A linear differential operator is not allowed.
- `object`: an object of class `monfd` that defines the monotone function to be evaluated. Only univariate functions are permitted.
- `returnMatrix`: logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.
- `...`: optional arguments required by `predict`; not currently used.

Details

A monotone function data object $h(t)$ is defined by $h(t) = [D^{-1} \exp Wfdobj](t)$. In this equation, the operator D^{-1} means taking the indefinite integral of the function to which it applies. Note that this equation implies that the monotone function has a value of zero at the lower limit of the arguments. To actually fit monotone data, it will usually be necessary to estimate an intercept and a regression coefficient to be applied to $h(t)$, usually with the least squares regression function `lsfit`. The function `Wfdobj` that defines the monotone function is usually estimated by monotone smoothing function `smooth.monotone`.

`eval.monfd` only computes the standardized monotone form. `predict.monfd` computes the scaled version using `with(object, beta[1] + beta[2]*eval.monfd(...) if Lfdobj = 0 or beta[2]*eval.monfd(...) if Lfdobj > 0.`
eval.monfd

Value

A matrix containing the monotone function values. The first dimension corresponds to the argument values in evalarg and the second to replications.

See Also

eval.fd, smooth.monotone eval.posfd

Examples

```r
# Estimate the acceleration functions for growth curves
# See the analyses of the growth data.
# Set up the ages of height measurements for Berkeley data
age <- c( seq(1, 2, 0.25), seq(3, 8, 1), seq(8.5, 18, 0.5))
# Range of observations
rng <- c(1,18)
# First set up a basis for monotone smooth
# We use b-spline basis functions of order 6
# Knots are positioned at the ages of observation.
norder <- 6
nage <- length(age)
nbasis <- nage + norder - 2
wbasis <- create.bspline.basis(rng, nbasis, norder, age)
# starting values for coefficient
cvec0 <- matrix(0,nbasis,1)
Wfd0 <- fd(cvec0, wbasis)
# set up functional parameter object
Lfdobj <- 3          # penalize curvature of acceleration
lambda <- 10^(-0.5)  # smoothing parameter
growfdPar <- fdPar(Wfd0, Lfdobj, lambda)
# Smooth the data for the first girl
hgt1 <- growth$hgtf[,1]
# set conv = 0.1 and iterlim=1 to reduce the compute time
# required for this test on CRAN.
# We would not do this normally.
result <- smooth.monotone(age, hgt1, growfdPar, conv=0.1, iterlim=1)
# Extract the functional data object and regression
# coefficients
Wfd <- result$Wfdobj
beta <- result$beta
# Evaluate the fitted height curve over a fine mesh
agefine <- seq(1,18, len=60)
# Plot the data and the curve
plot(age, hgt1, type="p")
lines(agefine, hgtfine)
# Evaluate the acceleration curve
accfine <- beta[2]*eval.monfd(agefine, Wfd, 2)
# Plot the acceleration curve
plot(agefine, accfine, type="l")
```
lines(c(1,18),c(0,0),lty=4)

##
using predict.monfd
##
hgtfit. <- fitted(result)
all.equal(hgtfit, hgtfit.)

acccfine. <- predict(result, agefine, Lfdobj=2)
all.equal(acccfine, acccfine.)

growthResid <- resid(result)
all.equal(growthResid, with(result, y-hgtfit.))

eval.penalty

Evaluate a Basis Penalty Matrix

Description

A basis roughness penalty matrix is the matrix containing the possible inner products of pairs of basis functions. These inner products are typically defined in terms of the value of a derivative or of a linear differential operator applied to the basis function. The basis penalty matrix plays an important role in the computation of functions whose roughness is controlled by a roughness penalty.

Usage

```
eval.penalty(basisobj, Lfdobj=int2Lfd(0), rng=rangeval)
```

Arguments

- `basisobj`: a basis object.
- `Lfdobj`: either a nonnegative integer defining an order of a derivative or a linear differential operator.
- `rng`: a vector of length 2 defining a restricted range. Optionally, the inner products can be computed over a range of argument values that lies within the interval covered by the basis function definition.
The inner product can be computed exactly for many types of bases if m is an integer. These include B-spline, fourier, exponential, monomial, polynomial and power bases. In other cases, and for noninteger operators, the inner products are computed by an iterative numerical integration method called Richard extrapolation using the trapezoidal rule.

If the penalty matrix must be evaluated repeatedly, computation can be greatly speeded up by avoiding the use of this function, and instead using quadrature points and weights defined by Simpson’s rule.

Value

a square symmetric matrix whose order is equal to the number of basis functions defined by the basis function object basisobj. If Lfdobj is m or a linear differential operator of order m, the rank of the matrix should be at least approximately equal to its order minus m.

See Also

globbasispenalty, eval.basis.

description

Evaluate a positive functional data object at specified argument values, or evaluate a derivative of the functional object.

Usage

eval.posfd(evalarg, Wfdobj, Lfdobj=int2Lfd(0), returnMatrix=FALSE)
 ## S3 method for class 'posfd'
predict(object, newdata=NULL, Lfdobj=0,
 returnMatrix=FALSE, ...)
 ## S3 method for class 'posfd'
fitted(object, ...)
 ## S3 method for class 'posfd'
residuals(object, ...)

Arguments

evalarg, newdata
 a vector of argument values at which the functional data object is to be evaluated.

Wfdobj
 a functional data object that defines the positive function to be evaluated. Only univariate functions are permitted.

Lfdobj
 a nonnegative integer specifying a derivative to be evaluated. At this time of writing, permissible derivative values are 0, 1 or 2. A linear differential operator is not allowed.
object an object of class posfd that defines the positive function to be evaluated. Only
univariate functions are permitted.

returnMatrix logical: If TRUE, a two-dimensional is returned using a special class from the
Matrix package.

... optional arguments required by predict; not currently used.

Details

A positive function data object $h(t)$ is defined by $h(t)=[\exp Wfd](t)$. The function $Wfdobj$ that
defines the positive function is usually estimated by positive smoothing function smooth.pos

Value

a matrix containing the positive function values. The first dimension corresponds to the argument
values in evalarg and the second to replications.

See Also

eval.fd, eval.monfd

Examples

harmacellfd <- vec2Lfd(c(0, (2*pi/365)^2, 0), c(0, 365))
smallbasis <- create.fourier.basis(c(0, 365), 65)
index <- (1:35)[CanadianWeather$place == "Vancouver"]
VanPrec <- CanadianWeather$dailyAv[, index, "Precipitation.mm"]
lambda <- 1e4
dayfdPar <- fdPar(smallbasis, harmacellfd, lambda)
VanPrecPos <- smooth.pos(day.5, VanPrec, dayfdPar)
compute fitted values using eval.posfd()
VanPrecPosFit1 <- eval posfd(day.5, VanPrecPos$Wfdobj)
compute fitted values using predict()
VanPrecPosFit2 <- predict(VanPrecPos, day.5)
all.equal(VanPrecPosFit1, VanPrecPosFit2)
compute fitted values using fitted()
VanPrecPosFit3 <- fitted(VanPrecPos)
compute residuals
VanPrecRes <- resid(VanPrecPos)
all.equal(VanPrecRes, VanPrecPos$y-VanPrecPosFit3)
evaldiag.bifd

Evaluate the Diagonal of a Bivariate Functional Data Object

Description

Bivariate function data objects are functions of two arguments, $f(s,t)$. It can be useful to evaluate the function for argument values satisfying $s=t$, such as evaluating the univariate variance function given the bivariate function that defines the variance-covariance function or surface. A linear differential operator can be applied to function $f(s,t)$ considered as a univariate function of either object holding the other object fixed.

Usage

```r
evaldiag.bifd(evalarg, bifdobj, slfd=int2Lfd(0), tLfd=int2Lfd(0), returnMatrix=FALSE)
```

Arguments

- `evalarg`: a vector of values of $s = t$.
- `bifdobj`: a bivariate functional data object of the `bifd` class.
- `slfd`: either a nonnegative integer or a linear differential operator object.
- `tLfd`: either a nonnegative integer or a linear differential operator object.
- `returnMatrix`: logical: If TRUE, a two-dimensional is returned using a special class from the `Matrix` package.

Value

a vector or matrix of diagonal function values.

See Also

- `var.fd`, `eval.bifd`

expon

Exponential Basis Function Values

Description

Evaluates a set of exponential basis functions, or a derivative of these functions, at a set of arguments.

Usage

```r
expon(x, ratevec=1, nderiv=0)
```
Arguments

- **x**: a vector of values at which the basis functions are to be evaluated.
- **ratevec**: a vector of rate or time constants defining the exponential functions. That is, if a is the value of an element of this vector, then the corresponding basis function is $\exp(at)$. The number of basis functions is equal to the length of `ratevec`.
- **nderiv**: a nonnegative integer specifying an order of derivative to be computed. The default is 0, or the basis function value.

Details

There are no restrictions on the rate constants.

Value

A matrix of basis function values with rows corresponding to argument values and columns to basis functions.

See Also

- `exponpen`

Description

Exponentiate a functional data object where feasible.

Usage

```r
## S3 method for class 'fd'
e1 ^ e2
exponentiate.fd(e1, e2, tolint=.Machine$double.eps^0.75,
basisobj=e1$basis,
tolfd=sqrt(.Machine$double.eps)*
    sqrt(sum(e1$coefs^2)+.Machine$double.eps)^abs(e2),
    maxbasis=NULL, npoints=NULL)
```

Arguments

- **e1**: object of class 'fd'.
- **e2**: a numeric vector of length 1.
- **basisobj**: reference basis
- **tolint**: if `abs(e2-round(e2))<tolint`, we assume `e2` is an integer. This simplifies the algorithm.
tolfd
the maximum error allowed in the difference between the direct computation eval.fd(e1)^e2 and the computed representation.

maxbasis
The maximum number of basis functions in growing referencebasis to achieve a fit within tolfld. Default = 2*nbasis12+1 where nbasis12 = nbasis of e1^floor(e2).

npoints
The number of points at which to compute eval.fd(e1)^e2 and the computed representation to evaluate the adequacy of the representation. Default = 2*maxbasis-1. For a max Fourier basis, this samples the highest frequency at all its extrema and zeros.

Details
If e1 has a B-spline basis, this uses the B-spline algorithm.
Otherwise it throws an error unless it finds one of the following special cases:

- e2 = 0 Return an fd object with a constant basis that is everywhere 1
- e2 is a positive integer to within tolint Multiply e1 by itself e2 times
- e2 is positive and e1 has a Fourier basis e120 <- e1^floor(e2)
 outBasis <- e120$basis
 rng <- outBasis$rangeval
 Time <- seq(rng[1], rng[2], npoints)
 e1.2 <- predict(e1, Time)^e2
 fd1.2 <- Data2fd(Time, e1.2, outBasis)
 d1.2 <- (e1.2 - predict(fd1.2, Time))
 if(all(abs(d1.2)<tolfd))return(fd1.2)
 Else if(outBasis$nbasis<maxbasis) increase the size of outBasis and try again.
 Else write a warning with the max(abs(d1.2)) and return fd1.2.

Value
A function data object approximating the desired power.

See Also
arithmetic.fd, basisfd, basisfd.product

Examples
##
sin^2
##

basis3 <- create.fourier.basis(nbasis=3)
pplot(basis3)
max = sqrt(2), so
integral of the square of each basis function (from 0 to 1) is 1
integrate(function(x)sin(2*pi*x)^2, 0, 1) # = 0.5
sin(theta)
fdsin <- fd(c(0, sqrt(0.5), 0), basis3)
plot(fdsin)

fdsin2 <- fdsin^2

check
fdsinsin <- fdsin*fdsin
sin^2(pi*theta) = 0.5*(1-cos(2*pi*theta)) basic trig identity
plot(fdsinsin) # good

all.equal(fdsin2, fdsinsin)

sqrt(sin2)
##
plot(fdsin2)
##
fdsin. <- sqrt(fdsin2)
plot(fdsin, main='fdsin and sqrt(fdsin^2)')
lines(fdsin., col='red')
fdsin is positive and negative
fdsin. = sqrt(fdsin^2)
has trouble, because it wants to be smooth
but theoretically has a discontinuous first derivative at 0.5

fdsin.5.2 <- fdsin.^2
resin <- fdsin2-fdsin.5.2
plot(resin)

max(abs(resin$coefs))<0.01

x^2, x = straight line f(x)=x
##
bsp11 <- create.bspline.basis(norder=2)
x <- fd(0:1, bsp11)
plot(x)

x2 <- x^2
plot(x2)

er.x <- x-sqrt(x2)
er.x$coefs
max(er.x$coefs)

max(abs(er.x$coefs))<10*.Machine$double.eps
Description

Computes the matrix defining the roughness penalty for functions expressed in terms of an exponential basis.

Usage

```r
exponpen(basisobj, Lfdobj=int2Lfd(2))
```

Arguments

- `basisobj`: an exponential basis object.
- `Lfdobj`: either a nonnegative integer or a linear differential operator object.

Details

A roughness penalty for a function $x(t)$ is defined by integrating the square of either the derivative of $x(t)$ or, more generally, the result of applying a linear differential operator L to it. The most common roughness penalty is the integral of the square of the second derivative, and this is the default. To apply this roughness penalty, the matrix of inner products of the basis functions (possibly after applying the linear differential operator to them) defining this function is necessary. This function just calls the roughness penalty evaluation function specific to the basis involved.

Value

A symmetric matrix of order equal to the number of basis functions defined by the exponential basis object. Each element is the inner product of two exponential basis functions after applying the derivative or linear differential operator defined by `Lfdobj`.

See Also

- `expon`, `eval.penalty`, `getbasispenalty`

Examples

```r
# set up an exponential basis with 3 basis functions
ratevec <- c(0, -1, -5)
basisobj <- create.exponential.basis(c(0,1),3,ratevec)
# compute the 3 by 3 matrix of inner products of
# second derivatives
penmat <- exponpen(basisobj)
```
fbplot

Functional Boxplots

Description

Produces functional boxplots or enhanced functional boxplots of the given functional data. It can also be used to carry out functional data ordering based on band depth.

Usage

fbplot(fit, x = NULL, method = "MBD", depth = NULL, plot = TRUE,
prob = 0.5, color = 6, outliercol = 2, barcol = 4,
fullout=FALSE, factor=1.5,xlim=c(1,nrow(fit)),
ylim=c(min(fit)-.5*diff(range(fit)),max(fit)+.5*diff(range(fit))),...)
S3 method for class 'fd'
boxplot(x, z=NULL,...)
S3 method for class 'fdPar'
boxplot(x, z=NULL,...)
S3 method for class 'fdSmooth'
boxplot(x, z=NULL,...)

Arguments

fit a p-by-n functional data matrix where n is the number of curves, and p is defined below.

x For fbplot, x is the x coordinates of curves. Defaults to 1:p where p is the number of x coordinates.
For boxplot.fd, boxplot.fdPar and boxplot.fdSmooth, x is an object of class fd, fdPar or fdSmooth, respectively.

z The coordinate of the curves, labeled x for fdplot. For boxplot.fd, boxplot.fdPar and boxplot.fdSmooth, this cannot be x, because that would clash with the generic boxplot(x, ...) standard.

method the method to be used to compute band depth. Can be one of "BD2", "MBD" or "Both" with a default of "MBD". See also details.

depth a vector giving band depths of curves. If missing, band depth computation is conducted.

plot logical. If TRUE (the default) then a functional boxplot is produced. If not, band depth and outliers are returned.

prob a vector giving the probabilities of central regions in a decreasing order, then an enhanced functional boxplot is produced. Defaults to be 0.5 and a functional boxplot is plotted.

color a vector giving the colors of central regions from light to dark for an enhanced functional boxplot. Defaults to be magenta for a functional boxplot.

outliercol color of outlying curves. Defaults to be red.
barcol color of bars in a functional boxplot. Defaults to be blue.
fullout logical for plotting outlying curves. If FALSE (the default) then only the part outside the box is plotted. If TRUE, complete outling curves are plotted.
factor the constant factor to inflate the middle box and determine fences for outliers. Defaults to be 1.5 as in a classical boxplot.
xlim x-axis limits
ylim y-axis limits
... For fbplot, optional arguments for plot.
For boxplot.fd, boxplot.fdPar, or boxplot.fdSmooth, optional arguments for fbplot.

Details
For functional data, the band depth (BD) or modified band depth (MBD) allows for ordering a sample of curves from the center outwards and, thus, introduces a measure to define functional quantiles and the centrality or outlyingness of an observation. A smaller rank is associated with a more central position with respect to the sample curves. BD usually provides many ties (curves have the same depth values), but MBD does not. "BD2" uses two curves to determine a band. The method "Both" uses "BD2" first and then uses "MBD" to break ties. The method "Both" uses BD2 first and then uses MBD to break ties. The computation is carried out by the fast algorithm proposed by Sun et al. (2012).

Value
depth band depths of given curves.
outpoint column indices of detected outliers.

Author(s)
Ying Sun <sunwards@stat.osu.edu>
Marc G. Genton <marc.genton@kaust.edu.sa>

References

Examples
##
1. generate 50 random curves with some covariance structure
model 1 without outliers
##

cov.fun=function(d,k,c,mu){
 k*exp(-c*d*mu)
}

n=50
p=30
t=seq(0,1,len=p)
d=dist(t, upper=TRUE, diag=TRUE)
d.matrix=as.matrix(d)
covariance function in time
t.cov= cov.fun(d.matrix,1,1,1)
Cholesky Decomposition
L= chol(t.cov)
mu=4*t
e= matrix(rnorm(n*p),p,n)
y=mu+t(L)*e
e

functional boxplot
fbplot(y, method='MBD', ylim=c(-11,15))

The same using boxplot.fd
boxplot.fd(y, method='MBD', ylim=c(-11, 15))

same with default ylim
boxplot.fd(y)

##
2. as an fd object
##
Y <- Data2fd(y)
boxplot(Y)

##
3. as an fdPar object
##
Ypar <- fdPar(Y)
boxplot(Ypar)

##
4. Smoothed version
##
Ysmooth <- smooth.fdPar(Y)
boxplot(Ysmooth)

##
5. model 2 with outliers
##
magnitude
k=6
randomly introduce outliers
C=rbinom(n,1,0.1)
s=2*rbinom(n,1,0.5)-1
cs.m=matrix(C*s,p,n,byrow=TRUE)
Convert a univariate functional data object to a list for input to \texttt{Lfd}.

Usage

\[
\texttt{fd2list(fdboj)}
\]

Arguments

- \texttt{fdobj} \hspace{1cm} a univariate functional data object.

Value

a list as required for the second argument of \texttt{Lfd}.

Examples

```r
lbasis = create.constant.basis(c(0,365)); # create a constant basis
lcoef = matrix(c(0,(2*pi/365)*2,0),1,3) # set up three coefficients
wfdobj = fd(lcoef,lbasis) # define an FD object for weight functions
wfdlist = fd2list(wfdobj) # convert the FD object to a cell object
harmaccellfd = Lfd(3, wfdlist) # define the operator object
```
fdaMatlabPath

Add 'fdaM' to the Matlab path

Description

Write a sequence of Matlab commands to fdaMatlabPath.m in the working directory containing commands to add fdaM to the path for Matlab.

Usage

fdaMatlabPath(R.matlab)

Arguments

R.matlab logical: If TRUE, include '~R/library/R.matlab/externals' in the path. If(missing(R.matlab)) include '~R/library/R.matlab/externals' only if R.matlab is installed.

Details

• USAGE If your Matlab installation does NOT have a startup.m file, it might be wise to copy fdaMatlabPath.m into a directory where Matlab would look for startup.m, then rename it to startup.m. If you have a startup.m, you could add the contents of fdaMatlabPath.m to startup.m. Alternatively, you can copy fdaMatlabPath.m into the directory containing startup.m and add the following to the end of startup.m:

```matlab
if exist('fdaMatlabPath')
    fdaMatlabPath;
end
```

• ALGORITHM 1. path2fdaM = path to the matlabOfdam subdirectory of the fda installation directory.
 2. Find all subdirectories of path2fdaM except those beginning in '@' or including 'private'.
 3. if(requires(R.matlab)) add the path to MatlabServer.m to dirs2add
 4. d2a <- paste("addpath('", dirs2add, ")' ;", sep="")
 5. writeLines(d2a, 'fdaMatlabPath.m')
 6. if(exists(startupFile)) append d2a to it

Value

A character vector of Matlab addpath commands is returned invisibly.

Author(s)

Spencer Graves with help from Jerome Besnard
fdlabels

References

Matlab documentation for addpath and startup.m.

See Also

Matlab.dirs

Examples

Modify the Matlab startup.m only when you really want to,
typically once per installation ... certainly not
every time we test this package.
fdMatlabPath()

fdlabels Extract plot labels and names for replicates and variables

Description

Extract plot labels and, if available, names for each replicate and variable

Usage

fdlabels(fdnames, nrep, nvar)

Arguments

fdnames a list of length 3 with xlabel, casenames, and ylabels.
nrep integer number of cases or observations
nvar integer number of variables

Details

xlabel <- if(length(fdnames[1])>1) names(fdnames)[1] else fdnames[[1]]
ylabel <- if(length(fdnames[[3]])>1) names(fdnames)[3] else fdnames[[3]]
casenames <- if(length(fdnames[[2]])== nrep)fdnames[[2]] else NULL
varnames <- if(length(fdnames[[3]])==nvar)fdnames[[3]] else NULL

Value

A list of xlabel, ylabel, casenames, and varnames

Author(s)

Jim Ramsay
Define a Functional Parameter Object

Description

Functional parameter objects are used as arguments to functions that estimate functional parameters, such as smoothing functions like `smooth.basis`. A functional parameter object is a functional data object with additional slots specifying a roughness penalty, a smoothing parameter and whether or not the functional parameter is to be estimated or held fixed. Functional parameter objects are used as arguments to functions that estimate functional parameters.

Usage

```
fdPar(fdobj=NULL, Lfdobj=NULL, lambda=0, estimate=TRUE, penmat=NULL)
```

Arguments

- **fdobj**: a functional data object, functional basis object, a functional parameter object or a matrix. If it a matrix, it is replaced by `fd(fdobj)`. If `class(fdobj) == 'basisfd'`, it is converted to an object of class `fd` with a coefficient matrix consisting of a single column of zeros.

- **Lfdobj**: either a nonnegative integer or a linear differential operator object. If `NULL`, `Lfdobj` depends on `fdobj[['basis']][['type']]`:
 - `bspline`: `Lfdobj <- int2Lfd(max(0, norder-2))`, where `norder = norder(fdobj)`.
 - `fourier`: `Lfdobj` is a harmonic acceleration operator:
 - `Lfdobj <- vec2Lfd(c(0, (2*pi/diff(rng))^2, 0), rng)`
 - where `rng = fdobj[['basis']][['rangeval']]`.
 - anything else: `Lfdobj <- int2Lfd(0)`

- **lambda**: a nonnegative real number specifying the amount of smoothing to be applied to the estimated functional parameter.

- **estimate**: not currently used.

- **penmat**: a roughness penalty matrix. Including this can eliminate the need to compute this matrix over and over again in some types of calculations.

Details

Functional parameters are often needed to specify initial values for iteratively refined estimates, as is the case in functions `register.fd` and `smooth.monotone`.

Often a list of functional parameters must be supplied to a function as an argument, and it may be that some of these parameters are considered known and must remain fixed during the analysis. This is the case for functions `fRegress` and `pda.fd`, for example.
Value

a functional parameter object (i.e., an object of class `fdPar`), which is a list with the following components:

- **fd**
 a functional data object (i.e., with class `fd`)

- **Lfd**
 a linear differential operator object (i.e., with class `Lfd`)

- **lambda**
 a nonnegative real number

- **estimate**
 not currently used

- **penmat**
 either NULL or a square, symmetric matrix with penmat[i, j] = integral over fd[[‘basis’]][[‘rangeval’]] of basis[i]*basis[j]

Source

See Also

- `cca.fd`
- `density.fd`
- `fRegress`
- `intensity.fd`
- `pca.fd`
- `smooth.fdPar`
- `smooth.basis`
- `smoothbasisPar`
- `smooth.monotone`
- `intRlfd`

Examples

```r
## Simple example
##
## set up range for density
rangeval <- c(-3, 3)
## set up some standard normal data
x <- rnorm(50)
## make sure values within the range
x[x < -3] <- -2.99
x[x > 3] <- 2.99
## set up basis for W(x)
basisobj <- create.bspline.basis(rangeval, 11)
## set up initial value for Wfdobj
Wfd0 <- fd(matrix(0,11,1), basisobj)
WfdParobj <- fdPar(Wfd0)

WfdP3 <- fdPar(seq(-3, 3, length=11))

## smooth the Canadian daily temperature data
##
## set up the fourier basis
nbasis <- 365
dayrange <- c(0,365)
```
daybasis <- create.fourier.basis(dayrange, nbasis)
dayperiod <- 365
harmaccellfd <- vec2Lf(c(0,(2*pi/365)*2,0), dayrange)
Make temperature fd object
Temperature data are in 12 by 365 matrix tempav
See analyses of weather data.
Set up sampling points at mid days
daytime <- (1:365)-0.5
Convert the data to a functional data object
daybasis65 <- create.fourier.basis(dayrange, nbasis, dayperiod)
templambda <- lambda
FIXME
#tempfd <- smooth.basis(CanadianWeather$tempav, daytime, tempfdPar)$fd
Set up the harmonic acceleration operator
Lbasis <- create.constant.basis(dayrange);
Lcoef <- matrix(c(0,(2*pi/365)*2,0),1,3)
bfdobj <- fd(Lcoef,Lbasis)
bwtlist <- fd2list(bfdobj)
harmaccellfd <- Lfd(3, bwtlist)
Define the functional parameter object for
smoothing the temperature data
lambda <- 0.01 # minimum GCV estimate
#tempPar <- fdPar(daybasis65, harmaccellfd, lambda)
smooth the data
#tempfd <- smooth.basis(daytime, CanadianWeather$tempav, tempPar)$fd
plot the temperature curves
#plot(tempfd)

##
with rangeval of class Date and POSIXct
##

file.copy2

Copy a file with a default 'to' name

Description

Copy a file appending a number to make the to name unique, with default to = from.

Usage

```r
file.copy2(from, to)
```
Arguments

from character: name of a file to be copied
to character: name of copy. Default = from with an integer appended to the name.

Details

1. length(from) != 1: Error: Only one file can be copied.
2. file.exists(from)? If no, If no, return FALSE.
3. if(missing(to))to <- from; else if(length(to)!=1) error.
4. file.exists(to)? If yes, Dir <- dir(dirname(to)), find all Dir starting with to, and find the smallest integer to append to make a unique to name.
5. file.copy(from, to)
6. Return TRUE.

Value

logical: TRUE (with a name = name of the file created); FALSE if no file created.

Author(s)

Spencer Graves

See Also

file.copy,

Examples

Not run:

file.copy2('startup.m')
Used by 'fdaMatlabPath' so an existing 'startup.m' is not destroyed

End(Not run)

fourier Fourier Basis Function Values

Description

Evaluates a set of Fourier basis functions, or a derivative of these functions, at a set of arguments.

Usage

fourier(x, nbasis=n, period=span, nderiv=0)
Arguments

- **x**: a vector of argument values at which the Fourier basis functions are to be evaluated.
- **nbasis**: the number of basis functions in the Fourier basis. The first basis function is the constant function, followed by sets of sine/cosine pairs. Normally the number of basis functions will be an odd. The default number is the number of argument values.
- **period**: the width of an interval over which all sine/cosine basis functions repeat themselves. The default is the difference between the largest and smallest argument values.
- **nderiv**: the derivative to be evaluated. The derivative must not exceed the order. The default derivative is 0, meaning that the basis functions themselves are evaluated.

Value

A matrix of function values. The number of rows equals the number of arguments, and the number of columns equals the number of basis functions.

See Also

- `fourierpen`

Examples

```
# set up a set of 11 argument values
x <- seq(0,1,0.1)
names(x) <- paste("x", 0:10, sep="")
# compute values for five Fourier basis functions
# with the default period (1) and derivative (0)
(basismat <- fourier(x, 5))

# Create a false Fourier basis, i.e., nbasis = 1
# = a constant function
fourier(x, 1)
```

Description

Computes the matrix defining the roughness penalty for functions expressed in terms of a Fourier basis.

Usage

```
fourierpen(basisobj, Lfdobj=int2Lfd(2))
```
Arguments

- **basisobj**: a Fourier basis object.
- **Lfdobj**: either a nonnegative integer or a linear differential operator object.

Details

A roughness penalty for a function \(x(t)\) is defined by integrating the square of either the derivative of \(x(t)\) or, more generally, the result of applying a linear differential operator \(L\) to it. The most common roughness penalty is the integral of the square of the second derivative, and this is the default. To apply this roughness penalty, the matrix of inner products of the basis functions (possibly after applying the linear differential operator to them) defining this function is necessary. This function just calls the roughness penalty evaluation function specific to the basis involved.

Value

- a symmetric matrix of order equal to the number of basis functions defined by the Fourier basis object. Each element is the inner product of two Fourier basis functions after applying the derivative or linear differential operator defined by Lfdobj.

See Also

- `fourier`, `eval.penalty`, `getbasispenalty`

Examples

```
# set up a Fourier basis with 13 basis functions
# and and period 1.0.
basisobj <- create.fourier.basis(c(0,1),13)
# compute the 13 by 13 matrix of inner products
# of second derivatives
penmat <- fourierpen(basisobj)
```

Description

`Fperm.fd` creates a null distribution for a test of no effect in functional linear regression. It makes generic use of `fRegress` and permutes the `yfdPar` input.

Usage

```
Fperm.fd(yfdPar, xfdlist, betalist, wt=NULL, nperm=200, argvals=NULL, q=0.05, plotres=TRUE, ...)
```
Arguments

yfdPar
the dependent variable object. It may be an object of three possible classes:
- vector if the dependent variable is scalar.
- fd a functional data object if the dependent variable is functional.
- fdPar a functional parameter object if the dependent variable is functional, and if it is necessary to smooth the prediction of the dependent variable.

xfdlist
a list of length equal to the number of independent variables. Members of this list are the independent variables. They be objects of either of these two classes:
- a vector if the independent dependent variable is scalar.
- a functional data object if the dependent variable is functional.

In either case, the object must have the same number of replications as the dependent variable object. That is, if it is a scalar, it must be of the same length as the dependent variable, and if it is functional, it must have the same number of replications as the dependent variable.

betalist
a list of length equal to the number of independent variables. Members of this list define the regression functions to be estimated. They are functional parameter objects. Note that even if corresponding independent variable is scalar, its regression coefficient will be functional if the dependent variable is functional. Each of these functional parameter objects defines a single functional data object, that is, with only one replication.

wt
weights for weighted least squares, defaults to all 1.

nperm
number of permutations to use in creating the null distribution.

argvals
If `yfdPar` is a `fd` object, the points at which to evaluate the point-wise F-statistic.

q
Critical upper-tail quantile of the null distribution to compare to the observed F-statistic.

plotres
Argument to plot a visual display of the null distribution displaying the qth quantile and observed F-statistic.

... Additional plotting arguments that can be used with plot.

Details

An F-statistic is calculated as the ratio of residual variance to predicted variance. The observed F-statistic is returned along with the permutation distribution.

If `yfdPar` is a `fd` object, the maximal value of the pointwise F-statistic is calculated. The pointwise F-statistics are also returned.

The default of setting `q = 0.95` is, by now, fairly standard. The default `nperm = 200` may be small, depending on the amount of computing time available.

If `argvals` is not specified and `yfdPar` is a `fd` object, it defaults to 101 equally-spaced points on the range of `yfdPar`.
Value

A list with the following components:

- `pval`: the observed p-value of the permutation test.
- `qval`: the qth quantile of the null distribution.
- `Fobs`: the observed maximal F-statistic.
- `Fnull`: a vector of length `nperm` giving the observed values of the permutation distribution.
- `Fvals`: the pointwise values of the observed F-statistic.
- `Fnullvals`: the pointwise values of the permutation observations.
- `pvalsNpts`: pointwise p-values of the F-statistic.
- `qvalsNpts`: pointwise qth quantiles of the null distribution
- `fRegressList`: the result of `fRegress` on the observed data
- `argvals`: argument values for evaluating the F-statistic if `yfdPar` is a functional data object.

Side Effects

- a plot of the functional observations

Source

See Also

- `fRegress` `Fstat.fd`

Examples

```r
##
## 1. yfdPar = vector
##
annualprec <- log10(apply(  
  CanadianWeather$dailyAv[,"Precipitation.mm"], 2,sum))

# set up a smaller basis using only 40 Fourier basis functions  
# to save some computation time

smallnbasis <- 40
smallbasis <- create.fourier.basis(c(0, 365), smallnbasis)

tempfd <- smooth.basis(day.5, CanadianWeather$dailyAv[,"Temperature.C"],
                       smallbasis)$fd
constantfd <- fd(matrix(1,1,35), create.constant.basis(c(0, 365)))

xfdlist <- vector("list",2)
xfdlist[[1]] <- constantfd
```
xfdlist[[2]] <- tempfd[1:35]

betalist <- vector("list",2)
set up the first regression function as a constant
betabasis1 <- create.constant.basis(c(0, 365))
betafd1 <- fd(0, betabasis1)
betafdPar1 <- fdPar(betafd1)
betalist[[1]] <- betafdPar1

nbetabasis <- 35
betabasis2 <- create.fourier.basis(c(0, 365), nbetabasis)
betafd2 <- fd(matrix(0,nbetabasis,1), betabasis2)

lambda <- 10^12.5
harmaccellfd365 <- vec2Lfd(c(0,(2*pi/365)^2,0), c(0, 365))
betafdPar2 <- fdPar(betafd2, harmaccellfd365, lambda)
betalist[[2]] <- betafdPar2

Should use the default nperm = 200
but use 10 to save test time for illustration
F.res2 = Fperm.fd(annualprec, xfdlist, betalist, nperm=10)

##
2. yfdpar = Functional data object (class fd)
##
The very simplest example is the equivalent of the permutation
t-test on the growth data.
##
First set up a basis system to hold the smooths

cut this example to reduce test time on CRAN
if(!CRAN()){

knots <- growth$age
norder <- 6
nbasis <- length(knots) + norder - 2
hgtbasis <- create.bspline.basis(range(knots), nbasis, norder, knots)

Now smooth with a fourth-derivative penalty and a very small smoothing
parameter
Lfdobj <- 4
lambda <- 1e-2
growfdPar <- fdPar(hgtbasis, Lfdobj, lambda)

hgtfd <- smooth.basis(growth$age,
 cbind(growth$hgtm, growth$hgtf), growfdPar)$fd

Now set up factors for fRegress:

cbasis = create.constant.basis(range(knots))

maleind = c(rep(1,ncol(growth$hgtm)),rep(0,ncol(growth$hgtf)))
constfd = fd(matrix(1,1,length(maleind)),cbasis)
maleindfd = fd(matrix(maleind,1,length(maleind)),cbasis)

xfdlist = list(constfd,maleindfd)

The fdPar object for the coefficients and call Fperm.fd
betalist = list(fdPar(hgtbasis,2,1e-6),fdPar(hgtbasis,2,1e-6))

Should use nperm = 200 or so,
but use 10 to save test time
Fres = Fperm.fd(hgtfd,xfdlist,betalist,nperm=10)
}

fRegess
Functional Regression Analysis

Description

This function carries out a functional regression analysis, where either the dependent variable or one or more independent variables are functional. Non-functional variables may be used on either side of the equation. In a simple problem where there is a single scalar independent covariate with values $z_i, i = 1, \ldots, N$ and a single functional covariate with values $x_i(t)$, the two versions of the model fit by fRegess are the *scalar* dependent variable model

$$y_i = \beta_1 z_i + \int x_i(t) \beta_2(t) \, dt + e_i$$

and the *concurrent* functional dependent variable model

$$y_i(t) = \beta_1(t) z_i + \beta_2(t) x_i(t) + e_i(t).$$

In these models, the final term e_i or $e_i(t)$ is a residual, lack of fit or error term.

In the concurrent functional linear model for a functional dependent variable, all functional variables are all evaluated at a common time or argument value t. That is, the fit is defined in terms of the behavior of all variables at a fixed time, or in terms of "now" behavior.

All regression coefficient functions $\beta_j(t)$ are considered to be functional. In the case of a scalar dependent variable, the regression coefficient for a scalar covariate is converted to a functional variable with a constant basis. All regression coefficient functions can be forced to be smooth through the use of roughness penalties, and consequently are specified in the argument list as functional parameter objects.
Usage

fRegress(y, ...)
 ## S3 method for class 'formula'
 fRegress(y, data=NULL, betalist=NULL, wt=NULL,
 y2cMap=NULL, SigmaE=NULL,
 method=c('fRegress', 'model'), sep='.', ...,)

 ## S3 method for class 'character'
 fRegress(y, data=NULL, betalist=NULL, wt=NULL,
 y2cMap=NULL, SigmaE=NULL,
 method=c('fRegress', 'model'), sep='.', ...,)

 ## S3 method for class 'fd'
 fRegress(y, xfdlist, betalist, wt=NULL,
 y2cMap=NULL, SigmaE=NULL, returnMatrix=FALSE, ...,)

 ## S3 method for class 'fdPar'
 fRegress(y, xfdlist, betalist, wt=NULL,
 y2cMap=NULL, SigmaE=NULL, returnMatrix=FALSE, ...,)

 ## S3 method for class 'numeric'
 fRegress(y, xfdlist, betalist, wt=NULL,
 y2cMap=NULL, SigmaE=NULL, returnMatrix=FALSE, ...,)

Arguments

y the dependent variable object. It may be an object of five possible classes:

 • character or formula a formula object or a character object that can be coerced into a formula providing a symbolic description of the model to be fitted satisfying the following rules:
 The left hand side, formula y, must be either a numeric vector or a univariate object of class fd or fdPar. If the former, it is replaced by fdPar(y,...).
 All objects named on the right hand side must be either numeric or fd (functional data) or fdPar. The number of replications of fd or fdPar object(s) must match each other and the number of observations of numeric objects named, as well as the number of replications of the dependent variable object. The right hand side of this formula is translated into xfdlist, then passed to another method for fitting (unless method = 'model'). Multivariate independent variables are allowed in a formula and are split into univariate independent variables in the resulting xfdlist. Similarly, categorical independent variables with k levels are translated into k-1 contrasts in xfdlist. Any smoothing information is passed to the corresponding component of betalist.

