
101

The GFtype processor

(Version 3.1, March 1991)

Section Page
Introduction . 1 102
The character set . 8 104
Generic font file format . 13 106
Input from binary files . 20 111
Optional modes of output . 25 112
The image array . 35 114
Translation to symbolic form . 44 116
Reading the postamble . 61 121
The main program . 66 123
System-dependent changes . 73 126
Index . 74 127

The preparation of this report was supported in part by the National Science Founda-
tion under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System
Development Foundation. ‘TEX’ is a trademark of the American Mathematical Society.
‘hijklmnj ’ is a trademark of Addison-Wesley Publishing Company.

June 11, 2023 at 13:13

102 INTRODUCTION GFtype §1

1. Introduction. The GFtype utility program reads binary generic-font (“GF”) files that are produced
by font compilers such as METAFONT, and converts them into symbolic form. This program has three chief
purposes: (1) It can be used to look at the pixels of a font, with one pixel per character in a text file; (2) it
can be used to determine whether a GF file is valid or invalid, when diagnosing compiler errors; and (3) it
serves as an example of a program that reads GF files correctly, for system programmers who are developing
GF-related software.

The original version of this program was written by David R. Fuchs in March, 1984. Donald E. Knuth
made a few modifications later that year as METAFONT was taking shape.

The banner string defined here should be changed whenever GFtype gets modified.

define banner ≡ ´This is GFtype, Version 3.1´ { printed when the program starts }

2. This program is written in standard Pascal, except where it is necessary to use extensions; for example,
one extension is to use a default case as in TANGLE, WEAVE, etc. All places where nonstandard constructions
are used have been listed in the index under “system dependencies.”

define othercases ≡ others : {default for cases not listed explicitly }
define endcases ≡ end { follows the default case in an extended case statement }
format othercases ≡ else
format endcases ≡ end

3. The binary input comes from gf file , and the symbolic output is written on Pascal’s standard output
file. The term print is used instead of write when this program writes on output , so that all such output
could easily be redirected if desired.

define print (#) ≡ write (#)
define print ln (#) ≡ write ln (#)
define print nl ≡ write ln

program GF type (gf file , output);
label 〈Labels in the outer block 4 〉
const 〈Constants in the outer block 5 〉
type 〈Types in the outer block 8 〉
var 〈Globals in the outer block 10 〉
procedure initialize ; { this procedure gets things started properly }

var i: integer ; { loop index for initializations }
begin print ln (banner);
〈Set initial values 11 〉
end;

4. If the program has to stop prematurely, it goes to the ‘final end ’.

define final end = 9999 { label for the end of it all }
〈Labels in the outer block 4 〉 ≡

final end ;

This code is used in section 3.

§5 GFtype INTRODUCTION 103

5. Four parameters can be changed at compile time to extend or reduce GFtype’s capacity. Note that the
total number of bits in the main image array will be

(max row + 1) × (max col + 1).

(METAFONT’s full pixel range is rarely implemented, because it would require 8 megabytes of memory.)

〈Constants in the outer block 5 〉 ≡
terminal line length = 150;
{maximum number of characters input in a single line of input from the terminal }

line length = 79; { xxx strings will not produce lines longer than this }
max row = 79; { vertical extent of pixel image array }
max col = 79; { horizontal extent of pixel image array }

This code is used in section 3.

6. Here are some macros for common programming idioms.

define incr (#) ≡ #← # + 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 {decrease a variable by unity }
define negate (#) ≡ #← −# { change the sign of a variable }

7. If the GF file is badly malformed, the whole process must be aborted; GFtype will give up, after issuing
an error message about the symptoms that were noticed.

Such errors might be discovered inside of subroutines inside of subroutines, so a procedure called jump out
has been introduced. This procedure, which simply transfers control to the label final end at the end of the
program, contains the only non-local goto statement in GFtype.

define abort (#) ≡
begin print (´ ´, #); jump out ;
end

define bad gf (#) ≡ abort (´Bad GF file: ´, #, ´!´)

procedure jump out ;
begin goto final end ;
end;

104 THE CHARACTER SET GFtype §8

8. The character set. Like all programs written with the WEB system, GFtype can be used with any
character set. But it uses ASCII code internally, because the programming for portable input-output is
easier when a fixed internal code is used.

The next few sections of GFtype have therefore been copied from the analogous ones in the WEB system
routines. They have been considerably simplified, since GFtype need not deal with the controversial ASCII
codes less than 4́0 or greater than 1́76 . If such codes appear in the GF file, they will be printed as question
marks.

〈Types in the outer block 8 〉 ≡
ASCII code = " " . . "~"; { a subrange of the integers }

See also sections 9, 20, and 36.

This code is used in section 3.

9. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper and
lower case alphabets in a convenient way, especially in a program like GFtype. So we shall assume that the
Pascal system being used for GFtype has a character set containing at least the standard visible characters
of ASCII code ("!" through "~").

Some Pascal compilers use the original name char for the data type associated with the characters in text
files, while other Pascals consider char to be a 64-element subrange of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text char to stand for the
data type of the characters in the output file. We shall also assume that text char consists of the elements
chr (first text char) through chr (last text char), inclusive. The following definitions should be adjusted if
necessary.

define text char ≡ char { the data type of characters in text files }
define first text char = 0 { ordinal number of the smallest element of text char }
define last text char = 127 { ordinal number of the largest element of text char }

〈Types in the outer block 8 〉 +≡
text file = packed file of text char ;

10. The GFtype processor converts between ASCII code and the user’s external character set by means of
arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

〈Globals in the outer block 10 〉 ≡
xord : array [text char] of ASCII code ; { specifies conversion of input characters }
xchr : array [0 . . 255] of text char ; { specifies conversion of output characters }
See also sections 21, 23, 25, 27, 35, 37, 39, 41, 46, 54, 62, and 67.

This code is used in section 3.

§11 GFtype THE CHARACTER SET 105

11. Under our assumption that the visible characters of standard ASCII are all present, the following
assignment statements initialize the xchr array properly, without needing any system-dependent changes.

〈Set initial values 11 〉 ≡
for i← 0 to 3́7 do xchr [i]← ´?´;
xchr [4́0]← ´ ´; xchr [4́1]← ´!´; xchr [4́2]← ´"´; xchr [4́3]← ´#´; xchr [4́4]← ´$´;
xchr [4́5]← ´%´; xchr [4́6]← ´&´; xchr [4́7]← ´´´´;
xchr [5́0]← ´(´; xchr [5́1]← ´)´; xchr [5́2]← ´*´; xchr [5́3]← ´+´; xchr [5́4]← ´,´;
xchr [5́5]← ´−´; xchr [5́6]← ´.´; xchr [5́7]← ´/´;
xchr [6́0]← ´0´; xchr [6́1]← ´1´; xchr [6́2]← ´2´; xchr [6́3]← ´3´; xchr [6́4]← ´4´;
xchr [6́5]← ´5´; xchr [6́6]← ´6´; xchr [6́7]← ´7´;
xchr [7́0]← ´8´; xchr [7́1]← ´9´; xchr [7́2]← ´:´; xchr [7́3]← ´;´; xchr [7́4]← ´<´;
xchr [7́5]← ´=´; xchr [7́6]← ´>´; xchr [7́7]← ´?´;
xchr [1́00]← ´@´; xchr [1́01]← ´A´; xchr [1́02]← ´B´; xchr [1́03]← ´C´; xchr [1́04]← ´D´;
xchr [1́05]← ´E´; xchr [1́06]← ´F´; xchr [1́07]← ´G´;
xchr [1́10]← ´H´; xchr [1́11]← ´I´; xchr [1́12]← ´J´; xchr [1́13]← ´K´; xchr [1́14]← ´L´;
xchr [1́15]← ´M´; xchr [1́16]← ´N´; xchr [1́17]← ´O´;
xchr [1́20]← ´P´; xchr [1́21]← ´Q´; xchr [1́22]← ´R´; xchr [1́23]← ´S´; xchr [1́24]← ´T´;
xchr [1́25]← ´U´; xchr [1́26]← ´V´; xchr [1́27]← ´W´;
xchr [1́30]← ´X´; xchr [1́31]← ´Y´; xchr [1́32]← ´Z´; xchr [1́33]← ´[´; xchr [1́34]← ´\´;
xchr [1́35]← ´]´; xchr [1́36]← ´^´; xchr [1́37]← ´_´;
xchr [1́40]← ´`´; xchr [1́41]← ´a´; xchr [1́42]← ´b´; xchr [1́43]← ´c´; xchr [1́44]← ´d´;
xchr [1́45]← ´e´; xchr [1́46]← ´f´; xchr [1́47]← ´g´;
xchr [1́50]← ´h´; xchr [1́51]← ´i´; xchr [1́52]← ´j´; xchr [1́53]← ´k´; xchr [1́54]← ´l´;
xchr [1́55]← ´m´; xchr [1́56]← ´n´; xchr [1́57]← ´o´;
xchr [1́60]← ´p´; xchr [1́61]← ´q´; xchr [1́62]← ´r´; xchr [1́63]← ´s´; xchr [1́64]← ´t´;
xchr [1́65]← ´u´; xchr [1́66]← ´v´; xchr [1́67]← ´w´;
xchr [1́70]← ´x´; xchr [1́71]← ´y´; xchr [1́72]← ´z´; xchr [1́73]← ´{´; xchr [1́74]← ´|´;
xchr [1́75]← ´}´; xchr [1́76]← ´~´;
for i← 1́77 to 255 do xchr [i]← ´?´;

