Package ‘monomvn’

February 20, 2015

Type Package

Title Estimation for multivariate normal and Student-t data with monotone missingness

Version 1.9-5

Date 2014-05-21

Author Robert B. Gramacy <rbgramacy@chicagobooth.edu>

Maintainer Robert B. Gramacy <rbgramacy@chicagobooth.edu>

Description Estimation of multivariate normal and student-t data of arbitrary dimension where the pattern of missing data is monotone. Through the use of parsimonious/shrinkage regressions (plsr, pcr, lasso, ridge, etc.), where standard regressions fail, the package can handle a nearly arbitrary amount of missing data. The current version supports maximum likelihood inference and a full Bayesian approach employing scale-mixtures for Gibbs sampling. Monotone data augmentation extends this Bayesian approach to arbitrary missingness patterns. A fully functional standalone interface to the Bayesian lasso (from Park & Casella), Normal-Gamma (from Griffin & Brown), Horseshoe (from Carvalho, Polson, & Scott), and ridge regression with model selection via Reversible Jump, and student-t errors (from Geweke) is also provided

Depends R (>= 2.10), pls, lars, MASS

Suggests quadprog, mvtnorm

License LGPL

URL http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

NeedsCompilation yes

Repository CRAN

Date/Publication 2014-05-21 19:01:30
Description

Estimation of multivariate normal and student-t data of arbitrary dimension where the pattern of missing data is monotone. Through the use of parsimonious/shrinkage regressions (plsr, pcr, lasso, ridge, etc.), where standard regressions fail, the package can handle a nearly arbitrary amount of missing data. The current version supports maximum likelihood inference and a full Bayesian approach employing scale-mixtures for Gibbs sampling. Monotone data augmentation extends this Bayesian approach to arbitrary missingness patterns. A fully functional standalone interface to the Bayesian lasso (from Park & Casella), the Normal-Gamma (from Griffin & Brown), Horseshoe (from Carvalho, Polson, & Scott), and ridge regression with model selection via Reversible Jump, and student-t errors (from Geweke) is also provided.

Details

For a fuller overview including a complete list of functions, demos and vignettes, please use help(package="monomvn").

Author(s)

Robert B. Gramacy <rbgramacy@chicagobooth.edu>
Maintainer: Robert B. Gramacy <rbgramacy@chicagobooth.edu>
References

http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

See Also

monomvn, the now defunct *norm* package, *mvnmle*

blasso

Bayesian Lasso/NG, Horseshoe, and Ridge Regression

Description

Inference for ordinary least squares, lasso/NG, horseshoe and ridge regression models by (Gibbs) sampling from the Bayesian posterior distribution, augmented with Reversible Jump for model selection

Usage

```r
bhs(x, y, T=1000, thin=NULL, RJ=TRUE, M=NULL, beta=NULL, lambda2=1, s2=var(y-mean(y)), mprior=0, ab=NULL, theta=0, rao.s2=TRUE, irect=TRUE, normalize=TRUE, verb=1)
bridge(x, y, T = 1000, thin = NULL, RJ = TRUE, M = NULL, beta = NULL, lambda2 = 1, s2 = var(y-mean(y)), mprior = 0, rd = NULL, ab = NULL, theta=0, rao.s2 = TRUE, irect = TRUE, normalize = TRUE, verb = 1)
blasso(x, y, T = 1000, thin = NULL, RJ = TRUE, M = NULL, beta = NULL, lambda2 = 1, s2 = var(y-mean(y)), case = c("default", "ridge", "hs", "ng"), mprior = 0, rd = NULL, ab = NULL, theta=0, rao.s2 = TRUE, irect = TRUE, normalize = TRUE, verb = 1)
```

Arguments

- `X`: data.frame, matrix, or vector of inputs X
- `y`: vector of output responses y of length equal to the leading dimension (rows) of X, i.e., length(y) == nrow(X)
- `T`: total number of MCMC samples to be collected
- `thin`: number of MCMC samples to skip before a sample is collected (via thinning). If NULL (default), then thin is determined based on the regression model implied by RJ, lambda2, and ncol(X); and also on the errors model implied by theta and nrow(X)
if TRUE then model selection on the columns of the design matrix (and thus the parameter beta in the model) is performed by Reversible Jump (RJ) MCMC. The initial model is specified by the beta input, described below, and the maximal number of covariates in the model is specified by M.

M

the maximal number of allowed covariates (columns of X) in the model. If input lambda2 > 0 then any M <= ncol(X) is allowed. Otherwise it must be that M <= min(ncol(X), length(y)-1), which is default value when a NULL argument is given.

beta

initial setting of the regression coefficients. Any zero-components will imply that the corresponding covariate (column of X) is not in the initial model. When input RJ = FALSE (no RJ) and lambda2 > 0 (use lasso) then no components are allowed to be exactly zero. The default setting is therefore contextual; see below for details.

lambda2

square of the initial lasso penalty parameter. If zero, then least squares regressions are used.

s2

initial variance parameter.

case

specifies if ridge regression, the Normal-Gamma, or the horseshoe prior should be done instead of the lasso; only meaningful when lambda2 > 0.

mprior

prior on the number of non-zero regression coefficients (and therefore covariates) m in the model. The default (mprior = 0) encodes the uniform prior on 0 <= m <= M. A scalar value 0 < mprior < 1 implies a Binomial prior Bin(m|n=M, p=mprior). A 2-vector mprior=c(g,h) of positive values g and h represents gives Bin(m|n=M, p) prior where p=beta(g,h).

rd

=c(r, delta), the alpha (shape) parameter and beta (rate) parameter to the gamma distribution prior G(r, delta) for the \(\lambda^2 \) parameter under the lasso model; or, the alpha (shape) parameter and beta (scale) parameter to the inverse-gamma distribution IG(r/2, delta/2) prior for the \(\lambda^2 \) parameter under the ridge regression model. A default of NULL generates appropriate non-informative values depending on the nature of the regression. Specifying rd=FALSE causes lambda2 values to be fixed at their starting value, i.e., not sampled. See the details below for information on the special settings for ridge regression.

ab

=c(a, b), the alpha (shape) parameter and beta (scale) parameter for the inverse-gamma distribution prior IG(a,b) for the variance parameter s2. A default of NULL generates appropriate non-informative values depending on the nature of the regression.

theta

the rate parameter (> 0) to the exponential prior on the degrees of freedom parameter nu under a model with Student-t errors implemented by a scale-mixture prior. The default setting of theta = 0 turns off this prior, defaulting to a normal errors prior.

rao.s2

indicates whether Rao-Blackwellized samples for \(\sigma^2 \) should be used (default TRUE); see below for more details.

icept

if TRUE, an implicit intercept term is fit in the model, otherwise the the intercept is zero; default is TRUE.

normalize

if TRUE, each variable is standardized to have unit L2-norm, otherwise it is left alone; default is TRUE.

verb

verbosity level; currently only verb = 0 and verb = 1 are supported.
Details

The Bayesian lasso model and Gibbs Sampling algorithm is described in detail in Park & Casella (2008). The algorithm implemented by this function is identical to that described therein, with the exception of an added “option” to use a Rao-Blackwellized sample of σ^2 (with β integrated out) for improved mixing, and the model selections by RJ described below. When input argument $\lambda_2 = 0$ is supplied, the model is a simple hierarchical linear model where (β, σ^2) is given a Jeffrey’s prior.

Specifying $\text{RJ} = \text{TRUE}$ causes Bayesian model selection and averaging to commence for choosing which of the columns of the design matrix X (and thus parameters β) should be included in the model. The zero-components of the β input specify which columns are in the initial model, and M specifies the maximal number of columns.

The RJ mechanism implemented here for the Bayesian lasso model selection differs from the one described by Hans (2009), which is based on an idea from Geweke (1996). Those methods require departing from the Park & Casella (2008) latent-variable model and requires sampling from each conditional $\beta_i|\beta_{(-i)},...$ for all i, since a mixture prior with a point-mass at zero is placed on each β_i. Our implementation here requires no such special prior and retains the joint sampling from the full β vector of non-zero entries, which we believe yields better mixing in the Markov chain. RJ proposals to increase/decrease the number of non-zero entries does proceed component-wise, but the acceptance rates are high due to marginalized between-model moves (Troughton & Godsill, 1997).

When the lasso prior or RJ is used, the automatic thinning level (unless $\text{thin} \neq \text{NULL}$) is determined by the number of columns of X since these many latent variables are introduced.

Bayesian ridge regression is implemented as a special case via the bridge function. This essentially calls blasso with case BridgeB. A default setting of $\text{rd} = \text{c(0,0)}$ is implied by $\text{rd} = \text{NULL}$, giving the Jeffery’s prior for the penalty parameter λ^2 unless $\text{ncol}(X) \geq \text{length}(y)$ in which case the proper specification of $\text{rd} = \text{c(5,10)}$ is used instead.

The Normal–Gamma prior (Griffin & Brown, 2009) is implemented as an extension to the Bayesian lasso with case BngB. Many thanks to James Scott for providing the code needed to extend the method(s) to use the horseshoe prior (Carvalho, Polson, Scott, 2010).

When $\theta > 0$ then the Student-t errors via scale mixtures (and thereby extra latent variables ω_2) of Geweke (1993) is applied as an extension to the Bayesian lasso/ridge model. If Student-t errors are used the automatic thinning level is augmented (unless $\text{thin} \neq \text{NULL}$) by the number of rows in X since this many latent variables are introduced.

