
The algxpar package∗

Jander Moreira moreira.jander@gmail.com

June 26, 2023

Abstract

The algxpar package is an extension of the algorithmicx1/algpseudocode package
to handle multi-line text with proper indentation and provide a number of other
improvements.

Contents

1 Introduction 2

2 Package usage and options 2

3 Writting pseudocode 4
3.1 A preamble on comments . 5
3.2 A preamble on options . 7
3.3 Statements . 7
3.4 Flow Control Blocks . 7

3.4.1 The if block . 7
3.4.2 The switch block . 8
3.4.3 The for block . 9
3.4.4 The while block . 10
3.4.5 The repeat-until block . 11
3.4.6 The loop block . 12

3.5 Constants and Identifiers . 12
3.6 Assignments and I/O . 13
3.7 Procedures and Functions . 13
3.8 Comments . 15
3.9 Documentation . 16

4 Customization and Fine Tunning 17
4.1 Options . 18

4.1.1 Fonts, shapes and sizes . 20
4.1.2 Colors . 21
4.1.3 Paragraphs . 21

4.2 Languages and translations . 22
4.3 Other features . 23

5 To do 25
∗This document corresponds to algxpar v0.99, dated 2023/06/26. This text was last revised June

27, 2023.
1https://ctan.org/pkg/algorithmicx.

1

https://ctan.org/pkg/algorithmicx

6 Examples 25
6.1 LZW revisited . 25
6.2 LZW revisited again . 25

1 Introduction

I teach algorithms and programming and have adopted the algorithmicx package
(algpseudocode) for writing my algorithms as it provides clear and easy to read pseu-
docodes with minimal effort to get a visually pleasing code.

The process of teaching algorithms requires a slightly different use of pseudocode
than that normally presented in scientific articles, in which the solutions are presented
in a more formal and synthetic way. Students work on more abstract algorithms often
preceding the actual knowledge of a programming language, and thus the logic of the
solution is more relevant than the variables themselves. Likewise, the use of the devel-
opment strategy by successive refinements also requires a less programmatic and more
verbose code. Thus, when discussing the reasoning for solving a problem, it is common
to use sentences such as “accumulate current expenses in the total sum of costs”, because
“s← s+ c” is, in this case, too synthetic and necessarily involves knowing how variables
work in programs.

The consequence of more verbose pseudocode leads, however, to longer sentences
that often span two or more lines. As pseudocodes, by nature, value visual organization,
with regard to control structures and indentations, it became necessary to develop a
package that supports the use of commands and comments that could be easily displayed
when more than one line was needed.

The algorithmx and algpseudocode packages do not natively support multi-line state-
ments. This package therefore extends several macros to handle multiple lines correctly.
Some new commands and a number of features have also been added.

2 Package usage and options

This package depends on the following packages:

algorithmicx (https://ctan.org/pkg/algorithmicx)
algpseudocode (https://ctan.org/pkg/algorithmicx)
amssymb (https://ctan.org/pkg/amsfonts)
fancyvrb (https://ctan.org/pkg/fancyvrb)
pgfmath (https://ctan.org/pkg/pgf)
pgfopts (https://ctan.org/pkg/pgf)
ragged2e (https://ctan.org/pkg/ragged2e)
tcolorbox (https://www.ctan.org/pkg/tcolorbox)
varwidth (https://www.ctan.org/pkg/varwidth)
xcolor (https://www.ctan.org/pkg/xcolor)

To use the package, simply request its use in the preamble of the document.

\usepackage[⟨package options list⟩]{algxpar}

Currently, the list of package options includes the following.

2

https://ctan.org/pkg/algorithmicx
https://ctan.org/pkg/algorithmicx
https://ctan.org/pkg/amsfonts
https://ctan.org/pkg/fancyvrb
https://ctan.org/pkg/pgf
https://ctan.org/pkg/pgf
https://ctan.org/pkg/ragged2e
https://www.ctan.org/pkg/tcolorbox
https://www.ctan.org/pkg/varwidth
https://www.ctan.org/pkg/xcolor

\begin{algorithmic}[1]
\Description LZW Compression using a table with all known sequences of bytes.
\Input A flow of bytes
\Output A flow of bits with the compressed representation of the input bytes
\Statex
\Statep{Initialize a table with all bytes}[each position of the table has a

single byte]↪→

\Statep{Initilize \Id{sequence} with the first byte in the input flow}
\While{there are bytes in the input}[wait until all bytes are processed]

\Statep{Get a single byte from input and store it in \Id{byte}}
\If{the concatention of \Id{sequence} and \Id{byte} is in the table}

\Statep{Set \Id{sequence} to $\Id{sequence} + \Id{byte}$}[concatenate
without producing any output]↪→

\Else
\Statep{Output the code for \Id{sequence}}[i.e., the binary

representation of its position in the
table]\label{alg:lzw:output}

↪→

↪→

\Statep{Add the concatention of \Id{sequence} and \Id{byte} to the
table}[the table learns a longer
sequence]\label{alg:lzw:add-to-table}

↪→

↪→

\Statep{Set \Id{sequence} to \Id{byte}}[starts a new sequence with
the remaining byte]↪→

\EndIf
\EndWhile
\Statep{Output the code for \Id{sequence}}[the remaining sequence of bits]