 • scalar a vector if the dependent variable is scalar.

 • fd a functional data object if the dependent variable is functional. A y of this class is replaced by fdPar(y, ...) and passed to fRegress.fdPar.

 • fdPar a functional parameter object if the dependent variable is functional, and if it is desired to smooth the prediction of the dependent variable.

data an optional list or data.frame containing names of objects identified in the formula or character y.
xfdlist is a list of length equal to the number of independent variables (including any intercept). Members of this list are the independent variables. They can be objects of either of these two classes:

- scalar a numeric vector if the independent variable is scalar.
- fd a (univariate) functional data object.

In either case, the object must have the same number of replications as the dependent variable object. That is, if it is a scalar, it must be of the same length as the dependent variable, and if it is functional, it must have the same number of replications as the dependent variable. (Only univariate independent variables are currently allowed in xfdlist.)

betalist For the fd, fdPar, and numeric methods, betalist must be a list of length equal to length(xfdlist). Members of this list are functional parameter objects (class fdPar) defining the regression functions to be estimated. Even if a corresponding independent variable is scalar, its regression coefficient must be functional if the dependent variable is functional. (If the dependent variable is a scalar, the coefficients of scalar independent variables, including the intercept, must be constants, but the coefficients of functional independent variables must be functional.) Each of these functional parameter objects defines a single functional data object, that is, with only one replication.

For the formula and character methods, betalist can be either a list, as for the other methods, or NULL, in which case a list is created. If betalist is created, it will use the bases from the corresponding component of xfdlist if it is function or from the response variable. Smoothing information (arguments Lfdobj, lambda, estimate, and penmat of function fdPar) will come from the corresponding component of xfdlist if it is of class fdPar (or for scalar independent variables from the response variable if it is of class fdPar) or from optional ... arguments if the reference variable is not of class fdPar.

wt weights for weighted least squares

y2cMap the matrix mapping from the vector of observed values to the coefficients for the dependent variable. This is output by function smooth.basis. If this is supplied, confidence limits are computed, otherwise not.

SigmaE Estimate of the covariances among the residuals. This can only be estimated after a preliminary analysis with fRegres.

method a character string matching either fRegres for functional regression estimation or mode to create the argument lists for functional regression estimation without running it.

sep separator for creating names for multiple variables for fRegres.fdPar or fRegres.numeric created from single variables on the right hand side of the formula y. This happens with multidimensional fd objects as well as with categorical variables.

returnMatrix logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

... optional arguments

Details

Alternative forms of functional regression can be categorized with traditional least squares using the following 2 x 2 table:
For \texttt{fRegress.numeric}, the numeric response is assumed to be the sum of integrals of xfd * beta for all functional xfd terms.

\texttt{fRegress.fd} or \texttt{.fdPar} produces a concurrent regression with each beta being also a (univariate) function.

\texttt{linmod} predicts a functional response from a convolution integral, estimating a bivariate regression function.

In the computation of regression function estimates in \texttt{fRegress}, all independent variables are treated as if they are functional. If argument \texttt{xfdlist} contains one or more vectors, these are converted to functional data objects having the constant basis with coefficients equal to the elements of the vector.

Needless to say, if all the variables in the model are scalar, do NOT use this function. Instead, use either \texttt{lm} or \texttt{lsfit}.

These functions provide a partial implementation of Ramsay and Silverman (2005, chapters 12-20).

\textbf{Value}

These functions return either a standard \texttt{fRegress} fit object or a model specification:

\texttt{fRegress fit} a list of class \texttt{fRegress} with the following components:

- \texttt{y} the first argument in the call to \texttt{fRegress} (coerced to \texttt{class fdPar})
- \texttt{xfdlist} the second argument in the call to \texttt{fRegress}.
- \texttt{betalist} the third argument in the call to \texttt{fRegress}.
- \texttt{betaestlist} a list of length equal to the number of independent variables and with members having the same functional parameter structure as the corresponding members of \texttt{betalist}. These are the estimated regression coefficient functions.
- \texttt{yhatfdobj} a functional parameter object (\texttt{class fdPar}) if the dependent variable is functional or a vector if the dependent variable is scalar. This is the set of predicted by the functional regression model for the dependent variable.
- \texttt{Cmatinv} a matrix containing the inverse of the coefficient matrix for the linear equations that define the solution to the regression problem. This matrix is required for function \texttt{fRegress.stderr} that estimates confidence regions for the regression coefficient function estimates.
- \texttt{wt} the vector of weights input or inferred

If \texttt{class(y)} is numeric, the \texttt{fRegress} object also includes:

- \texttt{df} equivalent degrees of freedom for the fit.
• OCV the leave-one-out cross validation score for the model.
• gcv the generalized cross validation score.

If `class(y)` is either `fd` or `fdPar`, the `fRegress` object returned also includes 5 other components:

• `y2cMap` an input `y2cMap`
• `SigmaE` an input `SigmaE`
• `betaestderrlist` an `fd` object estimating the standard errors of `betaestlist`
• `bvar` a covariance matrix
• `c2bMap` a map

model specification

The `fRegress.formula` and `fRegress.character` functions translate the formula into the argument list required by `fRegress.fdPar` or `fRegress.numeric`. With the default value ‘fRegress’ for the argument method, this list is then used to call the appropriate other `fRegress` function.

Alternatively, to see how the formula is translated, use the alternative ‘model’ value for the argument method. In that case, the function returns a list with the arguments otherwise passed to these other functions plus the following additional components:

• `xfdlist0` a list of the objects named on the right hand side of `formula`. This will differ from `xfdlist` for any categorical or multivariate right hand side object.
• `type` the `type` component of any `fd` object on the right hand side of `formula`.
• `nbasis` a vector containing the `nbasis` components of variables named in `formula` having such components
• `xVars` an integer vector with all the variable names on the right hand side of `formula` containing the corresponding number of variables in `xfdlist`. This can exceed 1 for any multivariate object on the right hand side of class either `numeric` or `fd` as well as any categorical variable.

Author(s)

J. O. Ramsay, Giles Hooker, and Spencer Graves

References

See Also

`fRegress.formula`, `fRegress.stderr`, `fRegress.CV`, `linmod`
Examples

```r
###
### scalar response and explanatory variable
### ... to compare fRegres and lm
###
###
# example from help('lm')
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.93,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c("Ctl","Ttrt"))
weight <- c(ctl, trt)

lm.D9 <- lm(weight ~ group)
fRegres.D9 <- fRegres(weight ~ group)

(lm.D9.coef <- coef(lm.D9))

(fRegres.D9.coef <- sapply(fRegres.D9$betaestlist, coef))

all.equal(as.numeric(lm.D9.coef), as.numeric(fRegres.D9.coef))

###
### vector response with functional explanatory variable
###
###
#
# set up
#
annualprec <- log10(apply(CanadianWeather$dailyAv[, "Precipitation.mm"],
2, sum))

# The simplest 'fRegres' call is singular with more bases
# than observations, so we use a small basis for this example
smallbasis <- create.fourier.basis(c(0, 365), 25)
# There are other ways to handle this,
# but we will not discuss them here
tempfd <- smooth.basis(day.5, 
CanadianWeather$dailyAv[, "Temperature.C"], smallbasis)$fd

#
# formula interface
#
precip.Temp.f <- fRegres(annualprec ~ tempfd)
```

```
precip.Temp.mdl <- fRegress(annualprec ~ tempfd, method='m')
# First confirm we get the same answer as above:
precip.Temp.m <- do.call('fRegress', precip.Temp.mdl)
all.equal(precip.Temp.m, precip.Temp.f)

# set up a smaller basis than for temperature
nbetabasis <- 21
betabasis2. <- create.fourier.basis(c(0, 365), nbetabasis)
betafd2. <- fd(rep(0, nbetabasis), betabasis2.)
# add smoothing
betafdPar2. <- fdPar(betafd2., lambda=10)
precip.Temp.mdl2 <- precip.Temp.mdl
precip.Temp.mdl2[['betalist']][['tempfd']] <- betafdPar2.

# Now do it.
precip.Temp.m2 <- do.call('fRegress', precip.Temp.mdl2)

# Compare the two fits
precip.Temp.f[['df']] # 26
precip.Temp.m2[['df']] # 22 = saved 4 degrees of freedom

(var.e.f <- mean(with(precip.Temp.f, (yhatfdobj-yfdPar)^2)))
(var.e.m2 <- mean(with(precip.Temp.m2, (yhatfdobj-yfdPar)^2)))
# with a modest increase in lack of fit.

##
## Manual construction of xfdlist and betalist
##
xfdlist <- list(const=rep(1, 35), tempfd=tempfd)

# The intercept must be constant for a scalar response
betabasis1 <- create.constant.basis(c(0, 365))
betafd1 <- fd(c(0, betabasis1))
betafdPar1 <- fdPar(betafd1)

betafd2 <- with(tempfd, fd(basisobj=basis, fnames=fnames))
# convert to an fdPar object
betafdPar2 <- fdPar(betafd2)

betalist <- list(const=betafdPar1, tempfd=betafdPar2)
precip.Temp <- fRegress(annualprec, xfdlist, betalist)
all.equal(precip.Temp, precip.Temp.f)

###
###
### functional response with vector explanatory variables
###
###
##
## simplest: formula interface
##
daybasis65 <- create.fourier.basis(rangeval=c(0, 365), nbasis=65, axes=list('axesIntervals'))
Temp.fd <- with(CanadianWeather, smooth.basisPar(day.5, dailyAv[,, 'Temperature.C'], daybasis65)$fd)
TempRgn.f <- fRegress(Temp.fd ~ region, CanadianWeather)

##
## Get the default setup and possibly modify it
##
TempRgn.mdl <- fRegress(Temp.fd ~ region, CanadianWeather, method='m')

# make desired modifications here
# then run
TempRgn.m <- do.call('fRegress', TempRgn.mdl)

# no change, so match the first run
all.equal(TempRgn.m, TempRgn.f)

##
## More detailed set up
##

region.contrasts <- model.matrix(~factor(CanadianWeather$region))
rgnContr3 <- region.contrasts
dim(rgnContr3) <- c(1, 35, 4)
dimnames(rgnContr3) <- list(, CanadianWeather$place, c('const',
paste('region', c('Atlantic', 'Continental', 'Pacific'), sep='.')))

const365 <- create.constant.basis(c(0, 365))
region.fd.Atlantic <- fd(matrix(rgnContr3[,2], 1), const365)

region.fd.Continental <- fd(matrix(rgnContr3[,3], 1), const365)
region.fd.Pacific <- fd(matrix(rgnContr3[,4], 1), const365)
region.fdlist <- list(const=rep(1, 35),
  region.Atlantic=region.fd.Atlantic,
  region.Continental=region.fd.Continental,
  region.Pacific=region.fd.Pacific)

beta1 <- with(Temp.fd, fd(basisobj=basis, fdnames=fdnames))
beta0 <- fdPar(beta1)
betalist <- list(const=beta0, region.Atlantic=beta0, region.Continental=beta0, region.Pacific=beta0)
TempRgn <- fRegress(Temp.fd, region.fdlist, betalist)

all.equal(TempRgn, TempRgn.f)

###
### functional response with
### (concurrent) functional explanatory variable
###
###
###
###
### predict knee angle from hip angle; from demo('gait', package='fda')
###
### formula interface
###
(gaittime <- as.numeric(dimnames(gait)[[1]])*20)
gaitrange <- c(0,20)
gaitbasis <- create.fourier.basis(gaitrange, nbasis=21)
harmaccel.fd <- vec2lfda(c(0, (2*pi/20)^2, 0), rangeval=gaitrange)
gait.fd <- smooth.basisPar(gaittime, gait,
    gaitbasis, Lfddobj=harmaccel.fd, lambda=1e-2)$fd

hip.fd <- gait.fd[,1]
knee.fd <- gait.fd[,2]

knee.hip.f <- fRegress(knee.fd ~ hip.fd)

###
### manual set-up
###
# set up the list of covariate objects
const <- rep(1, dim(knee.fd$coef)[2])
xfdlist <- list(const=const, hipfd=hip.fd)

beta0 <- with(knee.fd, fd(basisobj=basis, fdnames=fdnames))
betal1 <- with(hip.fd, fd(basisobj=basis, fdnames=fdnames))

betalist <- list(const=fdPar(beta0), hipfd=fdPar(betal1))

fRegressout <- fRegress(knee.fd, xfdlist, betalist)

all.equal(fRegressout, knee.hip.f)

#See also the following demos:
#demo('canadian-weather', package='fda')
#demo('gait', package='fda')
fRegress.CV

Computes Cross-validated Error Sum of Integrated Squared Errors for a Functional Regression Model

Description

For a functional regression model, a cross-validated error sum of squares is computed. For a functional dependent variable this is the sum of integrated squared errors. For a scalar response, this function has been superceded by the OCV and gcv elements returned by fRegress. This function aids the choice of smoothing parameters in this model using the cross-validated error sum of squares criterion.

Usage

```r
fRegress.CV(y, xfdlist, betalist, wt=NULL, CVobs=1:N,
 returnMatrix=FALSE, ...)
```

Arguments

- `y`: the dependent variable object.
- `xfdlist`: a list whose members are functional parameter objects specifying functional independent variables. Some of these may also be vectors specifying scalar independent variables.
- `betalist`: a list containing functional parameter objects specifying the regression functions and their level of smoothing.
- `wt`: weights for weighted least squares. Defaults to all 1’s.
- `CVobs`: Indices of observations to be deleted. Defaults to 1:N.
- `returnMatrix`: logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.
- `...`: optional arguments not used by fRegress.CV but needed for superficial compatibility with fRegress methods.
Value
A list containing

SSE.CV The sum of squared errors, or integrated squared errors
errfd.cv Either a vector or a functional data object giving the cross-validated errors

See Also
fRegress, fRegress.stderr

Examples
#See the analyses of the Canadian daily weather data.

---

fRegress.stderr  Compute Standard errors of Coefficient Functions Estimated by Functional Regression Analysis

Description
Function fRegress carries out a functional regression analysis of the concurrent kind, and estimates a regression coefficient function corresponding to each independent variable, whether it is scalar or functional. This function uses the list that is output by fRegress to provide standard error functions for each regression function. These standard error functions are pointwise, meaning that sampling standard deviation functions only are computed, and not sampling covariances.

Usage

#fRegress.stderr(y, y2cMap, SigmaE, returnMatrix=FALSE, ...)

#NOTE: The following is required by CRAN rules that
# function names like "as.numeric" must follow the documentation
# standards for S3 generics, even when they are not.
# Please ignore the following line:
## S3 method for class 'stderr'
fRegress(y, y2cMap, SigmaE, returnMatrix=FALSE, ...)

Arguments

y the named list that is returned from a call to function fRegress, where it is referred to as fRegressList. (R syntax requires that the first argument of any function beginning with fRegress. must begin with y.)
y2cMap a matrix that contains the linear transformation that takes the raw data values into the coefficients defining a smooth functional data object. Typically, this matrix is returned from a call to function smooth.basis that generates the dependent variable objects. If the dependent variable is scalar, this matrix is an identity matrix of order equal to the length of the vector.
Fstat.fd

F-statistic for functional linear regression.

Description

Fstat.fd calculates a pointwise F-statistic for functional linear regression.

Usage

Fstat.fd(y,yhat,argvals=NULL)

Arguments

y the dependent variable object. It may be:
  • a vector if the dependent variable is scalar.
  • a functional data object if the dependent variable is functional.
yhat The predicted values corresponding to y. It must be of the same class.
argvals If yfdPar is a functional data object, the points at which to evaluate the pointwise F-statistic.
Details

An F-statistic is calculated as the ratio of residual variance to predicted variance. If `argvals` is not specified and `yfdPar` is a `fd` object, it defaults to 101 equally-spaced points on the range of `yfdPar`.

Value

A list with components

- `F`: the calculated pointwise F-statistics.
- `argvals`: argument values for evaluating the F-statistic if `yfdPar` is a functional data object.

Source


See Also

`fRegress`, `Fstat.fd`

---

**gait**

*Hip and knee angle while walking*

**Description**

Hip and knee angle in degrees through a 20 point movement cycle for 39 boys

**Format**

An array of dim c(20, 39, 2) giving the "Hip Angle" and "Knee Angle" for 39 repetitions of a 20 point gait cycle.

**Details**

The components of dimnames(gait) are as follows:

- [[1]] standardized gait time = seq(from=0.025, to=0.975, by=0.05)
- [[2]] subject ID = "boy1", "boy2", ..., "boy39"
- [[3]] gait variable = "Hip Angle" or "Knee Angle"

**Source**


Examples

plot(gait[, 1, 1], gait[, 1, 2], type="b")

Description

Find matrices L and M to maximize
\[
\frac{\text{tr}(L'AM)}{\sqrt{\text{tr}(L'BL) \text{tr}(M'CM')}}
\]
where \(A\) = a \(p \times q\) matrix, \(B\) = \(p \times p\) symmetric, positive definite matrix, \(B\) = \(q \times q\) symmetric positive definite matrix, \(L\) = \(p \times s\) matrix, and \(M\) = \(q \times s\) matrix, where \(s\) = the number of non-zero generalized eigenvalues of \(A\).

Usage

geigen(Amat, Bmat, Cmat)

Arguments

- **Amat**: a numeric matrix
- **Bmat**: a symmetric, positive definite matrix with dimension = number of rows of \(A\)
- **Cmat**: a symmetric, positive definite matrix with dimension = number of columns of \(A\)

Value

list(values, Lmat, Mmat)

See Also

eigen

Examples

A <- matrix(1:6, 2)
B <- matrix(c(2, 1, 1, 2), 2)
C <- diag(1:3)
ABC <- geigen(A, B, C)
getbasismatrix  

Values of Basis Functions or their Derivatives

Description
Evaluate a set of basis functions or their derivatives at a set of argument values.

Usage
getbasismatrix(evalarg, basisobj, nderiv=0, returnMatrix=FALSE)

Arguments
evalarg  a vector of arguments values.
basisobj  a basis object.
nderiv  a nonnegative integer specifying the derivative to be evaluated.
returnMatrix  logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Value
a matrix of basis function or derivative values. Rows correspond to argument values and columns to basis functions.

See Also
eval.fd

Examples

## Minimal example: a B-spline of order 1, i.e., a step function
## with 0 interior knots:
##
bspl1.1 <- create.bspline.basis(norder=1, breaks=0:1)
m <- getbasismatrix(seq(0, 1,.2), bspl1.1)

# check
m. <- matrix(rep(1, 6), 6,
    dimnames= list(NULL, 'bspl') )

all.equal(m, m.)

##
## Use library(Matrix)
##
bspl2.2 <- create.bspline.basis(norder=2, breaks=seq(0, 1,.5))
getbasispenalty

Evaluate a Roughness Penalty Matrix

Description

A basis roughness penalty matrix is the matrix containing the possible inner products of pairs of basis functions. These inner products are typically defined in terms of the value of a derivative or of a linear differential operator applied to the basis function. The basis penalty matrix plays an important role in the computation of functions whose roughness is controlled by a roughness penalty.

Usage

getbasispenalty(basisobj, Lfdobj=NULL)
getbasisrange

Description

Extracts the 'range' component from basis object 'basisobj'.

Usage

getbasisrange(basisobj)
Arguments

basisobj a functional basis object

Value

a numeric vector of length 2

growth Berkeley Growth Study data

Description

A list containing the heights of 39 boys and 54 girls from age 1 to 18 and the ages at which they were collected.

Format

This list contains the following components:

- **hgtm** a 31 by 39 numeric matrix giving the heights in centimeters of 39 boys at 31 ages.
- **hgtf** a 31 by 54 numeric matrix giving the heights in centimeters of 54 girls at 31 ages.
- **age** a numeric vector of length 31 giving the ages at which the heights were measured.

Details

The ages are not equally spaced.

Source


Examples

```
with(growth, matplot(age, hgtf[, 1:10], type="b"))
```
Cursive handwriting samples

Description

20 cursive samples of 1401 (x, y,) coordinates for writing "fda"

Usage

```r
handwrit
handwritTime
```

Format

- `handwrit` An array of dimensions (1401, 20, 2) giving 1401 pairs of (x, y) coordinates for each of 20 replicates of cursively writing "fda"
- `handwritTime` `seq(0, 2300, length=1401)` = sampling times

Details

These data are the X-Y coordinates of 20 replications of writing the script "fda". The subject was Jim Ramsay. Each replication is represented by 1401 coordinate values. The scripts have been extensively pre-processed. They have been adjusted to a common length that corresponds to 2.3 seconds or 2300 milliseconds, and they have already been registered so that important features in each script are aligned.

This analysis is designed to illustrate techniques for working with functional data having rather high frequency variation and represented by thousands of data points per record. Comments along the way explain the choices of analysis that were made.

The final result of the analysis is a third order linear differential equation for each coordinate forced by a constant and by time. The equations are able to reconstruct the scripts to a fairly high level of accuracy, and are also able to accommodate a substantial amount of the variation in the observed scripts across replications. by contrast, a second order equation was found to be completely inadequate.

An interesting suprise in the results is the role placed by a 120 millisecond cycle such that sharp features such as cusps correspond closely to this period. This 110-120 msec cycle seems is usually seen in human movement data involving rapid movements, such as speech, juggling and so on.

These 20 records have already been normalized to a common time interval of 2300 milliseconds and have been also registered so that prominent features occur at the same times across replications. Time will be measured in (approximate) milliseconds and space in meters. The data will require a small amount of smoothing, since an error of 0.5 mm is characteristic of the OPTOTRAK 3D measurement system used to collect the data.

Milliseconds were chosen as a time scale in order to make the ratio of the time unit to the inter-knot interval not too far from one. Otherwise, smoothing parameter values may be extremely small or extremely large.
The basis functions will be B-splines, with a spline placed at each knot. One may question whether so many basis functions are required, but this decision is found to be essential for stable derivative estimation up to the third order at and near the boundaries.

Order 7 was used to get a smooth third derivative, which requires penalizing the size of the 5th derivative, which in turn requires an order of at least 7. This implies noorder + no. of interior knots = 1399 + 7 = 1406 basis functions.

The smoothing parameter value 1e8 was chosen to obtain a fitting error of about 0.5 mm, the known error level in the OPTOTRACK equipment.

**Source**


**Examples**

```r
plot(handwrit[, 1, 1], handwrit[, 1, 2], type="l")
```

---

**infantGrowth**

*Tibia Length for One Baby*

**Description**

Measurement of the length of the tibia for the first 40 days of life for one infant.

**Usage**

```r
data(infantGrowth)
```

**Format**

A matrix with three columns:

- **dayage** in days
- **tibiaLength** The average of five measurements of tibia length in millimeters
- **sd.length** The standard deviation of five measurements of tibia length in millimeters

**Source**


**References**

inner products of Functional Data Objects.

Description

Computes a matrix of inner products for each pairing of a replicate for the first argument with a replicate for the second argument. This is perhaps the most important function in the functional data library. Hardly any analysis fails to use inner products in some way, and many employ multiple inner products. While in certain cases these may be computed exactly, this is a more general function that approximates the inner product approximately when required. The inner product is defined by two derivatives or linear differential operators that are applied to the first two arguments. The range used to compute the inner product may be contained within the range over which the functions are defined. A weight functional data object may also be used to define weights for the inner product.

Usage

inprod(fdobj1, fdobj2, 
Lfdobj1=int2Lfd(0), Lfdobj2=int2Lfd(0), 
rng = range1, wtfd = 0, returnMatrix=FALSE)

Arguments

fdobj1 a functional data object or a basis object. If the object is of the basis class, it is converted to a functional data object by using the identity matrix as the coefficient matrix.

fdobj2 a functional data object or a basis object. If the object is of the basis class, it is converted to a functional data object by using the identity matrix as the coefficient matrix.

Lfdobj1 either a nonnegative integer specifying the derivative of the first argument to be used, or a linear differential operator object to be applied to the first argument.

Lfdobj2 either a nonnegative integer specifying the derivative of the second argument to be used, or a linear differential operator object to be applied to the second argument.

rng a vector of length 2 defining a restricted range contained within the range over which the arguments are defined.

wtfd a univariate functional data object with a single replicate defining weights to be used in computing the inner product.

returnMatrix logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.
Details

The approximation method is Richardson extrapolation using numerical integration by the trapezoidal rule. At each iteration, the number of values at which the functions are evaluated is doubled, and a polynomial extrapolation method is used to estimate the converged integral values as well as an error tolerance. Convergence is declared when the relative error falls below EPS for all products. The extrapolation method generally saves at least one and often two iterations relative to un-extrapolated trapezoidal integration. Functional data analyses will seldom need to use inprod directly, but code developers should be aware of its pivotal role. Future work may require more sophisticated and specialized numerical integration methods. inprod computes the definite integral, but some functions such as smooth_monotone and register_fd also need to compute indefinite integrals. These use the same approximation scheme, but usually require more accuracy, and hence more iterations. When one or both arguments are basis objects, they are converted to functional data objects using identity matrices as the coefficient matrices. inprod is only called when there is no faster or exact method available. In cases where there is, it has been found that the approximation is good to about four to five significant digits, which is sufficient for most applications. Perhaps surprisingly, in the case of B-splines, the exact method is not appreciably faster, but of course is more accurate. inprod calls function eval_fd perhaps thousands of times, so high efficiency for this function and the functions that it calls is important.

Value

a matrix of inner products. The number of rows is the number of functions or basis functions in argument fd1, and the number of columns is the same thing for argument fd2.

References


See Also

eval.penalty,

inprod.bspline

Compute Inner Products B-spline Expansions.

Description

Computes the matrix of inner products when both functions are represented by B-spline expansions and when both derivatives are integers. This function is called by function inprod, and is not normally used directly.

Usage

inprod.bspline(fdobj1, fdobj2=fdobj1, nderiv1=0, nderiv2=0)
Arguments

- `fdobj1`: a functional data object having a B-spline basis function expansion.
- `fdobj2`: a second functional data object with a B-spline basis function expansion. By default, this is the same as the first argument.
- `nderiv1`: a nonnegative integer specifying the derivative for the first argument.
- `nderiv2`: a nonnegative integer specifying the derivative for the second argument.

Value

A matrix of inner products with number of rows equal to the number of replications of the first argument and number of columns equal to the number of replications of the second object.

---

### int2Lfd

*Convert Integer to Linear Differential Operator*

**Description**

This function turns an integer specifying an order of a derivative into the equivalent linear differential operator object. It is also useful for checking that an object is of the "Lfd" class.

**Usage**

`int2Lfd(m=0)`

**Arguments**

- `m`: either a nonnegative integer or a linear differential operator object.

**Details**

Smoothing is achieved by penalizing the integral of the square of the derivative of order `m` over `rangeval`:

- `m = 0` penalizes the squared difference from 0 of the function
- `1` = penalize the square of the slope or velocity
- `2` = penalize the squared acceleration
- `3` = penalize the squared rate of change of acceleration
- `4` = penalize the squared curvature of acceleration?

**Value**

A linear differential operator object of the "Lfd" class that is equivalent to the integer argument.
Examples

# Lfd to penalize the squared acceleration
# typical for smoothing a cubic spline (order 4)
int2Lfd(2)

# Lfd to penalize the curvature of acceleration
# used with splines of order 6
# when it is desired to study velocity and acceleration
int2Lfd(4)

intensity.fd

**Intensity Function for Point Process**

Description

The intensity $\mu$ of a series of event times that obey a homogeneous Poisson process is the mean number of events per unit time. When this event rate varies over time, the process is said to be nonhomogeneous, and $\mu(t)$, and is estimated by this function intensity.fd.

Usage

intensity.fd(x, WfdParobj, conv=0.0001, iterlim=20,
      dbglev=1, returnMatrix=FALSE)

Arguments

- **x**: a vector containing a strictly increasing series of event times. These event times assume that the events begin to be observed at time 0, and therefore are times since the beginning of observation.
- **WfdParobj**: a functional parameter object estimating the log-intensity function $W(t) = \log[\mu(t)]$. Because the intensity function $\mu(t)$ is necessarily positive, it is represented by $\mu(x) = \exp[W(x)]$.
- **conv**: a convergence criterion, required because the estimation process is iterative.
- **iterlim**: maximum number of iterations that are allowed.
- **dbglev**: either 0, 1, or 2. This controls the amount information printed out on each iteration, with 0 implying no output, 1 intermediate output level, and 2 full output. If levels 1 and 2 are used, turn off the output buffering option.
- **returnMatrix**: logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Details

The intensity function $I(t)$ is almost the same thing as a probability density function $p(t)$ estimated by function density.fd. The only difference is the absence of the normalizing constant $C$ that a density function requires in order to have a unit integral. The goal of the function is provide a smooth intensity function estimate that approaches some target intensity by an amount
that is controlled by the linear differential operator \(Lfdobj\) and the penalty parameter in argument \(Wfdpar\). For example, if the first derivative of \(W(t)\) is penalized heavily, this will force the function to approach a constant, which in turn will force the estimated Poisson process itself to be nearly homogeneous. To plot the intensity function or to evaluate it, evaluate \(Wfdobj\), exponentiate the resulting vector.

**Value**

a named list of length 4 containing:

- \(Wfdobj\): a functional data object defining function \(W(x)\) that optimizes the fit to the data of the monotone function that it defines.
- \(Flist\): a named list containing three results for the final converged solution: (1) \(f\): the optimal function value being minimized, (2) \(grad\): the gradient vector at the optimal solution, and (3) \(norm\): the norm of the gradient vector at the optimal solution.
- \(iternum\): the number of iterations.
- \(iterhist\): a \(iternum\times 5\) matrix containing the iteration history.

**See Also**

density.fd

**Examples**

```
Generate 101 Poisson-distributed event times with
intensity or rate two events per unit time
N <- 101
mu <- 2
generate 101 uniform deviates
uvec <- runif(rep(0,N))
convert to 101 exponential waiting times
wvec <- -log(1-uvec)/mu
accumulate to get event times
tvec <- cumsum(wvec)
tmax <- max(tvec)
set up an order 4 B-spline basis over [0,tmax] with
21 equally spaced knots
tbasis <- create.bspline.basis(c(0,tmax), 23)
set up a functional parameter object for \(W(t)\),
the log intensity function. The first derivative
is penalized in order to smooth toward a constant
lambda <- 10
Wfd0 <- fd(matrix(0,23,1),tbasis)
WfdParobj <- fdPar(Wfd0, 1, lambda)
estimate the intensity function
Wfdobj <- intensity.fd(tvec, WfdParobj)$Wfdobj
get intensity function values at 0 and event times
events <- c(0,tvec)
tvecvec <- exp(eval.fd(events,Wfdobj))
```
# plot intensity function
plot(events, intenvec, type="b")
lines(c(0,tmax),c(mu,mu),lty=4)

is.basis

### Confirm Object is Class "Basisfd"

**Description**

Check that an argument is a basis object.

**Usage**

```r
is.basis(basisobj)
```

**Arguments**

- `basisobj` an object to be checked.

**Value**

a logical value: TRUE if the class is correct, FALSE otherwise.

**See Also**

- `is.fd`, `is.fdPar`, `is.Lfd`

is.eqbasis

### Confirm that two objects of class "Basisfd" are identical

**Description**

Check all the slots of two basis objects to see that they are identical.

**Usage**

```r
is.eqbasis(basisobj1, basisobj2)
```

**Arguments**

- `basisobj1` The first basis object to be checked for being identical to the second.
- `basisobj2` The second basis object to be checked for being identical to the first.

**Value**

a logical value: TRUE if the two basis objects are identical, FALSE otherwise.
is.fd  

**See Also**

basisfd.

---

**is.fd**  

*Confirm Object has Class "fd"*

**Description**

Check that an argument is a functional data object.

**Usage**

`is.fd(fdobj)`

**Arguments**

`fdobj`  
an object to be checked.

**Value**

a logical value: TRUE if the class is correct, FALSE otherwise.

**See Also**

is.basis, is.fdPar, is.Lfd

---

**is.fdPar**  

*Confirm Object has Class "fdPar"*

**Description**

Check that an argument is a functional parameter object.

**Usage**

`is.fdPar(fdParobj)`

**Arguments**

`fdParobj`  
an object to be checked.

**Value**

a logical value: TRUE if the class is correct, FALSE otherwise.

**See Also**

is.basis, is.fd, is.Lfd
is.fdSmooth  Confirm Object has Class "fdSmooth"

Description
Check that an argument is a functional parameter object.

Usage
is.fdSmooth(fdSmoothobj)

Arguments
fdSmoothobj an object to be checked.

Value
a logical value: TRUE if the class is correct, FALSE otherwise.

See Also
isNbasis, is.fd, is.Lfd, is.fdPar

is.Lfd  Confirm Object has Class "Lfd"

Description
Check that an argument is a linear differential operator object.

Usage
is.Lfd(Lfdobj)

Arguments
Lfdobj an object to be checked.

Value
a logical value: TRUE if the class is correct, FALSE otherwise.

See Also
is.basis, is.fd, is.fdPar
extract the knots from a function basis or data object

Description

Extract either all or only the interior knots from an object of class basisfd, fd, or fdSmooth.

Usage

## S3 method for class 'fd'
knots(Fn, interior=TRUE, ...)
## S3 method for class 'fdSmooth'
knots(Fn, interior=TRUE, ...)
## S3 method for class 'basisfd'
knots(Fn, interior=TRUE, ...)

Arguments

- **Fn**: an object of class basisfd or containing such an object
- **interior**: logical:
  - if TRUE, Fn["params"] are returned.
  - Else, nord <- norder(Fn); rng <- Fn["rangeval"]; return c(rep(rng[1], nord), Fn["params"], rep(rng[2], nord))
- **...**: ignored

Details

The interior knots of a bspline basis are stored in the params component. The remaining knots are in the rangeval component, with multiplicity norder(Fn).

Value

Numeric vector. If 'interior' is TRUE, this is the params component of the bspline basis. Otherwise, params is bracketed by rep(rangeval, norder(basisfd)).

Author(s)

Spencer Graves

References


See Also

fd, create.bspline.basis,
Examples

```r
x <- 0:24
y <- c(1.0, 1.0, 1.4, 1.1, 1.0, 1.0, 4.0, 9.0, 13.0,
 13.4, 12.8, 13.1, 13.0, 14.0, 13.0, 13.5,
 10.0, 2.0, 3.0, 2.5, 2.5, 2.5, 3.0, 4.0, 3.5)

knots.fdSmooth
girlGrowthSm <- with(growth, smooth.basisPar(argvals=age, y=hgtf,
 lambda=0.1)$fd)

girlKnots.fdSm <- knots(girlGrowthSm)
girlKnots.fdSmA <- knots(girlGrowthSm, interior=FALSE)
stopifnot(all.equal(girlKnots.fdSm, girlKnots.fdSmA[5:33]))

girlKnots.fd <- knots(girlGrowthSm)
girlKnots.fda <- knots(girlGrowthSm, interior=FALSE)
stopifnot(all.equal(girlKnots.fdSm, girlKnots.fd))
stopifnot(all.equal(girlKnots.fdSmA, girlKnots.fda))
```

---

**lambda2df**

**Convert Smoothing Parameter to Degrees of Freedom**

Description

The degree of roughness of an estimated function is controlled by a smoothing parameter $\lambda$ that directly multiplies the penalty. However, it can be difficult to interpret or choose this value, and it is often easier to determine the roughness by choosing a value that is equivalent to the degrees of freedom used by the smoothing procedure. This function converts a multiplier $\lambda$ into a degrees of freedom value.

Usage

