Package ‘spatstat.explore’

March 21, 2024
Version 3.2-7
Date 2024-03-21
Title Exploratory Data Analysis for the 'spatstat’ Family
Maintainer Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Depends R (>=3.5.0), spatstat.data (>= 3.0-4), spatstat.geom (>=
3.2-9), spatstat.random (>= 3.2-3), stats, graphics, grDevices,
utils, methods, nlme

Imports spatstat.utils (>= 3.0-4), spatstat.sparse (>= 3.0-3), goftest
(>= 1.2-2), Matrix, abind

Suggests sm, gsl, locfit, spatial, fftwtools (>= 0.9-8),
spatstat.linnet (>= 3.1-4), spatstat.model (>= 3.2-10),
spatstat (>= 3.0-7)

Description Functionality for exploratory data analysis and nonparametric analysis of
spatial data, mainly spatial point patterns,
in the 'spatstat’ family of packages.
(Excludes analysis of spatial data on a linear network,
which is covered by the separate package 'spatstat.linnet'.)
Methods include quadrat counts, K-functions and their simulation envelopes, nearest neigh-
bour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed in-
tensity, relative risk estimation with cross-validated bandwidth selection, mark correlation func-
tions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate ef-
fects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-
Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-
stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-
Smirnov, ANOVA) are also supported.

License GPL (>=2)

URL http://spatstat.org/
NeedsCompilation yes

ByteCompile true

BugReports https://github.com/spatstat/spatstat.explore/issues

1

http://spatstat.org/
https://github.com/spatstat/spatstat.explore/issues

2 R topics documented:

Author Adrian Baddeley [aut, cre, cph]
(<https://orcid.org/0000-0001-9499-8382>),
Rolf Turner [aut, cph] (<https://orcid.org/0000-0001-5521-5218>),
Ege Rubak [aut, cph] (<https://orcid.org/0000-0002-6675-533X>),
Kasper Klitgaard Berthelsen [ctb],
Warick Brown [cph],
Achmad Choiruddin [ctb],
Jean-Francois Coeurjolly [ctb],
Ottmar Cronie [ctb],
Tilman Davies [ctb, cph],
Julian Gilbey [ctb],
Jonatan Gonzalez [ctb],
Yongtao Guan [ctb],
Ute Hahn [ctb],
Kassel Hingee [ctb, cph],
Abdollah Jalilian [ctb],
Frederic Lavancier [ctb],
Marie-Colette van Lieshout [ctb, cph],
Greg McSwiggan [ctb],
Robin K Milne [cph],
Tuomas Rajala [ctb],
Suman Rakshit [ctb, cph],
Dominic Schuhmacher [ctb],
Rasmus Plenge Waagepetersen [ctb],
Hangsheng Wang [ctb]

Repository CRAN
Date/Publication 2024-03-21 05:40:02 UTC

R topics documented:

spatstat.explore-packageo 7
adaptive.density L. e 15
allstats L e 16
alltypes e e 18
as.data.frame.envelope 21
as.function.fv L. L e e 22
as.function.thohat L 23
astV L L 25
as.owin.quadrattest L. L L e e e e 26
ASAESS . v . e e e e e e e e e e e 29
AUC .« v v e e e e e e e e e e e e e e e 30
berman.test e e e e e e e e e e e 31
bind.fv 33
bits.envelope e e e e e 35
bitsitest 37
blur e 39

https://orcid.org/0000-0001-9499-8382
https://orcid.org/0000-0001-5521-5218
https://orcid.org/0000-0002-6675-533X

R topics documented: 3

bwabram 43
bwabram.ppp 45
bw.CVL . . e 47
bw.CvL.adaptive 49
bw.CvLHeat e 51
bwdiggle e 52
bwirac 54
bw.optim.object L e e e e e 55
bw.pct . e 56
bw.ppl . . e 58
bwpplHeat 60
bwrelrisk e 62
DW.SCOLt . . . o o e e 63
bw.smoothppp 65
DW.SIOYAN . . . o v vt o e e e e e e e e e e e e e e e e e e e 67
CDF . . o 68
cdfitest L 69
circdensity e e e e e e e 72
clarkevans 73
clarkevans.test L L e e 75
clusterset e e 77
collapse.fv e e 79
compatiblefasp 81
compatiblefv 82
compileCDF e e 83
compileK L 84
COVAM . . . ottt e e e 86
delfiprogress e 87
delfisigtrace L e e e e 89
delfitest e e e 92
density.ppp - - - - o i e e e 95
density.psp e e e e 102
density.Splitppp L 103
densityAdaptiveKernel 105
densityAdaptiveKernel.splitppp 107
densityfun.ppp L e 108
densityHeat 110
densityHeat.ppp 111
densityVoronoi e e e e e 114
derivifv . . L e e 116
dgenvelope L 118
dg.progress e 120
dg.sigtrace L e e e 122
dgtest e e 125
dimhat 127
distedf o e 128
dkernel e 129

domain.quadrattest L. L e 131

R topics documented:

edge.Ripley e e 132
edge.Trans L e e 134
Emark 136
eNVElOPE e 138
envelope.envelope L 148
envelope.pp3 149
envelOPeAITaY e e e 153
evalfasp L e e 154
eval.fVv . . . e e e 156
Extract.fasp L 158
Extract.fv e 159
F3est e e e e e 161
fasp.object oL 163
Fest . . . e 164
Finhom e e e e 168
Fmultilnhom e 171
formulafv 172
fryplot e 174
IV e e e e e e 176
fvobject L 178
fvnames e e e e e 179
G3eSt . . e e e e 181
GCIOSS . . o o e e e e e e 182
Geross.inhom e e e 186
Gdot e e e e e 188
Gdot.inhom e e e e e 191
GeSt . . . e e 193
GIoX . . . e e e e 197
GIinhom e e e e e e e 199
Gmulti e e 201
Gmultilnhom 204
harmonise.fv e 206
Hest e e e e e e 207
hopskel 209
hotbox e 211
AW . e e e 213
Test. e e 215
increment.fv L L L e e 217
integral.fv L L e e 218
JCross . .. e e e 219
Jerossinhom 221
Jdot . . . e e 223
Jdotinhom 226
Jest . e e e 228
Jinhom 231
Jmulti . . . e 234
Jmulti.inhom e e 236

KBest . . . e e 238

R topics documented: 5

kaplan.meier. L. e e e e e e e e 240
Keross o e e e e e 241
Kcross.nhom 244
Kdot e e e 248
Kdot.inhom e e e e e 251
kernel.factor e 254
kernel.Lmoment L 255
kernel.squint. L e e e 257
Kest e e e 258
Kest.fft e 262
Kinhom e e 264
Kmrs . . e 268
Kmark e 270
Kmeasure e e e 272
Kmulti o e e e e e 275
Kmulti.inhom e 277
Kscaled e 281
Ksector e e e e e 284
laslett e e e e e e 285
Leross e e e 288
Lerossanhom e 289
Ldot e e e 2901
Ldotinhom e 293
Lest . . e e e 294
Linhom e 296
localK e e e e 297
localKeross e e 299
localKcross.inhom e e e e 301
localKdot e e e e e 304
localKinhom e 306
localpef 308
lohboot e e e 310
markConNnect e e e e 313
markCOrT e e 316
MAarkCrOSSCOIT v v e i e i e e e e e e e e e e e e e e e e e 320
markmarkscatter L. e e e e e e e e e e e e 322
marktable e 323
markvario L e e e e 324
Math.fasp e e 326
Math.fv e 328
methods.rho2hat 329
methods.rhohat 331
methods.ssf L. e e 333
miplot L 335
nnclean L L L e e e 336
1113767) o 338
nNdensity.ppp 341

NNOTIENT o v ot o o e e e e e e e e 342

R topics documented:

pairMean L e e e e e 344
PAITOTIENt L e e e e e e 345
PAIrS.M L e 347
Panel.contour e e e e 348
Pl o e e 350
peffasp . ..o 351
Pef AV e 353
PCEPDD - o o e e e 355
pef3est e 359
pefeross . ..o L 361
pcfeross.iinhomo oL 363
pefdot . . L e e e 365
pcfdotinhom oL 368
pcfinhom 370
pefmulti e 373
plotbermantest 375
plotedftest 376
plot.envelope L e e e e e e 378
plot.fasp L e 379
plotfv . . e 381
plotlaslett 385
plot.quadrattest e e e e e e 386
plot.scantestl 387
plotssf . . . L L 389
plot.studpermutest L. e e e e 390
POOL . o e e e 392
poolanylist 393
poolenvelope L 394
poolfasp L e e e 395
poolfv . . e 396
pool.quadrattest 397
POOLrat e e e e e e 398
PPversion e 400
quadrat.teSt L e e e e e e e e 401
quadrat.test.Splitppp - 405
quantile.density L L e e 406
radcumint oL e e e e e 408
TAL . . o e e e 409
TECICONTACE o o v i vttt e e e e e e e e e e e e 410
reduced.sample L. e 411
reload.or.compute e e e e e 412
relrisk . . . L 414
TelriSK.pPp - -« o o e e 415
rhoZhat L 419
rhohat 420
TOC o v e e e e e e e e e e e e e e e e e 427
TOSE & v v v e 429

spatstat.explore-package 7

Index

SCAMLIEST e e e e e 432
scanLRTS e 435
SAr . . e 437
sdrPredict L 438
SEEIeatiON.LESt i e e e e e e e e e e e e 439
sharpen L 441
Smooth e 442
Smooth.fv L 443
Smooth.ppp e 445
Smooth.ssf 448
Smoothfun.ppp 449
SPALCOV . v v v e e e e e e e e e e e e e e e e e 450
spatialedfo L 452
SpatialMedian.ppp o o e e e e e e 454
SpatialQuantile 456
SpatialQuantile.ppp e 457
SSE e 459
stieljes L e e e 460
SHENGN o v it e e e e e e 461
studpermuLtest e e e e e e e 462
subspaceDistance L L e e e 464
thresholdCI o e 465
thresholdSelect 466
transect.imo e e e e 468
Tstat . . . e e e 469
varblock L L 471
Window.quadrattest L e e 472
with v . . o e e 473
with.ssf . . o L 475
LSSt o e e e 476

478

spatstat.explore-package

The spatstat.explore Package

Description

The spatstat.explore package belongs to the spatstat family of packages. It contains the core
functionality for statistical analysis and modelling of spatial data.

8 spatstat.explore-package

Details

spatstat is a family of R packages for the statistical analysis of spatial data. Its main focus is the
analysis of spatial patterns of points in two-dimensional space.

The original spatstat package has now been split into several sub-packages.

This sub-package spatstat.explore contains the user-level functions that perform exploratory data
analysis and nonparametric data analysis of spatial data.

(The main exception is that functions for linear networks are in the separate sub-package spat-
stat.linnet.)

Structure of the spatstat family

The orginal spatstat package grew to be very large. It has now been divided into several sub-
packages:

* spatstat.utils containing basic utilities

* spatstat.sparse containing linear algebra utilities

* spatstat.data containing datasets

* spatstat.geom containing geometrical objects and geometrical operations

* spatstat.explore containing the functionality for exploratory data analysis and nonparametric
analysis of spatial data.

 spatstat.model containing the functionality for statistical modelling, model-fitting, formal
statistical inference and informal model diagnostics.

* spatstat.linnet containing functions for spatial data on a linear network
* spatstat, which simply loads the other sub-packages listed above, and provides documenta-

tion.

When you install spatstat, these sub-packages are also installed. Then if you load the spatstat
package by typing library(spatstat), the other sub-packages listed above will automatically be
loaded or imported.

For an overview of all the functions available in the sub-packages of spatstat, see the help file for
"spatstat-package” in the spatstat package.

Additionally there are several extension packages:

* spatstat.gui for interactive graphics

* spatstat.local for local likelihood (including geographically weighted regression)

* spatstat.Knet for additional, computationally efficient code for linear networks

* spatstat.sphere (under development) for spatial data on a sphere, including spatial data on the

earth’s surface

The extension packages must be installed separately and loaded explicitly if needed. They also have
separate documentation.

spatstat.explore-package 9

Overview of Functionality in spatstat.explore

The spatstat family of packages is designed to support a complete statistical analysis of spatial
data. It supports

* creation, manipulation and plotting of point patterns;

* exploratory data analysis;

* spatial random sampling;

* simulation of point process models;

* parametric model-fitting;

* non-parametric smoothing and regression;

* formal inference (hypothesis tests, confidence intervals);

* model diagnostics.

For an overview, see the help file for "spatstat-package” in the spatstat package.

Following is a list of the functionality provided in the spatstat.explore package only.

To simulate a random point pattern:

Functions for generating random point patterns are now contained in the spatstat.random package.

To interrogate a point pattern:

density.ppp kernel estimation of point pattern intensity
densityHeat.ppp diffusion kernel estimation of point pattern intensity
Smooth. ppp kernel smoothing of marks of point pattern
sharpen. ppp data sharpening

Manipulation of pixel images:

An object of class "im" represents a pixel image.

blur apply Gaussian blur to image
Smooth.im apply Gaussian blur to image
transect.im line transect of image
pixelcentres extract centres of pixels
rnoise random pixel noise

Line segment patterns
An object of class "psp"” represents a pattern of straight line segments.

density.psp kernel smoothing of line segments
rpoisline generate a realisation of the Poisson line process inside a window

Tessellations

An object of class "tess" represents a tessellation.

rpoislinetess generate tessellation using Poisson line process

10

spatstat.explore-package

Three-dimensional point patterns

An object of class "pp3" represents a three-dimensional point pattern in a rectangular box. The box
is represented by an object of class "box3".

runifpoint3 generate uniform random points in 3-D

rpoispp3 generate Poisson random points in 3-D
envelope.pp3 generate simulation envelopes for 3-D pattern

Multi-dimensional space-time point patterns

An object of class "ppx" represents a point pattern in multi-dimensional space and/or time.

runifpointx generate uniform random points
rpoisppx generate Poisson random points

Classical exploratory tools:
clarkevans Clark and Evans aggregation index

fryplot Fry plot
miplot Morisita Index plot

Smoothing:

density.ppp kernel smoothed density/intensity

relrisk kernel estimate of relative risk

Smooth. ppp spatial interpolation of marks

bw.diggle cross-validated bandwidth selection for density. ppp

bw.ppl likelihood cross-validated bandwidth selection for density. ppp
bw.CvL Cronie-Van Lieshout bandwidth selection for density estimation
bw.scott Scott’s rule of thumb for density estimation

bw.abram Abramson’s rule for adaptive bandwidths

bw.relrisk cross-validated bandwidth selection for relrisk
bw.smoothppp cross-validated bandwidth selection for Smooth. ppp

bw.frac bandwidth selection using window geometry

bw.stoyan Stoyan’s rule of thumb for bandwidth for pcf

Modern exploratory tools:

clusterset Allard-Fraley feature detection

nnclean Byers-Raftery feature detection
sharpen.ppp Choi-Hall data sharpening

rhohat Kernel estimate of covariate effect
rho2hat Kernel estimate of effect of two covariates

spatialcdf Spatial cumulative distribution function
roc Receiver operating characteristic curve

spatstat.explore-package 11

Summary statistics for a point pattern:

Fest empty space function F'
Gest nearest neighbour distribution function G
Jest J-function J = (1 — G)/(1 — F)
Kest Ripley’s K-function
Lest Besag L-function
Tstat Third order T-function
allstats all four functions I, G, J, K
pcf pair correlation function
Kinhom K for inhomogeneous point patterns
Linhom L for inhomogeneous point patterns
pcfinhom pair correlation for inhomogeneous patterns
Finhom F for inhomogeneous point patterns
Ginhom G for inhomogeneous point patterns
Jinhom J for inhomogeneous point patterns
locallL Getis-Franklin neighbourhood density function
localk neighbourhood K-function
localpcf local pair correlation function
localKinhom local K for inhomogeneous point patterns
locallLinhom local L for inhomogeneous point patterns
localpcfinhom local pair correlation for inhomogeneous patterns
Ksector Directional K -function
Kscaled locally scaled K -function
Kest.fft fast K-function using FFT for large datasets
Kmeasure reduced second moment measure
envelope simulation envelopes for a summary function
varblock variances and confidence intervals

for a summary function
lohboot bootstrap for a summary function

Related facilities:

plot.fv plot a summary function

eval.fv evaluate any expression involving summary functions
harmonise.fv make functions compatible

eval.fasp evaluate any expression involving an array of functions
with.fv evaluate an expression for a summary function
Smooth. fv apply smoothing to a summary function

deriv.fv calculate derivative of a summary function

pool. fv pool several estimates of a summary function
density.ppp kernel smoothed density

densityHeat.ppp diffusion kernel smoothed density

Smooth. ppp spatial interpolation of marks

relrisk kernel estimate of relative risk

sharpen.ppp data sharpening

rknn theoretical distribution of nearest neighbour distance

12

spatstat.explore-package

Summary statistics for a multitype point pattern: A multitype point pattern is represented by an
object X of class "ppp” such that marks(X) is a factor.

relrisk

scan.test
Gecross,Gdot,Gmulti
Kcross,Kdot, Kmulti
Lcross,Ldot
Jcross, Jdot, Jmulti

pcfcross

pcfdot

pcfmulti

markconnect

alltypes

Test

Kcross. inhom,Kdot.inhom
Lcross.inhom,Ldot.inhom
pcfcross.inhom,pcfdot.inhom
localKcross, localKdot
locallcross, locallLdot
localKcross.inhom,locallcross. inhom

kernel estimation of relative risk

spatial scan test of elevated risk

multitype nearest neighbour distributions G5, Ge
multitype K-functions K;;, K;,

multitype L-functions L;;, L;,

multitype J-functions J;;, J;e

multitype pair correlation function g

multitype pair correlation function g;e

general pair correlation function

marked connection function p;;

estimates of the above for all 7, j pairs

multitype /-function

inhomogeneous counterparts of Kcross, Kdot
inhomogeneous counterparts of Lcross, Ldot
inhomogeneous counterparts of pcfcross, pcfdot
local counterparts of Kcross, Kdot

local counterparts of Lcross, Ldot

local counterparts of Kcross. inhom, Lcross. inhom

Summary statistics for a marked point pattern: A marked point pattern is represented by an
object X of class "ppp"” with a component X$marks. The entries in the vector X$marks may be
numeric, complex, string or any other atomic type. For numeric marks, there are the following

functions:

markmean
markvar
markcorr
markcrosscorr
markvario
markmarkscatter
Kmark
Emark
Vmark
nnmean
nnvario

smoothed local average of marks
smoothed local variance of marks
mark correlation function

mark cross-correlation function
mark variogram

mark-mark scatterplot
mark-weighted K function

mark independence diagnostic F(r)
mark independence diagnostic V' (1)
nearest neighbour mean index
nearest neighbour mark variance index

For marks of any type, there are the following:

Gmulti
Kmulti
Jmulti

multitype nearest neighbour distribution
multitype K -function
multitype J-function

Alternatively use cut. ppp to convert a marked point pattern to a multitype point pattern.

Programming tools:

spatstat.explore-package 13

marktable tabulate the marks of neighbours in a point pattern

Summary statistics for a three-dimensional point pattern:

These are for 3-dimensional point pattern objects (class pp3).

F3est empty space function F’
G3est nearest neighbour function G
K3est K -function
pcf3est pair correlation function

Related facilities:

envelope.pp3 simulation envelopes

Summary statistics for random sets:

These work for point patterns (class ppp), line segment patterns (class psp) or windows (class owin).

Hest spherical contact distribution H
Gfox Foxall G-function
Jfox Foxall J-function

Model fitting
Functions for fitting point process models are now contained in the spatstat.model package.
Simulation

There are many ways to generate a random point pattern, line segment pattern, pixel image or
tessellation in spatstat.

Random point patterns: Functions for random generation are now contained in the spatstat.random
package.

See also varblock for estimating the variance of a summary statistic by block resampling, and
lohboot for another bootstrap technique.

Fitted point process models:
If you have fitted a point process model to a point pattern dataset, the fitted model can be simulated.
Methods for simulating a fitted model are now contained in the spatstat.model package.

Other random patterns: Functions for random generation are now contained in the spatstat.random
package.

Simulation-based inference

envelope critical envelope for Monte Carlo test of goodness-of-fit
bits.envelope critical envelope for balanced two-stage Monte Carlo test
qgplot.ppm diagnostic plot for interpoint interaction

scan. test spatial scan statistic/test

studpermu. test studentised permutation test

segregation.test test of segregation of types

14 spatstat.explore-package

Hypothesis tests:
quadrat.test x? goodness-of-fit test on quadrat counts
clarkevans.test Clark and Evans test
cdf. test Spatial distribution goodness-of-fit test
berman.test Berman’s goodness-of-fit tests
envelope critical envelope for Monte Carlo test of goodness-of-fit
scan.test spatial scan statistic/test
dclf.test Diggle-Cressie-Loosmore-Ford test
mad.test Mean Absolute Deviation test
anova.ppm Analysis of Deviance for point process models

More recently-developed tests:

dg.test Dao-Genton test

bits.test Balanced independent two-stage test
dclf.progress Progress plot for DCLF test
mad.progress Progress plot for MAD test

Model diagnostics:

Classical measures of model sensitivity such as leverage and influence, and classical model diag-
nostic tools such as residuals, partial residuals, and effect estimates, have been adapted to point
process models. These capabilities are now provided in the spatstat.model package.

Resampling and randomisation procedures

You can build your own tests based on randomisation and resampling using the following capabili-

ties:
quadratresample block resampling
rshift random shifting of (subsets of) points
rthin random thinning
Licence

This library and its documentation are usable under the terms of the "GNU General Public License",
a copy of which is distributed with the package.

Acknowledgements

Kasper Klitgaard Berthelsen, Ottmar Cronie, Tilman Davies, Julian Gilbey, Yongtao Guan, Ute
Hahn, Kassel Hingee, Abdollah Jalilian, Marie-Colette van Lieshout, Greg McSwiggan, Tuomas
Rajala, Suman Rakshit, Dominic Schuhmacher, Rasmus Waagepetersen and Hangsheng Wang
made substantial contributions of code.

For comments, corrections, bug alerts and suggestions, we thank Monsuru Adepeju, Corey Ander-
son, Ang Qi Wei, Ryan Arellano, Jens Astrtjm, Robert Aue, Marcel Austenfeld, Sandro Azaele,
Malissa Baddeley, Guy Bayegnak, Colin Beale, Melanie Bell, Thomas Bendtsen, Ricardo Bern-
hardt, Andrew Bevan, Brad Biggerstaff, Anders Bilgrau, Leanne Bischof, Christophe Biscio, Roger

adaptive.density 15

Bivand, Jose M. Blanco Moreno, Florent Bonneu, Jordan Brown, Ian Buller, Julian Burgos, Si-
mon Byers, Ya-Mei Chang, Jianbao Chen, Igor Chernayavsky, Y.C. Chin, Bjarke Christensen,
Lucia Cobo Sanchez, Jean-Francois Coeurjolly, Kim Colyvas, Hadrien Commenges, Rochelle Con-
stantine, Robin Corria Ainslie, Richard Cotton, Marcelino de la Cruz, Peter Dalgaard, Mario
D’ Antuono, Sourav Das, Peter Diggle, Patrick Donnelly, Ian Dryden, Stephen Eglen, Ahmed
El-Gabbas, Belarmain Fandohan, Olivier Flores, David Ford, Peter Forbes, Shane Frank, Janet
Franklin, Funwi-Gabga Neba, Oscar Garcia, Agnes Gault, Jonas Geldmann, Marc Genton, Shaaban
Ghalandarayeshi, Jason Goldstick, Pavel Grabarnik, C. Graf, Ute Hahn, Andrew Hardegen, Mar-
tin Bggsted Hansen, Martin Hazelton, Juha Heikkinen, Mandy Hering, Markus Herrmann, Max-
imilian Hesselbarth, Paul Hewson, Hamidreza Heydarian, Kurt Hornik, Philipp Hunziker, Jack
Hywood, Ross Thaka, Cenk I¢cos, Aruna Jammalamadaka, Robert John-Chandran, Devin John-
son, Mahdieh Khanmohammadi, Bob Klaver, Lily Kozmian-Ledward, Peter Kovesi, Mike Kuhn,
Jeff Laake, Robert Lamb, Frédéric Lavancier, Tom Lawrence, Tomas Lazauskas, Jonathan Lee,
George Leser, Angela Li, Li Haitao, George Limitsios, Andrew Lister, Nestor Luambua, Ben
Madin, Martin Maechler, Kiran Marchikanti, Jeff Marcus, Robert Mark, Peter McCullagh, Mo-
nia Mahling, Jorge Mateu Mahiques, Ulf Mehlig, Frederico Mestre, Sebastian Wastl Meyer, Mi
Xiangcheng, Lore De Middeleer, Robin Milne, Enrique Miranda, Jesper Mgller, Annie Mollié, Ines
Moncada, Mehdi Moradi, Virginia Morera Pujol, Erika Mudrak, Gopalan Nair, Nader Najari, Nico-
letta Nava, Linda Stougaard Nielsen, Felipe Nunes, Jens Randel Nyengaard, Jens Oehlschlégel,
Thierry Onkelinx, Sean O’Riordan, Evgeni Parilov, Jeff Picka, Nicolas Picard, Tim Pollington,
Mike Porter, Sergiy Protsiv, Adrian Raftery, Ben Ramage, Pablo Ramon, Xavier Raynaud, Nicholas
Read, Matt Reiter, Ian Renner, Tom Richardson, Brian Ripley, Ted Rosenbaum, Barry Rowling-
son, Jason Rudokas, Tyler Rudolph, John Rudge, Christopher Ryan, Farzaneh Safavimanesh, Aila
Sarkkid, Cody Schank, Katja Schladitz, Sebastian Schutte, Bryan Scott, Olivia Semboli, Francois
Sémécurbe, Vadim Shcherbakov, Shen Guochun, Shi Peijian, Harold-Jeffrey Ship, Tammy L Silva,
Ida-Maria Sintorn, Yong Song, Malte Spiess, Mark Stevenson, Kaspar Stucki, Jan Sulavik, Michael
Sumner, P. Surovy, Ben Taylor, Thordis Linda Thorarinsdottir, Leigh Torres, Berwin Turlach, Tor-
ben Tvedebrink, Kevin Ummer, Medha Uppala, Andrew van Burgel, Tobias Verbeke, Mikko Vih-
takari, Alexendre Villers, Fabrice Vinatier, Maximilian Vogtland, Sasha Voss, Sven Wagner, Hao
Wang, H. Wendrock, Jan Wild, Carl G. Witthoft, Selene Wong, Maxime Woringer, Luke Yates,
Mike Zamboni and Achim Zeileis.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

adaptive.density Adaptive Estimate of Intensity of Point Pattern

Description

Computes an adaptive estimate of the intensity function of a point pattern.

Usage

adaptive.density(X, ..., method=c("voronoi”,"kernel”, "nearest"))

16 allstats

Arguments
X Point pattern (object of class "ppp” or "1pp").
method Character string specifying the estimation method
Additional arguments passed to densityVoronoi, densityAdaptiveKernel or
nndensity.
Details

This function is an alternative to density.ppp. It computes an estimate of the intensity function of
a point pattern dataset. The result is a pixel image giving the estimated intensity.

If method="voronoi"” the data are passed to the function densityVoronoi which estimates the
intensity using the Voronoi-Dirichlet tessellation.

If method="kernel"” the data are passed to the function densityAdaptiveKernel which estimates
the intensity using a variable-bandwidth kernel estimator.

If method="nearest" the data are passed to the function nndensity which estimates the intensity
using the distance to the k-th nearest data point. (This is not supported when X has class "1pp".)

Value

A pixel image (object of class "im") whose values are estimates of the intensity of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi <m2.moradi@yahoo. com>.

See Also

density.ppp, densityVoronoi, densityAdaptiveKernel, nndensity, im.object.

Examples

plot(adaptive.density(nztrees, 1), main="Voronoi estimate"”)

allstats Calculate four standard summary functions of a point pattern.

Description

Calculates the F’, G, J, and K summary functions for an unmarked point pattern. Returns them as
a function array (of class "fasp”, see fasp.object).

Usage

allstats(pp, ..., dataname=NULL, verb=FALSE)

allstats 17

Arguments
pp The observed point pattern, for which summary function estimates are required.
An object of class "ppp"”. It must not be marked.
Optional arguments passed to the summary functions Fest, Gest, Jest and
Kest.
dataname A character string giving an optional (alternative) name for the point pattern.
verb A logical value meaning “verbose”. If TRUE, progress reports are printed during
calculation.
Details

This computes four standard summary statistics for a point pattern: the empty space function F'(r),
nearest neighbour distance distribution function G(r), van Lieshout-Baddeley function J(r) and
Ripley’s function K (7). The real work is done by Fest, Gest, Jest and Kest respectively. Consult
the help files for these functions for further information about the statistical interpretation of F', G,
Jand K.

If verb is TRUE, then “progress reports” (just indications of completion) are printed out when the
calculations are finished for each of the four function types.

The overall title of the array of four functions (for plotting by plot. fasp) will be formed from the
argument dataname. If this is not given, it defaults to the expression for pp given in the call to
allstats.

Value

A list of length 4 containing the F', G, J and K functions respectively.
The list can be plotted directly using plot (which dispatches to plot.solist).

Each list entry retains the format of the output of the relevant estimating routine Fest, Gest, Jest
or Kest. Thus each entry in the list is a function value table (object of class "fv", see fv.object).

The default formulae for plotting these functions are cbind(km, theo) ~r for F, G, and J, and
cbind(trans, theo) ~ r for K.
Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

plot.solist, plot.fv, fv.object, Fest, Gest, Jest, Kest

Examples

a <- allstats(swedishpines,dataname="Swedish Pines")
if(interactive()) {

plot(a)

plot(a, subset=list("r<=15","r<=15","r<=15","r<=50"))
}

18

alltypes

alltypes

Calculate Summary Statistic for All Types in a Multitype Point Pattern

Description

Given a marked point pattern, this computes the estimates of a selected summary function (F,G,
J, K etc) of the pattern, for all possible combinations of marks, and returns these functions in an

array.