See also sections 12, 26, 47, and 63.

This code is used in section 3.

12. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr .

〈Set initial values 11 〉 +≡
for i← first text char to last text char do xord [chr (i)]← 4́0 ;
for i← " " to "~" do xord [xchr [i]]← i;

106 GENERIC FONT FILE FORMAT GFtype §13

13. Generic font file format. The most important output produced by a typical run of METAFONT is
the “generic font” (GF) file that specifies the bit patterns of the characters that have been drawn. The term
generic indicates that this file format doesn’t match the conventions of any name-brand manufacturer; but
it is easy to convert GF files to the special format required by almost all digital phototypesetting equipment.
There’s a strong analogy between the DVI files written by TEX and the GF files written by METAFONT; and,
in fact, the file formats have a lot in common. It is therefore not surprising that GFtype is identical in many
respects to the DVItype program.

A GF file is a stream of 8-bit bytes that may be regarded as a series of commands in a machine-like language.
The first byte of each command is the operation code, and this code is followed by zero or more bytes that
provide parameters to the command. The parameters themselves may consist of several consecutive bytes;
for example, the ‘boc ’ (beginning of character) command has six parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters can be either
positive or negative, hence they range in value from −231 to 231 − 1. As in TFM files, numbers that occupy
more than one byte position appear in BigEndian order, and negative numbers appear in two’s complement
notation.

A GF file consists of a “preamble,” followed by a sequence of one or more “characters,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that introduce the file; this must
come first. Each “character” consists of a boc command, followed by any number of other commands that
specify “black” pixels, followed by an eoc command. The characters appear in the order that METAFONT

generated them. If we ignore no-op commands (which are allowed between any two commands in the file),
each eoc command is immediately followed by a boc command, or by a post command; in the latter case,
there are no more characters in the file, and the remaining bytes form the postamble. Further details about
the postamble will be explained later.

Some parameters in GF commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first file byte is number 0, then comes number 1, and so on.

14. The GF format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information relative instead of absolute. When a GF-reading program
reads the commands for a character, it keeps track of two quantities: (a) the current column number, m; and
(b) the current row number, n. These are 32-bit signed integers, although most actual font formats produced
from GF files will need to curtail this vast range because of practical limitations. (METAFONT output will
never allow |m| or |n| to get extremely large, but the GF format tries to be more general.)

How do GF’s row and column numbers correspond to the conventions of TEX and METAFONT? Well, the
“reference point” of a character, in TEX’s view, is considered to be at the lower left corner of the pixel in
row 0 and column 0. This point is the intersection of the baseline with the left edge of the type; it corresponds
to location (0, 0) in METAFONT programs. Thus the pixel in GF row 0 and column 0 is METAFONT’s unit
square, comprising the region of the plane whose coordinates both lie between 0 and 1. The pixel in GF

row n and column m consists of the points whose METAFONT coordinates (x, y) satisfy m ≤ x ≤ m + 1
and n ≤ y ≤ n + 1. Negative values of m and x correspond to columns of pixels left of the reference point;
negative values of n and y correspond to rows of pixels below the baseline.

Besides m and n, there’s also a third aspect of the current state, namely the paint switch , which is
always either black or white . Each paint command advances m by a specified amount d, and blackens
the intervening pixels if paint switch = black ; then the paint switch changes to the opposite state. GF’s
commands are designed so that m will never decrease within a row, and n will never increase within a
character; hence there is no way to whiten a pixel that has been blackened.

§15 GFtype GENERIC FONT FILE FORMAT 107

15. Here is a list of all the commands that may appear in a GF file. Each command is specified by its
symbolic name (e.g., boc), its opcode byte (e.g., 67), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example, ‘d[2]’ means that parameter d is
two bytes long.

paint 0 0. This is a paint command with d = 0; it does nothing but change the paint switch from black to
white or vice versa.

paint 1 through paint 63 (opcodes 1 to 63). These are paint commands with d = 1 to 63, defined as follows:
If paint switch = black , blacken d pixels of the current row n, in columns m through m + d − 1
inclusive. Then, in any case, complement the paint switch and advance m by d.

paint1 64 d[1]. This is a paint command with a specified value of d; METAFONT uses it to paint when
64 ≤ d < 256.

paint2 65 d[2]. Same as paint1 , but d can be as high as 65535.

paint3 66 d[3]. Same as paint1 , but d can be as high as 224 − 1. METAFONT never needs this command,
and it is hard to imagine anybody making practical use of it; surely a more compact encoding will be
desirable when characters can be this large. But the command is there, anyway, just in case.

boc 67 c[4] p[4] min m [4] max m [4] min n [4] max n [4]. Beginning of a character: Here c is the character
code, and p points to the previous character beginning (if any) for characters having this code number
modulo 256. (The pointer p is −1 if there was no prior character with an equivalent code.) The
values of registers m and n defined by the instructions that follow for this character must satisfy
min m ≤ m ≤ max m and min n ≤ n ≤ max n . (The values of max m and min n need not be
the tightest bounds possible.) When a GF-reading program sees a boc , it can use min m , max m ,
min n , and max n to initialize the bounds of an array. Then it sets m ← min m , n ← max n , and
paint switch ← white .

boc1 68 c[1] del m [1] max m [1] del n [1] max n [1]. Same as boc , but p is assumed to be −1; also del m =
max m −min m and del n = max n −min n are given instead of min m and min n . The one-byte
parameters must be between 0 and 255, inclusive. (This abbreviated boc saves 19 bytes per character,
in common cases.)

eoc 69. End of character: All pixels blackened so far constitute the pattern for this character. In particular,
a completely blank character might have eoc immediately following boc .

skip0 70. Decrease n by 1 and set m ← min m , paint switch ← white . (This finishes one row and begins
another, ready to whiten the leftmost pixel in the new row.)

skip1 71 d[1]. Decrease n by d+ 1, set m← min m , and set paint switch ← white . This is a way to produce
d all-white rows.

skip2 72 d[2]. Same as skip1 , but d can be as large as 65535.

skip3 73 d[3]. Same as skip1 , but d can be as large as 224 − 1. METAFONT obviously never needs this
command.

new row 0 74. Decrease n by 1 and set m ← min m , paint switch ← black . (This finishes one row and
begins another, ready to blacken the leftmost pixel in the new row.)

new row 1 through new row 164 (opcodes 75 to 238). Same as new row 0 , but with m ← min m + 1
through min m + 164, respectively.

xxx1 239 k[1] x[k]. This command is undefined in general; it functions as a (k + 2)-byte no op unless
special GF-reading programs are being used. METAFONT generates xxx commands when encountering
a special string; this occurs in the GF file only between characters, after the preamble, and before the
postamble. However, xxx commands might appear within characters, in GF files generated by other
processors. It is recommended that x be a string having the form of a keyword followed by possible
parameters relevant to that keyword.

xxx2 240 k[2] x[k]. Like xxx1 , but 0 ≤ k < 65536.

xxx3 241 k[3] x[k]. Like xxx1 , but 0 ≤ k < 224. METAFONT uses this when sending a special string whose
length exceeds 255.