\end{algorithmic}

Description: LZW Compression using a table with all known sequences of bytes.
Input: A flow of bytes
Output: A flow of bits with the compressed representation of the input bytes

1: Initialize a table with all bytes ▷ each position of the table has a single byte
2: Initilize sequence with the first byte in the input flow
3: while there are bytes in the input do ▷ wait until all bytes are processed
4: Get a single byte from input and store it in byte
5: if the concatention of sequence and byte is in the table then
6: Set sequence to sequence + byte ▷ concatenate without producing any output
7: else
8: Output the code for

sequence
▷ i.e., the binary representation of its position in the

table
9: Add the concatention of sequence and byte to the

table
▷ the table learns a longer

sequence
10: Set sequence to byte ▷ starts a new sequence with the remaining byte
11: end if
12: end while
13: Output the code for sequence ▷ the remaining sequence of bits

3

⟨language name⟩

By default, algorithm keywords are developed in English. The English lan-
guage keyword set is always loaded. When available, other sets of keywords
in other languages can be used simply by specifying the language names.
The last language in the list is automatically set as the document’s default
language.
Currently supported languages:

• english (default language, always loaded)
• brazilian Brazilian Portuguese

% Loads Brazilian keyword set and sets it as default
\usepackage[brazilian]{algxpar}

language = ⟨language name⟩

This option chooses the set of keywords corresponding to ⟨language name⟩
as the default for the document. This option is available as a general option
(see language).
This option is useful when other languages are loaded.

% Loads Brazilian keyword set but keeps English as default
\usepackage[brazilian, language = english]{algxpar}

noend
The noend suppresses the line that indicates the end of a block, keeping the
indentation.
See more information in end and noend options.

% Supresses all end-lines that close a block
\usepackage[noend]{algxpar}

3 Writting pseudocode

Algorithms, following the functionality of the algorithmicx package, are written within
the algorithmic environment. The possibility of using a number to determine how the
lines will be numbered is maintained as in the original version.

An algorithm is composed of instructions and control structures such as conditionals
and loops. And also, some documentation and comments.

4

\begin{algorithmic}
\Description Calculation of the factorial of a natural number
\Input $n \in \mathbb{N}$
\Output $n!$
\Statex
\Statep{\Read n}
\Statep{$\Id{factorial} \gets 1$}[$0! = 1! = 1$]
\For{$k \gets 2$ \To n}[from 2 up]

\Statep{$\Id{factorial} \gets \Id{factorial} \times k$}[$(k-1)! \times
k$]↪→

\EndFor
\Statep{\Write \Id{factorial}}

\end{algorithmic}

Description: Calculation of the factorial of a natural number
Input: n ∈ N
Output: n!

read n
factorial← 1 ▷ 0! = 1! = 1
for k ← 2 to n do ▷ from 2 up

factorial← factorial× k ▷ (k − 1)!× k
end for
write factorial

3.1 A preamble on comments

This is the Euclid’s algorithm as provided in the algorithmicx package documentation2.

\begin{algorithmic}[1]
\Procedure{Euclid}{a,b}

\Comment{The g.c.d. of a and b}
\State $r\gets a\bmod b$
\While{$r\not=0$}\Comment{We have the answer if r is 0}

\State $a\gets b$
\State $b\gets r$
\State $r\gets a\bmod b$

\EndWhile
\State \textbf{return} b\Comment{The gcd is b}

\EndProcedure
\end{algorithmic}

1: procedure Euclid(a, b) ▷ The g.c.d. of a and b
2: r ← a mod b
3: while r ̸= 0 do ▷ We have the answer if r is 0
4: a← b
5: b← r
6: r ← a mod b
7: end while
8: return b ▷ The gcd is b
9: end procedure

Comments are added in loco with the \Comment macro, which makes them appear
along the right margin. The algxpar package embeded comments as part of the com-
mands themselves in order to add multi-line support.

Until algxpar v0.95, they could be added as an optional parameter before the text,
in the style of most LATEX macros.

2A label was supressed here.

5

\begin{algorithmic}[1]
\Procedure[The g.c.d. of a and b]{Euclid}{a,b} % <-- Comment

\State $r\gets a\bmod b$
\While[We have the answer if r is 0]{$r\not=0$} % <-- Comment

\State $a\gets b$
\State $b\gets r$
\State $r\gets a\bmod b$

\EndWhile
\Statep[The gcd is b]{\Keyword{return} b} % <-- Comment

\EndProcedure
\end{algorithmic}

1: procedure Euclid(a, b)
2: r ← a mod b
3: while r ̸= 0 do ▷ We have the answer if r is 0
4: a← b
5: b← r
6: r ← a mod b
7: end while
8: return b ▷ The gcd is b
9: end procedure

Using the comment before the text always bothered me somewhat, as it seemed
more natural to put it after. Thus, as of v0.99, the comment can be placed after the
text (as the second parameter of the macro), certainly making writing algorithms more
user-friendly. To maintain backward compatibility, the use of comments before text is
still supported, although it is discouraged.