Usage

alltypes(X, fun="K", ...,

Arguments

X

fun

dataname

verb

envelope

reuse

Details

dataname=NULL, verb=FALSE, envelope=FALSE, reuse=TRUE)

The observed point pattern, for which summary function estimates are required.
An object of class "ppp” or "1pp”.

The summary function. Either an R function, or a character string indicating
the summary function required. Options for strings are "F", "G", "J", "K", "L",
"pcf"”, "Gecross", "Jcross"”, "Kcross", "Lcross”, "Gdot"”, "Jdot", "Kdot",
"Ldot".

Arguments passed to the summary function (and to the function envelope if
appropriate)

Character string giving an optional (alternative) name to the point pattern, dif-
ferent from what is given in the call. This name, if supplied, may be used by
plot.fasp() in forming the title of the plot. If not supplied it defaults to the
parsing of the argument supplied as X in the call.

Logical value. If verb is true then terse “progress reports” (just the values of
the mark indices) are printed out when the calculations for that combination of
marks are completed.

Logical value. If envelope is true, then simulation envelopes of the summary
function will also be computed. See Details.

Logical value indicating whether the envelopes in each panel should be based
on the same set of simulated patterns (reuse=TRUE) or on different, independent
sets of simulated patterns (reuse=FALSE).

This routine is a convenient way to analyse the dependence between types in a multitype point
pattern. It computes the estimates of a selected summary function of the pattern, for all possible
combinations of marks. It returns these functions in an array (an object of class "fasp”) amenable
to plotting by plot.fasp().

The argument fun specifies the summary function that will be evaluated for each type of point, or
for each pair of types. It may be either an R function or a character string.

alltypes 19

Suppose that the points have possible types 1,2, ..., m and let X; denote the pattern of points of
type ¢ only.

If fun="F" then this routine calculates, for each possible type 7, an estimate of the Empty Space
Function F;(r) of X;. See Fest for explanation of the empty space function. The estimate is
computed by applying Fest to X; with the optional arguments

If funis "Gcross”, "Jcross”, "Kcross” or "Lcross”, the routine calculates, for each pair of types
(2,7), an estimate of the “i-toj” cross-type function G,;(r), J;;(r), K;;(r) or L;;(r) respectively
describing the dependence between X; and X;. See Gcross, Jcross, Kcross or Lcross respec-
tively for explanation of these functions. The estimate is computed by applying the relevant function
(Geross etc) to X using each possible value of the arguments i, j, together with the optional argu-
ments

If fun is "pcf” the routine calculates the cross-type pair correlation function pcfcross between
each pair of types.

If fun is "Gdot", "Jdot", "Kdot" or "Ldot", the routine calculates, for each type i, an estimate
of the “i-to-any” dot-type function G;e(r), Jie(r) or K;e(r) or L;e(r) respectively describing the
dependence between X; and X. See Gdot, Jdot, Kdot or Ldot respectively for explanation of these
functions. The estimate is computed by applying the relevant function (Gdot etc) to X using each
possible value of the argument i, together with the optional arguments

The letters "G", "J", "K" and "L" are interpreted as abbreviations for Gecross, Jcross, Kcross and
Lcross respectively, assuming the point pattern is marked. If the point pattern is unmarked, the
appropriate function Fest, Jest, Kest or Lest is invoked instead.

If envelope=TRUE, then as well as computing the value of the summary function for each combina-
tion of types, the algorithm also computes simulation envelopes of the summary function for each

combination of types. The arguments . . . are passed to the function envelope to control the num-
ber of simulations, the random process generating the simulations, the construction of envelopes,
and so on.

When envelope=TRUE it is possible that errors could occur because the simulated point patterns do
not satisfy the requirements of the summary function (for example, because the simulated pattern
is empty and fun requires at least one point). If the number of such errors exceeds the maximum
permitted number maxnerr, then the envelope algorithm will give up, and will return the empirical
summary function for the data point pattern, fun(X), in place of the envelope.

Value

A function array (an object of class "fasp”, see fasp.object). This can be plotted using plot. fasp.

If the pattern is not marked, the resulting “array” has dimensions 1 x 1. Otherwise the following is
true:

If fun="F", the function array has dimensions m x 1 where m is the number of different marks
in the point pattern. The entry at position [i,1] in this array is the result of applying Fest to the
points of type i only.

If fun is "Gdot"”, "Jdot"”, "Kdot" or "Ldot", the function array again has dimensions m X 1.
The entry at position [i,1] in this array is the result of Gdot (X, i), Jdot(X, i) Kdot(X, i) or
Ldot(X, i) respectively.

If funis "Gecross”, "Jcross”, "Kcross” or "Lcross” (or their abbreviations "G"”, "J", "K" or "L"),
the function array has dimensions m x m. The [1i, j] entry of the function array (for i # j) is the

20 alltypes

result of applying the function Gcross, Jcross, Kcross orLcross to the pair of types (i,j). The
diagonal [i,i] entry of the function array is the result of applying the univariate function Gest,
Jest, Kest or Lest to the points of type i only.

If envelope=FALSE, then each function entry fns[[i]] retains the format of the output of the
relevant estimating routine Fest, Gest, Jest, Kest, Lest, Gcross, Jcross ,Kcross, Lcross, Gdot,
Jdot, Kdot or Ldot The default formulae for plotting these functions are cbind(km, theo) ~ r for
F, G, and] functions, and cbind(trans, theo) ~ r for K and L functions.

If envelope=TRUE, then each function entry fns[[i]] has the same format as the output of the
envelope command.
Note

Sizeable amounts of memory may be needed during the calculation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>.

See Also

plot.fasp, fasp.object, Fest, Gest, Jest, Kest, Lest, Gecross, Jcross, Kcross, Lcross, Gdot,
Jdot, Kdot, envelope.

Examples

bramblecanes (3 marks).
bram <- bramblecanes

bF <- alltypes(bram,"F",verb=TRUE)

plot(bF)

if(interactive()) {
plot(alltypes(bram,"G"))
plot(alltypes(bram,"Gdot"))

}

Swedishpines (unmarked).
swed <- swedishpines

plot(alltypes(swed, "K"))
plot(alltypes(amacrine, "pcf"), ylim=c(0,1.3))
envelopes
bKE <- alltypes(bram,"K", envelope=TRUE,nsim=19)
global version:
bFE <- alltypes(bram,”F",envelope=TRUE,nsim=19,global=TRUE)

extract one entry
as.fv(bKE[1,1])

as.data.frame.envelope 21

as.data.frame.envelope
Coerce Envelope to Data Frame

Description

Converts an envelope object to a data frame.

Usage
S3 method for class 'envelope'
as.data.frame(x, ..., simfuns=FALSE)
Arguments
X Envelope object (class "envelope”).
Ignored.
simfuns Logical value indicating whether the result should include the values of the sim-

ulated functions that were used to build the envelope.

Details

This is a method for the generic function as. data. frame for the class of envelopes (see envelope.

The result is a data frame with columns containing the values of the function argument (usually
named r), the function estimate for the original point pattern data (obs), the upper and lower enve-
lope limits (hi and 1o), and possibly additional columns.

If simfuns=TRUE, the result also includes columns of values of the simulated functions that were
used to compute the envelope. This is possible only when the envelope was computed with the
argument savefuns=TRUE in the call to envelope.

Value

A data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

E <- envelope(cells, nsim=5, savefuns=TRUE)
tail(as.data.frame(E))
tail(as.data.frame(E, simfuns=TRUE))

22 as.function.fv

as.function.fv Convert Function Value Table to Function

Description

Converts an object of class "fv"” to an R language function.

Usage
S3 method for class 'fv'
as.function(x, ..., value=".y", extrapolate=FALSE)
Arguments
X Object of class "fv" or "rhohat”.
Ignored.
value Optional. Character string or character vector selecting one or more of the

columns of x for use as the function value. See Details.

extrapolate Logical, indicating whether to extrapolate the function outside the domain of x.
See Details.

Details

A function value table (object of class "fv") is a convenient way of storing and plotting several
different estimates of the same function. Objects of this class are returned by many commands in
spatstat, such as Kest, which returns an estimate of Ripley’s K -function for a point pattern dataset.

Sometimes it is useful to convert the function value table to a function in the R language. This is
done by as.function.fv. It converts an object x of class "fv" to an R function f.

If f <-as.function(x) then f is an R function that accepts a numeric argument and returns a
corresponding value for the summary function by linear interpolation between the values in the
table x.

Argument values lying outside the range of the table yield an NA value (if extrapolate=FALSE) or
the function value at the nearest endpoint of the range (if extrapolate = TRUE). To apply different
rules to the left and right extremes, use extrapolate=c(TRUE, FALSE) and so on.

Typically the table x contains several columns of function values corresponding to different edge
corrections. Auxiliary information for the table identifies one of these columns as the recommended
value. By default, the values of the function f <- as.function(x) are taken from this column of
recommended values. This default can be changed using the argument value, which can be a
character string or character vector of names of columns of x. Alternatively value can be one of
the abbreviations used by fvnames.

If value specifies a single column of the table, then the result is a function f(r) with a single
numeric argument r (with the same name as the orginal argument of the function table).

If value specifies several columns of the table, then the result is a function f (r,what) where r is
the numeric argument and what is a character string identifying the column of values to be used.

as.function.rhohat 23

The formal arguments of the resulting function are f(r, what=value), which means that in a call
to this function f, the permissible values of what are the entries of the original vector value; the
default value of what is the first entry of value.

The command as. function.fv is a method for the generic command as. function.
Value

A function(r) or function(r,what) where r is the name of the original argument of the function
table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

as.function.rhohat, fv, fv.object, fvnames, plot.fv, Kest

Examples

K <- Kest(cells)
f <- as.function(K)

f_‘

f(0.1)

g <- as.function(K, value=c("iso", "trans"))
g

g(0.1, "trans")

as.function.rhohat Convert Function Table to Function

Description

Converts an object of class "rhohat” to an R language function.

Usage
S3 method for class 'rhohat'’
as.function(x, ..., value=".y", extrapolate=TRUE)
Arguments
X Object of class "rhohat”, produced by the function rhohat.
Ignored.
value Optional. Character string or character vector selecting one or more of the

columns of x for use as the function value. See Details.

extrapolate Logical, indicating whether to extrapolate the function outside the domain of x.
See Details.

24 as.function.rhohat

Details

An object of class "rhohat” is essentially a data frame of estimated values of the function rho(x)
as described in the help file for rhohat.

Sometimes it is useful to convert the function value table to a function in the R language. This is
done by as.function.rhohat. It converts an object x of class "rhohat” to an R function f.

The command as.function.rhohat is a method for the generic command as. function for the
class "rhohat".

If f <- as.function(x) then f is an R function that accepts a numeric argument and returns a
corresponding value for the summary function by linear interpolation between the values in the
table x.

Argument values lying outside the range of the table yield an NA value (if extrapolate=FALSE) or
the function value at the nearest endpoint of the range (if extrapolate = TRUE). To apply different
rules to the left and right extremes, use extrapolate=c(TRUE, FALSE) and so on.

Typically the table x contains several columns of function values corresponding to different edge
corrections. Auxiliary information for the table identifies one of these columns as the recommended
value. By default, the values of the function f <- as.function(x) are taken from this column of
recommended values. This default can be changed using the argument value, which can be a
character string or character vector of names of columns of x. Alternatively value can be one of
the abbreviations used by fvnames.

If value specifies a single column of the table, then the result is a function f(r) with a single
numeric argument r (with the same name as the orginal argument of the function table).

If value specifies several columns of the table, then the result is a function f (r,what) where r is
the numeric argument and what is a character string identifying the column of values to be used.

The formal arguments of the resulting function are f(r, what=value), which means that in a call
to this function f, the permissible values of what are the entries of the original vector value; the
default value of what is the first entry of value.

Value
A function(r) or function(r,what) where r is the name of the original argument of the function
table.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

rhohat, methods.rhohat, as.function.fv.

Examples

g <- rhohat(cells, "x")
f <- as.function(g)

f‘

f(0.1)

as.fv

25

as.fv

Convert Data To Class fv

Description

Converts data into a function table (an object of class "fv").

Usage

as.fv(x)

S3 method for class 'fv'
as.fv(x)

S3 method for class 'data.frame'
as.fv(x)

S3 method for class 'matrix'’
as.fv(x)

S3 method for class 'fasp'
as.fv(x)

S3 method for class 'bw.optim'
as.fv(x)

Arguments

X

Details

Data which will be converted into a function table

This command converts data x, that could be interpreted as the values of a function, into a function
value table (object of the class "fv" as described in fv.object). This object can then be plotted
easily using plot.fv.

The dataset x may be any of the following:

an object of class "fv";
a matrix or data frame with at least two columns;
an object of class "fasp”, representing an array of "fv" objects.

an object of class "minconfit”, giving the results of a minimum contrast fit by the command
mincontrast. The

an object of class "kppm", representing a fitted Cox or cluster point process model, obtained
from the model-fitting command kppm;

an object of class "dppm”, representing a fitted determinantal point process model, obtained
from the model-fitting command dppm;

26 as.owin.quadrattest

* an object of class "bw.optim”, representing an optimal choice of smoothing bandwidth by a
cross-validation method, obtained from commands like bw.diggle.

The function as. fv is generic, with methods for each of the classes listed above. The behaviour is
as follows:
* If x is an object of class "fv", it is returned unchanged.

e If x is a matrix or data frame, the first column is interpreted as the function argument, and
subsequent columns are interpreted as values of the function computed by different methods.

* If x is an object of class "fasp” representing an array of "fv" objects, these are combined
into a single "fv" object.

 If x is an object of class "minconfit"”, or an object of class "kppm"” or "dppm"”, the result is a
function table containing the observed summary function and the best fit summary function.

* If x is an object of class "bw.optim"”, the result is a function table of the optimisation criterion
as a function of the smoothing bandwidth.

Value

An object of class "fv" (see fv.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

Examples

r <- seq(@, 1, length=101)
x <- data.frame(r=r, y=r+2)
as.fv(x)

as.owin.quadrattest Convert Data To Class owin

Description
Converts data specifying an observation window in any of several formats, into an object of class
"owin".

Usage

S3 method for class 'quadrattest'
as.owin(W, ..., fatal=TRUE)

as.owin.quadrattest 27

Arguments
W Data specifying an observation window, in any of several formats described un-
der Details below.
fatal Logical value determining what to do if the data cannot be converted to an ob-
servation window. See Details.
Ignored.
Details

The class "owin" is a way of specifying the observation window for a point pattern. See owin.object
for an overview.

The generic function as.owin converts data in any of several formats into an object of class "owin"
for use by the spatstat package. The function as.owin is generic, with methods for different classes
of objects, and a default method.

The argument W may be

* an object of class "owin”
* a structure with entries xrange, yrange specifying the x and y dimensions of a rectangle

* a structure with entries named xmin, xmax, ymin, ymax (in any order) specifying the x and y
dimensions of a rectangle. This will accept objects of class bbox in the sf package.

* a numeric vector of length 4 (interpreted as (xmin, xmax, ymin, ymax) in that order) speci-
fying the x and y dimensions of a rectangle

* astructure with entries named x1, xu, y1, yu (in any order) specifying the x and y dimensions
of a rectangle as (xmin, xmax) = (x1, xu) and (ymin, ymax) = (yl, yu). This will accept
objects of class spp used in the Venables and Ripley spatial package.

* an object of class "ppp” representing a point pattern. In this case, the object’s window structure
will be extracted.

* an object of class "psp” representing a line segment pattern. In this case, the object’s window
structure will be extracted.

» an object of class "tess"” representing a tessellation. In this case, the object’s window structure
will be extracted.

* an object of class "quad” representing a quadrature scheme. In this case, the window of the
data component will be extracted.

* an object of class "im” representing a pixel image. In this case, a window of type "mask” will
be returned, with the same pixel raster coordinates as the image. An image pixel value of NA,
signifying that the pixel lies outside the window, is transformed into the logical value FALSE,
which is the corresponding convention for window masks.

n on

* an object of class "ppm”, "kppm”, "slrm" or "dppm" representing a fitted point process model.
In this case, if from="data" (the default), as.owin extracts the original point pattern data to
which the model was fitted, and returns the observation window of this point pattern. If
from="covariates"” then as.owin extracts the covariate images to which the model was
fitted, and returns a binary mask window that specifies the pixel locations.

 an object of class "1pp"” representing a point pattern on a linear network. In this case, as.owin
extracts the linear network and returns a window containing this network.

28

as.owin.quadrattest

an object of class "1ppm” representing a fitted point process model on a linear network. In this
case, as.owin extracts the linear network and returns a window containing this network.

A data.frame with exactly three columns. Each row of the data frame corresponds to one
pixel. Each row contains the x and y coordinates of a pixel, and a logical value indicating
whether the pixel lies inside the window.

A data.frame with exactly two columns. Each row of the data frame contains the = and y
coordinates of a pixel that lies inside the window.

an object of class "distfun”, "nnfun” or "funxy" representing a function of spatial location,
defined on a spatial domain. The spatial domain of the function will be extracted.

an object of class "rmhmodel” representing a point process model that can be simulated using
rmh. The window (spatial domain) of the model will be extracted. The window may be NULL
in some circumstances (indicating that the simulation window has not yet been determined).
This is not treated as an error, because the argument fatal defaults to FALSE for this method.

an object of class "layered"” representing a list of spatial objects. See layered. In this case,
as.owin will be applied to each of the objects in the list, and the union of these windows will
be returned.

An object of another suitable class from another package. For full details, see vignette('shapefiles').

If the argument W is not in one of these formats and cannot be converted to a window, then an error
will be generated (if fatal=TRUE) or a value of NULL will be returned (if fatal=FALSE).

When W is a data frame, the argument step can be used to specify the pixel grid spacing; otherwise,
the spacing will be guessed from the data.

Value

An object of class "owin” (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.owin, as.owin.rmhmodel, as.owin. lpp.

owin.object, owin.

Additional methods for as.owin may be provided by other packages outside the spatstat family.

Examples

te
as

<- quadrat.test(redwood, nx=3)

.owin(te)

as.tess 29

as.tess Convert Data To Tessellation

Description

Converts data specifying a tessellation, in any of several formats, into an object of class "tess".

Usage
S3 method for class 'quadrattest'
as.tess(X)
Arguments
X Data to be converted to a tessellation.
Details

A tessellation is a collection of disjoint spatial regions (called tiles) that fit together to form a larger
spatial region. This command creates an object of class "tess” that represents a tessellation.

This function converts data in any of several formats into an object of class "tess” for use by the
spatstat package. The argument X may be
* an object of class "tess”. The object will be stripped of any extraneous attributes and re-
turned.

* a pixel image (object of class "im") with pixel values that are logical or factor values. Each
level of the factor will determine a tile of the tessellation.

» a window (object of class "owin"). The result will be a tessellation consisting of a single tile.

* aset of quadrat counts (object of class "quadratcount”) returned by the command quadratcount.
The quadrats used to generate the counts will be extracted and returned as a tessellation.

* aquadrat test (object of class "quadrattest”) returned by the command quadrat. test. The
quadrats used to perform the test will be extracted and returned as a tessellation.

* alist of windows (objects of class "owin") giving the tiles of the tessellation.

The function as. tess is generic, with methods for various classes, as listed above.

Value

An object of class "tess” specifying a tessellation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

tess

30

Examples

auc

h <- quadrat.test(nztrees, nx=4, ny=3)

as.tess(h)

auc

Area Under ROC Curve

Description

Compute the AUC (area under the Receiver Operating Characteristic curve) for an observed point

pattern.

Usage

auc(X, ...)

S3 method for class 'ppp'

auc(X, covariate, ..., high = TRUE)
Arguments
X Point pattern (object of class "ppp” or "lpp") or fitted point process model
(object of class "ppm”, "kppm", "slrm” or "1ppm").
covariate Spatial covariate. Either a function(x,y), a pixel image (object of class "im"),
or one of the strings "x" or "y" indicating the Cartesian coordinates.
high Logical value indicating whether the threshold operation should favour high or
low values of the covariate.
Arguments passed to as.mask controlling the pixel resolution for calculations.
Details

This command computes the AUC, the area under the Receiver Operating Characteristic curve. The
ROC itself is computed by roc.

For a point pattern X and a covariate Z, the AUC is a numerical index that measures the ability of
the covariate to separate the spatial domain into areas of high and low density of points. Let z; be
a randomly-chosen data point from X and U a randomly-selected location in the study region. The
AUC is the probability that Z(x;) > Z(U) assuming high=TRUE. That is, AUC is the probability
that a randomly-selected data point has a higher value of the covariate Z than does a randomly-
selected spatial location. The AUC is a number between O and 1. A value of 0.5 indicates a
complete lack of discriminatory power.

Value

Numeric. For auc. ppp and auc. 1pp, the result is a single number giving the AUC value.

berman.test 31

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2007) AUC: a misleading measure of the perfor-
mance of predictive distribution models. Global Ecology and Biogeography 17(2) 145-151.

Nam, B.-H. and D’ Agostino, R. (2002) Discrimination index, the area under the ROC curve. Pages
267-279 in Huber-Carol, C., Balakrishnan, N., Nikulin, M.S. and Mesbah, M., Goodness-of-fit tests
and model validity, Birkhauser, Basel.

See Also

roc

Examples

auc(swedishpines, "x")

berman.test Berman’s Tests for Point Process Model

Description

Tests the goodness-of-fit of a Poisson point process model using methods of Berman (1986).

Usage
berman.test(...)
S3 method for class 'ppp'

berman.test(X, covariate,
which = c("z21", "Z2"),

alternative = c("two.sided”, "less”, "greater”), ...)
Arguments
X A point pattern (object of class "ppp” or "1pp").
covariate The spatial covariate on which the test will be based. An image (object of class
"im") or a function.
which Character string specifying the choice of test.
alternative Character string specifying the alternative hypothesis.

Additional arguments controlling the pixel resolution (arguments dimyx, eps
and rule.eps passed to as.mask) or other undocumented features.

32 berman.test

Details

These functions perform a goodness-of-fit test of a Poisson point process model fitted to point
pattern data. The observed distribution of the values of a spatial covariate at the data points, and
the predicted distribution of the same values under the model, are compared using either of two test
statistics Z7 and Z, proposed by Berman (1986). The Z; test is also known as the Lawson-Waller
test.

The function berman. test is generic, with methods for point patterns ("ppp” or "1pp") and point
process models ("ppm” or "1ppm").

 If X is a point pattern dataset (object of class "ppp” or "1pp"), then berman.test(X, ...)
performs a goodness-of-fit test of the uniform Poisson point process (Complete Spatial Ran-
domness, CSR) for this dataset.

* Ifmodel is a fitted point process model (object of class "ppm” or "1ppm”) then berman. test (model,
...) performs a test of goodness-of-fit for this fitted model. In this case, model should be a
Poisson point process.

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model. Thus, you
must nominate a spatial covariate for this test.

The argument covariate should be either a function(x,y) or a pixel image (object of class "im"
containing the values of a spatial function. If covariate is an image, it should have numeric values,
and its domain should cover the observation window of the model. If covariate is a function,
it should expect two arguments x and y which are vectors of coordinates, and it should return a
numeric vector of the same length as x and y.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

Next the values of the covariate at all locations in the observation window are evaluated. The
point process intensity of the fitted model is also evaluated at all locations in the window.

o Ifwhich="Z1", the test statistic Z; is computed as follows. The sum S of the covariate values
at all data points is evaluated. The predicted mean y and variance o2 of S are computed from
the values of the covariate at all locations in the window. Then we compute Z; = (S — u)/o.
Closely-related tests were proposed independently by Waller et al (1993) and Lawson (1993)
so this test is often termed the Lawson-Waller test in epidemiological literature.

o If which="272", the test statistic Z5 is computed as follows. The values of the covariate at
all locations in the observation window, weighted by the point process intensity, are compiled
into a cumulative distribution function F'. The probability integral transformation is then ap-
plied: the values of the covariate at the original data points are transformed by the predicted
cumulative distribution function F' into numbers between 0 and 1. If the model is correct,
these numbers are i.i.d. uniform random numbers. The standardised sample mean of these
numbers is the statistic Zs.

In both cases the null distribution of the test statistic is the standard normal distribution, approxi-
mately.

The return value is an object of class "htest"” containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

bind.fv 33

Value

An object of class "htest” (hypothesis test) and also of class "bermantest”, containing the results
of the test. The return value can be plotted (by plot.bermantest) or printed to give an informative
summary of the test.

Warning

The meaning of a one-sided test must be carefully scrutinised: see the printed output.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54—62.

Lawson, A.B. (1993) On the analysis of mortality events around a prespecified fixed point. Journal
of the Royal Statistical Society, Series A 156 (3) 363-377.

Waller, L., Turnbull, B., Clark, L.C. and Nasca, P. (1992) Chronic Disease Surveillance and testing
of clustering of disease and exposure: Application to leukaemia incidence and TCE-contaminated
dumpsites in upstate New York. Environmetrics 3, 281-300.

See Also

cdf.test, quadrat. test, ppm

Examples

Berman's data

X <- copper$SouthPoints
L <- copper$SouthLines
D <- distmap(L, eps=1)
test of CSR
berman.test(X, D)
berman.test(X, D, "Z2")

bind.fv Combine Function Value Tables

Description

Advanced Use Only. Combine objects of class "fv", or glue extra columns of data onto an existing
"fv" object.

34 bind.fv

Usage

S3 method for class 'fv'
cbind(...)
bind.fv(x, y, labl = NULL, desc = NULL, preferred = NULL, clip=FALSE)

Arguments
Any number of arguments, which are objects of class "fv".
X An object of class "fv".
y Either a data frame or an object of class "fv".
labl Plot labels (see fv) for columns of y. A character vector.
desc Descriptions (see fv) for columns of y. A character vector.
preferred Character string specifying the column which is to be the new recommended
value of the function.
clip Logical value indicating whether each object must have exactly the same do-
main, that is, the same sequence of values of the function argument (c1ip=FALSE,
the default) or whether objects with different domains are permissible and will
be restricted to a common domain (c1ip=TRUE).
Details

This documentation is provided for experienced programmers who want to modify the internal
behaviour of spatstat.

The function cbind. fv is a method for the generic R function cbind. It combines any number of
objects of class "fv" into a single object of class "fv"”. The objects must be compatible, in the
sense that they have identical values of the function argument.

The function bind. fv is a lower level utility which glues additional columns onto an existing object
x of class "fv". It has two modes of use:

o If the additional dataset y is an object of class "fv", then x and y must be compatible as
described above. Then the columns of y that contain function values will be appended to the
object x.

* Alternatively if y is a data frame, then y must have the same number of rows as x. All columns
of y will be appended to x.

The arguments labl and desc provide plot labels and description strings (as described in fv) for
the new columns. If y is an object of class "fv" then labl and desc are optional, and default to the
relevant entries in the object y. If y is a data frame then labl and desc must be provided.

Value

An object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

bits.envelope 35

See Also

fv, with.fv.

Undocumented functions for modifying an "fv" object include fvnames, fvnames<-, tweak.fv.entry
and rebadge. fv.

Examples

K1 <- Kest(cells, correction="border")
K2 <- Kest(cells, correction="iso")

remove column 'theo' to avoid duplication
K2 <- K2[, names(K2) != "theo"]

cbind(K1, K2)
bind.fv(K1, K2, preferred="iso")

constrain border estimate to be monotonically increasing
bm <- cumsum(c(@, pmax(@, diff(K1$border))))
bind.fv(K1, data.frame(bmono=bm),
"%s[bmo](r)",
"monotone border-corrected estimate of %s",
"bmono™)

bits.envelope Global Envelopes for Balanced Independent Two-Stage Test

Description

Computes the global envelopes corresponding to the balanced independent two-stage Monte Carlo
test of goodness-of-fit.

Usage

bits.envelope(X, ...,
nsim = 19, nrank = 1,
alternative=c("two.sided"”, "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

non

X Either a point pattern dataset (object of class "ppp”, "1pp" or "pp3") or a fitted
point process model (object of class "ppm”, "kppm"” or "slrm").

36

nsim

nrank

alternative

leaveout

interpolate

savefuns

savepatterns

verbose

Details

bits.envelope

Arguments passed to mad. test or envelope to control the conduct of the test.
Useful arguments include fun to determine the summary function, rinterval
to determine the range of r values used in the test, and verbose=FALSE to turn
off the messages.

Number of simulated patterns to be generated in each stage. Number of simu-
lations in each basic test. There will be nsim repetitions of the basic test, each
involving nsim simulated realisations, together with one independent set of nsim
realisations, so there will be a total of nsim * (nsim + 1) simulations.

Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

Character string determining whether the envelope corresponds to a two-sided
test (alternative="two.sided", the default) or a one-sided test with a lower
critical boundary (alternative="1ess") or a one-sided test with an upper crit-
ical boundary (alternative="greater").

Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

Logical flag indicating whether to save the simulated function values (from the
first stage).

Logical flag indicating whether to save the simulated point patterns (from the
first stage).

Logical value determining whether to print progress reports.

Computes global simulation envelopes corresponding to the balanced independent two-stage Monte
Carlo test of goodness-of-fit described by Baddeley et al (2017). The envelopes are described in
Baddeley et al (2019).

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

This command is similar to dg.envelope which corresponds to the Dao-Genton test of goodness-
of-fit. It was shown in Baddeley et al (2017) that the Dao-Genton test is biased when the significance
level is very small (small p-values are not reliable) and we recommend bits. envelope in this case.

Value

An object of class "fv".

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

bits.test 37

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497—
517.

Baddeley, A., Hardegen, A., Lawrence, T., Milne, R.K., Nair, G. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis 114,
75-87.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2019) Pushing
the envelope: extensions of graphical Monte Carlo tests. In preparation.

See Also

dg.envelope, bits. test, mad. test, envelope

Examples

ns <- if(interactive()) 19 else 4

E <- bits.envelope(swedishpines, Lest, nsim=ns)

E

plot(E)

Eo <- bits.envelope(swedishpines, Lest, alternative="less", nsim=ns)
Ei <- bits.envelope(swedishpines, Lest, interpolate=TRUE, nsim=ns)

bits.test Balanced Independent Two-Stage Monte Carlo Test

Description

Performs a Balanced Independent Two-Stage Monte Carlo test of goodness-of-fit for spatial pattern.