```r
lambda2df(argvals, basisobj, wtvec=rep(1, n),
 Lfdobj=NULL, lambda=0, returnMatrix=FALSE)
```

Arguments

- **argvals**: a vector containing the argument values used in the smooth of the data.
- **basisobj**: the basis object used in the smoothing of the data.
- **wtvec**: the weight vector, if any, that was used in the smoothing of the data.
- **Lfdobj**: the linear differential operator object used to defining the roughness penalty employed in smoothing the data.
- **lambda**: the smoothing parameter to be converted.
- **returnMatrix**: logical: If TRUE, a two-dimensional is returned using a special class from the `Matrix` package.
Value

the equivalent degrees of freedom value.

See Also

df2lambda

Usage

lambda2gcv(log10lambda, argvals, y, fdParobj, wtvec=rep(1,length(argvals)))

Arguments

log10lambda the logarithm (base 10) of the smoothing parameter
argvals a vector of argument values.
y the data to be smoothed.
fdParobj a functional parameter object defining the smooth.
wvec a weight vector used in the smoothing.

Details

Currently, lambda2gcv

Value

1. \( fdParobj[[\text{\textquote{lambda}}]] < -10 \log_{10} \lambda \)
2. smoothlist \leftarrow \text{smooth.basis}(argvals, y, fdParobj, wtvec)
3. return(smoothlist[[\text{\textquote{gcv}}]])

See Also

smooth.basis fdPar
landmark.reg.expData  Experiment data for landmark registration and alignment

Description
A data.frame object obtaining flow cytometry data with 5 samples subject to landmark alignment.

Usage
sampleData

Format
data  Flow cytometry fluorescent intensity data.
which  Indicating the sample name of the data.

Author(s)
C. J. Wong <cwonR@fhcrc.org>

See Also
landmarkreg

Examples
data(landmark.reg.expData)
head(sampleData)

landmarkreg  Landmark Registration of Functional Observations

Description
It is common to see that among a set of functions certain prominent features such peaks and valleys, called $landmarks$, do not occur at the same times, or other argument values. This is called $phase variation$, and it can be essential to align these features before proceeding with further functional data analyses. This function uses the timings of these features to align or register the curves. The registration involves estimating a nonlinear transformation of the argument continuum for each functional observation. This transformation is called a warping function. It must be strictly increasing and smooth.

Usage
landmarkreg(fdobj, ximarks, xmarks=xmeanmarks,
             WfdPar, monwrd=FALSE, ylambda=1e-10, returnMatrix=FALSE)
landmarkreg

Arguments

- `fdobj` a functional data object containing the curves to be registered.
- `ximarks` a matrix containing the timings or argument values associated with the landmarks for the observations in `fd` to be registered. The number of rows N equals the number of observations, and the number of columns NL equals the number of landmarks. These landmark times must be in the interior of the interval over which the functions are defined.
- `x0marks` a vector of length NL of times of landmarks for target curve. If not supplied, the mean of the landmark times in `ximarks` is used.
- `WfdPar` a functional parameter object defining the warping functions that transform time in order to register the curves.
- `monwrd` A logical value: if TRUE, the warping function is estimated using a monotone smoothing method; otherwise, a regular smoothing method is used, which is not guaranteed to give strictly monotonic warping functions.
- `ylambda` Smoothing parameter controlling the smoothness of the registered functions. It can happen with high dimensional bases that local wiggles can appear in the registered curves or their derivatives that are not seen in the unregistered versions. In this case, this parameter should be increased to the point where they disappear.
- `returnMatrix` logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Details

It is essential that the location of every landmark be clearly defined in each of the curves as well as the template function. If this is not the case, consider using the continuous registration function `registerNfd`. Although requiring that a monotone smoother be used to estimate the warping functions is safer, it adds considerably to the computation time since monotone smoothing is itself an iterative process. It is usually better to try an initial registration with this feature to see if there are any failures of monotonicity. Moreover, monotonicity failures can usually be cured by increasing the smoothing parameter defining `WfdPar`. Not much curvature is usually required in the warping functions, so a rather low power basis, usually B-splines, is suitable for defining the functional parameter argument `WfdPar`. A registration with a few prominent landmarks is often a good preliminary to using the more sophisticated but more lengthy process in `registerNfd`.

Value

a named list of length 2 with components:

- `fdreg` a functional data object for the registered curves.
- `warpfd` a functional data object for the warping functions.

See Also

`registerNfd, smooth.Nmorph`
Examples

#See the analysis for the lip data in the examples.

## setting parameters
library(lattice)
data(landmark.reg.expData) ## containing a simple object called sampleData

# Preferred:
# eps <- .Machine$double.eps
# to reduce compute time:
eps <- 1000*.Machine$double.eps
from <- -1.0187
to <- 9.4551
# Preferred:
# nb <- 201
# to reduce compute time:
nb <- 31
nbreaks <- 11
## assign landmarks
landmark <- matrix(c(0.4999, 0.657, 0.8141, 0.5523, 0.5523,
                      3.3279, 3.066, 3.0137, 3.2231, 3.2231),
                      ncol=2)
wbasis <- create.bspline.basis(rangeval=c(from, to),
                               norder=4, breaks=seq(from, to, len=nbreaks))
Wfd0 <- fd(matrix(0,wbasis$nbasis),wbasis)
WfdPar <- fdPar(Wfd0, 1, 1e-4)
## get the density of the data
x <- split(sampleData, factor(sampleData$which))
# to save time, reduce the number of curves from 5 to 3
k <- 3
densY <- sapply(x[1:k], function(z){
    r <- range(z[, 1])
    z <- z[, 1]
    z <- z[r[1]+eps & z<r[2]-eps]
    density(z, from=from, to=to, n=nb, na.rm=TRUE)$y
})
argvals <- seq(from, to, len=nb)
fdobj <- smooth.basis(argvals, densY, wbasis,
                       fdnames = c("x", "samples", "density"))$fd
regDens <- landmarkreg(fdobj, landmark[1:k], WfdPar=WfdPar, monwrd=TRUE)
warpfdobj <- regDens$warpfdfd
warpedX <- as.matrix(eval.fd(warfdfdobj, argvals))
funs <- apply(warpedX, 2, approxfun, argvals)
## newDat <- list()
## for (i in 1:length(funs))
##   newDat[[names(funs)[1]]] <- data.frame(data=funs[[i]](x[[1]][1],
##     which=names(funs)[1])
## visualization
## lattice::densityplot(~ data | which, sampleData,
**Lfd**  

*Define a Linear Differential Operator Object*

**Description**

A linear differential operator of order $m$ is defined, usually to specify a roughness penalty.

**Usage**

```r
Lfd(nderiv=0, bwlist=vector("list", 0))
```

**Arguments**

- `nderiv`: A nonnegative integer specifying the order $m$ of the highest order derivative in the operator.
- `bwlist`: A list of length $m$. Each member contains a functional data object that acts as a weight function for a derivative. The first member weights the function, the second the first derivative, and so on up to order $m-1$.

**Details**

To check that an object is of this class, use functions `is.Lfd` or `int2Lfd`.

Linear differential operator objects are often used to define roughness penalties for smoothing towards a "hypersmooth" function that is annihilated by the operator. For example, the harmonic acceleration operator used in the analysis of the Canadian daily weather data annihilates linear combinations of $1$, $\sin(2 \pi t/365)$, and $\cos(2 \pi t/365)$, and the larger the smoothing parameter, the closer the smooth function will be to a function of this shape.

Function `pda.fd` estimates a linear differential operator object that comes as close as possible to annihilating a functional data object.

A linear differential operator of order $m$ is a linear combination of the derivatives of a functional data object up to order $m$. The derivatives of orders 0, 1, ..., $m-1$ can each be multiplied by a weight function $b(t)$ that may or may not vary with argument $t$.

If the notation $D^j$ is taken to mean "take the derivative of order $j"$, then a linear differential operator $L$ applied to function $x$ has the expression

$Lx(t) = b_0(t) x(t) + b_1(t) Dx(t) + ... + b_{m-1}(t) D^{m-1} x(t) + D^m x(t)$

There are `print`, `summary`, and `plot` methods for objects of class `Lfd`.
Value

a linear differential operator object

See Also

int2Lfd, vec2Lfd, fdPar, pda.fd plot.Lfd

Examples

```r
Set up the harmonic acceleration operator
dayrange <- c(0,365)
Lbasis <- create.constant.basis(dayrange,
 axes=list("axesIntervals"))
Lcoef <- matrix(c(0,(2*pi/365)^2,0),1,3)
bfdobj <- fd(Lcoef,Lbasis)
bwtlist <- fd2list(bfdobj)
harmaccelLfd <- Lfd(3, bwtlist)
```

Description

Lines defined by functional observations are added to an existing plot.

Usage

```r
S3 method for class 'fd'
lines(x, Lfdobj=int2Lfd(0), nx=201, ...)
S3 method for class 'fdSmooth'
lines(x, Lfdobj=int2Lfd(0), nx=201, ...)
```

Arguments

- `x` a univariate functional data object to be evaluated at `nx` points over `xlim` and added as a line to an existing plot.
- `Lfdobj` either a nonnegative integer or a linear differential operator object. If present, the derivative or the value of applying the operator is evaluated rather than the functions themselves.
- `nx` Number of points within `xlim` at which to evaluate `x` for plotting.
- `...` additional arguments such as axis titles and so forth that can be used in plotting programs called by `lines.fd` or `lines.fdSmooth`.

Side Effects

Lines added to an existing plot.
linmod

Fit Fully Functional Linear Model

Description

A functional dependent variable $y_i(t)$ is approximated by a single functional covariate $x_i(s)$ plus an intercept function $\alpha(t)$, and the covariate can affect the dependent variable for all values of its argument. The equation for the model is

$$y_i(t) = \beta_0(t) + \int \beta_1(s, t)x_i(s)ds + e_i(t)$$

for $i = 1, \ldots, N$. The regression function $\beta_1(s, t)$ is a bivariate function. The final term $e_i(t)$ is a residual, lack of fit or error term. There is no need for values $s$ and $t$ to be on the same continuum.

Usage

linmod(xfdobj, yfdobj, betaList, wtvec=NULL)
Arguments

xfdobj  a functional data object for the covariate
yfdobj  a functional data object for the dependent variable
betalist a list object of length 2. The first element is a functional parameter object specifying a basis and a roughness penalty for the intercept term. The second element is a bivariate functional parameter object for the bivariate regression function.
wtvec   a vector of weights for each observation. Its default value is NULL, in which case the weights are assumed to be 1.

Value

a named list of length 3 with the following entries:

beta0estfd the intercept functional data object.
betalestbifd a bivariate functional data object for the regression function.
yhatfdobj   a functional data object for the approximation to the dependent variable defined by the linear model, if the dependent variable is functional. Otherwise the matrix of approximate values.

Source


See Also

bifdPar, fRegress

Examples

#See the prediction of precipitation using temperature as
#the independent variable in the analysis of the daily weather
#data, and the analysis of the Swedish mortality data.
Description

51 measurements of the position of the lower lip every 7 milliseconds for 20 repitions of the syllable 'bob'.

Usage

lip
lipmarks
liptime

Format

- lip a matrix of dimension c(51, 20) giving the position of the lower lip every 7 milliseconds for 350 miliseconds.
- lipmarks a matrix of dimension c(20, 2) giving the positions of the 'leftElbow' and 'rightElbow' in each of the 20 repitions of the syllable 'bob'.
- liptime time in seconds from the start = seq(0, 0.35, 51) = every 7 milliseconds.

Details

These are rather simple data, involving the movement of the lower lip while saying "bob". There are 20 replications and 51 sampling points. The data are used to illustrate two techniques: landmark registration and principal differential analysis. Principal differential analysis estimates a linear differential equation that can be used to describe not only the observed curves, but also a certain number of their derivatives. For a rather more elaborate example of principal differential analysis, see the handwriting data.

See the lip demo.

Source


Examples

# See the lip demo.
**Description**

Clip inputs and mixed-effects predictions to (upper, lower) or to selected quantiles to limit wild predictions outside the training set.

**Usage**

```r
lmewinsor(fixed, data, random, lower=NULL, upper=NULL, trim=0,
quantileType=7, correlation, weights, subset, method,
na.action, control, contrasts = NULL, keep.data=TRUE,
...)
```

**Arguments**

- **fixed**: a two-sided linear formula object describing the fixed-effects part of the model, with the response on the left of a `-` operator and the terms, separated by `+` operators, on the right. The left hand side of `formula` must be a single vector in `data`, untransformed.

- **data**: an optional data frame containing the variables named in `fixed`, `random`, `correlation`, `weights`, and `subset`. By default the variables are taken from the environment from which `lme` is called.

- **random**: a random- / mixed-effects specification, as described with `lme`. NOTE: Unlike `lme`, `random` must be provided; it can not be inferred from `data`.

- **lower, upper**: optional numeric vectors with names matching columns of `data` giving limits on the ranges of predictors and predictions: If present, values below `lower` will be increased to `lower`, and values above `upper` will be decreased to `upper`. If absent, these limit(s) will be inferred from `quantile(..., prob=c(trim, 1-trim), na.rm=TRUE, type=quantileType)`.

- **trim**: the fraction (0 to 0.5) of observations to be considered outside the range of the data in determining limits not specified in `lower` and `upper`. NOTES:
  1. `trim>0` with a singular fit may give an error. In such cases, fix the singularity and retry.
  2. `trim = 0.5` should NOT be used except to check the algorithm, because it trims everything to the median, thereby providing zero leverage for estimating a regression.
  3. The current algorithm does does NOT adjust any of the variance parameter estimates to account for predictions outside `lower` and `upper`. This will have no effect for `trim = 0` or `trim otherwise so small that there are not predictions outside `lower` and `upper`. However, for more substantive trimming, this could be an issue. This is different from `ImWinsor`.
quantileType an integer between 1 and 9 selecting one of the nine quantile algorithms to be used with ‘trim’ to determine limits not provided with ‘lower’ and ‘upper’.

correlation an optional correlation structure, as described with lme.

weights an optional heteroscedasticity structure, as described with lme.

subset an optional vector specifying a subset of observations to be used in the fitting process, as described with lme.

method a character string. If ‘”REML”’ the model is fit by maximizing the restricted log-likelihood. If ‘”ML”’ the log-likelihood is maximized. Defaults to ‘”REML”’.

na.action a function that indicates what should happen when the data contain ‘NA’s. The default action (‘na.fail’) causes ‘lme’ to print an error message and terminate if there are any incomplete observations.

control a list of control values for the estimation algorithm to replace the default values returned by the function lmeControl. Defaults to an empty list.

NOTE: Other control parameters such as ‘singular.ok’ as documented in glsControl may also work, but should be used with caution.

contrasts an optional list. See the ‘contrasts.arg’ of ‘model.matrix.default’.

keep.data logical: should the ‘data’ argument (if supplied and a data frame) be saved as part of the model object?

... additional arguments to be passed to the low level regression fitting functions; see lme.

Details

1. Identify inputs and outputs as follows:
   1.1. mdly <- mdlx <- fixed; mdly[[3]] <- NULL; mdlx[[2]] <- NULL;
   1.2. xNames <- c(all.vars(mdlx), all.vars(random)).
   1.3. yNames <- all.vars(mdly). Give an error if as.character(mdlx[[2]]) != yNames.

2. Do ‘lower’ and ‘upper’ contain limits for all numeric columns of ‘data’? Create limits to fill any missing.

3. clipData = data with all xNames clipped to (lower, upper).

4. fit0 <- lme(...)  

5. Add components lower and upper to fit0 and convert it to class c(’lmeWinsor’, ’lme’).

6. Clip any stored predictions at the Winsor limits for ‘y’.

NOTE: This is different from lmeWinsor, which uses quadratic programming with predictions outside limits, transferring extreme points one at a time to constraints that force the unWinsorized predictions for those points to be at least as extreme as the limits.

Value

an object of class c(’lmeWinsor’, ’lme’) with ‘lower’, ‘upper’, and ‘message’ components in addition to the standard ‘lm’ components. The ‘message’ is a list with its first component being either ‘all predictions inside limits’ or ‘predictions outside limits’. In the latter case, there rest of the list summarizes how many and which points have predictions outside limits.
Author(s)
Spencer Graves

See Also
lmWinsor predict.lmWinsor lme quantile

Examples
```
fmlw <- lmWinsor(distance ~ age, data = Orthodont,
 random=~age|Subject)
fmlw.1 <- lmWinsor(distance ~ age, data = Orthodont,
 random=~age|Subject, trim=0.1)
```

Description

Clip inputs and predictions to (upper, lower) or to selected quantiles to limit wild predictions outside the training set.

Usage

```
lmWinsor(formula, data, lower=NULL, upper=NULL, trim=0,
 quantileType=7, subset, weights=NULL, na.action,
 model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
 singular.ok = TRUE, contrasts = NULL, offset=NULL,
 method=c('QP', 'clip'), eps=sqrt(.Machine$double.eps),
 trace=ceiling(sqrt(nrow(data))), ...)
```

Arguments

- **formula**: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. See lm. The left hand side of 'formula' must be a single vector in 'data', untransformed.
- **data**: an optional data frame, list or environment (or object coercible by 'as.data.frame' to a data frame) containing the variables in the model. If not found in 'data', the variables are taken from 'environment(formula)'; see lm.
- **lower, upper**: Either NULL or a numeric vector or a list.
- **quantileType**: If a numeric vector, it must have names matching columns of 'data' giving limits on the ranges of predictors and predictions: If present, values below 'lower' will be increased to 'lower', and values above 'upper' will be decreased to 'upper'. If absent, these limit(s) will be inferred from quantile(..., prob=c(trim, 1-trim), na.rm=TRUE, type=quantileType).
- **method**: If length(trim) > 1 or either 'lower' or 'upper' is a list, 'lmWinsor' will return a list giving alternative fits; see 'value' below.
`lmWinsor`

- **Trim**: Either a constant or a numeric vector giving the fraction (0 to 0.5) of observations to be considered outside the range of the data in determining limits not specified in 'lower' and 'upper'. If length(trim) > 1 or either 'lower' or 'upper' is a list, 'lmWinsor' will return a list giving alternative fits; see 'value' below.

**NOTES:**

1. **Trim > 0** with a singular fit may give an error. In such cases, fix the singularity and retry.
2. **Trim = 0.5** should NOT be used except to check the algorithm, because it trims everything to the median, thereby providing zero leverage for estimating a regression.

- **QuantileType**: an integer between 1 and 9 selecting one of the nine quantile algorithms to be used with 'trim' to determine limits not provided with 'lower' and 'upper'; see `quantile`.

- **Subset**: an optional vector specifying a subset of observations to be used in the fitting process.

- **Weights**: an optional vector of weights to be used in the fitting process. Should be 'NULL' or a numeric vector. If non-NULL, weighted least squares is used with weights 'weights' (that is, minimizing 'sum(w*e*e)'); otherwise ordinary least squares is used.

- **Na.action**: a function which indicates what should happen when the data contain 'NA's. The default is set by the 'na.action' setting of 'options', and is 'na.fail' if that is unset. The factory-fresh default is 'na.omit'. Another possible value is 'NULL', no action. Value 'na.exclude' can be useful.

- **Model, x, y, qr**: logicals. If 'TRUE' the corresponding components of the fit (the model frame, the model matrix, the response, the QR decomposition) are returned.

- **Singular.ok**: logical. If 'FALSE' (the default in S but not in R) a singular fit is an error.

- **Contrasts**: an optional list. See the 'contrasts.arg' of 'model.matrix.default'.

- **Offset**: this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be 'NULL' or a numeric vector of length either one or equal to the number of cases. One or more 'offset' terms can be included in the formula instead or as well, and if both are specified their sum is used. See 'model.offset'.

- **Method**: Either 'QP' or 'clip'; partial matching is allowed. If 'clip', force all 'fitted.values' from an 'lm' fit to be at least lower[yName] and at most upper[yName]. If 'QP', iteratively find the prediction farthest outside (lower, upper)[yName] and transfer it from the sum of squared residuals objective function to a constraint that keeps high 'fitted.values' from going below upper[yName] and low 'fitted.values' from going above lower[yName].

- **Eps**: small positive number used in two ways:
  - limits 'pred' is judged between 'lower' and 'upper' for 'y' as follows: First compute mod = mean(abs(y)). If this is 0, let Eps = eps; otherwise let Eps = eps*mod. Then pred is low if it is less than (lower - Eps), high if it exceeds (upper + Eps), and inside limits otherwise.
• QP To identify singularity in the quadratic program (QP) discussed in 'details', step 7 below, first compute the model.matrix of the points with interior predictions. Then compute the QR decomposition of this reduced model.matrix. Then compute the absolute values of the diagonal elements of R. If the smallest of these numbers is less than eps times the largest, terminate the QP with the previous parameter estimates.

trace

Print the iteration count every 'trace' iteration during 'QP' iterations; see details. 'trace' = 0 means no trace.

... additional arguments to be passed to the low level regression fitting functions; see lm.

Details

1. Identify inputs and outputs via mdlx <- mdly <- formula; mdly[[3]] <- NULL; mdlx[[2]] <- NULL; xNames <- all.vars(mdlx); yNames <- all.vars(mdly). Give an error if as.character(mdlx[[2]]) != yNames.

2. Do 'lower' and 'upper' contain limits for all numeric columns of 'data'? Create limits to fill any missing.

3. clipData = data with all xNames clipped to (lower, upper).

4. fit0 <- lm(formula, clipData, subset = subset, weights = weights, na.action = na.action, method = method, x=x, y=y, qr=qr, singular.ok=singular.ok, contrasts=contrasts, offset=offset, ...)

5. out = a logical matrix with two columns, indicating any of predict(fit0) outside (lower, upper)[yName].

6. Add components lower and upper to fit0 and convert it to class c('lmWinsor', 'lm').

7. If((method == 'clip') || !any(out)), return(fit0).

8. Else, use quadratic programming (solve.QP) to minimize the 'Winsorized sum of squares of residuals' as follows:

8.1. First find the prediction farthest outside (lower, upper)[yNames]. Set temporary limits at the next closest point inside that point (or at the limit if that’s closer).

8.2. Use QP to minimize the sum of squares of residuals among all points not outside the temporary limits while keeping the prediction for the exceptional point away from the interior of (lower, upper)[yNames].

8.3. Are the predictions for all points unconstrained in QP inside (lower, upper)[yNames]? If yes, quit.

8.4. Otherwise, among the points still unconstrained, find the prediction farthest outside (lower, upper)[yNames]. Adjust the temporary limits to the next closest point inside that point (or at the limit if that’s closer).

8.5. Use QP as in 8.2 but with multiple exceptional points, then return to step 8.3.

9. Modify the components of fit0 as appropriate and return the result.

Value

an object of class 'lmWinsor', which is either an object of class c('lmWinsor', 'lm') or a list of such objects. A list is returned when length(trim) > 0 or is.list(lower) or is.list(upper). The length of the
output list is the max of length(trim) and the lengths of any lists provided for 'lower' and 'upper'. If these lengths are not the same, shorter ones are replicated to match the longest one.

An object of class c('lmWinsor', 'lm') has 'lower', 'upper', 'out', 'message', and 'elapsed.time' components in addition to the standard 'lm' components. The 'out' component is a logical matrix identifying which predictions from the initial 'lm' fit were below lower[yName] and above upper[yName]. If method = 'QP' and the initial fit produces predictions outside the limits, this object returned will also include a component 'coefIter' containing the model coefficients, the index number of the observation in 'data' transferred from the objective function to the constraints on that iteration, plus the sum of squared residuals before and after clipping the predictions and the number of predictions in 5 categories: below and at the lower limit, between the limits, and at and above the upper limit. The 'elapsed.time' component gives the run time in seconds.

The options for 'message' are as follows:

1. 'Initial fit in bounds': All predictions were between 'lower' and 'upper' for 'y'.
2. 'QP iterations successful': The QP iteration described in 'Details', step 7, terminated with all predictions either at or between the 'lower' and 'upper' for 'y'.
3. 'Iteration terminated by a singular quadratic program': The QP iteration described in 'Details', step 7, terminated when the model.matrix for the QP objective function became rank deficient. (Rank deficient in this case means that the smallest singular value is less than 'eps' times the largest.)

In addition to the coefficients, 'coefIter' also includes columns for 'SSEraw' and 'SSEclipped', containing the residual sums of squares from the estimated linear model before and after clipping to the 'lower' and 'upper' limits for 'y', plus 'nLoOut', 'nLo', 'nIn', 'nHi', and 'nHiOut', summarizing the distribution of model predictions at each iteration relative to the limits.

Author(s)
Spencer Graves

See Also
predict.lmWinsor lmWinsor lm quantile solve.QP

Examples

```r
example from 'anscombe'
lm.1 <- lmWinsor(y1~x1, data=anscombe)

no leverage to estimate the slope
lm.1.5 <- lmWinsor(y1~x1, data=anscombe, trim=0.5)

test nonlinear optimization
lm.1.25 <- lmWinsor(y1~x1, data=anscombe, trim=0.25)

list example
lm.1. <- lmWinsor(y1~x1, data=anscombe, trim=c(0, 0.25, .4, .5))
```
Description

internal functions used by lmWinsor, not intended for direct use and may be changed in the future without notice.

Usage

constraintCheck(Amat, bvec, eps=sqrt(.Machine$double.eps) )

lmWinsor1(formula, data, lower=NULL, upper=NULL, trim=0,
quantileType=7, subset, weights=NULL, na.action,
model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset=NULL,
method=c('QP', 'clip'), eps=sqrt(.Machine$double.eps),
trace=ceiling(sqrt(nrow(data))), ...)

lmWinsor2(formula, data, lower=NULL, upper=NULL, trim=0,
quantileType=7, subset, weights=NULL, na.action,
model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset=NULL,
method=c('QP', 'clip'), eps=sqrt(.Machine$double.eps),
trace=ceiling(sqrt(nrow(data))), ...)

Arguments

formula, data, lower, upper, trim, quantileType, subset, weights, na.action, model, x, y, qr, singular.ok

Amat, bvec t(Amat) and bvec are arguments to solve.QP.

Author(s)

Spencer Graves

See Also

lmWinsor solve.QP
**matplot**  
*Plot Columns of Matrices*

**Description**

Plot the columns of one matrix against the columns of another.

**Usage**

```r
matplot(x, ...)
```

## Default S3 method:

```r
matplot(x, y, type = "p", lty = 1:5, lwd = 1,
 lend = par("lend"), pch = NULL, col = 1:6, cex = NULL, bg = NA,
 xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, ..., add = FALSE,
 verbose =getOption("verbose"))
```

## S3 method for class 'Date'

```r
matplot(x, y, type = "p", lty = 1:5, lwd = 1,
 lend = par("lend"), pch = NULL, col = 1:6, cex = NULL, bg = NA,
 xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, ..., add = FALSE,
 verbose =getOption("verbose"))
```

## S3 method for class 'POSIXct'

```r
matplot(x, y, type = "p", lty = 1:5, lwd = 1,
 lend = par("lend"), pch = NULL, col = 1:6, cex = NULL, bg = NA,
 xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL, ..., add = FALSE,
 verbose =getOption("verbose"))
```

**Arguments**

- **x, y**  
  vectors or matrices of data for plotting. The number of rows should match. If one of them are missing, the other is taken as 'y' and an 'x' vector of '1:n' is used. Missing values ('NA's) are allowed.

- **type**  
  character string (length 1 vector) or vector of 1-character strings indicating the type of plot for each column of 'y', see 'plot' for all possible 'type's. The first character of 'type' defines the first plot, the second character the second, etc. Characters in 'type' are cycled through; e.g., "pl" alternately plots points and lines.

- **lty, lwd, lend**  
  vector of line types, widths, and end styles. The first element is for the first column, the second element for the second column, etc., even if lines are not plotted for all columns. Line types will be used cyclically until all plots are drawn.

- **pch**  
  character string or vector of 1-characters or integers for plotting characters, see 'points'. The first character is the plotting-character for the first plot, the second for the second, etc. The default is the digits (1 through 9, 0) then the lowercase and uppercase letters.

- **col**  
  vector of colors. Colors are used cyclically.
cex vector of character expansion sizes, used cyclically. This works as a multiple of 'par("cex")'. 'NULL' is equivalent to '1.0'.

bg vector of background (fill) colors for the open plot symbols given by 'pch=21:25' as in 'points'. The default 'NA' corresponds to the one of the underlying function 'plot.xy'.

xlab, ylab titles for x and y axes, as in 'plot'.

xlim, ylim ranges of x and y axes, as in 'plot'.

... Graphical parameters (see 'par') and any further arguments of 'plot', typically 'plot.default', may also be supplied as arguments to this function. Hence, the high-level graphics control arguments described under 'par' and the arguments to 'title' may be supplied to this function.

add logical. If 'TRUE', plots are added to current one, using 'points' and 'lines'.

verbose logical. If 'TRUE', write one line of what is done.

Details

Note that for multivariate data, a suitable array must first be defined using the par function.

matplot.default calls matplot. The other methods are needed, because the default methods ignore the Date or POSIXct character of x, labeling the horizontal axis as numbers, thereby placing it on the user to translate the numbers of days or seconds since the start of the epoch into dates (and possibly times for POSIXct x).

Side Effects

a plot of the functional observations

See Also

matplot, plot, points, lines, matrix, par

Examples

```r
##
matplot.Date, matplot.POSIXct
##
Date
invasion1 <- as.Date('1775-09-04')
invasion2 <- as.Date('1812-07-12')
earlyUS.Canada <- c(invasion1, invasion2)
Y <- matrix(1:4, 2, 2)
matplot(earlyUS.Canada, Y)

POSIXct
AmRev.ct <- as.POSIXct1970(c('1776-07-04', '1789-04-30'))
matplot(AmRev.ct, Y)

##
matplot.default (copied from matplot(graphics))
##
```
**mean.fd**  

**Mean of Functional Data**

**Description**

Evaluate the mean of a set of functions in a functional data object.
Usage

## S3 method for class 'fd'

mean(x, ...)

Arguments

x           a functional data object.
...

Other arguments to match the generic function for 'mean'

Value

a functional data object with a single replication that contains the mean of the functions in the object fd.

See Also

`stddev.fd`, `var.fd`, `sum.fd`, `center.fd` mean

Examples

##
## 1. univeriate: lip motion
##
liptime <- seq(0,1,.02)
liprange <- c(0,1)

# create the fd object

# use 31 order 6 splines so we can look at acceleration

nbasis <- 51
norder <- 6
lipbasis <- create.bspline.basis(liprange, nbasis, norder)

# apply some light smoothing to this object

lipLfdobj <- int2Lfd(4)
liplambda <- 1e-12
lipfdPar <- fdPar(lipbasis, lipLfdobj, liplambda)

lipfd <- smooth.basis(liptime, lip, lipfdPar)$fd
names(lipfd$fdnames) = c("Normalized time", "Replications", "mm")

lipmeanfd <- mean.fd(lipfd)
plot(lipmeanfd)

##
## 2. Trivariate: CanadianWeather
##

dayrng <- c(0, 365)

nbasis <- 51
Description

These data from the Connecticut Tumor Registry present age-adjusted numbers of melanoma skin-cancer incidences per 100,000 people in Connecticut for the years from 1936 to 1972.

Format

A data frame with 37 observations on the following 2 variables.

- **year**  Years 1936 to 1972.
- **incidence**  Rate of melanoma cancer per 100,000 population.

Details

This is a copy of the 'melanoma' dataset in the 'lattice' package. It is unrelated to the object of the same name in the 'boot' package.

Source


See Also

melanoma melanoma

Examples

plot(melanoma[, -1], type="b")
monfn | Evaluates a monotone function

Description
Evaluates a monotone function

Usage
monfn(argvals, Wfdobj, basislist=vector("list", JMAX), returnMatrix=FALSE)

Arguments
- argvals: A numerical vector at which function and derivative are evaluated.
- Wfdobj: A functional data object.
- basislist: A list containing values of basis functions.
- returnMatrix: logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Details
This function evaluates a strictly monotone function of the form

\[ h(x) = [D^{-1}\exp(Wfdoj)](x), \]

where \( D^{-1} \) means taking the indefinite integral. The interval over which the integration takes places is defined in the basis object in Wfdobj.

Value
A numerical vector or matrix containing the values the warping function \( h \).

See Also
landmarkreg

Examples

```r
basically this example resembles part of landmarkreg.R that uses monfn.R to
estimate the warping function.

Specify the curve subject to be registered
n=21
tbreaks = seq(0, 2*pi, len=n)
xval <- sin(tbreaks)
rangeval <- range(tbreaks)
```
## monomial

### Evaluate Monomial Basis

**Description**

Computes the values of the powers of argument t.

**Usage**

```r
monomial(evalarg, exponents, nderiv=0)
```

**Arguments**

- `evalarg` a vector of argument values.
- `exponents` a vector of nonnegative integer values specifying the powers to be computed.
- `nderiv` a nonnegative integer specifying the order of derivative to be evaluated.

**Value**

a matrix of values of basis functions. Rows correspond to argument values and columns to basis functions.
monomialpen

See Also

power, expon, fourier, polyg, bsplineS

Examples

# set up a monomial basis for the first five powers
nbasis <- 5
basisobj <- create.monomial.basis(c(-1,1), nbasis)
# evaluate the basis
tval <- seq(-1,1,0.1)
basismat <- monomial(tval, 1:basisobj$nbasis)

monomialpen Evaluate Monomial Roughness Penalty Matrix

Description

The roughness penalty matrix is the set of inner products of all pairs of a derivative of integer powers of the argument.

Usage

monomialpen(basisobj, Lfdobj=int2Lfd(2),
             rng=basisobj$rangeval)

Arguments

basisobj a monomial basis object.
Lfdobj either a nonnegative integer specifying an order of derivative or a linear differential operator object.
rng the inner product may be computed over a range that is contained within the range defined in the basis object. This is a vector or length two defining the range.

Value

a symmetric matrix of order equal to the number of monomial basis functions.

See Also

exponpen, fourierpen, bsplinepen, polygpen
MontrealTemp

Examples

```r
set up a monomial basis for the first five powers
n_basis <- 5
basis_obj <- create.monomial.basis(c(-1,1), n_basis)
evaluate the roughness penalty matrix for the
second derivative.
penmat <- monomialpen(basis_obj, 2)

with rng of class Date and POSIXct
Date
invasion1 <- as.Date('1775-09-04')
invasion2 <- as.Date('1812-07-12')
earlyUS.Canada <- c(invasion1, invasion2)
BspInvade1 <- create.monomial.basis(earlyUS.Canada)
invadmat <- monomialpen(BspInvade1)

POSIXct
AmRev.ct <- as.POSIXct1970(c('1776-07-04', '1789-04-30'))
BspRev1.ct <- create.monomial.basis(AmRev.ct)
revmat <- monomialpen(BspRev1.ct)
```

MontrealTemp

Montreal Daily Temperature

Description

Temperature in degrees Celsius in Montreal each day from 1961 through 1994

Usage

data(MontrealTemp)

Format

A numeric array with dimnames = list(1961:1994, names(dayOfYear)).

References


See Also

CanadianWeather monthAccessories
Examples

```r
data(MontrealTemp)
JanuaryThaw <- t(MontrealTemp[, 16:47])
```

nondurables  

<table>
<thead>
<tr>
<th>nondurables</th>
<th>Nondurable goods index</th>
</tr>
</thead>
</table>

Description

US nondurable goods index time series, January 1919 to January 2000.

Format

An object of class 'ts'.

Source


Examples

```r
plot(nondurables, log="y")
```

Order of a B-spline

```
norder = number of basis functions minus the number of interior knots.
```

Usage

```r
norder(x, ...)
S3 method for class 'fd'
norder(x, ...)
S3 method for class 'basisfd'
norder(x, ...)
Default S3 method:
norder(x, ...)
```
norder

#norder.bspline(x, ...)

#NOTE: The following is required by CRAN rules that
# function names like "as.numeric" must follow the documentation
# standards for S3 generics, even when they are not.
# Please ignore the following line:
## S3 method for class 'bspline'
norder(x, ...)

Arguments

x Either a basisfd object or an object containing a basisfd object as a component.

Details

norder throws an error of basisfd[['type']] != 'bspline'.

Value

An integer giving the order of the B-spline.

Author(s)

Spencer Graves

See Also

create.bspline.basis

Examples

bspl1.1 <- create.bspline.basis(norder=1, breaks=0:1)

stopifnot(norder(bspl1.1)==1)

stopifnot(norder(fd(0, basisobj=bspl1.1))==1)

stopifnot(norder(fd(rep(0, 4)))==4)

stopifnot(norder(list(fd(rep(0, 4)))==4)

## Not run:
norder(list(list(fd(rep(0, 4)))))
Error in norder.default(list(list(fd(rep(0, 4))))) :
  input is not a 'basisfd' object and does not have a 'basisfd'
component.

## End(Not run)

stopifnot(norder(create.bspline.basis(norder=1, breaks=c(0,.5, 1))) == 1)
objAndNames

Add names to an object

Description

Add names to an object from 'preferred' if available and 'default' if not.

Usage

objAndNames(object, preferred, default)

Arguments

object

an object of some type to which names must be added. If length(dim(object))>0 add 'dimnames', else add 'names'.

preferred

A list to check first for names to add to 'object'.

default

A list to check for names to add to 'object' if appropriate names are not found in 'preferred'.

Details

1. If length(dim(object))<1, names(object) are taken from 'preferred' if they are not NULL and have the correct length, else try 'default'.
2. Else for(lvl in 1:length(dim(object))) take dimnames[[lvl]] from 'preferred[[i]]' if they are not NULL and have the correct length, else try 'default[[i]]'.

Value

An object of the same class and structure as 'object' but with either names or dimnames added or changed.

Author(s)

Spencer Graves
See Also

bifd

Examples

# The following should NOT check 'anything' here
tst1 <- objAndNames(1:2, list(letters[1:2], LETTERS[1:2]), anything)
all.equal(tst1, c(a=1, b=2))

# The following should return 'object unchanged'
tst2 <- objAndNames(1:2, NULL, list(letters))
all.equal(tst2, 1:2)

tst3 <- objAndNames(1:2, list("a", 2), list(letters[1:2]))
all.equal(tst3, c(a=1, b=2) )

# The following checks a matrix / array
tst4 <- array(1:6, dim=c(2,3))
tst4a <- tst4
dimnames(tst4a) <- list(letters[1:2], LETTERS[1:3])
tst4b <- objAndNames(tst4,
               list(letters[1:2], LETTERS[1:3]), anything)
all.equal(tst4b, tst4a)

tst4c <- objAndNames(tst4, NULL,
               list(letters[1:2], LETTERS[1:3]) )
all.equal(tst4c, tst4a)

odesolv

Numerical Solution mth Order Differential Equation System

Description

The system of differential equations is linear, with possibly time-varying coefficient functions. The numerical solution is computed with the Runge-Kutta method.

Usage

odesolv(bwtlist, ystart=diag(rep(1,norder)),
       h0=width/100, hmin=width*1e-10, hmax=width*0.5,
       EPS=1e-4, MAXSTP=1000)

Arguments

bwtlist a list whose members are functional parameter objects defining the weight functions for the linear differential equation.
ystart  a vector of initial values for the equations. These are the values at time 0 of the solution and its first m - 1 derivatives.
h0    a positive initial step size.
hmin  the minimum allowable step size.
hmax  the maximum allowable step size.
EPS   a convergence criterion.
MAXSTP the maximum number of steps allowed.

Details
This function is required to compute a set of solutions of an estimated linear differential equation in order to compute a fit to the data that solves the equation. Such a fit will be a linear combinations of m independent solutions.

Value
a named list of length 2 containing

tp    a vector of time values at which the system is evaluated
yp    a matrix of variable values corresponding to tp.

See Also
pda.fd. For new applications, users are encouraged to consider deSolve. The deSolve package provides general solvers for ordinary and partial differential equations, as well as differential algebraic equations and delay differential equations.

Examples
#See the analyses of the lip data.

__onechild__

*growth in height of one 10-year-old boy*

Description
Heights of a boy of age approximately 10 collected during one school year. The data were collected "over one school year, with gaps corresponding to the school vacations" (AFDA, p. 84)

Format
A data.frame with two columns:

day  Integers counting the day into data collection with gaps indicating days during which data were not collected.
height Height of the boy measured on the indicated day.
Source


Examples