In addition to this change, the use of comments in the new format has been extended
to most pseudocode macros, such as \EndWhile for example.

\begin{algorithmic}[1]
\Procedure{Euclid}{a,b}[The g.c.d. of a and b] % <-- Comment

\State $r\gets a\bmod b$
\While{$r\not=0$}[We have the answer if r is 0] % <-- Comment

\State $a\gets b$
\State $b\gets r$
\State $r\gets a\bmod b$

\EndWhile[end loop] % <-- Comment
\Statep{\Keyword{return} b}[The gcd is b] % <-- Comment

\EndProcedure
\end{algorithmic}

1: procedure Euclid(a, b) ▷ The g.c.d. of a and b
2: r ← a mod b
3: while r ̸= 0 do ▷ We have the answer if r is 0
4: a← b
5: b← r
6: r ← a mod b
7: end while ▷ end loop
8: return b ▷ The gcd is b
9: end procedure

Using \Comment still produces the expected result, although it may break automatic
tracking of longer lines.

Throughout this documentation, former style comments are denoted as ⟨comment*⟩,
while the new format uses ⟨comment⟩.

See more about comments in section 3.8.

6

3.2 A preamble on options

As of version 0.99, a list of options can be added to each command, changing some
algorithm presentation settings. These settings are optional and must be entered using
angle brackets at the end of the command.

\begin{algorithmic}<keyword font = \scshape\bfseries, comment width = nice>
\If{$a > b$}[check conditions]

\While{$a > 0$}<keyword color = blue!70>
\Statep{\Call{Process}{a}}[process current data]

\EndWhile
\EndIf

\end{algorithmic}

if a > b then ▷ check conditions
while a > 0 do

Process(a) ▷ process current data
end while

end if

There is a lot of additional information about options and how they can be used.
See discussion and full list in section 4.

3.3 Statements

The macros \State and \Statex defined in algorithmicx can still be used for single
statements and have the same general behaviour.

For automatic handling of comments and multi-line text, the \Statep macro is
available, which should be used instead of \State.

\Statep[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

The \Statep macro corresponds to an statement that can extrapolate a single line.
The continuation of each line is indented from the baseline and this indentation
is based on the value indicated in the statement indent option.
Any ⟨options⟩ specified uniquely affect this macro.

As an example, observe lines 8 and 9 of the LZW compression algorithm on page 26.

3.4 Flow Control Blocks

Flow control is essentially based on conditionals and loop.

3.4.1 The if block

This block is the standard if block.

\begin{algorithmic}
\State \Read v
\If{$v < 0$}[is it negative?]

\Statep{$v \gets -v$}[make it positive]
\EndIf

\end{algorithmic}

read v
if v < 0 then ▷ is it negative?

v ← −v ▷ make it positive
end if

7

\If[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

\If shows ⟨text⟩ (the condition) and must be closed with an \EndIf, creating a
block of nested commands.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

\EndIf[⟨comment⟩]<⟨options⟩>

\EndIf closes its respective \If.
Any ⟨options⟩ specified uniquely affect this macro.

\Else[⟨comment⟩]<⟨options⟩>

This macro defines the else part of the \If statement.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

\Elsif[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

\ElsIf defines the \If chaining. The argument ⟨text⟩ is the new condition.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

3.4.2 The switch block

\begin{algorithmic}
\Statep{Get \Id{option}}
\Switch{\Id{option}}

\Case{1}[inserts new record]
\Statep{\Call{Insert}{\Id{record}}}

\EndCase
\Case{2}[deletes a record]

\Statep{\Call{Delete}{\Id{key}}}
\EndCase
\Otherwise

\Statep{Print ``invalid option''}
\EndOtherwise

\EndSwitch
\end{algorithmic}

Get option
switch option

case 1 do ▷ inserts new record
Insert(record)

end case
case 2 do ▷ deletes a record

Delete(key)
end case
otherwise

Print “invalid option”
end otherwise

end switch

8

\Switch[⟨comment*⟩]{⟨expression⟩}[⟨comment⟩]<⟨options⟩>

The \Switch is closed by a matching \EndSwitch.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

\EndSwitch[⟨comment⟩]<⟨options⟩>

This macro closes a \Switch block.
Any ⟨options⟩ specified uniquely affect this macro.

\Case[⟨comment*⟩]{⟨constant-list⟩}[⟨comment⟩]<⟨options⟩>

When the result of the switch expression matches one of the constants in
⟨constants-list⟩, then the case is executed. Usually the ⟨constant-list⟩ is a single
constant, a comma-separated list of constants or some kind of range specification.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

\EndCase[⟨comment⟩]<⟨options⟩>

This macro closes a corresponding \Case statement.
Any ⟨options⟩ specified uniquely affect this macro.

\Otherwise[⟨comment⟩]<⟨options⟩>

A switch structure can optionally use an otherwise clause, which is executed
when no previous cases had a hit.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

\EndOtherwise[⟨comment⟩]<⟨options⟩>

This macro closes a corresponding \Otherwise statement.
Any ⟨options⟩ specified uniquely affect this macro.

3.4.3 The for block

The for loop uses \For and is also flavored with two variants: for each (\ForEach)
and for all (\ForAll).

9

\begin{algorithmic}
\For{$i \gets 0$ \To n}

\Statep{Do something with i}
\EndFor
\ForAll{$\Id{item} \in C$}

\Statep{Do something with \Id{item}}
\EndFor
\ForEach{\Id{item} in queue Q}

\Statep{Do something with \Id{item}}
\EndFor

\end{algorithmic}

for i← 0 to n do
Do something with i

end for
for all item ∈ C do

Do something with item
end for
for each item in queue Q do

Do something with item
end for

\For[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

The ⟨text⟩ is used to establish the loop scope.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

\EndFor[⟨comment⟩]<⟨option⟩>

This macro closes a corresponding \For, \ForEach or \ForAll.
Any ⟨options⟩ specified uniquely affect this macro.