Value

blasso returns an object of class "blasso", which is a list containing a copy of all of the input arguments as well as of the components listed below.

call a copy of the function call as used
mu a vector of T samples of the (un-penalized) “intercept” parameter
beta a $T\times\text{ncol}(X)$ matrix of T samples from the (penalized) regression coefficients
m the number of non-zero entries in each vector of T samples of beta
s2 a vector of T samples of the variance parameter
λ_2 a vector of T samples of the penalty parameter
gamma

A vector of T with the gamma parameter when case = "ng"

tau2i

A T*ncol(X) matrix of T samples from the (latent) inverse diagonal of the prior covariance matrix for beta, obtained for Lasso regressions.

omega2

A T*nrow(X) matrix of T samples from the (latent) diagonal of the covariance matrix of the response providing a scale-mixture implementation of Student-t errors with degrees of freedom nu when active (input theta > 0)

nu

A vector of T samples of the degrees of freedom parameter to the Student-t errors mode when active (input theta > 0)

pi

A vector of T samples of the Binomial proportion p that was given a Beta prior, as described above for the 2-vector version of the mprior input.

lpost

The log posterior probability of each (saved) sample of the joint parameters

llik

The log likelihood of each (saved) sample of the parameters

llik.norm

The log likelihood of each (saved) sample of the parameters under the Normal errors model when sampling under the Student-t model; i.e., it is not present unless theta > 0

Note

Whenever ncol(X) >= nrow(X) it must be that either RJ = TRUE with M <= nrow(X)-1 (the default) or that the lasso is turned on with lambda2 > 0. Otherwise the regression problem is ill-posed.

Since the starting values are considered to be first sample (of T), the total number of (new) samples obtained by Gibbs Sampling will be T-1

Author(s)

Robert B. Gramacy <rbgramacy@chicagobooth.edu>

References

http://www.stat.ufl.edu/~casella/Papers/Lasso.pdf

http://www.kent.ac.uk/ims/personal/jeg28/paper_ba10_final.pdf

http://biomet.oxfordjournals.org/content/96/4/835.abstract

http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

See Also

`lm, lars` in the `lars` package, `regress, lm.ridge` in the `MASS` package

Examples

```r
# following the lars diabetes example
data(diabetes)
attach(diabetes)

# Ordinary Least Squares regression
reg.ols <- regress(x, y)

# Lasso regression
reg.las <- regress(x, y, method="lasso")

# Bayesian Lasso regression
reg.blas <- blasso(x, y)

# summarize the beta (regression coefficients) estimates
plot(reg.blas, burnin=200)
points(drop(reg.las$b), col=2, pch=20)
points(drop(reg.ols$b), col=3, pch=18)
legend("topleft", c("blasso-map", "lasso", "lsr"),
    col=c(2,2,3), pch=c(21,20,18))

# plot the size of different models visited
plot(reg.blas, burnin=200, which="m")

# get the summary
s <- summary(reg.blas, burnin=200)

# calculate the probability that each beta coef != zero
s$bn0

# summarize s2
plot(reg.blas, burnin=200, which="s2")
s$s2

# summarize lambda2
plot(reg.blas, burnin=200, which="lambda2")
s$lambda2

# Not run:
```
Summarizing Bayesian Lasso Output

Description

Summarizing, printing, and plotting the contents of a "blasso"-class object containing samples from the posterior distribution of a Bayesian lasso model.

Usage

```r
## S3 method for class 'blasso'
print(x, ...)
## S3 method for class 'blasso'
summary(object, burnin = 0, ...)
## S3 method for class 'blasso'
plot(x, which=c("coef", "s2", "lambda2", "gamma", "tau2i", "omega2", "nu", "m", "pi"), subset = NULL, burnin = 0, ...)
## S3 method for class 'summary.blasso'
print(x, ...)
```

Arguments

- **object**
 - a "blasso"-class object that must be named object for the generic methods `summary.blasso`
- **x**
 - a "blasso"-class object that must be named x for the generic printing and plotting methods `print.summary.blasso` and `plot.blasso`
- **subset**
 - a vector of indices that can be used to specify the a subset of the columns of `tau2i` or `omega2` that are plotted as boxplots in order to reduce clutter
- **burnin**
 - number of burn-in rounds to discard before reporting summaries and making plots. Must be non-negative and less than x$T
which indicates the parameter whose characteristics should be plotted; does not apply
to the summary
... passed to print.blasso, or plot.default

Details

print.blasso prints the call followed by a brief summary of the MCMC run and a suggestion to try the summary and plot commands.
plot.blasso uses an appropriate plot command on the list entries of the "blasso"-class object thus visually summarizing the samples from the posterior distribution of each parameter in the model depending on the which argument supplied.
summary.blasso uses the summary command on the list entries of the "blasso"-class object thus summarizing the samples from the posterior distribution of each parameter in the model.
print.summary.monomvn calls print.blasso on the object and then prints the result of summary.blasso

Value

summary.blasso returns a "summary.blasso"-class object, which is a list containing (a subset of) the items below. The other functions do not return values.

B a copy of the input argument thin
T total number of MCMC samples to be collected from x$T
thin number of MCMC samples to skip before a sample is collected (via thinning) from x$T
coeff a joint summary of x$mu and the columns of x$beta, the regression coefficients
s2 a summary of x$s2, the variance parameter
lambda2 a summary of x$lambda2, the penalty parameter, when lasso or ridge regression is active
lambda2 a summary of x$lambda2, when the NG extensions to the lasso are used
tau2i a summary of the columns of the latent x$tau2i parameters when lasso is active
omega2 a summary of the columns of the latent x$omega2 parameters when Student-t errors are active
nu a summary of x$nu, the degrees of freedom parameter, when the Student-t model is active
bn0 the estimated posterior probability that the individual components of the regression coefficients beta is nonzero
m a summary the model order x$m: the number of non-zero regression coefficients beta
pi the estimated Binomial proportion in the prior for the model order when 2-vector input is provided for mprior

Author(s)

Robert B. Gramacy <rbgramacy@chicagobooth.edu>
References

http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

See Also

blasso

bomonmkn

Bayesian Estimation for Multivariate Normal Data with Monotone Missingness

Description

Bayesian estimation via sampling from the posterior distribution of the of the mean and covariance matrix of multivariate normal (MVN) distributed data with a monotone missingness pattern, via Gibbs Sampling. Through the use of parsimonious/shrinkage regressions (lasso/NG & ridge), where standard regressions fail, this function can handle an (almost) arbitrary amount of missing data.

Usage

```r
bmonomvn(y, pre = TRUE, p = 0.9, B = 100, T = 200, thin = 1, 
    economy = FALSE, method = c("lasso", "ridge", "lsr", "factor", 
    "hs", "ng"), RJ = c("p", "bpsn", "none"), capm = TRUE, 
    start = NULL, mprior = 0, rd = NULL, theta = 0, rao.s2 = TRUE, 
   QP = NULL, verb = 1, trace = FALSE)
```

Arguments

- **y**
 - data matrix, where each row is interpreted as a random sample from a MVN distribution with missing values indicated by *NA*.
- **pre**
 - logical indicating whether pre-processing of the `y` is to be performed. This sorts the columns so that the number of `NA`s is non-decreasing with the column index.
- **p**
 - when performing regressions, `p` is the proportion of the number of columns to rows in the design matrix before an alternative regression (lasso, ridge, or RJ) is performed as if least-squares regression has “failed”. Least-squares regression is known to fail when the number of columns equals the number of rows, hence a default of `p = 0.9 <= 1`. Alternatively, setting `p = 0` forces a parsimonious method to be used for *every* regression. Intermediate settings of `p` allow the user to control when least-squares regressions stop and the parsimonious ones start; When `method = "factor"` the `p` argument represents an integer (positive) number of initial columns of `y` to treat as known factors.
- **B**
 - number of Burn-In MCMC sampling rounds, during which samples are discarded.
- **T**
 - total number of MCMC sampling rounds to take place after burn-in, during which samples are saved.
thin

multiplicative thinning in the MCMC. Each Bayesian (lasso) regression will discard thin\(\times\)M MCMC rounds, where \(M\) is the number of columns in its design matrix, before a sample is saved as a draw from the posterior distribution; Likewise if theta !\(=\) 0 a further thin\(\times\)N, for N responses will be discarded

economy

indicates whether memory should be economized at the expense of speed. When TRUE the individual Bayesian (lasso) regressions are cleaned between uses so that only one of them has a large footprint at any time during sampling from the Markov chain. When FALSE (default) all regressions are pre-allocated and the full memory footprint is realized at the outset, saving dynamic allocations

method

indicates the Bayesian parsimonious regression specification to be used, choosing between the lasso (default) of Park \& Casella, the NG extension, the horseshoe, a ridge regression special case, and least-squares. The "factor" method treats the first \(p\) columns of \(y\) as known factors

