Package ‘msir’

February 20, 2015

Type Package
Version 1.3
Date 2014-02-23
Title Model-based Sliced Inverse Regression
Description An R package for dimension reduction based on finite Gaussian mixture modeling of inverse regression.
Author Luca Scrucca <luca@stat.unipg.it>
Maintainer Luca Scrucca <luca@stat.unipg.it>
Depends R (>= 2.15)
Imports mclust (>= 4.2)
Suggests rgl
License GPL (>= 2)
Repository CRAN
ByteCompile true
LazyLoad yes
NeedsCompilation no
Date/Publication 2014-02-24 11:22:32

R topics documented:

msir-package .. 2
loess.sd ... 2
msir ... 4
msir.bic .. 6
msir.dir .. 8
msir.nslices ... 9
msir.permutation.test .. 9
msir.regularizedSigma ... 10
msir.slices .. 11
plot.msir ... 12
summary.msir ... 13
msir-package

Model-based Sliced Inverse Regression (MSIR)

Description

An R package that implements MSIR, a dimension reduction method based on Gaussian finite mixture models. The basis of the subspace is estimated by modeling the inverse distribution within slice using finite mixtures of Gaussians, with number of components and covariance matrix parameterization selected by BIC or defined by the user. The method provides an extension to sliced inverse regression (SIR) and allows to overcome the main limitation of SIR, i.e., the failure in the presence of regression symmetric relationships, without the need to impose further assumptions.

Author(s)

Luca Scrucca <luca@stat.unipg.it>

References

See Also

msir

loess.sd

Local Polynomial Regression Fitting with Variability bands

Description

Nonparametric estimation of mean function with variability bands.

Usage

loess.sd(x, y = NULL, nsigma = 1, ...)

panel.loess(x, y, col = par("col"), bg = NA, pch = par("pch"), cex = 1,
 col.smooth = "red", span = 2/3, degree = 2, nsigma = 1, ...)
Arguments

- **x**: a vector of values for the predictor variable x.
- **y**: a vector of values for the response variable y.
- **nsigma**: a multiplier for the standard deviation function.
- **col, bg, pch, cex**: numeric or character codes for the color(s), point type and size of points; see also `par`.
- **col.smooth**: color to be used by `lines` for drawing the smooths.
- **span**: smoothing parameter for `loess`.
- **degree**: the degree of the polynomials to be used, see `loess`.
- **...**: further argument passed to the function `loess`.

Value

The function `loess.sd` computes the loess smooth for the mean function and the mean plus and minus k times the standard deviation function.

The function `panel.loess` can be used to add to a scatterplot matrix panel a smoothing of mean function using loess with variability bands at plus and minus $nsigma$s times the standard deviation.

Author(s)

Luca Scrucca <luca@stat.unipg.it>

References

See Also

- `loess`

Examples

data(cars)
plot(cars, main = "lowess.sd(cars)")
lines(l <- loess.sd(cars))
lines(lx, lupper, lty=2)
lines(lx, llower, lty=2)
Model-based Sliced Inverse Regression (MSIR)

Description

A dimension reduction method based on Gaussian finite mixture models which provides an extension to sliced inverse regression (SIR). The basis of the subspace is estimated by modeling the inverse distribution within slice using Gaussian finite mixtures with number of components and covariance matrix parameterization selected by BIC or defined by the user.

Usage

```r
msir(x, y, nslices = msir.nslices, slice.function = msir.slices,
      modelNames = NULL, G = NULL, cov = c("mle", "regularized"), ...)
```

Arguments

- **x**: a \((n \times p)\) design matrix containing the predictors data values.
- **y**: a \((n \times 1)\) vector of data values for the response variable. It can be a numeric vector (regression) but also a factor (classification). In the latter case, the levels of the factor define the slices used.
- **nslices**: the number of slices used, unless \(y\) is a factor. By default the value returned by \texttt{msir.nslices}.
- **slice.function**: the slice functions to be used, by default \texttt{msir.slices}, but the user can provide a different slicing function.
- **modelNames**: a vector of character strings indicating the Gaussian mixture models to be fitted as described in \texttt{mclustModelNames}. If a vector of strings is given they are used for all the slices. If a list of vectors is provided then each vector refers to a single slice.
- **G**: an integer vector specifying the numbers of mixture components used in fitting Gaussian mixture models. If a list of vectors is provided then each vector refers to a single slice.
- **cov**: The predictors marginal covariance matrix. Possible choices are:
 - "mle" = maximum likelihood estimate
 - "regularized" = regularized covariance matrix (see \texttt{msir.regularizedSigma})
 - \(R\) matrix = a \((p \times p)\) user defined covariance matrix
 - ... = other arguments passed to \texttt{msir.compute}.

