THE CNLTX BUNDLE

Documentation for KTEX 2 Packages or Classes

vo0.15

2019/11/01

KEIEX tools and documenting facilities the cN way

Clemens NIEDERBERGER

https://github.com/cgnieder/cnltx

contact@mychemistry.eu

A versatile bundle of packages and classes for consistent formatting of
control sequences, package options, source code examples, and writing
a package manual (including an index containing the explained control

sequences, options, ...).

The bundle also provides several other small ideas of mine such as a
mechansim for providing abbreviations etc. Not at least it provides a

number of programming tools.

Table of Contents

II.

About The Bundle
Background

Bundled Packages, Classes and
Files

License and Requirements

Usage of the Bundle

Details of Available Com-
mands, Environments and
Options

Options and Setup

3 6. Available Commands

6.1. Description of Macros, Envi-
ronments and Options

6.2. Versioning Commands, Li-
censing and Related Stuff . . .

6.3. Input Source Code Files

Available Environments
7.1. Description Environments

7.2. Source Code Environments . .

Usage of the Various Functions
8.1. Command Descriptions
8.2. Option Descriptions
8.3. Environment Descriptions

8.4. Code Examples.

11
11

12

13
13
15
17

https://github.com/cgnieder/cnltx
mailto:contact@mychemistry.eu

10.

8.5. Compile Source Examples
8.5.1. The Compliation Pro-
CeSS
8.5.2. Floating Output
8.5.3. Selective Output
8.6. ExampleFile
8.7. Additional Functionality Pro-
vided by CNLTX-BASE
8.7.1. Looking for Trailing
Punctuation
8.7.2. Counter Representa-
tion Commands
8.7.3. Expandable Docu-
ment Commands . . .
8.8. Additional Functionality Pro-

vided by cNLTX-TOOLS . . .
8.8.1. Commands for Defin-
ing Different Docu-
ment Macros
Defining Abbreviations
Predefined Abbrevia-

tions

8.8.2.
8.8.3.

Formatting Possibilities

9.1. Formatting by Redefining
Hooks
Formatting by Setting Options

9.2.

Commands, Options and Fur-
ther Settings Directly Related to
the cNLTX-DOC Class
Using Class Options
Information on the Described
Package or Class
Building of the Manuals Title
Page.
A Quotation Environment
Predefined Preamble
Predefined Indexing
Bibliography with biblatex . .
10.7.1. Bibliography Entry
Types package, class
and bundle for biblatex

10.1.

10.2.

10.3.

10.4.
10.5.
10.6.

10.7.

20
23
24
26

27

27

28

30

31

31

33

33

36

36
37

38
38

38

11.

12.

13.

14.

10.7.2. Automatic Bibliography

Predefined listings and md-
framed Styles
11.1. mdframed

11.2. listings
11.2.1. KIEX Sourcecode . . .
11.2.2. BEBIEX Entries

11.2.3. makeindex Style Files .

PDF Strings and hyperref

Predefined Colors and Color-

Schemes

13.1. Explicitly Defined Colors . . .

13.2. Actual Used Color Names and
Color Schemes

Language Support

Appendix

Internal Helper Commands

A.1. Defined by CNLTX-BASE . . .
A.1.1. Related to the Bundle .
A.1.2. Programming Tools . .
Defined by cNLTX-DOC

Defined by CNLTX-EXAMPLE
Defined by CNLTX-LISTINGS
Defined by cNLTX-TOOLS . .

A2,
A.s.
A.g.
As.

List of Known KTEX Control Se-
quences

List of Known KTgX Environments

List of Entries in cnltx.bib
Bibliography

Index

46

47
47
47
47
49
50

50

51

51

51

53

54

54
54
54
56
60
60
61
62

62

68

68

69

72

Part I.
About The Bundle

1. Background

The cN1TX bundle contains different packages and classes." I developed it as a successor of my
class cnpkgdoc [Nie13] that I used until now for writing the documentation of my packages.
The intention behind the new bundle is a cleaner interface and less unnecessary ballast, hence
the separation into packages and classes. This is actually a bit of a contradiction: the document
class cNLTX-DOC loads all packages of the bundle which makes it more feature-rich than
cnpkgdoc ever used to be. The bundle provides source code environments that also print the
output and defines quite a lot of macros for formatting of control sequence names, package
names, package options and so on.

Part of the motivation is also that users have asked me how I created the manuals for my
packages. Now I can refer to this bundle.

Another reason for the splitting into separate packages is — besides the advantage of easier
maintenance — is that I wanted to add programming tools that I often use into CNLTX-BASE
which may allow me (and others) to use them for other packages, too, without having to define
them each time. So it is quite likely that cNLTx-BASE will get extended in the future.

The bundle provides listings style for KIEX code, bibliography database files and index style
files. It provides a biblatex citation and bibliography style closely linked to cNLTx-DOC. It
provides a bibliography database file containing many KIEX packages. It provides... Let’s stop
here. You see that the bundle provides a lot of different features which explains why this manual
is more than 60 pages long.

The most detailed documentation for the bundle is as always the source code of the sty and
cls files but I'm trying to provide a documentation as comprehensive as possible. Reading the
source files may show how things are implemented but the intended use only becomes clear
when you read this manual.

The bundle reflects the fact that I haven’t started using literate programming, yet. I don’t
use docstrip and don’t write dtx files but always write the sty or cls files directly. I write
the manual always at the same time but as a separate file. While I'm entirely aware of the
advantages of literate programming I never could bring myself to start to use it myself. As a
consequence I have no idea if this bundle can be used for it or not.

Source code formatting is done with the help of the powerful listings package [HM19] by
Carsten HEINZ and later Brooks MosES, now maintained by Jobst HOFFMANN. The only real
drawback I have found with it is recognizing starred und un-starred versions of an environment
as different keywords. This does not seem to be possible which is why indexing of such
environments will lead to wrong page numbers.