RJ

indicates the Reversible Jump strategy to be employed. The default argument of "p" method uses RJ whenever a parsimonious regression is used; "bpsn" only uses RJ for regressions with \(p >= n\), and "none" never uses RJ

capm

when TRUE this argument indicates that the number of components of \(\beta\) should not exceed \(n\), the number of response variables in a particular regression

start

a list depicting starting values for the parameters that are use to initialize the Markov chain. Usually this will be a "monomvn"-class object depicting maximum likelihood estimates output from the monomvn function. The relevant fields are the mean vector \(\mu\), covariance matrix \(\Sigma\), monotone ordering \(D_o\) (for sanity checking with input \(y\)), component vector \(ncomp\) and penalty parameter vector \(\lambda\); see note below

mprior

prior on the number of non-zero regression coefficients (and therefore covariates) \(m\) in the model. The default (mprior = 0) encodes the uniform prior on 0 \(<\) \(m\) \(<\) \(M\). A scalar value 0 <= mprior <= 1 implies a Binomial prior Bin(m|n=M,p=mprior). A 2-vector mpior=[g,h] of positive values \(g\) and \(h\) represents gives Bin(m|n=M,p) prior where \(p\sim\beta(g,h)\)

rd

c(r,del;ta); a 2-vector of prior parameters for \(\lambda^2\) which depends on the regression method. When method = "lasso" then the components are the \(\alpha\) (shape) and \(\beta\) (rate) parameters to the a gamma distribution \(G(r,\delta)\); when method = "ridge" the components are the \(\alpha\) (shape) and \(\beta\) (scale) parameters to an inverse-gamma distribution \(IG(r/2,\delta/2)\)

theta

the rate parameter (> 0) to the exponential prior on the degrees of freedom parameter \(nu\) for each regression model implementing Student-t errors (for each column of \(Y\) marginally) by a scale-mixture prior. See blasso for more details. The default setting of theta = 0 turns off this prior, defaulting to a normal errors prior. A negative setting triggers a pooling of the degrees of freedom parameter across all columns of \(Y\). I.e., \(Y\) is modeled as multivariate-t. In this case abs(theta) is used as the prior parameterization

rao.s2

indicates whether to Rao-Blackwellized samples for \(\sigma^2\) should be used (default TRUE); see the details section of blasso for more information

QP

if non-NULL this argument should either be TRUE, a positive integer, or contain a list specifying a Quadratic Program to solve as a function of the samples of \(mu = dvec\) and \(Sigma = Dmat\) in the notation of solve.QP; see default.QP
for a default specification that is used when \(\text{QP} = \text{TRUE} \) or a positive integer is given; more details are below

verb

Verbosity level; currently only verb = 0 and verb = 1 are supported

trace

If TRUE then samples from all parameters are saved to files in the CWD, and then read back into the "monomvn"-class object upon return

Details

If \(\text{pre} = \text{TRUE} \) then bmonomvn first re-arranges the columns of \(y \) into nondecreasing order with respect to the number of missing (NA) entries. Then (at least) the first column should be completely observed.

Samples from the posterior distribution of the MVN mean vector and covariance matrix are obtained sampling from the posterior distribution of Bayesian regression models. The methodology for converting these to samples from the mean vector and covariance matrix is outlined in the monomvn documentation, detailing a similarly structured maximum likelihood approach. Also see the references below.

Whenever the regression model is ill-posed (i.e., when there are more covariates than responses, or a “big p small n” problem) then Bayesian lasso or ridge regressions – possibly augmented with Reversible Jump (RJ) for model selection – are used instead. See the Park & Casella reference below, and the blasso documentation. To guarantee each regression is well posed the combination setting of method="lslr" and RJ="none" is not allowed. As in monomvn the \(p \) argument can be used to turn on lasso or ridge regressions (possibly with RJ) at other times. The exception is the "factor" method which always involves an OLS regression on (a subset of) the first \(p \) columns of \(y \).

Samples from a function of samples of \(\mu \) and \(\Sigma \) can be obtained by specifying a Quadratic program via the argument \(\text{QP} \). The idea is to allow for the calculation of the distribution of minimum variance and mean–variance portfolios, although the interface is quite general. See default.QP for more details, as default.QP(ncol(y)) is used when the argument QP = TRUE is given. When a positive integer is given, then the first QP columns of y are treated as factors by using

\[
\text{default.QP(ncol(y)} - \text{QP})
\]

instead. The result is that the corresponding components of (samples of) \(\mu \) and rows/cols of \(S \) are not factored into the specification of the resulting Quadratic Program

Value

bmonomvn returns an object of class "monomvn", which is a list containing the inputs above and a subset of the components below.

- **call**

 a copy of the function call as used

- **mu**

 estimated mean vector with columns corresponding to the columns of \(y \)

- **S**

 estimated covariance matrix with rows and columns corresponding to the columns of \(y \)

- **mu.var**

 estimated variance of the mean vector with columns corresponding to the columns of \(y \)

- **mu.cov**

 estimated covariance matrix of the mean vector with columns corresponding to the columns of \(y \)
S.var estimated variance of the individual components of the covariance matrix with columns and rows corresponding to the columns of y
mu.map estimated maximum a’ posteriori (MAP) of the mean vector with columns corresponding to the columns of y
S.map estimated MAP of the individual components of the covariance matrix with columns and rows corresponding to the columns of y
S.nz posterior probability that the individual entries of the covariance matrix are non-zero
Si.nz posterior probability that the individual entries of the inverse of the covariance matrix are non-zero
nu when \(\theta < 0 \) this field provides a trace of the pooled \(\nu \) parameter to the multivariate-t distribution
lpost.map log posterior probability of the MAP estimate
which.map gives the time index of the sample corresponding to the MAP estimate
llik a trace of the log likelihood of the data
llik.norm a trace of the log likelihood under the Normal errors model when sampling under the Student-t model; i.e., it is not present unless \(\theta > 0 \). Used for calculating Bayes Factors
na when \(\text{pre} = \text{TRUE} \) this is a vector containing number of NA entries in each column of y
o when \(\text{pre} = \text{TRUE} \) this is a vector containing the index of each column in the sorting of the columns of y obtained by \(o \leftarrow \text{order}(\text{na}) \)
method method of regression used on each column, or “bcomplete” indicating that no regression was used
thin the (actual) number of thinning rounds used for the regression (method) in each column
lambda2 records the mean \(\lambda^2 \) value found in the trace of the Bayesian Lasso regressions. Zero-values result when the column corresponds to a complete case or an ordinary least squares regression (these would be NA entries from monomvn)
ncomp records the mean number of components (columns of the design matrix) used in the regression model for each column of y. If input RJ = FALSE then this simply corresponds to the monotone ordering (these would correspond to the NA entries from monomvn). When RJ = TRUE the monotone ordering is an upper bound (on each entry)
trace if input trace = TRUE then this field contains traces of the samples of \(\mu \) in the field mu and of \(\Sigma \) in the field S, and of all regression parameters for each of the \(m = \text{length}(\mu) \) columns in the field reg. This reg field is a stripped-down “blasso”-class object so that the methods of that object may be used for analysis. If data augmentation is required to complete the monotone missingness pattern, then samples from these entries of Y are contained in DA where the column names indicate the i-j entry of Y sampled; see the R output below
R gives a matrix version of the missingness pattern used: 0-entries mean observed; 1-entries indicate missing values conforming to a monotone pattern; 2-entries indicate missing values that require data augmentation to complete a monotone missingness pattern
from inputs: number of Burn-In MCMC sampling rounds, during which samples are discarded

\(T \) from inputs: total number of MCMC sampling rounds to take place after burn-in, during which samples are saved

\(r \) from inputs: alpha (shape) parameter to the gamma distribution prior for the lasso parameter \(\lambda \)

\(\delta \) from inputs: beta (rate) parameter to the gamma distribution prior for the lasso parameter \(\lambda \)

if a valid (non-\texttt{FALSE} or \texttt{NULL}) \texttt{QP} argument is given, then this field contains the specification of a Quadratic Program in the form of a list with entries including \$dvec, \$amat, \$b0, and \$meq, similar to the usage in \texttt{solve.QP}, and some others; see \texttt{default.QP} for more details

when \texttt{QP = TRUE} is given, then this field contains a \(T \times \text{ncol}(y) \) matrix of samples from the posterior distribution of the solution to the Quadratic Program, which can be visualized via \texttt{plot.monomvn} using the argument \texttt{which = "QP"}

Note

Whenever the \texttt{bmonomvn} algorithm requires a regression where \(p \geq n \), i.e., if any of the columns in the \(y \) matrix have fewer non-\texttt{NA} elements than the number of columns with more non-\texttt{NA} elements, then it is helpful to employ both lasso/ridge and the RJ method.

It is important that any starting values provided in the \texttt{start} be compatible with the regression model specified by inputs \texttt{RJ} and \texttt{method}. Any incompatibilities will result with a warning that (alternative) default action was taken and may result in an undesired (possibly inferior) model being fit.

Author(s)

Robert B. Gramacy <rbgramacy@chicagobooth.edu>

References

\url{http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html}

See Also

\texttt{blasso, monomvn, default.QP, em.norm} in the now defunct \texttt{norm} and \texttt{mvnmle} packages, and \texttt{return}
Examples

```r
## standard usage, duplicating the results in
## Little and Rubin, section 7.4.3
data(cement.miss)
out <- bmonomvn(cement.miss)
out
out$mu
out$S

## A bigger example, comparing the various
## parsimonious methods
##
## generate N=100 samples from a 10-d random MVN
xmus <- randmvn(100, 20)

## randomly impose monotone missingness
xmiss <- rmono(xmus$x)

## using least squares only when necessary,
obl <- bmonomvn(xmiss)
obl

## look at the posterior variability
par(mfrow=c(1,2))
plot(obl)
plot(obl, "S")

## compare to maximum likelihood
Ellik.norm(obl$mu, obl$S, xmus$mu, xmus$S)
oml <- monomvn(xmiss, method="lasso")
Ellik.norm(oml$mu, oml$S, xmus$mu, xmus$S)

## a min-variance portfolio allocation example
##
## get the returns data, and use 20 random cols
data(returns)
train <- returns[, sample(1:ncol(returns), 20)]

## missingness pattern requires DA; also gather
## samples from the solution to a QP
obl.da <- bmonomvn(train, p=0, QP=TRUE)

## plot the QP weights distribution
plot(obl.da, "QP", xaxis="index")

## get ML solution: will warn about monotone violations
suppressWarnings(oml.da <- monomvn(train, method="lasso"))
```

cement

Hald's Cement Data

Description

Heat evolved in setting of cement, as a function of its chemical composition.