108 GENERIC FONT FILE FORMAT GFtype §15

xxx4 242 k[4] x[k]. Like xxx1 , but k can be ridiculously large; k mustn’t be negative.

yyy 243 y[4]. This command is undefined in general; it functions as a 5-byte no op unless special GF-reading
programs are being used. METAFONT puts scaled numbers into yyy ’s, as a result of numspecial
commands; the intent is to provide numeric parameters to xxx commands that immediately precede.

no op 244. No operation, do nothing. Any number of no op ’s may occur between GF commands, but a
no op cannot be inserted between a command and its parameters or between two parameters.

char loc 245 c[1] dx [4] dy [4] w[4] p[4]. This command will appear only in the postamble, which will be
explained shortly.

char loc0 246 c[1] dm [1] w[4] p[4]. Same as char loc , except that dy is assumed to be zero, and the value
of dx is taken to be 65536 ∗ dm , where 0 ≤ dm < 256.

pre 247 i[1] k[1] x[k]. Beginning of the preamble; this must come at the very beginning of the file. Parameter i
is an identifying number for GF format, currently 131. The other information is merely commentary; it
is not given special interpretation like xxx commands are. (Note that xxx commands may immediately
follow the preamble, before the first boc .)

post 248. Beginning of the postamble, see below.

post post 249. Ending of the postamble, see below.

Commands 250–255 are undefined at the present time.

define gf id byte = 131 { identifies the kind of GF files described here }

16. Here are the opcodes that GFtype actually refers to.

define paint 0 = 0 { beginning of the paint commands }
define paint1 = 64 {move right a given number of columns, then black↔ white }
define boc = 67 { beginning of a character }
define boc1 = 68 { abbreviated boc }
define eoc = 69 { end of a character }
define skip0 = 70 { skip no blank rows }
define skip1 = 71 { skip over blank rows }
define new row 0 = 74 {move down one row and then right }
define xxx1 = 239 { for special strings }
define yyy = 243 { for numspecial numbers }
define no op = 244 { no operation }
define char loc = 245 { character locators in the postamble }
define pre = 247 { preamble }
define post = 248 { postamble beginning }
define post post = 249 {postamble ending }
define undefined commands ≡ 250, 251, 252, 253, 254, 255

§17 GFtype GENERIC FONT FILE FORMAT 109

17. The last character in a GF file is followed by ‘post ’; this command introduces the postamble, which
summarizes important facts that METAFONT has accumulated. The postamble has the form

post p[4] ds [4] cs [4] hppp [4] vppp [4] min m [4] max m [4] min n [4] max n [4]
〈 character locators 〉
post post q[4] i[1] 223’s[≥4]

Here p is a pointer to the byte following the final eoc in the file (or to the byte following the preamble, if
there are no characters); it can be used to locate the beginning of xxx commands that might have preceded
the postamble. The ds and cs parameters give the design size and check sum, respectively, which are exactly
the values put into the header of any TFM file that shares information with this GF file. Parameters hppp
and vppp are the ratios of pixels per point, horizontally and vertically, expressed as scaled integers (i.e.,
multiplied by 216); they can be used to correlate the font with specific device resolutions, magnifications,
and “at sizes.” Then come min m , max m , min n , and max n , which bound the values that registers m
and n assume in all characters in this GF file. (These bounds need not be the best possible; max m and
min n may, on the other hand, be tighter than the similar bounds in boc commands. For example, some
character may have min n = −100 in its boc , but it might turn out that n never gets lower than −50 in any
character; then min n can have any value ≤ −50. If there are no characters in the file, it’s possible to have
min m > max m and/or min n > max n .)

18. Character locators are introduced by char loc commands, which specify a character residue c, character
escapements (dx , dy), a character width w, and a pointer p to the beginning of that character. (If two or
more characters have the same code c modulo 256, only the last will be indicated; the others can be located
by following backpointers. Characters whose codes differ by a multiple of 256 are assumed to share the
same font metric information, hence the TFM file contains only residues of character codes modulo 256. This
convention is intended for oriental languages, when there are many character shapes but few distinct widths.)

The character escapements (dx , dy) are the values of METAFONT’s chardx and chardy parameters; they
are in units of scaled pixels; i.e., dx is in horizontal pixel units times 216, and dy is in vertical pixel units
times 216. This is the intended amount of displacement after typesetting the character; for DVI files, dy
should be zero, but other document file formats allow nonzero vertical escapement.

The character width w duplicates the information in the TFM file; it is 220 times the ratio of the true width
to the font’s design size.

The backpointer p points to the character’s boc , or to the first of a sequence of consecutive xxx or yyy
or no op commands that immediately precede the boc , if such commands exist; such “special” commands
essentially belong to the characters, while the special commands after the final character belong to the
postamble (i.e., to the font as a whole). This convention about p applies also to the backpointers in boc
commands, even though it wasn’t explained in the description of boc .

Pointer p might be −1 if the character exists in the TFM file but not in the GF file. This unusual situation
can arise in METAFONT output if the user had proofing < 0 when the character was being shipped out, but
then made proofing ≥ 0 in order to get a GF file.

110 GENERIC FONT FILE FORMAT GFtype §19

19. The last part of the postamble, following the post post byte that signifies the end of the character
locators, contains q, a pointer to the post command that started the postamble. An identification byte, i,
comes next; this currently equals 131, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., ˝DF in
hexadecimal). METAFONT puts out four to seven of these trailing bytes, until the total length of the file
is a multiple of four bytes, since this works out best on machines that pack four bytes per word; but any
number of 223’s is allowed, as long as there are at least four of them. In effect, 223 is a sort of signature
that is added at the very end.

This curious way to finish off a GF file makes it feasible for GF-reading programs to find the postamble first,
on most computers, even though METAFONT wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the GF reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read q, and
move to byte q of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the GF reader can discover all the information needed for individual characters.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities, so
GF format has been designed to work most efficiently with modern operating systems. But if GF files have to
be processed under the restrictions of standard Pascal, one can simply read them from front to back. This
will be adequate for most applications. However, the postamble-first approach would facilitate a program
that merges two GF files, replacing data from one that is overridden by corresponding data in the other.

§20 GFtype INPUT FROM BINARY FILES 111

20. Input from binary files. We have seen that a GF file is a sequence of 8-bit bytes. The bytes appear
physically in what is called a ‘packed file of 0 . . 255’ in Pascal lingo.

Packing is system dependent, and many Pascal systems fail to implement such files in a sensible way
(at least, from the viewpoint of producing good production software). For example, some systems treat all
byte-oriented files as text, looking for end-of-line marks and such things. Therefore some system-dependent
code is often needed to deal with binary files, even though most of the program in this section of GFtype is
written in standard Pascal.

We shall stick to simple Pascal in this program, for reasons of clarity, even if such simplicity is sometimes
unrealistic.

〈Types in the outer block 8 〉 +≡
eight bits = 0 . . 255; { unsigned one-byte quantity }
byte file = packed file of eight bits ; { files that contain binary data }

21. The program deals with one binary file variable: gf file is the main input file that we are translating
into symbolic form.