Usage

bits.test(X, ...,
exponent = 2, nsim=19,
alternative=c("two.sided”, "less"”, "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

X Either a point pattern dataset (object of class "ppp”, "1pp"” or "pp3") or a fitted
point process model (object of class "ppm”, "kppm”, “1ppm" or "slrm").

Arguments passed to dclf.test or mad. test or envelope to control the con-
duct of the test. Useful arguments include fun to determine the summary func-
tion, rinterval to determine the range of values used in the test, and use. theory
described under Details.

38 bits.test

exponent Exponent used in the test statistic. Use exponent=2 for the Diggle-Cressie-
Loosmore-Ford test, and exponent=Inf for the Maximum Absolute Deviation
test.

nsim Number of replicates in each stage of the test. A total of nsim* (nsim+ 1)
simulated point patterns will be generated, and the p-value will be a multiple of
1/(nsim+1).
alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="1less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

leaveout Optional integer O, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

Performs the Balanced Independent Two-Stage Monte Carlo test proposed by Baddeley et al (2017),
an improvement of the Dao-Genton (2014) test.

If X is a point pattern, the null hypothesis is CSR.

If X is a fitted model, the null hypothesis is that model.

The argument use. theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use. theory=FALSE).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the

mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

A hypothesis test (object of class "htest"” which can be printed to show the outcome of the test.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

blur 39

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497—
517.

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477-489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis 114,
75-87.

See Also

Simulation envelopes: bits.envelope.
Other tests: dg. test, dclf.test, mad. test.

Examples

ns <- if(interactive()) 19 else 4
bits.test(cells, nsim=ns)

bits.test(cells, alternative="less", nsim=ns)
bits.test(cells, nsim=ns, interpolate=TRUE)

blur Apply Gaussian Blur to a Pixel Image

Description

Applies a Gaussian blur to a pixel image.

Usage

blur(x, sigma = NULL, ...,
kernel="gaussian", normalise=FALSE, bleed = TRUE, varcov=NULL)

S3 method for class 'im'
Smooth(X, sigma = NULL, ...,
kernel="gaussian",
normalise=FALSE, bleed = TRUE, varcov=NULL)

Arguments
X, X The pixel image. An object of class "im".
sigma Standard deviation of isotropic Gaussian smoothing kernel.
Ignored.
kernel String (partially matched) specifying the smoothing kernel. Current options are

non non

"gaussian”, "epanechnikov”, "quartic” or "disc".

40 blur

normalise Logical flag indicating whether the output values should be divided by the cor-
responding blurred image of the window itself. See Details.

bleed Logical flag indicating whether to allow blur to extend outside the original do-
main of the image. See Details.

varcov Variance-covariance matrix of anisotropic Gaussian kernel. Incompatible with
sigma.

Details

This command applies a Gaussian blur to the pixel image x.

Smooth.im is a method for the generic Smooth for pixel images. It is currently identical to blur,
apart from the name of the first argument.

The blurring kernel is the isotropic Gaussian kernel with standard deviation sigma, or the anisotropic
Gaussian kernel with variance-covariance matrix varcov. The arguments sigma and varcov are
incompatible. Also sigma may be a vector of length 2 giving the standard deviations of two inde-
pendent Gaussian coordinates, thus equivalent to varcov = diag(sigma*2).

If the pixel values of x include some NA values (meaning that the image domain does not completely
fill the rectangular frame) then these NA values are first reset to zero.

The algorithm then computes the convolution = * G of the (zero-padded) pixel image = with the
specified Gaussian kernel G.

If normalise=FALSE, then this convolution z * G is returned. If normalise=TRUE, then the con-
volution z * G is normalised by dividing it by the convolution w * G of the image domain w with
the same Gaussian kernel. Normalisation ensures that the result can be interpreted as a weighted
average of input pixel values, without edge effects due to the shape of the domain.

If bleed=FALSE, then pixel values outside the original image domain are set to NA. Thus the output
is a pixel image with the same domain as the input. If bleed=TRUE, then no such alteration is
performed, and the result is a pixel image defined everywhere in the rectangular frame containing
the input image.

Computation is performed using the Fast Fourier Transform.

Value

A pixel image with the same pixel array as the input image x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

interp.im for interpolating a pixel image to a finer resolution, density.ppp for blurring a point
pattern, Smooth. ppp for interpolating marks attached to points.

boyce 41

Examples

Z <- as.im(function(x,y) { 4 * x*2 + 3 x y }, letterR)
opa <- par(mfrow=c(1,3))

plot(Z)

plot(letterR, add=TRUE)

plot(blur(Z, 0.3, bleed=TRUE))

plot(letterR, add=TRUE)

plot(blur(Z, 0.3, bleed=FALSE))

plot(letterR, add=TRUE)

par(opa)

boyce Boyce Index

Description

Calculate the discrete or continuous Boyce index for a spatial point pattern dataset.

Usage
boyce(X, Z, ..., breaks = NULL, halfwidth = NULL)
Arguments
X A spatial point pattern (object of class "ppp").
YA Habitat suitability classes or habitat suitability index. Either a tessellation (ob-
ject of class "tess") or a spatial covariate such as a pixel image (object of class
"im"), a function(x,y) or one of the letters "a", "b" representing the carte-
sian coordinates.
Additional arguments passed to rhohat. ppp.
breaks The breakpoint values defining discrete bands of values of the covariate Z for
which the discrete Boyce index will be calculated. Either a numeric vector of
breakpoints for Z, or a single integer specifying the number of evenly-spaced
breakpoints. Incompatible with halfwidth.
halfwidth The half-width h of the interval [z — h, z + h] which will be used to calculate
the continuous Boyce index B(z) for each possible value z of the covariate Z.
Details

Given a spatial point pattern X and some kind of explanatory information Z, this function computes
either the index originally defined by Boyce et al (2002) or the ‘continuous Boyce index’ defined
by Hirzel et al (2006).

Boyce et al (2002) defined an index of habitat suitability in which the study region W is first divided
into separate subregions C1, . .., Cy, based on appropriate scientific considerations. Then we count

42

boyce

the number n; of data points of X that fall in each subregion C';, measure the area a; of each
subregion C};, and calculate the index

B, n;/n

i~ a;/a

where a is the total area and n is the total number of points in X.

Hirzel et al (2006) defined another version of this index which is based on a continuous spatial
covariate. For each possible value z of the covariate Z, consider the region C'(z) where the value
of the covariate lies between z — h and z + h, where h is the chosen ‘halfwidth’. The ‘continuous
Boyce index’ is

where n(z) is the number of points of X falling in C(z), and a(z) is the area of C(z).

If Z is a tessellation (object of class "tess"), the algorithm calculates the original (‘discrete’) Boyce
index (Boyce et al, 2002) for each tile of the tessellation. The result is another tessellation, identical
to Z except that the mark values are the values of the discrete Boyce index.

If Z is a pixel image whose values are categorical (i.e. factor values), then Z is treated as a tessel-
lation, with one tile for each level of the factor. The discrete Boyce index is then calculated. The
result is a tessellation with marks that are the values of the discrete Boyce index.

Otherwise, if Z is a spatial covariate such as a pixel image, a function(x,y) or one of the characters

ny,n no,n

x" or "y", then exactly one of the arguments breaks or halfwidth must be given.

* if halfwidth is given, it should be a single positive number. The continuous Boyce index
(Hirzel et al, 2006) is computed using the specified halfwidth h. The result is an object of
class "fv" that can be plotted to show B(z) as a function of z.

* if breaks is given, it can be either a numeric vector of possible values of Z defining the
breakpoints for the bands of values of Z, or a single integer specifying the number of evenly-
spaced breakpoints that should be created. The discrete Boyce index (Boyce et al, 2002) is
computed. The result is an object of class "fv" that can be plotted to show the discrete Boyce
index as a function of z.

When Z is a spatial covariate (not factor-valued), the calculation is performed using rhohat. ppp
(since the Boyce index is a special case of rhohat). Arguments . .. passed to rhohat.ppp control
the accuracy of the spatial discretisation and other parameters of the algorithm.

Value

A tessellation (object of class "tess”) or a function value table (object of class "fv") as explained
above.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

bw.abram 43

References

Boyce, M.S., Vernier, PR., Nielsen, S.E. and Schmiegelow, FK.A. (2002) Evaluating resource
selection functions. Ecological modelling 157, 281-300.

Hirzel, A.H., Le Lay, V., Helfer, V., Randin, C. and Guisan, A. (2006) Evaluating the ability of
habitat suitability models to predict species presences. Ecological Modelling 199, 142—152.

See Also

rhohat

Examples

online <- interactive()

a simple tessellation

V <- quadrats(Window(bei), 4, 3)
if(online) plot(V)

discrete Boyce index for a simple tessellation
A <- boyce(bei, V)

if(online) {

plot(A, do.col=TRUE)
marks(A)
tilenames(A)

3

spatial covariate: terrain elevation
Z <- bei.extraselev

continuous Boyce index for terrain elevation
BC <- boyce(bei, Z, halfwidth=10)

if(online) plot(BC)
discrete Boyce index for terrain elevation steps of height 5 metres
bk <- c(seq(min(Z), max(Z), by=5), Inf)

BD <- boyce(bei, Z, breaks=bk)

if(online) plot(BD)

bw.abram Abramson’s Adaptive Bandwidths

Description

Computes adaptive smoothing bandwidths according to the inverse-square-root rule of Abramson
(1982).

44 bw.abram

Usage
bw.abram(X, ho, ...)
Arguments
X Data to be smoothed.
he Global smoothing bandwidth. A numeric value.
Additional arguments passed to methods.
Details

This function computes adaptive smoothing bandwidths for a dataset, using the methods of Abram-
son (1982) and Hall and Marron (1988).

The function bw.abram is generic. There is a method bw.abram.ppp for spatial point patterns
(objects of class "ppp"), and possibly other methods.

Value

See the documentation for the particular method.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Abramson, 1. (1982) On bandwidth variation in kernel estimates — a square root law. Annals of
Statistics, 10(4), 1217-1223.

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability
densities. Probability Theory and Related Fields, 80, 37-49.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

See Also

bw.abram.ppp

bw.abram.ppp

45

bw.abram. ppp

Abramson’s Adaptive Bandwidths For Spatial Point Pattern

Description

Computes adaptive smoothing bandwidths for a spatial point pattern, according to the inverse-
square-root rule of Abramson (1982).

Usage

S3 method for class 'ppp'

bw.abram(X, ho,

Arguments

X

he

at

hp

pilot

trim

smoother

at=c("points”, "pixels"),
hp = ho, pilot = NULL, trim=5, smoother=density.ppp)

A point pattern (object of class "ppp") for which the variable bandwidths should
be computed.

A scalar value giving the global smoothing bandwidth in the same units as the
coordinates of X. The default is h@o=bw. pp1(X).

Additional arguments passed to as. im to control the pixel resolution, or passed
to density.ppp or smoother to control the type of smoothing, when computing
the pilot estimate.

Character string (partially matched) specifying whether to compute bandwidth
values at the points of X (at="points", the default) or to compute bandwidths
at every pixel in a fine pixel grid (at="pixels").

Optional. A scalar pilot bandwidth, used for estimation of the pilot density if
required. Ignored if pilot is a pixel image (object of class "im"); see below.

Optional. Specification of a pilot density (possibly unnormalised). If pilot=NULL
the pilot density is computed by applying fixed-bandwidth density estimation to
X using bandwidth hp. If pilot is a point pattern, the pilot density is is computed
using a fixed-bandwidth estimate based on pilot and hp. If pilot is a pixel im-
age (object of class "im"), this is taken to be the (possibly unnormalised) pilot
density, and hp is ignored.

A trimming value required to curb excessively large bandwidths. See Details.
The default is sensible in most cases.

Smoother for the pilot. A function or character string, specifying the function to
be used to compute the pilot estimate when pilot is NULL or is a point pattern.

46 bw.abram.ppp

Details

This function computes adaptive smoothing bandwidths using the methods of Abramson (1982) and
Hall and Marron (1988).

The function bw. abram is generic. The function bw.abram. ppp documented here is the method for
spatial point patterns (objects of class "ppp").

If at="points" (the default) a smoothing bandwidth is computed for each point in the pattern X.
Alternatively if at="pixels" a smoothing bandwidth is computed for each spatial location in a
pixel grid.

Under the Abramson-Hall-Marron rule, the bandwidth at location u is

r w)~1/2
h(u) = h@ * min[———— trim|
Y

where f (u) is a pilot estimate of the spatially varying probability density. The variable bandwidths
are rescaled by -, the geometric mean of the f (u)_l/ 2 terms evaluated at the data; this allows the
global bandwidth h@ to be considered on the same scale as a corresponding fixed bandwidth. The
trimming value trim has the same interpretation as the required ‘clipping’ of the pilot density at
some small nominal value (see Hall and Marron, 1988), to necessarily prevent extreme bandwidths
(which can occur at very isolated observations).

The pilot density or intensity is determined as follows:

» If pilot is a pixel image, this is taken as the pilot density or intensity.

e If pilot is NULL, then the pilot intensity is computed as a fixed-bandwidth kernel intensity
estimate using density.ppp applied to the data pattern X using the pilot bandwidth hp.

 If pilot is a different point pattern on the same spatial domain as X, then the pilot intensity is
computed as a fixed-bandwidth kernel intensity estimate using density.ppp applied to pilot
using the pilot bandwidth hp.

In each case the pilot density or intensity is renormalised to become a probability density, and then
the Abramson rule is applied.

Instead of calculating the pilot as a fixed-bandwidth density estimate, the user can specify another
density estimation procedure using the argument smoother. This should be either a function or the
character string name of a function. It will replace density.ppp as the function used to calculate
the pilot estimate. The pilot estimate will be computed as smoother (X, sigma=hp, ...) if pilot
is NULL, or smoother(pilot, sigma=hp, ...) if pilot is a point pattern. If smoother does not
recognise the argument name sigma for the smoothing bandwidth, then hp is effectively ignored, as
shown in the Examples.

Value

Either a numeric vector of length npoints(X) giving the Abramson bandwidth for each point (when
at = "points”, the default), or the entire pixel image of the Abramson bandwidths over the relevant
spatial domain (when at = "pixels”).

Author(s)

Tilman Davies <Tilman.Davies@otago.ac.nz>. Adapted by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

bw.CvL 47

References

Abramson, I. (1982) On bandwidth variation in kernel estimates — a square root law. Annals of
Statistics, 10(4), 1217-1223.

Davies, T.M. and Baddeley, A. (2018) Fast computation of spatially adaptive kernel estimates.
Statistics and Computing, 28(4), 937-956.

Davies, T.M., Marshall, J.C., and Hazelton, M.L. (2018) Tutorial on kernel estimation of continuous
spatial and spatiotemporal relative risk. Statistics in Medicine, 37(7), 1191-1221.

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability
densities. Probability Theory and Related Fields, 80, 37-49.

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

See Also

bw.abram

Examples

'ch' just 58 laryngeal cancer cases
ch <- split(chorley)[[11]

h <- bw.abram(ch,h@=1,hp=0.7)
length(h)

summary (h)

if(interactive()) hist(h)

calculate pilot based on all 1036 observations
h.pool <- bw.abram(ch,h@=1,hp=0.7,pilot=chorley)
length(h.pool)

summary (h.pool)

if(interactive()) hist(h.pool)

get full image used for 'h' above
him <- bw.abram(ch,h0=1,hp=0.7,at="pixels")
plot(him);points(ch,col="grey")

use Voronoi-Dirichlet pilot ('hp' is ignored)
hvo <- bw.abram(ch, h@=1, smoother=densityVoronoi)

bw.CvL Cronie and van Lieshout’s Criterion for Bandwidth Selection for Ker-
nel Density

Description

Uses Cronie and van Lieshout’s criterion based on Cambell’s formula to select a smoothing band-
width for the kernel estimation of point process intensity.

48 bw.CvL

Usage
bw.CvL(X, ..., srange = NULL, ns = 16, sigma = NULL, warn=TRUE)
Arguments
X A point pattern (object of class "ppp").
Ignored.
srange Optional numeric vector of length 2 giving the range of values of bandwidth to
be searched.
ns Optional integer giving the number of values of bandwidth to search.
sigma Optional. Vector of values of the bandwidth to be searched. Overrides the values
of ns and srange.
warn Logical. If TRUE, a warning is issued if the optimal value of the cross-validation
criterion occurs at one of the ends of the search interval.
Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth o is chosen to minimise the discrepancy between the area of the observation window
and the sum of reciprocal estimated intensity values at the points of the point process

CVL(0) = (IW] = D 1/A(2:))?

?
where the sum is taken over all the data points x;, and where 5\(95,) is the kernel-smoothing estimate
of the intensity at z; with smoothing bandwidth o.

The value of CvL(0) is computed directly, using density. ppp, for ns different values of o between
srange[1] and srange[2].

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim” (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Author(s)

Ottmar Cronie <ottmar@chalmers.se>and Marie-Colette van Lieshout <Marie-Colette.van.Lieshout@cwi.nl>.
Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Cronie, O and Van Lieshout, M N M (2018) A non-model-based approach to bandwidth selection
for kernel estimators of spatial intensity functions, Biometrika, 105, 455-462.

bw.CvL.adaptive 49

See Also

density.ppp, bw.optim.object.
Alternative methods: bw.diggle, bw.scott, bw.ppl, bw.frac.

For adaptive smoothing bandwidths, use bw.CvL.adaptive.

Examples

if(interactive()) {
b <- bw.CvL(redwood)
b
plot(b, main="Cronie and van Lieshout bandwidth criterion for redwoods")
plot(density(redwood, b))
plot(density(redwood, bw.CvL))

}
bw.CvL.adaptive Select Adaptive Bandwidth for Kernel Estimation Using Cronie-Van
Lieshout Criterion
Description

Uses the Cronie-Van Lieshout criterion to select the global smoothing bandwidth for adaptive kernel
estimation of point process intensity.

Usage

bw.CvL.adaptive(X, ...,
hrange = NULL, nh = 16, h=NULL,
bwPilot = bw.scott.iso(X),
edge = FALSE, diggle = TRUE)

Arguments

X A point pattern (object of class "ppp").
Additional arguments passed to densityAdaptiveKernel.

hrange Optional numeric vector of length 2 giving the range of values of global band-
width h to be searched.

nh Optional integer giving the number of values of bandwidth h to search.

h Optional. Vector of values of the bandwidth to be searched. Overrides the values
of nh and hrange.

bwPilot Pilot bandwidth. A scalar value in the same units as the coordinates of X.
The smoothing bandwidth for computing an initial estimate of intensity using
density.ppp.

edge Logical value indicating whether to apply edge correction.

diggle Logical. If TRUE, use the Jones-Diggle improved edge correction, which is more

accurate but slower to compute than the default correction.

50 bw.CvL.adaptive

Details

This function selects an appropriate value of global bandwidth he for adaptive kernel estimation of
the intensity function for the point pattern X.

In adaptive estimation, each point in the point pattern is subjected to a different amount of smooth-
ing, controlled by data-dependent or spatially-varying bandwidths. The global bandwidth ho is a
scale factor which is used to adjust all of the data-dependent bandwidths according to the Abramson
(1982) square-root rule.

This function considers each candidate value of bandwidth h, performs the smoothing steps de-
scribed above, extracts the adaptively-estimated intensity values A(x;) at each data point x;, and
calculates the Cronie-Van Lieshout criterion

n 1
CvL(h) = —
2 3w
The value of ~ which minimises the squared difference

LP2(h) = (CvL(h) — [W|)?

(where |W] is the area of the window of X) is selected as the optimal global bandwidth.

Bandwidths h are physical distance values expressed in the same units as the coordinates of X.

Value

A single numerical value giving the selected global bandwidth. The result also belongs to the
class "bw.optim” (see bw.optim.object) which can be plotted to show the bandwidth selection
criterion as a function of sigma.

Author(s)
Marie-Colette Van Lieshout. Modified by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Abramson, 1. (1982) On bandwidth variation in kernel estimates — a square root law. Annals of
Statistics, 10(4), 1217-1223.

Cronie, O and Van Lieshout, M N M (2018) A non-model-based approach to bandwidth selection
for kernel estimators of spatial intensity functions, Biometrika, 105, 455-462.

Van Lieshout, M.N.M. (2021) Infill asymptotics for adaptive kernel estimators of spatial intensity.
Australian and New Zealand Journal of Statistics 63 (1) 159-181.

See Also

bw.optim.object.
adaptive.density, densityAdaptiveKernel, bw.abram, density.ppp.

To select a fixed smoothing bandwidth using the Cronie-Van Lieshout criterion, use bw. CvL.

bw.CvLHeat 51

Examples

online <- interactive()
if(online) {
ho <- bw.CvL.adaptive(redwood3)
} else {
faster computation for package checker
h@ <- bw.CvL.adaptive(redwood3, nh=8,
hrange=c(1/4, 4) * bw.diggle(redwood3))
}
plot(ho)
plot(as.fv(ho), CvL ~ h)
if(online) {
Z <- densityAdaptiveKernel(redwood3, ho)

plot(Z)
}
bw.CvLHeat Bandwidth Selection for Diffusion Smoother by Cronie-van Lieshout
Rule
Description

Selects an optimal bandwidth for diffusion smoothing using the Cronie-van Lieshout rule.

Usage
bw.CvLHeat(X, ..., srange=NULL, ns=16, sigma=NULL,
leaveoneout=TRUE, verbose = TRUE)
Arguments
X Point pattern (object of class "ppp").
Arguments passed to densityHeat . ppp.
srange Numeric vector of length 2 specifying a range of bandwidths to be considered.
ns Integer. Number of candidate bandwidths to be considered.
sigma Maximum smoothing bandwidth. A numeric value, or a pixel image, or a
function(x,y). Alternatively a numeric vector containing a sequence of can-
didate bandwidths.
leaveoneout Logical value specifying whether intensity values at data points should be esti-

mated using the leave-one-out rule.

verbose Logical value specifying whether to print progress reports.

52 bw.diggle

Details
This algorithm selects the optimal global bandwidth for kernel estimation of intensity for the dataset
X using diffusion smoothing densityHeat. ppp.
If sigma is a numeric value, the algorithm finds the optimal bandwidth tau <= sigma.

If sigma is a pixel image or function, the algorithm finds the optimal fraction @ < f <= 1 such that
smoothing with f * sigma would be optimal.

Value

A numerical value giving the selected bandwidth (if sigma was a numeric value) or the selected
fraction of the maximum bandwidth (if sigma was a pixel image or function). The result also
belongs to the class "bw.optim” which can be plotted.

Author(s)
Adrian Baddeley.

See Also

bw.pplHeat for an alternative method.

densityHeat.ppp

Examples

online <- interactive()

if(lonline) op <- spatstat.options(npixel=32)

f <= function(x,y) { dnorm(x, 2.3, ©.1) * dnorm(y, 2.0, 0.2) }
X <- rpoint(15, f, win=letterR)

plot(X)

b <- bw.CvLHeat(X, sigma=0.25)

b

plot(b)

if(lonline) spatstat.options(op)

bw.diggle Cross Validated Bandwidth Selection for Kernel Density

Description
Uses cross-validation to select a smoothing bandwidth for the kernel estimation of point process
intensity.

Usage

bw.diggle(X, ..., correction="good"”, hmax=NULL, nr=512, warn=TRUE)

bw.diggle 53

Arguments
X A point pattern (object of class "ppp").
Ignored.
correction Character string passed to Kest determining the edge correction to be used to
calculate the K function.
hmax Numeric. Maximum value of bandwidth that should be considered.
nr Integer. Number of steps in the distance value r to use in computing numerical
integrals.
warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
rion occurs at one of the ends of the search interval.
Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth o is chosen to minimise the mean-square error criterion defined by Diggle (1985).
The algorithm uses the method of Berman and Diggle (1989) to compute the quantity
MSE(0)
M(o) = e g(0)
as a function of bandwidth o, where MSE(¢) is the mean squared error at bandwidth o, while A is
the mean intensity, and g is the pair correlation function. See Diggle (2003, pages 115-118) for a
summary of this method.

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim” which can be plotted to show the (rescaled) mean-square error as a function of sigma.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim” (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Definition of bandwidth

The smoothing parameter sigma returned by bw.diggle (and displayed on the horizontal axis of
the plot) corresponds to h/2, where h is the smoothing parameter described in Diggle (2003, pages
116-118) and Berman and Diggle (1989). In those references, the smoothing kernel is the uniform
density on the disc of radius h. In density.ppp, the smoothing kernel is the isotropic Gaussian
density with standard deviation sigma. When replacing one kernel by another, the usual practice is
to adjust the bandwidths so that the kernels have equal variance (cf. Diggle 2003, page 118). This
implies that sigma = h/2.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

54 bw.frac

References

Berman, M. and Diggle, P. (1989) Estimating weighted integrals of the second-order intensity of a
spatial point process. Journal of the Royal Statistical Society, series B 51, 81-92.

Diggle, P.J. (1985) A kernel method for smoothing point process data. Applied Statistics (Journal
of the Royal Statistical Society, Series C) 34 (1985) 138-147.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

See Also

density.ppp, bw.optim.object.

Alternative methods: bw.ppl, bw.scott, bw.CvL, bw. frac.

Examples

attach(split(lansing))

b <- bw.diggle(hickory)

plot(b, ylim=c(-2, @), main="Cross validation for hickories")
if(interactive()) {

plot(density(hickory, b))

}

bw.frac Bandwidth Selection Based on Window Geometry

Description

Select a smoothing bandwidth for smoothing a point pattern, based only on the geometry of the
spatial window. The bandwidth is a specified quantile of the distance between two independent
random points in the window.

Usage
bw.frac(X, ..., f=1/4)
Arguments
X A window (object of class "owin") or point pattern (object of class "ppp") or

other data which can be converted to a window using as.owin.
Arguments passed to distcdf.

f Probability value (between 0 and 1) determining the quantile of the distribution.

bw.optim.object 55

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density. ppp.

The bandwidth ¢ is computed as a quantile of the distance between two independent random points
in the window. The default is the lower quartile of this distribution.

If F(r) is the cumulative distribution function of the distance between two independent random
points uniformly distributed in the window, then the value returned is the quantile with probability
f- That is, the bandwidth is the value r such that F'(r) = f.

The cumulative distribution function F'(r) is computed using distcdf. We then we compute the
smallest number r such that F'(r) > f.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.frac”
which can be plotted to show the cumulative distribution function and the selected quantile.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

For estimating point process intensity, see density.ppp, bw.diggle, bw.ppl, bw.scott, bw.CvL.

For other smoothing purposes, see bw. stoyan, bw. smoothppp, bw.relrisk.

Examples

h <- bw.frac(letterR)
h
plot(h, main="bw.frac(letterR)")

bw.optim.object Class of Optimized Bandwidths

Description

An object of the class "bw.optim” represents a tuning parameter (usually a smoothing bandwidth)
that has been selected automatically. The object can be used as if it were a numerical value, but it
can also be plotted to show the optimality criterion.

56 bw.pct

Details

An object of the class "bw.optim” represents the numerical value of a smoothing bandwidth, a
threshold, or a similar tuning parameter, that has been selected by optimising a criterion such as
cross-validation.

The object is a numerical value, with some attributes that retain information about how the value
was selected.

Attributes include the vector of candidate values that were examined, the corresponding values of
the optimality criterion, the name of the parameter, the name of the optimality criterion, and the
units in which the parameter is measured.

There are methods for print, plot, summary, as.data. frame and as. fv for the class "bw.optim”.

The print method simply prints the numerical value of the parameter. The summary method prints
this value, and states how this value was selected.

The plot method produces a plot of the optimisation criterion against the candidate value of the
parameter. The as.data.frame and as.fv methods extract this graphical information as a data
frame or function table, respectively.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Functions which produce objects of class bw.optiminclude bw.CvL, bw.CvL.adaptive, bw.diggle,
bw.1lppl, bw.pcf, bw.ppl, bw.relrisk, bw.relrisk.lpp, bw.smoothppp and bw.voronoi

Examples

Ns <- if(interactive()) 32 else 3

b <- bw.ppl(redwood, srange=c(0.02, 0.07), ns=Ns)
b

summary (b)

plot(b)

bw.pcf Cross Validated Bandwidth Selection for Pair Correlation Function

Description

Uses composite likelihood or generalized least squares cross-validation to select a smoothing band-
width for the kernel estimation of pair correlation function.

bw.pcf

Usage

57

bw.pcf (X, rmax=NULL, lambda=NULL, divisor="r",
kernel="epanechnikov”, nr=10000, bias.correct=TRUE,
cv.method=c(”"compLik”, "leastSQ"), simple=TRUE, srange=NULL,
., verbose=FALSE, warn=TRUE)

Arguments

X

rmax
lambda
divisor

kernel
nr

bias.correct
cv.method
simple
srange
verbose

warn

Details

A point pattern (object of class "ppp").

Numeric. Maximum value of the spatial lag distance r for which g(r) should be
evaluated.

Optional. Values of the estimated intensity function. A vector giving the inten-
sity values at the points of the pattern X.

Choice of divisor in the estimation formula: either "r" (the default) or "d". See
pcf. ppp.
Choice of smoothing kernel, passed to density; see pcf and pcfinhom.

Integer. Number of subintervals for discretization of [0, rmax] to use in comput-
ing numerical integrals.

Logical. Whether to use bias corrected version of the kernel estimate. See
Details.

Choice of cross validation method: either "compLik"” or "leastSQ" (partially
matched).

Logical. Whether to use simple removal of spatial lag distances. See Details.

Optional. Numeric vector of length 2 giving the range of bandwidth values that
should be searched to find the optimum bandwidth.

Other arguments, passed to pcf or pcfinhom.

Logical value indicating whether to print progress reports during the optimiza-
tion procedure.

Logical. If TRUE, issue a warning if the optimum value of the cross-validation
criterion occurs at one of the ends of the search interval.

This function selects an appropriate bandwidth bw for the kernel estimator of the pair correlation
function of a point process intensity computed by pcf. ppp (homogeneous case) or pcfinhom (in-
homogeneous case).

With cv.method="1eastSQ", the bandwidth h is chosen to minimise an unbiased estimate of the
integrated mean-square error criterion M (h) defined in equation (4) in Guan (2007a). The code
implements the fast algorithm of Jalilian and Waagepetersen (2018).