Usage

```r
data(cement)
data(cement.miss)
```
Format

A data.frame with 13 observations on the following 5 variables.

- **x1** percentage weight in clinkers of 3CaO.Al2O3
- **x2** percentage weight in clinkers of 3CaO.SiO2
- **x3** percentage weight in clinkers of 4CaO.Al2O3.Fe2O3
- **x4** percentage weight in clinkers of 2CaO.SiO2
- **y** heat evolved (calories/gram)

Details

cement.miss is taken from an example in Little & Rubin’s book on *Statistical Analysis with Missing Data* (2002), pp.~154, for demonstrating estimation of multivariate means and variances when the missing data pattern is monotone. These are indicated by NA in cement.miss. See the examples section of monomvn for a re-working of the example from the textbook.

Source

References

http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

See Also

- monomvn – Several other R packages also include this data set

Examples

data(cement)
lm(y~x1+x2+x3+x4, data=cement)
default.QP

Generating a default Quadratic Program for bmonomvn

Description

This function generates a default “minimum variance” Quadratic Program in order to obtain samples of the solution under the posterior for parameters \(\mu \) and \(\Sigma \) obtained via bmonomvn. The list generated as output has entries similar to the inputs of solve.QP from the quadprog package.

Usage

default.QP(m, dmu = FALSE, mu.constr = NULL)

Arguments

- \(m \): the dimension of the solution space; usually ncol(y) or equivalently length(mu), ncol(S) and nrow(S) in the usage of bmonomvn.
- \(dmu \): a logical indicating whether dvec should be replaced with samples of \(\mu \); see details below.
- \(mu.constr \): a vector indicating linear constraints on the samples of \(\mu \) to be included in the default constraint set. See details below; the default of NULL indicates none.

Details

When bmonomvn(y, QP=TRUE) is called, this function is used to generate a default Quadratic Program that samples from the argument \(w \) such that

\[
\min_w \quad w^T \Sigma w,
\]

subject to the constraints that all \(0 \leq w_i \leq 1 \), for \(i = 1, \ldots, m \),

\[
\sum_{i=1}^{m} w_i = 1,
\]

and where \(\Sigma \) is sampled from its posterior distribution conditional on the data \(y \). Alternatively, this function can be used as a skeleton to for adaptation to more general Quadratic Programs by adjusting the list that is returned, as described in the “value” section below.

Non-default settings of the arguments \(dmu \) and \(mu.constr \) augment the default Quadratic Program, described above, in two standard ways. Specifying dvec = TRUE causes the program objective to change to

\[
\min_w \quad -w^T \mu + \frac{1}{2} w^T \Sigma w,
\]

with the same constraints as above. Setting \(mu.constr = 1 \), say, would augment the constraints to include

\[
\mu^T w \geq 1,
\]
for samples of μ from the posterior. Setting \texttt{mu.constr = c(1,2)} would augment the constraints still further with

$$-\mu^T w \geq -2,$$

i.e., with alternating sign on the linear part, so that each sample of $\mu^T w$ must lie in the interval $[1,2]$. So whereas \texttt{dmu = TRUE} allows the \texttt{mu} samples to enter the objective in a standard way, \texttt{mu.constr} (!= \texttt{NULL}) allows it to enter the constraints.

The accompanying function \texttt{monomvn.solve.QP} can act as an interface between the constructed (default) QP object, and estimates of the covariance matrix Σ and mean vector μ, that is identical to the one used on the posterior-sample version implemented in \texttt{bmonomvn}. The example below, and those in the documentation for \texttt{bmonomvn}, illustrate how this feature may be used to extract mean and MLE solutions to the constructed Quadratic Program.

Value

This function returns a list that can be interpreted as specifying the following arguments to the \texttt{solve.QP} function in the \texttt{quadprog} package. See \texttt{solve.QP} for more information of the general specification of these arguments. In what follows we simply document the defaults provided by \texttt{default.QP}. Note that the \texttt{Dmat} argument is not, specified as \texttt{bmonomvn} will use samples from S (from the posterior) instead.

- \texttt{m}
 length(dvec), etc.
- \texttt{dvec}
 a zero-vector \texttt{rep(0, m)}, or a one-vector \texttt{rep(1, m)} when \texttt{dmu = TRUE} as the real dvec that will be used by \texttt{solve.QP} will then be dvec * \texttt{mu}
- \texttt{dmu}
 a copy of the \texttt{dmu} input argument
- \texttt{Amat}
 a matrix describing a linear transformation which, together with \texttt{b0} and \texttt{meq}, describe the constraint that the components of the sampled solution(s), w, must be positive and sum to one
- \texttt{b0}
 a vector containing the (RHS of) in/equalities described by the these constraints
- \texttt{meq}
 an integer scalar indicating that the first \texttt{meq} constraints described by \texttt{Amat} and \texttt{b0} are equality constraints; the rest are $>$
- \texttt{mu.constr}
 a vector whose length is one greater than the input argument of the same name, providing \texttt{bmonomvn} with the number \texttt{mu.constr[1] = length(mu.constr[-1])}

The QP object that is returned from \texttt{bmonomvn} will have the following additional field

- \texttt{o}
 an integer vector of length \texttt{m} indicating the ordering of the rows of $A\texttt{Amat}$, and thus the rows of solutions W that was used in the monotone factorization of the likelihood. This field appears only after \texttt{bmonomvn} returns a QP object checked by the internal function \texttt{check.QP}.

Author(s)

Robert B. Gramacy \texttt{<rbgramacy@chicagobooth.edu>
See Also

`bmonomvn` and `solve.QP` in the `quadprog` package, `monomvn.solve.QP`.

Examples

```r
## generate N=100 samples from a 10-d random MVN
## and randomly impose monotone missingness
xmuS <- randmvn(100, 20)
xmiss <- rmono(xmuS$x)

## set up the minimum-variance (default) Quadratic Program
## and sample from the posterior of the solution space
qp1 <- default.QP(ncol(xmiss))
obl1 <- bmonomvn(xmiss, QP=qp1)
bm1 <- monomvn.solve.QP(obl1, QP=qp1) ## calculate mean
bmler <- monomvn.solve.QP(obl1 + obl1$mu.dev, QP=qp1) ## use estimation risk
oml1 <- monomvn(xmiss)
mm1 <- monomvn.solve.QP(oml1, QP=qp1) ## calculate MLE

## now obtain samples from the solution space of the
## mean-variance QP
qp2 <- default.QP(ncol(xmiss), mu=TRUE)
obl2 <- bmonomvn(xmiss, QP=qp2)
bm2 <- monomvn.solve.QP(obl2, QP=qp2) ## calculate mean
bmler2 <- monomvn.solve.QP(obl2 + obl2$mu.dev, QP=qp2) ## use estimation risk
oml2 <- monomvn(xmiss)
mm2 <- monomvn.solve.QP(oml2, QP=qp2) ## calculate MLE

## now obtain samples from minimum variance solutions
## where the mean weighted (samples) are constrained to be
## greater one
qp3 <- default.QP(ncol(xmiss), mu.constr=1)
obl3 <- bmonomvn(xmiss, QP=qp3)
bm3 <- monomvn.solve.QP(obl3, QP=qp3) ## calculate mean
bmler3 <- monomvn.solve.QP(obl3 + obl3$mu.dev, QP=qp3) ## use estimation risk
oml3 <- monomvn(xmiss)
mm3 <- monomvn.solve.QP(oml3, QP=qp3) ## calculate MLE

## plot a comparison
par(mfrow=c(3,1))
plot(obl1, which="QP", xaxis="index", main="Minimum Variance")
points(bmler, col=4, pch=17, cex=1.5) ## add estimation risk
points(obl1, col=3, pch=18, cex=1.5) ## add mean
points(oml1, col=5, pch=16, cex=1.5) ## add MLE
legend("topleft", c("MAP", "posterior mean", "ER", "MLE"), col=2:5,
    pch=c(21,18,17,16), cex=1.5)
plot(obl2, which="QP", xaxis="index", main="Mean Variance")
points(bmler2, col=4, pch=17, cex=1.5) ## add estimation risk
points(obl2, col=3, pch=18, cex=1.5) ## add mean
points(oml2, col=5, pch=16, cex=1.5) ## add MLE
plot(obl3, which="QP", xaxis="index", main="Minimum Variance, mean >= 1")
points(bmler3, col=4, pch=17, cex=1.5) ## add estimation risk
```
metrics

RMSE, Expected Log Likelihood and KL Divergence Between Two Multivariate Normal Distributions

Description

These functions calculate the root-mean-squared-error, the expected log likelihood, and Kullback-Leibler (KL) divergence (a.k.a. distance), between two multivariate normal (MVN) distributions described by their mean vector and covariance matrix.

Usage

\[
\text{rmse.muS}(\mu_1, S_1, \mu_2, S_2) \\
\text{ellik.norm}(\mu_1, S_1, \mu_2, S_2, \text{quiet}=\text{FALSE}) \\
\text{kl.norm}(\mu_1, S_1, \mu_2, S_2, \text{quiet}=\text{FALSE}, \text{symm}=\text{FALSE})
\]

Arguments

- \(\mu_1\): mean vector of first (estimated) MVN
- \(S_1\): covariance matrix of first (estimated) MVN
- \(\mu_2\): mean vector of second (true, baseline, or comparator) MVN
- \(S_2\): covariance matrix of second (true, baseline, or comparator) MVN
- \(\text{quiet}\): when \(\text{FALSE}\) (default)
- \(\text{symm}\): when \(\text{TRUE}\) a symmetrized version of the KL divergence is used; see the note below

Details

The root-mean-squared-error is calculated between the entries of the mean vectors, and the upper-triangular part of the covariance matrices (including the diagonal).