〈Globals in the outer block 10 〉 +≡
gf file : byte file ; { the stuff we are GFtyping }

22. To prepare this file for input, we reset it.

procedure open gf file ; { prepares to read packed bytes in gf file }
begin reset (gf file); cur loc ← 0;
end;

23. If you looked carefully at the preceding code, you probably asked, “What is cur loc?” Good question.
It’s a global variable that holds the number of the byte about to be read next from gf file .

〈Globals in the outer block 10 〉 +≡
cur loc : integer ; {where we are about to look, in gf file }

24. We shall use a set of simple functions to read the next byte or bytes from gf file . There are four
possibilities, each of which is treated as a separate function in order to minimize the overhead for subroutine
calls.

function get byte : integer ; { returns the next byte, unsigned }
var b: eight bits ;
begin if eof (gf file) then get byte ← 0
else begin read (gf file , b); incr (cur loc); get byte ← b;

end;
end;

function get two bytes : integer ; { returns the next two bytes, unsigned }
var a, b: eight bits ;
begin read (gf file , a); read (gf file , b); cur loc ← cur loc + 2; get two bytes ← a ∗ 256 + b;
end;

function get three bytes : integer ; { returns the next three bytes, unsigned }
var a, b, c: eight bits ;
begin read (gf file , a); read (gf file , b); read (gf file , c); cur loc ← cur loc + 3;
get three bytes ← (a ∗ 256 + b) ∗ 256 + c;
end;

function signed quad : integer ; { returns the next four bytes, signed }
var a, b, c, d: eight bits ;
begin read (gf file , a); read (gf file , b); read (gf file , c); read (gf file , d); cur loc ← cur loc + 4;
if a < 128 then signed quad ← ((a ∗ 256 + b) ∗ 256 + c) ∗ 256 + d
else signed quad ← (((a− 256) ∗ 256 + b) ∗ 256 + c) ∗ 256 + d;
end;

112 OPTIONAL MODES OF OUTPUT GFtype §25

25. Optional modes of output. GFtype will print different quantities of information based on some
options that the user must specify: We set wants mnemonics if the user wants to see a mnemonic dump of
the GF file; and we set wants pixels if the user wants to see a pixel image of each character.

When GFtype begins, it engages the user in a brief dialog so that the options will be specified. This
part of GFtype requires nonstandard Pascal constructions to handle the online interaction; so it may
be preferable in some cases to omit the dialog and simply to produce the maximum possible output
(wants mnemonics = wants pixels = true). On other hand, the necessary system-dependent routines are
not complicated, so they can be introduced without terrible trauma.

〈Globals in the outer block 10 〉 +≡
wants mnemonics : boolean ; { controls mnemonic output }
wants pixels : boolean ; { controls pixel output }

26. 〈Set initial values 11 〉 +≡
wants mnemonics ← true ; wants pixels ← true ;

27. The input ln routine waits for the user to type a line at his or her terminal; then it puts ASCII-code
equivalents for the characters on that line into the buffer array. The term in file is used for terminal input,
and term out for terminal output.

〈Globals in the outer block 10 〉 +≡
buffer : array [0 . . terminal line length] of ASCII code ;
term in : text file ; { the terminal, considered as an input file }
term out : text file ; { the terminal, considered as an output file }

28. Since the terminal is being used for both input and output, some systems need a special routine to make
sure that the user can see a prompt message before waiting for input based on that message. (Otherwise
the message may just be sitting in a hidden buffer somewhere, and the user will have no idea what the
program is waiting for.) We shall invoke a system-dependent subroutine update terminal in order to avoid
this problem.

define update terminal ≡ break (term out) { empty the terminal output buffer }

29. During the dialog, extensions of GFtype might treat the first blank space in a line as the end of that
line. Therefore input ln makes sure that there is always at least one blank space in buffer .

(This routine is more complex than the present implementation needs, but it has been copied from DVItype

so that system-dependent changes that worked before will work again.)

procedure input ln ; { inputs a line from the terminal }
var k: 0 . . terminal line length ;
begin update terminal ; reset (term in);
if eoln (term in) then read ln (term in);
k ← 0;
while (k < terminal line length) ∧ ¬eoln (term in) do

begin buffer [k]← xord [term in↑]; incr (k); get (term in);
end;

buffer [k]← " ";
end;

30. This is humdrum.

function lower casify (c : ASCII code): ASCII code ;
begin if (c ≥ "A") ∧ (c ≤ "Z") then lower casify ← c + "a"− "A"

else lower casify ← c;
end;

§31 GFtype OPTIONAL MODES OF OUTPUT 113

31. The selected options are put into global variables by the dialog procedure, which is called just as
GFtype begins.

procedure dialog ;
label 1, 2;
begin rewrite (term out); { prepare the terminal for output }
write ln (term out , banner);
〈Determine whether the user wants mnemonics 32 〉;
〈Determine whether the user wants pixels 33 〉;
〈Print all the selected options 34 〉;
end;

32. 〈Determine whether the user wants mnemonics 32 〉 ≡
1: write (term out , ´Mnemonic output? (default=no, ? for help): ´); input ln ;

buffer [0]← lower casify (buffer [0]);
if buffer [0] 6= "?" then wants mnemonics ← (buffer [0] = "y") ∨ (buffer [0] = "1") ∨ (buffer [0] = "t")
else begin write (term out , ´Type Y for complete listing,´);

write ln (term out , ´ N for errors/images only.´); goto 1;
end

This code is used in section 31.

33. 〈Determine whether the user wants pixels 33 〉 ≡
2: write (term out , ´Pixel output? (default=yes, ? for help): ´); input ln ;

buffer [0]← lower casify (buffer [0]);
if buffer [0] 6= "?" then

wants pixels ← (buffer [0] = "y") ∨ (buffer [0] = "1") ∨ (buffer [0] = "t") ∨ (buffer [0] = " ")
else begin write (term out , ´Type Y to list characters pictorially´);

write ln (term out , ´ with *´´s, N to omit this option.´); goto 2;
end

This code is used in section 31.

34. After the dialog is over, we print the options so that the user can see what GFtype thought was
specified.

〈Print all the selected options 34 〉 ≡
print (´Options selected: Mnemonic output = ´);
if wants mnemonics then print (´true´) else print (´false´);
print (´; pixel output = ´);
if wants pixels then print (´true´) else print (´false´);
print ln (´.´)

This code is used in section 31.

114 THE IMAGE ARRAY GFtype §35

35. The image array. The definition of GF files refers to two registers, m and n, which hold integer
column and row numbers. We actually keep the values m′ = m − min m and n′ = max n − n instead, so
that our internal image array always has m,n ≥ 0. We also need to remember paint switch , whose value is
either black or white .

〈Globals in the outer block 10 〉 +≡
m,n: integer ; { current state values, modified by min m and max n }
paint switch : pixel ;

36. We’ll need a big array of pixels to hold the character image. Each pixel should be represented as a
single bit in order to save space. Some systems may prefer the following definitions, while others may do
better using the boolean type and boolean constants.

define white = 0 { could also be false }
define black = 1 { could also be true }

〈Types in the outer block 8 〉 +≡
pixel = white . . black ; { could also be boolean }

37. In order to allow different systems to change the image array easily from row-major order to column-
major order (or vice versa), or to transpose it top and bottom or left and right, we declare and access it as
follows.

define image ≡ image array [m,n]

〈Globals in the outer block 10 〉 +≡
image array : packed array [0 . . max col , 0 . . max row] of pixel ;

38. A boc command has parameters min m , max m , min n , and max n that define a rectangular subarray
in which the pixels of the current character must lie. The program here computes limits on GFtype’s modified
m and n variables, and clears the resulting subarray to all white .

(There may be a faster way to clear a subarray on particular systems, using nonstandard extensions of
Pascal.)

〈Clear the image 38 〉 ≡
begin max subcol ← max m stated −min m stated − 1;
if max subcol > max col then max subcol ← max col ;
max subrow ← max n stated −min n stated ;
if max subrow > max row then max subrow ← max row ;
n← 0;
while n ≤ max subrow do

begin m← 0;
while m ≤ max subcol do

begin image ← white ; incr (m);
end;

incr (n);
end;

end

This code is used in section 71.