```r
with(onechild, plot(day, height, type="b"))
```

---

**pca.fd**  
*Functional Principal Components Analysis*

**Description**

Functional Principal components analysis aims to display types of variation across a sample of functions. Principal components analysis is an exploratory data analysis that tends to be an early part of many projects. These modes of variation are called $principal components$ or $harmonics.$ This function computes these harmonics, the eigenvalues that indicate how important each mode of variation, and harmonic scores for individual functions. If the functions are multivariate, these harmonics are combined into a composite function that summarizes joint variation among the several functions that make up a multivariate functional observation.

**Usage**

```r
pca.fd(fdobj, nharm = 2, harmfdPar=fdPar(fdobj),
 centerfns = TRUE)
```

**Arguments**

- `fdobj` a functional data object.
- `nharm` the number of harmonics or principal components to compute.
- `harmfdPar` a functional parameter object that defines the harmonic or principal component functions to be estimated.
- `centerfns` a logical value: if TRUE, subtract the mean function from each function before computing principal components.

**Value**

an object of class "pca.fd" with these named entries:

- `harmonics` a functional data object for the harmonics or eigenfunctions
- `values` the complete set of eigenvalues
- `scores` s matrix of scores on the principal components or harmonics
- `varprop` a vector giving the proportion of variance explained by each eigenfunction
- `meanfd` a functional data object giving the mean function
See Also

cca.fd, pda.fd

Examples

```r
carry out a PCA of temperature
penalize harmonic acceleration, use varimax rotation

daybasis65 <- create.fourier.basis(c(0, 365), nbasis=65, period=365)

harmacellfd <- vec2Lfd(c(0, (2*pi/365)^2, 2, 0), c(0, 365))
harmfdPar <- fdPar(daybasis65, harmacellfd, lambda=1e5)
daytempfd <- smooth.basis(day.5, CanadaWeather$dailyAv[, "Temperature.C"],
 daybasis65, fdnames=list("Day", "Station", "Deg C"))$fd

daytemppcaobj <- pca.fd(daytempfd, nharm=4, harmfdPar)
daytemppcaVarmx <- varmx.pca.fd(daytemppcaobj)
plot harmonics
op <- par(mfrow=c(2,2))
plot.pca.fd(daytemppcaobj, cex.main=0.9)

plot.pca.fd(daytemppcaVarmx, cex.main=0.9)
par(op)

plot(daytemppcaobj$harmacellfd)
plot(daytemppcaVarmx$harmacellfd)
```

Description

Principal differential analysis (PDA) estimates a system of \( n \) linear differential equations that define functions that fit the data and their derivatives. There is an equation in the system for each variable. Each equation has on its right side the highest order derivative that is used, and the order of this derivative, \( m_j, j = 1, \ldots, n \) can vary over equations.

On the left side of equation is a linear combination of all the variables and all the derivatives of these variables up to order one less than the order \( m_j \) of the highest derivative.

In addition, the right side may contain linear combinations of forcing functions as well, with the number of forcing functions varying over equations.

The linear combinations are defined by weighting functions multiplying each variable, derivative, and forcing function in the equation. These weighting functions may be constant or vary over time. They are each represented by a functional parameter object, specifying a basis for an expansion of a coefficient, a linear differential operator for smoothing purposes, a smoothing parameter value, and a logical variable indicating whether the function is to be estimated, or kept fixed.
Usage

pda.fd(xfdlist, bwtlist=NULL,
        awtlist=NULL, ufdlist=NULL, nfine=501, returnMatrix=FALSE)

Arguments

xfdlist a list whose members are functional data objects representing each variable in
the system of differential equations. Each of these objects contain one or more
curves to be represented by the corresponding differential equation. The length
of the list is equal to the number of differential equations. The number $N$ of
replications must be the same for each member functional data object.

bwtlist this argument contains the weight coefficients that multiply, in the right side of
each equation, all the variables in the system, and all their derivatives, where the
derivatives are used up to one less than the order of the variable. This argument
has, in general, a three-level structure, defined by a three-level hierarchy of list
objects.

At the top level, the argument is a single list of length equal to the number of
variables. Each component of this list is itself a list

At the second level, each component of the top level list is itself a list, also of
length equal to the number of variables.

At the third and bottom level, each component of a second level list is a list of
length equal to the number of orders of derivatives appearing on the right side of
the equation, including the variable itself, a derivative of order 0. If $m$ indicates
the order of the equation, that is the order of the derivative on the left side, then
this list is length $m$.

The components in the third level lists are functional parameter objects defining
estimates for weight functions. For a first order equation, for example, $m = 1$
and the single component in each list contains a weight function for the variable.
Since each equation has a term involving each variable in the system, a system
of first order equations will have $n^2$ at the third level of this structure.

There MUST be a component for each weight function, even if the correspond-
ing term does not appear in the equation. In the case of a missing term, the
corresponding component can be NULL, and it will be treated as a coefficient
fixed at 0.

However, in the case of a single differential equation, bwtlist can be given a
simpler structure, since in this case only $m$ coefficients are required. Therefore,
for a single equation, bwtlist can be a list of length $m$ with each component
containing a functional parameter object for the corresponding derivative.

awtlist a two-level list containing weight functions for forcing functions.

In addition to terms in each of the equations involving terms corresponding to
each derivative of each variable in the system, each equation can also have a
contribution from one or more exogenous variables, often called forcing func-
tions.

This argument defines the weights multiplying these forcing functions, and is a
list of length $n$, the number of variables. Each component of this is in turn a
list, each component of which contains a functional parameter object defining a
weight function for a forcing function. If there are no forcing functions for an equation, this list can be NULL. If none of the equations involve forcing functions, `awtlist` can be NULL, which is its default value if it is not in the argument list.

**ufdlist**

A two-level list containing forcing functions. This list structure is identical to that for `awtlist`, the only difference being that the components in the second level contain functional data objects for the forcing functions, rather than functional parameter objects.

**nfine**

A number of values for a fine mesh. The estimation of the differential equation involves discrete numerical quadrature estimates of integrals, and these require that functions be evaluated at a fine mesh of values of the argument. This argument defines the number to use. The default value of 501 is reset to five times the largest number of basis functions used to represent any variable in the system, if this number is larger.

**returnMatrix**

Logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

### Value

An object of class `pda.fd`, being a list with the following components:

- **bwtlist**: A list array of the same dimensions as the corresponding argument, containing the estimated or fixed weight functions defining the system of linear differential equations.
- **resfdlist**: A list of length equal to the number of variables or equations. Each member is a functional data object giving the residual functions or forcing functions defined as the left side of the equation (the derivative of order m of a variable) minus the linear fit on the right side. The number of replicates for each residual functional data object is the same as that for the variables.
- **awtlist**: A list of the same dimensions as the corresponding argument. Each member is an estimated or fixed weighting function for a forcing function.

### See Also

- `pca.fd`, `cca.fd`

### Examples

```r
See analyses of daily weather data for examples.
##
set up objects for examples
##
constant basis for estimating weight functions
cbasis = create.constant.basis(c(0,1))
monomial basis: {1,t} for estimating weight functions
mbasis = create.monomial.basis(c(0,1),2)
quartic spline basis with 54 basis functions for
defining functions to be analyzed
xbasis = create.bspline.basis(c(0,1),24,5)
set up functional parameter objects for weight bases
```
### Example 1: a single first order constant coefficient unforced equation

\[
\text{Dx} = -4x \quad \text{for} \quad x(t) = \exp(-4t)
\]

```r
beta <- 4
xvec <- exp(-beta*tvec)
xfd <- smooth.basis(tvec, xvec, xbasis)$fd
xfdlist <- list(xfd)
bwtlist <- list(cfdPar)
```

```r
perform the principal differential analysis
result <- pda.fd(xfdlist, bwtlist)
display weight coefficient for variable
bwtlistout <- result$bwtlist
bwtfd <- bwtlistout[[1]]
par(mfrow=c(1,1))
plot(bwtfd)
title("Weight coefficient for variable")
print(round(bwtfd$coefs,3))
display residual function
reslist <- result$resfdlist
plot(reslist[[1]])
title("Residual function")
```

### Example 2: a single first order varying coefficient unforced equation

\[
\text{Dx}(t) = -t \times x(t) \quad \text{or} \quad x(t) = \exp(-t^2/2)
\]

```r
bvec <- tvec
xvec <- exp(-tvec^2/2)
xfd <- smooth.basis(tvec, xvec, xbasis)$fd
xfdlist <- list(xfd)
bwtlist <- list(mfdPar)
```

```r
perform the principal differential analysis
result <- pda.fd(xfdlist, bwtlist)
display weight coefficient for variable
bwtlistout <- result$bwtlist
bwtfd <- bwtlistout[[1]]
par(mfrow=c(1,1))
plot(bwtfd)
title("Weight coefficient for variable")
print(round(bwtfd$coefs,3))
display residual function
reslist <- result$resfdlist
plot(reslist[[1]])
title("Residual function")
```

### Example 3: a single second order constant coefficient unforced equation

\[
\text{Dx}(t) = -(2\pi)^2 x(t) \quad \text{or} \quad x(t) = \sin(2\pi t)
\]

```r
xvec <- sin(2*pi*tvec)
```
```r
xfd = smooth.basis(tvec, xvec, xbasis)$fd
xfdlist = list(xfd)
bwtlist = list(cfdPar, cfdPar)
perform the principal differential analysis
result = pda.fd(xfdlist, bwtlist)
display weight coefficients
bwtlistout = result$bwtlist
bwtfd1 = bwtlistout[[1]]$fd
bwtfd2 = bwtlistout[[2]]$fd
par(mfrow=c(2,1))
plot(bwtfd1)
title("Weight coefficient for variable")
plot(bwtfd2)
title("Weight coefficient for derivative of variable")
print(round(c(bwtfd1$coefs, bwtfd2$coefs),3))
print(bwtfd2$coefs)
display residual function
reslist = result$resfdlist
par(mfrow=c(1,1))
plot(reslist[[1]])
title("Residual function")

Example 4: two first order constant coefficient unforced equations
Dx1(t) = x2(t) and Dx2(t) = -x1(t)
equivalent to x1(t) = sin(2*pi*t)
###
xvec1 = sin(2*pi*tvec)
xvec2 = 2*pi*cos(2*pi*tvec)
xfd1 = smooth.basis(tvec, xvec1, xbasis)$fd
xfd2 = smooth.basis(tvec, xvec2, xbasis)$fd
xfdlist = list(xfd1, xfd2)
bwtlist = list(
 list(cfdPar),
 list(cfdPar)
),
 list(
 list(cfdPar),
 list(cfdPar)
)
)
perform the principal differential analysis
result = pda.fd(xfdlist, bwtlist)
display weight coefficients
bwtlistout = result$bwtlist
bwtfd11 = bwtlistout[[1]][[1]][[1]]$fd
bwtfd21 = bwtlistout[[2]][[1]][[1]]$fd
bwtfd12 = bwtlistout[[1]][[2]][[1]]$fd
bwtfd22 = bwtlistout[[2]][[2]][[1]]$fd
par(mfrow=c(2,2))
plot(bwtfd11)
title("Weight for variable 1 in equation 1")
plot(bwtfd21)
```
title("Weight for variable 2 in equation 1")
plot(bwtfd12)
title("Weight for variable 1 in equation 2")
plot(bwtfd22)
title("Weight for variable 2 in equation 2")
print(round(bwtfd11$coefs,3))
print(round(bwtfd21$coefs,3))
print(round(bwtfd12$coefs,3))
print(round(bwtfd22$coefs,3))
# display residual functions
reslist = result$resf$fdlist
par(mfrow=c(2,1))
plot(reslist[[1]])
title("Residual function for variable 1")
plot(reslist[[2]])
title("Residual function for variable 2")
##
## Example 5: a single first order constant coefficient equation
##   Dx = -4*x  for  x(t) = exp(-4t) forced by u(t) = 2
##
beta = 4
alpha = 2
xvec0 = exp(-beta*tvec)
intv = (exp(beta*tvec) - 1)/beta
xvec = xvec0*(1 + alpha*intv)
xfd = smooth.basis(tvec, xvec, xbasis)$fd
xfdlist = list(xfd)
bwtlist = list(cfdPar)
awtlist = list(cfdPar)
ufdlist = list(fd(1,cbasis))
# perform the principal differential analysis
result = pda.fd(xfdlist, bwtlist, awtlist, ufdlist)
# display weight coefficients
bwtlistout = result$bwtlist
bwtfd = bwtlistout[[1]]$fd
awtlistout = result$awtlist
awtfd = awtlistout[[1]]$fd
par(mfrow=c(2,1))
plot(bwtfd)
title("Weight for variable")
plot(awtfd)
title("Weight for forcing function")
# display residual function
reslist = result$resf$fdlist
par(mfrow=c(1,1))
plot(reslist[[1]], ylab="residual")
title("Residual function")
##
## Example 6: two first order constant coefficient equations
##   Dx = -4*x  for  x(t) = exp(-4t) forced by u(t) = 2
##   Dx = -4*t*x  for  x(t) = exp(-4t^2/2) forced by u(t) = -1
##
beta = 4
xvec10 = exp(-beta*tvec)
alpha1 = 2
alpha2 = -1
xvec1 = xvec0 + alpha1*(1-xvec10)/beta
xvec20 = exp(-beta*tvec^2/2)
vvec = exp(beta*tvec^2/2);
intv = 0.01*(cumsum(vvec) - 0.5*vvec)
xvec2 = xvec20*(1 + alpha2*intv)
xfd1 = smooth.basis(tvec, xvec1, xbasis)$fd
xfd2 = smooth.basis(tvec, xvec2, xbasis)$fd
xfdlist = list(xfd1, xfd2)
bwtlist = list(
  list(cfdPar),
  list(cfdPar)
),
list(
  list(cfdPar),
  list(mfdPar)
)
awtlist = list(list(cfdPar), list(cfdPar))
ufdlist = list(list(fd(1,cbasis), list(fd(1,cbasis)))
# perform the principal differential analysis
result = pda.fd(xfdlist, bwtlist, awtlist, ufdlist)
# display weight functions for variables
bwtlistout = result$bwtlist
bwtfd11 = bwtlistout[[1]][[1]][[1]]$fd
bwtfd21 = bwtlistout[[2]][[1]][[1]]$fd
bwtfd12 = bwtlistout[[1]][[2]][[1]]$fd
bwtfd22 = bwtlistout[[2]][[2]][[1]]$fd
par(mfrow=c(2,2))
plot(bwtfd11)
title("weight on variable 1 in equation 1")
plot(bwtfd21)
title("weight on variable 2 in equation 1")
plot(bwtfd12)
title("weight on variable 1 in equation 2")
plot(bwtfd22)
title("weight on variable 2 in equation 2")
print(round(bwtfd11$coefs,3))
print(round(bwtfd21$coefs,3))
print(round(bwtfd12$coefs,3))
print(round(bwtfd22$coefs,3))
# display weight functions for forcing functions
awtlistout = result$awtlist
awtfd1 = awtlistout[[1]][[1]]$fd
awtfd2 = awtlistout[[2]][[1]]$fd
par(mfrow=c(2,1))
plot(awtfd1)
title("weight on forcing function in equation 1")
plot(awtfd2)
title("weight on forcing function in equation 2")
pda.overlay

# display residual functions
reslist = result$resfdlist
par(mfrow=c(2,1))
plot(reslist[[1]])
title("residual function for equation 1")
plot(reslist[[2]])
title("residual function for equation 2")

---

**pda.overlay**

*Stability Analysis for Principle Differential Analysis*

**Description**

Overlays the results of a univariate, second-order principal differential analysis on a bifurcation diagram to demonstrate stability.

**Usage**

```r
pda.overlay(pdaList, nfine=501, ncoarse=11, returnMatrix=FALSE,...)
```

**Arguments**

- **pdaList**: a list object returned by `pda.fd`.
- **nfine**: number of plotting points to use.
- **ncoarse**: number of time markers to place along the plotted curve.
- **returnMatrix**: logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.
- **...**: other arguments for 'plot'.

**Details**

Overlays a bivariate plot of the functional parameters in a univariate second-order principal differential analysis on a bifurcation diagram.

**Value**

None.

**See Also**

`pda.fd`, `plot.pda.fd`, `eigen.pda`
Examples

# This example looks at a principal differential analysis of the lip data
# in Ramsay and Silverman (2005).

# First smooth the data

lipfd <- smooth.basisPar(liptime, lip, 6, Lfdobj=int2Lfd(4),
    lambda=1e-12)$fd
names(lipfd$fdnames) <- c("time(seconds)", "replications", "mm")

# Now we'll set up functional parameter objects for the beta coefficients.

lipbasis <- lipfd$basis
lipfd0 <- fd(matrix(0, lipbasis$nbasis, 1), lipbasis)
lipfdPar <- fdPar(lipfd0, 2, 0)
bwtlist <- list(lipfdPar, lipfdPar)
xfdlist <- list(lipfd)

# Call pda

pdaList <- pda.fd(xfdlist, bwtlist)

# And plot the overlay

pda.overlay(pdaList, lwd=2, cex.lab=1.5, cex.axis=1.5)

phaseplanePlot

Phase-plane plot

Description

Plot acceleration (or Lfdobj2) vs. velocity (or Lfdobj1) of a function data object.

Usage

phaseplanePlot(evalarg, fdobj, Lfdobj1=1, Lfdobj2=2, lty=c("longdash", "solid"),
    labels=list(evalarg=seq(evalarg[1], max(evalarg), length=13),
        labels=fda::monthLetters),
    abline=list(h=0, v=0, lty=2), xlab="Velocity",
    ylab="Acceleration", returnMatrix=FALSE, ...)

Arguments

evalarg a vector of argument values at which the functional data object is to be evaluated.
    Defaults to a sequence of 181 points in the range specified by fdobj["basis"]["rangeval"].
    If(length(evalarg) == 1) it is replaced by seq(evalarg[1], evalarg[1]+1, length=181).
If(length(evalarg) == 2) it is replaced by seq(evalarg[1], evalarg[2], length=181).

fdobj  a functional data object to be evaluated.

Lfdobj1  either a nonnegative integer or a linear differential operator object. The points plotted on the horizontal axis are eval.fd(evalarg, fdobj, Lfdobj1). By default, this is the velocity.

Lfdobj2  either a nonnegative integer or a linear differential operator object. The points plotted on the vertical axis are eval.fd(evalarg, fdobj, Lfdobj2). By default, this is the acceleration.

lty  line types for the first and second halves of the plot.

labels  a list of length two:
- evalarg = a numeric vector of 'evalarg' values to be labeled.
- labels = a character vector of labels, replicated to the same length as labels[["evalarg"]]
in case it's not of the same length.

abline  arguments to a call to abline.

xlab  x axis label

ylab  y axis label

returnMatrix  logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

...  optional arguments passed to plot.

Value

Invisibly returns a matrix with two columns containing the points plotted.

See Also

plot, eval.fd, plot.fd, nondurables, index

Examples

goodsbasis <- create.bspline.basis(rangeval=c(1919,2000),
                                        nbasis=161, norder=8)
LfdobjNonDur <- int2Lfd(4)

library(zoo)
logNondurSm <- smooth.basisPar(argvals=index(nondurables),
                                y=log10(coredata(nondurables)), fdobj=goodsbasis,
                                Lfdobj=LfdobjNonDur, lambda=1e-11)

phaseplanePlot(1964, logNondurSm$fd)
Description

151 measurements of pinch force during 20 replications with time from start of measurement.

Usage

`pinch`  `pinchraw`  `pinchtime`

Format

`pinch`, `pinchraw` Matrices of dimension c(151, 20) = 20 replications of measuring pinch force every 2 milliseconds for 300 milliseconds. The original data included 300 observations. `pinchraw` consists of the first 151 of the 300 observations. `pinch` selected 151 observations so the maximum of each curve occurred at 0.076 seconds.

`pinchtime` time in seconds from the start = seq(0, 0.3, 151) = every 2 milliseconds.

Details

Measurements every 2 milliseconds.

Source

Ramsay, James O., and Silverman, Bernard W. (2006), *Functional Data Analysis, 2nd ed.*, Springer, New York, p. 13, Figure 1.11, pp. 22-23, Figure 2.2, and p. 144, Figure 7.13.

Examples

```r
matplot(pinchtime, pinchraw, type="l", lty=1, cex=2, col=1, lwd=1, xlab = "Seconds", ylab="Force (N)")
abline(h=2, lty=2)
```

```r
matplot(pinchtime, pinch, type="l", lty=1, cex=2, col=1, lwd=1, xlab = "Seconds", ylab="Force (N)")
abline(h=2, v=0.075, lty=2)
```
plot.basisfd

Plot a Basis Object

Description

Plots all the basis functions.

Usage

```r
S3 method for class 'basisfd'
plot(x, knots=TRUE, axes=NULL, ...)
```

Arguments

- `x` a basis object
- `knots` logical: If TRUE and `x[['type']]` == 'bspline', the knot locations are plotted using vertical dotted, red lines. Ignored otherwise.
- `axes` Either a logical or a list or `NULL`.
  - logical whether axes should be drawn on the plot
  - list a list used to create custom axes used to create axes via `do.call(x$axes[[1]], x$axes[-1])`. The primary example of this uses `list("axesIntervals", ...)`, e.g., with Fourier bases to create CanadianWeather plots
  - `...` additional plotting parameters passed to `matplot`.

Value

none

Side Effects

A plot of the basis functions

See Also

- `plot.fd`

Examples

```r
##
1. b-spline
##
set up the b-spline basis for the lip data, using 23 basis functions,
order 4 (cubic), and equally spaced knots.
There will be 23 - 4 = 19 interior knots at 0.05, ..., 0.95
lipbasis <- create.bspline.basis(c(0,1), 23)
plot the basis functions
plot(lipbasis)
```
## 2. Fourier basis

```r
yearbasis3 <- create.fourier.basis(c(0,365),
 axes=list("axesIntervals"))
```

# plot the basis
```r
plot(yearbasis3)
```

## 3. With Date and POSIXct rangeval

```r
Date
July4.1776 <- as.Date("1776-07-04")
Apr30.1789 <- as.Date("1789-04-30")
AmRev <- c(July4.1776, Apr30.1789)
BspRevolution <- create.bspline.basis(AmRev)
plot(BspRevolution)
```
```r
POSIXct
July4.1776ct <- as.POSIXct("1776-07-04")
Apr30.1789ct <- as.POSIXct("1789-04-30")
AmRev.ct <- c(July4.1776ct, Apr30.1789ct)
BspRev.ct <- create.bspline.basis(AmRev.ct)
plot(BspRev.ct)
```

---

**plot.cca.fd**  
*Plot Functional Canonical Correlation Weight Functions*

### Description

A canonical correlation analysis produces a series of pairs of functional data objects which, when used as weighting functions, successively maximize the corresponding canonical correlation between two functional data objects. Like functional principal component weight functions, successive weight within either side of the pair are required to be orthogonal to all previous weight functions. Consequently, each successive canonical correlation will no larger than its predecessor, and more likely substantially smaller. This function plots an object of class `cca.fd` that results from the use of function `cca.fd.R`. Each pair of weight functions is plotted after a left mouse click indicating that you are ready for the next plot.

### Usage

```r
S3 method for class 'cca.fd'
plot(x, cexval = 1, ...)
```

### Arguments

- `x` an object of class `cca.fd` produced by an invocation of function `cca.fd.R`.  

cexval A number used to determine label sizes in the plots.
...
other arguments for 'plot'.

Details

Produces a plot of a pair of weight functions corresponding to each canonical correlation between two functional data objects.

Value

invisible(NULL)

See Also

cca.fd, pda.fd plot.pca.fd

Examples

# Canonical correlation analysis of knee-hip curves

gaittime <- (1:20)/21
gaitrange <- c(0,1)
gaitbasis <- create.fourier.basis(gaitrange,21)
lambda <- 10^(-11.5)
harmaccellfd <- vec2Lfd(c(0, 0, (2*pi)^2, 0))
gaitfdPar <- fdPar(gaitbasis, harmaccellfd, lambda)
gaitfd <- smooth.basis(gaittime, gait, gaitfdPar)$fd
ccafdPar <- fdPar(gaitfd, harmaccellfd, 1e-8)
ccafd0 <- cca.fd(gaitfd[,1], gaitfd[,2], ncan=3, ccafdPar, ccafdPar)
# display the canonical correlations
round(ccafd0$ccacorr[1:6],3)
# plot the unrotated canonical weight functions
plot.cca.fd(ccafd0)
# compute a VARIMAX rotation of the canonical variables
ccafd <- varmx.cca.fd(ccafd0)
# plot the rotated canonical weight functions
plot.cca.fd(ccafd)

---

**plot.fd**  
*Plot a Functional Data Object*

**Description**

Functional data observations, or a derivative of them, are plotted. These may be either plotted simultaneously, as *matplot* does for multivariate data, or one by one with a mouse click to move from one plot to another. The function also accepts the other plot specification arguments that the regular *plot* does. Calling *plot* with an *fdSmooth* or an *fdPar* object plots its *fd* component.
Usage

```r
S3 method for class 'fd'
plot(x, y, Lfdobj=0, href=TRUE, titles=NULL,
 xlim=NULL, ylim=NULL, xlab=NULL,
 ylab=NULL, ask=FALSE, nx=NULL, axes=NULL, ...)

S3 method for class 'fdPar'
plot(x, y, Lfdobj=0, href=TRUE, titles=NULL,
 xlim=NULL, ylim=NULL, xlab=NULL,
 ylab=NULL, ask=FALSE, nx=NULL, axes=NULL, ...)

S3 method for class 'fdSmooth'
plot(x, y, Lfdobj=0, href=TRUE, titles=NULL,
 xlim=NULL, ylim=NULL, xlab=NULL,
 ylab=NULL, ask=FALSE, nx=NULL, axes=NULL, ...)
```

Arguments

- **x**: functional data object(s) to be plotted.
- **y**: sequence of points at which to evaluate the functions ‘x’ and plot on the horizontal axis. Defaults to `seq(rangex[1], rangex[2], length = nx)`. 
  
  **NOTE**: This will be the values on the horizontal axis, NOT the vertical axis.
- **Lfdobj**: either a nonnegative integer or a linear differential operator object. If present, the derivative or the value of applying the operator is plotted rather than the functions themselves.
- **href**: a logical variable: If TRUE, add a horizontal reference line at 0.
- **titles**: a vector of strings for identifying curves
- **xlab**: a label for the horizontal axis.
- **ylab**: a label for the vertical axis.
- **xlim**: a vector of length 2 containing axis limits for the horizontal axis.
- **ylim**: a vector of length 2 containing axis limits for the vertical axis.
- **ask**: a logical value: If TRUE, each curve is shown separately, and the plot advances with a mouse click.
- **nx**: the number of points to use to define the plot. The default is usually enough, but for a highly variable function more may be required.
- **axes**: Either a logical or a list or NULL.
  - logical whether axes should be drawn on the plot
  - list a list used to create custom axes used to create axes via `do.call(x$axes[[1]], x$axes[-1])`. The primary example of this uses `list("axesIntervals", ...)`. e.g., with Fourier bases to create `CanadianWeather` plots

... additional plotting arguments that can be used with function `plot`

Details

Note that for multivariate data, a suitable array must first be defined using the `par` function.
Value

'done'

Side Effects

a plot of the functional observations

See Also

lines.fd, plotfit.fd

Examples

```r
##
plot.fd
##
```

daybasis65 <- create.fourier.basis(c(0, 365), 65,
    axes=list("axesIntervals"))
harmcellLfd <- vec2Lfd(c(0,(2*pi/365)^2,0), c(0, 365))

harmfdPar <- fdPar(daybasis65, harmcellLfd, lambda=1e5)

daytempfd <- with(CanadianWeather, Data2fd(day.5,
    dailyAv[,"Temperature.C"], daybasis65))

# plot all the temperature functions for the monthly weather data
plot(daytempfd, main="Temperature Functions")

## Not run:
# To plot one at a time:
# The following pauses to request page changes.
\dontshow{
# (Without 'dontrun', the package build process
# might encounter problems with the par(ask=TRUE)
# feature.)
}  
plot(daytempfd, ask=TRUE)

## End(Not run)

##
## plot.fdSmooth
##
```

b3.4 <- create.bspline.basis(norder=3, breaks=c(0, .5, 1))

4 bases, order 3 = degree 2 =
continuous, bounded, locally quadratic
```r
fdPar3 <- fdPar(b3.4, lambda=1)

# Penalize excessive slope Lfdobj=1;
# (Can not smooth on second derivative Lfdobj=2 at it is discontinuous.)
fd3.4s0 <- smooth.basis(0:1, 0:1, fdPar3)

# using plot.fd directly
plot(fd3.4s0$fd)

# same plot via plot.fdSmooth
plot(fd3.4s0)
##
## with Date and POSIXct argvals
##
## # Date
invasion1 <- as.Date('1775-09-04')
invasion2 <- as.Date('1812-07-12')
earlyUS.Canada <- c(invasion1, invasion2)
BspInvasion <- create.bspline.basis(earlyUS.Canada)

earlyUSYears <- seq(invasion1, invasion2, length.out=7)
(earlyUScubic <- (as.numeric(earlyUSYears-invasion1)/365.24)^3)
fitCubic <- smooth.basis(earlyUSYears, earlyUScubic, BspInvasion)
plot(fitCubic)

## POSIXct
AmRev.ct <- as.POSIXct1970(c('1776-07-04', '1789-04-30'))
BspRev.ct <- create.bspline.basis(AmRev.ct)
AmRevYrs.ct <- seq(AmRev.ct[1], AmRev.ct[2], length.out=14)
(AmRevLin.ct <- as.numeric(AmRevYrs.ct-AmRev.ct[2]))
fitLin.ct <- smooth.basis(AmRevYrs.ct, AmRevLin.ct, BspRev.ct)
plot(fitLin.ct)
```

plot.Lfd
Plot a Linear Differential Operator Object

Description

Plot the coefficients of the terms of order 0 through m−1 of an object of class Lfd and length m.

Usage

```r
## S3 method for class 'Lfd'
plot(x, axes=NULL, ...)
```
plot.lmWinsor

Arguments

- `x`: a linear differential operator object to be plotted.
- `axes`: Either a logical or a list or NULL passed to `plot.fd`.
 - logical: whether axes should be drawn on the plot
 - list: a list used to create custom axes used to create axes via `do.call(x$axes[[1]], x$axes[-1])`

 The primary example of this uses `list(“axesIntervals”, ...)`, e.g., with Fourier bases to create CanadianWeather plots

 Additional plotting arguments that can be used with function `plot`.

Value

`invisible(NULL)`

Side Effects

A plot of the linear differential operator object.

See Also

`Lfd, plot.fd`

Examples

```r
# Set up the harmonic acceleration operator
dayrange <- c(0,365)
Lbasis <- create.constant.basis(dayrange,
  axes=list("axesIntervals"))
Lcoef <- matrix(c(0,2*pi/365)^2,0,1,3)
bfdobj <- fd(Lcoef,Lbasis)
bwtlist <- fd2list(bfdobj)
harmaccelfd <- Lfd(3, bwtlist)
plot(harmaccelfd)
```

```r
plot.lmWinsor

lmWinsor plot
```

Description

plot an lmWinsor model or list of models as line(s) with the data as points

Usage

```r
## S3 method for class 'lmWinsor'
plot(x, n=101, lty=1:9, col=1:9,
  lwd=c(2:4, rep(3, 6)), lty.y=c("dotted", "dashed"),
  lty.x = lty.y, col.y=1:9, col.x= col.y, lwd.y = c(1.2, 1),
  lwd.x=lwd.y, ...)
```
Arguments

- **x**: an object of class 'lmWinsor', which is either a list of objects of class c('lmWinsor', 'lm') or is a single object of that double class. Each object of class c('lmWinsor', 'lm') is the result of a single 'lmWinsor' fit. If 'x' is a list, it summarizes multiple fits with different limits to the same data.

- **n**: integer; with only one explanatory variable 'xNames' in the model, 'n' is the number of values at which to evaluate the model predictions. This is ignored if the number of explanatory variable 'xNames' in the model is different from 1.

- **lty**, **col**, **lwd**, **lty.y**, **lty.x**, **col.y**, **col.x**, **lwd.y**, **lwd.x**: 'lty', 'col' and 'lwd' are each replicated to a length matching the number of fits summarized in 'x' and used with one line for each fit in the order appearing in 'x'. The others refer to horizontal and vertical limit lines.

Details

1. One fit or several?
2. How many explanatory variables are involved in the model(s) in 'x'? If only one, then the response variable is plotted vs. that one explanatory variable. Otherwise, the response is plotted vs. predictions.
3. Plot the data.
4. Plot one line for each fit with its limits.

Value

invisible(NULL)

Author(s)

Spencer Graves

See Also

lmWinsor plot

Examples

```r
lm.1 <- lmWinsor(y1~x1, data=anscombe)
plot(lm.1)
plot(lm.1, xlim=c(0, 15), main="other title")

# list example
lm.1.1 <- lmWinsor(y1~x1, data=anscombe, trim=c(0, 0.25, .4, .5))
plot(lm.1.1)
```
plot.pca.fd Plot Functional Principal Components

Description
Display the types of variation across a sample of functions. Label with the eigenvalues that indicate the relative importance of each mode of variation.

Usage
```r
#plot.pca.fd(x, nx = 128, pointplot = TRUE, harm = 0,
# expand = 0, cycle = FALSE, ...)
```

#NOTE: The following is required by CRAN rules that
function names like "as.numeric" must follow the documentation
standards for S3 generics, even when they are not.
Please ignore the following line:
S3 method for class 'pca.fd'
plot(x, nx = 128, pointplot = TRUE, harm = 0,
expand = 0, cycle = FALSE, ...)

Arguments
- **x**: a functional data object.
- **nx**: Number of points to plot or vector (if length > 1) to use as evalarg in evaluating and plotting the functional principal components.
- **pointplot**: logical: If TRUE, the harmonics / principal components are plotted as '+' and '-'. Otherwise lines are used.
- **harm**: Harmonics / principal components to plot. If 0, plot all.
 If length(harm) > sum(par("mfrow")), the user advised, "Waiting to confirm page change..." and / or 'Click or hit ENTER for next page' for each page after the first.
- **expand**: nonnegative real: If expand == 0 then effect of +/- 2 standard deviations of each pc are given otherwise the factor expand is used.
- **cycle**: logical: If cycle=TRUE and there are 2 variables then a cycle plot will be drawn
 If the number of variables is anything else, cycle will be ignored.
- ... other arguments for 'plot'.

Details
Produces one plot for each principal component / harmonic to be plotted.

Value
invisible(NULL)
Plot Principle Differential Analysis Components

Description

Plots the results of pda.fd, allows the user to group coefficient functions by variable, equation, derivative or combination of them.

Usage

```r
## S3 method for class 'pda.fd'
plot(x, whichdim = 1, npts = 501, ...)
```

Arguments

- `x` an object of class `pda.fd`
- `whichdim` which dimension to use as grouping variables
 - 1 coefficients of each variable differential equation
 - 2 coefficient functions for each equation
 - 3 coefficients of derivatives of each variable

See Also

`cca.fd`, `pda.fd`, `plot.pca.fd`
whichdim should be an ordered vector of length between 1 and 3.

npts number of points to use for plotting.

Details

Produces one plot for each coefficient function in a principle differential analysis.

Value

invisible(NULL)

See Also

pda.fd eigen.pda

Examples

A pda analysis of the handwriting data

reduce the size to reduce the compute time for the example
ni <- 281
indx <- seq(1, 1401, length=ni)
fdaarray <- handwriting[indx,]
fdatime <- seq(0, 2.3, len=ni)

basis for coordinates
fdarange <- c(0, 2.3)
breaks <- seq(0,2.3,length.out=116)
norder <- 6
fdabasis <- create.bspline.basis(fdarange, norder=norder, breaks=breaks)

parameter object for coordinates

fdafd0 <- fd(matrix(0,fdabasis$nbasis,1), fdabasis)
fdapar <- fdPar(fdafd0,int2lf(4),1e-8)

coordinate functions and a list tontaining them

Xfd <- smooth.basis(fdatime, fdaarray[,1], fdapar)$fd
Yfd <- smooth.basis(fdatime, fdaarray[,2], fdapar)$fd

xfdlist <- list(Xfd, Yfd)

basis and parameter object for weight functions

fdabasis2 <- create.bspline.basis(fdarange, norder=norder, nbasis=31)
fdafd0 <- fd(matrix(0,fdabasis2$nbasis,1), fdabasis2)
pdaPar <- fdPar(fdafd0,1,1e-8)
pdaParList <- list(pdaPar, pdaPar)

bwtlist <- list(list(pdaParList, pdaParList), list(pdaParList, pdaParList))

do the second order pda

pdaList <- pda.fd(xfdlist, bwtlist)

plot the results

plot(pdaList, whichdim=1)
plot(pdaList, whichdim=2)
plot(pdaList, whichdim=3)

plot(pdaList, whichdim=c(1,2))
plot(pdaList, whichdim=c(1,3))
plot(pdaList, whichdim=c(2,3))

plot(pdaList, whichdim=1:3)

plotbeta
Plot a functional parameter object with confidence limits

Description

Plot a functional parameter object with confidence limits

Usage

`plotbeta(betaestlist, betastderrlist, argvals=NULL, xlab="", ...)`

Arguments

- **betaestlist**: a list containing one or more functional parameter objects (class = fdPar) or functional data objects (class = fd).
- **betastderrlist**: a list containing functional data objects for the standard errors of the objects in betaestlist.
- **argvals**: a sequence of values at which to evaluate betaestlist and betastderrlist.
- **xlab**: x axis label
- **...**: additional plotting parameters passed to `plot`.