The fancy frames of the source code examples are realized with the mdframed package by
Marco DANTIEL [DS13], loaded with the option = tikz.

1. Well, one class for the time being,

Introduced in
version 0.9

Introduced in
version 0.4

Introduced in
version 0.2

Introduced in
version 0.11

2. Bundled Packages, Classes and Files

Besides all this I included some other ideas of mine in this bundle which are all provided by
CNLTX-TOOLS. This includes a mechansim for defining clever abbreviations or macros that
make it easy to index names the same way biblatex does.

2. Bundled Packages, Classes and Files

The cnLTX bundle currently bundles the following packages, classes and files:

CNLTX — a wrapper package for usage in documents. It loads one or more of the following
packages. See section 4 for details on the usage.
\usepackage{cnltx}

CNLTX-BASE — a package that defines base macros for error-messaging, expansion
control, tokenlist manipulation and defining of expandable macros. It also provides color
definitions and defines a few color schemes for the cNLTX-DOC class. All other packages
and classes of the cNLTx bundle load this package. This package can be used stand-alone.
\usepackage{cnltx-base}

The packages commands are not described in the main part of this documentation but
only in section A.1, i. e, in the appendix.

CNLTX-DOC — a class for writing package manuals. Loads CNLTX-EXAMPLE and
cNLTXx-ToOLs and implicitly all other files of the bundle.
\documentclass{cnltx-doc}

CNLTX-EXAMPLE — a package that defines macros and environments for describing
control sequences and options and for including source code. Loads CNLTX-LISTINGS.
This package can be used stand-alone.

\usepackage{cnltx-example}

CNLTX-LISTINGS — a package that defines the listings language ‘BibTeX'. Also defines a
list of highlighted control sequence names and environment names, loaded by cNLTX-
ExAMPLE. The additional control sequence and environment names used to be defined
in cNLTXx-csNAMES. That package got removed and its contents are now provided by
CNLTX-LISTINGS. This package can be used stand-alone.
\usepackage{cnltx-listings}

CNLTX-TOOLS — a package that defines tools used by cNLTx-DoOC that are unrelated to
KTEX documentation per se. This package can be used stand-alone.
\usepackage{cnltx-tools}

CNLTX-TRANSLATIONS — a package that provides translations needed by the other
modules. It makes no sense to use this package standalone although it’s possible.

cnltx.ist - an index style file that is used when the option for cNLTX-DOC
is activated and the option is not used.

Introduced in
version 0.4

Introduced in
version 0.4

3. License and Requirements

« cnltx.bib — a bibliography file that contains a small but growing number of package
entries, see section D. Used by cNLTx-DOC when the is used.

« cnltx.bbx, cnltx.cbx and cnltx.dbx — files related to the biblatex style cnltx. The
biblatex style defined in those files is used when the for cNLTX-DOC is used.

3. License and Requirements

Permission is granted to copy, distribute and/or modify this software under the terms of the KIEX
Project Public License (LPPL), version 1.3 or later (http://www.latex-project.org/lppl.txt).
The software has the status “maintained.”

The cNLTX-BASE package loads the following packages: pgfopts® [Wrii4], etoolbox® [Leh1gb],
ltxcemds * [Obe16b], pdftexcmds* [Obe1g], trimspaces® [Robog] and xcolor® [Ker16].

The cNLTX-DOC class loads the packages CNLTX-BASE, CNLTX-EXAMPLE, CNLTX-
TRANSLATIONS, ulem’ [Ars11], multicol® [Mit19], ragged2e® [Schigb], marginnote ** [Koh18]
and hyperref'* [OR19]. It is a wrapper class for the KOMA-Script class scrartcl** [Koh1g].
The class has the option which when used will load additional packages, see
section 10.5 on page 41 for details.

The cNLTxX-EXAMPLE package loads the packages: CNLTX-BASE, CNLTX-LISTINGS,
CNLTX-TOOLS, CNLTX-TRANSLATIONS, mdframed™ [DS13], textcomp* [Rah16], idx-
cmds*® [Nie1s], ifxetex® [Rob1o], adjustbox®” [Schiga].

The cNLTX-LISTINGS package loads the packages cNLTX-BASE, listings*® [HM19] and
catchfile® [Obe16a].

The cNLTX-TOOLS package loads the packages CNLTX-BASE, CNLTX-TRANSLATIONS Sand
accsupp® [Obe18].

CNLTX-TRANSLATIONS loads the translations package [Nie17].

All other packages that are loaded are loaded by the mentioned packages and not directly by
any of the packages or classes of the cNLTX bundle. Like all of my packages cN1TX implicitly
relies on an up to date TgX distribution.

.on CTAN as pgfopts: http://mirrors.ctan.org/macros/latex/contrib/pgfopts/

on CTAN as etoolbox: http://mirrors.ctan.org/macros/latex/contrib/etoolbox/

.on CTAN as oberdiek: http://mirrors.ctan.org/macros/latex/contrib/oberdiek/

.on CTAN as trimspaces: http://mirrors.ctan.org/macros/latex/contrib/trimspaces/
.on CTAN as xcolor: http://mirrors.ctan.org/macros/latex/contrib/xcolor/

.on CTAN as ulem: http://mirrors.ctan.org/macros/latex/contrib/ulem/

.on CTAN as multicol: http://mirrors.ctan.org/macros/latex/required/tools/multicol/
.on CTAN as ragged2e: http://mirrors.ctan.org/macros/latex/contrib/ms/ragged2e/
.on CTAN as marginnote: http://mirrors.ctan.org/macros/latex/contrib/marginnote/
.on CTAN as hyperref: http://mirrors.ctan.org/macros/latex/contrib/hyperref/

.on CTAN as koma-script: http://mirrors.ctan.org/macros/latex/contrib/koma-script/
.on CTAN as mdframed: http://mirrors.ctan.org/macros/latex/contrib/mdframed/