\ForEach[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

Same as \For.

\ForAll[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

Same as \For.

3.4.4 The while block

\While is the loop with testing condition at the top.

10

\begin{algorithmic}
\While{$n > 0$}

\Statep{Do something}
\Statep{$n \gets n - 1$}

\EndWhile
\end{algorithmic}

while n > 0 do
Do something
n← n− 1

end while

\While[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

In ⟨text⟩ is the boolean expression that, when False, will end the loop.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

\EndWhile[⟨comment⟩]<⟨options⟩>

This macro closes a matching \While block.
Any ⟨options⟩ specified uniquely affect this macro.

3.4.5 The repeat-until block

The loop with testing condition at the bottom is the \Repeat/\Until block.

\begin{algorithmic}
\Repeat

\Statep{Do something}
\Statep{$n \gets n - 1$}

\Until{$n \leq 0$}
\end{algorithmic}

repeat
Do something
n← n− 1

until n ≤ 0

\Repeat[⟨comment⟩]<⟨options⟩>

This macro starts the repeat loop, which is closed with \Until.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

\Until[⟨comment*⟩]{⟨text⟩}[⟨comment⟩]<⟨options⟩>

In ⟨text⟩ is the boolean expression that, when \True, will end the loop.
Any ⟨options⟩ specified uniquely affect this macro.

11

3.4.6 The loop block

A generic loop is build with \Loop.

\begin{algorithmic}
\Loop

\Statep{Do something}
\Statep{$n \gets n + 1$}
\If{n is multiple of 5}

\Statep{\Continue}[restarts loop]
\EndIf
\Statep{Do something else}
\If{$n \leq 0$}

\Statep{\Break}[ends loop]
\EndIf
\Statep{Keep working}

\EndLoop
\end{algorithmic}

loop
Do something
n← n+ 1
if n is multiple of 5 then

continue ▷ restarts loop
end if
Do something else
if n ≤ 0 then

break ▷ ends loop
end if
Keep working

end loop

\Loop[⟨comment⟩]<⟨options⟩>

The generic loop starts with \Loop and ends with \EndLoop. Usually the infinite
loop is interrupted by and internal \Break or restarted with \Continue.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

\EndLoop[⟨comment⟩]<⟨options⟩>

\EndLoop closes a matching \Loop block.
Any ⟨options⟩ specified uniquely affect this macro.

3.5 Constants and Identifiers

A few macros for well known constants were defined: \True (True), \False (False),
and \Nil (Nil).

The macro \Id was created to handle “program-like” named identifiers, such as sum,
word_counter and so on.

\Id{⟨identifier⟩}

Identifiers are in italics: \Id{value} is value. Its designed to work in both text
and math modes: \Id{offer}_k is offerk.

12

3.6 Assignments and I/O

To support teaching-like, basic pseudocode writing, the macros \Read and \Write are
provided.

\begin{algorithmic}
\Statep{\Read v_1, v_2}
\Statep{$\Id{mean} \gets \dfrac{v_1 + v_2}{2}$}[calculate]
\Statep{\Write \Id{mean}}

\end{algorithmic}

read v1, v2

mean← v1 + v2
2

▷ calculate

write mean

The macro \Set can be used for assignments.

\Set{⟨lvalue⟩}{⟨expression⟩} (deprecated)

This macro expands to \Id{#1} \gets #2.
As the handling of text and math modes should be done and its usage brings no
evident advantage, this macro will no longer be supported. It will be kept as is
for backward compatibility however.

3.7 Procedures and Functions

Modularization uses \Procedure or \Function.

\begin{algorithmic}
\Procedure{SaveNode}{\Id{node}}

[saves a B+-tree node to disk]
\If{\Id{node}.\Id{is_modified}}

\If{$\Id{node}.\Id{address} == -1$}
\Statep{Set file writting position after file's last

byte}[creates a new node on disk]↪→

\Else
\Statep{Set file writting position to

\Id{node}.\Id{address}}[updates the node]↪→

\EndIf
\Statep{Write \Id{node} to disk}
\Statep{$\Id{node}.\Id{is_modified} \gets \False$}

\EndIf
\EndProcedure

\end{algorithmic}

procedure SaveNode(node) ▷ saves a B+-tree node to disk
if node.is_modified then

if node.address == −1 then
Set file writting position after file’s last byte ▷ creates a new node on disk

else
Set file writting position to node.address ▷ updates the node

end if
Write node to disk
node.is_modified← False

end if
end procedure

13

\begin{algorithmic}
\Function{Factorial}{n}[$n \geq 0$]

\If{$n \in \{0, 1\}$}
\Statep{\Return 1}[base case]

\Else
\Statep{\Return $n \times \Call{Factorial}{n-1}$}[recursive case]

\EndIf
\EndFunction

\end{algorithmic}

function Factorial(n) ▷ n ≥ 0
if n ∈ {0, 1} then

return 1 ▷ base case
else

return n× Factorial(n− 1) ▷ recursive case
end if

end function

\Procedure{⟨name⟩}{⟨argument list⟩}[⟨comment⟩]<⟨options⟩>

This macro creates a procedure block that must be ended with \EndProcedure.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

\EndProcedure[⟨comment⟩]<⟨optons⟩>

This macro closes the \Procedure block.
Any ⟨options⟩ specified uniquely affect this macro.