With cv.method="compLik", the bandwidth A is chosen to maximise a likelihood cross-validation
criterion C'V (h) defined in equation (6) of Guan (2007b).

) =Y g0

The result is a numerical value giving the selected bandwidth.

58 bw.ppl

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim” (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Definition of bandwidth

The bandwidth bw returned by bw.pcf is the standard deviation of the smoothing kernel, follow-
ing the standard convention in R. As mentioned in the documentation for density.default and
pcf . ppp, this differs from other definitions of bandwidth that can be found in the literature. The
scale parameter h, which is called the bandwidth in some literature, is defined differently. For
example for the Epanechnikov kernel, h is the half-width of the kernel, and bw=h/sqrt(5).

Author(s)

Rasmus Waagepetersen and Abdollah Jalilian. Adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.a
Rolf Turner <rolfturner@posteo.net> and Ege Rubak <rubak@math.aau.dk>.

References

Guan, Y. (2007a). A composite likelihood cross-validation approach in selecting bandwidth for the
estimation of the pair correlation function. Scandinavian Journal of Statistics, 34(2), 336-346.

Guan, Y. (2007b). A least-squares cross-validation bandwidth selection approach in pair correlation
function estimations. Statistics & Probability Letters, T7(18), 1722—1729.

Jalilian, A. and Waagepetersen, R. (2018) Fast bandwidth selection for estimation of the pair cor-
relation function. Journal of Statistical Computation and Simulation, 88(10), 2001-2011. https:
//www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606

See Also

pcf.ppp, pcfinhom, bw.optim.object

Examples

b <- bw.pcf(redwood)
plot(pcf(redwood, bw=b))

bw.ppl Likelihood Cross Validation Bandwidth Selection for Kernel Density

Description

Uses likelihood cross-validation to select a smoothing bandwidth for the kernel estimation of point
process intensity.

https://www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606
https://www.tandfonline.com/doi/full/10.1080/00949655.2018.1428606

bw.ppl 59

Usage
bw.ppl(X, ..., srange=NULL, ns=16, sigma=NULL, varcov1=NULL,
weights=NULL, shortcut=FALSE, warn=TRUE)
Arguments
X A point pattern (object of class "ppp").
srange Optional numeric vector of length 2 giving the range of values of bandwidth to
be searched.
ns Optional integer giving the number of values of bandwidth to search.
sigma Optional. Vector of values of the bandwidth to be searched. Overrides the values
of ns and srange.
varcov1l Optional. Variance-covariance matrix matrix of the kernel with bandwidth A =
1. See section on Anisotropic Smoothing.
weights Optional. Numeric vector of weights for the points of X. Argument passed to
density.ppp.
Additional arguments passed to density.ppp.
shortcut Logical value indicating whether to speed up the calculation by omitting the
integral term in the cross-validation criterion.
warn Logical. If TRUE, issue a warning if the maximum of the cross-validation crite-
rion occurs at one of the ends of the search interval.
Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.ppp.

The bandwidth ¢ is chosen to maximise the point process likelihood cross-validation criterion
LCV(o) = 3 log Ai(as) — / Aw) du
P w

where the sum is taken over all the data points z;, where 5_1(%) is the leave-one-out kernel-
smoothing estimate of the intensity at x; with smoothing bandwidth o, and A(u) is the kernel-
smoothing estimate of the intensity at a spatial location u with smoothing bandwidth o. See
Loader(1999, Section 5.3).

The value of LCV(0) is computed directly, using density . ppp, for ns different values of o between
srange[1] and srange[2].

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim” which can be plotted to show the (rescaled) mean-square error as a function of sigma.
If shortcut=TRUE, the computation is accelerated by omitting the integral term in the equation
above. This is valid because the integral is approximately constant.

Value

A numerical value giving the selected bandwidth. The result also belongs to the class "bw.optim”
which can be plotted.

60 bw.pplHeat

Anisotropic Smoothing

Anisotropic kernel smoothing is available in density.ppp using the argument varcov to specify
the variance-covariance matrix of the anisotropic kernel. In order to choose the matrix varcov, the
user can call bw. ppl using the argument varcov1 to specify a ‘template’ matrix. Scalar multiples
of varcov1 will be considered and the optimal scale factor will be determined. That is, bw.ppl
will try smoothing the data using varcov = h*2 % varcov1 for different values of h. The result of
bw.ppl will be the optimal value of h.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Loader, C. (1999) Local Regression and Likelihood. Springer, New York.

See Also

density.ppp, bw.diggle, bw.scott, bw.CvL, bw. frac.

Examples

if(interactive()) {
b <- bw.ppl(redwood)
plot(b, main="Likelihood cross validation for redwoods")
plot(density(redwood, b))

}
bw.pplHeat Bandwidth Selection for Diffusion Smoother by Likelihood Cross-
Validation
Description

Selects an optimal bandwidth for diffusion smoothing by point process likelihood cross-validation.

Usage

bw.pplHeat(X, ..., srange=NULL, ns=16, sigma=NULL,
leaveoneout=TRUE, verbose = TRUE)

bw.pplHeat

Arguments

X

srange
ns

sigma
leaveoneout

verbose

Details

61

Point pattern (object of class "ppp").

Arguments passed to densityHeat.ppp.

Numeric vector of length 2 specifying a range of bandwidths to be considered.
Integer. Number of candidate bandwidths to be considered.

Maximum smoothing bandwidth. A numeric value, or a pixel image, or a
function(x,y). Alternatively a numeric vector containing a sequence of can-
didate bandwidths.

Logical value specifying whether intensity values at data points should be esti-
mated using the leave-one-out rule.

Logical value specifying whether to print progress reports.

This algorithm selects the optimal global bandwidth for kernel estimation of intensity for the dataset
X using diffusion smoothing densityHeat. ppp.

If sigma is a numeric value, the algorithm finds the optimal bandwidth tau <= sigma.

If sigma is a pixel image or function, the algorithm finds the optimal fraction @ < f <= 1 such that
smoothing with f * sigma would be optimal.

Value

A numerical value giving the selected bandwidth (if sigma was a numeric value) or the selected
fraction of the maximum bandwidth (if sigma was a pixel image or function). The result also
belongs to the class "bw.optim” which can be plotted.

Author(s)

Adrian Baddeley and Tilman Davies.

See Also

bw.CvLHeat for an alternative method.

densityHeat.ppp

Examples

online <- interactive()

if(lonline) op <- spatstat.options(npixel=32)

f <= function(x,y) { dnorm(x, 2.3, ©.1) * dnorm(y, 2.0, 0.2) }
X <- rpoint(15, f, win=letterR)

plot(X)

b <- bw.pplHeat(X, sigma=0.25)

b
plot(b)

if(lonline) spatstat.options(op)

62 bw.relrisk

bw.relrisk Cross Validated Bandwidth Selection for Relative Risk Estimation

Description

Uses cross-validation to select a smoothing bandwidth for the estimation of relative risk.

Usage
bw.relrisk(X, ...)

S3 method for class 'ppp'
bw.relrisk(X, method = "likelihood”, ...,
nh = spatstat.options(”n.bandwidth"),
hmin=NULL, hmax=NULL, warn=TRUE)

Arguments
X A multitype point pattern (object of class "ppp"” which has factor valued marks).
method Character string determining the cross-validation method. Current options are
"likelihood”, "leastsquares” or "weightedleastsquares”.
nh Number of trial values of smoothing bandwith sigma to consider. The default is
32.
hmin, hmax Optional. Numeric values. Range of trial values of smoothing bandwith sigma
to consider. There is a sensible default.
warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
rion occurs at one of the ends of the search interval.
Additional arguments passed to density. ppp or to other methods for bw. relrisk.
Details

This function selects an appropriate bandwidth for the nonparametric estimation of relative risk
using relrisk.

Consider the indicators %;; which equal 1 when data point x; belongs to type j, and equal 0 other-
wise. For a particular value of smoothing bandwidth, let p;(u) be the estimated probabilities that a
point at location v will belong to type j. Then the bandwidth is chosen to minimise either the nega-
tive likelihood, the squared error, or the approximately standardised squared error, of the indicators
y;; relative to the fitted values p; (z;). See Diggle (2003) or Baddeley et al (2015).

The result is a numerical value giving the selected bandwidth sigma. The result also belongs to
the class "bw.optim” allowing it to be printed and plotted. The plot shows the cross-validation
criterion as a function of bandwidth.

The range of values for the smoothing bandwidth sigma is set by the arguments hmin, hmax. There
is a sensible default, based on multiples of Stoyan’s rule of thumb bw. stoyan.

bw.scott 63

If the optimal bandwidth is achieved at an endpoint of the interval [hmin, hmax], the algorithm
will issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the
interval by changing the arguments hmin, hmax.

Computation time depends on the number nh of trial values considered, and also on the range
[hmin, hmax] of values considered, because larger values of sigma require calculations involving
more pairs of data points.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim” (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>.

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.
Kelsall, J.E. and Diggle, P.J. (1995) Kernel estimation of relative risk. Bernoulli 1, 3—16.

See Also

relrisk, bw.stoyan.

bw.optim.object.
Examples

b <- bw.relrisk(urkiola)

b

plot(b)

b <- bw.relrisk(urkiola, hmax=20)
plot(b)

bw.scott Scott’s Rule for Bandwidth Selection for Kernel Density

Description

Use Scott’s rule of thumb to determine the smoothing bandwidth for the kernel estimation of point
process intensity.

64 bw.scott
Usage
bw.scott(X, isotropic=FALSE, d=NULL)
bw.scott.iso(X)
Arguments
X A point pattern (object of class "ppp”, "1pp”, "pp3"” or "ppx").
isotropic Logical value indicating whether to compute a single bandwidth for an isotropic
Gaussian kernel (isotropic=TRUE) or separate bandwidths for each coordinate
axis (isotropic=FALSE, the default).
d Advanced use only. An integer value that should be used in Scott’s formula
instead of the true number of spatial dimensions.
Details

These functions select a bandwidth sigma for the kernel estimator of point process intensity com-
puted by density.ppp or other appropriate functions. They can be applied to a point pattern be-

n on n o n

longing to any class "ppp”, "1pp"”, "pp3" or "ppx".

The bandwidth ¢ is computed by the rule of thumb of Scott (1992, page 152, equation 6.42). The
bandwidth is proportional to n~/(4+4) where n is the number of points and d is the number of
spatial dimensions.

This rule is very fast to compute. It typically produces a larger bandwidth than bw.diggle. It is
useful for estimating gradual trend.

If isotropic=FALSE (the default), bw.scott provides a separate bandwidth for each coordinate
axis, and the result of the function is a vector, of length equal to the number of coordinates. If
isotropic=TRUE, a single bandwidth value is computed and the result is a single numeric value.

bw.scott.iso(X) is equivalent to bw.scott(X, isotropic=TRUE).

The default value of d is as follows:

class dimension

prpn 2
n 1pp n 1
n pp3 n 3

n n

ppx number of spatial coordinates

The use of d=1 for point patterns on a linear network (class "1pp") was proposed by McSwiggan et
al (2016) and Rakshit et al (2019).

Value

A numerical value giving the selected bandwidth, or a numerical vector giving the selected band-
widths for each coordinate.

bw.smoothppp 65

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Scott, D.W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization. New York:
Wiley.

See Also

density.ppp, bw.diggle, bw.ppl, bw.CvL, bw. frac.

Examples

hickory <- split(lansing)[["hickory"”1]
b <- bw.scott(hickory)

b

if(interactive()) {
plot(density(hickory, b))

}

bw.scott.iso(hickory)
bw.scott(osteo$pts[[1]1])

bw. smoothppp Cross Validated Bandwidth Selection for Spatial Smoothing

Description

Uses least-squares cross-validation to select a smoothing bandwidth for spatial smoothing of marks.

Usage

bw.smoothppp(X, nh = spatstat.options(”n.bandwidth”),
hmin=NULL, hmax=NULL, warn=TRUE, kernel="gaussian",
varcov1=NULL)

Arguments
X A marked point pattern with numeric marks.
nh Number of trial values of smoothing bandwith sigma to consider. The default is
32.
hmin, hmax Optional. Numeric values. Range of trial values of smoothing bandwith sigma
to consider. There is a sensible default.
warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-

rion occurs at one of the ends of the search interval.

66 bw.smoothppp

kernel The smoothing kernel. A character string specifying the smoothing kernel (cur-

n o n non

rent options are "gaussian”, "epanechnikov”, "quartic” or "disc").

varcovl Optional. Variance-covariance matrix matrix of the kernel with bandwidth A =
1. See section on Anisotropic Smoothing.

Details

This function selects an appropriate bandwidth for the nonparametric smoothing of mark values
using Smooth. ppp.

The argument X must be a marked point pattern with a vector or data frame of marks. All mark
values must be numeric.

The bandwidth is selected by least-squares cross-validation. Let y; be the mark value at the :th
data point. For a particular choice of smoothing bandwidth, let j; be the smoothed value at the ith
data point. Then the bandwidth is chosen to minimise the squared error of the smoothed values
Z,‘ (yz - 371)2

The result of bw. smoothppp is a numerical value giving the selected bandwidth sigma. The result
also belongs to the class "bw.optim” allowing it to be printed and plotted. The plot shows the
cross-validation criterion as a function of bandwidth.

The range of values for the smoothing bandwidth sigma is set by the arguments hmin, hmax. There
is a sensible default, based on the nearest neighbour distances.

If the optimal bandwidth is achieved at an endpoint of the interval [hmin, hmax], the algorithm
will issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the
interval by changing the arguments hmin, hmax.

Computation time depends on the number nh of trial values considered, and also on the range
[hmin, hmax] of values considered, because larger values of sigma require calculations involving
more pairs of data points.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim” (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Anisotropic Smoothing

Anisotropic smoothing is available in Smooth . ppp using the argument varcov to specify the variance-
covariance matrix of the anisotropic kernel. In order to choose the matrix varcov, the user can
call bw. smoothppp using the argument varcov1 to specify a ‘template’ matrix. Scalar multiples of
varcov1 will be considered and the optimal scale factor will be determined. That is, bw. smoothppp
will try smoothing the data using varcov = h*2 * varcov1 for different values of h ranging from
hmin to hmax. The result of bw. smoothppp will be the optimal value of the standard deviation scale
factor h.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

bw.stoyan 67

See Also

Smooth. ppp, bw.optim.object

Examples

b <- bw.smoothppp(longleaf)
b
plot(b)

bw.stoyan Stoyan’s Rule of Thumb for Bandwidth Selection

Description
Computes a rough estimate of the appropriate bandwidth for kernel smoothing estimators of the
pair correlation function and other quantities.

Usage

bw.stoyan(X, co0=0.15)

Arguments

X A point pattern (object of class "ppp").

co Coefficient appearing in the rule of thumb. See Details.
Details

Estimation of the pair correlation function and other quantities by smoothing methods requires a
choice of the smoothing bandwidth. Stoyan and Stoyan (1995, equation (15.16), page 285) proposed
a rule of thumb for choosing the smoothing bandwidth.

For the Epanechnikov kernel, the rule of thumb is to set the kernel’s half-width / to 0.15/+/\ where
A is the estimated intensity of the point pattern, typically computed as the number of points of X
divided by the area of the window containing X.

For a general kernel, the corresponding rule is to set the standard deviation of the kernel to o =

0.15/v/5A.
The coefficient 0.15 can be tweaked using the argument co.

To ensure the bandwidth is finite, an empty point pattern is treated as if it contained 1 point.

Value

A finite positive numerical value giving the selected bandwidth (the standard deviation of the
smoothing kernel).

68 CDF

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References
Stoyan, D. and Stoyan, H. (1995) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

pcf, bw.relrisk

Examples

bw.stoyan(shapley)

CDF Cumulative Distribution Function From Kernel Density Estimate

Description

Given a kernel estimate of a probability density, compute the corresponding cumulative distribution
function.

Usage

CDF(f, ...)

S3 method for class 'density'

CDF(f, ..., warn = TRUE)
Arguments
f Density estimate (object of class "density").
Ignored.
warn Logical value indicating whether to issue a warning if the density estimate f had

to be renormalised because it was computed in a restricted interval.

Details

CDF is generic, with a method for class "density”.

This calculates the cumulative distribution function whose probability density has been estimated
and stored in the object f. The object f must belong to the class "density”, and would typically
have been obtained from a call to the function density.

cdf.test 69

Value

A function, which can be applied to any numeric value or vector of values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

density, quantile.density

Examples

b <- density(runif(10))
f <- CDF(b)

f(0.5)

plot(f)

cdf. test Spatial Distribution Test for Point Pattern or Point Process Model

Description

Performs a test of goodness-of-fit of a point process model. The observed and predicted distribu-
tions of the values of a spatial covariate are compared using either the Kolmogorov-Smirnov test,
Cramér-von Mises test or Anderson-Darling test. For non-Poisson models, a Monte Carlo test is
used.

Usage
cdf.test(...)
S3 method for class 'ppp'

cdf.test(X, covariate, test=c("ks”, "cvm", "ad"), ...,
interpolate=TRUE, jitter=TRUE)

Arguments
X A point pattern (object of class "ppp"” or "1pp").
covariate The spatial covariate on which the test will be based. A function, a pixel image

nyn no,n

(object of class "im"), a list of pixel images, or one of the characters "x" or "y
indicating the Cartesian coordinates.

70

cdf.test
test Character string identifying the test to be performed: "ks" for Kolmogorov-
Smirnov test, "cvm” for Cramér-von Mises test or "ad” for Anderson-Darling

test.

Arguments passed to ks. test (from the stats package) or cvm. test or ad. test
(from the goftest package) to control the test; and arguments passed to as.mask
to control the pixel resolution.

interpolate Logical flag indicating whether to interpolate pixel images. If interpolate=TRUE,
the value of the covariate at each point of X will be approximated by interpolat-
ing the nearby pixel values. If interpolate=FALSE, the nearest pixel value will
be used.

jitter Logical flag. If jitter=TRUE, values of the covariate will be slightly perturbed
at random, to avoid tied values in the test.

Details

These functions perform a goodness-of-fit test of a Poisson or Gibbs point process model fitted
to point pattern data. The observed distribution of the values of a spatial covariate at the data
points, and the predicted distribution of the same values under the model, are compared using the
Kolmogorov-Smirnov test, the Cramér-von Mises test or the Anderson-Darling test. For Gibbs
models, a Monte Carlo test is performed using these test statistics.

The function cdf . test is generic, with methods for point patterns ("ppp” or "1pp"), point process
models ("ppm” or "1ppm") and spatial logistic regression models ("slrm").

* If X is a point pattern dataset (object of class "ppp"), then cdf.test(X, ...) performs a
goodness-of-fit test of the uniform Poisson point process (Complete Spatial Randomness,
CSR) for this dataset. For a multitype point pattern, the uniform intensity is assumed to de-
pend on the type of point (sometimes called Complete Spatial Randomness and Independence,
CSRI).

* Ifmodel is a fitted point process model (object of class "ppm” or "1ppm") then cdf . test (model,
...) performs a test of goodness-of-fit for this fitted model.

* If model is a fitted spatial logistic regression (object of class "slrm") then cdf.test(model,
...) performs a test of goodness-of-fit for this fitted model.

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model, using a
classical goodness-of-fit test. Thus, you must nominate a spatial covariate for this test.

If X is a point pattern that does not have marks, the argument covariate should be either a
function(x,y) or a pixel image (object of class "im"” containing the values of a spatial func-
tion, or one of the characters "x" or "y" indicating the Cartesian coordinates. If covariate is an
image, it should have numeric values, and its domain should cover the observation window of the
model. If covariate is a function, it should expect two arguments x and y which are vectors of

coordinates, and it should return a numeric vector of the same length as x and y.

If X is a multitype point pattern, the argument covariate can be either a function(x,y,marks),
or a pixel image, or a list of pixel images corresponding to each possible mark value, or one of the

n,n no,n

characters "x" or "y" indicating the Cartesian coordinates.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

cdf.test 71

The predicted distribution of the values of the covariate under the fitted model is computed as
follows. The values of the covariate at all locations in the observation window are evaluated,
weighted according to the point process intensity of the fitted model, and compiled into a cumulative
distribution function F' using ewcdf.

The probability integral transformation is then applied: the values of the covariate at the original
data points are transformed by the predicted cumulative distribution function F' into numbers be-
tween 0 and 1. If the model is correct, these numbers are i.i.d. uniform random numbers. The A
goodness-of-fit test of the uniform distribution is applied to these numbers using stats: :ks. test,
goftest::cvm.test or goftest::ad. test.

This test was apparently first described (in the context of spatial data, and using Kolmogorov-
Smirnov) by Berman (1986). See also Baddeley et al (2005).

If model is not a Poisson process, then a Monte Carlo test is performed, by generating nsim point
patterns which are simulated realisations of the model, re-fitting the model to each simulated point
pattern, and calculating the test statistic for each fitted model. The Monte Carlo p value is deter-
mined by comparing the simulated values of the test statistic with the value for the original data.

The return value is an object of class "htest"” containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

The return value also belongs to the class "cdftest” for which there is a plot method plot.cdftest.
The plot method displays the empirical cumulative distribution function of the covariate at the data
points, and the predicted cumulative distribution function of the covariate under the model, plotted
against the value of the covariate.

The argument jitter controls whether covariate values are randomly perturbed, in order to avoid
ties. If the original data contains any ties in the covariate (i.e. points with equal values of the
covariate), and if jitter=FALSE, then the Kolmogorov-Smirnov test implemented in ks. test will
issue a warning that it cannot calculate the exact p-value. To avoid this, if jitter=TRUE each value
of the covariate will be perturbed by adding a small random value. The perturbations are normally
distributed with standard deviation equal to one hundredth of the range of values of the covariate.
This prevents ties, and the p-value is still correct. There is a very slight loss of power.

Value

An object of class "htest” containing the results of the test. See ks.test for details. The return
value can be printed to give an informative summary of the test.

The value also belongs to the class "cdftest” for which there is a plot method.

Warning

The outcome of the test involves a small amount of random variability, because (by default) the
coordinates are randomly perturbed to avoid tied values. Hence, if cdf. test is executed twice, the
p-values will not be exactly the same. To avoid this behaviour, set jitter=FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

72 circdensity

References

Baddeley, A., Turner, R., Mgller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617-666.

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54—62.

See Also

plot.cdftest, quadrat.test, berman. test, ks. test, cvm. test, ad. test, ppm

Examples

op <- options(useFancyQuotes=FALSE)

test of CSR using x coordinate
cdf.test(nztrees, "x")

cdf.test(nztrees, "x", "cvm")
cdf.test(nztrees, "x", "ad")

test of CSR using a function of x and y
fun <- function(x,y){2* x + y}
cdf.test(nztrees, fun)

test of CSR using an image covariate

funimage <- as.im(fun, W=Window(nztrees))
cdf.test(nztrees, funimage)

multitype point pattern
cdf.test(amacrine, "x")

options(op)

circdensity Density Estimation for Circular Data

Description

Computes a kernel smoothed estimate of the probability density for angular data.

Usage

circdensity(x, sigma = "nrde", ...,
bw = NULL,
weights=NULL, unit = c("degree"”, "radian"))

clarkevans 73

Arguments
X Numeric vector, containing angular data.
sigma Smoothing bandwidth, or bandwidth selection rule, passed to density.default.
bw Alternative to sigma for consistency with other functions.
Additional arguments passed to density.default, such as kernel and weights.
weights Optional numeric vector of weights for the data in x.
unit The unit of angle in which x is expressed.
Details

The angular values x are smoothed using (by default) the wrapped Gaussian kernel with standard
deviation sigma.

Value
An object of class "density"” (produced by density.default) which can be plotted by plot or
by rose.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

density.default), rose.

Examples

ang <- runif (1000, max=360)
rose(circdensity(ang, 12))

clarkevans Clark and Evans Aggregation Index

Description

Computes the Clark and Evans aggregation index R for a spatial point pattern.

Usage

clarkevans(X, correction=c("none", "Donnelly"”, "cdf"),
clipregion=NULL)

74 clarkevans
Arguments
X A spatial point pattern (object of class "ppp").
correction Character vector. The type of edge correction(s) to be applied.
clipregion Clipping region for the guard area correction. A window (object of class "owin").
See Details.
Details

The Clark and Evans (1954) aggregation index R is a crude measure of clustering or ordering of a
point pattern. It is the ratio of the observed mean nearest neighbour distance in the pattern to that
expected for a Poisson point process of the same intensity. A value R > 1 suggests ordering, while
R < 1 suggests clustering.

Without correction for edge effects, the value of R will be positively biased. Edge effects arise
because, for a point of X close to the edge of the window, the true nearest neighbour may actually
lie outside the window. Hence observed nearest neighbour distances tend to be larger than the true
nearest neighbour distances.

The argument correction specifies an edge correction or several edge corrections to be applied.
n n

It is a character vector containing one or more of the options "none”, "Donnelly”, "guard” and
"cdf"” (which are recognised by partial matching). These edge corrections are:

""none'': No edge correction is applied.

"Donnelly': Edge correction of Donnelly (1978), available for rectangular windows only. The
theoretical expected value of mean nearest neighbour distance under a Poisson process is
adjusted for edge effects by the edge correction of Donnelly (1978). The value of R is the
ratio of the observed mean nearest neighbour distance to this adjusted theoretical mean.

"guard'': Guard region or buffer area method. The observed mean nearest neighbour distance for
the point pattern X is re-defined by averaging only over those points of X that fall inside the
sub-window clipregion.

"edf'': Cumulative Distribution Function method. The nearest neighbour distance distribution
function G(r) of the stationary point process is estimated by Gest using the Kaplan-Meier
type edge correction. Then the mean of the distribution is calculated from the cdf.

Alternatively correction="all" selects all options.

If the argument clipregion is given, then the selected edge corrections will be assumed to include
correction="guard".

To perform a test based on the Clark-Evans index, see clarkevans. test.

Value

A numeric value, or a numeric vector with named components

naive R without edge correction
Donnelly R using Donnelly edge correction
guard R using guard region

cdf R using cdf method

(as selected by correction). The value of the Donnelly component will be NA if the window of X
is not a rectangle.

clarkevans.test 75

Author(s)

John Rudge <rudge@esc. cam. ac.uk> with modifications by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbour as a measure of spatial relationships
in populations Ecology 35, 445-453.

Donnelly, K. (1978) Simulations to determine the variance and edge-effect of total nearest neigh-
bour distance. In I. Hodder (ed.) Simulation studies in archaeology, Cambridge/New York: Cam-
bridge University Press, pp 91-95.

See Also

clarkevans. test, hopskel, nndist, Gest

Examples

Example of a clustered pattern
clarkevans(redwood)

Example of an ordered pattern
clarkevans(cells)

Random pattern
X <- rpoispp(100)
clarkevans(X)

How to specify a clipping region

clipl <- owin(c(0.1,0.9),c(0.1,0.9))
clip2 <- erosion(Window(cells), 0.1)
clarkevans(cells, clipregion=clip1)
clarkevans(cells, clipregion=clip2)

clarkevans.test Clark and Evans Test

Description

Performs the Clark-Evans test of aggregation for a spatial point pattern.

Usage
clarkevans.test(X, ...,
correction,
clipregion=NULL,
alternative=c("two.sided”, "less", "greater”,

"clustered”, "regular"),
method=c("asymptotic”, "MonteCarlo"),
nsim=999)

76 clarkevans.test

Arguments
X A spatial point pattern (object of class "ppp").
Ignored.
correction Character string. The type of edge correction to be applied. See clarkevans
and Details below.
clipregion Clipping region for the guard area correction. A window (object of class "owin").
See clarkevans
alternative String indicating the type of alternative for the hypothesis test. Partially matched.
method Character string (partially matched) specifying how to calculate the p-value of
the test. See Details.
nsim Number of Monte Carlo simulations to perform, if a Monte Carlo p-value is
required.
Details

This command uses the Clark and Evans (1954) aggregation index R as the basis for a crude test of
clustering or ordering of a point pattern.

The Clark-Evans aggregation index R is computed by the separate function clarkevans.

This command clarkevans. text performs a hypothesis test of clustering or ordering of the point
pattern X based on the Clark-Evans index 2. The null hypothesis is Complete Spatial Random-
ness, i.e.\ a uniform Poisson process. The alternative hypothesis is specified by the argument
alternative:

* alternative="less" or alternative="clustered": the alternative hypothesis is that R <
1 corresponding to a clustered point pattern;

* alternative="greater” oralternative="regular": the alternative hypothesis is that R >
1 corresponding to a regular or ordered point pattern;

* alternative="two.sided": the alternative hypothesis is that R # 1 corresponding to a
clustered or regular pattern.

The Clark-Evans index R is first computed for the point pattern dataset X using the edge correction
determined by the arguments correction and clipregion. These arguments are documented in
the help file for clarkevans.

If method="asymptotic” (the default), the p-value for the test is computed by standardising R as
proposed by Clark and Evans (1954) and referring the standardised statistic to the standard Normal
distribution. For this asymptotic test, the default edge correction is correction="Donnelly"” if the
window of X is a rectangle, and correction="cdf" otherwise. It is strongly recommended to avoid
using correction="none" which would lead to a severely biased test.

If method="MonteCarlo”, the p-value for the test is computed by comparing the observed value
of R to the results obtained from nsim simulated realisations of Complete Spatial Randomness
conditional on the observed number of points. This test is theoretically exact for any choice of
edge correction, but may have lower power than the asymptotic test. For this Monte Carlo test, the
default edge correction is correction="none" for computational efficiency.

clusterset 77

Value

An object of class "htest"” representing the result of the test.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbour as a measure of spatial relationships
in populations. Ecology 35, 445-453.

Donnelly, K. (1978) Simulations to determine the variance and edge-effect of total nearest neigh-
bour distance. In Simulation methods in archaeology, Cambridge University Press, pp 91-95.