.on CTAN as textcomp: http://mirrors.ctan.org/macros/latex/contrib/textcomp/

.on CTAN as idxcmds: http://mirrors.ctan.org/macros/latex/contrib/idxcmds/

.on CTAN as ifxetex: http://mirrors.ctan.org/macros/latex/contrib/ifxetex/

.on CTAN as adjustbox: http://mirrors.ctan.org/macros/latex/contrib/adjustbox/

.on CTAN as listings: http://mirrors.ctan.org/macros/latex/contrib/listings/

.on CTAN as catchfile: http://mirrors.ctan.org/macros/latex/contrib/catchfile/

O 0N YT N

e e O o
O 0N U R W N = O

http://www.latex-project.org/lppl.txt
http://mirrors.ctan.org/macros/latex/contrib/pgfopts/
http://mirrors.ctan.org/macros/latex/contrib/etoolbox/
http://mirrors.ctan.org/macros/latex/contrib/oberdiek/
http://mirrors.ctan.org/macros/latex/contrib/trimspaces/
http://mirrors.ctan.org/macros/latex/contrib/xcolor/
http://mirrors.ctan.org/macros/latex/contrib/ulem/
http://mirrors.ctan.org/macros/latex/required/tools/multicol/
http://mirrors.ctan.org/macros/latex/contrib/ms/ragged2e/
http://mirrors.ctan.org/macros/latex/contrib/marginnote/
http://mirrors.ctan.org/macros/latex/contrib/hyperref/
http://mirrors.ctan.org/macros/latex/contrib/koma-script/
http://mirrors.ctan.org/macros/latex/contrib/mdframed/
http://mirrors.ctan.org/macros/latex/contrib/textcomp/
http://mirrors.ctan.org/macros/latex/contrib/idxcmds/
http://mirrors.ctan.org/macros/latex/contrib/ifxetex/
http://mirrors.ctan.org/macros/latex/contrib/adjustbox/
http://mirrors.ctan.org/macros/latex/contrib/listings/
http://mirrors.ctan.org/macros/latex/contrib/catchfile/

4. Usage of the Bundle

4. Usage of the Bundle
The intended use of this bundle is three-fold:

+ The main use-case is documenting my own EKIgX packages. This is done with

{ 1 \documentclass{cnltx-doc} }

and actually loads most if not all of the bundle.

« The module cNLTX-BASE is also intended as a programming tools package that will be
used in other packages eventually. For example it is used by the cntformats package.

« In case parts of this bundle prove useful to be used in a document the recommended way
is to add

{ 1 \usepackage{cnltx} }

to the preamble which will load the cNLTX-BASE module. Other needed modules can be
given as package option by using the name part after the dash as option.

[1 \usepackage[examplel{cnltx} }

would load CNLTX-EXAMPLE.

« Parts of the bundle - especially cNLTX-BASE — may prove useful in other packages.
The loading the packages directly as indicated in section 3 seems the best way. After
loading cNLTX-BASE the other modules can also be loaded with \cnltx@load@module,
see section A.1.1 for details.

provided by
CNLTX-EXAM-
PLE

Introduced in
version 0.2

Part II.
Details of Available Commands,
Environments and Options

5. Options and Setup

The cNiTx bundle has a large number of options. The cNLTX-DOC class only knows a
few options (described in section 10.1 on page 38) as class options, though. All other options
regardless if they’re defined by a package or a class can and should be set with the setup
command:

\setcnltx{({options)}
Setup command for the cNLTX bundle. This command is provided by cNLTX-BASE.

The source code environments defined by the cNLTX-ExAMPLE package also have optional
arguments that can be used to set the options for the environment locally.

6. Available Commands

6.1. Description of Macros, Environments and Options

The commands described in this section all are provided by the cNLTX-EXAMPLE package.
They all are related to the typesetting of provided macros, options and the like.

\code{(arg)}
Formatting of source code. This is no verbatim command. Used internally in the following

commands.

\verbcode(char){code){char)
A verbatim command that uses the same formatting as the source code example environments,
cf. section 8.4. This is a wrapper for \lstinline which loads the corresponding style.

\cs*{(name)}
Format the control sequence (name), \cs{name}: \name. Adds a corresponding index entry.
The starred form does not add an index entry.

\csidx{(name)}
Adds an index entry but does not typeset the control sequence (name).

\env*{(name)}
Format the environment (name), \env{name}: name. Adds a corresponding index entry with a
hint that the entry refers to an environment. The starred form does not add an index entry.

Introduced in
version 0.2

Introduced in
version 0.2

Introduced in
version 0.2

Changed in

version 0.2

6. Available Commands

\envidx{({name)}
Adds an index entry but does not typeset the environment (name).

\meta{(meta)}
Description of an argument, \meta{meta}: (meta).

\marg{{arg)}
A mandatory argument. (arg) is formatted with \meta if it is not blank, \marg{arg}: {(arg)}.

\Marg{(arg)}
A mandatory argument. (arg) is formatted with \code if it is not blank, \Marg{arg}: {arg}.

\oarg{(arg)}
An optional argument. (arg) is formatted with \meta if it is not blank, \oarg{arg}: [(arg)].

\Oarg{(arg)}
An optional argument. (arg) is formatted with \code if it is not blank, \Oarg{arg}: [arg].

\darg{(arg)}
An argument with parentheses as delimiters. (arg) is formatted with \meta if it is not blank,
\darg{arg}: ({(arg)).

\Darg{(arg)}
An argument with parentheses as delimiters. (arg) is formatted with \code if it is not blank,
\Darg{arg}: (arg).

\sarg
An optional star argument, \sarg: *.

\newarg[(arg formatting)1{{cs) {{left delim)}{(right delim)} Default: \meta
Command used to define the argument commands: \newarg\marg{\{}{\}}. The optional
argument determines how the argument of the new command will be formatted. This is done
with \meta per default. \Marg is defined \newarg[\code]\Marg{\{}{\}}.

\option*{({name)}
An option (name), \option{name}: . Adds a corresponding index entry. The starred form
does not add an index entry.