Value

none

Side Effects

a plot of the basis functions
Plot a Functional Data Object With Data

Description

Plot either functional data observations 'x' with a fit 'fdobj' or residuals from the fit. This function is useful for assessing how well a functional data object fits the actual discrete data. The default is to make one plot per functional observation with fit if residual is FALSE and super-imposed lines if residual==TRUE. With multiple plots, the system waits to confirm a desire to move to the next page unless ask==FALSE.

Usage

plotfit.fd(y, argvals, fdobj, rng = NULL, index = NULL, nfine = 101, residual = FALSE, sortwrd = FALSE, titles=NULL, ylim=NULL, ask=TRUE, type=c("p", "l")[1+residual], xlab=NULL, ylab=NULL, sub=NULL, col=1:9, lty=1:9, lwd=1, cex.pch=1, axes=NULL, ...

plotfit.fdSmooth(y, argvals, fdSm, rng = NULL, index = NULL, nfine = 101, residual = FALSE, sortwrd = FALSE, titles=NULL, ylim=NULL, ask=TRUE, type=c("p", "l")[1+residual], xlab=NULL, ylab=NULL, sub=NULL, col=1:9, lty=1:9, lwd=1, cex.pch=1, axes=NULL, ...

Arguments

y a vector, matrix or array containing the discrete observations used to estimate the functional data object.
argvals a vector containing the argument values corresponding to the first dimension of y.
fdobj a functional data object estimated from the data.
fdSm an object of class fdSmooth
rng a vector of length 2 specifying the limits for the horizontal axis. This must be a subset of fdobj[['basis']][['rangeval']], which is the default.
index a set of indices of functions if only a subset of the observations are to be plotted. Subsetting can also be achieved by subsetting y; see details, below.
nfine the number of argument values used to define the plot of the functional data object. This may need to be increased if the functions have a great deal of fine detail.
residual
a logical variable: if TRUE, the residuals are plotted rather than the data and functional data object.

sortwrd
a logical variable: if TRUE, the observations (i.e., second dimension of y) are sorted for plotting by the size of the sum of squared residuals.

titles
a numeric vector containing strings that are titles for each observation.

ylim
a numeric vector of length 2 giving the y axis limits; see 'par'.

ask
If TRUE and if 'y' has more levels than the max length of col, lty, lwd and cex.pch, the user must confirm page change before the next plot will be created.

type
type of plot desired, as described with plot. If residual == FALSE, 'type' controls the representation for 'x', which will typically be 'p' to plot points but not lines; 'fdobj' will always plot as a line. If residual == TRUE, the default type == "l"; an alternative is "b" for both.

xlab
x axis label.

ylab
Character vector of y axis labels. If(residual), ylab defaults to 'Residuals', else to varnames derived from names(fdnames[[3]]) or fdnames[[3]] or dimnames(y)[[3]].

sub
subtitle under the x axis label. Defaults to the RMS residual from the smooth.

col, lty, lwd, cex.pch
Numeric or character vectors specifying the color (col), line type (lty), line width (lwd) and size of plotted character symbols (cex.pch) of the data representation on the plot.

If ask==TRUE, the length of the longest of these determines the number of levels of the array 'x' in each plot before asking the user to acknowledge a desire to change to the next page. Each of these is replicated to that length, so col[i] is used for x[,i] (if x is 2 dimensional), with line type and width controlled by lty[i] and lwd[i], respectively.

If ask==FALSE, these are all replicated to length = the number of plots to be superimposed.

For more information on alternative values for these parameters, see 'col', 'lty', 'lwd', or 'cex' with par.

axes
Either a logical or a list or NULL.

• logical whether axes should be drawn on the plot
• list a list used to create custom axes used to create axes via do.call(x$axes[[1]], x$axes[-1]). The primary example of this uses list("axesIntervals", ...), e.g., with Fourier bases to create CanadianWeather plots

... additional arguments such as axis labels that may be used with other plot functions.

Details
plotfit plots discrete data along with a functional data object for fitting the data. It is designed to be used after something like Data2fd, smooth.fd, smooth.basis or smoothe.basisPar to check the fit of the data offered by the fd object.

plotfit.fdSmooth calls plotfit for its 'fd’ component.
The plot can be restricted to a subset of observations (i.e., second dimension of \(y\)) or variables (i.e., third dimension of \(y\)) by providing \(y\) with the dimnames for its second and third dimensions matching a subset of the dimnames of \(f\text{dobj}'s ["coef"] (for \text{plotfit.fd} or \text{fdSm}'s ['fdobj'][['coef']] for \text{plotfit.fdSmooth}). If only one observation or variable is to be plotted, \(y\) must include 'drop = TRUE', as, e.g., \(y[, 2, 3, \text{drop=TRUE}]. \) If \(y\) or \(f\text{dobj}'s ["coef"] does not have dimnames on its second or third dimension, subsetting is achieved by taking the first few columns so the second or third dimensions match. This is achieved using \text{checkDims3}(y, f\text{dobj}'s ["coef"]], \text{defaultNames} = f\text{dobj}'s ["fdnames"]]).

Value

A matrix of mean square deviations from predicted is returned invisibly. If \(f\text{dobj}'s ["coefs"] is a 3-dimensional array, this is a matrix of dimensions equal to the last two dimensions of \(f\text{dobj}'s ["coefs"]\). This will typically be the case when \(x\) is also a 3-dimensional array with the last two dimensions matching those of \(f\text{dobj}'s ["coefs"]\). The second dimension is typically replications and the third different variables.

If \(x\) and \(f\text{obj}'s ["coefs"]\) are vectors or 2-dimensional arrays, they are padded to three dimensions, and then MSE is computed as a matrix with the second dimension = 1; if \(x\) and \(f\text{obj}'s ["coefs"]\) are vectors, the first dimension of the returned matrix will also be 1.

Side Effects

A plot of the the data 'x' with the function or the deviations between observed and predicted, depending on whether residual is FALSE or TRUE.

See Also

\text{plot, plot.fd, lines.fdplot.fdSmooth, lines.fdSmooth par smooth.fd smooth.basis smooth.basisPar Data2fd checkDims3}

Examples

```r
# set up a Fourier basis for smoothing temperature data
daybasis65 <- create.fourier.basis(c(0, 365), 65,
    axes=list("axesIntervals"))

# smooth the average temperature data using function Data2fd
Daytempfd <- with(CanadianWeather, smooth.basis(day.5, dailyAv[, "Temperature.C"], daybasis65)$fd)

# Plot the temperature data along with the fit to the data for the first
# station, St. John's Newfoundland
with(CanadianWeather, plotfit.fd(dailyAv[, "Temperature.C",
    drop=FALSE], argvals= day.5, daytempfd, index=1, titles=place))

# Default ylab = daytempfd['fdnames']]

with(CanadianWeather, plotfit.fd(dailyAv[, "Temperature.C"],
```
argvals= day.5, Daytempfd, index=1, titles=place)

plot(daytempfd)

Not run:
plot all the weather stations, one by one after a click on the plot
in response to a request.
This example is within the "dontrun" environment to prevent the
the R package checking process from pausing: without 'dontrun', the package
build process might encounter problems with the par(ask=TRUE) feature.
with(CanadianWeather, plotfit.fd(dailyAv[, "Temperature.C"], day.5,
 daytempfd, ask=TRUE))

End(Not run)
Now plot results for two weather stations.
xpd=NA, bty="n"
xpd=NA: clip lines to the device region,
not the plot or figure region
bty="n": Do not draw boxes around the plots.
ylim <- range(CanadianWeather$dailyAv[,"Temperature.C"])
Force the two plots to have the same scale
with(CanadianWeather, plotfit.fd(dailyAv[,"Temperature.C"], day.5,
 daytempfd, index=2, titles=place, ylim=ylim))
with(CanadianWeather, plotfit.fd(dailyAv[,"Temperature.C"], day.5,
 daytempfd, index=35, titles=place, ylim=ylim))

Not run:
Plot residuals with interactive display of stations one by one
par(op)
with(CanadianWeather, plotfit.fd(dailyAv[, "Temperature.C"],
 day.5, daytempfd, residual=TRUE))

End(Not run)
The gait data are bivariate, and this code illustrates how plotfit.fd
deals with the plotting of two variables at the same time
First define normalized times and their range
gaittime <- as.numeric(dimnames(gait)[[1]])/20
gaitrange <- c(0,20)
Define the harmonic acceleration differential operator
harmaccel.fd <- vec2lfdf(c(0, (2*pi/20)^2, 0), rangeval=gaitrange)
Set up basis for representing gait data.
gaitbasis <- create.fourier.basis(gaitrange, nbasis=21)
Smooth the data
gaitfd <- smooth.basisPar(gaittime, gait,
 gaitbasis, Lfdobj=harmaccel.fd, lambda=1e-2)$fd
Assign names to the data
names(gaitfd$fdnames) <- c("Normalized time", "Child", "Angle")
gaitfd$fdnames[[3]] <- c("Hip", "Knee")

Not run:
plot each pair of curves interactively, two plots per page, the top
for hip angle, and the bottom for knee angle
plotfit.fd(gait, gaittime, gaitfd)
Plot the residuals, sorting cases by residual sum of squares summed over
both hip and knee angles.
The first series of 39 plots are for hip angle, two plots per page, and the second 39 are for knee angle. The plots are sorted by the size of the total residual sum of squares, but RMS residual values for specific angles are not all going to be in order. plotfit.fd(gait, gaittime, gaitfd, residual=TRUE, sort=TRUE)

End(Not run)

Description

A function is said to be aligned or registered with a target function if its salient features, such as peaks, valleys and crossings of fixed thresholds, occur at about the same argument values as those of the target. Function `plotreg.fd` plots for each curve that is registered (1) the unregistered curve (blue dashed line), (2) the target curve (red dashed line) and (3) the registered curve (blue solid line). It also plots within the same graphics window the warping function $h(t)$ along with a dashed diagonal line as a comparison.

Usage

`plotreg.fd(reglist)`

Arguments

- `reglist` a named list that is output by a call to function `register.fd`. The members of `reglist` that are required are: `regfd` ... the registered functions, `wfd` ... the functions $W(t)$ defining the warping functions $h(t)$, `yfd` ... the unregistered functions, and `yPfd` ... the target functions. If required objects are missing, `REGLIST` was probably generated by an older version of `REGISTER.FD`, and the registration should be redone.

Value

a series of plots, each containing two side-by-side panels. Clicking on the R Graphics window advances to the next plot.

References

See Also

`smooth.monotone, smooth.morph register.fd`
Examples

```r
# register and plot the angular acceleration of the gait data
gaittime <- as.numeric(dimnames(gait)[[1]])*20
gaitrange <- c(0, 20)
# set up a fourier basis object
gaitbasis <- create.fourier.basis(gaitrange, nbasis=21)
# set up a functional parameter object penalizing harmonic acceleration
harmaccelfd <- vec2Lfd(c(0, (2*pi/20)^2, 0), rangeval=gaitrange)
gaitfdPar <- fdPar(gaitbasis, harmaccelfd, 1e-2)
# smooth the data
gaitfd <- smooth.basis(gaittime, gait, gaitfdPar)
# compute the angular acceleration functional data object
D2gaitfd <- deriv.fd(gaitfd, 2)
names(D2gaitfd$fdnames)[[3]] <- "Angular acceleration"
D2gaitfd$fdnames[[3]] <- c("Hip", "Knee")
# compute the mean angular acceleration functional data object
D2gaitmeanfd <- mean.fd(D2gaitfd)
names(D2gaitmeanfd$fdnames)[[3]] <- "Mean angular acceleration"
D2gaitmeanfd$fdnames[[3]] <- c("Hip", "Knee")
# register the functions for the first 10 boys
# argument periodic = TRUE causes register.fd to estimate a horizontal shift
# for each curve, which is a possibility when the data are periodic
nBoys <- 2 # use only 2 boys to save test time.
# set up the basis for the warping functions
nwbasis <- 7
wbasis <- create.bspline.basis(gaitrange, nbasis=3)
Warpfd <- fd(matrix(0, nbasis, nBoys), wbasis)
WarpfdPar <- fdPar(Warpfd)
# carry out the continuous registration
gaitreglist <- register.fd(D2gaitmeanfd, D2gaitfd[1:nBoys], WarpfdPar, 
                          iterlim=4, periodic=TRUE)
# set iterlim=4 to reduce the compute time;
# this argument may not be needed in many applications.
# plot the results
plotreg.fd(gaitreglist)
# display horizontal shift values
print(round(gaitreglist$shift,1))
```

Description

The coefficients multiplying the harmonics or principal component functions are plotted as points.

Usage

`plotscores(pcafd, scores=c(1, 2), xlab=NULL, ylab=NULL, loc=1, matplt2=FALSE, ...)`
Arguments

- `pcafd`: an object of the "pca.fd" class that is output by function `pca.fd`.
- `scores`: the indices of the harmonics for which coefficients are plotted.
- `xlab`: a label for the horizontal axis.
- `ylab`: a label for the vertical axis.
- `loc`: an integer: if loc > 0, you can then click on the plot in loc places and you’ll get plots of the functions with these values of the principal component coefficients.
- `matplt2`: a logical value: if TRUE, the curves are plotted on the same plot; otherwise, they are plotted separately.
- `...`: additional plotting arguments used in function `plot`.

Side Effects

- a plot of scores

See Also

- `pca.fd`

polyg

Polygonal Basis Function Values

Description

Evaluates a set of polygonal basis functions, or a derivative of these functions, at a set of arguments.

Usage

```r
polyg(x, argvals, nderiv=0)
```

Arguments

- `x`: a vector of argument values at which the polygonal basis functions are to evaluated.
- `argvals`: a strictly increasing set of argument values containing the range of `x` within it that defines the polygonal basis. The default is `x` itself.
- `nderiv`: the order of derivative to be evaluated. The derivative must not exceed one. The default derivative is 0, meaning that the basis functions themselves are evaluated.

Value

- a matrix of function values. The number of rows equals the number of arguments, and the number of columns equals the number of basis
See Also

create.polynomal.basis, polygpen

Examples

```r
# set up a set of 21 argument values
x <- seq(0,1,0.05)
# set up a set of 11 argument values
argvals <- seq(0,1,0.1)
# with the default period (1) and derivative (0)
basismat <- polyg(x, argvals)
# plot the basis functions
matplot(x, basismat, type="l")
```

polygpen
Polygonal Penalty Matrix

Description

Computes the matrix defining the roughness penalty for functions expressed in terms of a polygonal basis.

Usage

```r
polygpen(basisobj, Lfdobj=int2Lfd(1))
```

Arguments

- `basisobj` a polygonal functional basis object.
- `Lfdobj` either an integer that is either 0 or 1, or a linear differential operator object of degree 0 or 1.

Details

A roughness penalty for a function $ x(t) $ is defined by integrating the square of either the derivative of $ x(t) $ or, more generally, the result of applying a linear differential operator $ L $ to it. The only roughness penalty possible aside from penalizing the size of the function itself is the integral of the square of the first derivative, and this is the default. To apply this roughness penalty, the matrix of inner products produced by this function is necessary.

Value

A symmetric matrix of order equal to the number of basis functions defined by the polygonal basis object. Each element is the inner product of two polygonal basis functions after applying the derivative or linear differential operator defined by Lfdobj.
powerbasis

See Also

create.polygonal.basis, polyg

Examples

set up a sequence of 11 argument values
argvals <- seq(0,1,0.1)
set up the polygonal basis
basisobj <- create.polygonal.basis(argvals)
compute the 11 by 11 penalty matrix

penmat <- polygpen(basisobj)

Description

Evaluates a set of power basis functions, or a derivative of these functions, at a set of arguments.

Usage

powerbasis(x, exponents, nderiv=0)

Arguments

x a vector of argument values at which the power basis functions are to evaluated. Since exponents may be negative, for example after differentiation, it is required that all argument values be positive.

exponents a vector of exponents defining the power basis functions. If y is such a rate value, the corresponding basis function is x to the power y. The number of basis functions is equal to the number of exponents.

nderiv the derivative to be evaluated. The derivative must not exceed the order. The default derivative is 0, meaning that the basis functions themselves are evaluated.

Value

a matrix of function values. The number of rows equals the number of arguments, and the number of columns equals the number of basis functions.

See Also

create.power.basis, powerpen
Examples

set up a set of 10 positive argument values.
x <- seq(0.1, 1, 0.1)
compute values for three power basis functions
exponents <- c(0, 1, 2)
evaluate the basis matrix
basismat <- powerbasis(x, exponents)

powerpen | Power Penalty Matrix

Description

Computes the matrix defining the roughness penalty for functions expressed in terms of a power basis.

Usage

powerpen(basisobj, Lfdobj=int2Lfd(2))

Arguments

- basisobj: a power basis object.
- Lfdobj: either a nonnegative integer or a linear differential operator object.

Details

A roughness penalty for a function $x(t)$ is defined by integrating the square of either the derivative of $x(t)$ or, more generally, the result of applying a linear differential operator L to it. The most common roughness penalty is the integral of the square of the second derivative, and this is the default. To apply this roughness penalty, the matrix of inner products produced by this function is necessary.

Value

a symmetric matrix of order equal to the number of basis functions defined by the power basis object. Each element is the inner product of two power basis functions after applying the derivative or linear differential operator defined by Lfdobj.

See Also

create.power.basis, powerbasis
Examples

set up an power basis with 3 basis functions.
the powers are 0, 1, and 2.
basisobj <- create.power.basis(c(0,1),3,c(0,1,2))
compute the 3 by 3 matrix of inner products of second derivatives
#FIXME
#penmat <- powerpen(basisobj, 2)

ppBspline

Convert a B-spline function to piece-wise polynomial form

Description

The B-spline basis functions of order \(k = \text{length}(t) - 1\) defined by the knot sequence in argument \(t\) each consist of polynomial segments with the same order joined end-to-end over the successive gaps in the knot sequence. This function computes the \(k\) coefficients of these polynomial segments in the rows of the output matrix coeff, with each row corresponding to a B-spline basis function that is positive over the interval spanned by the values in \(t\). The elements of the output vector index indicate where in the sequence \(t\) we find the knots. Note that we assume \(t[1] < t[k+1]\), i.e. \(t\) is not a sequence of the same knot.

Usage

ppBspline(t)

Arguments

\(t\)
numeric vector = knot sequence of length \(norder+1\) where \(norder\) = the order of the B-spline. The knot sequence must contain at least one gap.

Value

a list object containing components

Coeff
a matrix with rows corresponding to B-spline basis functions positive over the interval spanned by \(t\) and columns corresponding to the terms 1, \(x\), \(x^2\), \(\ldots\) in the polynomial representation.

index
indices indicating where in the sequence \(t\) the knots are to be found

See Also

bsplineS

Examples

ppBspline(1:5)
predict.fRegres

Predict method for Functional Regression

Description

Model predictions for object of class `fRegres`.

Usage

```r
## S3 method for class 'fRegres'
predict(object, newdata=NULL, se.fit = FALSE,  
  interval = c("none", "confidence", "prediction"),  
  level = 0.95, ...)
```

Arguments

- `object`: Object of class inheriting from `lmWinsor`
- `newdata`: Either NULL or a list matching `object$xfdlist`. If `is.null(newdata)`, `predictions <- object$yhatfdobj` If `newdata` is a list, `predictions = the sum of either newdata[i] * betaestfdlist[i] if object$yfdobj has class 'fd' or inprod(newdata[i], betaestfdlist[i]) if class(object$yfdobj) = numeric.`
- `se.fit`: a switch indicating if standard errors of predictions are required
- `interval`: type of prediction (response or model term)
- `level`: Tolerance/confidence level
- `...`: additional arguments for other methods

Details

1. Without `newdata`, `fit <- object$yhatfdobj`.
2. With `newdata`, if `class(object$y) == 'numeric'`, `fit <- sum over i of inprod(betaestlist[i], newdata[i])`. Otherwise, `fit <- sum over i of betaestlist[i] * newdata[i]`.
3. If (se.fit | (interval != 'none')) compute `se.fit`, then return whatever is desired.

Value

The predictions produced by `predict.fRegres` are either a vector or a functional parameter (class `fdPar`) object, matching the class of `object$y`.

If `interval` is not "none", the predictions will be multivariate for `object$y` and the requested lwr and upr bounds. If `object$y` is a scalar, these predictions are returned as a matrix; otherwise, they are a multivariate functional parameter object (class `fdPar`).

If `se.fit` is TRUE, `predict.fRegres` returns a list with the following components:

- `fit`: vector or matrix or univariate or multivariate functional parameter object depending on the value of interval and the class of `object$y`.
- `se.fit`: standard error of predicted means
Author(s)
Spencer Graves

See Also
fRegress predict

Examples

```r
###
### vector response with functional explanatory variable
###
###
##
##
## # example from help('lm')
##
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c("Ctl","Trt"))
weight <- c(ctl, trt)
fRegress.D9 <- fRegress(weight ~ group)
pred.FR.D9 <- predict(fRegress.D9)
# Now compare with 'lm'
lm.D9 <- lm(weight ~ group)
pred.lm.D9 <- predict(lm.D9)

all.equal(as.vector(pred.FR.D9), as.vector(pred.lm.D9))

##
## vector response with functional explanatory variable
##
annualprec <- log10(apply(CanadianWeather$dailyAv[, "Precipitation.mm"], 2, sum))
smallbasis <- create.fourier.basis(c(0, 365), 25)
tempfd <- smooth.basis(day.5, CanadianWeather$dailyAv[, "Temperature.C"], smallbasis)$fd
precip.Temp.f <- fRegress(annualprec ~ tempfd)
#precip.Temp.p <- predict(precip.Temp.f, interval='confidence')
#class(precip.Temp.p) == 'matrix'

## ***** not yet implemented *****
##
##
## Example using se.fit
##
```
predict.lmeWinsor

Predict method for Winsorized linear model fits with mixed effects

Description

Model predictions for object of class 'lmeWinsor'.

Usage

S3 method for class 'lmeWinsor'
predict(object, newdata, level=Q, asList=FALSE,
na.action=na.fail, ...)

Arguments

Object of class inheriting from 'lmeWinsor', representing a fitted linear mixed-effects model.
newdata an optional data frame to be used for obtaining the predictions. All variables used in the fixed and random effects models, as well as the grouping factors, must be present in the data frame. If missing, the fitted values are returned.

level an optional integer vector giving the level(s) of grouping to be used in obtaining the predictions. Level values increase from outermost to innermost grouping, with level zero corresponding to the population predictions. Defaults to the highest or innermost level of grouping.

asList an optional logical value. If 'TRUE' and a single value is given in 'level', the returned object is a list with the predictions split by groups; else the returned value is either a vector or a data frame, according to the length of 'level'.

na.action a function that indicates what should happen when 'newdata' contains 'NA's. The default action ('na.fail') causes the function to print an error message and terminate if there are any incomplete observations.

... additional arguments for other methods

Details
1. Identify inputs and outputs as with lmeWinsor.
2. If 'newdata' are provided, clip all numeric xNames to (object[["lower"]], object[["upper"]]).
3. Call predict.lme
4. Clip the responses to the relevant components of (object[["lower"]], object[["upper"]]).
5. Done.

Value
'predict.lmeWinsor' produces a vector of predictions or a matrix of predictions with limits or a list, as produced by predict.lme

Author(s)
Spencer Graves

See Also
lmeWinsor predict.lme lmWinsor predict.lm

Examples
fm1w <- lmeWinsor(distance ~ age, data = Orthodont, random=~age|Subject)
predict with newdata
newDat <- data.frame(age=seq(0, 30, 2),
 Subject=factor(rep("na", 16)))
pred1w <- predict(fm1w, newDat, level=0)

fit with 10 percent Winsorization
fm1w.1 <- lmeWinsor(distance ~ age, data = Orthodont, random=~age|Subject, trim=0.1)
predict.lmWinsor

Predict method for Winsorized linear model fits

Description

Model predictions for object of class 'lmWinsor'.

Usage

S3 method for class 'lmWinsor'
predict(object, newdata, se.fit = FALSE,
 scale = NULL, df = Inf,
 interval = c("none", "confidence", "prediction"),
 level = 0.95, type = c("response", "terms"),
 terms = NULL, na.action = na.pass,
 pred.var = res.var/weights, weights = 1, ...)

Arguments

object Object of class inheriting from 'lmWinsor'
newdata An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
se.fit a switch indicating if standard errors of predictions are required
scale Scale parameter for std.err. calculation
df degrees of freedom for scale
interval type of prediction (response or model term)
level Tolerance/confidence level
type Type of prediction (response or model term); see predict.lm
terms If type="terms", which terms (default is all terms)
na.action function determining what should be done with missing values in 'newdata'. The default is to predict 'NA'.
pred.var the variance(s) for future observations to be assumed for prediction intervals. See predict.lm 'Details'.
weights variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in 'newdata'
... additional arguments for other methods
Details

1. Identify inputs and outputs via
 \[
 \text{mdly} <- \text{mdlx} \leftarrow \text{formula(object)}; \text{mdly}[3] \leftarrow \text{NULL}; \text{mdlx}[2] \leftarrow \text{NULL}; \text{xNames} \leftarrow \text{all.vars(mdlx)}; \text{yNames} \leftarrow \text{all.vars(mdly)}.
 \]
 Give an error if \(\text{as.character(mdly[2])} \neq \text{yNames}\).

2. If ‘newdata’ are provided, clip all numeric xNames to \((\text{object["lower"]}, \text{object["upper"]})\).

3. Call \text{predict.lm}

4. Clip the responses to the relevant components of \((\text{object["lower"]}, \text{object["upper"]})\).

5. Done.

Value

If \text{class(object)} == \text{c('lmWinsor', 'lm')}, ‘\text{predict.lmWinsor}’ produces a vector of predictions or a matrix of predictions with limits or a list, as produced by \text{predict.lm}. Otherwise, ‘object’ is a list of such objects and will therefore return a list of such predictions.

Author(s)

Spencer Graves

See Also

\text{lmWinsor predict.lm}

Examples

example from 'anscombe'
trim = 0
\text{lm.1} \leftarrow \text{lmWinsor(}y_1\sim x_1, \text{ data=anscombe)}

\text{newD} \leftarrow \text{data.frame}(x_1=\text{seq}(1, 22, .1))
\text{predW} \leftarrow \text{predict(lm.1, newdata=newD)}
\text{plot(y1-x1, anscombe, xlim=c(1, 22),}
\text{ main="Anscombe, example 1")}
\text{lines(newD["x1"], predW, col='blue')}
\text{abline(h=lm.1[["lower"]]["y1"], col='red', lty='dashed')}
\text{abline(h=lm.1[["upper"]]["y1"], col='red', lty='dashed')}
\text{abline(v=lm.1[["lower"]]["x1"], col='green', lty='dashed')}
\text{abline(v=lm.1[["upper"]]["x1"], col='green', lty='dashed')}
clipped at range(anscombe[, 'x1']) = c(4, 14)

trim = 0.25
\text{lm.1.25} \leftarrow \text{lmWinsor(}y_1\sim x_1, \text{ data=anscombe, trim=0.25)}

\text{newD} \leftarrow \text{data.frame}(x_1=\text{seq}(1, 22, .1))
\text{predW.25} \leftarrow \text{predict(lm.1.25, newdata=newD)}
\text{plot(y1-x1, anscombe, xlim=c(1, 22))}
\text{lines(newD["x1"], predW.25, col='blue', lwd=2)}
\text{abline(h=lm.1.25[["lower"]]["y1"], col='red', lty='dotted')}
\text{abline(h=lm.1.25[["upper"]]["y1"], col='red', lty='dotted')}
project.basis

Approximate Functional Data Using a Basis

Description

A vector or matrix of discrete data is projected into the space spanned by the values of a set of basis functions. This amounts to a least squares regression of the data on to the values of the basis functions. A small penalty can be applied to deal with situations in which the number of basis functions exceeds the number of basis points. This function is used with function dataRfd, and is not normally used directly in a functional data analysis.

Usage

project.basis(y, argvals, basisobj, penalize=FALSE, returnMatrix=FALSE)

Arguments

y a vector or matrix of discrete data.
argvals a vector containing the argument values correspond to the values in y.
basisobj a basis object.
penalize a logical variable. If TRUE, a small roughness penalty is applied to ensure that the linear equations defining the least squares solution are linearly independent or nonsingular.
returnMatrix logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Value

the matrix of coefficients defining the least squares approximation. This matrix has as many rows are there are basis functions, as many columns as there are curves, and if the data are multivariate, as many layers as there are functions.

See Also

Data2fd
quadset

Quadrature points and weights for Simpson’s rule

Description

Set up quadrature points and weights for Simpson’s rule.

Usage

quadset(nquad=5, basisobj=NULL, breaks, returnMatrix=FALSE)

Arguments

- nquad: an odd integer at least 5 giving the number of evenly spaced Simpson’s rule quadrature points to use over each interval (breaks[i], breaks[i+1]).
- basisobj: the basis object that will contain the quadrature points and weights
- breaks: optional interval boundaries. If this is provided, the first value must be the initial point of the interval over which the basis is defined, and the final value must be the end point. If this is not supplied, and ’basisobj’ is of type ‘bspline’, the knots are used as these values.
- returnMatrix: logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Details

Set up quadrature points and weights for Simpson’s rule and store information in the output ’basisobj’. Simpson’s rule is used to integrate a function between successive values in vector ’breaks’. That is, over each interval (breaks[i], breaks[i+1]). Simpson’s rule uses ’nquad’ equally spaced quadrature points over this interval, starting with the the left boundary and ending with the right boundary. The quadrature weights are the values delta*c(1,4,2,4,2,4,..., 2,4,1) where ’delta’ is the difference between successive quadrature points, that is, delta = (breaks[i-1]-breaks[i])/(nquad-1).

Value

If is.null(basisobj), quadset returns a ’quadvals’ matrix with columns quadpts and quadwts. Otherwise, it returns basisobj with the two components set as follows:

quadvals: cbind(quadpts=quadpts, quadwts=quadwts)
value: a list with two components containing eval.basis(quadpts, basisobj, ival-1) for ival=1, 2.

See Also

create.bspline.basis eval.basis
Examples

```r
(qs7.1 <- quadset(nquad=7, breaks=c(0, .3, 1)))
# cbind(quadpts=c(seq(0, 0.3, length=7),
#     seq(0.3, 1, length=7)),
#    quadwts=c((0.3/18)*c(1, 4, 2, 4, 2, 4, 1),
#             (0.7/18)*c(1, 4, 2, 4, 2, 4, 1)))

# The simplest basis currently available with this function:
bspl2.2 <- create.bspline.basis(norder=2, breaks=c(0,.5, 1))

bspl2.2a <- quadset(basisobj=bspl2.2)

ls(bspl2.2a$quadvals)

# a list of length 2
# [[1]] = matrix of dimension c(10, 3) with the 3 basis
#   functions evaluated at the 10 quadrature points:
# values[[1]][, 1] = c(1, .75, .5, .25, rep(0, 6))
# values[[1]][, 2] = c(0, .25, .5, .75, 1, .75, .5, .25, 0)
# values[[1]][, 3] = values[[1], 1]
# values[[2]] = matrix of dimension c(10, 3) with the
#   first derivative of values[[1]], being either
# -2, 0, or 2.
```

Description

Obtain data from the Human Mortality Database (HMD) maintained at the University of California at Berkeley and the Max Planck Institute for Demographic Research. To use `readHMD`, you must first obtain a username and password from HMD and supply them as arguments to this function.

Usage

```r
readHMD(username, password, 
  country=c('AUS','Australia', 'AUT','Austria', 'BLR','Belarus', 'BEL','Belgium', 'BGR','Bulgaria', 'CAN','Canada', 
            'CHL','Chile', 'CZE','Czech Republic', 'DNK','Denmark', 
            'EST','Estonia', 'FIN','Finland', 'FRA','France', 
            'DEU','Germany', 'HUN','Hungary', 'ISL','Iceland', 
            'IRL','Ireland', 'ISR','Israel', 'ITA','Italy', 
            'JPN','Japan', 'LVA','Latvia', 'LTU','Lithuania', 
            'LUX','Luxembourg', 'NL','Netherlands', 'NZL','New Zealand', 
            'NOR','Norway', 'POL','Poland', 'PRT','Portugal', 
            'RUS','Russia', 'SVK','Slovakia', 'SVN','Slovenia',
```
readHMD

ESP='Spain', SWE='Sweden', CHE='Switzerland',
TWN='Taiwan', GBR='U.K.', USA='U.S.A.',
UKR='Ukraine'),
sex=c('m', 'f', 'b'), HMDurl='http://www.mortality.org/hmd',
dataType = 'lt',
ltCol=c('m', 'q', 'a', 'l', 'd', 'L', 'T', 'e'),
cohper = c(coh='cohort', per='periodic'),
ageInterval=c(1, 5), yearInterval=c(1, 5, 10),
url, ...)

Arguments

username, password
user name and password for HMD.
country
country for which data are required. Must be one of the available options given
with the "usage", specified either by the name of the 3-letter code.

sex
gender for which data are required (male, female or both), specified via a single
letter.

HMDurl
character string giving the URL of HMD.

dataType
data type: 'lt' for 'life table'. If a different data type is required, you should go
to the HMD web site, find the URL you want, and specify it directly via the url
argument.

ltCol
life table column:
• m Central death rate between ages x and x+n
• q Probability of death between ages x and x+n
• a Average length of survival between ages x and x+n for persons dying in
 the interval
• l Number of survivors at exact age x, assuming l(0) = 100,000
• d Number of deaths between ages x and x+n
• L Number of person-years lived between ages x and x+n
• T Number of person-years remaining after exact age x
• e Life expectancy at exact age x (in years)

cohper
periodic or chorhort data?
ageInterval
width of the age intervals: either 1 or 5 years.

yearInterval
width of the intervals for which results are desired: either, 1, 5 or 10 years.

url
The Universal Resource Locator for the desired table. If provided, all the other
arguments except username and password will be ignored. If missing, this will
be constructed from the other arguments.

Details

To use this function, you need a username and password with HMD. As of 2012.07.28, the HMD
access is free for individuals, but you must register with them. To start the registration process, go
to \url{http://www.mortality.org} and click "New User" near the top in the left margin. Then click "New User" again to see the User Agreement.

In all published work and presentations, please acknowledge the HMD as either the source or the intermediary of the data with the date on which you extracted the data. See \url{http://www.mortality.org/mp/auth.pl} for recommended citation formats.

If you agree to comply with their User Agreement, click "I agree" at the bottom of that page. This will take you to another page where you can enter requested information about you including an email address to which your password will be mailed.

Value

If url is provided or dataType != 'lt' or \code{read.table} fails, this returns a list with the following components:

- \code{URL} the URL that was used, being the argument \code{url} if provided or the url that was constructed after noting that it was missing.
- \code{getURL} object returned by \code{getURL}.
- \code{readLines} object returned by \code{readLines(getURL(...))}.
- \code{read.table} object returned by \code{read.table(getURL(...))}.

Otherwise, this returns a list with the following components:

- \code{x} numeric vector of ages
- \code{y} matrix of the data for each age-year combination
- \code{time} numeric vector of the years
- \code{xname} "age"
- \code{yname} c(m='Mortality rate', q='Mortality probability', a='Survival time for mortalities', l='Number of survivors', d='Number of deaths', L='Person-years in interval', T='Person-years remaining', e='Life expectancy')[ltCol] = data type from the life table
- \code{class} c('fts', 'fds')

Author(s)

Han Lin Shang, Monash University in Australia, and Spencer Graves

Source

Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at \url{www.mortality.org} and \url{www.humanmortality.de}.

See Also

\code{getURL hmd.mx}
Examples

```r
## Not run:
user <- "your.email@wherever.org" # as registered with HMD.
pw <- "1234567890"
# password as provided in an email from HMD possibly changed by you.
country <- 'Sweden'
SwedeMatAll <- readHMD(user, pw, 'Sweden', sex='f')

## End(Not run)
```

Description

194 observations on reflux and "tray 47 level" in a distillation column in an oil refinery.

Format

A data.frame with the following components:

- **Time**: observation time 0:193
- **Reflux**: reflux flow centered on the mean of the first 60 observations
- **Tray47**: tray 47 level centered on the mean of the first 60 observations

Source

Examples

```r
attach(refinery)
# allow space for an axis on the right
op <- par(mar=c(5, 4, 4, 5)+0.1)
# plot uval
plot(Time, Reflux, type="l", bty="n")
# add yval
y.u <- diff(range(Tray47))/diff(range(Reflux))
u0 <- min(Reflux)
y0 <- min(Tray47)
lines(Time, u0+(Tray47-y0)/y.u, lty=3, lwd=1.5, col="red")
y.tick <- pretty(range(Tray47))
axis(4, at=u0*(y.tick)/y.u, labels=y.tick, col="red", lty=3,
    lwd=1.5)
# restore previous plot margins
par(op)
detach(refinery)
```
ReginaPrecip Regina Daily Precipitation

Description
Temperature in millimeters in June in Regina, Saskatchewan, Canada, 1960 - 1993, omitting 16 missing values.

Usage
data(ReginaPrecip)

Format
A numeric vector of length 1006.

References

See Also
CanadianWeather MontrealTemp

Examples
data(ReginaPrecip)
hist(ReginaPrecip)

Register.fd Register Functional Data Objects Using a Continuous Criterion

Description
A function is said to be aligned or registered with a target function if its salient features, such as peaks, valleys and crossings of fixed thresholds, occur at about the same argument values as those of the target. Function register.fd aligns these features by transforming or warping the argument domain of each function in a nonlinear but strictly order-preserving fashion. Multivariate functions may also be registered. If the domain is time, we say that this transformation transforms clock time to system time. The transformation itself is called a warping function.
register.fd

Usage

```r
register.fd(y0fd=NULL, yfd=NULL, WfdParobj=NULL,
            conv=1e-04, iterlim=20, dbglev=1, periodic=FALSE, crit=2,
            returnMatrix=FALSE)
```

Arguments

- **y0fd**: a functional data object defining one or more target functions for registering the functions in argument `yfd`. If the functions to be registered are univariate, then `y0fd` may contain only a single function, or it may contain as many functions as are in `yfd`. If `yfd` contains multivariate functions, then `y0fd` may either as many functions as there are variables in `yfd`, or it may contain as many functions as are in `yfd` and these functions must then be multivariate and be of the same dimension as those in `yfd`. If `yfd` is supplied as a named argument and `y0fd` is not, then `y0fd` is computed inside the function to be the mean of the functions in `yfd`. If the function is called with a single unnamed argument, and there is no other argument that is named as `y0fd` then this unnamed argument is taken to be actually `yfd` rather than `y0fd`, and then also `y0fd` is computed to be the mean of the functions supplied.