See Also

clarkevans, hopskel. test

Examples

Redwood data - clustered

clarkevans. test(redwood)

clarkevans. test(redwood, alternative="clustered")

clarkevans. test(redwood, correction="cdf"”, method="MonteCarlo”, nsim=39)

clusterset Allard-Fraley Estimator of Cluster Feature

Description

Detect high-density features in a spatial point pattern using the (unrestricted) Allard-Fraley estima-

tor.
Usage
clusterset(X, what=c("marks”, "domain"),
., verbose=TRUE,
fast=FALSE,
exact=!fast)
Arguments
X A dimensional spatial point pattern (object of class "ppp").
what Character string or character vector specifying the type of result. See Details.

verbose Logical value indicating whether to print progress reports.

78 clusterset

fast Logical. If FALSE (the default), the Dirichlet tile areas will be computed exactly
using polygonal geometry, so that the optimal choice of tiles will be computed
exactly. If TRUE, the Dirichlet tile areas will be approximated using pixel count-
ing, so the optimal choice will be approximate.

exact Logical. If TRUE, the Allard-Fraley estimator of the domain will be computed
exactly using polygonal geometry. If FALSE, the Allard-Fraley estimator of the
domain will be approximated by a binary pixel mask. The default is initially set
to FALSE.

Optional arguments passed to as . mask to control the pixel resolution if exact=FALSE.

Details
Allard and Fraley (1997) developed a technique for recognising features of high density in a spatial
point pattern in the presence of random clutter.

This algorithm computes the unrestricted Allard-Fraley estimator. The Dirichlet (Voronoi) tessel-
lation of the point pattern X is computed. The smallest m Dirichlet cells are selected, where the
number m is determined by a maximum likelihood criterion.

o If fast=FALSE (the default), the areas of the tiles of the Dirichlet tessellation will be computed
exactly using polygonal geometry. This ensures that the optimal selection of tiles is computed
exactly.

* If fast=TRUE, the Dirichlet tile areas will be approximated by counting pixels. This is faster,
and is usually correct (depending on the pixel resolution, which is controlled by the arguments

)
The type of result depends on the character vector what.

e If what="marks" the result is the point pattern X with a vector of marks labelling each point
with a value yes or no depending on whether the corresponding Dirichlet cell is selected by
the Allard-Fraley estimator. In other words each point of X is labelled as either a cluster point
or a non-cluster point.

e If what="domain", the result is the Allard-Fraley estimator of the cluster feature set, which is
the union of all the selected Dirichlet cells, represented as a window (object of class "owin").

e If what=c("marks"”, "domain") the result is a list containing both of the results described
above.
Computation of the Allard-Fraley set estimator depends on the argument exact.
* If exact=TRUE (the default), the Allard-Fraley set estimator will be computed exactly using
polygonal geometry. The result is a polygonal window.

* If exact=FALSE, the Allard-Fraley set estimator will be approximated by a binary pixel mask.
This is faster than the exact computation. The result is a binary mask.

Value

If what="marks", a multitype point pattern (object of class "ppp").
If what="domain", a window (object of class "owin").

If what=c("marks"”, "domain") (the default), a list consisting of a multitype point pattern and a
window.

collapse.fv 79

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Allard, D. and Fraley, C. (1997) Nonparametric maximum likelihood estimation of features in spa-

tial point processes using Voronoi tessellation. Journal of the American Statistical Association 92,
1485-1493.

See Also

nnclean, sharpen

Examples

opa <- par(mfrow=c(1,2))

W <- grow.rectangle(as.rectangle(letterR), 1)

X <- superimpose(runifpoint(300, letterR),
runifpoint (50, W), W=W)

plot(W, main="clusterset(X, 'm')")

plot(clusterset(X, "marks"”, fast=TRUE), add=TRUE, chars=c(1, 3), cols=1:2)

plot(letterR, add=TRUE)

plot(W, main="clusterset(X, 'd')")

plot(clusterset(X, "domain”, exact=FALSE), add=TRUE)

plot(letterR, add=TRUE)

par (opa)

collapse.fv Collapse Several Function Tables into One

Description

Combines several function tables (objects of class "fv") into a single function table, merging
columns that are identical and relabelling columns that are different.

Usage

S3 method for class 'fv'
collapse(object, ..., same = NULL, different

NULL)

S3 method for class 'anylist'
collapse(object, ..., same = NULL, different

NULL)

80 collapse.fv

Arguments
object An object of class "fv", or a list of such objects.
Additional objects of class "fv".
same Character string or character vector specifying a column or columns of func-
tion values that are identical in different "fv" objects. These columns will be
included only once in the result.
different Character string or character vector specifying a column or columns of function
values, that are different in different "fv" objects. Each of these columns of data
will be included, with labels that distinguish them from each other.
Details

This is a method for the generic function collapse.

It combines the data in several function tables (objects of class "fv", see fv.object) to make a
single function table. It is essentially a smart wrapper for cbind. fv.

A typical application is to calculate the same summary statistic (such as the K function) for different
point patterns, and then to use collapse.fv to combine the results into a single object that can
easily be plotted. See the Examples.

The arguments object and ... should be function tables (objects of class "fv", see fv.object)
that are compatible in the sense that they have the same values of the function argument. (This can
be ensured by applying harmonise. fv to them.)

The argument same identifies any columns that are present in some or all of the function tables, and
which are known to contain exactly the same values in each table that includes them. This column
or columns will be included only once in the result.

The argument different identifies any columns that are present in some or all of the function
tables, and which may contain different numerical values in different tables. Each of these columns
will be included, with labels to distinguish them.

Columns that are not named in same or different will not be included.
The function argument is always included and does not need to be specified.

The arguments same and different can be NULL, or they can be character vectors containing the
names of columns of object. The argument different can be one of the abbreviations recognised
by fvnames.

Value

Object of class "fv".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Rolf Turner <rolfturner@posteo.net>

See Also

fv.object, cbind. fv

compatible.fasp 81

Examples

generate simulated data

X <- replicate(3, rpoispp(100), simplify=FALSE)
names(X) <- paste(”Simulation”, 1:3)

compute K function estimates

Klist <- anylapply(X, Kest)

collapse
K <- collapse(Klist, same="theo", different="iso")
K
compatible. fasp Test Whether Function Arrays Are Compatible
Description

Tests whether two or more function arrays (class "fasp") are compatible.

Usage
S3 method for class 'fasp'
compatible(A, B, ...)
Arguments

AB,... Two or more function arrays (object of class "fasp”).

Details

An object of class "fasp” can be regarded as an array of functions. Such objects are returned by
the command alltypes.

This command tests whether such objects are compatible (so that, for example, they could be added
or subtracted). It is a method for the generic command compatible.

The function arrays are compatible if the arrays have the same dimensions, and the corresponding
elements in each cell of the array are compatible as defined by compatible. fv.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

eval.fasp

82 compatible.fv

compatible.fv Test Whether Function Objects Are Compatible

Description

Tests whether two or more function objects (class "fv") are compatible.

Usage
S3 method for class 'fv'
compatible(A, B, ..., samenames=TRUE)
Arguments
A,B,... Two or more function value objects (class "fv").
samenames Logical value indicating whether to check for complete agreement between the

column names of the objects (samenames=TRUE, the default) or just to check that
the name of the function argument is the same (samenames=FALSE).

Details

An object of class "fv" is essentially a data frame containing several different statistical estimates
of the same function. Such objects are returned by Kest and its relatives.

This command tests whether such objects are compatible (so that, for example, they could be added
or subtracted). It is a method for the generic command compatible.

The functions are compatible if they have been evaluated at the same sequence of values of the
argument r, and if the statistical estimates have the same names.

Value

Logical value: TRUE if the objects are compatible, and FALSE if they are not.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

eval.fv

compileCDF 83

compileCDF Generic Calculation of Cumulative Distribution Function of Distances

Description

A low-level function which calculates the estimated cumulative distribution function of a distance

variable.
Usage
compileCDF(D, B, r, ..., han.denom=NULL, check=TRUE)
Arguments
D A vector giving the distances from each data point to the target.
B A vector giving the distances from each data point to the window boundary, or
censoring distances.
r An equally spaced, finely spaced sequence of distance values at which the CDF
should be estimated.
Ignored.
han.denom Denominator for the Hanisch-Chiu-Stoyan estimator. A single number, or a
numeric vector with the same length as r.
check Logical value specifying whether to check validity of the data, for example, that
the vectors D and B have the same length, and contain non-negative numbers.
Details

This low-level function calculates estimates of the cumulative distribution function
F(ry=P(D<r)

of a distance variable D, given a vector of observed values of D and other information. Examples of
this concept include the empty space distance function computed by Fest and the nearest-neighbour
distance distribution function Gest.

This function compileCDF and its siblings compileK and compilepcf are useful for code devel-
opment and for teaching, because they perform a common task, and do the housekeeping required
to make an object of class "fv" that represents the estimated function. However, they are not very
efficient.

The argument D should be a numeric vector of shortest distances measured from each ‘query’ point
to the ‘target’ set. The argument B should be a numeric vector of shortest distances measured from
each ‘query’ point to the boundary of the window of observation. All entries of D and B should be
non-negative.

compileCDF calculates estimates of the cumulative distribution function F'(r) using the border
method (reduced sample estimator), the Kaplan-Meier estimator and, if han.denom is given, the
Hanisch-Chiu-Stoyan estimator. See Chapter 8 of Baddeley, Rubak and Turner (2015).

The result is an object of class "fv" representing the estimated function. Additional columns (such
as a column giving the theoretical value) must be added by the user, with the aid of bind. fv.

84 compileK

Value

An object of class "fv" representing the estimated function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References
Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

compilekK.

bind. fv to add more columns.

Examples

Equivalent to Gest(japanesepines)

X <- japanesepines

D <- nndist(X)

B <- bdist.points(X)

r <- seq(@, .25, by=0.01)

H <- eroded.areas(Window(X), r)

G <- compileCDF(D=D, B=B, r=r, han.denom=H)

G <- rebadge.fv(G, new.fname="G", new.ylab=quote(G(r)))
plot(G)

compileK Generic Calculation of K Function and Pair Correlation Function

Description

Low-level functions which calculate the estimated K function and estimated pair correlation func-
tion (or any similar functions) from a matrix of pairwise distances and optional weights.

Usage

compileK(D, r, weights = NULL, denom = 1,
check = TRUE, ratio = FALSE, fname = "K",
samplesize=denom)

compilepcf(D, r, weights = NULL, denom = 1,
check = TRUE, endcorrect = TRUE, ratio=FALSE,

non

., fname = "g", samplesize=denom)

compileK 85

Arguments
D A square matrix giving the distances between all pairs of points.
r An equally spaced, finely spaced sequence of distance values.
weights Optional numerical weights for the pairwise distances. A numeric matrix with
the same dimensions as D. If absent, the weights are taken to equal 1.
denom Denominator for the estimator. A single number, or a numeric vector with the
same length as r. See Details.
check Logical value specifying whether to check that D is a valid matrix of pairwise
distances.
ratio Logical value indicating whether to store ratio information. See Details.
Optional arguments passed to density.default controlling the kernel smooth-
ing.
endcorrect Logical value indicating whether to apply End Correction of the pair correlation
estimate at r=0.
fname Character string giving the name of the function being estimated.
samplesize The sample size that should be used as the denominator when ratio=TRUE.
Details

These low-level functions construct estimates of the K function or pair correlation function, or any
similar functions, given only the matrix of pairwise distances and optional weights associated with
these distances.

These functions are useful for code development and for teaching, because they perform a common
task, and do the housekeeping required to make an object of class "fv" that represents the estimated
function. However, they are not very efficient.

compileK calculates the weighted estimate of the K function,
K(r) = (1/v(r) Z Z Wdij < rhwg;

and compilepcf calculates the weighted estimate of the pair correlation function,
9(0) = (A/0(r)) 2, 2 wldy = r)os

where d;; is the distance between spatial points ¢ and j, with corresponding weight w;;, and v(r) is
a specified denominator. Here & is a fixed-bandwidth smoothing kernel.

For a point pattern in two dimensions, the usual denominator v(r) is constant for the K function,
and proportional to r for the pair correlation function. See the Examples.

The result is an object of class "fv" representing the estimated function. This object has only one
column of function values. Additional columns (such as a column giving the theoretical value) must
be added by the user, with the aid of bind. fv.

If ratio=TRUE, the result also belongs to class "rat” and has attributes containing the numerator
and denominator of the function estimate. (If samplesize is given, the numerator and denominator
are rescaled by a common factor so that the denominator is equal to samplesize.) This allows
function estimates from several datasets to be pooled using pool.

86 cov.im

Value

An object of class "fv" representing the estimated function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

Kest, pcf for definitions of the K function and pair correlation function.
bind. fv to add more columns.

compileCDF for the corresponding low-level utility for estimating a cumulative distribution func-
tion.

Examples

Equivalent to Kest(japanesepines) and pcf(japanesepines)
X <- japanesepines

D <- pairdist(X)

Wt <- edge.Ripley(X, D)

lambda <- intensity(X)

a <- (npoints(X)-1) * lambda

r <- seq(@, 0.25, by=0.01)

K <- compileK(D=D, r=r, weights=Wt, denom=a)

g <- compilepcf(D=D, r=r, weights=Wt, denom= a * 2 *x pi * r)

cov.im Covariance and Correlation between Images

Description

Compute the covariance or correlation between (the corresponding pixel values in) several images.

Usage
cov.im(..., use = "everything”, method = c("pearson”, "kendall”, "spearman"))
Arguments
Any number of arguments, each of which is a pixel image (object of class "im").
Alternatively, a single argument which is a list of pixel images.
use Argument passed to cov or cor determining how to handle NA values in the data.
method Argument passed to cov or cor determining the type of correlation that will be

computed.

dclf.progress 87

Details
The arguments ... should be pixel images (objects of class "im"). Their spatial domains must
overlap, but need not have the same pixel dimensions.

These functions compute the covariance or correlation between the corresponding pixel values in
the images given.

The pixel image domains are intersected, and converted to a common pixel resolution. Then the cor-
responding pixel values of each image are extracted. Finally the correlation or covariance between
the pixel values of each pair of images, at corresponding pixels, is computed.

The result is a symmetric matrix with one row and column for each image. The [i, j] entry is the
correlation or covariance between the ith and jth images in the argument list. The row names and
column names of the matrix are copied from the argument names if they were given (i.e. if the
arguments were given as name=value).

Note that cor and cov are not generic, so you have to type cor.im, cov.im.

Value

A symmetric matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also
cor, cov

pairs.im

Examples

cor.im(bei.extra)

dclf.progress Progress Plot of Test of Spatial Pattern

Description

Generates a progress plot (envelope representation) of the Diggle-Cressie-Loosmore-Ford test or
the Maximum Absolute Deviation test for a spatial point pattern.

Usage

dclf.progress(X, ...)

mad.progress(X, ...)

mctest.progress(X, fun = Lest, ...,
exponent = 1, nrank = 1,
interpolate = FALSE, alpha, rmin=0)

88 dclf.progress

Arguments

n o n

X Either a point pattern (object of class "ppp"”, "1pp" or other class), a fitted point
process model (object of class "ppm”, "kppm" or other class) or an envelope
object (class "envelope”).

Arguments passed to mctest.progress or to envelope. Useful arguments in-
clude fun to determine the summary function, nsim to specify the number of
Monte Carlo simulations, alternative to specify one-sided or two-sided en-
velopes, and verbose=FALSE to turn off the messages.

fun Function that computes the desired summary statistic for a point pattern.
exponent Positive number. The exponent of the L? distance. See Details.

nrank Integer. The rank of the critical value of the Monte Carlo test, amongst the nsim
simulated values. A rank of 1 means that the minimum and maximum simulated
values will become the critical values for the test.

interpolate Logical value indicating how to compute the critical value. If interpolate=FALSE
(the default), a standard Monte Carlo test is performed, and the critical value
is the largest simulated value of the test statistic (if nrank=1) or the nrank-th
largest (if nrank is another number). If interpolate=TRUE, kernel density es-
timation is applied to the simulated values, and the critical value is the upper
alpha quantile of this estimated distribution.

alpha Optional. The significance level of the test. Equivalent to nrank/(nsim+1)
where nsim is the number of simulations.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

Details

The Diggle-Cressie-Loosmore-Ford test and the Maximum Absolute Deviation test for a spatial
point pattern are described in dc1f. test. These tests depend on the choice of an interval of distance
values (the argument rinterval). A progress plot or envelope representation of the test (Baddeley
et al, 2014) is a plot of the test statistic (and the corresponding critical value) against the length of
the interval rinterval.

The command dclf.progress performs dclf.test on X using all possible intervals of the form
[0, R], and returns the resulting values of the test statistic, and the corresponding critical values of
the test, as a function of R.

Similarly mad. progress performs mad. test using all possible intervals and returns the test statistic
and critical value.

More generally, mctest.progress performs a test based on the L? discrepancy between the curves.
The deviation between two curves is measured by the pth root of the integral of the pth power of the
absolute value of the difference between the two curves. The exponent p is given by the argument
exponent. The case exponent=2 is the Cressie-Loosmore-Ford test, while exponent=Inf is the
MAD test.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [ry,, R] where R > 7.

dclf.sigtrace 89

The result of each command is an object of class "fv" that can be plotted to obtain the progress
plot. The display shows the test statistic (solid black line) and the Monte Carlo acceptance region
(grey shading).

The significance level for the Monte Carlo test is nrank/(nsim+1). Note that nsim defaults to 99,
so if the values of nrank and nsim are not given, the default is a test with significance level 0.01.

If X is an envelope object, then some of the data stored in X may be re-used:

 If X is an envelope object containing simulated functions, and fun=NULL, then the code will
re-use the simulated functions stored in X.

 If X is an envelope object containing simulated point patterns, then fun will be applied to the
stored point patterns to obtain the simulated functions. If fun is not specified, it defaults to
Lest.

* Otherwise, new simulations will be performed, and fun defaults to Lest.

Value

An object of class "fv" that can be plotted to obtain the progress plot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Andrew Hardegen, Tom Lawrence, Gopal Nair and Robin Milne.

References
Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477-489.

See Also

dclf.test and mad. test for the tests.

See plot. fv for information on plotting objects of class "fv".

Examples

plot(dclf.progress(cells, nsim=19))

dclf.sigtrace Significance Trace of Cressie-Loosmore-Ford or Maximum Absolute
Deviation Test

Description

Generates a Significance Trace of the Diggle(1986)/ Cressie (1991)/ Loosmore and Ford (2006) test
or the Maximum Absolute Deviation test for a spatial point pattern.

90 dclt.sigtrace

Usage
dclf.sigtrace(X, ...)
mad.sigtrace(X, ...)

mctest.sigtrace(X, fun=Lest, ...,
exponent=1, interpolate=FALSE, alpha=0.05,
confint=TRUE, rmin=0)

Arguments

n o n

X Either a point pattern (object of class "ppp"”, "1pp" or other class), a fitted point
process model (object of class "ppm”, "kppm" or other class) or an envelope
object (class "envelope”).

Arguments passed to envelope or mctest.progress. Useful arguments in-

clude fun to determine the summary function, nsim to specify the number of
Monte Carlo simulations, alternative to specify a one-sided test, and verbose=FALSE
to turn off the messages.

fun Function that computes the desired summary statistic for a point pattern.
exponent Positive number. The exponent of the LP distance. See Details.

interpolate Logical value specifying whether to calculate the p-value by interpolation. If
interpolate=FALSE (the default), a standard Monte Carlo test is performed,
yielding a p-value of the form (k + 1)/(n + 1) where n is the number of sim-
ulations and % is the number of simulated values which are more extreme than
the observed value. If interpolate=TRUE, the p-value is calculated by apply-
ing kernel density estimation to the simulated values, and computing the tail
probability for this estimated distribution.

alpha Significance level to be plotted (this has no effect on the calculation but is simply
plotted as a reference value).

confint Logical value indicating whether to compute a confidence interval for the ‘true’
p-value.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.

Details

The Diggle (1986)/ Cressie (1991)/Loosmore and Ford (2006) test and the Maximum Absolute
Deviation test for a spatial point pattern are described in dclf.test. These tests depend on the
choice of an interval of distance values (the argument rinterval). A significance trace (Bowman
and Azzalini, 1997; Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner, 2015) of the test is a
plot of the p-value obtained from the test against the length of the interval rinterval.

The command dclf.sigtrace performs dclf.test on X using all possible intervals of the form
[0, R], and returns the resulting p-values as a function of R.

Similarly mad. sigtrace performs mad. test using all possible intervals and returns the p-values.

More generally, mctest . sigtrace performs a test based on the L? discrepancy between the curves.
The deviation between two curves is measured by the pth root of the integral of the pth power of the
absolute value of the difference between the two curves. The exponent p is given by the argument

dclf.sigtrace 91

exponent. The case exponent=2 is the Cressie-Loosmore-Ford test, while exponent=Inf is the
MAD test.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [ryn, R] where R > 7rin.

The result of each command is an object of class "fv" that can be plotted to obtain the significance
trace. The plot shows the Monte Carlo p-value (solid black line), the critical value @.05 (dashed
red line), and a pointwise 95% confidence band (grey shading) for the ‘true’ (Neyman-Pearson)
p-value. The confidence band is based on the Agresti-Coull (1998) confidence interval for a bino-
mial proportion (when interpolate=FALSE) or the delta method and normal approximation (when
interpolate=TRUE).

If X is an envelope object and fun=NULL then the code will re-use the simulated functions stored in
X.

Value

An object of class "fv" that can be plotted to obtain the significance trace.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Agresti, A. and Coull, B.A. (1998) Approximate is better than “Exact” for interval estimation of
binomial proportions. American Statistician 52, 119-126.

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477-489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Bowman, A.W. and Azzalini, A. (1997) Applied smoothing techniques for data analysis: the kernel
approach with S-Plus illustrations. Oxford University Press, Oxford.

See Also

dclf. test for the tests; dc1f.progress for progress plots.
See plot. fv for information on plotting objects of class "fv".

See also dg.sigtrace.

Examples

plot(dclf.sigtrace(cells, Lest, nsim=19))

92

dclf.test

dclf.test

Diggle-Cressie-Loosmore-Ford and Maximum Absolute Deviation
Tests

Description

Perform the Diggle (1986) / Cressie (1991) / Loosmore and Ford (2006) test or the Maximum
Absolute Deviation test for a spatial point pattern.

Usage

dclf.test(X,

mad. test (X,

Arguments

X

alternative

rinterval

leaveout

scale

clamp

., alternative=c("two.sided”, "less", "greater"),

rinterval = NULL, leaveout=1,
scale=NULL, clamp=FALSE, interpolate=FALSE)

., alternative=c("two.sided”, "less", "greater"),

rinterval = NULL, leaveout=1,
scale=NULL, clamp=FALSE, interpolate=FALSE)

n on

Data for the test. Either a point pattern (object of class "ppp”, "1pp"” or other
class), a fitted point process model (object of class "ppm”, "kppm” or other
class), a simulation envelope (object of class "envelope"”) or a previous result
of dclf.test or mad. test.

Arguments passed to envelope. Useful arguments include fun to determine
the summary function, nsim to specify the number of Monte Carlo simulations,
verbose=FALSE to turn off the messages, savefuns or savepatterns to save
the simulation results, and use. theory described under Details.

The alternative hypothesis. A character string. The default is a two-sided alter-
native. See Details.

Interval of values of the summary function argument r over which the maximum
absolute deviation, or the integral, will be computed for the test. A numeric
vector of length 2.

Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

Optional. A function in the R language which determines the relative scale of
deviations, as a function of distance . Summary function values for distance r
will be divided by scale(r) before the test statistic is computed.

Logical value indicating how to compute deviations in a one-sided test. Devia-
tions of the observed summary function from the theoretical summary function
are initially evaluated as signed real numbers, with large positive values indicat-
ing consistency with the alternative hypothesis. If clamp=FALSE (the default),
these values are not changed. If clamp=TRUE, any negative values are replaced
by zero.

dclf.test 93

interpolate Logical value specifying whether to calculate the p-value by interpolation. If
interpolate=FALSE (the default), a standard Monte Carlo test is performed,
yielding a p-value of the form (k + 1)/(n + 1) where n is the number of sim-
ulations and k is the number of simulated values which are more extreme than
the observed value. If interpolate=TRUE, the p-value is calculated by apply-
ing kernel density estimation to the simulated values, and computing the tail
probability for this estimated distribution.

Details

These functions perform hypothesis tests for goodness-of-fit of a point pattern dataset to a point
process model, based on Monte Carlo simulation from the model.

dclf.test performs the test advocated by Loosmore and Ford (2006) which is also described
in Diggle (1986), Cressie (1991, page 667, equation (8.5.42)) and Diggle (2003, page 14). See
Baddeley et al (2014) for detailed discussion.

mad. test performs the ‘global’ or ‘Maximum Absolute Deviation’ test described by Ripley (1977,
1981). See Baddeley et al (2014).

The type of test depends on the type of argument X.

* If X is some kind of point pattern, then a test of Complete Spatial Randomness (CSR) will be
performed. That is, the null hypothesis is that the point pattern is completely random.

 If X is a fitted point process model, then a test of goodness-of-fit for the fitted model will be
performed. The model object contains the data point pattern to which it was originally fitted.
The null hypothesis is that the data point pattern is a realisation of the model.

 If X is an envelope object generated by envelope, then it should have been generated with
savefuns=TRUE or savepatterns=TRUE so that it contains simulation results. These simula-
tions will be treated as realisations from the null hypothesis.

 Alternatively X could be a previously-performed test of the same kind (i.e. the result of calling
dclf.test or mad. test). The simulations used to perform the original test will be re-used
to perform the new test (provided these simulations were saved in the original test, by setting
savefuns=TRUE or savepatterns=TRUE).

The argument alternative specifies the alternative hypothesis, that is, the direction of deviation
that will be considered statistically significant. If alternative="two.sided"” (the default), both
positive and negative deviations (between the observed summary function and the theoretical func-
tion) are significant. If alternative="1less", then only negative deviations (where the observed
summary function is lower than the theoretical function) are considered. If alternative="greater"”,
then only positive deviations (where the observed summary function is higher than the theoretical
function) are considered.

In all cases, the algorithm will first call envelope to generate or extract the simulated summary
functions. The number of simulations that will be generated or extracted, is determined by the
argument nsim, and defaults to 99. The summary function that will be computed is determined by
the argument fun (or the first unnamed argument in the list . . .) and defaults to Kest (except when
X is an envelope object generated with savefuns=TRUE, when these functions will be taken).

The choice of summary function fun affects the power of the test. It is normally recommended
to apply a variance-stabilising transformation (Ripley, 1981). If you are using the K function,
the normal practice is to replace this by the L function (Besag, 1977) computed by Lest. If you

94

dclf.test

are using the F' or G functions, the recommended practice is to apply Fisher’s variance-stabilising
transformation sin~ ' \/z using the argument transform. See the Examples.

The argument rinterval specifies the interval of distance values r which will contribute to the test
statistic (either maximising over this range of values for mad. test, or integrating over this range
of values for dclf.test). This affects the power of the test. General advice and experiments in
Baddeley et al (2014) suggest that the maximum r value should be slightly larger than the maximum
possible range of interaction between points. The dc1f. test is quite sensitive to this choice, while
the mad. test is relatively insensitive.

It is also possible to specify a pointwise test (i.e. taking a single, fixed value of distance r) by
specifing rinterval = c(r,r).

The argument use. theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use.theory=FALSE). The test statistic 7" is defined in equations (10.21)
and (10.22) respectively on page 394 of Baddeley, Rubak and Turner (2015).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "htest". Printing this object gives a report on the result of the test. The p-value
is contained in the component p.value.

Handling Ties

If the observed value of the test statistic is equal to one or more of the simulated values (called a
tied value), then the tied values will be assigned a random ordering, and a message will be printed.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Andrew Hardegen and Suman Rakshit.

References

Baddeley, A., Diggle, P.J., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477-489.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Besag, J. (1977) Discussion of Dr Ripley’s paper. Journal of the Royal Statistical Society, Series B,
39, 193-195.

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-

els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497—
517.

density.ppp 95

Diggle, P. J. (1986). Displaced amacrine cells in the retina of a rabbit : analysis of a bivariate spatial
point pattern. J. Neuroscience Methods 18, 115-125.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Loosmore, N.B. and Ford, E.D. (2006) Statistical inference using the G or K point pattern spatial
statistics. Ecology 87, 1925-1931.

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 —212.

Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.

See Also

envelope, dclf.progress

Examples

dclf.test(cells, Lest, nsim=39)

m <- mad.test(cells, Lest, verbose=FALSE, rinterval=c(@, ©.1), nsim=19)

m

extract the p-value

m$p.value

variance stabilised G function

dclf.test(cells, Gest, transform=expression(asin(sqrt(.))),
verbose=FALSE, nsim=19)

one-sided test
ml <- mad.test(cells, Lest, verbose=FALSE, nsim=19, alternative="less")

scaled

mad. test(cells, Kest, verbose=FALSE, nsim=19,
rinterval=c(0.05, 0.2),
scale=function(r) { r })

density.ppp Kernel Smoothed Intensity of Point Pattern

Description

Compute a kernel smoothed intensity function from a point pattern.

Usage

S3 method for class 'ppp'
density(x, sigma=NULL, ...,
weights=NULL, edge=TRUE, varcov=NULL,
at="pixels"”, leaveoneout=TRUE,
adjust=1, diggle=FALSE,
se=FALSE, wtype=c("value”, "multiplicity"),

96 density.ppp

kernel="gaussian"”,
scalekernel=is.character(kernel),
positive=FALSE, verbose=TRUE, sameas)

Arguments

X Point pattern (object of class "ppp").

sigma The smoothing bandwidth (the amount of smoothing). The standard deviation
of the isotropic smoothing kernel. Either a numerical value, or a function that
computes an appropriate value of sigma.

weights Optional weights to be attached to the points. A numeric vector, numeric matrix,
an expression, or a pixel image.
Additional arguments passed to pixellate.ppp and as.mask to determine the
pixel resolution, or passed to sigma if it is a function.

edge Logical value indicating whether to apply edge correction.

varcov Variance-covariance matrix of anisotropic smoothing kernel. Incompatible with
sigma.

at String specifying whether to compute the intensity values at a grid of pixel lo-
cations (at="pixels") or only at the points of x (at="points").