\optionidx{({name)}
Adds an index entry but does not typeset the option (name).

\modulex{(name)}
A module (name), \module{name}: name. Adds a corresponding index entry. The starred form
does not add an index entry. In some of my packages I like to organize options by grouping
them in different classes that I call “modules”. This command refers to those modules.

\moduleidxx*{({name)}
Adds an index entry but does not typeset the option (name).

Introduced in
version 0.2

provided by
CNLTX-DOC

Introduced in
version 0.0

Changed in

version 0.0

6. Available Commands

\keyx*-{(name)}{(value)}
A key (name) with value (value), the optional star prevents an index entry, the optional - strips
the braces around (value); \key{key}{value}: = {(value)}; \key-{key}{value}: =
(value)

\keyisx-{(name)}{(value)}
A key (name) set to value (value), the optional star prevents an index entry, the optional -
strips the braces around value; \key{keyis}{value}: = {value}.

\choices{{clist of choices)}
A list of choices, \choices{one, two, three}: one|two|three

\choicekey{(name)}{{clist of choices)}

A key (name) with a list of possible values, \choicekey{key}{one, two,three}: = one |
two|three
\boolkey{(name)}
A boolean key (name) with choices true and false, \boolkey{key}: = true|false
\default{(value)}

Markup for a default choice, \choices{one,\default{two}, three}: one|two|three

6.2. Versioning Commands, Licensing and Related Stuff

The commands described in this section are provided by the cNLTX class except where indicated
differently. These commands are related to information about the legal stuff of a package and
where to find it on th world wide web.

\sinceversion{(version)}
Gives a sidenote like the one on the left.

\changedversion{(version)}
Gives a sidenote like the one on the left.

\newnotex{(cs)} [(num)][{optional)1{{definition)}
Defines a note like \sinceversion. The syntax of the command is the same as the one of
\newcommand. \sinceversion was defined as follows:
\newnotex\sinceversion[1l]{Introduced in version~#1}
or actually like this:
\newnotex\sinceversion[1]{\GetTranslation{cnltx-introduced}~#1}

\newpackagename{{cs) }{(name)}
Define a comand (cs) that prints (name) formatted like cNLTX, i. e. in small caps and colored
with the color cnltx (see section 13.2).

\lppl
Typesets “LPPL” and adds a corresponding index entry.

Changed in

version 0.2

provided by
CNLTX-EXAM-
PLE

provided by
CNLTX-EXAM-
PLE

provided by

CNLTX-EXAM-
PLE

provided by
CNLTX-EXAM-
PLE

Introduced in
version 0.11

Introduced in
version 0.11

Introduced in
version 0.11

Introduced in
version 0.2

Introduced in
version 0.2

6. Available Commands

\LPPL
Typesets “KIEX Project Public License” and adds the same index entry as \1ppl.

\licensex[({maintenance status)] Default: maintained
Typesets ‘Permission is granted to copy, distribute and/or modify this software under the terms
of the KTEX Project Public License (LpPL), version 1.3 or later (http://www.latex-project.
org/lppl.txt). The software has the status “maintained.”’. The un-starred variant adds a \par.

\ctan
Typesets “cTAN” and adds a corresponding index entry.

\CTAN
Typesets “Comprehensive TgX Archive Network” and adds the same index entry as \ctan.

\pkg*{(package)}
Format the package name (package) and add an index entry. The starred variant adds nothing
to the index.

\pkgidx{(package)}
Add an index entry for the package (package).

\cls*{(class)}
Format the class name (class) and add an index entry. The starred variant adds nothing to the
index.

\clsidx{(class)}
Add an index entry for the class (class).

\CTANurl[{directory)1{(name)}
Writes a cTAN link like the ones in section 3 on page 5 in the footnotes. The predefined directory
is macros/latex/contrib. The link address will be:

http://mirrors.ctan.org/(directory)/(name)/.

\email{(email address)}
A wrapper for \href{mailto:#1}{#1}.

\website{(web address)}
A wrapper for \href{http://#1/}{#1}.

\securewebsite{(web address)}
A wrapper for \href{https://#1/}{#1}.

\needpackage[(directory)1{(name)}
A wrapper for \pkg{#2}\footnote{\CTANurl[#1]{#2}}

\needclass[(directory)1{(name)}
A wrapper for \cls{#2}\footnote{\CTANurl[#1]{#2}}

10

http://www.latex-project.org/lppl.txt
http://www.latex-project.org/lppl.txt

Introduced in
version 0.5

7. Available Environments

-
1 \newpackagename{\foothree}{foo-3}%
> now \foothree\ looks like \cnltx.

now Foo-3 looks like cNLTX.

N

6.3. Input Source Code Files

Similar to the environments described in section 7.2 on the next page CNLTX-EXAMPLE
provides a few commands for inputting source code files, formatting and printing the source

code and inputting the file directly.

\inputexample[{options)]1{(file name)}
The equivalent of the example environment, see section 7.2 on the following page.

\inputsidebyside[(options)]{(file name)}
The equivalent of the sidebyside environment, see section 7.2 on the next page.

\inputsourcecode[(options)]{(file name)}
The equivalent of the sourcecode environment, see section 7.2 on the following page.

\implementation[(options)]{(file name)}
A wrapper for \lstinputlisting[style=cnltx,#1]{#2}

It is possible to define further commands like this:

\newinputsourcefilecmd[{option)]{{control sequence)}
Defines (control sequence) as a new source code input command where (options) are preset.

The existing commands have been defined like this:

1 \newinputsourcefilecmd\inputexample
> \newinputsourcefilecmd[side-by-side]\inputsidebyside
3 \newinputsourcefilecmd[code-only]\inputsourcecode

7. Available Environments

7.1. Description Environments

cNLTX-DOC defines some description environments used to describe macros, environments or

options.