- **yfd**: a functional data object defining the functions to be registered to target `y0fd`. The functions may be either univariate or multivariate. If `yfd` contains a single multivariate function to be registered, it essential that the coefficient array for `y0fd` have class `array`, have three dimensions, and that its second dimension be of length 1.

- **WfdParobj**: a functional parameter object containing either a single function or the same number of functions as are contained in `yfd`. The coefficients supply the initial values in the estimation of a functions $W(t)$ that defines the warping functions $h(t)$ that register the set of curves. `WfdParobj` also defines the roughness penalty and smoothing parameter used to control the roughness of $h(t)$.

- **conv**: a criterion for convergence of the iterations.

- **iterlim**: a limit on the number of iterations.

- **dbglev**: either 0, 1, or 2. This controls the amount information printed out on each iteration, with 0 implying no output, 1 intermediate output level, and 2 full output. R normally postpones displaying these results until the entire computation is computed, an option that it calls “output buffering.” Since the total computation time may be considerable, one may opt for turning this feature off by un-checking this box in the “Misc” menu item in the R Console.

- **periodic**: a logical variable: if TRUE, the functions are considered to be periodic, in which case a constant can be added to all argument values after they are warped.
crit

an integer that is either 1 or 2 that indicates the nature of the continuous registration criterion that is used. If 1, the criterion is least squares, and if 2, the criterion is the minimum eigenvalue of a cross-product matrix. In general, criterion 2 is to be preferred.

returnMatrix

logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Details

The warping function that smoothly and monotonely transforms the argument is defined by \(\tilde{W}(t) \) as that defines the monotone smoothing function in for function \(\text{smooth}.\text{monotone} \). See the help file for that function for further details.

Value

a named list of length 4 containing the following components:

- \(\text{regfd} \): A functional data object containing the registered functions.
- \(\text{warpfd} \): A functional data object containing the warping functions \(h(t) \).
- \(\text{wfd} \): A functional data object containing the functions \(h \cdot W(t) \) that define the warping functions \(h(t) \).
- \(\text{shift} \): If the functions are periodic, this is a vector of time shifts.
- \(\text{yPfd} \): The target function object \(y_0 \).
- \(\text{yfd} \): The function object \(y \) containing the functions to be registered.

Source

See Also

- smooth.monotone, smooth.morph
- plotreg.fd, register.fd

Examples

See the analyses of the growth data for examples.
##
1. smooth the growth data for the Berkeley boys
##
Specify smoothing weight
lambda.gr2.3 <- .03
Specify what to smooth, namely the rate of change of curvature
Lfdobj.growth <- 2
Set up a B-spline basis for smoothing the discrete data
nage <- length(growth$age)
```r	norder.growth <- 6
nbasis.growth <- nage + norder.growth - 2
rng.growth <- range(growth$age)
wbasis.growth <- create.bspline.basis(rangeval=rng.growth,
nbasis=nbasis.growth, norder=norder.growth,
breaks=growth$age)

# Smooth the data
# in afda-ch06.R, and register to individual smooths:
cvec0.growth <- matrix(0,nbasis.growth,1)
Wfd0.growth <- fd(cvec0.growth, wbasis.growth)
growfdPar2.3 <- fdPar(Wfd0.growth, Lfdobj.growth, lambda.gr2.3)
hgtmfd.all <- with(growth, smooth.basis(age, hgtm, growfdPar2.3)$fd)
# Register the growth velocity rather than the
growth curves directly
smbv <- deriv(hgtmfd.all, 1)

##
## 2. Register the first 2 Berkeley boys using the default basis
## for the warping function
##
## register.fd takes time, so use only 2 curves as an illustration
## to minimize compute time in these examples
nBoys <- 2
# Define the target function as the mean of the first nBoys records
smbV0 <- mean.fd(smbv[1:nBoys])
# Register these curves. The default choice for the functional
# parameter object WfdParObj is used.
smB.reg.0 <- register.fd(smbv0, smbV[1:nBoys])
# plot each curve. Click on the R Graphics window to show each plot.
# The left panel contains:
# -- the unregistered curve (dashed blue line)
# -- the target function (dashed red line)
# -- the registered curve (solid blue line)
# The right panel contains:
# -- the warping function h(t)
# -- the linear function corresponding to no warping
plotreg.fd(smB.reg.0)
# Notice that all the warping functions all have simple shapes
# due to the use of the simplest possible basis
##
## 3. Define a more flexible basis for the warping functions
##
if(!CRAN()){
Wnbasis <- 4
Wbasis <- create.bspline.basis(rng.growth, Wnbasis)
Wfd0 <- fd(matrix(0,Wnbasis,1),Wbasis)
# set up the functional parameter object using only
# a light amount smoothing
WfdParobj <- fdPar(Wfd0, Lfdobj=2, lambda=0.01)
# register the curves
smB.reg.1 <- register.fd(smbv0, smbV[1:nBoys], WfdParobj)
plotreg.fd(smB.reg.1)
# Notice that now the warping functions can have more complex shapes
##
```
4. Change the target to the mean of the registered functions ...
this should provide a better target for registration

smBv1 <- mean.fd(smB.reg.1$regfd)

plot the old and the new targets
par(mfrow=c(1,1),ask=FALSE)
plot(smBv1)
lines(smBv0, lty=2)
Notice how the new target (solid line) has sharper features and
a stronger pubertal growth spurt relative to the old target
(dashed line). Now register to the new target
smB.reg.2 <- register.fd(smBv1, smBv[1:nBoys], WfdParobj)
plotreg.fd(smB.reg.2)
Plot the mean of these curves as well as the first and second targets
par(mfrow=c(1,1),ask=FALSE)
plot(mean.fd(smB.reg.2$regfd))
lines(smBv0, lty=2)
lines(smBv1, lty=3)
Notice that there is almost no improvement over the age of the
pubertal growth spurt, but some further detail added in the
pre-pubertal region. Now register the previously registered
functions to the new target.
smB.reg.3 <- register.fd(smBv1, smB.reg.1$regfd, WfdParobj)
plotreg.fd(smB.reg.3)
Notice that the warping functions only deviate from the straight line
over the pre-pubertal region, and that there are some small adjustments
to the registered curves as well over the pre-pubertal region.

5. register and plot the angular acceleration of the gait data

set up a fourier basis object
gaitbasis <- create.fourier.basis(gaitrange, nbasis=21)
harmaccelfd <- vec2Lf(c(0, 2*pi/20)^2, 0), rangeval=gaitrange)
gaitfdPar <- fdPar(gaitbasis, harmaccelfd, 1e-2)
smooth the data
gaitfd <- smooth.basis(gaittime, gait, gaitfdPar)$fd
compute the angular acceleration functional data object
D2gaitfd <- deriv.fd(gaitfd, 2)
names(D2gaitfd@fdnames)[[3]] <- "Angular acceleration"
D2gaitfd@fdnames[[3]] <- c("Hip", "Knee")
compute the mean angular acceleration functional data object
D2gaitmeanfd <- mean.fd(D2gaitfd)
names(D2gaitmeanfd@fdnames)[[3]] <- "Mean angular acceleration"
D2gaitmeanfd@fdnames[[3]] <- c("Hip", "Knee")
register.fd0 <- 4
wbasis <- create.bspline.basis(gaitrange,nwbasis,3)
Warpfd <- fd(matrix(0,nwbasis,nBoys),wbasis)
WarpfdPar <- fdPar(Warpfd)
register the functions
gaitreglist <- register.fd(D2gaitmeanfd, D2gaitfd[1:nBoys], WarpfdPar,
periodic=TRUE)
plot the results
plotreg.fd(gaitreglist)
display horizontal shift values
print(round(gaitreglist$shift,1))
}

register.fd0 Correct for initial position error between functional data objects.

Description
Certain physical measurements differ only in their initial position. Correct for this by estimating x₀
to minimize the following:
\[
\text{integral((yfd(x-x0)-y0fd(x))^2 from max(x1, x1+x0) to min(x2, x2+x0)) / (x2-x1-abs(x0))}
\]

Usage
register.fd0(y0fd, yfd=NULL, ...)

Arguments
- y0fd a functional data object defining the target for registration.
 If yfd is NULL and y0fd is a multivariate data object, then y0fd is assigned to
 yfd and y0fd is replaced by its mean.
- yfd a multivariate functional data object defining the functions to be registered to
 target y0fd. If it is NULL and y0fd is a multivariate functional data object, yfd
 takes the value of y0fd.
- ... optional arguments passed to other methods of plot

Details
Mikkelsen (2003) noted that depth positioning errors in measuring subsurface movement of soils
can make it appear that soils are moving when they are not. register.fd0 differs from register.fd
in two ways: register.fd estimates a nonlinear transformation starting and ending at the same
place. By contrast, register.fd0 shifts the starting point, using a "time warping" function that is
linear with unit slope. This means that the length of the interval of validity is shrunk by abs(x0).

This function is designed to find the most obvious local minimum of the normalized integrated
squared differences between y0df(x) and yfd(x+x0), as defined above. This objective function may

have multiple local minima. `register.fd` uses `optimize` to find a global minimum over \(x_0 \) in \(c(-1, 1) \ast \text{diff}(y0fd\$basis\$rangeval) \).

1. Check \(y0fd \) and \(yfd \).

2. Define \(dy2 \) = integrand function and \(ss.dy2 \) = objective function.

3. `optimize(ss.dy2, ...)` for each curve in \(yfd \).

4. Compute \(\text{regfd} = \) registered \(yfd \) as follows:
 4.1. Let \(x00 = \min(0, x0) \leq 0 \) and \(x01 = \max(0, x0) \geq 0 \). Then \(\text{regfd}\$rangeval = (\text{rangeval}[1] + x01, \text{rangeval}[2] + x00) \)
 4.2. For a B-spline basis, construct a new basis retaining all the knots interior to \(\text{regfd}\$rangeval \).
 4.3. Fit each curve adjusted to this new basis to obtain \(\text{regfd} \).

5. Compute \(\text{dregfd} = \text{minus.fd}(\text{regfd}, y0fd, \text{regfd}\$basis) \).

Value

A list of class `register.fd` with the following components:

- `regfd`: A functional data object containing the input functional data objects shifted by the offset = \(x_0 \), restricted to their common range, \(c(\text{rangeval}[1]+\max(0, \text{offset}), \text{rangeval}[2]+\min(0, \text{offset})) \).

- `dregfd`: The difference between \(\text{regfd} \) (\(yfd \) registered) and \(y0fd \).

 This difference cannot currently be computed with the naive ",fd", because of a mismatch between \(\text{regfd}\$basis\$rangeval \) and \(y0fd\$basis\$rangeval \). This is handled by computing `minus.fd(regfd, y0fd, regfd\$basis\$rangeval)`.

- `offset`: The vector \(x_0 \) containing the offset for each function in \(yfd \).

Source

See Also

`smooth.monotone`, `smooth.morph`

Examples

```R
# Specify smoothing weight
lambda.gr2.3 <- .03

# Specify what to smooth, namely the rate of change of curvature
Lfdobj.growth <- 2

# Establish a B-spline basis
nage <- length(growth\$age)
norder.growth <- 6
```
nbasis.growth <- nage + norder.growth - 2
rng.growth <- range(growth$age)

wbasis.growth <- create.bspline.basis(rangeval=rng.growth,
 nbasis=nbasis.growth, norder=norder.growth,
 breaks=growth$age)

Smooth consistent with the analysis of these data
in afda-ch06.R, and register to individual smooths:
cvec0.growth <- matrix(0, nbasis.growth, 1)
Wfd0.growth <- fd(cvec0.growth, wbasis.growth)
growfdPar2.3 <- fdPar(Wfd0.growth, Lfdobj.growth, lambda.gr2.3)

Create a functional data object for all the boys
hgtmfd.all <- with(growth, smooth.basis(age, hgtm, growfdPar2.3))

nBoys <- 2

nBoys <- dim(growth["hgtm"])[2]
register.fd takes time, so use only 2 curves as an illustration
to minimize compute time in this example;

Alternative to subsetting later is to subset now:
hgtmfd.all <- with(growth, smooth.basis(age, hgtm[,1:nBoys], growfdPar2.3))

Register the growth velocity rather than the
growth curves directly
smBv <- deriv(hgtmfd.all$fd, 1)

smB.reg.0 <- register.fd0(smBv[1:nBoys])

op <- par(mfrow=c(3,1))
plot(smBv[1:nBoys])
lines(mean.fd(smBv[1:nBoys]), lty='dotted', col='blue')

plot(smB.reg.0$regfd)
lines(mean.fd(smBv[1:nBoys]), lty='dotted', col='blue')

Note change of scale.
The peak of smBv[2] at ~15.5
is pushed off the chart as x0[2]=4.47
plot(smB.reg.0$dregfd)
looks OK
par(op)

`(register.newfd)` **Register Functional Data Objects with Pre-Computed Warping Functions**

Description

This function registers a new functional data object to pre-computed warping functions.
Usage

register.newfd(yfd, Wfd, type=c('direct','monotone','periodic'))

Arguments

yfd
 a multivariate functional data object defining the functions to be registered with
 Wfd.

Wfd
 a functional data object defining the registration functions to be used to register
 yfd. This can be the result of either landmarkreg or register.fd.

type
 indicates the type of registration function.
 • direct assumes Wfd is a direct definition of the registration functions. This
 is produced by landmarkreg.
 • monotone assumes that Wfd defines a monotone functional data objected,
 up to shifting and scaling to make endpoints agree. This is produced by
 register.fd.
 • periodic does shift registration for periodic functions. This is output from
 register.fd if periodic=TRUE.

Details

Only shift registration is considered for the periodic case.

Value

a functional data object defining the registered curves.

Source

 New York.

 New York, ch. 6 & 7.

See Also

landmarkreg, register.fd

Examples

Register the lip data with landmark registration, then register the first
derivatives with the pre-computed warping functions.

Lip data:
lipfd <- smooth.basisPar(liptime, lip, 6, Lfdobj=int2Lfd(4),
 lambda=1e-12)$fd
names(lipfd$fdnames) <- c("time(seconds)", "replications", "mm")
Landmark Registration:

lipmeanmarks <- apply(lipmarks, 2, mean)

wnbasis <- 6
wnorder <- 4
wbreaks <- c(0, lipmeanmarks, 0.35)

warpbasis <- create.bspline.basis(nbasis = wnbasis, norder = wnorder, breaks = wbreaks);
WfdPar <- fdPar(fd(basisobj = warpbasis), 2, 1e-4)

lipreglist <- landmarkreg(lipfd, as.matrix(lipmarks), lipmeanmarks, WfdPar)

And warp:

Dlipfd = deriv.fd(lipfd, Lfdobj = 1)

Dlipregfd = register.newfd(Dlipfd, lipreglist$Wparfd, type = 'direct')

residuals.fRegess
Residuals from a Functional Regression

Description

Residuals from a model object of class fRegess.

Usage

```r
## S3 method for class 'fRegess'
residuals(object, ...)  
```

Arguments

- **object**
 Object of class inheriting from lmWinsor
- **...**
 additional arguments for other methods

Details

object$y - predict(object)

Value

The residuals produced by resid.fRegess or residuals.fRegess are either a vector or a functional parameter (class fdPar) object, matching the class of object$y.

Author(s)

Spencer Graves
See Also

fRegres.predict.fRegres residuals

Examples

example from help('lm')
##
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.58, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels=c("Ctl", "Trt"))
weight <- c(ctl, trt)
fRegres.D9 <- fRegres(weight ~ group)

resid.fR.D9 <- resid(fRegres.D9)

Now compare with 'lm'
lm.D9 <- lm(weight ~ group)
resid.lm.D9 <- resid(lm.D9)

all.equal(as.vector(resid.fR.D9), as.vector(resid.lm.D9))

resid from knee angle predicton from hip angle;
##
(gaittime <- as.numeric(dimnames(gait)[[1]])*20)
gaitrange <- c(0, 20)
gaitbasis <- create.fourier.basis(gaitrange, nbasis=21)
harmacellfd <- vec2Lfd(c(0, (2*pi/20)^2, 0), rangeval=gaitrange)
gaitfd <- smooth.basisPar(gaittime, gait,
gaitbasis, Lfdobj=harmacellfd, lambda=1e-2)$fd
hipfd <- gaitfd[, 1]
kneefd <- gaitfd[, 2]
knee.hip.f <- fRegres(kneefd ~ hipfd)

#knee.hip.e <- resid(knee.hip.f)
#plot(knee.hip.e)

sd.fd

Standard Deviation of Functional Data

Description

Evaluate the standard deviation of a set of functions in a functional data object.
Usage

sd.fd(fdobj)
std.fd(fdobj)
stdev.fd(fdobj)
stderr.fd(fdobj)

Arguments

fdobj a functional data object.

Details

The multiple aliases are provided for compatibility with previous versions and with other languages. The name for the standard deviation function in R is `sd`. Matlab uses `std`. S-Plus and Microsoft Excel use `stdev`. `stddev` was used in a previous version of the `fda` package and is retained for compatibility.

Value

a functional data object with a single replication that contains the standard deviation of the one or several functions in the object fdobj.

See Also

mean.fd, sum.fd, center.fd

Examples

liptime <- seq(0,1,.02)
liprange <- c(0,1)

--------------- create the fd object -----------------
use 31 order 6 splines so we can look at acceleration

nbasis <- 51
norder <- 6
lipbasis <- create.bspline.basis(liprange, nbasis, norder)
lipbasis <- create.bspline.basis(liprange, nbasis, norder)

--------------- apply some light smoothing to this object ------

Lfdobj <- int2Lfd(4)
lambda <- 1e-12
lipfdPar <- fdPar(lipbasis, Lfdobj, lambda)

lipfd <- smooth.basis(liptime, lip, lipfdPar)$fd
names(lipfd$fdnames) = c("Normalized time", "Replications", "mm")

lipstdfd <- sd.fd(lipfd)
plot(lipstdfd)
Description

Usage
data(seabird)

Format
A data frame with 3793 observations on the following 22 variables.

- **BAGO, BLSC, COME, COMU, CORM, HADU, HOGR, LOON, MAMU, OLDS, PIGU, RBME, RNGR, SUSC, WWSC** integer count of the numbers of sightings of each species by transect by year
- **Year** integer year, 1986 - 2005
- **Site** integer codes for Bay: 10 = Uyak, 20 = Uganik, 60 = E. Sitkalidak, 70 = W. Sitkalidak
- **Transect** integer code (101 - 749) for the specific plot of ground observed
- **Temp** a numeric vector

ObservCond a factor with levels Average, Excellent, Fair, Good, and Ideal.

Bay a factor with levels E. Sitkalidak, Uganik, Uyak, W. Sitkalidak

ObservCondFactor3 a factor with levels Excellent, Ideal, Fair, Average, and Good. These combine levels from ObservCond.

Details
Data provided by the Kodiak National Wildlife Refuge

Source

References
smooth.basis

Examples

data(seabird)
 ## maybe str(seabird) ; plot(seabird) ...

smooth.basis Construct a functional data object by smoothing data using a roughness penalty

Description

Discrete observations on one or more curves and for one more more variables are fit with a set of smooth curves, each defined by an expansion in terms of user-selected basis functions. The fitting criterion is weighted least squares, and smoothness can be defined in terms of a roughness penalty that is specified in a variety of ways.

Data smoothing requires at a bare minimum three elements: (1) a set of observed noisy values, (b) a set of argument values associated with these data, and (c) a specification of the basis function system used to define the curves. Typical basis functions systems are splines for nonperiodic curves, and fourier series for periodic curves.

Optionally, a set covariates may be also used to take account of various non-smooth contributions to the data. Smoothing without covariates is often called nonparametric regression, and with covariates is termed semiparametric regression.

Usage

smooth.basis(argvals=1:n, y, fdParobj, wtvec=NULL, fdnames=NULL, covariates=NULL, method="chol", dfscale=1, returnMatrix=FALSE)

Arguments

argvals a set of argument values corresponding to the observations in array y. In most applications these values will be common to all curves and all variables, and therefore be defined as a vector or as a matrix with a single column. But it is possible that these argument values will vary from one curve to another, and in this case argvals will be input as a matrix with rows corresponding to observation points and columns corresponding to curves. Argument values can even vary from one variable to another, in which case they are input as an array with dimensions corresponding to observation points, curves and variables, respectively. Note, however, that the number of observation points per curve and per variable may NOT vary. If it does, then curves and variables must be smoothed individually rather than by a single call to this function. The default value for argvals are the integers 1 to n, where n is the size of the first dimension in argument y.

y an set of values of curves at discrete sampling points or argument values. If the set is supplied as a matrix object, the rows must correspond to argument values and columns to replications, and it will be assumed that there is only
one variable per observation. If \(y \) is a three-dimensional array, the first dimension corresponds to argument values, the second to replications, and the third to variables within replications. If \(y \) is a vector, only one replicate and variable are assumed. If the data come from a single replication but multiple vectors, such as data on coordinates for a single space curve, then be sure to coerce the data into an array object by using the \texttt{as.array} function with one as the central dimension length.

\texttt{fdParobj} is a functional parameter object, a functional data object or a functional basis object. In the simplest case, \texttt{fdParobj} may be a functional basis object with class \"basis\texttt{fd}\" defined previously by one of the \"create\" functions, and in this case, no roughness penalty is used. No roughness penalty is also the consequence of supplying a functional data object with class \"fd\", in which case the basis system used for smoothing is that defining this object. In these two simple cases, \texttt{smooth.basis} is essentially the same as function \texttt{dataRfd}, and this type of elementary smoothing is often called \"regression smoothing.\" However, if the object is a functional parameter object with class \"fdPar\", then the linear differential operator object and the smoothing parameter in this object define the roughness penalty. For further details on how the roughness penalty is defined, see the help file for \"fdPar\". In general, better results can be obtained using a good roughness penalty than can be obtained by merely varying the number of basis functions in the expansion.

\texttt{wtvec} typically a vector of length \(n \) that is the length of \texttt{argvals} containing weights for the values to be smoothed. However, it may also be a symmetric matrix of order \(n \). If \texttt{wtvec} is a vector, all values must be positive, and if it is a symmetric matrix, this must be positive definite. Defaults to all weights equal to 1.

\texttt{fdnames} a list of length 3 containing character vectors of names for the following:
- \texttt{args} name for each observation or point in time at which data are collected for each \texttt{rep}, unit or subject.
- \texttt{reps} name for each \texttt{rep}, unit or subject.
- \texttt{fun} name for each \texttt{fun} or (response) variable measured repeatedly (per \texttt{args}) for each \texttt{rep}.

\texttt{covariates} The observed values in \(y \) are assumed to be primarily determined by the height of the curve being estimates, but from time to time certain values can also be influenced by other known variables. For example, multi-year sets of climate variables may be also determined by the presence of absence of an El Nino event, or a volcanic eruption. One or more of these covariates can be supplied as an \(n \) by \(p \) matrix, where \(p \) is the number of such covariates. When such covariates are available, the smoothing is called \"semi-parametric.\" Matrices or arrays of regression coefficients are then estimated that define the impacts of each of these covariates for each curve and each variable.

\texttt{method} by default the function uses the usual textbook equations for computing the coefficients of the basis function expansions. But, as in regression analysis, a price is paid in terms of rounding error for such computations since they involved cross-products of basis function values. Optionally, if \texttt{method} is set equal to the string \"qr\", the computation uses an algorithm based on the qr-decomposition which is more accurate, but will require substantially more computing time when \(n \) is
large, meaning more than 500 or so. The default is "chol", referring the Choleski
decomposition of a symmetric positive definite matrix.

dfscale

the generalized cross-validation or "gcv" criterion that is often used to determine
the size of the smoothing parameter involves the subtraction of an measure of de-
grees of freedom from \(n \). Chong Gu has argued that multiplying this degrees of
freedom measure by a constant slightly greater than 1, such as 1.2, can produce
better decisions about the level of smoothing to be used. The default value is,
however, 1.0.

returnMatrix

logical: If TRUE, a two-dimensional is returned using a special class from the
Matrix package.

Details

A roughness penalty is a quantitative measure of the roughness of a curve that is designed to fit the
data. For this function, this penalty consists of the product of two parts. The first is an approximate
integral over the argument range of the square of a derivative of the curve. A typical choice of
derivative order is 2, whose square is often called the local curvature of the function. Since a rough
function has high curvature over most of the function's range, the integrated square of of the second
derivative quantifies the total curvature of the function, and hence its roughness. The second factor
is a positive constant called the bandwidth of smoothing parameter, and given the variable name
\(\lambda \) here.

In more sophisticated uses of smooth.basis, a derivative may be replaced by a linear combination
of two or more order of derivative, with the coefficients of this combination themselves possibly
varying over the argument range. Such a structure is called a "linear differential operator", and a
clever choice of operator can result in much improved smoothing.

The roughness penalty is added to the weighted error sum of squares and the composite is min-
imized, usually in conjunction with a high dimensional basis expansion such as a spline function
defined by placing a knot at every observation point. Consequently, the smoothing parameter con-
trols the relative emphasis placed on fitting the data versus smoothness; when large, the fitted curve
is more smooth, but the data fit worse, and when small, the fitted curve is more rough, but the data
fit much better. Typically smoothing parameter \(\lambda \) is manipulated on a logarithmic scale by,
for example, defining it as a power of 10.

A good compromise \(\lambda \) value can be difficult to define, and minimizing the generalized cross-
validation or "gcv" criterion that is output by smooth.basis is a popular strategy for making this
choice, although by no means foolproof. One may also explore \(\lambda \) values for a few log units
up and down from this minimizing value to see what the smoothing function and its derivatives look
like. The function plotfit.fd was designed for this purpose.

The size of common logarithm of the minimizing value of \(\lambda \) can vary widely, and spline func-
tions depends critically on the typical spacing between knots. While there is typically a "natural"
measurement scale for the argument, such as time in milliseconds, seconds, and so forth, it is better
from a computational perspective to choose an argument scaling that gives knot spacings not too
different from one.

An alternative to using smooth.basis is to first represent the data in a basis system with reasonably
high resolution using Data2fd, and then smooth the resulting functional data object using function
smooth.fd.
In warning and error messages, you may see reference to functions smooth.basis1, smooth.basis2, and smooth.basis3. These functions are defined within smooth.basis, and are not normally to be called by users.

The "qr" algorithm option defined by the "method" parameter will not normally be needed, but if a warning of a near singularity in the coefficient calculations appears, this choice may be a cure.

Value

an object of class fdSmooth, which is a named list of length 8 with the following components:

- **fd**: a functional data object containing a smooth of the data.
- **df**: a degrees of freedom measure of the smooth.
- **gcv**: the value of the generalized cross-validation or GCV criterion. If there are multiple curves, this is a vector of values, one per curve. If the smooth is multivariate, the result is a matrix of gcv values, with columns corresponding to variables.

\[
gcv = n \times \frac{SSE}{((n - df)^2)}
\]

- **beta**: the regression coefficients associated with covariate variables. These are vector, matrix or array objects depending on whether there is a single curve, multiple curves or multiple curves and variables, respectively.
- **SSE**: the error sums of squares. SSE is a vector or a matrix of the same size as GCV.
- **penmat**: the penalty matrix.
- **y2cMap**: the matrix mapping the data to the coefficients.
- **argvals, y**: input arguments

See Also

lambda2df, lambda2gcv, df2lambda, plot.fd, project.basis, smooth.fd, smooth.monotone, smooth.pos, smooth.basisPar, Data2fd,

Examples

```r
##
####### Simulated data example 1: a simple regression smooth #######
##
# Warning: In this and all simulated data examples, your results
# probably won't be the same as we saw when we ran the example because
# random numbers depend on the seed value in effect at the time of the
# analysis.
#
# Set up 51 observation points equally spaced between 0 and 1
n = 51
argvals = seq(0,1,len=n)
# The true curve values are sine function values with period 1/2
x = sin(4*pi*argvals)
# Add independent Gaussian errors with std. dev. 0.2 to the true values
sigerr = 0.2
```
\[y = x + \text{rnorm}(x) \times \text{sigerr} \]

When we ran this code, we got these values of y (rounded to two decimals):

\[
y = \begin{pmatrix}
0.27, 0.05, 0.58, 0.91, 1.07, 0.98, 0.54, 0.94, 1.13, 0.64, \\
0.64, 0.60, 0.24, 0.15, -0.20, -0.63, -0.40, -1.22, -1.11, -0.76, \\
-1.11, -0.69, -0.54, -0.50, -0.35, -0.15, 0.27, 0.35, 0.65, 0.75, \\
0.75, 0.91, 1.04, 1.04, 1.04, 0.46, 0.30, -0.01, -0.19, -0.42, \\
-0.63, -0.78, -1.01, -1.08, -0.91, -0.92, -0.72, -0.84, -0.38, -0.23, \\
-0.02
\end{pmatrix}
\]

Set up a B-spline basis system of order 4 (piecewise cubic) and with knots at 0, 0.1, ..., 0.9 and 1.0, and plot the basis functions

\[
nbasis = 13
\]

\[
basisobj = \text{create.bspline.basis}(c(0, 1), nbasis)
\]

Smooth the data, outputting only the functional data object for the fitted curve. Note that in this simple case we can supply the basis object as the "fdParObj" parameter

\[
ys = \text{smooth.basis}(\text{argvals} = \text{argvals}, y = y, \text{fdParObj} = \text{basisobj})
\]

\[
ys = \text{smooth.basis}(\text{argvals} = \text{argvals}, y = y, \text{fdParObj} = \text{basisobj}, \\
\text{returnMatrix} = \text{TRUE})
\]

Ys[7] = Ys$y2cMap is sparse; everything else is the same

\[
\text{all.equal}(ys[-7], Ys[-7])
\]

\[
xfd = ys$fdf
\]

\[
Xfd = Ys$fdf
\]

Plot the curve along with the data

\[
\text{plotfit.fd}(y, \text{argvals}, xfd)
\]

Compute the root-mean-squared-error (RMSE) of the fit relative to the truth

\[
\text{RMSE} = \text{sqrt(\text{mean}((eval.fd(\text{argvals}, xfd) - x)^2)))}
\]

\[
\text{print(RMSE)} \quad \# \text{We obtained 0.069}
\]

\[
\text{RMSE = 0.069 seems good relative to the standard error of 0.2.}
\]

Range through numbers of basis functions from 4 to 12 to see if we can do better. We want the best RMSE, but we also want the smallest number of basis functions, which in this case is the degrees of freedom for error (df). Small df implies a stable estimate.

Note: 4 basis functions is as small as we can use without changing the order of the spline. Also display the gcv statistic to see what it likes.

\[
\text{for (nbasis in 4:12) }
\]

\[
\text{basisobj = create.bspline.basis}(c(0, 1), \text{nbasis})
\]

\[
ys = \text{smooth.basis}(\text{argvals}, y, \text{basisobj})
\]

\[
xfd = ys$fdf
\]

\[
gcv = ys$gcv
\]

\[
\text{RMSE} = \text{sqrt(\text{mean}((eval.fd(\text{argvals}, xfd) - x)^2)))}
\]

progress report:

\[
\text{cat(paste(nbasis, round(RMSE, 3), round(gcv, 3), "\n"))}
\]

We got RMSE = 0.062 for 10 basis functions as optimal, but gcv liked
almost the same thing, namely 9 basis functions. Both RMSE and gcv agreed emphatically that 7 or fewer basis functions was not enough. Unlike RMSE, however, gcv does not depend on knowing the truth. Plot the result for 10 basis functions along with "*" at the true values

```
nbasis = 10
basisobj = create.bspline.basis(c(0,1),10)
xfd = smooth.basis(argvals, y, basisobj)$fd
plotfit.fd(y, argvals, xfd)
points(argvals,x, pch="x")
```

Homework:
Repeat all this with various values of sigerr and various values of n

```
#### Simulated data example 2: a roughness-penalized smooth ####

A roughness penalty approach is more flexible, allowing continuous control over smoothness and degrees of freedom, can be adapted to known features in the curve, and will generally provide better RMSE for given degrees of freedom.

It does require a bit more effort, though.

First, we define a little display function for showing how df, gcv and RMSE depend on the log10 smoothing parameter