Value

Returns an object of class \'msir\' with attributes:

- **call**: the function call.
msir

x the design matrix.
y the response vector.
slice.info output from slicing function.
mixmod a list of finite mixture model objects as described in mclustModel.
loglik the log-likelihood for the mixture models.
f a vector of length equal to the total number of mixture components containing the fraction of observations in each fitted component within slices.
mu a matrix of component within slices predictors means.
sigma the marginal predictors covariance matrix.
M the msir kernel matrix.
evalues the eigenvalues from the generalized eigen-decomposition of M.
evectors the raw eigenvectors from the generalized eigen-decomposition of M ordered according to the eigenvalues.
basis the normalized eigenvectors from the generalized eigen-decomposition of M ordered according to the eigenvalues.
std.basis standardized basis vectors obtained by multiplying each coefficient of the eigenvectors by the standard deviation of the corresponding predictor. The resulting coefficients are scaled such that all predictors have unit standard deviation.
numdir the maximal number of directions estimated.
dir the estimated MSIR directions from mean-centered predictors.

Author(s)
Luca Scrucca <luca@stat.unipg.it>

References

See Also
summary.msir, plot.msir, dr

Examples

1-dimensional simple regression
n = 200; p = 5
b = as.matrix(c(1,-1,rep(0,p-2)))
x = matrix(rnorm(n*p), nrow = n, ncol = p)
y = exp(0.5 * x%*%b) + 0.1*rnorm(n)
MSIR = msir(x, y)
summary(MSIR)
plot(MSIR, type = "2Dplot")

1-dimensional symmetric response curve
n = 200; p = 5
b = as.matrix(c(1,-1,rep(0,p-2)))
x = matrix(rnorm(n*p), nrow = n, ncol = p)
y = (0.5 * x %*% b)^2 + 0.1 * rnorm(n)
MSIR = msir(x, y)
summary(MSIR)
plot(MSIR, type = "2Dplot")
plot(MSIR, type = "coefficients")

2-dimensional response curve
n = 300; p = 5
b1 = c(1,1,1, rep(0, p-3))
b2 = c(-1,-1, rep(0, p-3))
b = cbind(b1,b2)
x = matrix(rnorm(n*p), nrow = n, ncol = p)
y = x %*% b1 + (x %*% b1)^3 + 4*(x %*% b2)^2 + rnorm(n)
MSIR = msir(x, y)
summary(MSIR)
plot(MSIR, which = 1:2)
Not run: plot(MSIR, type = "spinplot")
plot(MSIR, which = 1, type = "2Dplot", span = 0.7)
plot(MSIR, which = 2, type = "2Dplot", span = 0.7)

msir.bic
BIC-type criterion for dimensionality

Description

BIC-type criterion for selecting the dimensionality of a dimension reduction subspace.

Usage

```r
msir.bic(object, type = 1, plot = FALSE)
```

```r
bicDimRed(M, x, nslices, type = 1, tol = sqrt(.Machine$double.eps))
```

Arguments

- `object`
a 'msir' object

- `plot`
if TRUE a plot of the criterion is shown.

- `M`
the kernel matrix. See details below.

- `x`
the predictors data matrix. See details below.

- `type`
See details below.

- `nslices`
the number of slices. See details below.

- `tol`
a tolerance value
Details

This BIC-type criterion for the determination of the structural dimension selects d as the maximizer of

$$G(d) = l(d) - \text{Penalty}(p, d, n)$$

where $l(d)$ is the log-likelihood for dimensions up to d, p is the number of predictors, and n is the sample size. The term $\text{Penalty}(p, d, n)$ is the type of penalty to be used:

- **type = 1**: $\text{Penalty}(p, d, n) = -(p - d) \log(n)$
- **type = 2**: $\text{Penalty}(p, d, n) = 0.5Cd(2p - d + 1)$
 where $C = (0.5 \log(n) + 0.1n(1/3))/2n\text{slices}/n$
- **type = 3**: $\text{Penalty}(p, d, n) = 0.5Cd(2p - d + 1)$
 where $C = \log(n)n\text{slices}/n$
- **type = 3**: $\text{Penalty}(p, d, n) = 1/2d\log(n)$

Value

Returns a list with components:

- **evvalues**: eigenvalues
- **l**: log-likelihood
- **crit**: BIC-type criterion
- **d**: selected dimensionality

The `msir.bic` also assigns the above information to the corresponding `msir` object.