11

7. Available Environments

\begin{commands}
A description-like environment for describing commands. While this environment is a list
internally and thus recognizes \item own commands are used to describe macros. They are
explained in section 8.1 on the next page.

\begin{options}
A description-like environment for describing options. While this environment is a list internally
and thus recognizes \item own commands are used to describe options. They are explained in
section 8.2 on page 15.

\begin{environments}
A description-like environment for describing environments. While this environment is a list
internally and thus recognizes \item own commands are used to describe environments. They
are explained in section 8.3 on page 17.

These environments are lists all using the same internal \list. The setup of this list can be
changed via an option:

= {(definitions)}
Default: \leftmargin=0pt \labelwidth=2em \labelsep=0pt \itemindent=-lem
The setup of the \1ist used by the commands, options and environments environments.

7.2. Source Code Environments

CNLTX-EXAMPLE defines the following environments that are used to display source code
and possibly the output of the source code, too.

\begin{example} [{options)]
This environment is a formatted verbatim environment that also inputs the output of the
inputted code. This environment is described in section 8.4 on page 18.

\begin{sidebyside}[(options)]
This environment is a formatted verbatim environment that also inputs the output of the
inputted code. Source and output are printed side-by-side. This environment is described in
section 8.4 on page 18.

\begin{sourcecode}[(options)]
This environment is a formatted verbatim environment. This environment is described in
section 8.4 on page 18.

Introduced in In each of these environments certain hooks are provided that can be used to add definitions
version 0.2 you like:

= {(definitions)}
(definitions) are placed before the source code is inserted.

= {(definitions)}

(definitions) are placed after the source code is inserted.

12

Changed in
version 0.3

Introduced in

version 0.5

Introduced in
version 0.5

Introduced in
version 0.5

8. Usage of the Various Functions

= {(definitions)}

(definitions) are placed before the output of the source code is inserted.

= {(definitions) }

(definitions) are placed after the output of the source code is inserted.
It is possible to define further environments like this:

\newsourcecodeenv[{option)1{(name)}
Defines (name) as a new source code environment where (options) are preset.

The existing environments have been defined like this:

1 \newsourcecodeenv{example}
> \newsourcecodeenv[side-by-side]{sidebyside}
3 \newsourcecodeenv[code-only]l{sourcecode}

8. Usage of the Various Functions

8.1. Command Descriptions

Inside of the environment commands that was introduced in section 7.1 on page 11 items are
input via the following command:

\command={(name)} [(stuff after)]
This macro formats a control sequence with \cs and puts a line break after it. The optional
argument allows printing things directly after the command name and can thus be used for
adding arguments. The star prevents the creation of an index entry.

\Default=!{{code)}
This command can be placed after \command or \opt in order to give a default definition of
a macro or a default value of an option. The definition will then be placed on the same line
flush right. The star prevents the insertion of \newline after it. The optional bang adds the
information that an option is mandatory, i. e. has to be set.

\expandable
Adds the symbol = to the left of a command in the margin to indicate that the command is
expandable. This command should be used immediately before \ command.

\unexpandable
Adds the symbol « to the left of a command in the margin to indicate that the command is not
expandable. This command should be used immediately before \ command.

\expandablesign Default: \textasteriskcentered
The macro that holds the sign used by \expandable and \unexpandable.

13

8. Usage of the Various Functions

\expandablesymbol
Introduced in The symbol , i. e., \expandablesign formatted with the color expandable.

version 0.11
\unexpandablesymbol

Introduced in The symbol , i. e, \expandablesign formatted with the color unexpandable.
version 0.11

1 \begin{commands}

> \command{cs}

3 This is about foo bar baz.

4 \command{cs}[\marg{arg}]

5 This one has an argument.

¢ \command{cs}[\sarg\oarg{option}]

7 This has a star variant and an optional argument.
8 \command{cs}\Default{foo bar}

9 This one has the default replacement text \code{foo bar}
10 \expandable\command{cs}

1 This macro is expandable.

12 \end{commands}

\cs
This is about foo bar baz.

\cs{(arg)}
This one has an argument.

\csx[{option)]
This has a star variant and an optional argument.

\cs Default: foo bar
This one has the default replacement text foo bar

* \cs
This macro is expandable.

The \expandablesign can of course be redefined to something else you like better. For the
sake of completeness there is an option that does exactly this:

= {(definition)} Default: \textasteriskcentered

Introduced in Redefines \expandablesign to (definition).
version 0.5

14

Changed in
version 0.3

Introduced in
version 0.3

8. Usage of the Various Functions

8.2. Option Descriptions

The options environment knows a few more commands to meet all the different kinds of
options.

\opt*
An option. The star prevents an index entry.

\keyvalx-{(key)}{(value)}
A key/value option. The optional star prevents an index entry. The optional - strips the braces
around (value), see the example below.

\keychoicex{(key)}{(list of choices)}
A key/value option where the value is one of a list of choices. The star prevents an index entry.

\keyboolx{(name)}
A boolean key, that ist a choice key with choices true and false. The star prevents an index
entry.

\Defaultx!{{code)}
This command can be placed after \command or \opt (or any of the other commands for adding
an option to the options list) in order to give a default definition of a macro or a default value
of an option. The definition will then be placed on the same line flush right. The star prevents
the insertion of \newline after it. The optional bang adds the information that an option is
mandatory, i. e., it has to be set.

\Modulex!{(name)}
This command can be placed after \option but before \Default in order to determine the
module the option belongs to. It will be written in the left margin next to the option name. The
star prevents the insertion of \newline after it. The optional bang adds an index entry for the
module. This is somehow inconsistent with many of the other commands where an optional
star prevents an index entry but it fits to the functionality of \Default which is why this syntax
was chosen.

The following demonstrates how the commands would be used to create option descriptions:

-
1 \begin{options}
> \opt{foo}
3 This makes stuff. Let's add a few more words so that the line gets
4 filled and we can see how the output actually looks.
5 \optx{foo}\Default{bar}
6 This makes stuff. Let's add a few more words so that the line gets
7 filled and we can see how the output actually looks.
8 \opt{foo}\Module{bar}
9 This option belongs to \modulex{bar}. Let's add a few more words so
10 that the line gets filled and we can see how the output actually
1 looks.