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

adjust Optional. Adjustment factor for the smoothing parameter.

diggle Logical. If TRUE, use the Jones-Diggle improved edge correction, which is more
accurate but slower to compute than the default correction.

kernel The smoothing kernel. A character string specifying the smoothing kernel (cur-
rent options are "gaussian”, "epanechnikov”, "quartic” or "disc"), or a
pixel image (object of class "im") containing values of the kernel, or a function(x,y)
which yields values of the kernel.

scalekernel Logical value. If scalekernel=TRUE, then the kernel will be rescaled to the
bandwidth determined by sigma and varcov: this is the default behaviour when
kernel is a character string. If scalekernel=FALSE, then sigma and varcov
will be ignored: this is the default behaviour when kernel is a function or a
pixel image.

se Logical value indicating whether to compute standard errors as well.

wtype Character string (partially matched) specifying how the weights should be inter-
preted for the calculation of standard error. See Details.

positive Logical value indicating whether to force all density values to be positive num-
bers. Default is FALSE.

verbose Logical value indicating whether to issue warnings about numerical problems
and conditions.

sameas Optional. The result of a previous evaluation of density.ppp. Smoothing

will be performed using the same kernel and bandwidth that were used to pro-
duce sameas. Namely the values of the arguments kernel, sigma, varcov,
scalekernel and adjust will be overwritten by the values that were used to
produce sameas.

density.ppp 97

Details

This is a method for the generic function density.

It computes a fixed-bandwidth kernel estimate (Diggle, 1985) of the intensity function of the point
process that generated the point pattern x.

The amount of smoothing is controlled by sigma if it is specified.

By default, smoothing is performed using a Gaussian kernel. The resulting density estimate is the
convolution of the isotropic Gaussian kernel, of standard deviation sigma, with point masses at each
of the data points in x.

Anisotropic kernels, and non-Gaussian kernels, are also supported. Each point has unit weight,
unless the argument weights is given.

If edge=TRUE (the default), the intensity estimate is corrected for edge effect bias.

If at="pixels" (the default), the result is a pixel image giving the estimated intensity at each pixel
in a grid. If at="points", the result is a numeric vector giving the estimated intensity at each of
the original data points in x.

Value
By default, the result is a pixel image (object of class "im"). Pixel values are estimated intensity
values, expressed in “points per unit area”.

If at="points", the result is a numeric vector of length equal to the number of points in x. Values
are estimated intensity values at the points of x.

In either case, the return value has attributes "sigma” and "varcov” which report the smoothing
bandwidth that was used.

If weights is a matrix with more than one column, then the result is a list of images (if at="pixels")
or a matrix of numerical values (if at="points").

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

Amount of smoothing
The amount of smoothing is determined by the arguments sigma, varcov and adjust.

* if sigma is a single numerical value, this is taken as the standard deviation of the isotropic
Gaussian kernel.

* alternatively sigma may be a function that computes an appropriate bandwidth from the data
point pattern by calling sigma(x). To perform automatic bandwidth selection using cross-
validation, it is recommended to use the functions bw.diggle, bw.CvL, bw.scott or bw.ppl.

* The smoothing kernel may be made anisotropic by giving the variance-covariance matrix
varcov. The arguments sigma and varcov are incompatible.

* Alternatively sigma may be a vector of length 2 giving the standard deviations of the = and y
coordinates, thus equivalent to varcov = diag(rep(sigma*2, 2)).

» if neither sigma nor varcov is specified, an isotropic Gaussian kernel will be used, with a
default value of sigma calculated by a simple rule of thumb that depends only on the size of
the window.

98 density.ppp

* The argument adjust makes it easy for the user to change the bandwidth specified by any
of the rules above. The value of sigma will be multiplied by the factor adjust. The matrix
varcov will be multiplied by adjust*2. To double the smoothing bandwidth, set adjust=2.

* An infinite bandwidth, sigma=Inf or adjust=Inf, is permitted, and yields an intensity esti-
mate which is constant over the spatial domain.

Edge correction

If edge=TRUE, the intensity estimate is corrected for edge effect bias in one of two ways:

» If diggle=FALSE (the default) the intensity estimate is correted by dividing it by the convolu-
tion of the Gaussian kernel with the window of observation. This is the approach originally
described in Diggle (1985). Thus the intensity value at a point « is

;\(u) = e(u) Z k(z; — uw)w;

where k is the Gaussian smoothing kernel, e(u) is an edge correction factor, and w; are the
weights.

 If diggle=TRUE then the code uses the improved edge correction described by Jones (1993)
and Diggle (2010, equation 18.9). This has been shown to have better performance (Jones,
1993) but is slightly slower to compute. The intensity value at a point u is

S\(u) = Z k(x; —w)we(x;)

where again k is the Gaussian smoothing kernel, e(z;) is an edge correction factor, and w; are
the weights.

In both cases, the edge correction term e(u) is the reciprocal of the kernel mass inside the window:

where W is the observation window.

Smoothing kernel

By default, smoothing is performed using a Gaussian kernel.

The choice of smoothing kernel is determined by the argument kernel. This should be a character
string giving the name of a recognised two-dimensional kernel (current options are "gaussian”,
"epanechnikov”, "quartic” or "disc"), or a pixel image (object of class "im") containing values
of the kernel, or a function(x,y) which yields values of the kernel. The default is a Gaussian

kernel.

If scalekernel=TRUE then the kernel values will be rescaled according to the arguments sigma,
varcov and adjust as explained above, effectively treating kernel as the template kernel with
standard deviation equal to 1. This is the default behaviour when kernel is a character string. If
scalekernel=FALSE, the kernel values will not be altered, and the arguments sigma, varcov and
adjust are ignored. This is the default behaviour when kernel is a pixel image or a function.

density.ppp 99

Desired output

If at="pixels"” (the default), intensity values are computed at every location « in a fine grid,
and are returned as a pixel image. The point pattern is first discretised using pixellate.ppp,
then the intensity is computed using the Fast Fourier Transform. Accuracy depends on the pixel
resolution and the discretisation rule. The pixel resolution is controlled by the arguments . . . passed
to as.mask (specify the number of pixels by dimyx or the pixel size by eps). The discretisation rule
is controlled by the arguments ... passed to pixellate.ppp (the default rule is that each point
is allocated to the nearest pixel centre; this can be modified using the arguments fractional and
preserve).

If at="points", the intensity values are computed to high accuracy at the points of x only. Compu-
tation is performed by directly evaluating and summing the kernel contributions without discretising
the data. The result is a numeric vector giving the density values. The intensity value at a point x;
is (if diggle=FALSE)

j\(xl) =e(x;) Z k(x; —z;)w;

or (if diggle=TRUE)

Azi) = Z k(zj — zi)wse(z;)

If leaveoneout=TRUE (the default), then the sum in the equation is taken over all j not equal to %, so
that the intensity value at a data point is the sum of kernel contributions from all other data points.
If leaveoneout=FALSE then the sum is taken over all j, so that the intensity value at a data point
includes a contribution from the same point.

Weights

If weights is a matrix with more than one column, then the calculation is effectively repeated for
each column of weights. The result is a list of images (if at="pixels") or a matrix of numerical
values (if at="points").

The argument weights can also be an expression. It will be evaluated in the data frame as.data. frame(x)
to obtain a vector or matrix of weights. The expression may involve the symbols x and y represent-

ing the Cartesian coordinates, the symbol marks representing the mark values if there is only one
column of marks, and the names of the columns of marks if there are several columns.

The argument weights can also be a pixel image (object of class "im"). numerical weights for the
data points will be extracted from this image (by looking up the pixel values at the locations of the
data points in x).

Standard error

If se=TRUE, the standard error of the estimate will also be calculated. The calculation assumes a
Poisson point process.

If weights are given, then the calculation of standard error depends on the interpretation of the
weights. This is controlled by the argument wtype.

e If wtype="value” (the default), the weights are interpreted as numerical values observed at
the data locations. Roughly speaking, standard errors are proportional to the absolute values
of the weights.

100 density.ppp

o If wtype="multiplicity” the weights are interpreted as multiplicities so that a weight of
2 is equivalent to having a pair of duplicated points at the data location. Roughly speaking,
standard errors are proportional to the square roots of the weights. Negative weights are not
permitted.

The default rule is now wtype="value" but previous versions of density.ppp (in spatstat.explore
versions 3.1-0 and earlier) effectively used wtype="multiplicity".

The meaning of density.ppp

This function is often misunderstood.

The result of density.ppp is not a spatial smoothing of the marks or weights attached to the point
pattern. To perform spatial interpolation of values that were observed at the points of a point pattern,
use Smooth. ppp.

The result of density.ppp is not a probability density. It is an estimate of the intensity function of
the point process that generated the point pattern data. Intensity is the expected number of random
points per unit area. The units of intensity are “points per unit area”. Intensity is usually a function
of spatial location, and it is this function which is estimated by density.ppp. The integral of the
intensity function over a spatial region gives the expected number of points falling in this region.

Inspecting an estimate of the intensity function is usually the first step in exploring a spatial point
pattern dataset. For more explanation, see Baddeley, Rubak and Turner (2015) or Diggle (2003,
2010).

If you have two (or more) types of points, and you want a probability map or relative risk surface
(the spatially-varying probability of a given type), use relrisk.

Technical issue: Negative Values

Negative and zero values of the density estimate are possible when at="pixels" because of nu-
merical errors in finite-precision arithmetic.

By default, density. ppp does not try to repair such errors. This would take more computation time
and is not always needed. (Also it would not be appropriate if weights include negative values.)

To ensure that the resulting density values are always positive, set positive=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

References

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Diggle, P.J. (1985) A kernel method for smoothing point process data. Applied Statistics (Journal
of the Royal Statistical Society, Series C) 34 (1985) 138-147.

Diggle, P.J. (2003) Statistical analysis of spatial point patterns, Second edition. Arnold.

Diggle, P.J. (2010) Nonparametric methods. Chapter 18, pp. 299-316 in A.E. Gelfand, P.J. Diggle,
M. Fuentes and P. Guttorp (eds.) Handbook of Spatial Statistics, CRC Press, Boca Raton, FL.

density.ppp 101

Jones, M.C. (1993) Simple boundary corrections for kernel density estimation. Statistics and Com-
puting 3, 135-146.

See Also

To select the bandwidth sigma automatically by cross-validation, use bw.diggle, bw.CvL, bw.scott
or bw. ppl.

To perform spatial interpolation of values that were observed at the points of a point pattern, use
Smooth. ppp.

For adaptive nonparametric estimation, see adaptive.density. For data sharpening, see sharpen. ppp.
To compute a relative risk surface or probability map for two (or more) types of points, use relrisk.

For information about the data structures, see ppp.object, im.object.

Examples

if(interactive()) {
opa <- par(mfrow=c(1,2))
plot(density(cells, 0.05))
plot(density(cells, 0.05, diggle=TRUE))
par(opa)
v <- diag(c(0.05, 0.07)"2)
plot(density(cells, varcov=v))
}
automatic bandwidth selection
plot(density(cells, sigma=bw.diggle(cells)))
equivalent:
plot(density(cells, bw.diggle))
evaluate intensity at points
density(cells, 0.05, at="points")

non-Gaussian kernel
plot(density(cells, sigma=0.4, kernel="epanechnikov"))

if(interactive()) {
see effect of changing pixel resolution
opa <- par(mfrow=c(1,2))
plot(density(cells, sigma=0.4))
plot(density(cells, sigma=0.4, eps=0.05))
par(opa)

}

relative risk calculation by hand (see relrisk.ppp)
lung <- split(chorley)$lung

larynx <- split(chorley)$larynx

D <- density(lung, sigma=2)

plot(density(larynx, sigma=2, weights=1/D))

102

density.psp

density.psp

Kernel Smoothing of Line Segment Pattern

Description

Compute a kernel smoothed intensity function from a line segment pattern.

Usage

S3 method for class 'psp'
density(x, sigma, ..., weights=NULL, edge=TRUE,

Arguments

X

sigma

weights

edge
method

at

Details

method=c("FFT", "C", "interpreted"”),
at=NULL)

Line segment pattern (object of class "psp") to be smoothed.
Standard deviation of isotropic Gaussian smoothing kernel.

Extra arguments, including arguments passed to as.mask to determine the reso-
lution of the resulting image.

Optional. Numerical weights for each line segment. A numeric vector, of length
equal to the number of segments in x.

Logical flag indicating whether to apply edge correction.

Character string (partially matched) specifying the method of computation. Op-
tion "FFT" is the fastest, while "C" is the most accurate.

Optional. An object specifying the locations where density values should be
computed. Either a window (object of class "owin") or a point pattern (object
of class "ppp" or "1pp").

This is the method for the generic function density for the class "psp” (line segment patterns).

A kernel estimate of the intensity of the line segment pattern is computed. The result is the convo-
lution of the isotropic Gaussian kernel, of standard deviation sigma, with the line segments. The
result is computed as follows:

* if method="FFT" (the default), the line segments are discretised using pixellate.psp, then
the Fast Fourier Transform is used to calculate the convolution. This method is the fastest, but
is slightly less accurate. Accuracy can be improved by increasing pixel resolution.

* if method="C" the exact value of the convolution at the centre of each pixel is computed
analytically using C code;

* if method="interpreted”, the exact value of the convolution at the centre of each pixel is
computed analytically using R code. This method is the slowest.

density.splitppp 103

If edge=TRUE this result is adjusted for edge effects by dividing it by the convolution of the same
Gaussian kernel with the observation window.

If weights are given, then the contribution from line segment i is multiplied by the value of
weights[i].

If the argument at is given, then it specifies the locations where density values should be computed.

e If at is a window, then the window is converted to a binary mask using the arguments . . .,
and density values are computed at the centre of each pixel in this mask. The result is a pixel
image.

 If at is a point pattern, then density values are computed at each point location, and the result
is a numeric vector.
Value

A pixel image (object of class "im") or a numeric vector.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau. dk>.

See Also

psp.object, im.object, density

Examples

L <= psp(runif(20),runif(20),runif(20),runif(20), window=owin())
D <- density(L, sigma=0.03)

plot(D, main="density(L)")

plot(L, add=TRUE)

density.splitppp Kernel Smoothed Intensity of Split Point Pattern

Description
Compute a kernel smoothed intensity function for each of the components of a split point pattern,
or each of the point patterns in a list.
Usage
S3 method for class 'splitppp'
density(x, ..., weights=NULL, se=FALSE)

S3 method for class 'ppplist'
density(x, ..., weights=NULL, se=FALSE)

104 density.splitppp

Arguments
X Split point pattern (object of class "splitppp” created by split.ppp) to be
smoothed. Alternatively a list of point patterns, of class "ppplist”.
Arguments passed to density.ppp to control the smoothing, pixel resolution,
edge correction etc.
weights Numerical weights for the points. See Details.
se Logical value indicating whether to compute standard errors as well.
Details

This is a method for the generic function density.

The argument x should be a list of point patterns, and should belong to one of the classes "ppplist”

or "splitppp”.

Typically x is obtained by applying the function split. ppp to a point pattern y by calling split(y).
This splits the points of y into several sub-patterns.

A kernel estimate of the intensity function of each of the point patterns is computed using density. ppp.

The return value is usually a list, each of whose entries is a pixel image (object of class "im"). The
return value also belongs to the class "solist” and can be plotted or printed.

If the argument at="points" is given, the result is a list of numeric vectors giving the intensity
values at the data points.

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

The argument weights specifies numerical case weights for the data points. Normally it should
be a list, with the same length as x. The entry weights[[i]] will determine the case weights for
the pattern x[[i]], and may be given in any format acceptable to density.ppp. For example,
weights[[i]] can be a numeric vector of length equal to npoints(x[[i]]), a single numeric
value, a numeric matrix, a pixel image (object of class "im"), an expression, or a function of class
"funxy".

For convenience, weights can also be a single expression, or a single pixel image (object of class
"im"), or a single function of class "funxy".
Value

A list of pixel images (objects of class "im") which can be plotted or printed; or a list of numeric
vectors giving the values at specified points.

If se=TRUE, the result is a list with two elements named estimate and SE, each of the format
described above.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppp.object, im.object

densityAdaptiveKernel 105

Examples

Z <- density(split(amacrine), 0.05)
plot(Z)

densityAdaptiveKernel Adaptive Kernel Estimate of Intensity of Point Pattern

Description

Computes an adaptive estimate of the intensity function of a point pattern using a variable-bandwidth
smoothing kernel.

Usage

densityAdaptiveKernel(X, ...)

S3 method for class 'ppp'

densityAdaptiveKernel(X, bw, ...,
weights=NULL,
at=c("pixels”, "points"),
edge=TRUE, ngroups)

Arguments
X Point pattern (object of class "ppp").
bw Numeric vector of smoothing bandwidths for each point in X, or a pixel image
giving the smoothing bandwidth at each spatial location, or a spatial function of
class "funxy" giving the smoothing bandwidth at each location. The default is
to compute bandwidths using bw. abram. ppp.
Arguments passed to bw.abram to compute the smoothing bandwidths if bw is
missing, or passed to as.mask to control the spatial resolution of the result.
weights Optional vector of numeric weights for the points of X.
at String specifying whether to compute the intensity values at a grid of pixel lo-
cations (at="pixels") or only at the points of x (at="points").
edge Logical value indicating whether to perform edge correction.
ngroups Number of groups into which the bandwidth values should be partitioned and
discretised.
Details

This function computes a spatially-adaptive kernel estimate of the spatially-varying intensity from
the point pattern X using the partitioning technique of Davies and Baddeley (2018).

The argument bw specifies the smoothing bandwidths to be applied to each of the points in X. It
may be a numeric vector of bandwidth values, or a pixel image or function yielding the bandwidth
values.

106 densityAdaptiveKernel

If the points of X are x1, . . . , x,, and the corresponding bandwidths are o1, . . ., o, then the adaptive
kernel estimate of intensity at a location w is

n

Mu) =Y k(u, i, 00)

i=1

where k(u, v, o) is the value at u of the (possibly edge-corrected) smoothing kernel with bandwidth
o induced by a data point at v.

Exact computation of the estimate above can be time-consuming: it takes n times longer than fixed-
bandwidth smoothing.

The partitioning method of Davies and Baddeley (2018) accelerates this computation by partitioning
the range of bandwidths into ngroups intervals, correspondingly subdividing the points of the pat-
tern X into ngroups sub-patterns according to bandwidth, and applying fixed-bandwidth smoothing
to each sub-pattern.

The default value of ngroups is the integer part of the square root of the number of points in
X, so that the computation time is only about /n times slower than fixed-bandwidth smoothing.
Any positive value of ngroups can be specified by the user. Specifying ngroups=Inf enforces
exact computation of the estimate without partitioning. Specifying ngroups=1 is the same as fixed-
bandwidth smoothing with bandwidth sigma=median(bw).

Value

If at="pixels" (the default), the result is a pixel image. If at="points", the result is a numeric
vector with one entry for each data point in X.

Bandwidths and Bandwidth Selection

The function densityAdaptiveKernel computes one adaptive estimate of the intensity, determined
by the smoothing bandwidth values bw.

Typically the bandwidth values are computed by first computing a pilot estimate of the intensity,
then using bw.abram to compute the vector of bandwidths according to Abramson’s rule. This
involves specifying a global bandwidth he.

The default bandwidths may work well in many contexts, but for optimal bandwidth selection, this
calculation should be performed repeatedly with different values of h@ to optimise the value of h@.
This can be computationally demanding; we recommend the function multiscale.density in the
sparr package which supports much faster bandwidth selection, using the FFT method of Davies
and Baddeley (2018).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Tilman Davies.

References

Davies, T.M. and Baddeley, A. (2018) Fast computation of spatially adaptive kernel estimates.
Statistics and Computing, 28(4), 937-956.

Hall, P. and Marron, J.S. (1988) Variable window width kernel density estimates of probability
densities. Probability Theory and Related Fields, 80, 37-49.

densityAdaptiveKernel.splitppp 107

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York.

See Also

density.ppp, adaptive.density, densityVoronoi, im.object.

See the function bivariate.density in the sparr package for a more flexible implementation, and
multiscale.density for an implementation that is more efficient for bandwidth selection.

Examples

Z <- densityAdaptiveKernel(redwood, h0=0.1)
plot(Z, main="Adaptive kernel estimate"”)
points(redwood, col="white")

densityAdaptiveKernel.splitppp
Adaptive Kernel Estimate of Intensity for Split Point Pattern

Description

Computes an adaptive estimate of the intensity function (using a variable-bandwidth smoothing
kernel) for each of the components of a split point pattern, or each of the point patterns in a list.

Usage

S3 method for class 'splitppp'
densityAdaptiveKernel(X, bw=NULL, ..., weights=NULL)

S3 method for class 'ppplist'

densityAdaptiveKernel(X, bw=NULL, ..., weights=NULL)
Arguments
X Split point pattern (object of class "splitppp” created by split.ppp) to be

smoothed. Alternatively a list of point patterns, of class "ppplist”.
bw Smoothing bandwidths. See Details.

Additional arguments passed to densityAdaptiveKernel.ppp. These may in-
clude arguments that will be passed to bw.abram to compute the smoothing
bandwidths if bw is missing, and arguments passed to as.mask to control the
spatial resolution of the result.

weights Numerical weights for the points. See Details.

108 densityfun.ppp

Details

This function computes a spatially-adaptive kernel estimate of the spatially-varying intensity for
each of the point patterns in the list X, using densityAdaptiveKernel. ppp.

The argument bw specifies smoothing bandwidths for the data points. Normally it should be a list,
with the same length as x. The entry bw[[i]] will determine the smoothing bandwidths for the
pattern x[[1]], and may be given in any format acceptable to densityAdaptiveKernel.ppp. For
example, bw[[i]] can be a numeric vector of length equal to npoints(x[[i]]), a single numeric
value, a pixel image (object of class "im"), an expression, or a function of class "funxy"”. For
convenience, bw can also be a single expression, or a single pixel image, or a single function. If
bw is missing or NULL, the default is to compute bandwidths using bw. abram. ppp.

The argument weights specifies numerical case weights for the data points. Normally it should
be a list, with the same length as x. The entry weights[[i]] will determine the case weights for
the pattern x[[i]], and may be given in any format acceptable to density.ppp. For example,
weights[[i]] can be a numeric vector of length equal to npoints(x[[i]]), a single numeric
value, a numeric matrix, a pixel image (object of class "im"), an expression, or a function of
class "funxy". For convenience, weights can also be a single expression, or a single pixel image
(object of class "im"), or a single function of class "funxy"”. If weights is missing or NULL, all
weights are assumed to be equal to 1.

Value
A list of pixel images (objects of class "im") which can be plotted or printed; or a list of numeric
vectors giving the values at specified points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

densityAdaptiveKernel.ppp, bw.abram. ppp.

Examples

X <- amacrine

if(!interactive()) X <- X[c(TRUE,FALSE,FALSE,FALSE)]
Z <- densityAdaptiveKernel(split(X), he=0.15)
plot(Z, main="Adaptive kernel estimate"”)

densityfun.ppp Kernel Estimate of Intensity as a Spatial Function

Description

Compute a kernel estimate of intensity for a point pattern, and return the result as a function of
spatial location.

densityfun.ppp 109

Usage
densityfun(X, ...)
S3 method for class 'ppp'

densityfun(X, sigma = NULL, ...,
weights = NULL, edge = TRUE, diggle = FALSE)

Arguments
X Point pattern (object of class "ppp").
sigma Smoothing bandwidth, or bandwidth selection function, passed to density. ppp.
Additional arguments passed to density.ppp.
weights Optional vector of weights associated with the points of X.
edge,diggle Logical arguments controlling the edge correction. Arguments passed to density. ppp.
Details

The commands densityfun and density both perform kernel estimation of the intensity of a point
pattern. The difference is that density returns a pixel image, containing the estimated intensity
values at a grid of locations, while densityfun returns a function(x,y) which can be used to
compute the intensity estimate at any spatial locations with coordinates x,y. For purposes such as
model-fitting it is more accurate to use densityfun.

Value

A function with arguments x,y,drop. The function also belongs to the class "densityfun”
which has methods for print and as.im. It also belongs to the class "funxy" which has methods
for plot, contour and persp.

Using the result of densityfun
If f <-densityfun(X), where X is a two-dimensional point pattern, the resulting object f is a
function in the R language.
By calling this function, the user can evaluate the estimated intensity at any desired spatial locations.
Additionally f belongs to other classes which allow it to be printed and plotted easily.
The function f has arguments x, y, drop.
* The arguments x,y of f specify the query locations. They can be numeric vectors of coordi-

nates. Alternatively x can be a point pattern (or data acceptable to as.ppp) and y is omitted.
The result of f(x,y) is a numeric vector giving the values of the intensity.

* The argument drop of f specifies how to handle query locations which are outside the window
of the original data. If drop=TRUE (the default), such locations are ignored. If drop=FALSE, a
value of NA is returned for each such location.

Note that the smoothing parameters, such as the bandwidth sigma, are assigned when densityfun
is executed. Smoothing parameters are fixed inside the function f and cannot be changed by argu-
ments of f.

110 densityHeat

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

density.

To interpolate values observed at the points, use Smoothfun.

Examples

f <- densityfun(swedishpines)

f
f(42, 60)
X <= runifpoint(2, Window(swedishpines))
(X
plot(f)
densityHeat Diffusion Estimate of Point Pattern Intensity
Description

Computes a diffusion estimate of intensity for a point pattern.

Usage
densityHeat(x, sigma, ...)
Arguments
X Point pattern (object of class "ppp" or another class).
sigma Smoothing bandwidth. Usually a single number giving the equivalent standard
deviation of the smoother.
Additional arguments depending on the method.
Details

The generic function densityHeat computes an estimate of point process intensity using a diffusion
kernel method.

Further details depend on the class of point pattern x. See the help file for the appropriate method.

Value

Depends on the class of x.

densityHeat.ppp 111

Author(s)

Adrian Baddeley and Tilman Davies.

See Also

For two-dimensional point patterns (objects of class "ppp"), the diffusion kernel estimator is densityHeat . ppp.
The usual kernel estimator is density. ppp, and the tessellation-based estimator is adaptive.density.

densityHeat.ppp Diffusion Estimate of Point Pattern Intensity

Description

Computes the diffusion estimate of the intensity of a point pattern.

Usage

S3 method for class 'ppp'

densityHeat(x, sigma, ..., weights=NULL,
connect=8, symmetric=FALSE,
sigmaX=NULL, k=1, show=FALSE, se=FALSE,
at=c("pixels"”, "points"),
leaveoneout = TRUE,
extrapolate = FALSE, coarsen = TRUE,
verbose=TRUE, internal=NULL)

Arguments

X Point pattern (object of class "ppp").

sigma Smoothing bandwidth. A single number giving the equivalent standard deviation
of the smoother. Alternatively, a pixel image (class "im") or a function(x,y)
giving the spatially-varying bandwidth.
Arguments passed to pixellate.ppp controlling the pixel resolution.

weights Optional numeric vector of weights associated with each point of x.

connect Grid connectivity: either 4 or 8.

symmetric Logical value indicating whether to force the algorithm to use a symmetric ran-
dom walk.

sigmaXx Numeric vector of bandwidths, one associated with each data point in x. See
Details.

k Integer. Calculations will be performed by repeatedly multiplying the current
state by the k-step transition matrix.

show Logical value indicating whether to plot successive iterations.

se Logical value indicating whether to compute standard errors.

112 densityHeat.ppp

at Character string specifying whether to compute values at a grid of pixels (at="pixels",
the default) or at the data points of x (at="points").

leaveoneout Logical value specifying whether to compute a leave-one-out estimate at each
data point, when at="points".

extrapolate Logical value specifying whether to use Richardson extrapolation to improve
the accuracy of the computation.

coarsen Logical value, controlling the calculation performed when extrapolate=TRUE.
See Details.

verbose Logical value specifying whether to print progress reports.

internal Developer use only.

Details

This command computes a diffusion kernel estimate of point process intensity from the observed
point pattern x.

The function densityHeat is generic, with methods for point patterns in two dimensions (class
"ppp") and point patterns on a linear network (class "1pp”). The function densityHeat.ppp de-
scribed here is the method for class "ppp"”. Given a two-dimensional point pattern x, it computes a
diffusion kernel estimate of the intensity of the point process which generated x.

Diffusion kernel estimates were developed by Botev et al (2010), Barry and MclIntyre (2011) and
Baddeley et al (2022).

Barry and Mclntyre (2011) proposed an estimator for point process intensity based on a random
walk on the pixel grid inside the observation window. Baddeley et al (2022) showed that the Barry-
Mclntyre method is a special case of the diffusion estimator proposed by Botev et al (2010).

The original Barry-Mclntyre algorithm assumes a symmetric random walk (i.e. each possible tran-
sition has the same probability p) and requires a square pixel grid (i.e. equal spacing in the x and y
directions). Their original algorithm is used if symmetric=TRUE. Use the ... arguments to ensure
a square grid: for example, the argument eps specifies a square grid with spacing eps units.

The more general algorithm used here (Baddeley et al, 2022) does not require a square grid of
pixels. If the pixel grid is not square, and if symmetric=FALSE (the default), then the random walk
is not symmetric, in the sense that the probabilities of different jumps will be different, in order to
ensure that the smoothing is isotropic.

This implementation also includes two generalizations to the case of adaptive smoothing (Baddeley
et al, 2022).

In the first version of adaptive smoothing, the bandwidth is spatially-varying. The argument sigma
should be a pixel image (class "im") or a function(x,y) specifying the bandwidth at each spatial
location. The smoothing is performed by solving the heat equation with spatially-varying parame-
ters.

In the second version of adaptive smoothing, each data point in x is smoothed using a separate
bandwidth. The argument sigmaX should be a numeric vector specifying the bandwidth for each
point of x. The smoothing is performed using the lagged arrival algorithm. The argument sigma
can be omitted.

If extrapolate=FALSE (the default), calculations are performed using the Euler scheme for the
heat equation. If extrapolate=TRUE, the accuracy of the result will be improved by applying

densityHeat.ppp 113

Richardson extrapolation (Baddeley et al, 2022, Section 4). After computing the intensity estimate
using the Euler scheme on the desired pixel grid, another estimate is computed using the same
method on another pixel grid, and the two estimates are combined by Richardson extrapolation to
obtain a more accurate result. The second grid is coarser than the original grid if coarsen=TRUE (the
default), and finer than the original grid if coarsen=FALSE. Setting extrapolate=TRUE increases
computation time by 35% if coarsen=TRUE and by 400% if coarsen=FALSE.