Author(s)

Luca Scrucca <luca@stat.unipg.it>

References

Zhu, Miao and Peng (2006) "Sliced Inverse Regression for CDR Space Estimation", JASA.

See Also

- `msir`

Examples

```R
# 1-dimensional symmetric response curve
n = 200; p = 5
b = as.matrix(c(1,-1,rep(0,p-2)))
x = matrix(rnorm(n*p), nrow = n, ncol = p)
y = (0.5 * x%*%b)^2 + 0.1*rnorm(n)
MSIR = msir(x, y)
msir.bic(MSIR, plot = TRUE)
summary(MSIR)
msir.bic(MSIR, type = 3, plot = TRUE)
summary(MSIR)
```
msir.dir Model-based Sliced Inverse Regression directions

Description

MSIR estimates a set of up to \(p \) orthogonal direction vectors each of length \(p \), the first \(d \) of which are estimates of the basis of the dimensional reduction subspace.

Usage

\[
\text{msir.dir(object, numdir = object$numdir)}
\]

Arguments

- object: a 'msir' object
- numdir: the number of basis vectors to return.

Value

The function returns the estimated directions in the original \(n \) dimensional space for plotting.

Author(s)

Luca Scrucca <luca@stat.unipg.it>

References

See Also

{msir}

Examples

1-dimensional simple regression
n = 200; p = 5
b = as.matrix(c(1,-1,rep(0,p-2)))
x = matrix(rnorm(n*p), nrow = n, ncol = p)
y = exp(0.5 * x%*%b) + 0.1*runif(n)
MSIR = msir(x, y)
msir.dir(MSIR, numdir = 1)
msir.nslices
Default number of slices

Description
This function computes a Sturges’ type number of slices to be used as default in the `msir` function.

Usage
```
msir.nslices(n, p)
```

Arguments
- `n`: the number of observations in the sample.
- `p`: the number of predictors in the sample.

Value
The function returns a single value, i.e. the number of slices.

Author(s)
Luca Scrucca <luca@stat.unipg.it>

See Also
- `msir`

msir.permutation.test
Permutation test for dimensionality

Description
Approximates marginal dimension test significance levels by sampling from the permutation distribution.

Usage
```
msir.permutation.test(object, npermute = 99, numdir = object$numdir, verbose = TRUE)
```

Arguments
- `object`: a 'msir' object.
- `npermute`: number of permutations to compute.
- `numdir`: maximum value of the dimension to test.
- `verbose`: if TRUE a textual progress bar is shown during computation.
Details

The function approximates significance levels of the marginal dimension tests based on a permutation test.

Value

The function returns a list with components:

- `summary`: a table containing the hypotheses, the test statistics, the permutation p-values.
- `npermute`: the number of permutations used.

Furthermore, it also assigns the above information to the corresponding `msir` object.

Author(s)

Luca Scrucca <luca@stat.unipg.it>

References

See Also

dr

Examples

```r
# 1-dimensional simple regression
n = 200; p = 5
b = as.matrix(c(1,-1,rep(0,p-2)))
x = matrix(rnorm(n*p), nrow = n, ncol = p)
y = exp(0.5 * x%*%b) + 0.1*rnorm(n)
MSIR = msir(x, y)
msir.permutation.test(MSIR)
summary(MSIR)
```

msir.regularizedSigma

Regularized estimate of predictors covariance matrix.

Description

This function computes a regularized version of the covariance matrix of the predictors. Among the possible models the one which maximizes BIC is returned.

Usage

```r
msir.regularizedSigma(x, inv = FALSE, model = c("XII", "XXI", "XXX"))
```
Arguments

- **x**: the predictors data matrix.
- **inv**: if TRUE the inverse of the estimated covariance matrix is returned.
- **model**: available models:
 - **XII**: diagonal equal variances
 - **XXI**: diagonal unequal variances
 - **XXX**: full covariance matrix

Value

A \((p \times p)\) covariance matrix estimate.