```
plotGCVRMSE.fd = function(lamlow, lamhi, lamdel, x, argvals, y, fdParobj, wtvec=NULL, fdnames=NULL, covariates=NULL) {
 loglamvec = seq(lamlow, lamhi, lamdel)
 loglamout = matrix(0,length(loglamvec),4)
 m = 0
 for (loglambda in loglamvec) {
 m = m + 1
 loglamout[m,1] = loglambda
 fdParobj$lambda = 10^loglambda
 smoothlist = smooth.basis(argvals, y, fdParobj, wtvec=wtvec, fdnames=fdnames, covariates=covariates)
 xfd = smoothlist$fd # the curve smoothing the data
 loglamout[m,2] = smoothlist$df
 # degrees of freedom in the smoothing curve
 loglamout[m,3] = sqrt(mean((eval.fd(argvals, xfd) - x)^2))
 loglamout[m,4] = mean(smoothlist$gcv) # the mean of the N gcv values
 }
 cat("log10 lambda, deg. freedom, RMSE, gcv\n")
 for (i in 1:m) {
 cat(format(round(loglamout[i,],3)))
 cat("\n")
 }
}
```

par(mfrow=c(3,1))
plot(loglamvec, loglamout[,2], type="b")
title("Degrees of freedom")
plot(loglamvec, loglamout[,3], type="b")
title("RMSE")
plot(loglamvec, loglamout[,4], type="b")
smooth.basis

title("Mean gcv")
return(loglamout)

# Use the data that you used in Example 1, or run the following code:
n = 51
argvals = seq(0,1,len=n)
x = sin(4*pi*argvals)
sigerr = 0.2
err = matrix(rnorm(x),n,1)*sigerr
y = x + err
# We now set up a basis system with a knot at every data point.
# The number of basis functions will equal the number of interior knots
# plus the order, which in this case is still 4.
# 49 interior knots + order 4 = 53 basis functions
nbasis = n + 2
basisobj = create.bspline.basis(c(0,1),nbasis)
# Note that there are more basis functions than observed values. A
# basis like this is called "super-saturated." We have to use a
# positive smoothing parameter for it to work. Set up an object of
# class "fdPar" that penalizes the total squared second derivative,
# using a smoothing parameter that is set here to 10^(-4.5).
lambda = 10^(-4.5)
fdParobj = fdPar(fdobj=basisobj, Lfdobj=2, lambda=lambda)
# Smooth the data, outputting a list containing various quantities
smoothlist = smooth.basis(argvals, y, fdParobj)
xfd = smoothlist$fd # the curve smoothing the data
df = smoothlist$df # the degrees of freedom in the smoothing curve
gcv = smoothlist$gcv # the value of the gcv statistic
RMSE = sqrt(mean((eval.fd(argvals, xfd) - x)^2))
cat(round(c(df,RMSE,gcv),3),"n")
plotfit.fd(y, argvals, xfd)
points(argvals,x, pch="*")
# Repeat these analyses for a range of log10(lambda) values by running
# the function plotGCVRMSE that we defined above.

loglamout = plotGCVRMSE.fd(-6, -3, 0.25, x, argvals, y, fdParobj)

# When we ran this example, the optimal RMSE was 0.073, and was achieved
# for log10(lambda) = -4.25 or lambda = 0.000056. At this level of
# smoothing, the degrees of freedom index was 10.6, a value close to
# the 10 degrees of freedom that we saw for regression smoothing. The
# RMSE value is slightly higher than the regression analysis result, as
# is the degrees of freedom associated with the optimal value.
# Roughness penalty will, as we will see later, do better than
# regression smoothing; but with slightly red faces we say, "That's
# life with random data!" The gcv statistic agreed with RMSE on the
# optimal smoothing level, which is great because it does not need to
# know the true values. Note that gcv is emphatic about when there is
# too much smoothing, but rather vague about when we have
# under-smoothed the data.
# Homework:
# Compute average results taken across 100 sets of random data for each
# level of smoothing parameter lambda, and for each number of basis
# functions for regression smoothing.

## Simulated data example 3:
## a roughness-penalized smooth of a sample of curves

n = 51  # number of observations per curve
N = 100  # number of curves
argvals = seq(0,1,len=n)
# The true curve values are linear combinations of fourier function
# values.
# Set up the fourier basis
nfourierbasis = 13
fourierbasis = create.fourier.basis(c(0,1),nfourierbasis)
fourierbasismat = eval.basis(argvals,fourierbasis)
# Set up some random coefficients, with declining contributions from
# higher order basis functions
basiswt = matrix(exp(-1:nfourierbasis)/3,nfourierbasis,N)
coefficient = matrix(rnorm(nfourierbasis*N),nfourierbasis,N)*basiswt
xfd = fd(xcoefficient, fourierbasis)
x = eval.fd(argvals, xfd)
# Add independent Gaussian noise to the data with std. dev. 0.2
sigerr = 0.2
y = x + matrix(rnorm(c(x)),n,N)*sigerr
# Set up spline basis system
nbasis = n + 2
basisobj = create.bspline.basis(c(0,1),nbasis)
# Set up roughness penalty with smoothing parameter 10^(-5)
lambda = 10^(-5)
fdParobj = fdPar(fdboj=basisobj, Lfdobj=2, lambda=lambda)
# Smooth the data, outputting a list containing various quantities
smoothlist = smooth.basis(argvals, y, fdParobj)
xfd = smoothlist$fd  # the curve smoothing the data
df = smoothlist$df  # the degrees of freedom in the smoothing curve
gcv = smoothlist$gcv  # the value of the gcv statistic
RMSE = sqrt(mean((eval.fd(argvals, xfd) - x)^2))
# Display the results, note that a gcv value is returned for EACH curve,
# and therefore that a mean gcv result is reported
cat(round(c(df,RMSE,mean(gcv)),3),"\n")
# the fits are plotted interactively by plotfit.fd ... click to advance
# plot
plotfit.fd(y, argvals, xfd)

# Repeat these results for a range of log10(lambda) values
loglamout = plotGCVRMSE.fd(-6, -3, 0.25, x, argvals, y, fdParobj)
# Our results were:
# log10 lambda, deg. freedom, RMSE, GCV
# -6.000 30.385 0.140 0.071
# -5.750 26.750 0.131 0.066
# -5.500 23.451 0.123 0.062
# -5.250 20.519 0.116 0.059
# -5.000 17.943 0.109 0.056
# -4.750 15.694 0.104 0.054
RMSE and gcv both indicate an optimal smoothing level of
log10(\lambda) = -4.5 corresponding to 13.7 df. When we repeated the
analysis using regression smoothing with 14 basis functions, we
obtained RMSE = 0.110, about 10 percent larger than the value of
0.101 in the roughness penalty result. Smooth the data, outputting a
list containing various quantities

Homework:
Sine functions have a curvature that doesn’t vary a great deal over
the range the curve. Devise some test functions with sharp local
curvature, such as Gaussian densities with standard deviations that
are small relative to the range of the observations. Compare
regression and roughness penalty smoothing in these situations.

if(!CRAN){
  # Simulated data example 4: a roughness-penalized smooth
  # with correlated error

  # These three examples make GCV look pretty good as a basis for
  # selecting the smoothing parameter \lambda. BUT GCV is based on
  # assumption of independent errors, and in reality, functional data
  # often have autocorrelated errors, with an autocorrelation that is
  # usually positive among neighboring observations. Positively
  # correlated random values tend to exhibit slowly varying values that
  # have long runs on one side or the other of their baseline, and
  # therefore can look like trend in the data that needs to be reflected
  # in the smooth curve. This code sets up the error correlation matrix
  # for first-order autoregressive errors, or AR(1).
  rho = 0.9
  n = 51
  argvals = seq(0,1,len=n)
  x = sin(4*pi*argvals)
  Rerr = matrix(0,n,n)
  for (i in 1:n) {
    for (j in 1:n) Rerr[i,j] = rho*abs(i-j)
  }
  # Compute the Choleski factor of the correlation matrix
  Lerr = chol(Rerr)
  # set up some data
  # Generate auto-correlated errors by multiplying independent errors by
  # the transpose of the Choleski factor
  sigerr = 0.2
  err = as.vector(crossprod(Lerr,matrix(rnorm(x),n,1)))*sigerr
  # See the long-run errors that are generated
  plot(argvals, err)
  y = x + err
# Our values of y were:
y = c(-0.03, 0.36, 0.59, 0.97, 1.2, 1.1, 0.96, 0.79, 0.68, 
   0.56, 0.25, 0.01, -0.43, -0.69, -1, -1.09, -1.29, -1.16, -1.09, 
   -0.93, -0.9, -0.78, -0.47, -0.3, -0.01, 0.29, 0.47, 0.77, 0.85, 
   0.87, 0.97, 0.9, 0.72, 0.48, 0.25, -0.17, -0.39, -0.47, -0.71, 
   -1.07, -1.28, -1.33, -1.39, -1.45, -1.3, -1.25, -1.04, -0.82, -0.55, -0.2)

# Retaining the above data, now set up a basis system with a knot at
# every data point: the number of basis functions will equal the
# number of interior knots plus the order, which in this case is still
# 4.
# 19 interior knots + order 4 = 23 basis functions
nbasis = n + 2
basisobj = create.bspline.basis(c(0,1),nbasis)
fdParobj = fdPar(basisobj)

# Smooth these results for a range of log10(lambda) values
loglamout = plotGCVRMSE.fd(-6, -3, 0.25, x, argvals, y, fdParobj)

# Our results without weighting were:
# -6.000 30.385 0.261 0.004
# -5.750 26.750 0.260 0.005
# -5.500 23.451 0.259 0.005
# -5.250 20.519 0.258 0.005
# -5.000 17.943 0.256 0.005
# -4.750 15.694 0.255 0.006
# -4.500 13.738 0.252 0.006
# -4.250 12.038 0.249 0.007
# -4.000 10.564 0.246 0.010
# -3.750 9.286 0.244 0.015
# -3.500 8.177 0.248 0.028
# -3.250 7.217 0.267 0.055
# -3.000 6.385 0.310 0.102

# Now GCV still is firm on the fact that log10(lambda) over -4 is
# over-smoothing, but is quite unhelpful about what constitutes
# undersmoothing. In real data applications you will have to make the
# final call. Now set up a weight matrix equal to the inverse of the
# correlation matrix
wtmat = solve(Rerr)

# Smooth these results for a range of log10(lambda) values using the
# weight matrix
loglamout = plotGCVRMSE.fd(-6, -3, 0.25, x, argvals, y, fdParobj, 
wtvec=wtmat)

# Our results with weighting were:
# -6.000 46.347 0.263 0.005
# -5.750 43.656 0.262 0.005
# -5.500 40.042 0.261 0.005
# -5.250 35.667 0.259 0.005
# -5.000 30.892 0.256 0.005
# -4.750 26.126 0.251 0.006
# -4.500 21.691 0.245 0.008
# -4.250 17.776 0.237 0.012
# -4.000 14.449 0.229 0.023
# -3.750 11.703 0.231 0.045
# -3.500 9.488 0.257 0.088
# -3.250 7.731 0.316 0.161
smooth.basis

# -3.000  6.356  0.397  0.260
# GCV is still not clear about what the right smoothing level is.
# But, comparing the two results, we see an optimal RMSE without
# smoothing of 0.244 at log10(\lambda) = -3.75, and with smoothing 0.229
# at log10(\lambda) = -4. Weighting improved the RMSE. At
# log10(\lambda) = -4 the improvement is 9 percent.
# Smooth the data with and without the weight matrix at log10(\lambda) =
# -4
fdParobj = fdPar(basisobj, 2, 10^-4)
smoothlistnowt = smooth.basis(argvals, y, fdParobj)
fdobjnowt = smoothlistnowt$fd  # the curve smoothing the data
df  = smoothlistnowt$df     # the degrees of freedom in the smoothing curve
GCV = smoothlistnowt$gcv     # the value of the GCV statistic
RMSE = sqrt(mean((eval.fd(argvals, fdobjnowt) - x)^2))
cat(round(c(df,RMSE,GCV),3),"n")
smoothlistwt = smooth.basis(argvals, y, fdParobj, wtvec=wtmat)
fdobjwt = smoothlistwt$fd    # the curve smoothing the data
df  = smoothlistwt$df     # the degrees of freedom in the smoothing curve
GCV = smoothlistwt$gcv     # the value of the GCV statistic
RMSE = sqrt(mean((eval.fd(argvals, fdobjwt) - x)^2))
cat(round(c(df,RMSE,GCV),3),"n")
par(mfrow=c(2,1))
plotfit.fd(y, argvals, fdobjnowt)
plotfit.fd(y, argvals, fdobjwt)
plot(fdobjnowt)
lines(fdobjwt,lty=2)
points(argvals, y)
# Homework:
# Repeat these analyses with various values of \rho, perhaps using
# multiple curves to get more stable indications of relative
# performance. Be sure to include some negative \rho's.

### Simulated data example 5: derivative estimation ###

# Functional data analyses often involve estimating derivatives. Here
# we repeat the analyses of Example 2, but this time focussing our
# attention on the estimation of the first and second derivative.
# n = 51
argvals = seq(0,1,len=n)
x  = sin(4*pi*argvals)
Dx = 4*pi*cos(4*pi*argvals)
D2x = -(4*pi)^2*sin(4*pi*argvals)
sigerr = 0.2
y = x + rnorm(x)*sigerr
# We now use order 6 splines so that we can control the curvature of
# the second derivative, which therefore involves penalizing the
# derivative of order four.
norder = 6
nbasis = n + norder - 2
basisobj = create.bspline.basis(c(0,1),nbasis,norder)
# Note that there are more basis functions than observed values. A
smooth.basis

# basis like this is called "super-saturated." We have to use a
# positive smoothing parameter for it to work. Set up an object of
# class "fdPar" that penalizes the total squared fourth derivative. The
# smoothing parameter that is set here to 10^(-10), because the squared
# fourth derivative is a much larger number than the squared second
# derivative.
lambda = 10^(-10)
fdParobj = fdPar(fdobj=basisobj, Lfobj=4, lambda=lambda)
# Smooth the data, outputting a list containing various quantities
smoothlist = smooth.basis(argvals, y, fdParobj)
xfd = smoothlist$fd  # the curve smoothing the data
df = smoothlist$df  # the degrees of freedom in the smoothing curve
gcv = smoothlist$gcv  # the value of the gcv statistic
Dxhat = eval.fd(argvals, xfd, Lfd=1)
D2xhat = eval.fd(argvals, xfd, Lfd=2)
RMSED = sqrt(mean((Dxhat - Dx)^2))
RMSED2 = sqrt(mean((D2xhat - D2x)^2))
cat(round(c(df, RMSED, RMSED2, gcv), 3), "n")
# Four plots of the results row-wise: data fit, first derivative fit,
# second derivative fit, second vs. first derivative fit
# (phase-plane plot)
par(mfrow=c(2,2))
plotfit.fd(y, argvals, xfd)
plot(argvals, Dxhat, type="p", pch="o")
points(argvals, Dx, pch="x")
title("first derivative approximation")
plot(argvals, D2xhat, type="p", pch="o")
points(argvals, D2x, pch="x")
title("second derivative approximation")
plot(Dxhat, D2xhat, type="p", pch="o")
points(Dx, D2x, pch="x")
title("second against first derivative")
# This illustrates an inevitable problem with spline basis functions;
# because they are not periodic, they fail to capture derivative
# information well at the ends of the interval. The true phase-plane
# plot is an ellipse, but the phase-plane plot of the estimated
# derivatives here is only a rough approximation, and breaks down at the
# left boundary.
# Homework:
# Repeat these results with smaller standard errors.
# Repeat these results, but this time use a fourier basis with no
# roughness penalty, and find the number of basis functions that gives
# the best result. The right answer to this question is, of course, 3,
# if we retain the constant term, even though it is here not needed.
# Compare the smoothing parameter preferred by RMSE for a derivative to
# that preferred by the RMSE for the function itself, and to that
# preferred by gcv.
## Simulated data example 6:
## a better roughness penalty for derivative estimation
##
# We want to see if we can improve the spline fit.
# We know from elementary calculus as well as the code above that
C \text{LT}_{\Pi_{\text{HR}}} \sin \text{HR}_{\Pi_{\text{Rx}}} \text{ so that } \\
C \text{LT}_x = \text{DT}_x + (4\pi i)^2 x \text{ is zero for a sine or a cosine curve.} \\
C \text{WE now penalize roughness using this "smart" roughness penalty} \\
C \text{Here we set up a linear differential operator object that defines} \\
C \text{this penalty} \\
\text{constbasis} = \text{create.constant.basis(c}(0,1)) \\
\text{xcoef.fd} = \text{fd}((4\pi i)^2, \text{constbasis}) \\
\text{Dxcoef.fd} = \text{fd}(0, \text{constbasis}) \\
\text{bwtlist} = \text{vector("list", 2)} \\
\text{bwtlist[[1]]} = \text{xcoef.fd} \\
\text{bwtlist[[2]]} = \text{Dxcoef.fd} \\
\text{Lfdbhj} = \text{Lf}d(\text{nderiv}=2, \text{bwtlist}=\text{bwtlist}) \\
C \text{NOW we use a much larger value of lambda to reflect our confidence} \\
C \text{in power of calculus to solve problems!} \\
\lambda = 16*(0) \\
\text{fdParobj} = \text{fdPar} (\text{fdobj}=\text{basisobj}, \text{Lfobj}=\text{Lfdbhj}, \lambda=\lambda) \\
\text{smoothlist} = \text{smooth.basis} (\text{argvals}, y, \text{fdParobj}) \\
\text{xfd} = \text{smoothlist}\$\text{fd} \quad \text{# the curve smoothing the data} \\
\text{df} = \text{smoothlist}\$\text{df} \quad \text{# the degrees of freedom in the smoothing curve} \\
\text{gcv} = \text{smoothlist}\$\text{gcv} \quad \text{# the value of the gcv statistic} \\
\text{Dxhat} = \text{eval} . \text{fd} (\text{argvals}, \text{xfd}, \text{Lf}=1) \\
\text{D2xhat} = \text{eval} . \text{fd} (\text{argvals}, \text{xfd}, \text{Lf}=2) \\
\text{RMSE} = \text{sqrt} (\text{mean} ((\text{Dxhat} - \text{Dx})^2)) \\
\text{RMSED} = \text{sqrt} (\text{mean} ((\text{D2xhat} - \text{D2x})^2)) \\
\text{cat}(\text{round}(c(\text{df}, \text{RMSE}, \text{RMSED}, \text{gcv}), 3), "\n") \\
\text{# Four plots of the results row-wise: data fit, first derivative fit,} \\
\text{# second derivative fit, second versus first derivative fit} \\
\text{# (phase-plane plot)} \\
\text{par(mfrow=c}(2,2)) \\
\text{plot.fit.\text{fd}(y, \text{argvals}, \text{xfd})} \\
\text{plot(\text{argvals}, \text{Dxhat}, \text{type}="p", \text{pch}="o")} \\
\text{points(\text{argvals}, \text{Dx}, \text{pch}="x")} \\
\text{title("First derivative approximation")} \\
\text{plot(\text{argvals}, \text{D2xhat}, \text{type}="p", \text{pch}="o")} \\
\text{points(\text{argvals}, \text{D2x}, \text{pch}="x")} \\
\text{title("Second derivative approximation")} \\
\text{plot(\text{Dxhat}, \text{D2xhat}, \text{type}="p", \text{pch}="o")} \\
\text{points(\text{Dx}, \text{D2x}, \text{pch}="x")} \\
\text{title("Second versus first derivative")} \\
\text{# The results are nearly perfect in spite of the fact that we are not using} \\
\text{# periodic basis functions. Notice, too, that we have used 2.03} \\
\text{# degrees of freedom, which is close to what we would use for the ideal} \\
\text{# fourier series basis with the constant term dropped.} \\
\text{# Homework:} \\
\text{# These results depended on us knowing the right period, of course.} \\
\text{# The data would certainly allow us to estimate the period 1/2 closely,} \\
\text{# but try various other periods by replacing 1/2 by other values.} \\
\text{# Alternatively, change \text{x} by adding a small amount of, say, linear trend.} \\
\text{# How much trend do you have to add to seriously handicap the results?}
Now we simulate data that are defined by a sine curve, but where the first 20 observed values are shifted upwards by 0.5, and the second shifted downwards by -0.2. The two covariates are indicator or dummy variables, and the estimated regression coefficients will indicate the shifts as estimated from the data.

```r
n = 51
argvals = seq(0,1,len=n)
x = sin(4*pi*argvals)
sigerr = 0.2
y = x + rnorm(x)*sigerr
the n by p matrix of covariate values, p being here 2
p = 2
zmat = matrix(0,n,p)
zmat[1:11,1] = 1
zmat[11:20,2] = 1
The true values of the regression coefficients
beta0 = matrix(c(0.5,-0.2),p,1)
y = y + zmat
The same basis system and smoothing process as used in Example 2
nbasis = n + 2
basisobj = create.bspline.basis(c(0,1),nbasis)
lambda = 10^(-4)
fdParobj = fdPar(basisobj, 2, lambda)
Smooth the data, outputting a list containing various quantities
smoothlist = smoothbasis(argvals, y, fdParobj, covariates=zmat)
xfd = smoothlist$fd # the curve smoothing the data
df = smoothlist$df # the degrees of freedom in the smoothing curve
gcv = smoothlist$gcv # the value of the gcv statistic
beta = smoothlist$beta # the regression coefficients
RMSE = sqrt(mean((eval.fd(argvals, xfd) - x)^2))
cat(round(c(beta,df,RMSE,gcv),3),"\\n")
par(mfrow=c(1,1))
plotfit.fd(y, argvals, xfd)
points(argvals,x, pch="*")
print(beta)
The recovery of the smooth curve is fine, as in Example 2. The shift of the first 10 observations was estimated to be 0.62 in our run, and the shift of the second 20 was estimated to be -0.42. These estimates are based on only 10 observations, and these estimates are therefore quite reasonable.
Repeat these analyses for a range of log10(lambda) values
loglamout = plotGCVRMSE.fd(-6, -3, 0.25, x, argvals, y, fdParobj, covariates=zmat)
```

Homework:

Try an example where the covariate values are themselves are generated by a smooth known curve.

```r
Simulated data example 8:
a roughness-penalized smooth of a sample of curves and variable observation points
##
n = 51 # number of observations per curve
N = 100 # number of curves
argvals = matrix(0, n, N)
for i in 1:N argvals[i,] = sort(runif(1:n))
The true curve values are linear combinations of Fourier function
values.
Set up the Fourier basis
nfourierbasis = 13
fourierbasis = create.fourier.basis(c(0, 1), nfourierbasis)
Set up some random coefficients, with declining contributions from
higher order basis functions
basiswt = matrix(exp(-(1:nfourierbasis)/3), nfourierbasis, N)
coef = matrix(rnorm(nfourierbasis*N), nfourierbasis, N)*basiswt
xfd = fd(xcoef, fourierbasis)
x = matrix(0, n, N)
for i in 1:N x[i,] = eval.fd(argvals[i,], xfd[i])
Add independent Gaussian noise to the data with std. dev. 0.2
sigerr = 0.2
y = x + matrix(rnorm(c(x)), n, N)*sigerr
Set up spline basis system
nbasis = n + 2
basisobj = create.bspline.basis(c(0, 1), nbasis)
Set up roughness penalty with smoothing parameter 10^(-5)
lambda = 10^(-5)
fdParobj = fdPar(fdobj=basisobj, Lfdobj=2, lambda=lambda)
Smooth the data, outputting a list containing various quantities
smoothlist = smooth.basis(argvals, y, fdParobj)
xfd = smoothlist$fd # the curve smoothing the data
df = smoothlist$df # the degrees of freedom in the smoothing curve
gcv = smoothlist$gcv # the value of the gcv statistic
RMSE = sqrt(mean((eval.fd(argvals, xfd) - x)^2))
eval.x <- eval.fd(argvals, xfd)
e.xfd <- (eval.x - x)
mean.e2 <- mean(e.xfd^2)
RMSE = sqrt(mean.e2)
Display the results, note that a gcv value is returned for each
curve, and therefore that a mean gcv result is reported
cat(round(c(df, RMSE, mean(gcv)), 3), "\n")
Function plotfit.fd is not equipped to handle a matrix of argvals,
but can always be called within a loop to plot each curve in turn.
Although a call to function plotGCVRMSE.fd works, the computational
overhead is substantial, and we omit this here.

##
Real data example 9. gait
##
These data involve two variables in addition to multiple curves
gaittime <- (1:20)/21
gaitrange <- c(0, 1)
gaitbasis <- create.fourier.basis(gaitrange, 21)
lambda <- 10^(-11.5)
harmaccellfd <- vec2Lfd(c(0, 0, (2*pi)^2, 0))
gaitfdPar <- fdPar(gaitbasis, harmaccellfd, lambda)
smooth.basisPar

Smooth Data Using a Directly Specified Roughness Penalty

Description

Smooth (argvals, y) data with roughness penalty defined by the remaining arguments. This function acts as a wrapper for those who want to bypass the step of setting up a functional parameter object before invoking function smooth.basis. This function simply does this setup for the user. See the help file for functions smooth.basis and fdPar for further details, and more complete descriptions of the arguments.

Usage

smooth.basisPar(argvals, y, fdobj=NULL, Lfdobj=NULL, lambda=0, estimate=TRUE, penmat=NULL, wtvec=NULL, fdnames=NULL, covariates=NULL, method="chol", dfscale=1)

Arguments

argvals

a set of argument values corresponding to the observations in array y. In most applications these values will be common to all curves and all variables, and therefore be defined as a vector or as a matrix with a single column. But it is possible that these argument values will vary from one curve to another, and in this case argvals will be input as a matrix with rows corresponding to observation points and columns corresponding to curves. Argument values can even vary from one variable to another, in which case they are input as an array with dimensions corresponding to observation points, curves and variables, respectively. Note, however, that the number of observation points per curve and per variable may NOT vary. If it does, then curves and variables must be smoothed individually rather than by a single call to this function. The default value for argvals are the integers 1 to n, where n is the size of the first dimension in argument y.
y an set of values of curves at discrete sampling points or argument values. If the set is supplied as a matrix object, the rows must correspond to argument values and columns to replications, and it will be assumed that there is only one variable per observation. If y is a three-dimensional array, the first dimension corresponds to argument values, the second to replications, and the third to variables within replications. If y is a vector, only one replicate and variable are assumed. If the data come from a single replication but multiple vectors, such as data on coordinates for a single space curve, then be sure to coerce the data into an array object by using the `as.array` function with one as the central dimension length.

`fdobj` One of the following:

- `fd` a functional data object (class `fd`)
- `basisfd` a functional basis object (class `basisfd`), which is converted to a functional data object with the identity matrix as the coefficient matrix.
- `fdPar` a functional parameter object (class `fdpar`)
- integer a positive integer giving the order of a B-spline basis, which is further converted to a functional data object with the identity matrix as the coefficient matrix.
- matrix or array replaced by `fd(fdobj)`
- `NULL` Defaults to `fdobj = create.bspline.basis(argvals)`.

`Lfdobj` either a nonnegative integer or a linear differential operator object. If `NULL`, `Lfdobj` depends on `fdobj[['basis']][['type']]`:

- `bspline` `Lfdobj <- int2Lfd(max(0, norder-2))`, where `norder = norder(fdobj)`.
- `fourier` `Lfdobj <- vec2Lfd(c(0, (2*pi/diff(rng))*2, 0), rng)` where `rng = fdobj[['basis']][['rangeval']]`.
- `anything` else `Lfdobj <- int2Lfd(0)`

`lambda` a nonnegative real number specifying the amount of smoothing to be applied to the estimated functional parameter.

`estimate` a logical value: if `TRUE`, the functional parameter is estimated, otherwise, it is held fixed.

`penmat` a roughness penalty matrix. Including this can eliminate the need to compute this matrix over and over again in some types of calculations.

`wtvec` typically a vector of length n that is the length of `argvals` containing weights for the values to be smoothed. However, it may also be a symmetric matrix of order n. If `wtvec` is a vector, all values must be positive, and if it is a symmetric matrix, this must be positive definite. Defaults to all weights equal to 1.

`fdnames` a list of length 3 containing character vectors of names for the following:

- `args` name for each observation or point in time at which data are collected for each 'rep', unit or subject.
- `reps` name for each 'rep', unit or subject.
- `fun` name for each 'fun' or (response) variable measured repeatedly (per 'args') for each 'rep'.
covariates

the observed values in y are assumed to be primarily determined the height of the curve being estimates, but from time to time certain values can also be influenced by other known variables. For example, multi-year sets of climate variables may be also determined by the presence of absence of an El Nino event, or a volcanic eruption. One or more of these covariates can be supplied as an n by p matrix, where p is the number of such covariates. When such covariates are available, the smoothing is called "semi-parametric." Matrices or arrays of regression coefficients are then estimated that define the impacts of each of these covariates for each cueve and each variable.

method

by default the function uses the usual textbook equations for computing the coefficients of the basis function expansions. But, as in regression analysis, a price is paid in terms of rounding error for such computations since they involved cross-products of basis function values. Optionally, if method is set equal to the string "qr", the computation uses an algorithm based on the qr-decomposition which is more accurate, but will require substantially more computing time when n is large, meaning more than 500 or so. The default is "chol", referring the Choleski decomposition of a symmetric positive definite matrix.

df

define the generalized cross-validation or "gcv" criterion that is often used to determine the size of the smoothing parameter involves the subtraction of an measue of degrees of freedom from n. Chong Gu has argued that multiplying this degrees of freedom measure by a constant slightly greater than 1, such as 1.2, can produce better decisions about the level of smoothing to be used. The default value is, however, 1.0.

Details

1. if(is.null(fdobj))fdobj <- create.bspline.basis(argvals). Else if(is.integer(fdobj)) fdobj <- create.bspline.basis(argvals, norder = fdobj)
2. fdPar
3. smooth.basis

Value

The output of a call to smooth.basis, which is an object of class fdSmooth, being a list of length 8 with the following components:

fd a functional data object that smooths the data.
df a degrees of freedom measure of the smooth
gcv the value of the generalized cross-validation or GCV criterion. If there are multiple curves, this is a vector of values, one per curve. If the smooth is multivariate, the result is a matrix of gcv values, with columns corresponding to variables.
SSE the error sums of squares. SSE is a vector or a matrix of the same size as 'gcv'.
penmat the penalty matrix.
y2cMap the matrix mapping the data to the coefficients.
argvals, y input arguments
smooth.basisPar

References

See Also

Data2fd, df2lambda, fdPar, lambda2df, lambda2gcv, plot.fd, project.basis, smooth.basis, smooth.fd, smooth.monotone, smooth.pos

Examples

```r
## simplest call
##
girlGrowthSm <- with(growth, smooth.basisPar(argvals=age, y=hgtf, lambda=0.1))
plot(girlGrowthSm$fd, xlab="age", ylab="height (cm)",
     main="Girls in Berkeley Growth Study")
plot(deriv(girlGrowthSm$fd), xlab="age", ylab="growth rate (cm / year)",
     main="Girls in Berkeley Growth Study")
plot(deriv(girlGrowthSm$fd, 2), xlab="age",
     ylab="growth acceleration (cm / year^2)",
     main="Girls in Berkeley Growth Study")
# Undersmoothed with lambda = 0

## Another simple call
##
lipSm <- smooth.basisPar(liptime, lip, lambda=1e-9)$fd
plot(lipSm)

## A third example
##
x <- seq(-1,1,0.02)
y <- x + 3*exp(-6*x^2) + sin(1:101)/2
# sin not rnorm to make it easier to compare
# results across platforms

# set up a saturated B-spline basis
basisobj101 <- create.bspline.basis(x)
fdParobj101 <- fdPar(basisobj101, 2, lambda=1)
result101 <- smooth.basis(x, y, fdParobj101)

resultP <- smooth.basisPar(argvals=x, y=y, fdobj=basisobj101, lambda=1)
all.equal(result101, resultP)

# TRUE
```
smooth.bibasis

Description

Smooth a discrete surface over a rectangular lattice

Estimate a smoothing function f(s, t) over a rectangular lattice
Usage

smooth.bibasis(sarg, targ, y, fdpars, fdpart, fdnames=NULL, returnMatrix=FALSE)

Arguments

sarg, targ
vectors of argument values for the first and second dimensions, respectively, of
the surface function.
y
an array containing surface values measured with noise
fdpars, fdpart
functional parameter objects for sarg and targ, respectively
fdnames
a list of length 3 containing character vectors of names for sarg, targ, and the
surface function f(s, t).
returnMatrix
logical: If TRUE, a two-dimensional is returned using a special class from the
Matrix package.

Value

a list with the following components:

fdobj
a functional data object containing a smooth of the data.
df
a degrees of freedom measure of the smooth
gcv
the value of the generalized cross-validation or GCV criterion. If the function is
univariate, GCV is a vector containing the error sum of squares for each func-
tion, and if the function is multivariate, GCV is a NVAR by NCURVES matrix.
coef
the coefficient matrix for the basis function expansion of the smoothing function
SSE
the error sums of squares. SSE is a vector or a matrix of the same size as GCV.
penmat
the penalty matrix.
y2cMap
the matrix mapping the data to the coefficients.

See Also

smooth.basis

smooth.fd

Smooth a Functional Data Object Using an Indirectly Specified
Roughness Penalty

Description

Smooth data already converted to a functional data object, fdobj, using criteria consolidated in
a functional data parameter object, fdParobj. For example, data may have been converted to a
functional data object using function Data2fd using a fairly large set of basis functions. This
'fdobj' is then smoothed as specified in 'fdParobj'.
Usage

smooth.fd(fdobj, fdParobj)

Arguments

 fdobj a functional data object to be smoothed.
 fdParobj a functional parameter object. This object is defined by a roughness penalty in
 slot Lfd and a smoothing parameter lambda in slot lambda, and this information
 is used to further smooth argument fdobj.

Value

 a functional data object.

See Also

 smoothNbasis, Data2fd

Examples

 # Shows the effects of two levels of smoothing
 # where the size of the third derivative is penalized.
 # The null space contains quadratic functions.
 x <- seq(-1,1,0.02)
 y <- x + 3*exp(-6*x^2) + rnorm(rep(1,101))*0.2
 # set up a saturated B-spline basis
 basisobj <- create.bspline.basis(c(-1,1),81)
 # convert to a functional data object that interpolates the data.
 result <- smooth.basis(x, y, basisobj)
 yfd <- result$f

 # set up a functional parameter object with smoothing
 # parameter 1e-6 and a penalty on the 3rd derivative.
 yfdPar <- fdPar(yfd, 2, 1e-6)
 yfd1 <- smooth.fd(yfd, yfdPar)

 # Not run:
 # FIXME: using 3rd derivative here gave error?????
 yfdPar3 <- fdPar(yfd, 3, 1e-6)
 yfd3 <- smooth.fd(yfd, yfdPar3)
 #Error in bsplinepen(basisobj, Lfdobj, rng) :
 # Penalty matrix cannot be evaluated
 # for derivative of order 3 for B-splines of order 4

 # End(Not run)

 # set up a functional parameter object with smoothing
 # parameter 1 and a penalty on the 3rd derivative.
 yfdPar <- fdPar(yfd, 2, 1)
 yfd2 <- smooth.fd(yfd, yfdPar)
```r
# plot the data and smooth
plot(x, y)  # plot the data
lines(yfd1, lty=1)  # add moderately penalized smooth
lines(yfd2, lty=3)  # add heavily penalized smooth
legend(-1.3, c("0.000001","1"), lty=c(1,3))

# plot the data and smoothing using function plotfit.fd
plotfit.fd(y, x, yfd1)  # plot data and smooth
```

smooth.fdPar
Smooth a functional data object using a directly specified roughness penalty

Description

Smooth data already converted to a functional data object, `fdobj`, using directly specified criteria.

Usage

```r
smooth.fdPar(fdobj, Lfdobj=NULL, lambda=0,
estimate=TRUE, penmat=NULL)
```

Arguments

- `fdobj`: a functional data object to be smoothed.
- `Lfdobj`: either a nonnegative integer or a linear differential operator object. If `NULL`, `Lfdobj` depends on `fdobj[['basis']][['type']]`:
 - `bspline`: `Lfdobj <- int2Lfd(max(0, norder-2))`, where `norder = norder(fdobj)`.
 - `fourier`: `Lfdobj = a harmonic acceleration operator:
 Lfdobj <- vec2Lfd(c(0, (2*pi/diff(rng))^2, 0), rng)
 where rng = fdobj[['basis']][['rangeval']]`.
 - `anything else`: `Lfdobj <- int2Lfd(0)`
- `lambda`: a nonnegative real number specifying the amount of smoothing to be applied to the estimated functional parameter.
- `estimate`: a logical value: if `TRUE`, the functional parameter is estimated, otherwise, it is held fixed.
- `penmat`: a roughness penalty matrix. Including this can eliminate the need to compute this matrix over and over again in some types of calculations.

Details

1. `fdPar`
2. `smooth.fd`
Value

a functional data object.

References

See Also

smooth.fd, fdPar, smooth.basis, smooth.pos, smooth.morph

Examples

1. B-spline example
##
Shows the effects of two levels of smoothing
where the size of the third derivative is penalized.
The null space contains quadratic functions.
x <- seq(-1,1,0.02)
y <- x + 3*exp(-6*x^2) + rnorm(rep(1,101))*0.2
set up a saturated B-spline basis
basisobj <- create.bspline.basis(c(-1,1),81)
convert to a functional data object that interpolates the data.
result <- smooth.basis(x, y, basisobj)
yfd <- result$fd
set up a functional parameter object with smoothing
parameter 1e-6 and a penalty on the 2nd derivative.
yfdPar <- fdPar(yfd, 2, 1e-6)
yfd1 <- smooth.fd(yfd, yfdPar)
yfd1. <- smooth.fdPar(yfd, 2, 1e-6)
all.equal(yfd1, yfd1.)
TRUE

set up a functional parameter object with smoothing
parameter 1 and a penalty on the 2nd derivative.
yfd2 <- smooth.fdPar(yfd, 2, 1)

plot the data and smooth
plot(x,y) # plot the data
lines(yfd1, lty=1) # add moderately penalized smooth
lines(yfd2, lty=3) # add heavily penalized smooth
legend(-1,3,c("0.000001","1"),lty=c(1,3))
plot the data and smoothing using function plotfit.fd
plotfit.fd(y, x, yfd1) # plot data and smooth
##
2. Fourier basis with harmonic acceleration operator
smooth.monotone

Monotone Smoothing of Data

Description

When the discrete data that are observed reflect a smooth strictly increasing or strictly decreasing function, it is often desirable to smooth the data with a strictly monotone function, even though the data themselves may not be monotone due to observational error. An example is when data are collected on the size of a growing organism over time. This function computes such a smoothing function, but, unlike other smoothing functions, for only for one curve at a time. The smoothing function minimizes a weighted error sum of squares criterion. This minimization requires iteration, and therefore is more computationally intensive than normal smoothing.

The monotone smooth is $\beta_1 + \beta_2 \cdot \text{integral}(\exp(Wfdobj))$, where $Wfdobj$ is a functional data object. Since $\exp(Wfdobj) > 0$, its integral is monotonically increasing.

Usage

```r
smooth.monotone(argvals, y, WfdParobj, wvec=rep(1,n),
                  zmat=NULL, conv=.0001, iterlim=50,
                  active=rep(TRUE,nbasis), dbglev=1, returnMatrix=FALSE)
```

Arguments

- **argvals**: Argument value array of length N, where N is the number of observed curve values for each curve. It is assumed that that these argument values are common to all observed curves. If this is not the case, you will need to run this function inside one or more loops, smoothing each curve separately.

- **y**: a vector of data values. This function can only smooth one set of data at a time. Function value array (the values to be fit). If the functional data are univariate, this array will be an N by NCURVE matrix, where N is the number of observed curve values for each curve and NCURVE is the number of curves observed. If the functional data are multivariate, this array will be an N by NCURVE by NVAR matrix, where NVAR the number of functions observed per case. For example, for the gait data, NVAR = 2, since we observe knee and hip angles.
smooth.monotone

WfdParobj: A functional parameter or fdPar object. This object contains the specifications for the functional data object to be estimated by smoothing the data. See comment lines in function fdPar for details. The functional data object WFD in WFDPAROBJ is used to initialize the optimization process. Its coefficient array contains the starting values for the iterative minimization of mean squared error.

wtvec: a vector of weights to be used in the smoothing.

zmat: a design matrix or a matrix of covariate values that also define the smooth of the data.

conv: a convergence criterion.

iterlim: the maximum number of iterations allowed in the minimization of error sum of squares.

active: a logical vector specifying which coefficients defining $W(t)$ are estimated. Normally, the first coefficient is fixed.

dbglev: either 0, 1, or 2. This controls the amount information printed out on each iteration, with 0 implying no output, 1 intermediate output level, and 2 full output. If either level 1 or 2 is specified, it can be helpful to turn off the output buffering feature of S-PLUS.

returnMatrix: logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Details

The smoothing function $f(argvals)$ is determined by three objects that need to be estimated from the data:

- $W(argvals)$, a functional data object that is first exponentiated and then the result integrated. This is the heart of the monotone smooth. The closer $W(argvals)$ is to zero, the closer the monotone smooth becomes a straight line. The closer $W(argvals)$ becomes a constant, the more the monotone smoother becomes an exponential function. It is assumed that $W(0) = 0$.

- $b0$, an intercept term that determines the value of the smoothing function at $argvals = 0$.

- $b1$, a regression coefficient that determines the slope of the smoothing function at $argvals = 0$.

In addition, it is possible to have the intercept $b0$ depend in turn on the values of one or more covariates through the design matrix $zmat$ as follows: $b0 = Z c$. In this case, the single intercept coefficient is replaced by the regression coefficients in vector c multiplying the design matrix.

Value

an object of class monfd, which is a list with the following 5 components:

Wfdobj: a functional data object defining function $W(argvals)$ that optimizes the fit to the data of the monotone function that it defines.
beta

The regression coefficients b_0 and b_1 for each smoothed curve.
If the curves are univariate and ... ZMAT is NULL, BETA is 2 by NCURVE. ...
ZMAT has P columns, BETA is P+1 by NCURVE.
If the curves are multivariate and ... ZMAT is NULL, BETA is 2 by NCURVE
by NVAR. ... ZMAT has P columns, BETA is P+1 by NCURVE by NVAR.
yhatfd

A functional data object for the monotone curves that smooth the data. This
object is constructed using the basis for WFDOBJ, and this basis may well be too
simple to accommodate the curvature in the monotone function that Widobjnes.
It may be necessary to discard this object and use a richer basis externally to

Flist

a named list containing three results for the final converged solution: (1) f: the
optimal function value being minimized, (2) grad: the gradient vector at the
optimal solution, and (3) norm: the norm of the gradient vector at the optimal
solution.
y2cMap

For each estimated curve (and variable if functions are multivariate, this is an
N by NBASIS matrix containing a linear mapping from data to coefficients
that can be used for computing point-wise confidence intervals. If NCURVE
= NVAR = 1, a matrix is returned. Otherwise an NCURVE by NVAR list is
returned, with each slot containing this mapping.

argvals

input argvals, possibly modified / clarified by argcheck.
y

input argument y, possibly modified / clarified by ycheck.

References

New York.
New York.