15

bar »

bar »

8. Usage of the Various Functions

12 \opt{foo}\Module{bar}\Default{baz}

13 This option belongs to \modulex{bar}. Let's add a few more words so
14 that the line gets filled and we can see how the output actually

15 looks.

16 \keyval{foo}{bar}\Default

17 This makes stuff. Let's add a few more words so that the line gets
18 filled and we can see how the output actually looks.

19 \keyval{foo}{bar}\Default!

20 This makes stuff. Let's add a few more words so that the line gets
21 filled and we can see how the output actually looks.

22 \keyvalx{foo}{bar}

23 This makes stuff. Let's add a few more words so that the line gets
24 filled and we can see how the output actually looks.

25 \keyval-{foo}{bar}

26 This makes stuff. Let's add a few more words so that the line gets
27 filled and we can see how the output actually looks.

28 \keychoice{foo}{one, two,three}

29 This makes stuff. Let's add a few more words so that the line gets
30 filled and we can see how the output actually looks.

31 \keybool{foo}

32 This makes stuff. Let's add a few more words so that the line gets
33 filled and we can see how the output actually looks.

3¢ \end{options}

The code above gives the following output:

This makes stuff. Let’s add a few more words so that the line gets filled and we can see how the
output actually looks.

Default: bar
This makes stuff. Let’s add a few more words so that the line gets filled and we can see how the
output actually looks.

This option belongs to the module bar. Let’s add a few more words so that the line gets filled
and we can see how the output actually looks.

Default: baz
This option belongs to the module bar. Let’s add a few more words so that the line gets filled
and we can see how the output actually looks.

= {(bar)} (initially empty)
This makes stuff. Let’s add a few more words so that the line gets filled and we can see how the
output actually looks.

16

8. Usage of the Various Functions

= {(bar)} (required)
This makes stuff. Let’s add a few more words so that the line gets filled and we can see how the
output actually looks.

= {(bar)}
This makes stuff. Let’s add a few more words so that the line gets filled and we can see how the
output actually looks.

= (bar)
This makes stuff. Let’s add a few more words so that the line gets filled and we can see how the
output actually looks.

=one|two|three
This makes stuff. Let’s add a few more words so that the line gets filled and we can see how the
output actually looks.

= true|false
This makes stuff. Let’s add a few more words so that the line gets filled and we can see how the
output actually looks.

8.3. Environment Descriptions

Environment descriptions are made — unsurprisingly — with the environments environment. It
knows the command \environment:

\environment*{(name)} [(stuff after)]
This macro prints the environment name and puts a line break after it. The optional argument
allows printing things directly after the environment name and can thus be used for adding
arguments.

e B
1 \begin{environments}
. \environmentx{foobar}[\oarg{options}]
3 This is environment \envx{foobar}. The star prevents it from being
4 added to the index.

s \end{environments}

\begin{foobar}[{options)]
This is environment foobar. The star prevents it from being added to the index.

17

Introduced in
version 0.10

8. Usage of the Various Functions

8.4. Code Examples

Code examples can be included through the example environment or the sourcecode environ-
ment. The sourcecode only shows the piece of KIgXcode while the example environment also
shows the output of the BIgX code.

1 \begin{example}
> a \LaTeX\ code example
3 \end{example}

This example would give:

1 a \LaTeX\ code example

a KIEX code example

Both environments can be influenced by options:

= true|false Default: false
Only typeset the code as code but don’t include it afterwards. The code box above is an example
for the usage of this option. This option has no effect on the sourcecode environment: is is
already set for this environment.

= true|false Default: false
Typeset source and output side by side. The code is input on the left and the output on the right.
Side by side examples are typeset in minipage environments with all consequences that come
with them (think of \parindent, page breaks ...). Since a minipage cannot be broken across
pages the surrounding mdframed frame gets the option = true. This option has no
effect on the sourcecode environment.

= true|false Default: true
If true and the option is chosen the source code is printed on the right side else
on the left. This option has no effect on the sourcecode environment.

= {(definition) } Default: \hrulefill
Code that is inserted between a source code and the corresponding output when printed below
each other. This option has no effect on the sourcecode environment.

= true|false Default: false
If true the output of an example is put outside of the frame in the input stream. This can be
useful if the example code contains a floating environment for example.

18

Introduced in
version 0.10

Introduced in
version 0.10

8. Usage of the Various Functions

The same example again, this time using (which is the same as using the
sidebyside environment):

[a \LaTeX\ code example a KX code example }
and = false:
[a KIEX code example 1 a \LaTeX\ code example }

The frame around the examples is done by the mdframed package [DS13]. It is of course
possible to customize it:

= {{mdframed options)} (initially empty)
Add options to the predefined settings.

= {(mdframed options)}
Default: backgroundcolor=cnltxbg, linecolor=cnltx, roundcorner=5pt
Overwrite the settings with new ones.

= {(mdframed options)}
Add mdframed options to the environment where the option is used only. This is basically
\begin{mdframed}[style=cnltx, (options)].

= {{mdframed options)}
replace the default mdframed options to the environment where the option is used only. This is
basically \begin{mdframed}[{options)].

The source code is formatted using the great listings package [HM19] by Carsten HEINZ,
Brooks MosEs, and Jobst HOFFMANN. Similar options exist to adapt listings” options that
are used for formatting the source code. The predefined style has many options that will
not be mentioned here. If you’re interested you can find them in cnltx-example.sty or in
section 11.2.1 on page 47.

= (integer) Default: 2
The number of initial characters that is gobbled from each line.

= {(list of csnames)} (initially empty)
A list of control sequence names that should be recognized as a command sequence in the
source code examples and should be formatted accordingly. The control sequence names in
this list will also get an index entry when they’re used in the source example. This is done
internally via \csidx. The option should be used to add the new commands that are defined by
the package for which you are writing the manual for.