Author(s)

Luca Scrucca <luca@stat.unipg.it>

See Also

- **msir**

Description

Function used for slicing a continuous response variable.

Usage

```r
msir.slices(y, nslices)
```

Arguments

- **y**: a vector of \(n\) values
- **nslices**: the number of slices, no larger than \(n\)

Value

Returns a list with components:

- **slice.indicator**: an indicator variable for the slices.
- **nslices**: the actual number of slices produced.
- **slice.sizes**: the number of observations in each slice.
Author(s)
Luca Scrucca <luca@stat.unipg.it>

See Also
msir

Description
Plots directions and other information from MSIR estimation.

Usage
S3 method for class 'msir'
plot(x, which, type = c("pairs", "2Dplot", "spinplot", "evalues", "coefficients"),
 span = NULL, std = TRUE, ylab, xlab, restore.par = TRUE, ...)

Arguments
x
a 'msir' object.

which
a vector of value(s) giving the directions for which the plot should be drawn.

type
the type of plot to be drawn.

span
the span of smoother (only for type = "pairs" | "2Dplot").

std
if TRUE coefficients are standardized (only for type = "coefficients").

ylab
a character string for the y-axis label.

xlab
a character string for the x-axis label.

restore.par
if TRUE the graphical parameters (see par) changed are restored to the previous
state. If you want to manipulate the resulting plot you should set restore.par = FALSE.

...
additional arguments.

Author(s)
Luca Scrucca <luca@stat.unipg.it>

References
Analysis, 55(11), 3010-3026.

See Also
msir
Examples

```r
# 2-dimensional response curve
n = 300; p = 5
b1 = c(1, 1, 1, rep(0, p-3))
b2 = c(1,-1,-1, rep(0, p-3))
b = cbind(b1,b2)
x = matrix(rnorm(n*p), nrow = n, ncol = p)
y = x %*% b1 + (x %*% b1)^3 + 4*(x %*% b2)^2 + rnorm(n)
MSIR = msir(x, y)
summary(MSIR)
plot(MSIR)
plot(MSIR, type = "2Dplot", which = 1, span = 0.7)
plot(MSIR, type = "2Dplot", which = 2, span = 0.7)
# Not run: plot(MSIR, type = "spinplot")
plot(MSIR, type = "evalues")
plot(MSIR, type = "coefficients")
```

summary.msir

Summary and print methods for 'msir' objects

Description

Summary and print methods for 'msir' objects.

Usage

```r
## S3 method for class 'msir'
summary(object, numdir = object$numdir, std = FALSE, verbose = TRUE, ...)
## S3 method for class 'summary.msir'
print(x, digits = max(5, getOption("digits") - 3), ...)
```

Arguments

- `object`: a 'msir' object
- `numdir`: the number of directions to be shown.
- `std`: if TRUE the coefficients basis are scaled such that all predictors have unit standard deviation.
- `verbose`: if FALSE the coefficients basis are omitted; by default verbose = TRUE.
- `x`: a 'summary.msir' object.
- `digits`: the significant digits to use.
- `...`: additional arguments.

Author(s)

Luca Scrucca <luca@stat.unipg.it>
See Also

msir
Index

*Topic **dplot**
 plot.msir, 12
*Topic **htest**
 msir.permutation.test, 9
*Topic **loess**
 loess.sd, 2
*Topic **multivariate**
 msir, 4
*Topic **package**
 msir-package, 2
*Topic **regression**
 msir, 4
 msir.bic, 6
 msir.dir, 8
 msir.permutation.test, 9
 plot.msir, 12
bicDimRed(msir.bic), 6

dr, 5, 10
loess, 3
loess.sd, 2
mclustModel, 5
mclustModelNames, 4
msir, 2, 4, 7, 9, 11, 12, 14
msir-package, 2
msir.bic, 6
msir.dir, 8
msir.nsllices, 4, 9
msir.permutation.test, 9
msir.regularizedSigma, 4, 10
msir.slices, 4, 11

panel.loess(loess.sd), 2
par, 3, 12
plot.msir, 5, 12
print.msir(msir), 4
print.summary.msir(summary.msir), 13
summary.msir, 5, 13