The KL divergence is given by the formula:

\[
D_{KL}(N_1 \| N_2) = \frac{1}{2} \left(\log \left(\frac{|\Sigma_1|}{|\Sigma_2|} \right) + \text{tr} \left(\Sigma_1^{-1} \Sigma_2 \right) + (\mu_1 - \mu_2)^\top \Sigma_1^{-1} (\mu_1 - \mu_2) - N \right)
\]

where \(N\) is \(\text{length}(\mu_1)\), and must agree with the dimensions of the other parameters. Note that the parameterization used involves swapped arguments compared to some other references, e.g., as provided by Wikipedia. See note below.
The expected log likelihood can be formulated in terms of the KL divergence. That is, the expected log likelihood of data simulated from the normal distribution with parameters μ_2 and Σ_2 under the estimated normal with parameters μ_1 and Σ_1 is given by

$$-\frac{1}{2} \ln\{(2\pi e)^N |\Sigma_2|\} - D_{KL}(N_1 || N_2).$$

Value

In the case of the expected log likelihood the result is a real number. The RMSE is a positive real number. The KL divergence method returns a positive real number depicting the distance between the two normal distributions.

Note

The KL-divergence is not symmetric. Therefore $kl.norm(\mu_1, \Sigma_1, \mu_2, \Sigma_2) \neq kl.norm(\mu_2, \Sigma_2, \mu_1, \Sigma_1)$.

But a symmetric metric can be constructed from

$$0.5 \ast (kl.norm(\mu_1, \Sigma_1, \mu_2, \Sigma_2) + kl.norm(\mu_2, \Sigma_2, \mu_1, \Sigma_1))$$

or by using symm = TRUE. The arguments are reversed compared to some other references, like Wikipedia. To match those versions use $kl.norm(\mu_2, \Sigma_2, \mu_1, \Sigma_1)$.

Author(s)

Robert B. Gramacy <rbgramacy@chicagobooth.edu>

References

http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

Examples

```r
mu1 <- rnorm(5)
s1 <- matrix(rnorm(100), ncol=5)
s1 <- t(s1) %*% s1
mu2 <- rnorm(5)
s2 <- matrix(rnorm(100), ncol=5)
s2 <- t(s2) %*% s2

## RMSE
rmse.muS(mu1, s1, mu2, s2)

## expected log likelihood
Ellik.norm(mu1, s1, mu2, s2)

## KL is not symmetric
kl.norm(mu1, s1, mu2, s2)
kl.norm(mu2, s2, mu1, s1)
```
Description

Maximum likelihood estimation of the mean and covariance matrix of multivariate normal (MVN) distributed data with a monotone missingness pattern. Through the use of parsimonious/shrinkage regressions (e.g., plsr, pcr, ridge, lasso, etc.), where standard regressions fail, this function can handle an (almost) arbitrary amount of missing data.

Usage

```r
monomvn(y, pre = TRUE, method = c("plsr", "pcr", "lasso", "lar", "forward.stagewise", "stepwise", "ridge", "factor"), p = 0.9, ncomp.max = Inf, batch = TRUE, validation = c("CV", "LOO", "Cp"), obs = FALSE, verb = 0, quiet = TRUE)
```

Arguments

- **y**: data matrix were each row is interpreted as a random sample from a MVN distribution with missing values indicated by NA
- **pre**: logical indicating whether pre-processing of the y is to be performed. This sorts the columns so that the number of NAs is non-decreasing with the column index
- **method**: describes the type of parsimonious (or shrinkage) regression to be performed when standard least squares regression fails. From the pls package we have "plsr" (pls, the default) for partial least squares and "pcr" (pcr) for standard principal component regression. From the lars package (see the "type" argument to lars) we have "lasso" for L1-constrained regression, "lar" for least angle regression, "forward.stagewise" and "stepwise" for fast implementations of classical forward selection of covariates. From the MASS package we have "ridge" as implemented by the lm.ridge function. The "factor" method treats the first p columns of y as known factors
- **p**: when performing regressions, p is the proportion of the number of columns to rows in the design matrix before an alternative regression method (those above) is performed as if least-squares regression has “failed”. Least-squares regression is known to fail when the number of columns equals the number of rows, hence a default of p = 0.9 <= 1. Alternatively, setting p = 0 forces method to be used for every regression. Intermediate settings of p allow the user to control when least-squares regressions stop and the method ones start. When method = "factor" the p argument represents an integer (positive) number of initial columns of y to treat as known factors
ncomp.max maximal number of (principal) components to include in a method—only meaningful for the "plsr" or "pcr" methods. Large settings can cause the execution to be slow as it drastically increases the cross-validation (CV) time

batch indicates whether the columns with equal missingness should be processed together using a multi-response regression. This is more efficient if many OLS regressions are used, but can lead to slightly poorer, even unstable, fits when parsimonious regressions are used

validation method for cross validation when applying a parsimonious regression method. The default setting of "CV" (randomized 10-fold cross-validation) is the faster method, but does not yield a deterministic result and does not apply for regressions on less than ten responses. "LOO" (leave-one-out cross-validation) is deterministic, always applicable, and applied automatically whenever "CV" cannot be used. When standard least squares is appropriate, the methods implemented the lars package (e.g. lasso) support model choice via the "Cp" statistic, which defaults to the "CV" method when least squares fails. This argument is ignored for the "ridge" method; see details below

obs logical indicating whether or not to (additionally) compute a mean vector and covariance matrix based only on the observed data, without regressions. I.e., means are calculated as averages of each non-NA entry in the columns of y, and entries (a, b) of the covariance matrix are calculated by applying cov(yaLybI) to the jointly non-NA entries of columns a and b of y

verb whether or not to print progress indicators. The default (verb = 0) keeps quiet, while any positive number causes brief statement about dimensions of each regression to print to the screen as it happens. verb = 2 causes each of the ML regression estimators to be printed along with the corresponding new entries of the mean and columns of the covariance matrix. verb = 3 requires that the RETURN key be pressed between each print statement

quiet causes warnings about regressions to be silenced when TRUE

Details

If pre = TRUE then monomvn first re-arranges the columns of y into nondecreasing order with respect to the number of missing (NA) entries. Then (at least) the first column should be completely observed. The mean components and covariances between the first set of complete columns are obtained through the standard mean and cov routines.

Next each successive group of columns with the same missingness pattern is processed in sequence (assuming batch = TRUE). Suppose a total of j columns have been processed this way already. Let y2 represent the non-missing contingent of the next group of k columns of y with and identical missingness pattern, and let y1 be the previously processed j-1 columns of y containing only the rows corresponding to each non-NA entry in y2. I.e., nrow(y1) = nrow(y2). Note that y1 contains no NA entries since the missing data pattern is monotone. The k next entries (indices j: (j+k)) of the mean vector, and the j:(j+k) rows and columns of the covariance matrix are obtained by multivariate regression of y2 on y1. The regression method used (except in the case of method = "factor") depends on the number of rows and columns in y1 and on the p parameter. Whenever ncol(y1) < p*nrow(y1) least-squares regression is used, otherwise method = c("pcr", "plsr"). If ever a least-squares regression fails due to co-linearity then one of the other methods is tried. The "factor" method always involves an OLS regression on (a subset of) the first p columns of y.
All methods require a scheme for estimating the amount of variability explained by increasing the numbers of coefficients (or principal components) in the model. Towards this end, the \texttt{plspackages} support 10-fold cross validation (CV) or leave-one-out (LOO) CV estimates of root mean squared error. See \texttt{plspackages} for more details. \texttt{monomvn} uses CV in all cases except when \texttt{nrow(y1)} < 10, in which case CV fails and LOO is used. Whenever \texttt{nrow(y1)} < 3 \texttt{pcr} fails, so \texttt{plsr} is used instead. If \texttt{quiet} = \texttt{FALSE} then a \texttt{warning} is given whenever the first choice for a regression fails.

For \texttt{plspackages}, RMSEs are calculated for a number of components in 1:ncomp.max where a NULL value for ncomp.max it is replaced with

\[
\text{ncomp.max} \leftarrow \min(\text{ncomp.max}, \text{ncol(y2)}, \text{nrow(y1)}-1)
\]

which is the max allowed by the \texttt{plspackages}.

Simple heuristics are used to select a small number of components (ncomp for \texttt{plspackages}), or number of coefficients (for \texttt{lars}), which explains a large amount of the variability (RMSE). The \texttt{lars} methods use a “one-standard error rule” outlined in Section 7.10, page 216 of HTF below. The \texttt{plspackages} does not currently support the calculation of standard errors for CV estimates of RMSE, so a simple linear penalty for increasing ncomp is used instead. The ridge constant (lambda) for \texttt{lmridge} is set using the \texttt{optimize} function on the GCV output.

Based on the ML, ncol(y1)+1 regression coefficients (including intercept) obtained for each of the columns of y2, and on the corresponding matrix of residual sum of squares, and on the previous j-1 means and rows/cols of the covariance matrix, the \(j:(j+k) \) entries and rows/cols can be filled in as described by Little and Rubin, section 7.4.3.

Once every column has been processed, the entries of the mean vector, and rows/cols of the covariance matrix are re-arranged into their original order.