19

Introduced in
version 0.4

Introduced in
version 0.10

8. Usage of the Various Functions

= {(list of csnames)}
A list of control sequence names that should be recognized as a command sequence in the
source code examples and should be formatted accordingly. The control sequence names in this
list will not get an index entry when they’re used in the source example. There already is quite
a large but far from comprehensive list of silent commands but many are still missing. This
option allows you to extend the list on a per document basis.

= {(listings options)} (initially empty)
Additional options for the listings [HM19] environments. This redefines the cnltx listings style
which will affect all sourcecode environments!

= {(listings options)}
Overwrite existing options with new ones. This can be used to build an own style from scratch.
This redefines the cnltx listings style which will affect all sourcecode environments!

= {(listings options)}
These options are added to the listings options of the source code environments without redefing
the main style. Hence it can be used to locally add options to a source code environment. This
is basically \lstset{style=cnltx, (options)}.

= {(listings options)}
These options are added to the listings options of the source code environments without redefing
or using the main style. Hence it can be used to locally add options to a source code environment.
This is basically \Lstset{(options)}.

= {(list of environment names)} (initially empty)
Like but for environment names.

= {(list of environment names)}

Like but for environment names.

8.5. Compile Source Examples
8.5.1. The Compliation Process

When you input an example like

~
1 \begin{example}
2 \documentclass{article}
3 \begin{document}
4 foo
5 \end{document}
¢ \end{example}
g J

20

Introduced in
version 0.9

Introduced in
version 0.10

8. Usage of the Various Functions

you’ll get an error since the code is input as is and you’ll end up with \documentclass after
\begin{document}. There’s a way out, though.

CNLTX-EXAMPLE provides the possibility to compile the source code file externally and
input the compiled pDF.

1 \begin{example}[compile]
> \documentclass{article}
3 \begin{document}

4 foo

5 \end{document}

¢ \end{example}

This needs shell-escape enabled. The default compilation program is pdflatex which will
compile the file two times. The process can be customized with the following options:

= true|false Default: false
Compile the source code file. Although this option can be set globally it really shouldn’t be!
It’s best to give this option explicitly to the source code environment whose body should be
compiled. If enabled globally all examples would be compiled and most likely lead to various
errors since most examples won’t be complete BTEX documents.

= pdflatex|lualatex|xelatex|arara Default: pdflatex
The program to compile the source file.

= {{number)} Default: 2
The number of compilations.

= {(options)} (initially empty)
Command line options that can be given to the compilation program chosen with

= {(extension)} Default: pdf
The file extension of the included file of a compiled example.

= true|false Default: true
If true every output page will get a frame.

The compiled document will be input with \includegraphics, each page separately. Since
the pages of the document are most likely as large as the ones from the main document itself
they are scaled down. This is best demonstrated with an example. The following input

1 \begin{example}[compile]
2 \documentclass[a5paper]l{scrartcl}
3 \usepackage{showframe, lipsum}

21

8. Usage of the Various Functions

¢« \author{Clemens Niederberger}
s \title{A Test File}
¢ \begin{document}

7 \maketitle

8 \tableofcontents

9 \section{A Section Title}
10 \lipsum[1-10]

11 \end{document}
12 \end{example}

will lead to this output:

1 \documentclass[a5paper]{scrartcl}
> \usepackage{showframe, lipsum}

3 \author{Clemens Niederberger}

4 \title{A Test File}

s \begin{document}

6 \maketitle

7 \tableofcontents

3 \section{A Section Title}

9 \lipsum[1-10]

10 \end{document}

— 1

A Test File

Clemens

derherger

March 11, 2014

(Contents

I A Section Titke

[l A Section Title

22

Introduced in
version 0.10

8. Usage of the Various Functions

The pages get scaled according to two parameters:

= {(number)} Default: 4
The maximum number of pages in a row. The width of the pages is scaled to \linewidth/n
where n is either the number of pages p of the compiled document or (number) if p > (number).

= {(dimension)} Default: .5\textheight
The maximum height of a page.

There’s another possibility to influence the appearance of the output:
= {(options)} (initially empty)
(options) are passed to \includegraphics for every page that is input.
8.5.2. Floating Output

Since the output can become a quite large figure it might be preferable to have it as a floating
figure. This is also possible by using the option

= true|false|(float parameters) Default: false
Choose if the output should be placed in a figure of it’s own. You can also use this option to
specify the floating parameters for the float.

= {(float parameters)} Default: tbp
Set the standard floating parameters that are used if = true. The default is actually the
expansion of \fps@figure and not directly tbp.

= {(name)} Default: figure
The floating environment used when the option is used.

= {(text)} (initially empty)

(text) will be used as caption. If left blank no caption will be typeset. If you want to add a
\label you can use it in this option. Implicitly sets = true.
Please note that only has an effect if = true has been set.

23

8. Usage of the Various Functions

8.5.3. Selective Output

Sometimes it may be preferable not to include all pages of a compiled document but only specific
pages. This is possible with the following option.

= {(specifications)}
Select the included pages. (specification) is a comma-separated list of page numbers and page
ranges, e.g.,1,3,40r 1,3-5. 1,3-5 is the same as 1, 3,4, 5. If the list includes page numbers
larger than the maximum number of pages the PDF has a warnung message will be issued and
a replacement text will occur in the output where the page would have been.