\Function{⟨name⟩}{⟨argument list⟩}[⟨comment⟩]<⟨options⟩>

This macro creates a function block that must be ended with \EndFunction. A
\Return is defined.
Any of the ⟨options⟩ specified in this macro will affect this command and all items
in the inner block, propagating up to and including the closing macro.

\EndFunction[⟨comment⟩]<⟨optons⟩>

This macro closes the \Function block.
Any ⟨options⟩ specified uniquely affect this macro.

For calling a procedure or function, \Call should be used.

\Call{⟨name⟩}{⟨arguments⟩}<⟨options⟩>

\Call is used to state a function or procedure call. The module’s ⟨name⟩ and
⟨arguments⟩ are mandatory.
Any ⟨options⟩ specified uniquely affect this macro.

14

3.8 Comments

The \Comment macro defined by algorithmicx has the same original behavior and has
been redefined to handle styling options.

\Comment{⟨text⟩}<⟨options⟩>

The redesigned version of \Comment can be used with \State, \Statex and
\Statep. When used with \Statep, it must be enclosed inside the text braces,
but multi-line statements should work differently than expected.
Any ⟨options⟩ specified uniquely affect this macro.

\begin{minipage}{7.5cm}
\begin{algorithmic}<comment color = blue>% for viewing purposes only
\State Store the value zero in variable x\Comment{first assignment}
\Statep{Store the value zero in variable x\Comment{first assignment}}
\Statep{Store the value zero in variable x}[first assignment]% best choice
\end{algorithmic}

\end{minipage}

Store the value zero in variable x ▷ first
assignment
Store the value zero in variable x ▷ first

assignment
Store the value zero in variable x ▷ first assign-

ment

\Commentl{⟨text⟩}<⟨options⟩>

While \Comment pushes text to the end of the line, the macro \Commentl is “local”.
In other words, it just puts a comment in place.
Local comments follows regular text and no line changes are checked.
Any ⟨options⟩ specified uniquely affect this macro.

\begin{algorithmic}
\If{$a > 0$~~\Commentl{special case}\\
or\\

$a < b$~~\Commentl{general case}\\}
\Statep{Process data~~\Commentl{may take a while}}

\EndIf
\end{algorithmic}

if a > 0 ▷ special case
or
a < b ▷ general case
then
Process data ▷ may take a while

end if

\CommentIn{⟨text⟩}<⟨options⟩>

\CommentIn is an alternative to line comments which usually extends to the end
of the line. This macro defines a comment with a begin and an end. A comment
starts with ▷ and ends with ◁.
Any ⟨options⟩ specified uniquely affect this macro.

15

\begin{algorithmic}
\If{$a > 0$ \CommentIn{special case} or $a < b$ \CommentIn{general case}}

\Statep{Process data~~\Commentl{may take a while}}
\EndIf

\end{algorithmic}

if a > 0 ▷ special case ◁ or a < b ▷ general case ◁ then
Process data ▷ may take a while

end if

3.9 Documentation

A series of macros are defined to provide the header documentation for a pseudocode.

\begin{algorithmic}
\Description Calculation of the factorial of a natural number through

successive multiplications↪→

\Require $n \in \mathbb{N}$
\Ensure $f = n!$

\end{algorithmic}

Description: Calculation of the factorial of a natural number through successive multiplica-
tions

Require: n ∈ N
Ensure: f = n!

\Description ⟨description text⟩

The \Description is intended to hold the general description of the pseudocode.

\Require ⟨pre-conditions⟩

The required initial state that the code relies on. These are pre-conditions.

\Ensure ⟨post-conditions⟩

The final state produced by the code. These are post-conditions.

\begin{algorithmic}
\Description Calculation of the factorial of a natural number through

successive multiplications↪→

\Input n (integer)
\Output $n!$ (integer)

\end{algorithmic}

Description: Calculation of the factorial of a natural number through successive multiplica-
tions

Input: n (integer)
Output: n! (integer)

\Input ⟨inputs⟩

This works as an alternative to \Require, presenting Input.

16

\Output ⟨outputs⟩

This works as an alternative to \Ensure, presenting Output.

4 Customization and Fine Tunning

As of version 0.99 of algxpar, a series of options have been introduced to customize
the presentation of algorithms. Colors and fonts that only apply to keywords, for
example, can be specified, providing an easier and more convenient way to customize
each algorithm.

The \AlgSet macro serves this purpose.

\AlgSet{⟨options list⟩}

This macro sets algorithmic settings as specified in the ⟨options list⟩, which is
key/value comma-separated list.
All settings will be applied to the entire document, starting from the point of the
macro call. The scope of a definition made with \AlgSet can be restricted to a
part of the document simply by including it in a TEX group.

\AlgSet{algorithmic indent = 1.5cm}
\begin{algorithmic}

\Statep{\Read k}
\If{$k < 0$}

\Statep{$k \gets -k$}
\EndIf
\Statep{\Write k}

\end{algorithmic}

read k
if k < 0 then

k ← −k
end if
write k

If the settings are only applied to a single algorithm and not a group of algorithms
in a text section, the easiest way is to include the options in the algorithmicx envi-
ronment.

\begin{algorithmic}<keyword font = \sffamily\bfseries\itshape>
\Statep{\Read k}
\If{$k < 0$}

\Statep{$k \gets -k$}
\EndIf
\Statep{\Write k}

\end{algorithmic}

read k
if k < 0 then

k ← −k
end if
write k

Named styles can also be defined using the pgfkeys syntax.