\textbf{Value}

\texttt{monomvn} returns an object of class "\texttt{monomvn}" , which is a list containing a subset of the components below.

\begin{verbatim}
call a copy of the function call as used
mu estimated mean vector with columns corresponding to the columns of y
S estimated covariance matrix with rows and columns corresponding to the columns of y
na when \texttt{pre} = \texttt{TRUE} this is a vector containing number of NA entries in each column of y
o when \texttt{pre} = \texttt{TRUE} this is a vector containing the index of each column in the sorting of the columns of y obtained by \texttt{o \leftarrow order(na)}
method method of regression used on each column, or "\texttt{complete}" indicating that no regression was necessary
ncomp number of components in a \texttt{plsr} or \texttt{pcr} regression, or NA if such a method was not used. This field is used to record \(\lambda \) when \texttt{lmridge} is used
lambda if method is one of \{"lasso", "forward.stagewise", "ridge"\}, then this field records the \(\lambda \) penalty parameters used
mu.obs when \texttt{obs} = \texttt{TRUE} this is the “observed” mean vector
S.obs when \texttt{obs} = \texttt{TRUE} this is the “observed” covariance matrix, as described above. Note that \texttt{S.obs} is usually not positive definite
\end{verbatim}
Note

The CV in plsr and lars are random in nature, and so can be dependent on the random seed. Use validation="LOO" for deterministic (but slower) result.

When using method = "factor" in the current version of the package, the factors in the first \(p \) columns of \(y \) must also obey the monotone pattern, and, have no more NA entries than the other columns of \(y \).

Be warned that the lars implementation of "forward stagewise" can sometimes get stuck in (what seems like) an infinite loop. This is not a bug in the monomvn package; the bug has been reported to the authors of lars

Author(s)

Robert B. Gramacy <rbgramacy@chicagobooth.edu>

References

Some of the code for monomvn, and its subroutines, was inspired by code found on the world wide web, written by Daniel Heitjan, http://www.cceb.upenn.edu/pages/heitjan/courses/bsta782/examples/fcn.q

http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

See Also

bmonomvn, em.norm in the now defunct norm and mvnml packages

Examples

```r
## standard usage, duplicating the results in
## Little and Rubin, section 7.4.3 -- try adding
## verb=3 argument for a step-by-step breakdown
data(cement.miss)
out <- monomvn(cement.miss)
out
out$mu
out$S
```
A bigger example, comparing the various methods

generate N=100 samples from a 10-d random MVN
xmus <- randmvn(100, 20)

randomly impose monotone missingness
xmiss <- rmono(xmus)$x

plsr
oplslr <- monomvn(xmiss, obs=TRUE)
oplslr
Ellik.norm(oplslr$mu, oplslr$S, xmus$mu, xmus$S)

calculate the complete and observed RMSEs
n <- nrow(xmiss) - max(oplslr$na)
x.c <- xmiss[1:n,]
mu.c <- apply(x.c, 2, mean)
S.c <- cov(x.c)*(n-1)/n
Ellik.norm(mu.c, S.c, xmus$mu, xmus$S)
Ellik.norm(oplslr$mu.obs, oplslr$S.obs, xmus$mu, xmus$S)

plcr
oplcr <- monomvn(xmiss, method="pcr")
oplcr
Ellik.norm(oplcr$mu, oplcr$S, xmus$mu, xmus$S)

ridge regression
oridge <- monomvn(xmiss, method="ridge")
Ellik.norm(oridge$mu, oridge$S, xmus$mu, xmus$S)

lasso
olasso <- monomvn(xmiss, method="lasso")
Ellik.norm(olasso$mu, olasso$S, xmus$mu, xmus$S)

lar
olar <- monomvn(xmiss, method="lar")
Ellik.norm(olar$mu, olar$S, xmus$mu, xmus$S)

forward.stagewise
ofs <- monomvn(xmiss, method="forward.stagewise")
Ellik.norm(ofsmu, ofsS, xmus$mu, xmus$S)

stepwise
ostep <- monomvn(xmiss, method="stepwise")
Ellik.norm(ostep$mu, ostep$S, xmus$mu, xmus$S)

Summarizing monomvn output
Description

Summarizing, printing, and plotting the contents of a "monomvn"-class object

Usage

```r
## S3 method for class 'monomvn'
summary(object, Si = FALSE, ...)
## S3 method for class 'summary.monomvn'
print(x, ...)
## S3 method for class 'summary.monomvn'
plot(x, gt0 = FALSE, main = NULL,
xlab = "number of zeros", ...)
```

Arguments

- `object`: a "monomvn"-class object that must be named `object` for the generic methods `summary.monomvn`
- `x`: a "monomvn"-class object that must be named `x` for generic printing and plotting via `print.summary.monomvn` and `plot.summary.monomvn`
- `Si`: boolean indicating whether `object`'s should be inverted and inspected for zeros within `summary.monomvn`, indicating pairwise independence; default is `FALSE`
- `gt0`: boolean indicating whether the histograms in `plot.summary.monomvn` should exclude columns of `object`'s or `Si` without any zero entries
- `main`: optional text to be added to the main title of the histograms produced by the generic `plot.summary.monomvn`
- `xlab`: label for the x-axes of the histograms produced by `plot.summary.monomvn`; otherwise default automatically-generated text is used
- `...`: passed to `print.monomvn`, or `plot.default`

Details

These functions work on the output from both `monomvn` and `bmonomvn`.

`print.monomvn` prints the call followed by a summary of the regression method used at each iteration of the algorithm. It also indicates how many completely observed features (columns) there were in the data. For non-least-squares regressions (i.e., `plsr`, `lars` and `lm.ridge` methods) and indication of the method used for selecting the number of components (i.e., CV, L00, etc., or `none`) is provided

`summary.monomvn` summarizes information about the number of zeros in the estimated covariance matrix `object`'s and its inverse

`print.summary.monomvn` calls `print.monomvn` on the object and then prints the result of `summary.monomvn`

`plot.summary.monomvn` makes histograms of the number of zeros in the columns of `object`'s and its inverse
Value

`summary.monomvn` returns a "summary.monomvn"-class object, which is a list containing (a subset of) the items below. The other functions do not return values.

- **obj**: the "monomvn"-class object
- **marg**: the proportion of zeros in objectS
- **S0**: a vector containing the number of zeros in each column of objectS
- **cond**: if input $si = \text{TRUE}$ this field contains the proportion of zeros in the inverse of objectS
- **Si0**: if input $si = \text{TRUE}$ this field contains a vector with the number of zeros in each column of the inverse of objectS

Note

There is one further S3 function for "monomvn"-class objects that has its own help file: `plot.monomvn`

Author(s)

Robert B. Gramacy <rbgramacy@chicagobooth.edu>

References

http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

See Also

`bmonomvn`, `monomvn`, `plot.monomvn`

monomvn.solve.QP Solve a Quadratic Program

Description

Solve a Quadratic Program specified by a QP object using the covariance matrix and mean vector specified.

Usage

`monomvn.solve.QP(S, QP, mu = NULL)`

Arguments

- **S**: a positive-definite covariance matrix whose dimensions agree with the Quadratic Program, e.g., `nrow(QP$Amat)`
- **QP**: a Quadratic Programming object like one that can be generated automatically by `default.QP`
- **mu**: an mean vector with `length(mu) = nrow(QP$Amat)` that is required if `QP$dmu == \text{TRUE}` or `QP$mu.constr[1] != 0`
Details

The protocol executed by this function is identical to the one used on samples of \(\Sigma \) and \(\mu \) obtained in `bmonomvn` when a Quadratic Program is specified through the `qp` argument. For more details on the specification of the Quadratic Program implied by a `qp` object, please see `default.QP` and the examples therein.

Value

The output is a vector whose length agrees with the dimension of \(S \), describing the solution to the Quadratic Program given.

Author(s)

Robert B. Gramacy <rbgramacy@chicagobooth.edu>

See Also

`default.QP`, `bmonomvn`, and `solve.QP` in the `quadprog` package.

Description

Functions for visualizing the output from `bmonomvn`, particularly the posterior standard deviation estimates of the mean vector and covariance matrix, and samples from the solution to a Quadratic Program.

Usage

```r
## S3 method for class 'monomvn'
plot(x, which=c("mu", "S", "Snz", "Sinz", "QP"),
     xaxis=c("numna", "index"), main=NULL, uselog=FALSE, ...)
```

Arguments

- `x` a "monomvn"-class object that must be named `x` for generic plotting
- `which` determines the parameter whose standard deviation to be visualized: the mean vector ("mu" for sqrt($mu.var$)); the covariance matrix ("S" for sqrt($S.var$)), or "S(i)nz" for sqrt($S(i).nz$), which both result in an image plot; or the distribution of solutions \(W \) to a Quadratic Program that may be obtained by supplying `QP = TRUE` as input to `bmonomvn`
- `xaxis` indicates how x-axis (or x- and y-axis in the case of `which` = "S" || "S(i)nz") should be displayed. The default option "numna" shows the (ordered) number of missing entries (NAs) in the corresponding column, whereas "index" simply uses the column index; see details below
main
optional text to be added to the main title of the plots; the default of NULL causes
the automatic generation of a title

uselog
a logical which, when TRUE, causes the log of the standard deviation to be plotted
instead

... passed to plot.default

Details
Currently, this function only provides a visualization of the posterior standard deviation estimates
of the parameters, and the distributions of samples from the posterior of the solution to a specified
Quadratic Program. Therefore it only works on the output from `bmonomvn`