39. 〈Globals in the outer block 10 〉 +≡
max subrow ,max subcol : integer ; { size of current subarray of interest }

§40 GFtype THE IMAGE ARRAY 115

40. As we paint the pixels of a character, we will record its actual boundaries in variables max m observed
and max n observed . Then the following routine will be called on to output the image, using blanks for
white and asterisks for black . Blanks are emitted only when they are followed by nonblanks, in order to
conserve space in the output. Further compaction could be achieved on many systems by using tab marks.

An integer variable b will be declared for use in counting blanks.

〈Print the image 40 〉 ≡
begin 〈Compare the subarray boundaries with the observed boundaries 42 〉;
if max subcol ≥ 0 then { there was at least one paint command }
〈Print asterisk patterns for rows 0 to max subrow 43 〉

else print ln (´(The character is entirely blank.)´);
end

This code is used in section 69.

41. 〈Globals in the outer block 10 〉 +≡
min m stated ,max m stated ,min n stated ,max n stated : integer ; { bounds stated in the GF file }
max m observed ,max n observed : integer ; {bounds on (m′, n′) actually observed when painting }
min m overall ,max m overall ,min n overall ,max n overall : integer ;

{ bounds observed in the entire file so far }

42. If the given character is substantially smaller than the boc command predicted, we don’t want to
bother to output rows and columns that are all blank.

〈Compare the subarray boundaries with the observed boundaries 42 〉 ≡
if (max m observed > max col) ∨ (max n observed > max row) then

print ln (´(The character is too large to be displayed in full.)´);
if max subcol > max m observed then max subcol ← max m observed ;
if max subrow > max n observed then max subrow ← max n observed ;

This code is used in section 40.

43. 〈Print asterisk patterns for rows 0 to max subrow 43 〉 ≡
begin print ln (´.<−−This pixel´´s lower left corner is at (´,min m stated : 1, ´,´,

max n stated + 1 : 1, ´) in METAFONT coordinates´); n← 0;
while n ≤ max subrow do

begin m← 0; b← 0;
while m ≤ max subcol do

begin if image = white then incr (b)
else begin while b > 0 do

begin print (´ ´); decr (b);
end;

print (´*´);
end;

incr (m);
end;

print nl ; incr (n);
end;

print ln (´.<−−This pixel´´s upper left corner is at (´,min m stated : 1, ´,´,
max n stated −max subrow : 1, ´) in METAFONT coordinates´);

end

This code is used in section 40.

116 TRANSLATION TO SYMBOLIC FORM GFtype §44

44. Translation to symbolic form. The main work of GFtype is accomplished by the do char proce-
dure, which produces the output for an entire character, assuming that the boc command for that character
has already been processed. This procedure is essentially an interpretive routine that reads and acts on the
GF commands.

45. We steal the following routine from METAFONT.

define unity ≡ 2́00000 { 216, represents 1.00000 }
procedure print scaled (s : integer); {prints a scaled number, rounded to five digits }

var delta : integer ; { amount of allowable inaccuracy }
begin if s < 0 then

begin print (´−´); negate (s); { print the sign, if negative }
end;

print (s div unity : 1); { print the integer part }
s← 10 ∗ (s mod unity) + 5;
if s 6= 5 then

begin delta ← 10; print (´.´);
repeat if delta > unity then s← s + 1́00000 − (delta div 2); { round the final digit }

print (chr (ord (´0´) + (s div unity))); s← 10 ∗ (s mod unity); delta ← delta ∗ 10;
until s ≤ delta ;
end;

end;

46. Let’s keep track of how many characters are in the font, and the locations of where each one occurred
in the file.

〈Globals in the outer block 10 〉 +≡
total chars : integer ; { the total number of characters seen so far }
char ptr : array [0 . . 255] of integer ; { correct character location pointer }
gf prev ptr : integer ; { char ptr for next character }
character code : integer ; { current character number }

47. 〈Set initial values 11 〉 +≡
for i← 0 to 255 do char ptr [i]← −1; {mark characters as not being in the file }
total chars ← 0;

§48 GFtype TRANSLATION TO SYMBOLIC FORM 117

48. Before we get into the details of do char , it is convenient to consider a simpler routine that computes
the first parameter of each opcode.

define four cases (#) ≡ #, # + 1, # + 2, # + 3
define eight cases (#) ≡ four cases (#), four cases (# + 4)
define sixteen cases (#) ≡ eight cases (#), eight cases (# + 8)
define thirty two cases (#) ≡ sixteen cases (#), sixteen cases (# + 16)
define thirty seven cases (#) ≡ thirty two cases (#), four cases (# + 32), # + 36
define sixty four cases (#) ≡ thirty two cases (#), thirty two cases (# + 32)

function first par (o : eight bits): integer ;
begin case o of
sixty four cases (paint 0): first par ← o− paint 0 ;
paint1 , skip1 , char loc , char loc + 1, xxx1 : first par ← get byte ;
paint1 + 1, skip1 + 1, xxx1 + 1: first par ← get two bytes ;
paint1 + 2, skip1 + 2, xxx1 + 2: first par ← get three bytes ;
xxx1 + 3, yyy : first par ← signed quad ;
boc , boc1 , eoc , skip0 ,no op , pre , post , post post , undefined commands : first par ← 0;
sixty four cases (new row 0), sixty four cases (new row 0 + 64), thirty seven cases (new row 0 + 128):

first par ← o− new row 0 ;
end;
end;

49. Strictly speaking, the do char procedure is really a function with side effects, not a ‘procedure’ ; it
returns the value false if GFtype should be aborted because of some unusual happening. The subroutine is
organized as a typical interpreter, with a multiway branch on the command code.

function do char : boolean ;
label 9998, 9999;
var o: eight bits ; { operation code of the current command }
p, q: integer ; { parameters of the current command }
aok : boolean ; { the value to return }

begin {we’ve already scanned the boc }
aok ← true ;
while true do 〈Translate the next command in the GF file; goto 9999 if it was eoc ; goto 9998 if

premature termination is needed 50 〉;
9998: print ln (´!´); aok ← false ;
9999: do char ← aok ;

end;

118 TRANSLATION TO SYMBOLIC FORM GFtype §50

50. define show label (#) ≡ print (a : 1, ´: ´, #)
define show mnemonic(#) ≡

if wants mnemonics then
begin print nl ; show label (#);
end

define error (#) ≡
begin show label (´! ´, #); print nl ;
end

define nl error (#) ≡
begin print nl ; show label (´! ´, #); print nl ;
end

define start op ≡ a← cur loc ; o← get byte ; p← first par (o);
if eof (gf file) then bad gf (´the file ended prematurely´)

〈Translate the next command in the GF file; goto 9999 if it was eoc ; goto 9998 if premature termination is
needed 50 〉 ≡

begin start op ; 〈Start translation of command o and goto the appropriate label to finish the job 51 〉;
end

This code is used in section 49.

51. The multiway switch in first par , above, was organized by the length of each command; the one in
do char is organized by the semantics.

〈Start translation of command o and goto the appropriate label to finish the job 51 〉 ≡
if o ≤ paint1 + 3 then 〈Translate a sequence of paint commands, until reaching a non-paint 56 〉;
case o of
four cases (skip0): 〈Translate a skip command 60 〉;
sixty four cases (new row 0), sixty four cases (new row 0 + 64), thirty seven cases (new row 0 + 128):

〈Translate a new row command 59 〉;
〈Cases for commands no op , pre , post , post post , boc , and eoc 52 〉
four cases (xxx1): 〈Translate an xxx command 53 〉;
yyy : 〈Translate a yyy command 55 〉;
othercases error (´undefined command ´, o : 1, ´!´)
endcases

This code is used in section 50.