17

\AlgSet{
fancy/.style = {

text color = green!40!black,
keyword color = blue!75!black,
comment color = brown!80!black,
comment symbol = \texttt{//},

}
}
\begin{algorithmic}<fancy>

\Statep{\Commentl{Process k}}
\Statep{\Read k}
\If{$k < 0$}

\Statep{$k \gets -k$}[back to positive]
\EndIf
\Statep{\Write k}

\end{algorithmic}

// Process k
read k
if k < 0 then

k ← −k // back to positive
end if
write k

Sometimes some settings need to be applied exclusively to one command, for example
to highlight a segment of the algorithm.

\AlgSet{
highlight/.style = {

text color = red!60!black,
keyword color = red!60!black,

}
}
\begin{algorithmic}

\Statep{\Commentl{Process k}}
\Statep{\Read k}
\If{$k < 0$}<highlight>

\Statep{$k \gets -k$}[back to positive]
\EndIf
\Statep{\Write k}

\end{algorithmic}

▷ Process k
read k
if k < 0 then

k ← −k ▷ back to positive
end if
write k

4.1 Options

This section presents the options that can be specified for the algorithms, either using
\AlgSet or the ⟨options⟩ parameter of the various macros.

language = ⟨language⟩ Default: english

This key is used to choose the keyword language set for the current scope. The lan-
guage keyword set should already have been loaded through the package options
(see section 2).

18

noend
Structured algorithms use blocks for its structures, marking their begin and end.
In pseudocode it is common to use a line to finish a block. Using the option end,
this line is suppressed.
The result is similar to a program written in Python.

end
This option reverses the behaviour of end, and the closing line of a block presented.

\begin{algorithmic}
<noend>
\For{$i \gets 0$ \To $N - 1$}

\For{$j \gets$ \To $N - 1$}
\If{$m_{ij} < 0$}

<end>
\Statep{$m_{ij} \gets 0$}

\EndIf
\EndFor

\EndFor
\end{algorithmic}

for i← 0 to N − 1 do
for j ← to N − 1 do

if mij < 0 then
mij ← 0

end if

keywords = ⟨list of keywords assignments⟩

This option allows to change a keyword (or define a new one). See section 4.2 for
more information on keywords and translations.

\begin{algorithmic}<
keywords = {

terminate = Terminate, % new keyword
then = \{, % redefined
endif = \}, % redefined
while = whilst, % redefined

}
>
\While{\True}

\If{$t < 0$}
\Statep{Run the \Keyword{terminate} module}

\EndIf
\EndWhile

\end{algorithmic}

whilst True do
if t < 0 {

Run the Terminate module
}

end whilst

19

algorithmic indent = ⟨width⟩ Default: 1em

The algorithmic indent is the amount of horizontal space used for indentation
inner commands.
This option actually sets the algorithmicx’s \algorithmicindent.

comment symbol = ⟨symbol⟩ Default: \triangleright

The default symbol that preceeds the text in comments is \triangleright (▷),
as used by algorithmicx, and can be changed with this key.
The current comment symbol is available with \CommentSymbol. Do not change
this symbol by redefining \CommentSymbol, as font, shape and color settings will
no longer be respected. Always use comment symbol.

comment symbol right = ⟨symbol⟩ Default: \triangleleft

This is the symbol that closes a \CommentIn. This symbol is set to ◁ and can be
retrieved with the \CommentSymbolRight macro. Do not attempt to change the
symbol by redefining \CommentSymbolRight, as font, shape and color settings will
no longer be respected. Always use comment symbol right.

4.1.1 Fonts, shapes and sizes

The options ins this section allows setting font family, shape, weight and size for several
parts of an algorithm.

Notice that color are handled separately (see section 4.1.2) and using \color with
font options will tend to break the document.

text font = ⟨font, shape and size⟩ Default: –empty–

This setting corresponds to the font family, its shape and size and applies to the
⟨text⟩ field in each of the commands.

comment font = ⟨font, shape and size⟩ Default: \slshape

This setting corresponds to the font family, its shape and size and applies to all
comments.

keyword font = ⟨font, shape and size⟩ Default: \bfseries

This setting sets the font family, shape, and size, and applies to all keywords, such
as function or end.

constant font = ⟨font, shape and size⟩ Default: \scshape

This setting sets the font family, shape, and size, and applies to all constants,
such as Nil, True and False.
This setting also applies when \Constant is used.

module font = ⟨font, shape and size⟩ Default: \scshape

This setting sets the font family, shape, and size, and applies to both procedure
and function identifiers, as well as their callings with \Call.

20

4.1.2 Colors

Colors are defined using the xcolors package.

text color = ⟨color⟩ Default: . (dot)

This setting corresponds to the color that applies to the ⟨text⟩ field in each of the
commands.

comment color = ⟨color⟩ Default: .!70

This setting corresponds to the color that applies to all comments.

keyword color = ⟨color⟩ Default: . (dot)

This key is used to set the color for all keywords.

constant color = ⟨color⟩ Default: . (dot)

This setting corresponds to the color that applies to the defined constant (see
section 3.5) and also when macro \Constant is used.

module color = ⟨color⟩ Default: . (dot)

This color is applied to the identifier used in both \Procedure and \Function
definitions, as well as module calls with \Call. Notice that the arguments use
text color.