All types of visualization (specified by `which`) are presented in the order of the number of missing
entries in the columns of the data passed as input to `bmonomvn`. In the case of which = "mu" this
means that y-values are presented in the order x$0, where the x-axis is either 1:length(x$0) in
the case of `xaxis` = "index", or x$na[x$0] in the case of `xaxis` = "numna". When
which = "S" is given the resulting `image` plot is likewise ordered by x$0 where the x- and y-axis
are as above, except that in the case where `xaxis` = "numna" the repeated counts of NAs are are
adjusted by small increments so that x and y arguments to `image` are distinct. Since a `boxplot` is
used when which = "QP" it may be that `xaxis` = "index" is preferred

Value
The only output of this function is beautiful plots

Author(s)
Robert B. Gramacy <rbgramacy@chicagobooth.edu>

References
http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

See Also
`bmonomvn`, `print.monomvn`, `summary.monomvn`

Description
Randomly generate a mean vector and covariance matrix describing a multivariate normal (MVN)
distribution, and then sample from it
Usage

randmvn(N, d, method = c("normwish", "parsimonious"),
 mup=list(mu = 0, s2 = 1), s2p=list(a = 0.5, b = 1),
 pnz=0.1, nu=Inf)

Arguments

N number of samples to draw
 d dimension of the MVN, i.e., the length of the mean vector and the number of
 rows/cols of the covariance matrix
 method the default generation method is "normwish" uses the direct method described
 in the details section below, whereas the "parsimonious" method builds up the
 random mean vector and covariance via regression coefficients, intercepts, and
 variances. See below for more details. Here, a random number of regression
 coefficients for each regression are set to zero
 mup a list with entries $mu and $s2: $mu is the prior mean for the independent
 components of the normally distributed mean vector; $s2 is the prior variance
 s2p a list with entries $a and $b only valid for method = "parsimonious":
 $a > 0 is the baseline inverse gamma prior scale parameter for the regression
 variances (the actual parameter used for each column i in 1:d of the
 covariance matrix is a + i - 1); $b > 0 is the rate parameter
 pnz a scalar 0 <= pnz <= 1, only valid for method = "parsimonious": determines
 the binomial proportion of non-zero regression coefficients in the sequential
 build-up of mu and S, thereby indirectly determining the number of non-zero
 entries in S
 nu a scalar >= 1 indicating the degrees of freedom of a Student-t distribution to be
 used instead of an MVN when not infinite

Details

In the direct method ("normwish") the components of the mean vector mu are iid from a standard
normal distribution, and the covariance matrix S is drawn from an inverse-Wishart distribution with
degrees of freedom d + 2 and mean (centering matrix) diag(d)

In the "parsimonious" method mu and S are built up sequentially by randomly sampling intercepts,
regression coefficients (of length i-1 for i in 1:d) and variances by applying the monomvn equations.
A unique prior results when a random number of the regression coefficients are set to zero.
When none are set to zero the direct method results

Value

The return value is a list with the following components:

mu randomly generated mean vector of length d
 S randomly generated covariance matrix with d rows and d columns
 x if N > 0 then x is an N*d matrix of N samples from the MVN with mean
 vector mu and covariance matrix S; otherwise when N = 0 this component is
 not included
Note

requires the \texttt{rmvnorm} function of the \texttt{mvtnorm} package

Author(s)

Robert B. Gramacy <rbgramacy@chicagobooth.edu>

See Also

\texttt{rwish}, \texttt{rmvnorm}, \texttt{rmono}

Examples

\begin{verbatim}
randmvn(5, 3)
\end{verbatim}

regress \hspace{1cm} Switch function for least squares and parsimonious monomvn regressions

Description

This function fits the specified ordinary least squares or parsimonious regression (pls, pcr, ridge, and lars methods) depending on the arguments provided, and returns estimates of coefficients and (co-)variances in a \texttt{monomvn} friendly format.

Usage

\begin{verbatim}
regress(X, y, method = c("lsr", "plsr", "pcr", "lasso", "lar", "forward.stagewise", "stepwise", "ridge", "factor"), p = 0, ncomp.max = Inf, validation = c("CV", "LOO", "Cp"), verb = 0, quiet = TRUE)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{X} \hspace{1cm} \texttt{data.frame, matrix, or vector of inputs X}
 \item \texttt{y} \hspace{1cm} \texttt{matrix of responses y of row-length equal to the leading dimension (rows) of X, i.e., nrow(y) == nrow(X); if y is a vector, then nrow may be interpreted as length}
 \item \texttt{method} \hspace{1cm} \texttt{describes the type of parsimonious (or shrinkage) regression, or ordinary least squares. From the \texttt{pls} package we have "plsr" (plsr, the default) for partial least squares and "pcr" (pcr) for standard principal component regression. From the \texttt{lars} package (see the "type" argument to \texttt{lars}) we have "lasso" for L1-constrained regression, "lar" for least angle regression, "forward.stagewise" and "stepwise" for fast implementations of classical forward selection of co-variates. From the \texttt{MASS} package we have "ridge" as implemented by the \texttt{lm.ridge} function. The "factor" method treats the first p columns of y as known factors}
\end{itemize}
when performing regressions, \(0 \leq p \leq 1 \) is the proportion of the number of columns to rows in the design matrix before an alternative regression method (except "1sr") is performed as if least-squares regression "failed". Least-squares regression is known to fail when the number of columns is greater than or equal to the number of rows. The default setting, \(p = 0 \), forces the specified method to be used for every regression unless method = "1sr" is specified but is unstable. Intermediate settings of \(p \) allow the user to specify that least squares regressions are preferred only when there are sufficiently more rows in the design matrix (\(X \)) than columns. When method = "factor" the \(p \) argument represents an integer (positive) number of initial columns of \(y \) to treat as known factors.

\(\text{ncomp.max} \) maximal number of (principal) components to consider in a method—only meaningful for the "pls" or "pcr" methods. Large settings can cause the execution to be slow as they drastically increase the cross-validation (CV) time.

\(\text{validation} \) method for cross validation when applying a parsimonious regression method. The default setting of "CV" (randomized 10-fold cross-validation) is the faster method, but does not yield a deterministic result and does not apply for regressions on less than ten responses. "LOO" (leave-one-out cross-validation) is deterministic, always applicable, and applied automatically whenever "CV" cannot be used. When standard least squares is appropriate, the methods implemented the \text{lars} package (e.g. lasso) support model choice via the "Cp" statistic, which defaults to the "CV" method when least squares fails. This argument is ignored for the "ridge" method; see details below.

\(\text{verb} \) whether or not to print progress indicators. The default (\(\text{verb} = 0 \)) keeps quiet. This argument is provided for \text{monomvn} and is not intended to be set by the user via this interface.

\(\text{quiet} \) causes warnings about regressions to be silenced when TRUE.

Details

All methods (except "1sr") require a scheme for estimating the amount of variability explained by increasing numbers of non-zero coefficients (or principal components) in the model. Towards this end, the \text{pls} and \text{lars} packages support 10-fold cross validation (CV) or leave-one-out (LOO) CV estimates of root mean squared error. See \text{pls} and \text{lars} for more details. The \text{regress} function uses CV in all cases except when \(\text{nrow}(X) \leq 10 \), in which case CV fails and LOO is used. Whenever \(\text{nrow}(X) \leq 3 \) \text{pcr} fails, so \text{pls} is used instead. If \(\text{quiet} = \text{FALSE} \) then a \text{warning} is given whenever the first choice for a regression fails.

For \text{pls} methods, RMSEs are calculated for a number of components in \(1: \text{ncomp.max} \) where a NULL value for \text{ncomp.max} it is replaced with

\[
\text{ncomp.max} \leftarrow \min(\text{ncomp.max}, \text{ncol}(y), \text{nrow}(X)-1)
\]

which is the max allowed by the \text{pls} package.

Simple heuristics are used to select a small number of components (\text{ncomp} for \text{pls}), or number of coefficients (for \text{lars}) which explains a large amount of the variability (RMSE). The \text{lars} methods use a "one-standard error rule" outlined in Section 7.10, page 216 of HTF below. The \text{pls} package does not currently support the calculation of standard errors for CV estimates of RMSE, so a simple linear penalty for increasing \text{ncomp} is used instead. The ridge constant (lambda) for \text{lm.ridge} is set using the \text{optimize} function on the 6CV output.
Value

`regress` returns a list containing the components listed below.

- **call**: a copy of the function call as used
- **method**: a copy of the method input argument
- **ncomp**: depends on the method used: is NA when `method = "lsr"`; is the number of principal components for `method = "pcr"` and `method = "plsr"`; is the number of non-zero components in the coefficient vector (b, not counting the intercept) for any of the `lars` methods; and gives the chosen λ penalty parameter for `method = "ridge"
- **lambda**: if `method` is one of `c("lasso", "forward.stagewise", "ridge")`, then this field records the λ penalty parameter used
- **b**: matrix containing the estimated regression coefficients, with `ncol(b) = ncol(y)` and the intercept in the first row
- **S**: (biased corrected) maximum likelihood estimate of residual covariance matrix

Note

The CV in `pls` and `lars` are random in nature, and so can be dependent on the random seed. Use `validation="LOO"` for deterministic (but slower) result.

Be warned that the `lars` implementation of `"forward.stagewise"` can sometimes get stuck in (what seems like) an infinite loop. This is not a bug in the `regress` function; the bug has been reported to the authors of `lars`.