52. 〈Cases for commands no op , pre , post , post post , boc , and eoc 52 〉 ≡
no op : show mnemonic(´no op´);
pre : begin error (´preamble command within a character!´); goto 9998;

end;
post , post post : begin error (´postamble command within a character!´); goto 9998;

end;
boc , boc1 : begin error (´boc occurred before eoc!´); goto 9998;

end;
eoc : begin show mnemonic(´eoc´); print nl ; goto 9999;

end;

This code is used in section 51.

§53 GFtype TRANSLATION TO SYMBOLIC FORM 119

53. 〈Translate an xxx command 53 〉 ≡
begin show mnemonic(´xxx ´´´); bad char ← false ; b← 16;
if p < 0 then nl error (´string of negative length!´);
while p > 0 do

begin q ← get byte ;
if (q < " ") ∨ (q > "~") then bad char ← true ;
if wants mnemonics then

begin print (xchr [q]);
if b < line length then incr (b)
else begin print nl ; b← 2;

end;
end;

decr (p);
end;

if wants mnemonics then print (´´´´);
if bad char then nl error (´non−ASCII character in xxx command!´);
end

This code is used in sections 51 and 70.

54. 〈Globals in the outer block 10 〉 +≡
bad char : boolean ; { has a non-ASCII character code appeared in this xxx ? }

55. 〈Translate a yyy command 55 〉 ≡
begin show mnemonic(´yyy ´, p : 1, ´ (´);
if wants mnemonics then

begin print scaled (p); print (´)´);
end;

end

This code is used in sections 51 and 70.

56. The bulk of a GF file generally consists of paint commands, so we collect them together and print them
in an abbreviated format on one line.

〈Translate a sequence of paint commands, until reaching a non-paint 56 〉 ≡
begin if wants mnemonics then print (´ paint ´);
repeat 〈Paint the next p pixels 57 〉;

start op ;
until o > paint1 + 3;
end

This code is used in section 51.

57. 〈Paint the next p pixels 57 〉 ≡
if wants mnemonics then

if paint switch = white then print (´(´, p : 1, ´)´) else print (p : 1);
m← m + p;
if m > max m observed then max m observed ← m− 1;
if wants pixels then 〈Paint pixels m− p through m− 1 in row n of the subarray 58 〉;
paint switch ← white + black − paint switch { could also be paint switch ← ¬paint switch }

This code is used in section 56.

120 TRANSLATION TO SYMBOLIC FORM GFtype §58

58. We use the fact that the subarray has been initialized to all white .

〈Paint pixels m− p through m− 1 in row n of the subarray 58 〉 ≡
if paint switch = black then

if n ≤ max subrow then
begin l← m− p; r ← m− 1;
if r > max subcol then r ← max subcol ;
m← l;
while m ≤ r do

begin image ← black ; incr (m);
end;

m← l + p;
end

This code is used in section 57.

59. 〈Translate a new row command 59 〉 ≡
begin show mnemonic(´newrow ´, p : 1); incr (n); m← p; paint switch ← black ;
if wants mnemonics then print (´ (n=´,max n stated − n : 1, ´)´);
end

This code is used in section 51.

60. 〈Translate a skip command 60 〉 ≡
begin show mnemonic(´skip´, (o− skip1 + 1) mod 4 : 1, ´ ´, p : 1); n← n + p + 1; m← 0;
paint switch ← white ;
if wants mnemonics then print (´ (n=´,max n stated − n : 1, ´)´);
end

This code is used in section 51.

§61 GFtype READING THE POSTAMBLE 121

61. Reading the postamble. Now imagine that we are reading the GF file and positioned just after
the post command. That, in fact, is the situation, when the following part of GFtype is called upon to read,
translate, and check the rest of the postamble.

procedure read postamble ;
var k: integer ; { loop index }
p, q,m, u, v, w, c: integer ; { general purpose registers }

begin post loc ← cur loc − 1; print (´Postamble starts at byte ´, post loc : 1);
if post loc = gf prev ptr then print ln (´.´)
else print ln (´, after special info at byte ´, gf prev ptr : 1, ´.´);
p← signed quad ;
if p 6= gf prev ptr then

error (´backpointer in byte ´, cur loc − 4 : 1, ´ should be ´, gf prev ptr : 1, ´ not ´, p : 1, ´!´);
design size ← signed quad ; check sum ← signed quad ;
print (´design size = ´, design size : 1, ´ (´); print scaled (design size div 16); print ln (´pt)´);
print ln (´check sum = ´, check sum : 1);
hppp ← signed quad ; vppp ← signed quad ;
print (´hppp = ´, hppp : 1, ´ (´); print scaled (hppp); print ln (´)´); print (´vppp = ´, vppp : 1, ´ (´);
print scaled (vppp); print ln (´)´); pix ratio ← (design size/1048576) ∗ (hppp/1048576);
min m stated ← signed quad ; max m stated ← signed quad ; min n stated ← signed quad ;
max n stated ← signed quad ;
print ln (´min m = ´,min m stated : 1, ´, max m = ´,max m stated : 1);
if min m stated > min m overall then error (´min m should be <=´,min m overall : 1, ´!´);
if max m stated < max m overall then error (´max m should be >=´,max m overall : 1, ´!´);
print ln (´min n = ´,min n stated : 1, ´, max n = ´,max n stated : 1);
if min n stated > min n overall then error (´min n should be <=´,min n overall : 1, ´!´);
if max n stated < max n overall then error (´max n should be >=´,max n overall : 1, ´!´);
〈Process the character locations in the postamble 65 〉;
〈Make sure that the end of the file is well-formed 64 〉;
end;

62. 〈Globals in the outer block 10 〉 +≡
design size , check sum : integer ; { TFM-oriented parameters }
hppp , vppp : integer ; {magnification-oriented parameters }
post loc : integer ; { location of the post command }
pix ratio : real ; {multiply by this to convert TFM width to scaled pixels }

63. 〈Set initial values 11 〉 +≡
min m overall ← max int ; max m overall ← −max int ; min n overall ← max int ;
max n overall ← −max int ;

122 READING THE POSTAMBLE GFtype §64

64. When we get to the present code, the post post command has just been read.

〈Make sure that the end of the file is well-formed 64 〉 ≡
if k 6= post post then error (´should be postpost!´);
for k ← 0 to 255 do

if char ptr [k] > 0 then error (´missing locator for character ´, k : 1, ´!´);
q ← signed quad ;
if q 6= post loc then error (´postamble pointer should be ´, post loc : 1, ´ not ´, q : 1, ´!´);
m← get byte ;
if m 6= gf id byte then error (´identification byte should be ´, gf id byte : 1, ´, not ´,m : 1, ´!´);
k ← cur loc ; m← 223;
while (m = 223) ∧ ¬eof (gf file) do m← get byte ;
if ¬eof (gf file) then bad gf (´signature in byte ´, cur loc − 1 : 1, ´ should be 223´)
else if cur loc < k + 4 then error (´not enough signature bytes at end of file!´)

This code is used in section 61.

65. 〈Process the character locations in the postamble 65 〉 ≡
repeat a← cur loc ; k ← get byte ;

if (k = char loc) ∨ (k = char loc + 1) then
begin c← first par (k);
if k = char loc then

begin u← signed quad ; v ← signed quad ;
end

else begin u← get byte ∗ unity ; v ← 0;
end;

w ← signed quad ; p← signed quad ; print (´Character ´, c : 1, ´: dx ´, u : 1, ´ (´);
print scaled (u);
if v 6= 0 then

begin print (´), dy ´, v : 1, ´ (´); print scaled (v);
end;

print (´), width ´, w : 1, ´ (´); w ← round (w ∗ pix ratio); print scaled (w);
print ln (´), loc ´, p : 1);
if char ptr [c] = 0 then error (´duplicate locator for this character!´)
else if p 6= char ptr [c] then error (´character location should be ´, char ptr [c] : 1, ´!´);
char ptr [c]← 0; k ← no op ;
end;

until k 6= no op

This code is used in section 61.