4.1.3 Paragraphs

Multi-line support are internally handled by \parboxes.

procedure Euclid(a, b) ▷ The g.c.d. of a and b
r ← a mod b

while r ̸= 0 do ▷ We have the answer if r is 0
a← b

b← r

r ← a mod b

end while
return b ▷ The g.c.d. is b

end procedure

The options in this section should be used to set how these paragraphs will be
presented.

text style = ⟨style⟩ Default: \RaggedRight

This ⟨style⟩ is applied to the paragraph box that holds the ⟨text⟩ field in all com-
mands.

comment style = ⟨style⟩ Default: \RaggedRight

This ⟨style⟩ is applied to the paragraph box that holds the ⟨comment⟩ field in all
algorithmic commands. This setting will not be used with \Comment, \Commentl
or \CommentIn.

21

comment separator width = ⟨width⟩ Default: 1em

The minimum space between the text box and the \CommentSymbol. This affects
the available space in a line for keywords, text and comment.

statement indent = ⟨width⟩ Default: 1em

This is the \hangindent set inside \Statep statements.

comment width = auto|nice|⟨width⟩ Default: auto

There are two ways to balance the lengths of ⟨text⟩ and ⟨comments⟩ on a line, each
providing different visual experiences.
In automatic mode (auto), the balance is chosen considering the widths that the
actual text and comment have, trying to reduce the total number of lines, given
there is not enough space in a single line for the keywords, text , comment and
comment symbol. The consequence is that each line with a comment will have its
own balance.
The second mode, nice, sets a fixed width for the entire algorithm, maintaining
consistency across all comments. In that case, longer comments will tend to span
a larger number of lines. The “nice value” is hardcoded and sets the comment
width to 0.4\linewidth.
Also, a fixed comment width can be specified.

4.2 Languages and translations

A simple mechanism is employed to allow keywords to be translated into other lan-
guages.

\begin{algorithmic}<language = brazilian>
\Procedure{Euclid}{a,b}

\State $r\gets a\bmod b$
\While{$r\not=0$}

\State $a\gets b$
\State $b\gets r$
\State $r\gets a\bmod b$

\EndWhile
\Statep{\Keyword{return} b}

\EndProcedure
\end{algorithmic}

procedimento Euclid(a, b)
r ← a mod b
enquanto r ̸= 0 faça

a← b
b← r
r ← a mod b

fim enquanto
retorne b

fim procedimento

Creating a new keyword set uses the \AlgLanguageSet macro.

22

\AlgLanguageSet{⟨language name⟩}{⟨keyword assignments⟩}

This macro sets new values for known keywords as well as new ones. Once created,
keywords cannot be deleted.
In case a default keyword is not reset, the English version will be used.
To create a new set, copy the file algxpar-english.kw.tex and edit it accord-
ingly.
Note that there is a set of keywords for the lines that close each block. These
keys are provided to allow for more versatility in changing how these lines are
presented. It is highly recommended that references to other keywords use the
Keyworkd macro so that font, color and language changes can be made without
any problems.
In translations, these compound keywords do not necessarily need to appear (see
file brazilian.kw.tex, which follows the settings in algxpar-english.kw.tex).
However, if defined, there will be different versions for each language.

The mechanism behind \AlgLanguageSet uses the \SetKeyword macro, which is
called to adjust the value of a single keyword3. To retrieve the value of a given keyword,
the \Keyword macro must be used. It returns the formatted value according to the
options currently in use for keywords.

\SetKeyword[⟨language⟩]{⟨keyword⟩}{⟨value⟩}

The macro \SetKeyword changes a given ⟨keyword⟩ to ⟨value⟩ if it exists; otherwise
a new keyword is created.
If ⟨language⟩ is omitted, the language currently in use is changed.
See also the keywords option.

\Keyword[⟨language⟩]{⟨keyword⟩}

This macro expands to the value of a keyword in a ⟨language⟩ using the font,
shape, size, and color determined for the keyword set.
If ⟨language⟩ is not specified, the current language is used. ⟨keyword⟩ is any key-
word defined for a language, including custom ones.

\SetKeyword[german]{if}{wenn} % new
Depending on the language, a keyword can take different forms: \Keyword{if}

(English), \Keyword[german]{if} (german) or \Keyword[brazilian]{if}
(Brazilian Portuguese).

↪→

↪→

Depending on the language, a keyword can take different forms: if (English), wenn (german)
or se (Brazilian Portuguese).

4.3 Other features

\Constant[⟨name⟩]

This macro presents ⟨name⟩ using font, shape, size and color defined for constants.

3Macros like \algorithmicwhile from the algorithimicx package are no longer used.