Author(s)

Robert B. Gramacy <rbgramacy@chicagobooth.edu>

References

http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

See Also

`monomvn`, `lasso`, `lars` in the `lars` library, `lm.ridge` in the `MASS` library, `pls` and `plsr` in the `pls` library
Examples

```r
## following the lars diabetes example
data(diabetes)
attach(diabetes)

## Ordinary Least Squares regression
reg.ols <- regress(x, y)

## Lasso regression
reg.lasso <- regress(x, y, method="lasso")

## partial least squares regression
reg.plsr <- regress(x, y, method="plsr")

## ridge regression
reg.ridge <- regress(x, y, method="ridge")

## compare the coefs
data.frame(ols=reg.ols$b, lasso=reg.lasso$b,
          plsr=reg.plsr$b, ridge=reg.ridge$b)

## summarize the posterior distribution of lambda2 and s2
detach(diabetes)
```

returns

 финансовые возвраты данных с Нью-Йоркской фондовой биржей и AMEX

Описание

Месячные возвраты обыкновенных акций, торгаемых на Нью-Йоркской фондовой бирже и AMEX, с апреля 1968 года по 1998 год; также включен возврат на рынок

Использование

```r
data(returns)
data(returns.test)
data(market)
data(market.test)
```

Формат

Возвращения предоставляются в формате `data.frame` с 1168 столбцами и 360 строками в случае `returns` и 12 строками для `returns.test`. Столбы уникально идентифицируют акцию, торгованную на Нью-Йоркской фондовой бирже или AMEX. Возврат на рынок представлен в двух векторах `market` и `market.test` длиной 360 и 12 соответственно.
Details

The columns contain monthly returns of common domestic stocks traded on the NYSE and the AMEX from April 1968 until 1998. `returns` contains returns up until 1997, whereas `returns.test` has the returns for 1997. Both data sets have been cleaned in the following way. All stocks have a share price greater than \$5 and a market capitalization greater than 20% based on the size distribution of NYSE firms. Stocks without completely observed return series in 1997 were also discarded.

The market returns provided are essentially the monthly return on the S&P500 during the same period, which is highly correlated with the raw monthly returns weighted by their market capitalization.

Source

This data is a subset of that originally used by Chan, Karceski, and Lakonishok (1999), and subsequently by several others; see the references below. We use it as part of the `monomvn` package as an example of a real world data set following a nearly monotone missingness pattern.

References

http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

See Also

`monomvn`, `bmonomvn`

Examples

data(returns)

investigate the monotone missingness pattern
returns.na <- is.na(returns)
image(1:ncol(returns), 1:nrow(returns), t(returns.na))

for a portfolio balancing exercise, see
the example in the bmonomvn help file
Description

Randomly impose a monotone missingness pattern by replacing the ends of each column of the input matrix by a random number of NAs.

Usage

\texttt{rmono(x, m = 7, ab = NULL)}

Arguments

- \texttt{x}: data matrix
- \texttt{m}: minimum number of non-NA entries in each column
- \texttt{ab}: a two-vector of α (ab[1]) and β (ab[2]) parameters to a Beta(α, β) distribution describing the proportion of NA entries in each column. The default setting \texttt{ab = NULL} yields a uniform distribution.

Details

The returned \texttt{x} always has one (randomly selected) complete column, and no column has fewer than \texttt{m} non-missing entries. Otherwise, the proportion of missing entries in each column can be uniform, or it can have a beta distribution with parameters α (ab[1]) and β (ab[2]).

Value

returns a matrix with the same dimensions as the input \texttt{x}.

Author(s)

Robert B. Gramacy <rbgramacy@chicagobooth.edu>

References

http://faculty.chicagobooth.edu/robert.gramacy/monomvn.html

See Also

randmvn

Examples

\begin{verbatim}
out <- randmvn(10, 3)
rmono(out$x)
\end{verbatim}
rwish

Draw from the Wishart Distribution

Description

Random generation from the Wishart distribution.

Usage

```r
rwish(v, S)
```

Arguments

- `v` degrees of freedom (scalar)
- `S` inverse scale matrix \((p \times p)\)

Details

The mean of a Wishart random variable with \(v\) degrees of freedom and inverse scale matrix \(S\) is \(vS\).

Value

Returns generates one random draw from the distribution which is a matrix with the same dimensions as \(S\).

References

This was copied from the `MCMCpack` package

Examples

```r
draw <- rwish(3, matrix(c(1,3,3,1),2,2))
```
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>datagen</td>
<td>randmvn.31</td>
</tr>
<tr>
<td></td>
<td>rmono.38</td>
</tr>
<tr>
<td>datasets</td>
<td>cement.16</td>
</tr>
<tr>
<td></td>
<td>returns.36</td>
</tr>
<tr>
<td>distribution</td>
<td>randmvn.31</td>
</tr>
<tr>
<td></td>
<td>rwish.39</td>
</tr>
<tr>
<td>hplot</td>
<td>blasso.s3.8</td>
</tr>
<tr>
<td></td>
<td>monomvn.s3.27</td>
</tr>
<tr>
<td></td>
<td>plot.monomvn.30</td>
</tr>
<tr>
<td>methods</td>
<td>blasso.s3.8</td>
</tr>
<tr>
<td></td>
<td>monomvn.s3.3</td>
</tr>
<tr>
<td>multivariate</td>
<td>bmonomvn.10</td>
</tr>
<tr>
<td></td>
<td>metrics.21</td>
</tr>
<tr>
<td></td>
<td>monomvn.23</td>
</tr>
<tr>
<td>optimize</td>
<td>bmonomvn.10</td>
</tr>
<tr>
<td></td>
<td>default.QP.18</td>
</tr>
<tr>
<td></td>
<td>monomvn.solve.QP.29</td>
</tr>
<tr>
<td>package</td>
<td>monomvn-package.2</td>
</tr>
<tr>
<td>regression</td>
<td>blasso.3</td>
</tr>
<tr>
<td></td>
<td>bmonomvn.10</td>
</tr>
<tr>
<td></td>
<td>monomvn.23</td>
</tr>
<tr>
<td></td>
<td>regress.33</td>
</tr>
<tr>
<td></td>
<td>bhs (blasso).3</td>
</tr>
<tr>
<td></td>
<td>blasso.3, 10–12, 14, 28–31</td>
</tr>
<tr>
<td></td>
<td>blasso.s3.8</td>
</tr>
<tr>
<td></td>
<td>bmonomvn.10, 18–20, 26, 28–31, 37</td>
</tr>
<tr>
<td></td>
<td>boxplot.31</td>
</tr>
<tr>
<td></td>
<td>bridge (blasso).3</td>
</tr>
<tr>
<td></td>
<td>cement.16</td>
</tr>
<tr>
<td></td>
<td>cov.24</td>
</tr>
<tr>
<td></td>
<td>default.QP, 11, 12, 14, 18, 30</td>
</tr>
<tr>
<td></td>
<td>Ellik.norm (metrics), 21</td>
</tr>
<tr>
<td></td>
<td>image.30, 31</td>
</tr>
<tr>
<td></td>
<td>kl.norm (metrics), 21</td>
</tr>
<tr>
<td></td>
<td>lars, 7, 23, 33, 35</td>
</tr>
<tr>
<td></td>
<td>lm, 7</td>
</tr>
<tr>
<td></td>
<td>lm.ridge, 7, 23, 25, 28, 33–35</td>
</tr>
<tr>
<td></td>
<td>market (returns), 36</td>
</tr>
<tr>
<td></td>
<td>mean.24</td>
</tr>
<tr>
<td></td>
<td>metrics, 21</td>
</tr>
<tr>
<td></td>
<td>monomvn, 3, 11–14, 17, 23, 28, 29, 34, 35, 37</td>
</tr>
<tr>
<td></td>
<td>monomvn-package, 2</td>
</tr>
<tr>
<td></td>
<td>monomvn.s3.27</td>
</tr>
<tr>
<td></td>
<td>monomvn.solve.QP, 19, 20, 29</td>
</tr>
<tr>
<td></td>
<td>optimize, 25, 34</td>
</tr>
<tr>
<td></td>
<td>order, 13, 25</td>
</tr>
<tr>
<td></td>
<td>pcr, 23, 25, 33–35</td>
</tr>
<tr>
<td></td>
<td>plot.9</td>
</tr>
<tr>
<td></td>
<td>plot.blasso.8, 9</td>
</tr>
<tr>
<td></td>
<td>plot.blasso (blasso.s3).8</td>
</tr>
<tr>
<td></td>
<td>plot.default, 9, 28, 31</td>
</tr>
<tr>
<td></td>
<td>plot.monomvn, 14, 29, 30</td>
</tr>
<tr>
<td></td>
<td>plot.summary.monomvn, 28</td>
</tr>
<tr>
<td></td>
<td>plot.summary.monomvn (monomvn.s3).27</td>
</tr>
<tr>
<td></td>
<td>pls, 23, 25, 33–35</td>
</tr>
<tr>
<td></td>
<td>print.blasso.9</td>
</tr>
<tr>
<td></td>
<td>print.blasso (blasso.s3).8</td>
</tr>
<tr>
<td></td>
<td>print.monomvn, 28, 31</td>
</tr>
<tr>
<td></td>
<td>print.monomvn (monomvn.s3).27</td>
</tr>
<tr>
<td></td>
<td>print.summary.blasso.8</td>
</tr>
<tr>
<td></td>
<td>print.summary.monomvn.blasso.s3.8</td>
</tr>
<tr>
<td></td>
<td>print.summary.monomvn.9, 28</td>
</tr>
</tbody>
</table>
print.summary.monomvn(monomvn.s3), 27

randmvn, 31
regress, 7, 33
returns, 14, 36
rmono, 33, 38
rmse.muS(metrics), 21
rmvnorm, 33
rwish, 33, 39

solve.QP, 11, 14, 18–20, 30
summary, 9
summary.blasso, 8, 9
summary.blasso(blasso.s3), 8
summary.monomvn, 28, 29, 31
summary.monomvn(monomvn.s3), 27

warning, 24, 25, 34
Wishart (rwish), 39