Value

Pixel image (object of class "im") giving the estimated intensity of the point process.

If se=TRUE, the result has an attribute "se" which is another pixel image giving the estimated
standard error.

If at="points" then the result is a numeric vector with one entry for each point of x.

Author(s)

Adrian Baddeley and Tilman Davies.

References

Baddeley, A., Davies, T., Rakshit, S., Nair, G. and McSwiggan, G. (2022) Diffusion smoothing for
spatial point patterns. Statistical Science 37 (1) 123-142.

Barry, R.P. and Mclntyre, J. (2011) Estimating animal densities and home range in regions with
irregular boundaries and holes: a lattice-based alternative to the kernel density estimator. Ecological
Modelling 222, 1666—1672.

Botev, Z.1., Grotowski, J.F. and Kroese, D.P. (2010) Kernel density estimation via diffusion. Annals
of Statistics 38, 2916-2957.

See Also

density.ppp for the usual kernel estimator, and adaptive.density for the tessellation-based es-
timator.

Examples

online <- interactive()
if(lonline) op <- spatstat.options(npixel=32)

X <- runifpoint(25, letterR)

Z <- densityHeat(X, 0.2)

if(online) {
plot(Z, main="Diffusion estimator")
plot(X, add=TRUE, pch=16)
integral(Z) # should equal 25

}

Z <- densityHeat(X, 0.2, se=TRUE)
Zse <- attr(Z, "se")
if(online) plot(solist(estimate=Z, SE=Zse), main="")

114 density Voronoi

Zex <- densityHeat(X, 0.2, extrapolate=TRUE)

ZS <- densityHeat(X, 0.2, symmetric=TRUE, eps=0.125)
if(online) {

plot(ZS, main="fixed bandwidth")

plot(X, add=TRUE, pch=16)
}

sig <- function(x,y) { (x-1.5)/10 }
ZZ <- densityHeat(X, sig)
if(online) {
plot(ZZ, main="adaptive (I)")
plot(X, add=TRUE, pch=16)
}

sigX <- sig(Xx, Xy)
AA <- densityHeat(X, sigmaX=sigX)
if(online) {
plot(AA, main="adaptive (II)")
plot(X, add=TRUE, pch=16)
}
if(lonline) spatstat.options(op)

densityVoronoi Intensity Estimate of Point Pattern Using Voronoi-Dirichlet Tessella-
tion

Description

Computes an adaptive estimate of the intensity function of a point pattern using the Dirichlet-
Voronoi tessellation.

Usage

densityVoronoi(X, ...)

S3 method for class 'ppp'

densityVoronoi(X, f =1, ...,
counting=FALSE,
fixed=FALSE,
nrep = 1, verbose=TRUE)

Arguments
X Point pattern dataset (object of class "ppp").
f Fraction (between 0 and 1 inclusive) of the data points that will be used to build

a tessellation for the intensity estimate.

Arguments passed to as. im determining the pixel resolution of the result.

density Voronoi 115

counting Logical value specifying the choice of estimation method. See Details.

fixed Logical. If FALSE (the default), the data points are independently randomly
thinned, so the number of data points that are retained is random. If TRUE, the
number of data points retained is fixed. See Details.

nrep Number of independent repetitions of the randomised procedure.
verbose Logical value indicating whether to print progress reports.
Details

This function is an alternative to density.ppp. It computes an estimate of the intensity function of
a point pattern dataset. The result is a pixel image giving the estimated intensity.

If f=1 (the default), the Voronoi estimate (Barr and Schoenberg, 2010) is computed: the point
pattern X is used to construct a Voronoi/Dirichlet tessellation (see dirichlet); the areas of the
Dirichlet tiles are computed; the estimated intensity in each tile is the reciprocal of the tile area.
The result is a pixel image of intensity estimates which are constant on each tile of the tessellation.

If f=0, the intensity estimate at every location is equal to the average intensity (number of points
divided by window area). The result is a pixel image of intensity estimates which are constant.

If f is strictly between O and 1, the estimation method is applied to a random subset of X. This
randomised procedure is repeated nrep times, and the results are averaged. The subset is selected
as follows:

* if fixed=FALSE, the dataset X is randomly thinned by deleting or retaining each point inde-
pendently, with probability f of retaining a point.

* if fixed=TRUE, a random sample of fixed size m is taken from the dataset X, where m is the
largest integer less than or equal to f*n and n is the number of points in X.

Then the intensity estimate is calculated as follows:

* if counting = FALSE (the default), the thinned pattern is used to construct a Dirichlet tessella-
tion and form the Voronoi estimate (Barr and Schoenberg, 2010) which is then adjusted by a
factor 1/f or n/m as appropriate. to obtain an estimate of the intensity of X in the tile.

* if counting = TRUE, the randomly selected subset A is used to construct a Dirichlet tessellation,
while the complementary subset B (consisting of points that were not selected in the sample)
is used for counting to calculate a quadrat count estimate of intensity. For each tile of the
Dirichlet tessellation formed by A, we count the number of points of B falling in the tile, and
divide by the area of the same tile, to obtain an estimate of the intensity of the pattern B in the
tile. This estimate is adjusted by 1/(1-f) or n/(n-m) as appropriate to obtain an estimate of
the intensity of X in the tile.

Ogata et al. (2003) and Ogata (2004) estimated intensity using the Dirichlet-Voronoi tessellation
in a modelling context. Baddeley (2007) proposed intensity estimation by subsampling with @ <
f <1, and used the technique described above with fixed=TRUE and counting=TRUE. Barr and
Schoenberg (2010) described and analysed the Voronoi estimator (corresponding to f=1). Moradi
et al (2019) developed the subsampling technique with fixed=FALSE and counting=FALSE and
called it the smoothed Voronoi estimator.

Value

A pixel image (object of class "im") whose values are estimates of the intensity of X.

116 deriv.fv

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi <m2.moradi@yahoo. com>.

References

Baddeley, A. (2007) Validation of statistical models for spatial point patterns. In J.G. Babu and
E.D. Feigelson (eds.) SCMA IV: Statistical Challenges in Modern Astronomy IV, volume 317 of
Astronomical Society of the Pacific Conference Series, San Francisco, California USA, 2007. Pages
22-38.

Barr, C., and Schoenberg, F.P. (2010). On the Voronoi estimator for the intensity of an inhomoge-
neous planar Poisson process. Biometrika 97 (4), 977-984.

Moradi, M., Cronie, 0., Rubak, E., Lachieze-Rey, R., Mateu, J. and Baddeley, A. (2019) Resample-
smoothing of Voronoi intensity estimators. Statistics and Computing 29 (5) 995-1010.

Ogata, Y. (2004) Space-time model for regional seismicity and detection of crustal stress changes.
Journal of Geophysical Research, 109, 2004.

Ogata, Y., Katsura, K. and Tanemura, M. (2003). Modelling heterogeneous space-time occurrences
of earthquakes and its residual analysis. Applied Statistics 52 499-509.

See Also

adaptive.density, density.ppp, dirichlet, im.object.

Examples

plot(densityVoronoi(nztrees, 1, f=1), main="Voronoi estimate")
nr <- if(interactive()) 100 else 5
plot(densityVoronoi(nztrees, f=0.5, nrep=nr), main="smoothed Voronoi estimate")

deriv.fv Calculate Derivative of Function Values

Description

Applies numerical differentiation to the values in selected columns of a function value table.

Usage
S3 method for class 'fv'
deriv(expr, which = "x" ...,
method=c("spline”, "numeric"),
kinks=NULL,

periodic=FALSE,
Dperiodic=periodic)

deriv.fv 117

Arguments
expr Function values to be differentiated. A function value table (object of class "fv",
see fv.object).
which Character vector identifying which columns of the table should be differentiated.
Either a vector containing names of columns, or one of the wildcard strings "*"
or "." explained below.
Extra arguments passed to smooth.spline to control the differentiation algo-
rithm, if method="spline".
method Differentiation method. A character string, partially matched to either "spline”
or "numeric”.
kinks Optional vector of x values where the derivative is allowed to be discontinuous.
periodic Logical value indicating whether the function expr is periodic.
Dperiodic Logical value indicating whether the resulting derivative should be a periodic
function.
Details

This command performs numerical differentiation on the function values in a function value table
(object of class "fv"). The differentiation is performed either by smooth.spline or by a naive
numerical difference algorithm.

The command deriv is generic. This is the method for objects of class "fv".

Differentiation is applied to every column (or to each of the selected columns) of function values in
turn, using the function argument as the x coordinate and the selected column as the y coordinate.
The original function values are then replaced by the corresponding derivatives.

The optional argument which specifies which of the columns of function values in expr will be
differentiated. The default (indicated by the wildcard which="x") is to differentiate all function
values, i.e.\ all columns except the function argument. Alternatively which=""." designates the sub-
set of function values that are displayed in the default plot. Alternatively which can be a character
vector containing the names of columns of expr.

If the argument kinks is given, it should be a numeric vector giving the discontinuity points of the
function: the value or values of the function argument at which the function is not differentiable.
Differentiation will be performed separately on intervals between the discontinuity points.

If periodic=TRUE then the function expr is taken to be periodic, with period equal to the range of
the function argument in expr. The resulting derivative is periodic.

If periodic=FALSE but Dperiodic=TRUE, then the derivative is assumed to be periodic. This would
be appropriate if expr is the cumulative distribution function of an angular variable, for example.
Value

Another function value table (object of class "fv") of the same format.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

118

See Also

dg.envelope

with.fv, fv.object, smooth.spline

Examples

G <- Gest(cells)

plot(deriv(G,

which=".", spar=0.5))

A <- pairorient(redwood, 0.05, 0.15)
DA <- deriv(A, spar=0.6, Dperiodic=TRUE)

dg.envelope

Global Envelopes for Dao-Genton Test

Description

Computes the global envelopes corresponding to the Dao-Genton test of goodness-of-fit.

Usage

dg.envelope(X,

A

nsim = 19, nsimsub=nsim-1, nrank = 1,
alternative=c("two.sided"”, "less", "greater"),
leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,

verbose = TRUE)

Arguments

X

nsim

nsimsub

nrank

alternative

n o n

Either a point pattern dataset (object of class "ppp", "1pp” or "pp3") or a fitted
point process model (object of class "ppm"”, "kppm"” or "slrm").

Arguments passed to mad. test or envelope to control the conduct of the test.
Useful arguments include fun to determine the summary function, rinterval
to determine the range of r values used in the test, and verbose=FALSE to turn
off the messages.

Number of simulated patterns to be generated in the primary experiment.

Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

Character string determining whether the envelope corresponds to a two-sided
test (alternative="two.sided", the default) or a one-sided test with a lower
critical boundary (alternative="1less") or a one-sided test with an upper crit-
ical boundary (alternative="greater").

dg.envelope 119

leaveout Optional integer O, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value determining whether to print progress reports.

Details

Computes global simulation envelopes corresponding to the Dao-Genton (2014) adjusted Monte
Carlo goodness-of-fit test. The envelopes were developed in Baddeley et al (2015) and described in
Baddeley, Rubak and Turner (2015).

If X is a point pattern, the null hypothesis is CSR.
If X is a fitted model, the null hypothesis is that model.

The Dao-Genton test is biased when the significance level is very small (small p-values are not
reliable) and we recommend bits.envelope in this case.

Value

An object of class "fv".

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497—
517.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

See Also

dg.test, mad. test, envelope

120

Examples

dg.progress

ns <- if(interactive()) 19 else 4
E <- dg.envelope(swedishpines, Lest, nsim=ns)

E
plot(E)

Eo <- dg.envelope(swedishpines, Lest, alternative="less"”, nsim=ns)
Ei <- dg.envelope(swedishpines, Lest, interpolate=TRUE, nsim=ns)

dg.progress

Progress Plot of Dao-Genton Test of Spatial Pattern

Description

Generates a progress plot (envelope representation) of the Dao-Genton test for a spatial point pat-

tern.

Usage

dg.progress(X, fun = Lest, ...,

Arguments

X

fun

exponent
nsim

nsimsub

nrank

alpha

leaveout

exponent = 2, nsim = 19, nsimsub = nsim - 1,
nrank = 1, alpha, leaveout=1, interpolate = FALSE, rmin=0,
savefuns = FALSE, savepatterns = FALSE, verbose=TRUE)

n o n

Either a point pattern (object of class "ppp”, "1pp" or other class), a fitted point
process model (object of class "ppm”, "kppm" or other class) or an envelope
object (class "envelope”).

Function that computes the desired summary statistic for a point pattern.

Arguments passed to envelope. Useful arguments include alternative to
specify one-sided or two-sided envelopes.

Positive number. The exponent of the LP distance. See Details.
Number of repetitions of the basic test.

Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

Integer. The rank of the critical value of the Monte Carlo test, amongst the nsim
simulated values. A rank of 1 means that the minimum and maximum simulated
values will become the critical values for the test.

Optional. The significance level of the test. Equivalent to nrank/(nsim+1)
where nsim is the number of simulations.

Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

dg.progress 121

interpolate Logical value indicating how to compute the critical value. If interpolate=FALSE
(the default), a standard Monte Carlo test is performed, and the critical value
is the largest simulated value of the test statistic (if nrank=1) or the nrank-th
largest (if nrank is another number). If interpolate=TRUE, kernel density es-
timation is applied to the simulated values, and the critical value is the upper
alpha quantile of this estimated distribution.

rmin Optional. Left endpoint for the interval of r values on which the test statistic is
calculated.
savefuns Logical value indicating whether to save the simulated function values (from the

first stage).

savepatterns Logical value indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

The Dao and Genton (2014) test for a spatial point pattern is described in dg.test. This test
depends on the choice of an interval of distance values (the argument rinterval). A progress plot
or envelope representation of the test (Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner,
2015) is a plot of the test statistic (and the corresponding critical value) against the length of the
interval rinterval.

The command dg.progress effectively performs dg. test on X using all possible intervals of the
form [0, R}, and returns the resulting values of the test statistic, and the corresponding critical values
of the test, as a function of R.

The result is an object of class "fv" that can be plotted to obtain the progress plot. The display
shows the test statistic (solid black line) and the test acceptance region (grey shading). If X is an
envelope object, then some of the data stored in X may be re-used:

 If X is an envelope object containing simulated functions, and fun=NULL, then the code will
re-use the simulated functions stored in X.

* If X is an envelope object containing simulated point patterns, then fun will be applied to the
stored point patterns to obtain the simulated functions. If fun is not specified, it defaults to
Lest.

* Otherwise, new simulations will be performed, and fun defaults to Lest.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [rmin, R] where R > 7yin.

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "fv" that can be plotted to obtain the progress plot.

122 dg.sigtrace

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477-489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497—

517.
See Also

dg.test, dclf.progress

Examples

ns <- if(interactive()) 19 else 5
plot(dg.progress(cells, nsim=ns))

dg.sigtrace Significance Trace of Dao-Genton Test

Description

Generates a Significance Trace of the Dao and Genton (2014) test for a spatial point pattern.

Usage

dg.sigtrace(X, fun = Lest, ...,
exponent = 2, nsim = 19, nsimsub = nsim - 1,
alternative = c("two.sided”, "less", "greater"),
rmin=0, leaveout=1,
interpolate = FALSE, confint = TRUE, alpha = 0.05,
savefuns=FALSE, savepatterns=FALSE, verbose=FALSE)

dg.sigtrace 123

Arguments

n on

X Either a point pattern (object of class "ppp”, "1pp" or other class), a fitted point
process model (object of class "ppm”, "kppm"” or other class) or an envelope
object (class "envelope”).

fun Function that computes the desired summary statistic for a point pattern.
Arguments passed to envelope.

exponent Positive number. Exponent used in the test statistic. Use exponent=2 for the
Diggle-Cressie-Loosmore-Ford test, and exponent=Inf for the Maximum Ab-
solute Deviation test. See Details.

nsim Number of repetitions of the basic test.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="1less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

rmin Optional. Left endpoint for the interval of » values on which the test statistic is
calculated.

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

confint Logical value indicating whether to compute a confidence interval for the ‘true’
p-value.

alpha Significance level to be plotted (this has no effect on the calculation but is simply
plotted as a reference value).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical flag indicating whether to print progress reports.

Details

The Dao and Genton (2014) test for a spatial point pattern is described in dg.test. This test
depends on the choice of an interval of distance values (the argument rinterval). A significance
trace (Bowman and Azzalini, 1997; Baddeley et al, 2014, 2015; Baddeley, Rubak and Turner, 2015)
of the test is a plot of the p-value obtained from the test against the length of the interval rinterval.

The command dg. sigtrace effectively performs dg. test on X using all possible intervals of the
form [0, R], and returns the resulting p-values as a function of R.

124 dg.sigtrace

The result is an object of class "fv" that can be plotted to obtain the significance trace. The plot
shows the Dao-Genton adjusted p-value (solid black line), the critical value @.05 (dashed red line),
and a pointwise 95% confidence band (grey shading) for the ‘true’ (Neyman-Pearson) p-value. The
confidence band is based on the Agresti-Coull (1998) confidence interval for a binomial proportion.

If X is an envelope object and fun=NULL then the code will re-use the simulated functions stored in
X.

If the argument rmin is given, it specifies the left endpoint of the interval defining the test statistic:
the tests are performed using intervals [ry,, R] where R > ryin.

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

Value

An object of class "fv" that can be plotted to obtain the significance trace.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References
Agresti, A. and Coull, B.A. (1998) Approximate is better than “Exact” for interval estimation of
binomial proportions. American Statistician 52, 119-126.

Baddeley, A., Diggle, P., Hardegen, A., Lawrence, T., Milne, R. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84(3) 477-489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2015) Pushing
the envelope: extensions of graphical Monte Carlo tests. Unpublished manuscript.

Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press.

Bowman, A.W. and Azzalini, A. (1997) Applied smoothing techniques for data analysis: the kernel
approach with S-Plus illustrations. Oxford University Press, Oxford.

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497—
517.

See Also

dg. test for the Dao-Genton test, dc1f.sigtrace for significance traces of other tests.

dg.test 125

Examples

ns <- if(interactive()) 19 else 5
plot(dg.sigtrace(cells, nsim=ns))

dg.test Dao-Genton Adjusted Goodness-Of-Fit Test

Description

Performs the Dao and Genton (2014) adjusted goodness-of-fit test of spatial pattern.

Usage

dg.test(X, ...,
exponent = 2, nsim=19, nsimsub=nsim-1,
alternative=c("two.sided”, "less", "greater"),
reuse = TRUE, leaveout=1, interpolate = FALSE,
savefuns=FALSE, savepatterns=FALSE,
verbose = TRUE)

Arguments

non

X Either a point pattern dataset (object of class "ppp”, "1pp" or "pp3") or a fitted
point process model (object of class "ppm”, "kppm”, "1ppm” or "slrm").

Arguments passed to dclf.test or mad.test or envelope to control the con-
duct of the test. Useful arguments include fun to determine the summary func-
tion, rinterval to determine the range of values used in the test, and use. theory
described under Details.

exponent Exponent used in the test statistic. Use exponent=2 for the Diggle-Cressie-
Loosmore-Ford test, and exponent=Inf for the Maximum Absolute Deviation
test.

nsim Number of repetitions of the basic test.

nsimsub Number of simulations in each basic test. There will be nsim repetitions of the
basic test, each involving nsimsub simulated realisations, so there will be a total
of nsim * (nsimsub + 1) simulations.

alternative Character string specifying the alternative hypothesis. The default (alternative="two.sided")
is that the true value of the summary function is not equal to the theoretical
value postulated under the null hypothesis. If alternative="1less" the alter-
native hypothesis is that the true value of the summary function is lower than the
theoretical value.

reuse Logical value indicating whether to re-use the first stage simulations at the sec-
ond stage, as described by Dao and Genton (2014).

leaveout Optional integer 0, 1 or 2 indicating how to calculate the deviation between the
observed summary function and the nominal reference value, when the reference
value must be estimated by simulation. See Details.

126 dg.test

interpolate Logical value indicating whether to interpolate the distribution of the test statis-
tic by kernel smoothing, as described in Dao and Genton (2014, Section 5).

savefuns Logical flag indicating whether to save the simulated function values (from the
first stage).

savepatterns Logical flag indicating whether to save the simulated point patterns (from the
first stage).

verbose Logical value indicating whether to print progress reports.

Details

Performs the Dao-Genton (2014) adjusted Monte Carlo goodness-of-fit test, in the equivalent form
described by Baddeley et al (2014).

If X is a point pattern, the null hypothesis is CSR.
If X is a fitted model, the null hypothesis is that model.

The argument use. theory passed to envelope determines whether to compare the summary func-
tion for the data to its theoretical value for CSR (use.theory=TRUE) or to the sample mean of
simulations from CSR (use. theory=FALSE).

The argument leaveout specifies how to calculate the discrepancy between the summary function
for the data and the nominal reference value, when the reference value must be estimated by simu-
lation. The values leaveout=0 and leaveout=1 are both algebraically equivalent (Baddeley et al,
2014, Appendix) to computing the difference observed - reference where the reference is the
mean of simulated values. The value leaveout=2 gives the leave-two-out discrepancy proposed by
Dao and Genton (2014).

The Dao-Genton test is biased when the significance level is very small (small p-values are not
reliable) and we recommend bits. test in this case.

Value

A hypothesis test (object of class "htest"” which can be printed to show the outcome of the test.

Author(s)

Adrian Baddeley, Andrew Hardegen, Tom Lawrence, Robin Milne, Gopalan Nair and Suman Rak-
shit. Implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Dao, N.A. and Genton, M. (2014) A Monte Carlo adjusted goodness-of-fit test for parametric mod-
els describing spatial point patterns. Journal of Graphical and Computational Statistics 23, 497—
517.

Baddeley, A., Diggle, PJ., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477-489.

Baddeley, A., Hardegen, A., Lawrence, L., Milne, R.K., Nair, G.M. and Rakshit, S. (2017) On two-
stage Monte Carlo tests of composite hypotheses. Computational Statistics and Data Analysis 114,
75-87.

dimhat 127

See Also

bits.test, dclf.test, mad.test

Examples

ns <- if(interactive()) 19 else 4
dg.test(cells, nsim=ns)

dg.test(cells, alternative="less"”, nsim=ns)
dg.test(cells, nsim=ns, interpolate=TRUE)

dimhat Estimate Dimension of Central Subspace

Description

Given the kernel matrix that characterises a central subspace, this function estimates the dimension
of the subspace.

Usage
dimhat (M)
Arguments
M Kernel of subspace. A symmetric, non-negative definite, numeric matrix, typi-
cally obtained from sdr.
Details

This function computes the maximum descent estimate of the dimension of the central subspace
with a given kernel matrix M.

The matrix M should be the kernel matrix of a central subspace, which can be obtained from sdr. It
must be a symmetric, non-negative-definite, numeric matrix.

The algorithm finds the eigenvalues \; > ... > A, of M, and then determines the index k for
which A /A,_1 is greatest.

Value

A single integer giving the estimated dimension.

Author(s)

Matlab original by Yongtao Guan, translated to R by Suman Rakshit.

References

Guan, Y. and Wang, H. (2010) Sufficient dimension reduction for spatial point processes directed
by Gaussian random fields. Journal of the Royal Statistical Society, Series B, 72, 367-387.

128

See Also

distcdf

sdr, subspaceDistance

distcdf

Distribution Function of Interpoint Distance

Description

Computes the cumulative distribution function of the distance between two independent random
points in a given window or windows.

Usage
distcdf(W, V=W, ..., dw=1, dV=dW, nr=1024,
regularise=TRUE, savedenom=FALSE, delta=NULL)
Arguments

W A window (object of class "owin") containing the first random point.

\% Optional. Another window containing the second random point. Defaults to W.
Arguments passed to as.mask to determine the pixel resolution for the calcula-
tion.

dv, dw Optional. Probability densities (not necessarily normalised) for the first and
second random points respectively. Data in any format acceptable to as. im, for
example, a function(x,y) or a pixel image or a numeric value. The default
corresponds to a uniform distribution over the window.

nr Integer. The number of values of interpoint distance r for which the CDF will
be computed. Should be a large value. Alternatively if nr=NULL, a good default
value will be chosen, depending on the pixel resolution.

regularise Logical value indicating whether to smooth the results for very small distances,
to avoid discretisation artefacts.

savedenom Logical value indicating whether to save the denominator of the double integral
as an attribute of the result.

delta Optional. A positive number. The maximum permitted spacing between values
of the function argument.

Details

This command computes the Cumulative Distribution Function CDF(r) = Prob(T < r) of the
Euclidean distance T = || X; — X3|| between two independent random points X7 and Xo.

In the simplest case, the command distcdf (W), the random points are assumed to be uniformly
distributed in the same window W.

Alternatively the two random points may be uniformly distributed in two different windows W and

V.

dkernel 129

In the most general case the first point X is random in the window W with a probability density
proportional to dW, and the second point X5 is random in a different window V with probability
density proportional to dV. The values of dW and dV must be finite and nonnegative.

The calculation is performed by numerical integration of the set covariance function setcov for
uniformly distributed points, and by computing the covariance function imcov in the general case.
The accuracy of the result depends on the pixel resolution used to represent the windows: this is
controlled by the arguments . . . which are passed to as.mask. For example use eps=0. 1 to specify
pixels of size 0.1 units.

The arguments W or V may also be point patterns (objects of class "ppp”). The result is the cumu-
lative distribution function of the distance from a randomly selected point in the point pattern, to a
randomly selected point in the other point pattern or window.

If regularise=TRUE (the default), values of the cumulative distribution function for very short
distances are smoothed to avoid discretisation artefacts. Smoothing is applied to all distances shorter
than the width of 10 pixels.

Numerical accuracy of some calculations requires very fine spacing of the values of the function
argument r. If the argument delta is given, then after the cumulative distribution function has been
calculated, it will be interpolated onto a finer grid of r values with spacing less than or equal to
delta.

Value

An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

Author(s)
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

setcov, as.mask.

Examples

The unit disc
B <- disc()
plot(distcdf(B))

dkernel Kernel distributions and random generation

Description

Density, distribution function, quantile function and random generation for several distributions
used in kernel estimation for numerical data.

130 dkernel

Usage
dkernel(x, kernel = "gaussian”, mean = @, sd = 1)
pkernel(q, kernel = "gaussian”, mean = @, sd = 1, lower.tail = TRUE)
gkernel(p, kernel = "gaussian”, mean = @, sd = 1, lower.tail = TRUE)
rkernel(n, kernel = "gaussian”, mean = @, sd = 1)
Arguments
X, q Vector of quantiles.
p Vector of probabilities.
kernel String name of the kernel. Options are "gaussian”, "rectangular”, "triangular”,
"epanechnikov”, "biweight”, "cosine"” and "optcosine”. (Partial matching
is used).
n Number of observations.
mean Mean of distribution.
sd Standard deviation of distribution.
lower.tail logical; if TRUE (the default), then probabilities are P(X < z), otherwise,
P(X > z).
Details

These functions give the probability density, cumulative distribution function, quantile function and
random generation for several distributions used in kernel estimation for one-dimensional (numeri-
cal) data.

n o on

The available kernels are those used in density.default, namely "gaussian”, "rectangular”,
"triangular”, "epanechnikov”, "biweight"”, "cosine"” and "optcosine"”. For more informa-
tion about these kernels, see density.default.

dkernel gives the probability density, pkernel gives the cumulative distribution function, gkernel
gives the quantile function, and rkernel generates random deviates.
Value

A numeric vector. For dkernel, a vector of the same length as x containing the corresponding
values of the probability density. For pkernel, a vector of the same length as x containing the
corresponding values of the cumulative distribution function. For gkernel, a vector of the same
length as p containing the corresponding quantiles. For rkernel, a vector of length n containing
randomly generated values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>and Martin Hazelton <Martin.Hazelton@otago.ac.nz>.

See Also

density.default, kernel.factor, kernel.moment, kernel.squint.

domain.quadrattest 131

Examples

x <- seq(-3,3,length=100)
plot(x, dkernel(x, "epa"), type="1",
main=c("Epanechnikov kernel”, "probability density"))
plot(x, pkernel(x, "opt"), type="1",
main=c("OptCosine kernel”, "cumulative distribution function"))
p <- seq(@,1, length=256)
plot(p, gkernel(p, "biw"), type="1",
main=c("Biweight kernel”, "cumulative distribution function"))
y <- rkernel(100, "tri")
hist(y, main="Random variates from triangular density")
rug(y)

domain.quadrattest Extract the Domain of any Spatial Object

Description

Given a spatial object such as a point pattern, in any number of dimensions, this function extracts
the spatial domain in which the object is defined.

Usage

S3 method for class 'quadrattest'
domain(X, ...)

Arguments

X A spatial object such as a point pattern (in any number of dimensions), line
segment pattern or pixel image.

Extra arguments. They are ignored by all the methods listed here.

Details

The function domain is generic.

For a spatial object X in any number of dimensions, domain(X) extracts the spatial domain in which
X is defined.

For a two-dimensional object X, typically domain(X) is the same as Window(X).

Exceptions occur for methods related to linear networks.

132 edge.Ripley

Value

A spatial object representing the domain of X. Typically a window (object of class "owin"), a three-
dimensional box ("box3"), a multidimensional box ("boxx") or a linear network ("linnet"”).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

domain, domain.quadratcount, domain.ppm, domain.rmhmodel, domain. lpp. Window, Frame.

Examples

domain(quadrat.test(redwood, 2, 2))

edge.Ripley Ripley’s Isotropic Edge Correction

Description

Computes Ripley’s isotropic edge correction weights for a point pattern.

Usage

edge.Ripley(X, r, W = Window(X), method = c("C", "interpreted"),
maxweight = 100, internal=list())

rmax.Ripley (W)

Arguments

X Point pattern (object of class "ppp").

W Window for which the edge correction is required.

r Vector or matrix of interpoint distances for which the edge correction should be
computed.

method Choice of algorithm. Either "interpreted” or "C". This is needed only for
debugging purposes.

maxweight Maximum permitted value of the edge correction weight.

internal For developer use only.

edge.Ripley 133

Details

The function edge.Ripley computes Ripley’s (1977) isotropic edge correction weight, which is
used in estimating the K function and in many other contexts.