See Also

smooth.basis, smooth.pos, smooth.morph

Examples

Estimate the acceleration functions for growth curves
See the analyses of the growth data.
Set up the ages of height measurements for Berkeley data
age <- c(seq(1, 2, 0.25), seq(3, 8, 1), seq(8.5, 18, 0.5))
Range of observations
rng <- c(1,18)
First set up a basis for monotone smooth
We use b-spline basis functions of order 6
Knots are positioned at the ages of observation.
norder <- 6
nage <- length(age)
nbasis <- nage + norder - 2
smooth.morph <- create.bspline.basis(rng, nbasis, norder, age)
starting values for coefficient
cvec0 <- matrix(0,nbasis,1)
Wfd0 <- fd(cvec0, wbasis)
set up functional parameter object
Lfdobj <- 3 # penalize curvature of acceleration
lambda <- 10^(-0.5) # smoothing parameter
growfdPar <- fdPar(Wfd0, Lfdobj, lambda)
Set up wgt vector
wgt <- rep(1,nage)
Smooth the data for the first girl
hgt1 = growth$hgt[,1]

conv=0.1 to reduce the compute time,
required to reduce the test time on CRAN

if(!CRAN()){
 result <- smooth.monomo(ave, hgt1, growfdPar, wgt,
 conv=0.1)
 # Extract the functional data object and regression
 # coefficients
 Wfd <- result$Wfdobj
 beta <- result$beta
 # Evaluate the fitted height curve over a fine mesh
 agefine <- seq(1,18,len=73)
 # Plot the data and the curve
 plot(ave, hgt1, type="p")
 lines(agefine, hgtfine)
 # Evaluate the acceleration curve
 accfine <- beta[2]*eval.mono(agefine, Wfd, 2)
 # Plot the acceleration curve
 plot(agefine, accfine, type="l")
 lines(c(1,18),c(0,0),lty=4)
}

smooth.morph Estimates a Smooth Warping Function

Description

This function is nearly identical to smooth.monomo but is intended to compute a smooth monotone transformation $h(t)$ of argument t such that $h(0) = 0$ and $h(\text{TRUE}) = \text{TRUE}$, where t is the upper limit of t. This function is used primarily to register curves.
smooth.pos

Usage

smooth.morph(x, y, WfdPar, wt=rep(1, nobs),
 conv=.0001, iterlim=20, dbglev=0)

Arguments

x a vector of argument values.
y a vector of data values. This function can only smooth one set of data at a time.
WfdPar a functional parameter object that provides an initial value for the coefficients defining function $W(t)$, and a roughness penalty on this function.
wt a vector of weights to be used in the smoothing.
conv a convergence criterion.
iterlim the maximum number of iterations allowed in the minimization of error sum of squares.
dbglev either 0, 1, or 2. This controls the amount information printed out on each iteration, with 0 implying no output, 1 intermediate output level, and 2 full output. If either level 1 or 2 is specified, it can be helpful to turn off the output buffering feature of S-PLUS.

Value

A named list of length 4 containing:

Wfdobj a functional data object defining function $W(x)$ that that optimizes the fit to the data of the monotone function that it defines.
Flist a named list containing three results for the final converged solution: (1) f: the optimal function value being minimized, (2) grad: the gradient vector at the optimal solution, and (3) norm: the norm of the gradient vector at the optimal solution.
iternum the number of iterations.
iterhist a by 5 matrix containing the iteration history.

See Also

smooth.monotone, landmarkreg, register.fd

smooth.pos Smooth Data with a Positive Function

Description

A set of data is smoothed with a functional data object that only takes positive values. For example, this function can be used to estimate a smooth variance function from a set of squared residuals. A function $W(t)$ is estimated such that that the smoothing function is $\exp[W(t)]$.
Usage

smooth.pos(argvals, y, WfdParobj, wtvec=rep(1,n),
 conv=.0001, iterlim=50, dbglev=1, returnMatrix=FALSE)

Arguments

argvals Argument value array of length N, where N is the number of observed curve values for each curve. It is assumed that these argument values are common to all observed curves. If this is not the case, you will need to run this function inside one or more loops, smoothing each curve separately.

ty Function value array (the values to be fit). If the functional data are univariate, this array will be an N by NCURVE matrix, where N is the number of observed curve values for each curve and NCURVE is the number of curves observed. If the functional data are multivariate, this array will be an N by NCURVE by NVAR matrix, where NVAR the number of functions observed per case. For example, for the gait data, NVAR = 2, since we observe knee and hip angles.

WfdParobj A functional parameter or fdPar object. This object contains the specifications for the functional data object to be estimated by smoothing the data. See comment lines in function fdPar for details. The functional data object WFD in WFDPAROBJ is used to initialize the optimization process. Its coefficient array contains the starting values for the iterative minimization of mean squared error.

wtvec a vector of weights to be used in the smoothing.

conv a convergence criterion.

iterlim the maximum number of iterations allowed in the minimization of error sum of squares.

dbglev either 0, 1, or 2. This controls the amount information printed out on each iteration, with 0 implying no output, 1 intermediate output level, and 2 full output. If either level 1 or 2 is specified, it can be helpful to turn off the output buffering feature of S-PLUS.

returnMatrix logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.

Value

an object of class posfd, being a list with 4 components:

Wfdobj a functional data object defining function $W(x)$ that optimizes the fit to the data of the positive function that it defines.

Flist a named list containing three results for the final converged solution: (1) f: the optimal function value being minimized, (2) grad: the gradient vector at the optimal solution, and (3) norm: the norm of the gradient vector at the optimal solution.

argvals, y the corresponding input arguments

returnMatrix logical: If TRUE, a two-dimensional is returned using a special class from the Matrix package.
See Also

`smooth.monotone, smooth.morph`

Examples

```r
smallbasis <- create.fourier.basis(c(0, 365), 65)
harmaccellfd365 <- vec2Lfd(c(0, (2*pi/365)*2, 0), c(0, 365))

index <- (1:35)[CanadianWeather$place == "Vancouver"]
VanPrec <- CanadianWeather$dailyAv[, index, "Precipitation.mm"]

lambda <- 1e4
dayfdPar <- fdPar(smallbasis, harmaccellfd365, lambda)
smooth.pos(day.5, VanPrec, dayfdPar)
```

Description

(x, y, z) coordinates of the location of the tip of a pen during fifty replications of writing 'Statistical Science' in simplified Chinese at 10 millisecond intervals

Usage

data(StatSciChinese)

Format

a 3-dimensional array of dimensions (601, 50, 3) containing 601 observations of (x, y, z) coordinates of the tip of a pen at 2.5 millisecond intervals for each of 50 repitions of writing 'Statistical Science' in simplified Chinese.

Details

Xiaochun Li wrote 'Statistical Science' in simplified Chinese 50 times. An infra-red detecting tablet was attached to the tip of the pen, and a wall-mounted set of three cameras recorded its position 400 times per second with an error level of about 0.5 millimeters. Each sample required about 6 seconds to produce, and for simplicity, time was normalized to this interval for all 50 records. The script requires 50 strokes, with an average time of 120 milliseconds per stroke. These raw data were shifted and rotated so the numbers more accurately reflected x and y coordinates relative to the drawn characters plus vertical distance from the paper.

References

Examples

data(StatSciChinese)

 i <- 3
 StatSci1 <- StatSciChinese[, i,]
 # Where does the pen leave the paper?
 plot(StatSci1[, 3], type='l')
 thresh <- quantile(StatSci1[, 3], .8)
 abline(h=thresh)

 sel1 <- (StatSci1[, 3] < thresh)
 StatSci1[!sel1, 1:2] <- NA
 plot(StatSci1[, 1:2], type='l')

 mark <- seq(1, 601, 12)
 points(StatSci1[mark, 1], StatSci1[mark, 2])

sum.fd Sum of Functional Data

Description

Evaluate the sum of a set of functions in a functional data object.

Usage

 ## S3 method for class 'fd'
 sum(..., na.rm)

Arguments

 ... a functional data object to sum.
 na.rm Not used.

Value

 a functional data object with a single replication that contains the sum of the functions in the object fd.

See Also

 mean.fd, std.fd, stddev.fd, center.fd
summary.basisfd
Summarize a Functional Data Object

Description

Provide a compact summary of the characteristics of a functional data object.

Usage

```r
## S3 method for class 'basisfd'
summary(object, ...)
```

Arguments

- `object` a functional data object (i.e., of class 'basisfd').
- `...` Other arguments to match generic

Value

a displayed summary of the bivariate functional data object.

References

summary.bifd
Summarize a Bivariate Functional Data Object

Description

Provide a compact summary of the characteristics of a bivariate functional data object.

Usage

```r
## S3 method for class 'bifd'
summary(object, ...)
```

Arguments

- `object` a bivariate functional data object.
- `...` Other arguments to match the generic function for 'summary'
Value

a displayed summary of the bivariate functional data object.

See Also

summary.

Summary of Functional Data Object

Description

Provide a compact summary of the characteristics of a functional data object.

Usage

```r
## S3 method for class 'fd'
summary(object,...)
```

Arguments

- `object`: a functional data object.
- `...`: Other arguments to match the generic for `summary`

Value

a displayed summary of the functional data object.

See Also

summary.

Summary of Functional Parameter Object

Description

Provide a compact summary of the characteristics of a functional parameter object (i.e., class 'fd-Par').

Usage

```r
## S3 method for class 'fdPar'
summary(object, ...)
```
Arguments

object a functional parameter object.

... Other arguments to match the generic 'summary' function

Value

a displayed summary of the functional parameter object.

See Also

summary.

summary.Lfd

Summarize a Linear Differential Operator Object

Description

Provide a compact summary of the characteristics of a linear differential operator object.

Usage

```r
## S3 method for class 'Lfd'
summary(object, ...)
```

Arguments

object a linear differential operator object.

... Other arguments to match the generic 'summary' function

Value

a displayed summary of the linear differential operator object.

See Also

summary,
svd2

singular value decomposition with automatic error handling

Description

The 'svd' function in R 2.5.1 occasionally throws an error with a cryptic message. In some such cases, changing the LINPACK argument has worked.

Usage

svd2(x, nu = min(n, p), nv = min(n, p), LINPACK = FALSE)

Arguments

x, nu, nv, LINPACK

as for the 'svd' function in the 'base' package.

Details

In R 2.5.1, the 'svd' function sometimes stops with a cryptic error message for a matrix x for which a second call to 'svd' with !LINPACK will produce an answer.

When such conditions occur, write a warning and save the matrix with the result to a file with a name like 'svd.LINPACK.error.matrix*.rda' in the working directory.

Except for these rare pathologies, 'svd2' should work the same as 'svd'.

NOTE: This function was written to get past a pathology without isolating a replicable example. The problem may have long been fixed. It is maintained in case it has not.

Value

a list with components d, u, and v, as described in the help file for 'svd' in the 'base' package.

See Also

svd

Examples

example from svd
hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "*") }
X <- hilbert(9)[, 1:6]
s <- svd(X)
s2 <- svd2(X)
all.equal(s, s2)
symolve

Description

Solve $A X = B$ for X where A is symmetric

Usage

```
solve(A, B) where A is symmetric
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asym</td>
<td>a symmetric matrix</td>
</tr>
<tr>
<td>Bmat</td>
<td>a square matrix of dimensions matching Asym</td>
</tr>
</tbody>
</table>

Value

A square matrix of the same dimensions as Asym and Bmat

See Also

`solve`

Examples

```
A <- matrix(c(2,1,1,2), 2)
Ainv <- symsolve(A, diag(2))
```

taylorSpline

Description

Convert B-Spline coefficients into a local Taylor series representation expanded about the midpoint between each pair of distinct knots.

Usage

```
taylorSpline(object, ...)
```

Examples

```
A <- matrix(c(2,1,1,2), 2)
Ainv <- symsolve(A, diag(2))
```
Arguments

object a spline object possibly of some other class

... optional arguments

Details

1. Is object a spline object with a B-spline basis? If no, throw an error.
2. Find knots and midpoints.
3. Obtain coef(object).
4. Determine the number of dimensions of coef(object) and create empty coef and deriv arrays to match. Then fill the arrays.

Value

a list with the following components:

knots a numeric vector of knots(object, interior=FALSE)

midpoints midpoints of intervals defined by unique(knots)

coeff A matrix of dim = c(nKnots-1, norder) containing the coefficients of a polynomial in (x-midpoints[i]) for interval i, where nKnots = length(unique(knots)).

deriv A matrix of dim = c(nKnots-1, norder) containing the derivatives of the spline evaluated at midpoints.

Author(s)

Spencer Graves

See Also

fd create.bspline.basis

Examples

##
The simplest b-spline basis: order 1, degree 0, zero interior knots:
a single step function
##
bspl1.1 <- create.bspline.basis(norder=1, breaks=0:1)
... jump to pi to check the code
fd.bspl1.1pi <- fd(pi, basisobj=bspl1.1)
bspl1.1pi <- TaylorSpline(fd.bspl1.1pi)

##
Cubic spline: 4 basis functions
##
bspl4 <- create.bspline.basis(nbasis=4)
plot(bspl4)
tperm.fd

parab4.5 <- fd(c(3, -1, -1, 3)/3, bspl4)
= 4*(x-.5)
TaylorSpline(parab4.5)

##
A more realistic example
##
data(titanium)
Cubic spline with 5 interior knots (6 segments)
do not run this example on CRAN to save test time
#if(!CRAN()){
 #titanio <- with(titanium, curfit.free.knot(x, y))
 #(titanioT <- TaylorSpline(titanio))
 #}

tperm.fd(x1fd, x2fd, nperm=200, q=0.05, argvals=NULL, plotres=TRUE, ...)

Arguments

x1fd a functional data object giving the first group of functional observations.
x2fd a functional data object giving the second group of functional observations.
nperm number of permutations to use in creating the null distribution.
q Critical upper-tail quantile of the null distribution to compare to the observed
t-statistic.
argvals If yfdPar is a fd object, the points at which to evaluate the point-wise t-statistic.
plotres Argument to plot a visual display of the null distribution displaying the 1-qth quantile and observed t-statistic.
... Additional plotting arguments that can be used with plot.

Details

The usual t-statistic is calculated pointwise and the test based on the maximal value. If argvals is not specified, it defaults to 101 equally-spaced points on the range of yfdPar.
Value

A list with the following components:

- `pval`: the observed p-value of the permutation test.
- `qval`: the qth quantile of the null distribution.
- `Tobs`: the observed maximal t-statistic.
- `Tnull`: a vector of length `nperm` giving the observed values of the permutation distribution.
- `Tvals`: the pointwise values of the observed t-statistic.
- `Tnullvals`: the pointwise values of the permutation observations.
- `pvalsNpts`: pointwise p-values of the t-statistic.
- `qvalsNpts`: pointwise qth quantiles of the null distribution.
- `argvals`: argument values for evaluating the F-statistic if `yfdPar` is a functional data object.

Side Effects

A plot of the functional observations

Source

See Also

`fRegress`, `Fstat.fd`

Examples

```r
# This tests the difference between boys and girls heights in the
# Berkeley growth data.

# First set up a basis system to hold the smooths

knots <- growth$age
norder <- 6
nbasis <- length(knots) + norder - 2
hgtbasis <- create.bspline.basis(range(knots), nbasis, norder, knots)

# Now smooth with a fourth-derivative penalty and a very small smoothing
# parameter

Lfdobj <- 4
lambda <- 1e-2
growfdPar <- fdPar(hgtbasis, Lfdobj, lambda)

hgtmfd <- smooth.basis(growth$age, growth$hgtm, growfdPar)$fd
```
Variance, Covariance, and Correlation Surfaces for Functional Data Object(s)

Description

Compute variance, covariance, and/or correlation functions for functional data. These are two-argument functions and therefore define surfaces. If only one functional data object is supplied, its variance or correlation function is computed. If two are supplied, the covariance or correlation function between them is computed.

Usage

var.fd(fdobj1, fdobj2=fdobj1)

Arguments

fdobj1, fdobj2 a functional data object.

Details

A two-argument or bivariate functional data object representing the variance, covariance or correlation surface for a single functional data object or the covariance between two functional data objects or between different variables in a multivariate functional data object.

Value

An list object of class bifd with the following components:

- **coefs**: the coefficient array with dimensions fdobj1["basis"][["nbasis"]][fdobj2["basis"]]["nbasis"] giving the coefficients of the covariance matrix in terms of the bases used by fdobj1 and fdobj2.
- **sbasis**: fdobj1["basis"]
- **tbasis**: fdobj2["basis"]
- **bifdnames**: dimnames list for a 4-dimensional 'coefs' array. If length(dim(coefs)) is only 2 or 3, the last 2 or 1 component of bifdnames is not used with dimnames(coefs).

Examples below illustrate this structure in simple cases.

See Also

mean.fd, sd.fd, std.fd, stdev.fd
Examples

```r
##
## Example with 2 different bases
##
daybasis3 <- create.fourier.basis(c(0, 365))
daybasis5 <- create.fourier.basis(c(0, 365), 5)
tempfd3 <- with(CanadianWeather, smooth.basis(day.5,
  dailyAv[, "Temperature.C"],
  daybasis3, fdnames=list("Day", "Station", "Deg C"))$fd )
precfd5 <- with(CanadianWeather, smooth.basis(day.5,
  dailyAv[, "log10precip"],
  daybasis5, fdnames=list("Day", "Station", "Deg C"))$fd )

# Compare with structure described above under 'value':
str(tempPrecVar3.5 <- var.fd(tempfd3, precfd5))

##
## Example with 2 variables, same bases
##
gaitbasis3 <- create.fourier.basis(nbasis=3)
str(gaitfd3 <- Data2fd(gait, basisobj=gaitbasis3))
str(gaitVar.fd3 <- var.fd(gaitfd3))

# Check the answers with manual computations
all.equal(var(t(gaitfd3$coefs[,1])), gaitVar.fd3$coefs[,1])
# TRUE
all.equal(var(t(gaitfd3$coefs[,2])), gaitVar.fd3$coefs[,3])
# TRUE
all.equal(var(t(gaitfd3$coefs[,2]), t(gaitfd3$coefs[,1])),
  gaitVar.fd3$coefs[,2])
# TRUE

# NOTE:
dimnames(gaitVar.fd3$coefs)[[4]]
# [1] Hip-Hip
# [3] Knee-Knee
# If [2] were "Hip-Knee", then
# gaitVar.fd3$coefs[,2] would match
# var(t(gaitfd3$coefs[,1]), t(gaitfd3$coefs[,2]))
# *** It does NOT. Instead, it matches:
# var(t(gaitfd3$coefs[,2]), t(gaitfd3$coefs[,1])),

##
## The following produces contour and perspective plots
##
# Evaluate at a 53 by 53 grid for plotting
daybasis65 <- create.fourier.basis(rangeval=c(0, 365), nbasis=65)
daytempfd <- with(CanadianWeather, smooth.basis(day.5,}
```
varmx

Description

The matrix being rotated contains the values of the component functional data objects computed in either a principal components analysis or a canonical correlation analysis. The values are computed over a fine mesh of argument values.

Usage

varmx(amat, normalize=FALSE)

Arguments

amat
the matrix to be rotated. The number of rows is equal to the number of argument values nx used in a fine mesh. The number of columns is the number of components to be rotated.

normalize
either TRUE or FALSE. If TRUE, the columns of amat are normalized prior to computing the rotation matrix. However, this is seldom needed for functional data.
Details

The VARIMAX criterion is the variance of the squared component values. As this criterion is maximized with respect to a rotation of the space spanned by the columns of the matrix, the squared loadings tend more and more to be either near 0 or near 1, and this tends to help with the process of labelling or interpreting the rotated matrix.

Value

A square rotation matrix of order equal to the number of components that are rotated. A rotation matrix T has that property that $T'T = TT' = I$.

See Also

varmx.pca.fd, varmx.cca.fd

varmx.cca.fd

Rotation of Functional Canonical Components with VARIMAX

Description

Results of canonical correlation analysis are often easier to interpret if they are rotated. Among the many possible ways in which this rotation can be defined, the VARIMAX criterion seems to give satisfactory results most of the time.

Usage

`varmx.cca.fd(ccafd, nx=201)`

Arguments

- `ccafd` an object of class "cca.fd" that is produced by function `cca.fd`.
- `nx` the number of points in a fine mesh of points that is required to approximate canonical variable functional data objects.

Value

A rotated version of argument `cca.fd`.

See Also

varmx, varmx.pca.fd
Description

Principal components are often easier to interpret if they are rotated. Among the many possible ways in which this rotation can be defined, the VARIMAX criterion seems to give satisfactory results most of the time.

Usage

`varmx.pca.fd(pcafd, nharm=scoresd[2], nx=501)`

Arguments

- `pcafd`: an object of class `pca.fd` that is produced by function `pca.fd`.
- `nharm`: the number of harmonics or principal components to be rotated.
- `nx`: the number of argument values in a fine mesh used to define the harmonics to be rotated.

Value

a rotated principal components analysis object of class `pca.fd`.

See Also

`varmx, varmx.cca.fd`

vec2Lfd

Description

A linear differential operator object of order m is constructed from the number in a vector of length m.

Usage

`vec2Lfd(bwtvec, rangeval=c(0,1))`

Arguments

- `bwtvec`: a vector of coefficients to define the linear differential operator object
- `rangeval`: a vector of length 2 specifying the range over which the operator is defined
Value

a linear differential operator object

See Also

int2Lfd, Lfd

Examples

define the harmonic acceleration operator used in the
analysis of the daily temperature data
Lcoef <- c(0, (2*pi/365)*2, 0)
harmaccelLfd <- vec2Lfd(Lcoef, c(0, 365))

hmat <- vec2Lfd(matrix(Lcoef, 1), c(0, 365))

all.equal(harmaccelLfd, hmat)

wtcheck

Check a vector of weights

Description

Throws an error if wtvec is not n positive numbers, and return wtvec (stripped of any dim attribute)

Usage

wtcheck(n, wtvec)

Arguments

n the required length of wtvec
wtvec an object to be checked

Value

a vector of n positive numbers

Examples

wtcheck(3, 1:3)

wtcheck(2, matrix(1:2, 2))
zerofind

Does the range of the input contain 0?

Description

Returns TRUE if range of the argument includes 0 and FALSES if not.

Usage

zerofind(fmat)

Arguments

fmat
An object from which 'range' returns two numbers.

Value

A logical value TRUE or FALSE.

See Also

range

Examples

zerofind(1:5)
FALSE
zerofind(0:3)
TRUE
Index

*Topic **IO**
 dirs, 84
 file.copy2, 114
 readHMD, 224
*Topic **textasciitildeFunctional Boxplots**
 fbplot, 106
*Topic **array**
 Eigen, 85
 geigen, 134
 svd2, 276
 symsolve, 277
*Topic **attribute**
 bifd, 24
 checkLogicalInteger, 37
 getbasisrange, 137
 objAndNames, 178
*Topic **basis**
 is.eqbasis, 146
*Topic **bivariate smooth**
 bifdPar, 25
*Topic **datasets**
 CanadianWeather, 30
 dateAccessories, 76
 gait, 133
 growth, 138
 handwrit, 139
 infantGrowth, 140
 landmark.reg.expData, 152
 lip, 159
 melanoma, 171
 MontrealTemp, 175
 nondurables, 176
 onechild, 180
 pinch, 192
 refinery, 227
 ReginaPrecip, 228
 seabird, 240
 StatSciChinese, 271
*Topic **environment**
 CRAN, 44
*Topic **hplot**
 axisIntervals, 21
 matplot, 167
 phaseplanePlot, 190
 plot.fd, 195
 plot.Lfd, 198
 plot.lmWinsor, 199
 plotfit, 205
*Topic **logic**
 wtdcheck, 286
 zerofind, 287
*Topic **manip**
 as.fd, 17
 as.POSIXct1970, 20
 TaylorSpline, 277
*Topic **models**
 AmpPhaseDecomp, 8
 df.residual.fRegess, 80
 lmeWinsor, 160
 lmWinsor, 162
 lmWinsor12, 166
 predict.fRegess, 216
 predict.lmeWinsor, 218
 predict.lmWinsor, 220
 residuals.fRegess, 237
*Topic **optimize**
 knots.fd, 149
*Topic **programming**
 fdaMatlabPath, 110
*Topic **smooth**
 AmpPhaseDecomp, 8
 argsvalsy.swap, 9
 arithmetic.basisfd, 12
 arithmetic.fd, 13
 as.fd, 17
 axisIntervals, 21
 basisfd.product, 23
bsplinepen, 27
bsplineS, 28
cca.fd, 32
center.fd, 33
cor.fd, 41
create.basis, 45
create.bspline.basis, 48
create.constant.basis, 52
create.exponential.basis, 53
create.fourier.basis, 55
create.monomial.basis, 58
create.polygonal.basis, 60
create.power.basis, 62
CSTR, 64
cycleplot.fd, 70
Data2fd, 70
density.fd, 77
deriv.fd, 79
df21lambda, 82
eigen.pda, 87
eval.basis, 88
eval.bifd, 91
eval.fd, 93
eval.monfd, 96
eval.penalty, 98
eval.posfd, 99
evaldiag.bifd, 101
expon, 101
exponentiate.fd, 102
exponpen, 105
fd2list, 109
fda-package, 5
fdlabels, 111
fDpar, 112
fourier, 115
fourierpen, 116
Fperm.fd, 117
fRegress, 121
fRegress.CV, 130
fRegress.stderr, 131
Fstat.fd, 132
getbasismatrix, 135
getbasispenalty, 136
inprod, 141
inprod.bspline, 142
int2lfd, 143
intensity.fd, 144
is.basis, 146
is.fd, 147
is.fdPar, 147
is.fdSmooth, 148
is.Lfd, 148
knots.fd, 149
lambda2df, 150
lambda2gcv, 151
landmarkreg, 152
Lfd, 155
lines.fd, 156
linmod, 157
mean.fd, 169
monomial, 173
monomialpen, 174
norder, 176
odesolv, 179
pca.fd, 181
pda.fd, 182
pda.overlay, 189
phaseplanePlot, 190
plot.basisfd, 193
plot.cca.fd, 194
plot.fd, 195
plot.Lfd, 198
plot.pca.fd, 201
plot.pda.fd, 202
plotbeta, 204
plotfit, 205
plotreg.fd, 209
plotscores, 210
polyg, 211
polygpen, 212
powerbasis, 213
powerpen, 214
pPbspline, 215
project.basis, 222
quadset, 223
register.fd, 228
register.fd0, 233
register.newfd, 235
sd.fd, 238
smooth.basis, 241
smooth.basisPar, 256
smooth.bibasis, 260
smooth.fd, 261
smooth.fdPar, 263
smooth.monomone, 265
smooth.morph, 268
smooth.pos, 269
sum.fd, 272
summary.basisfd, 273
summary.bifd, 273
summary.fd, 274
summary.fdPar, 274
summary.Lfd, 275
TaylorSpline, 277
tperm.fd, 279
var.fd, 281
varmx, 283
varmx.cca.fd, 284
varmx.pca.fd, 285
vec2ld, 285

*Topic utilities
as.array3, 16
checkDim3, 34
checkLogicalInteger, 37
coeff.fd, 39
*.basisfd (basisfd.product), 23
*.fd (arithmetic.fd), 13
+.fd (arithmetic.fd), 13
-.fd (arithmetic.fd), 13
==.basisfd (arithmetic.basisfd), 12
^ .fd (exponentiate.fd), 102

AmpPhaseDecomp, 8
argvalsY.swap, 9
arithmetic.basisfd, 12
arithmetic.fd, 12, 13, 103
as.array3, 16, 36
as.Date1970, 21
as.fd, 17
as.POSIXct, 21
as.POSIXct1970, 20
axesIntervals (axisIntervals), 21
axis, 22
axisIntervals, 21, 76
basisfd, 12, 14, 24, 25, 50, 53, 55, 57, 59, 61, 63, 103, 147
basisfd.product, 12, 14, 23, 103
bifd, 24, 179
bifdPar, 25, 158
boxplot.fd (fbplot), 106
boxplot.fdPar (fbplot), 106
boxplot.fdSmooth (fbplot), 106
bsplinepen, 27, 174
bsplineS, 28, 174, 215

CanadianWeather, 30, 175, 228
cca.fd, 32, 113, 182, 184, 195, 202
center.fd, 33, 170, 239, 272
checkDim3 (checkDim3), 34
checkDim3, 16, 34, 207
checkLogical (checkLogicalInteger), 37
checkLogicalInteger, 37
checkNumeric (checkLogicalInteger), 37
checkRange, 39
checkScalarType, 39
checkVectorType, 39
chol, 86
coeff, 40
coeff.fd, 39
coeff.fdPar (coeff.fd), 39
coeff.fdSmooth (coeff.fd), 39
coeff.Taylor (coeff.fd), 39
coefficients.fd (coeff.fd), 39
coefficients.fdPar (coeff.fd), 39
coefficients.fdSmooth (coeff.fd), 39
coefficients.Taylor (coeff.fd), 39
colnames, 85
constraintCheck (lmWinsor12), 166
cor.fd, 41
CRAN, 44
create.basis, 45, 61, 63
create.bspline.basis, 47, 48, 53, 55, 57, 59, 61, 63, 149, 177, 223, 278
create.bspline.irregular
(create.bspline.basis), 48
create.constant.basis, 47, 50, 52, 55, 57, 59, 61, 63
create.exponential.basis, 47, 50, 53, 53, 57, 59, 61, 63
create.fourier.basis, 47, 50, 53, 55, 55, 59, 61, 63
create.monomial.basis, 47, 50, 53, 55, 57, 58, 61, 63
create.polygonal.basis, 47, 50, 53, 55, 57, 59, 60, 63, 212, 213
create.power.basis, 47, 50, 53, 55, 57, 59, 61, 62, 213, 214
CSTR, 64
CSTR2 (CSTR), 64
CSTR2in (CSTR), 64
CSTRfitLS (CSTR), 64
CSTRfn (CSTR), 64
CSTRres (CSTR), 64
INDEX

CSTRsse (CSTR), 64
cycleplot.fd, 70
daily (CanadianWeather), 30
Data2fd, 10, 70, 207, 222, 244, 259, 262
dateAccessories, 76
day, 5, 73
day.5 (dateAccessories), 76
dayOfYear (dateAccessories), 76
dayOfYearShifted (dateAccessories), 76
daysPerMonth (dateAccessories), 76
density.fd, 77, 113, 145
deriv, 79
deriv.fd, 79
deSolve, 180
df.residual, 81
df.residual.fRegress, 80
df2lambda, 82, 151, 244, 259
dim, 16
dimnames, 16
dir, 84
dirs, 84, 111

Eigen, 85
eigen, 85, 86, 134
eigen.pda, 87, 189, 203
eval.basis, 79, 88, 99, 223
eval.bifd, 91, 94, 101
eval.fd, 89, 93, 97, 100, 135, 191
eval.monfd, 94, 96, 100
eval.penalty, 94, 98, 105, 117, 137, 142
eval.posfd, 94, 97, 99
evaldiag.bifd, 101
expon, 101, 105, 174
exponentiate.fd, 14, 102
exponpen, 102, 105, 174

fbplot, 106
fd, 19, 40, 149, 278
fd2list, 109
fda (fda-package), 5
fda-package, 5
fdaMatlabPath, 110
fdlabels, 111
fdPar, 40, 112, 151, 156, 259, 264
file.copy, 115
file.copy2, 114
file.info, 84
fitted.fdSmooth (eval.fd), 93
fitted.monfd (eval.monfd), 96
fitted.posfd (eval.posfd), 99
fourier, 115, 117, 174
fourierpen, 116, 116, 174
Fperm.fd, 117
fRegress, 81, 113, 119, 121, 131–133, 158, 217, 238, 280
fRegress.CV, 125, 130, 132
fRegress.formula, 125
fRegress.stderr, 124, 125, 131, 131
Fstat.fd, 119, 132, 133, 280
gait, 133
eigen, 134
getbasismatrix, 79, 89, 94, 135
getbasispenalty, 99, 105, 117, 136
getbasisrange, 137
getURL, 225, 226
glsControl, 161
growth, 138

handwrit, 139
handwritTime (handwrit), 139
hmd.mx, 226

index, 191
infantGrowth, 140
inprod, 141
inprod.bspline, 142
int2Lfd, 113, 143, 156, 286
intensity.fd, 78, 113, 144
is.basis, 146, 147, 148
is.eqbasis, 146
is.fd, 146, 147, 147, 148
is.fdPar, 146, 147, 147, 148
is.fdSmooth, 148
is.Lfd, 146–148, 148
ISOdate, 21
isVectorAtomic, 39

knots.basisfd (knots.fd), 149
knots.fd, 149
knots.fdSmooth (knots.fd), 149

lambda2df, 83, 150, 244, 259
lambda2gcv, 83, 151, 244, 259
landmark.reg.expData, 152
landmarkreg, 9, 152, 152, 172, 236, 269
Lfd, 109, 155, 199, 286
lines, 168
lines.fd, 156, 197, 207
lines.FdSmooth, 207
lines.FdSmooth(lines.fd), 156
linmod, 27, 123, 157
lip, 159
lipmarks(lip), 159
liptime(lip), 159
lm, 162, 164, 165
lme, 160–162
lmeControl, 161
lmeWinsor, 160, 165, 219
lmWinsor, 160–162, 162, 166, 200, 219, 221
lmWinsor1(lmWinsor12), 166
lmWinsor12, 166
lmWinsor2(lmWinsor12), 166
lsoda, 68

Matlab, 111
matplot, 167, 168
matrix, 168
mean, 170
mean.fd, 34, 42, 169, 239, 272, 281
melanoma, 171, 171
minus.fd (arithmetic.fd), 13
monfn, 172
monomial, 173
monomialpen, 174
month.abb, 22, 76
monthAccessories, 31, 175
monthAccessories(dateAccessories), 76
monthBegin.5, 22
monthBegin.5(dateAccessories), 76
monthEnd(dateAccessories), 76
monthEnd.5, 22
monthLetters, 22
monthLetters(dateAccessories), 76
monthMid, 22
monthMid(dateAccessories), 76
MontrealTemp, 31, 175, 228

nls, 68
nondurables, 176, 191
norder, 176

objAndNames, 25, 178
odesolv, 179
onechild, 180
optimize, 234

package.dir, 84
par, 22, 168, 206, 207
pca.fd, 33, 113, 181, 184, 211
pda.fd, 87, 156, 180, 182, 182, 189, 195, 202, 203
pda.overlay, 87, 189
phaseplanePlot, 190
pinch, 192
pinchraw(pinch), 192
pinctime(pinch), 192
plot, 168, 191, 200, 206, 207, 233
plot.basisfd, 89, 193
plot.cca.fd, 33, 194
plot.fd, 70, 112, 157, 191, 193, 195, 199, 205, 207, 244, 259
plot.fdPar(plot.fd), 195
plot.fdSmooth(plot.fd), 195
plot.lfd, 156, 198
plot.lmWinsor, 199
plot.pca.fd, 195, 201, 202
plot.pda.fd, 87, 189, 202
plotbeta, 204
plotfit, 205
plotfit.fd, 35, 36, 70, 157, 197
plotreg.fd, 209, 230
plotscores, 210
plus.fd (arithmetic.fd), 13
points, 168
polyg, 174, 211, 213
polygpen, 174, 212, 212
power, 174
powerbasis, 213, 214
powerpen, 213, 214
ppBsppline, 215
predict, 217
predict.basisfd(eval.basis), 88
predict.fd(eval.fd), 93
predict.fdPar(eval.fd), 93
predict.fdSmooth(eval.fd), 93
predict.fRegres, 216, 238
predict.lm, 219–221
predict.lme, 219
predict.lmeWinsor, 162, 218
predict.lmWinsor, 165, 220
predict.monfd(eval.monfd), 96
predict.posfd(eval.posfd), 99
project.basis, 73, 222, 244, 259
qr, 86
quadset, 223
quantile, 162, 163, 165
range, 287
read.table, 226
readHMD, 224
refinery, 227
ReginaPrecip, 228
register.fd, 9, 153, 209, 228, 236, 269
register.fd0, 230, 233
register.newfd, 230, 235
residuals, 238
residuals.fdSmooth (eval.fd), 93
residuals.fRegress, 237
residuals.monfd (eval.monfd), 96
residuals.posfd (eval.posfd), 99
rownames, 85

sampleData (landmark.reg.expData), 152
sd.fd, 42, 238, 281
seabird, 240
smooth.basis, 10, 40, 73, 113, 151, 207, 241, 259, 261, 262, 264, 267
smooth.basis1 (smooth.basis), 241
smooth.basis2 (smooth.basis), 241
smooth.basis3 (smooth.basis), 241
smooth.basisPar, 10, 40, 72, 73, 113, 207, 244, 256
smooth.bibasis, 260
smooth.fd, 73, 207, 244, 259, 261, 264
smooth.fdPar, 113, 263
smooth.monotone, 73, 97, 113, 209, 230, 234, 244, 259, 265, 269, 271
smooth.morph, 9, 153, 209, 230, 234, 264, 267, 268, 271
smooth.pos, 73, 244, 259, 264, 267, 269
solve, 277
solve.QP, 164–166
spline.des, 50
splineDesign, 50
splinefun, 19
StatSciChinese, 271
std.fd, 34, 42, 272, 281
std.fd (sd.fd), 238
stddev.fd, 34, 170, 272
stddev.fd (sd.fd), 238
stdev.fd, 42, 281
stdev.fd (sd.fd), 238

strptime, 21
sum.fd, 34, 170, 239, 272
summary, 274, 275
summary.basisfd, 273
summary.bifd, 273
summary.fd, 274
summary.fdPar, 274
summary.Lfd, 275
svd, 86, 276
svd2, 276
sysolve, 277
Sys.getenv, 45

TaylorSpline, 277
times.fd (arithmetic.fd), 13
tperm.fd, 279

unlist, 84

var.fd, 42, 101, 170, 281
varmx, 283, 284, 285
varmx.cca.fd, 33, 284, 284, 285
varmx.pca.fd, 284, 285
vec2Lfd, 156, 285

weeks (dateAccessories), 76
wtcheck, 286

zerofind, 287