§66 GFtype THE MAIN PROGRAM 123

66. The main program. Now we are ready to put it all together. This is where GFtype starts, and
where it ends.

begin initialize ; { get all variables initialized }
dialog ; { set up all the options }
〈Process the preamble 68 〉;
〈Translate all the characters 69 〉;
print nl ; read postamble ; print (´The file had ´, total chars : 1, ´ character´);
if total chars 6= 1 then print (´s´);
print (´ altogether.´);

final end : end.

67. The main program needs a few global variables in order to do its work.

〈Globals in the outer block 10 〉 +≡
a: integer ; { byte number of the current command }
b, c, l, o, p, q, r: integer ; { general purpose registers }

68. GFtype looks at the preamble in order to do error checking, and to display the introductory comment.

〈Process the preamble 68 〉 ≡
open gf file ; o← get byte ; { fetch the first byte }
if o 6= pre then bad gf (´First byte isn´´t start of preamble!´);
o← get byte ; { fetch the identification byte }
if o 6= gf id byte then bad gf (´identification byte should be ´, gf id byte : 1, ´ not ´, o : 1);
o← get byte ; { fetch the length of the introductory comment }
print (´´´´);
while o > 0 do

begin decr (o); print (xchr [get byte]);
end;

print ln (´´´´);

This code is used in section 66.

69. 〈Translate all the characters 69 〉 ≡
repeat gf prev ptr ← cur loc ; 〈Pass no op , xxx and yyy commands 70 〉;

if o 6= post then
begin if o 6= boc then

if o 6= boc1 then bad gf (´byte ´, cur loc − 1 : 1, ´ is not boc (´, o : 1, ´)´);
print nl ; print (cur loc − 1 : 1, ´: beginning of char ´); 〈Pass a boc command 71 〉;
if ¬do char then bad gf (´char ended unexpectedly´);
max n observed ← n;
if wants pixels then 〈Print the image 40 〉;
〈Pass an eoc command 72 〉;
end;

until o = post ;

This code is used in section 66.

124 THE MAIN PROGRAM GFtype §70

70. 〈Pass no op , xxx and yyy commands 70 〉 ≡
repeat start op ;

if o = yyy then
begin 〈Translate a yyy command 55 〉;
o← no op ;
end

else if (o ≥ xxx1) ∧ (o ≤ xxx1 + 3) then
begin 〈Translate an xxx command 53 〉;
o← no op ;
end

else if o = no op then show mnemonic(´no op´);
until o 6= no op ;

This code is used in section 69.

71. 〈Pass a boc command 71 〉 ≡
a← cur loc − 1; incr (total chars);
if o = boc then

begin character code ← signed quad ; p← signed quad ; c← character code mod 256;
if c < 0 then c← c + 256;
min m stated ← signed quad ; max m stated ← signed quad ; min n stated ← signed quad ;
max n stated ← signed quad ;
end

else begin character code ← get byte ; p← −1; c← character code ; q ← get byte ;
max m stated ← get byte ; min m stated ← max m stated − q; q ← get byte ; max n stated ← get byte ;
min n stated ← max n stated − q;
end;

print (c : 1);
if character code 6= c then print (´ with extension ´, (character code − c) div 256 : 1);
if wants mnemonics then print ln (´: ´,min m stated : 1, ´<=m<=´,max m stated : 1, ´ ´,

min n stated : 1, ´<=n<=´,max n stated : 1);
max m observed ← −1;
if char ptr [c] 6= p then

error (´previous character pointer should be ´, char ptr [c] : 1, ´, not ´, p : 1, ´!´)
else if p > 0 then

if wants mnemonics then
print ln (´(previous character with the same code started at byte ´, p : 1, ´)´);

char ptr [c]← gf prev ptr ;
if wants mnemonics then print (´(initially n=´,max n stated : 1, ´)´);
if wants pixels then 〈Clear the image 38 〉;
m← 0; n← 0; paint switch ← white ;

This code is used in section 69.

§72 GFtype THE MAIN PROGRAM 125

72. 〈Pass an eoc command 72 〉 ≡
max m observed ← min m stated + max m observed + 1; n← max n stated −max n observed ;

{ now n is the minimum n observed }
if min m stated < min m overall then min m overall ← min m stated ;
if max m observed > max m overall then max m overall ← max m observed ;
if n < min n overall then min n overall ← n;
if max n stated > max n overall then max n overall ← max n stated ;
if max m observed > max m stated then

print ln (´The previous character should have had max m >= ´,max m observed : 1, ´!´);
if n < min n stated then

print ln (´The previous character should have had min n <= ´, n : 1, ´!´)

This code is used in section 69.

126 SYSTEM-DEPENDENT CHANGES GFtype §73

73. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make GFtype work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here; then only the index itself will get a new section number.

§74 GFtype INDEX 127

74. Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.

a: 24, 67.
abort : 7.
aok : 49.
ASCII code : 8, 10, 27, 30.
b: 24, 67.
backpointer...should be p : 61.
backpointers: 18.
Bad GF file : 7.
bad char : 53, 54.
bad gf : 7, 50, 64, 68, 69.
banner : 1, 3, 31.
black : 14, 15, 35, 36, 40, 57, 58, 59.
boc : 13, 15, 16, 17, 18, 38, 42, 44, 48, 49, 52, 69, 71.
boc occurred before eoc : 52.
boc1 : 15, 16, 48, 52, 69.
boolean : 25, 36, 49, 54.
break : 28.
buffer : 27, 29, 32, 33.
byte n is not boc : 69.
byte file : 20, 21.
c: 24, 30, 61, 67.
char : 9.
char ended unexpectedly : 69.
char loc : 15, 16, 18, 48, 65.
char loc0 : 15.
char ptr : 46, 47, 64, 65, 71.
character location should be... : 65.
character code : 46, 71.
check sum: 17.
check sum : 61, 62.
Chinese characters: 18.
chr : 9, 10, 12, 45.
cs : 17.
cur loc : 22, 23, 24, 50, 61, 64, 65, 69, 71.
d: 24.
decr : 6, 43, 53, 68.
del m : 15.
del n : 15.
delta : 45.
design size: 17.
design size : 61, 62.
dialog : 31, 66.
dm : 15.
do char : 44, 48, 49, 51, 69.
ds : 17.
duplicate locator... : 65.
dx : 15, 18.
dy : 15, 18.
eight bits : 20, 24, 48, 49.
eight cases : 48.

else: 2.
end: 2.
endcases: 2.
eoc : 13, 15, 16, 17, 48, 52.
eof : 24, 50, 64.
eoln : 29.
error : 50, 51, 52, 61, 64, 65, 71.
false : 36, 49, 53.
final end : 4, 7, 66.
First byte isn’t... : 68.
first par : 48, 50, 51, 65.
first text char : 9, 12.
four cases : 48, 51.
Fuchs, David Raymond: 1, 19.
get : 29.
get byte : 24, 48, 50, 53, 64, 65, 68, 71.
get three bytes : 24, 48.
get two bytes : 24, 48.
gf file : 3, 21, 22, 23, 24, 50, 64.
gf id byte : 15, 64, 68.
gf prev ptr : 46, 61, 69, 71.
GF type : 3.
hppp : 17, 61, 62.
i: 3.
identification byte should be n : 64, 68.
image : 37, 38, 43, 58.
image array : 5, 37.
incr : 6, 24, 29, 38, 43, 53, 58, 59, 71.
initialize : 3, 66.
input ln : 27, 29, 32, 33.
integer : 3, 23, 24, 35, 39, 41, 45, 46, 48, 49,

61, 62, 67.
Japanese characters: 18.
jump out : 7.
k: 29, 61.
Knuth, Donald Ervin: 1.
l: 67.
last text char : 9, 12.
line length : 5, 53.
lower casify : 30, 32, 33.
m: 35, 61.
max col : 5, 37, 38, 42.
max int : 63.
max m : 15, 17, 38.
max m observed : 40, 41, 42, 57, 71, 72.
max m overall : 41, 61, 63, 72.
max m stated : 38, 41, 61, 71, 72.
max n : 15, 17, 35, 38.
max n observed : 40, 41, 42, 69, 72.
max n overall : 41, 61, 63, 72.