The function rmax.Ripley computes the maximum value of distance r for which the isotropic edge
correction estimate of K (r) is valid.

For a single point x in a window W, and a distance r > 0, the isotropic edge correction weight is

2rr

e(u7 T) = length(c(uy 'r) N W)

where c(u,) is the circle of radius r centred at the point u. The denominator is the length of the
overlap between this circle and the window W.

The function edge.Ripley computes this edge correction weight for each point in the point pattern
X and for each corresponding distance value in the vector or matrix r.

If r is a vector, with one entry for each point in X, then the result is a vector containing the edge
correction weights e(X[i], r[i]) for each i.

If r is a matrix, with one row for each point in X, then the result is a matrix whose i, j entry gives the
edge correction weight e(X[i], r[i, j1). For example edge.Ripley (X, pairdist (X)) computes
all the edge corrections required for the K -function.

If any value of the edge correction weight exceeds maxwt, it is set to maxwt.

The function rmax.Ripley computes the smallest distance such that it is possible to draw a circle
of radius r, centred at a point of W, such that the circle does not intersect the interior of W.

Value

A numeric vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Ripley, B.D. (1977) Modelling spatial patterns (with discussion). Journal of the Royal Statistical
Society, Series B, 39, 172 —212.

See Also

edge.Trans, rmax.Trans, Kest

Examples

v <- edge.Ripley(cells, pairdist(cells))

rmax.Ripley(Window(cells))

134 edge.Trans

edge.Trans Translation Edge Correction

Description

Computes Ohser and Stoyan’s translation edge correction weights for a point pattern.

Usage

edge.Trans(X, Y = X, W = Window(X),
exact = FALSE, paired = FALSE,
trim = spatstat.options(”maxedgewt"”),
dx=NULL, dy=NULL,
give.rmax=FALSE, gW=NULL)

rmax.Trans(W, g=setcov(W))

Arguments
X, Y Point patterns (objects of class "ppp").
W Window for which the edge correction is required.
exact Logical. If TRUE, a slow algorithm will be used to compute the exact value. If
FALSE, a fast algorithm will be used to compute the approximate value.
paired Logical value indicating whether X and Y are paired. If TRUE, compute the edge
correction for corresponding points X[i], Y[i] for all i. If FALSE, compute the
edge correction for each possible pair of points X[i], Y[j] for all i and j.
Ignored.
trim Maximum permitted value of the edge correction weight.
dx, dy Alternative data giving the x and y coordinates of the vector differences between
the points. Incompatible with X and Y. See Details.
give.rmax Logical. If TRUE, also compute the value of rmax.Trans(W) and return it as an
attribute of the result.
g, gW Optional. Set covariance of W, if it has already been computed. Not required if
W is a rectangle.
Details

The function edge. Trans computes Ohser and Stoyan’s translation edge correction weight, which
is used in estimating the K function and in many other contexts.

The function rmax.Trans computes the maximum value of distance r for which the translation
edge correction estimate of K (r) is valid.

edge.Trans 135

For a pair of points x and y in a window W, the translation edge correction weight is

B area(W)
~area(W N (W +y—x))

e(u,r)

where W + y — x is the result of shifting the window W by the vector y — 2. The denominator is
the area of the overlap between this shifted window and the original window.

The function edge.Trans computes this edge correction weight. If paired=TRUE, then X and Y
should contain the same number of points. The result is a vector containing the edge correction
weights e(X[i], Y[i]) for each i.

If paired=FALSE, then the result is a matrix whose i, j entry gives the edge correction weight

e(X[il, YI[3D).

Computation is exact if the window is a rectangle. Otherwise,

* if exact=TRUE, the edge correction weights are computed exactly using overlap.owin, which
can be quite slow.

* if exact=FALSE (the default), the weights are computed rapidly by evaluating the set covari-
ance function setcov using the Fast Fourier Transform.

If any value of the edge correction weight exceeds trim, it is set to trim.

The arguments dx and dy can be provided as an alternative to X and Y. If paired=TRUE then dx, dy
should be vectors of equal length such that the vector difference of the ith pair is c(dx[i], dy[i]).
If paired=FALSE then dx,dy should be matrices of the same dimensions, such that the vector dif-
ference between X[i] and Y[j]is c(dx[i,j], dy[i,jI). The argument W is needed.

The value of rmax.Trans is the shortest distance from the origin (0,0) to the boundary of the
support of the set covariance function of W. It is computed by pixel approximation using setcov,
unless W is a rectangle, when rmax. Trans (W) is the length of the shortest side of the rectangle.

Value

Numeric vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

References
Ohser, J. (1983) On estimators for the reduced second moment measure of point processes. Mathe-
matische Operationsforschung und Statistik, series Statistics, 14, 63 —71.

See Also

rmax.Trans, edge.Ripley, setcov, Kest

Examples

v <- edge.Trans(cells)
rmax.Trans(Window(cells))

136 Emark

Emark Diagnostics for random marking

Description

Estimate the summary functions F(r) and V (r) for a marked point pattern, proposed by Schlather
et al (2004) as diagnostics for dependence between the points and the marks.

Usage
Emark (X, r=NULL,
correction=c("isotropic”, "Ripley”, "translate”),
method="density"”, ..., normalise=FALSE)
Vmark (X, r=NULL,
correction=c("isotropic”, "Ripley"”, "translate”),
method="density"”, ..., normalise=FALSE)
Arguments
X The observed point pattern. An object of class "ppp” or something acceptable
to as.ppp. The pattern should have numeric marks.
r Optional. Numeric vector. The values of the argument r at which the function
E(r) or V(r) should be evaluated. There is a sensible default.
correction A character vector containing any selection of the options "isotropic”, "Ripley”
or "translate”. It specifies the edge correction(s) to be applied.
method A character vector indicating the user’s choice of density estimation technique
to be used. Options are "density”, "loess”, "sm"” and "smrep”.
Arguments passed to the density estimation routine (density, loess or sm.density)
selected by method.
normalise IfTRUE, normalise the estimate of E(r) or V' (r) so that it would have value equal
to 1 if the marks are independent of the points.
Details

For a marked point process, Schlather et al (2004) defined the functions E(r) and V' (r) to be the
conditional mean and conditional variance of the mark attached to a typical random point, given
that there exists another random point at a distance r away from it.

More formally,
E(r) = Eou[M(0)]

and
V(r) = Eou[(M(0) — E(u))?]

where Ej,, denotes the conditional expectation given that there are points of the process at the
locations 0 and u separated by a distance 7, and where M (0) denotes the mark attached to the point
0.

Emark 137

These functions may serve as diagnostics for dependence between the points and the marks. If the
points and marks are independent, then E(r) and V () should be constant (not depending on r).
See Schlather et al (2004).

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to
as.ppp. It must be a marked point pattern with numeric marks.

The argument r is the vector of values for the distance r at which k¢ (r) is estimated.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through a bounded window. The window (which
is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections imple-

mented here are

isotropic/Ripley Ripley’s isotropic correction (see Ripley, 1988; Ohser, 1983). This is imple-
mented only for rectangular and polygonal windows (not for binary masks).

translate Translation correction (Ohser, 1983). Implemented for all window geometries, but slow
for complex windows.

Note that the estimator assumes the process is stationary (spatially homogeneous).

The numerator and denominator of the mark correlation function (in the expression above) are

estimated using density estimation techniques. The user can choose between

"density"” which uses the standard kernel density estimation routine density, and works only for
evenly-spaced r values;

"loess"” which uses the function loess in the package modreg;

"sm" which uses the function sm.density in the package sm and is extremely slow;

"smrep” which uses the function sm.density in the package sm and is relatively fast, but may
require manual control of the smoothing parameter hmult.

Value

If marks(X) is a numeric vector, the result is an object of class "fv" (see fv.object). If marks(X)
is a data frame, the result is a list of objects of class "fv", one for each column of marks.

An object of class "fv" is essentially a data frame containing numeric columns

r the values of the argument r at which the function E(r) or V' (r) has been esti-
mated
theo the theoretical, constant value of E(r) or V(r) when the marks attached to dif-

ferent points are independent

together with a column or columns named "iso" and/or "trans”, according to the selected edge
corrections. These columns contain estimates of the function E(r) or V(r) obtained by the edge
corrections named.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

138 envelope

References

Schlather, M. and Ribeiro, P. and Diggle, P. (2004) Detecting dependence between marks and loca-
tions of marked point processes. Journal of the Royal Statistical Society, series B 66 (2004) 79-83.

See Also

Mark correlation markcorr, mark variogram markvario for numeric marks.

Mark connection function markconnect and multitype K-functions Kcross, Kdot for factor-valued
marks.

Examples

plot(Emark(spruces))
E <- Emark(spruces, method="density", kernel="epanechnikov")
plot(Vmark(spruces))

plot(Emark(finpines))
V <- Vmark(finpines)

envelope Simulation Envelopes of Summary Function

Description

Computes simulation envelopes of a summary function.

Usage

envelope(Y, fun, ...)

S3 method for class 'ppp'

envelope(Y, fun=Kest, nsim=99, nrank=1, ...,
funargs=1list(), funYargs=funargs,
simulate=NULL, fix.n=FALSE, fix.marks=FALSE,
verbose=TRUE, clipdata=TRUE,
transform=NULL, global=FALSE, ginterval=NULL, use.theory=NULL,
alternative=c("two.sided"”, "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

envelope 139

Arguments

Y Object containing point pattern data. A point pattern (object of class "ppp"”) or
a fitted point process model (object of class "ppm”, "kppm" or "slrm").

fun Function that computes the desired summary statistic for a point pattern.

nsim Number of simulated point patterns to be generated when computing the en-
velopes.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

Extra arguments passed to fun.
funargs A list, containing extra arguments to be passed to fun.

funYargs Optional. A list, containing extra arguments to be passed to fun when applied
to the original data Y only.

simulate Optional. Specifies how to generate the simulated point patterns. If simulate
is an expression in the R language, then this expression will be evaluated nsim
times, to obtain nsim point patterns which are taken as the simulated patterns
from which the envelopes are computed. If simulate is a function, then this
function will be repeatedly applied to the data pattern Y to obtain nsim simulated
patterns. If simulate is a list of point patterns, then the entries in this list will
be treated as the simulated patterns from which the envelopes are computed.
Alternatively simulate may be an object produced by the envelope command:
see Details.

fix.n Logical. If TRUE, simulated patterns will have the same number of points as the
original data pattern. This option is currently not available for envelope. kppm.

fix.marks Logical. If TRUE, simulated patterns will have the same number of points and the
same marks as the original data pattern. In a multitype point pattern this means
that the simulated patterns will have the same number of points of each type as
the original data. This option is currently not available for envelope . kppm.

verbose Logical flag indicating whether to print progress reports during the simulations.

clipdata Logical flag indicating whether the data point pattern should be clipped to the
same window as the simulated patterns, before the summary function for the data
is computed. This should usually be TRUE to ensure that the data and simulations
are properly comparable.

transform Optional. A transformation to be applied to the function values, before the en-
velopes are computed. An expression object (see Details).

global Logical flag indicating whether envelopes should be pointwise (global=FALSE)
or simultaneous (global=TRUE).

ginterval Optional. A vector of length 2 specifying the interval of r values for the simul-
taneous critical envelopes. Only relevant if global=TRUE.

use.theory Logical value indicating whether to use the theoretical value, computed by fun,
as the reference value for simultaneous envelopes. Applicable only when global=TRUE.
Default is use. theory=TRUE if Y is a point pattern, or a point process model
equivalent to Complete Spatial Randomness, and use.theory=FALSE other-
wise.

alternative

scale

clamp

savefuns
savepatterns

nsim2

VARTIANCE

nSD

Yname

maxnerr

rejectNA

silent

do.pwrong

envir.simul

envelope

Character string determining whether the envelope corresponds to a two-sided
test (side="two.sided", the default) or a one-sided test with a lower critical
boundary (side="less") or a one-sided test with an upper critical boundary
(side="greater").

Optional. Scaling function for global envelopes. A function in the R language
which determines the relative scale of deviations, as a function of distance 7,
when computing the global envelopes. Applicable only when global=TRUE.
Summary function values for distance r will be divided by scale(r) before
the maximum deviation is computed. The resulting global envelopes will have
width proportional to scale(r).

Logical value indicating how to compute envelopes when alternative="1ess"
or alternative="greater”. Deviations of the observed summary function
from the theoretical summary function are initially evaluated as signed real
numbers, with large positive values indicating consistency with the alternative
hypothesis. If clamp=FALSE (the default), these values are not changed. If
clamp=TRUE, any negative values are replaced by zero.

Logical flag indicating whether to save all the simulated function values.
Logical flag indicating whether to save all the simulated point patterns.

Number of extra simulated point patterns to be generated if it is necessary to
use simulation to estimate the theoretical mean of the summary function. Only
relevant when global=TRUE and the simulations are not based on CSR.

Logical. If TRUE, critical envelopes will be calculated as sample mean plus or
minus nSD times sample standard deviation.

Number of estimated standard deviations used to determine the critical envelopes,
if VARIANCE=TRUE.

Character string that should be used as the name of the data point pattern Y when
printing or plotting the results.

Maximum number of rejected patterns. If fun yields a fatal error when applied
to a simulated point pattern (for example, because the pattern is empty and fun
requires at least one point), the pattern will be rejected and a new random point
pattern will be generated. If this happens more than maxnerr times, the algo-
rithm will give up.

Logical value specifying whether to reject a simulated pattern if the resulting
values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then
simulated patterns are only rejected when fun gives a fatal error.

Logical value specifying whether to print a report each time a simulated pattern
is rejected.

Logical. If TRUE, the algorithm will also estimate the true significance level of
the “wrong” test (the test that declares the summary function for the data to be
significant if it lies outside the pointwise critical boundary at any point). This
estimate is printed when the result is printed.

Environment in which to evaluate the expression simulate, if not the current
environment.

envelope 141

Details

The envelope command performs simulations and computes envelopes of a summary statistic
based on the simulations. The result is an object that can be plotted to display the envelopes.
The envelopes can be used to assess the goodness-of-fit of a point process model to point pattern
data.

For the most basic use, if you have a point pattern X and you want to test Complete Spatial Random-
ness (CSR), type plot (envelope(X, Kest,nsim=39)) to see the K function for X plotted together
with the envelopes of the K function for 39 simulations of CSR.

non

The envelope function is generic, with methods for the classes "ppp”, "ppm"”, "kppm” and "slrm"
described here. There are also methods for the classes "pp3", "1pp” and "lppm” which are de-
scribed separately under envelope.pp3 and envelope. lpp. Envelopes can also be computed from
other envelopes, using envelope.envelope.

To create simulation envelopes, the command envelope(Y, ...) first generates nsim random point
patterns in one of the following ways.

e If Y is a point pattern (an object of class "ppp") and simulate=NULL, then we generate nsim
simulations of Complete Spatial Randomness (i.e. nsim simulated point patterns each being
a realisation of the uniform Poisson point process) with the same intensity as the pattern
Y. (f Y is a multitype point pattern, then the simulated patterns are also given independent
random marks; the probability distribution of the random marks is determined by the relative
frequencies of marks in Y.)

e If Y is a fitted point process model (an object of class "ppm” or "kppm” or "slrm") and
simulate=NULL, then this routine generates nsim simulated realisations of that model.

o If simulate is supplied, then it determines how the simulated point patterns are generated. It
may be either

— an expression in the R language, typically containing a call to a random generator. This
expression will be evaluated nsim times to yield nsim point patterns. For example if
simulate=expression(runifpoint(100)) then each simulated pattern consists of ex-
actly 100 independent uniform random points.

— a function in the R language, typically containing a call to a random generator. This
function will be applied repeatedly to the original data pattern Y to yield nsim point pat-
terns. For example if simulate=rlabel then each simulated pattern was generated by
evaluating rlabel(Y) and consists of a randomly-relabelled version of Y.

— alist of point patterns. The entries in this list will be taken as the simulated patterns.

— an object of class "envelope”. This should have been produced by calling envelope
with the argument savepatterns=TRUE. The simulated point patterns that were saved in
this object will be extracted and used as the simulated patterns for the new envelope com-
putation. This makes it possible to plot envelopes for two different summary functions
based on exactly the same set of simulated point patterns.

The summary statistic fun is applied to each of these simulated patterns. Typically fun is one of
the functions Kest, Gest, Fest, Jest, pcf, Kcross, Kdot, Gcross, Gdot, Jcross, Jdot, Kmulti,
Gmulti, Jmulti or Kinhom. It may also be a character string containing the name of one of these
functions.

The statistic fun can also be a user-supplied function; if so, then it must have arguments X and r
like those in the functions listed above, and it must return an object of class "fv".

Upper and lower critical envelopes are computed in one of the following ways:

142 envelope

pointwise: by default, envelopes are calculated pointwise (i.e. for each value of the distance ar-
gument 7), by sorting the nsim simulated values, and taking the m-th lowest and m-th highest
values, where m = nrank. For example if nrank=1, the upper and lower envelopes are the
pointwise maximum and minimum of the simulated values.
The pointwise envelopes are not “confidence bands” for the true value of the function! Rather,
they specify the critical points for a Monte Carlo test (Ripley, 1981). The test is constructed
by choosing a fixed value of r, and rejecting the null hypothesis if the observed function value
lies outside the envelope at this value of r. This test has exact significance level alpha =2 *
nrank/(1 + nsim).

simultaneous: if global=TRUE, then the envelopes are determined as follows. First we calculate
the theoretical mean value of the summary statistic (if we are testing CSR, the theoretical value
is supplied by fun; otherwise we perform a separate set of nsim2 simulations, compute the av-
erage of all these simulated values, and take this average as an estimate of the theoretical mean
value). Then, for each simulation, we compare the simulated curve to the theoretical curve,
and compute the maximum absolute difference between them (over the interval of r values
specified by ginterval). This gives a deviation value d; for each of the nsim simulations.
Finally we take the m-th largest of the deviation values, where m=nrank, and call this dcrit.
Then the simultaneous envelopes are of the form 1o = expected - dcrit and hi = expected
+dcrit where expected is either the theoretical mean value theo (if we are testing CSR)
or the estimated theoretical value mmean (if we are testing another model). The simultaneous
critical envelopes have constant width 2 * dcrit.
The simultaneous critical envelopes allow us to perform a different Monte Carlo test (Ripley,
1981). The test rejects the null hypothesis if the graph of the observed function lies outside the
envelope at any value of r. This test has exact significance level alpha = nrank/ (1 + nsim).

This test can also be performed using mad. test.

based on sample moments: if VARIANCE=TRUE, the algorithm calculates the (pointwise) sample
mean and sample variance of the simulated functions. Then the envelopes are computed as
mean plus or minus nSD standard deviations. These envelopes do not have an exact signif-
icance interpretation. They are a naive approximation to the critical points of the Neyman-
Pearson test assuming the summary statistic is approximately Normally distributed.

The return value is an object of class "fv" containing the summary function for the data point
pattern, the upper and lower simulation envelopes, and the theoretical expected value (exact or esti-
mated) of the summary function for the model being tested. It can be plotted using plot.envelope.

If VARIANCE=TRUE then the return value also includes the sample mean, sample variance and other
quantities.

Arguments can be passed to the function fun through This means that you simply specify
these arguments in the call to envelope, and they will be passed to fun. In particular, the argument
correction determines the edge correction to be used to calculate the summary statistic. See the
section on Edge Corrections, and the Examples.

Arguments can also be passed to the function fun through the list funargs. This mechanism is typ-
ically used if an argument of fun has the same name as an argument of envelope. The list funargs
should contain entries of the form name=value, where each name is the name of an argument of
fun.

There is also an option, rarely used, in which different function arguments are used when computing
the summary function for the data Y and for the simulated patterns. If funYargs is given, it will
be used when the summary function for the data Y is computed, while funargs will be used when

envelope 143

computing the summary function for the simulated patterns. This option is only needed in rare
cases: usually the basic principle requires that the data and simulated patterns must be treated
equally, so that funargs and funYargs should be identical.

If Y is a fitted cluster point process model (object of class "kppm"”), and simulate=NULL, then the
model is simulated directly using simulate.kppm.

If Y is a fitted Gibbs point process model (object of class "ppm”), and simulate=NULL, then the
model is simulated by running the Metropolis-Hastings algorithm rmh. Complete control over this
algorithm is provided by the arguments start and control which are passed to rmh.

For simultaneous critical envelopes (global=TRUE) the following options are also useful:

ginterval determines the interval of r values over which the deviation between curves is cal-
culated. It should be a numeric vector of length 2. There is a sensible default (namely, the
recommended plotting interval for fun(X), or the range of r values if r is explicitly specified).

transform specifies a transformation of the summary function fun that will be carried out before
the deviations are computed. Such transforms are useful if global=TRUE or VARIANCE=TRUE.
The transform must be an expression object using the symbol . to represent the function
value (and possibly other symbols recognised by with.fv). For example, the conventional
way to normalise the K function (Ripley, 1981) is to transform it to the L function L(r) =
v/ K (r)/m and this is implemented by setting transform=expression(sqrt(./pi)).

It is also possible to extract the summary functions for each of the individual simulated point pat-
terns, by setting savefuns=TRUE. Then the return value also has an attribute "simfuns"” containing
all the summary functions for the individual simulated patterns. It is an "fv" object containing
functions named sim1, sim2, ... representing the nsim summary functions.

It is also possible to save the simulated point patterns themselves, by setting savepatterns=TRUE.
Then the return value also has an attribute "simpatterns” which is a list of length nsim containing
all the simulated point patterns.

See plot.envelope and plot. fv for information about how to plot the envelopes.

Different envelopes can be recomputed from the same data using envelope.envelope. Envelopes
can be combined using pool.envelope.
Value

An object of class "envelope” and "fv", see fv.object, which can be printed and plotted directly.

Essentially a data frame containing columns

r the vector of values of the argument r at which the summary function fun has
been estimated

obs values of the summary function for the data point pattern

lo lower envelope of simulations

hi upper envelope of simulations

and either

theo theoretical value of the summary function under CSR (Complete Spatial Ran-

domness, a uniform Poisson point process) if the simulations were generated
according to CSR

144 envelope

mmean estimated theoretical value of the summary function, computed by averaging
simulated values, if the simulations were not generated according to CSR.

Additionally, if savepatterns=TRUE, the return value has an attribute "simpatterns” which is a
list containing the nsim simulated patterns. If savefuns=TRUE, the return value has an attribute
"simfuns” which is an object of class "fv" containing the summary functions computed for each
of the nsim simulated patterns.

Errors and warnings

An error may be generated if one of the simulations produces a point pattern that is empty, or is
otherwise unacceptable to the function fun.

The upper envelope may be NA (plotted as plus or minus infinity) if some of the function values
computed for the simulated point patterns are NA. Whether this occurs will depend on the function
fun, but it usually happens when the simulated point pattern does not contain enough points to
compute a meaningful value.

Confidence intervals

Simulation envelopes do not compute confidence intervals; they generate significance bands. If you
really need a confidence interval for the true summary function of the point process, use lohboot.
See also varblock.

Edge corrections

It is common to apply a correction for edge effects when calculating a summary function such as
the K function. Typically the user has a choice between several possible edge corrections. In a
call to envelope, the user can specify the edge correction to be applied in fun, using the argument
correction. See the Examples below.

Summary functions in spatstat Summary functions that are available in spatstat, such as Kest,
Gest and pcf, have a standard argument called correction which specifies the name of one
or more edge corrections.

The list of available edge corrections is different for each summary function, and may also
depend on the kind of window in which the point pattern is recorded. In the case of Kest (the
default and most frequently used value of fun) the best edge correction is Ripley’s isotropic
correction if the window is rectangular or polygonal, and the translation correction if the
window is a binary mask. See the help files for the individual functions for more information.
All the summary functions in spatstat recognise the option correction="best" which gives
the “best” (most accurate) available edge correction for that function.

In a call to envelope, if fun is one of the summary functions provided in spatstat, then the
default is correction="best"”. This means that by default, the envelope will be computed
using the “best” available edge correction.

The user can override this default by specifying the argument correction. For example the
computation can be accelerated by choosing another edge correction which is less accurate
than the “best” one, but faster to compute.

User-written summary functions If fun is a function written by the user, then envelope has to
guess what to do.

envelope 145

If fun has an argument called correction, or has ... arguments, then envelope assumes
that the function can handle a correction argument. To compute the envelope, fun will be
called with a correction argument. The default is correction="best", unless overridden
in the call to envelope.

Otherwise, if fun does not have an argument called correction and does not have ... ar-
guments, then envelope assumes that the function cannot handle a correction argument. To
compute the envelope, fun is called without a correction argument.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References
Baddeley, A., Diggle, PJ., Hardegen, A., Lawrence, T., Milne, R.K. and Nair, G. (2014) On tests of
spatial pattern based on simulation envelopes. Ecological Monographs 84 (3) 477-489.
Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.
Diggle, P.J. Statistical analysis of spatial point patterns. Arnold, 2003.
Ripley, B.D. (1981) Spatial statistics. John Wiley and Sons.
Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

dclf.test, mad.test for envelope-based tests.

fv.object, plot.envelope, plot.fv, envelope.envelope, pool.envelope for handling en-
velopes. There are also methods for print and summary.

Kest, Gest, Fest, Jest, pcf, ppp, ppm, default.expand

Examples

X <- simdat
online <- interactive()
Nsim <- if(online) 19 else 3

Envelope of K function under CSR
plot(envelope(X, nsim=Nsim))

Translation edge correction (this is also FASTER):
if(online) {

plot(envelope(X, correction="translate"))
} else {

E <- envelope(X, nsim=Nsim, correction="translate")

}

Global envelopes

146 envelope

if(online) {
plot(envelope(X, Lest, global=TRUE))
plot(envelope(X, Kest, global=TRUE, scale=function(r) { r }))
} else {
E <- envelope(X, Lest, nsim=Nsim, global=TRUE)
E <- envelope(X, Kest, nsim=Nsim, global=TRUE, scale=function(r) { r })
E
summary (E)

3

Envelope of G function under CSR
if(online) {
plot(envelope(X, Gest))
} else {
E <- envelope(X, Gest, correction="rs"”, nsim=Nsim)

}

Envelope of L function under CSR
L(r) = sqrt(K(r)/pi)
if(online) {
E <- envelope(X, Kest)
} else {
E <- envelope(X, Kest, correction="border"”, nsim=Nsim)
}
plot(E, sqrt(./pi) ~ r)

Simultaneous critical envelope for L function
(alternatively, use Lest)
if(online) {
plot(envelope(X, Kest, transform=expression(sqrt(./pi)), global=TRUE))
} else {
E <- envelope(X, Kest, nsim=Nsim, correction="border”,
transform=expression(sqrt(./pi)), global=TRUE)

One-sided envelope
if(online) {
plot(envelope(X, Lest, alternative="less"))
} else {
E <- envelope(X, Lest, nsim=Nsim, alternative="less")

3

How to pass arguments needed to compute the summary functions:
We want envelopes for Jcross(X, "A", "B")
where "A" and "B" are types of points in the dataset 'demopat'

if(online) {

plot(envelope(demopat, Jcross, i="A", j="B"))

} else {

plot(envelope(demopat, Jcross, correction="rs"”, i="A", j="B", nsim=Nsim))

envelope 147

Use of ‘simulate' expression
if(online) {
plot(envelope(cells, Gest, simulate=expression(runifpoint(42))))
plot(envelope(cells, Gest, simulate=expression(rMaternI(100,0.02))))
} else {
plot(envelope(cells, Gest, correction="rs", simulate=expression(runifpoint(42)), nsim=Nsim))
plot(envelope(cells, Gest, correction="rs", simulate=expression(rMaternI(100, 0.02)),
nsim=Nsim, global=TRUE))
}

Use of ‘simulate' function
if(online) {
plot(envelope(amacrine, Kcross, simulate=rlabel))
} else {
plot(envelope(amacrine, Kcross, simulate=rlabel, nsim=Nsim))

3

Envelope under random toroidal shifts

if(online) {

plot(envelope(amacrine, Kcross, i="on", j="off",
simulate=expression(rshift(amacrine, radius=0.25))))

3

Envelope under random shifts with erosion

if(online) {

plot(envelope(amacrine, Kcross, i="on", j="off",
simulate=expression(rshift(amacrine, radius=0.1, edge="erode"))))

Note that the principle of symmetry, essential to the validity of
simulation envelopes, requires that both the observed and

simulated patterns be subjected to the same method of intensity
estimation. In the following example it would be incorrect to set the
argument 'lambda=red.dens' in the envelope command, because this
would mean that the inhomogeneous K functions of the simulated
patterns would be computed using the intensity function estimated
from the original redwood data, violating the symmetry. There is
still a concern about the fact that the simulations are generated
from a model that was fitted to the data; this is only a problem in
small datasets.

e R

if(online) {

red.dens <- density(redwood, sigma=bw.diggle, positive=TRUE)

plot(envelope(redwood, Kinhom, sigma=bw.diggle,
simulate=expression(rpoispp(red.dens))))

}

Precomputed list of point patterns
if(online) {
nX <- npoints(X)

148 envelope.envelope

PatList <- list()

for(i in 1:Nsim) PatList[[i]] <- runifpoint(nX)

E <- envelope(X, Kest, nsim=19, simulate=PatlList)
} else {

PatList <- list()

for(i in 1:Nsim) PatList[[i]] <- runifpoint(10)

}

E <- envelope(X, Kest, nsim=Nsim, simulate=PatlList)

re-using the same point patterns
EK <- envelope(X, Kest, nsim=Nsim, savepatterns=TRUE)
EG <- envelope(X, Gest, nsim=Nsim, simulate=EK)

envelope.envelope Recompute Envelopes

Description

Given a simulation envelope (object of class "envelope”), compute another envelope from the
same simulation data using different parameters.

Usage

S3 method for class 'envelope'
envelope(Y, fun = NULL, ...,
transform=NULL, global=FALSE, VARIANCE=FALSE)

Arguments
Y A simulation envelope (object of class "envelope").
fun Optional. Summary function to be applied to the simulated point patterns.

...,transform,global, VARIANCE
Parameters controlling the type of envelope that is re-computed. See envelope.

Details

This function can be used to re-compute a simulati