23

% English keywords
% Moreira, J. (moreira.jander@gmail.com)
\AlgLanguageSet{english}{%

description = Description,
input = Input,
output = Output,
require = Require,
ensure = Ensure,
end = end,
if = if,
then = then,
else = else,
switch = switch,
of = of,
case = case,
otherwise = otherwise,
do = do,
while = while,
repeat = repeat,
until = until,
loop = loop,
foreach = {for~each},
forall = {for~all},
for = for,
to = to,
downto = {down~to},
step = step,
continue = continue,
break = break,
function = function,
procedure = procedure,
return = return,
true = True,
false = False,
nil = Nil,
read = read,
write = write,
set = set,

}

% Compound keywords
\AlgLanguageSet{english}{

endwhile = \Keyword{end}~\Keyword{while},
endfor = \Keyword{end}~\Keyword{for},
endloop = \Keyword{end}~\Keyword{loop},
endif = \Keyword{end}~\Keyword{if},
endswitch = \Keyword{end}~\Keyword{switch},
endcase = \Keyword{end}~\Keyword{case},
endotherwise = \Keyword{end}~\Keyword{otherwise},
endprocedure = \Keyword{end}~\Keyword{procedure},
endfunction = \Keyword{end}~\Keyword{function},

}

24

\Module[⟨name⟩]

This macro presents ⟨name⟩ using font, shape, size and color defined for procedures
and functions.

5 To do

This is a todo list:
• Add font, shape, size and color settings to a whole algorithm;
• Add font, shape, size and color settings to line numbers;
• Add font, shape, size and color settings to identifiers.

6 Examples

6.1 LZW revisited

\AlgSet{
comment color = purple,
comment width = nice,
comment style = \raggedleft,

}

Description: LZW Compression using a table with all known sequences of bytes.
Input: A flow of bytes
Output: A flow of bits with the compressed representation of the input bytes

1: Initialize a table with all bytes ▷ each position of the table has a
single byte

2: Initilize sequence with the first byte in the input flow
3: while there are bytes in the input do ▷ wait until all bytes are processed
4: Get a single byte from input and store it in byte
5: if the concatention of sequence and byte is in the table then
6: Set sequence to sequence + byte ▷ concatenate without producing

any output
7: else
8: Output the code for sequence ▷ i.e., the binary representation of

its position in the table
9: Add the concatention of sequence and

byte to the table
▷ the table learns a longer

sequence
10: Set sequence to byte ▷ starts a new sequence with the

remaining byte
11: end if
12: end while
13: Output the code for sequence ▷ the remaining sequence of bits

6.2 LZW revisited again

\AlgSet{
keyword font = \ttfamily,
keyword color = green!40!black,
text font = \itshape,

25

comment font = \footnotesize,
algorithmic indent = 1.5em,
noend,

}

Description: LZW Compression using a table with all known sequences of bytes.
Input: A flow of bytes
Output: A flow of bits with the compressed representation of the input bytes

1: Initialize a table with all bytes ▷ each position of the table has a single byte
2: Initilize sequence with the first byte in the input flow
3: while there are bytes in the input do ▷ wait until all bytes are processed
4: Get a single byte from input and store it in byte
5: if the concatention of sequence and byte is in the table then
6: Set sequence to sequence + byte ▷ concatenate without producing any output
7: else
8: Output the code for sequence ▷ i.e., the binary representation of its position in the

table
9: Add the concatention of sequence and byte to the

table
▷ the table learns a longer

sequence

10: Set sequence to byte ▷ starts a new sequence with the remaining byte

11: Output the code for sequence ▷ the remaining sequence of bits

26

Index
\AlgLanguageSet, 22
algorithmic indent, 19
\AlgSet, 16

brazilian, 3
\Break, 11

\Call, 14
\Case, 8
\Comment, 14
comment color, 21
comment font, 20
comment separator width, 21
comment style, 21
comment symbol, 19
comment symbol right, 20
comment width, 22
\CommentIn, 15
\Commentl, 14
\CommentSymbol, 20
\CommentSymbolRight, 20
\Constant, 23
constant color, 21
constant font, 20
\Continue, 11

\Description, 15

\Else, 7
\Elsif, 7
end, 18
\EndCase, 8
\EndFor, 9
\EndFunction, 14
\EndIf, 7
\EndLoop, 11
\EndOtherwise, 9
\EndProcedure, 13
\EndSwitch, 8
\EndWhile, 10
english, 3
\Ensure, 16

\False, 11
\For, 9
\ForAll, 9
\ForEach, 9
\Function, 14

\Id, 11
\If, 7
\Input, 16

\Keyword, 23
keyword color, 21
keyword font, 20
keywords, 19

language, 18
\Loop, 11

\Module, 23
module color, 21
module font, 20

\Nil, 11
noend, 3, 18

\Otherwise, 8
\Output, 16

\Procedure, 13

\Read, 12
\Repeat, 10
\Require, 15
\Return, 14

\Set, 12
\SetKeyword, 23
statement indent, 22
\Statep, 6
\Switch, 8

text color, 20
text font, 20
text style, 21
\True, 11

\Until, 10

\While, 10
\Write, 12

27

	Introduction
	Package usage and options
	Writting pseudocode
	A preamble on comments
	A preamble on options
	Statements
	Flow Control Blocks
	The if block
	The switch block
	The for block
	The while block
	The repeat-until block
	The loop block

	Constants and Identifiers
	Assignments and I/O
	Procedures and Functions
	Comments
	Documentation

	Customization and Fine Tunning
	Options
	Fonts, shapes and sizes
	Colors
	Paragraphs

	Languages and translations
	Other features

	To do
	Examples
	LZW revisited
	LZW revisited again