128 INDEX GFtype §74

max n stated : 38, 41, 43, 59, 60, 61, 71, 72.
max row : 5, 37, 38, 42.
max subcol : 38, 39, 40, 42, 43, 58.
max subrow : 38, 39, 42, 43, 58.
min m : 15, 17, 35, 38.
min m overall : 41, 61, 63, 72.
min m stated : 38, 41, 43, 61, 71, 72.
min n : 15, 17, 38.
min n overall : 41, 61, 63, 72.
min n stated : 38, 41, 61, 71, 72.
missing locator... : 64.
Mnemonic output? : 32.
n: 35.
negate : 6, 45.
new row 0 : 15, 16, 48, 51.
new row 1 : 15.
new row 164 : 15.
nl error : 50, 53.
no op : 15, 16, 18, 48, 52, 65, 70.
non−ASCII character... : 53.
not enough signature bytes... : 64.
o: 49, 67.
open gf file : 22, 68.
Options selected : 34.
ord : 10, 45.
oriental characters: 18.
othercases: 2.
others : 2.
output : 3.
p: 49, 61, 67.
paint : 56.
paint switch : 14, 15, 35, 57, 58, 59, 60, 71.
paint 0 : 15, 16, 48.
paint1 : 15, 16, 48, 51, 56.
paint2 : 15.
paint3 : 15.
pix ratio : 61, 62, 65.
pixel : 35, 36, 37.
Pixel output? : 33.
post : 13, 15, 16, 17, 19, 48, 52, 61, 62, 69.
post loc : 61, 62, 64.
post post : 15, 16, 17, 19, 48, 52, 64.
postamble command within... : 52.
postamble pointer should be... : 64.
Postamble starts at byte n : 61.
pre : 13, 15, 16, 48, 52, 68.
preamble command within... : 52.
previous character... : 71, 72.
print : 3, 7, 34, 43, 45, 50, 53, 55, 56, 57, 59,

60, 61, 65, 66, 68, 69, 71.
print ln : 3, 34, 40, 42, 43, 49, 61, 65, 68, 71, 72.
print nl : 3, 43, 50, 52, 53, 66, 69.

print scaled : 45, 55, 61, 65.
proofing : 18.
q: 49, 61, 67.
r: 67.
read : 24.
read ln : 29.
read postamble : 61, 66.
real : 62.
reset : 22, 29.
rewrite : 31.
round : 65.
s: 45.
scaled : 15, 17, 18.
should be postpost : 64.
show label : 50.
show mnemonic : 50, 52, 53, 55, 59, 60, 70.
signature...should be... : 64.
signed quad : 24, 48, 61, 64, 65, 71.
sixteen cases : 48.
sixty four cases : 48, 51.
skip0 : 15, 16, 48, 51.
skip1 : 15, 16, 48, 60.
skip2 : 15.
skip3 : 15.
start op : 50, 56, 70.
string of negative length : 53.
system dependencies: 2, 7, 9, 19, 20, 24, 25, 27,

28, 29, 31, 36, 37, 38, 40, 73.
term in : 27, 29.
term out : 27, 28, 31, 32, 33.
terminal line length : 5, 27, 29.
text char : 9, 10.
text file : 9, 27.
The character is too large... : 42.
the file ended prematurely : 50.
The file had n characters... : 66.
thirty seven cases : 48, 51.
thirty two cases : 48.
This pixel’s lower... : 43.
This pixel’s upper : 43.
total chars : 46, 47, 66, 71.
true : 25, 26, 36, 49, 53.
u: 61.
undefined command : 51.
undefined commands : 16, 48.
unity : 45, 65.
update terminal : 28, 29.
v: 61.
vppp : 17, 61, 62.
w: 61.
wants mnemonics : 25, 26, 32, 34, 50, 53, 55,

56, 57, 59, 60, 71.

§74 GFtype INDEX 129

wants pixels : 25, 26, 33, 34, 57, 69, 71.
white : 15, 35, 36, 38, 40, 43, 57, 58, 60, 71.
write : 3, 32, 33.
write ln : 3, 31, 32, 33.
xchr : 10, 11, 12, 53, 68.
xord : 10, 12, 29.
xxx1 : 15, 16, 48, 51, 70.
xxx2 : 15.
xxx3 : 15.
xxx4 : 15.
yyy : 15, 16, 18, 48, 51, 70.

130 NAMES OF THE SECTIONS GFtype

〈Cases for commands no op , pre , post , post post , boc , and eoc 52 〉 Used in section 51.

〈Clear the image 38 〉 Used in section 71.

〈Compare the subarray boundaries with the observed boundaries 42 〉 Used in section 40.

〈Constants in the outer block 5 〉 Used in section 3.

〈Determine whether the user wants mnemonics 32 〉 Used in section 31.

〈Determine whether the user wants pixels 33 〉 Used in section 31.

〈Globals in the outer block 10, 21, 23, 25, 27, 35, 37, 39, 41, 46, 54, 62, 67 〉 Used in section 3.

〈Labels in the outer block 4 〉 Used in section 3.

〈Make sure that the end of the file is well-formed 64 〉 Used in section 61.

〈Paint pixels m− p through m− 1 in row n of the subarray 58 〉 Used in section 57.

〈Paint the next p pixels 57 〉 Used in section 56.

〈Pass a boc command 71 〉 Used in section 69.

〈Pass an eoc command 72 〉 Used in section 69.

〈Pass no op , xxx and yyy commands 70 〉 Used in section 69.

〈Print all the selected options 34 〉 Used in section 31.

〈Print asterisk patterns for rows 0 to max subrow 43 〉 Used in section 40.

〈Print the image 40 〉 Used in section 69.

〈Process the character locations in the postamble 65 〉 Used in section 61.

〈Process the preamble 68 〉 Used in section 66.

〈Set initial values 11, 12, 26, 47, 63 〉 Used in section 3.

〈Start translation of command o and goto the appropriate label to finish the job 51 〉 Used in section 50.

〈Translate a sequence of paint commands, until reaching a non-paint 56 〉 Used in section 51.

〈Translate a new row command 59 〉 Used in section 51.

〈Translate a skip command 60 〉 Used in section 51.

〈Translate a yyy command 55 〉 Used in sections 51 and 70.

〈Translate all the characters 69 〉 Used in section 66.

〈Translate an xxx command 53 〉 Used in sections 51 and 70.

〈Translate the next command in the GF file; goto 9999 if it was eoc ; goto 9998 if premature termination is
needed 50 〉 Used in section 49.

〈Types in the outer block 8, 9, 20, 36 〉 Used in section 3.

	 Introduction
	 The character set
	 Generic font file format
	 Input from binary files
	 Optional modes of output
	 The image array
	 Translation to symbolic form
	 Reading the postamble
	 The main program
	 System-dependent changes
	 Index
	Names of the sections
	Cases for commands no_op, pre, post, post_post, boc, and eoc
	Clear the image
	Compare the subarray boundaries with the observed boundaries
	Constants in the outer block
	Determine whether the user wants_mnemonics
	Determine whether the user wants_pixels
	Globals in the outer block
	Labels in the outer block
	Make sure that the end of the file is well-formed
	Paint pixels m-p through m-1 in row n of the subarray
	Paint the next p pixels
	Pass a boc command
	Pass an eoc command
	Pass no_op, xxx and yyy commands
	Print all the selected options
	Print asterisk patterns for rows 0 to max_subrow
	Print the image
	Process the character locations in the postamble
	Process the preamble
	Set initial values
	Start translation of command o and goto the appropriate label to finish the job
	Translate a sequence of paint commands, until reaching a non-paint
	Translate a new_row command
	Translate a skip command
	Translate a yyy command
	Translate all the characters
	Translate an xxx command
	Translate the next command in the GF file; goto 9999 if it was eoc; goto 9998 if premature termination is needed
	Types in the outer block