The input

1 \begin{example}[compile, pages=1]

> \documentclass[a5paper]{scrartcl}
3 \usepackage{showframe, lipsum}

4 \author{Clemens Niederberger}

5 \title{A Test File}

¢ \begin{document}

7 \maketitle

8 \tableofcontents

9 \section{A Section Title}
10 \lipsum[1-10]

1 \end{document}
12 \end{example}

will lead to this output:

1 \documentclass[a5paper]{scrartcl}
> \usepackage{showframe, lipsum}

3 \author{Clemens Niederberger}

4 \title{A Test File}

s \begin{document}

¢ \maketitle

7 \tableofcontents

8 \section{A Section Title}

o \lipsum[1-10]

o \end{document}

24

8. Usage of the Various Functions

A Test File

Clemens Niederberger

March 11, 2014

Contents

1 A Section Title 1

1 A Section Title

ILorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut]
[purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis|
(Curabitur dictum gravida mauris. Nam arcu libero, nonummy|
2get, consectetuer id, vulputate a, magna. Donec vehicula au-|
lgue eu neque. Pellentesque habitant morbi tristique senec-|
[tus et netus et malesuada fames ac turpis egestas. Mauris ut|
fleo. Cras viverra metus rhoncus sem. Nulla et lectus vestibu-|
lum urna fringilla ultrices. Phasellus eu tellus sit amet tortor|
jgravida placerat. Integer sapien est, iaculis in, pretium quis,|
riverra ac, nunc. Praesent eget sem vel leo ultrices bibendum,|
IAenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar|
lat, mollis ac, nulla. Curabitur auctor semper nulla. Donec|
varius orci eget risns. Duis nibh mi, congue eu, accumsan

Together with the option this can be used to output a part of a page. The following
source

1 \begin{example}[compile,pages=1,graphics={trim={0pt 12cm Opt Opt},clip}]
> \documentclass[a5paper]{scrartcl}

3 \usepackage{showframe, lipsum}

4 \author{Clemens Niederberger}

5 \title{A Test File}

¢ \begin{document}

7 \maketitle
8 \tableofcontents
9 \section{A Section Title}

10 \lipsum[1-10]
1 \end{document}
12 \end{example}

will give this output:

25

8. Usage of the Various Functions

1 \documentclass[a5paper]l{scrartcl}
> \usepackage{showframe, lipsum}

3 \author{Clemens Niederberger}

4 \title{A Test File}

s \begin{document}

¢ \maketitle

7 \tableofcontents

8 \section{A Section Title}

o \lipsum[1l-10]

o \end{document}

-

A Test File

Clemens Niederberger

March 11, 2014

Contents

1 A Section Title 1

8.6. Example File

Let’s say you’re documenting a package called mypackage that provides the command \mycommand
and the environment myenv. The basic manual setup could then look something like this:

1 \documentclass[load-preamble] {cnltx-doc}
> \usepackage[T1]{fontenc}

3 \usepackage[utf8]{inputenc}

4 \usepackage{mypackage}

s \setcnltx{

¢ package = mypackage ,

;7 authors = John Doe ,

26

8. Usage of the Various Functions

s email = john@doe.com ,
9 add-cmds = {mycommand} ,
0o add-envs = {myenv}

11 }
12 \begin{document}

14 \end{document}

8.7. Additional Functionality Provided by cNLTX-BASE

The cNLTX-BASE package’s main purpose is to provide programming facilities. Most of its
macros are listed in section A.1. However, I like to explain some of its features in a bit more
detail.

8.7.1. Looking for Trailing Punctuation

The command \cnltx@ifpunctuation is is a conditional that detects if a punctuaction mark
follows and acts depending on it. What counts as a punctuation mark can be set by the user.

\cnltx@ifpunctuationx[{punctuation marks)1{(true)}{(false)}(trailing punctuation)
The starred version does not gobble the trailing punctuation while the unstarred does. That’s
why in the unstarred version you can also use \cnltx@trailpunct to access the gobbled
punctuation mark. The optional argument sets the punctuation marks that should be considered
for this use only.

= {(punctuation marks)} Default: ,.!7?;:
Sets the default list of punctuation marks that should be checked if the optional argument of

\cnltx@ifpunctuation is not used.

The usage is probably self-explaining:

1 \makeatletter

> \cnltx@ifpunctuation{(test\cnltx@trailpunct)}{(test)}!\par

3 \cnltx@ifpunctuation[.]{(test\cnltx@trailpunct)}{(test)}!\par

4 @ punctuation mark \cnltx@ifpunctuationx{follows}{doesn't follow}!\par
s a full stop \cnltx@ifpunctuation*[.]{follows}{doesn't follow}!

(test!)

(test)!

a punctuation mark follows!
a full stop doesn’t follow!

27

8. Usage of the Various Functions

If the non-starred variant has gobbled a \par the \par is placed back:

1 \makeatletter

2 \def\test{\cnltx@ifpunctuation{(test\cnltx@trailpunct)}{(test)}}%
3 \makeatother
4 \test
5
6

\test.

s \test{} .

(test)
(test.)
(test) .

8.7.2. Counter Representation Commands

Background

A counter representation command like \arabic{section} always is a command that calls
an associated internal command (\@arabic in the case of our example) that acts on the count
associated with the counter:

1 \def\arabic#l{\expandafter\@arabic\csname c@#l\endcsname}
: \def\@arabic#l{\number #1}

The command \arabic{(counter)} builds a command sequence \ c@(counter) from its argument
(counter). It then calls the internal command \@arabic that takes this command sequence
as an argument. The command sequence \c@(counter) is the count (in the TgX sense) that is
associated with the counter (counter), i. e, it holds the actual number. The command \@arabic
now simply typesets the integer value of the count.

The same holds for every counter representation command. The principle always is as
follows:

1 \def\foo#l{\expandafter\@foo\csname c@#l\endcsname}
> \def\@foo#1{do something with #1 (where #1 is a count)}

This means in order to get a new counter representation command you actually need to define

28

8. Usage of the Various Functions

two macros.

CNLTX-BASE defines an interface that allows to define both commands at once without
having to think about \expandafter, associated counts, internal command names and so on.
The only thing left to do is choosing a name for the counter representation and providing a
valid definition of what should happen with the (integer) value of the counter.

New Commands

\DeclareCounterRepresentation{(command)}{(definition)}
Declares a new counter representation command and its internal equivalent. In the (definition)
#1 is used to refer to the counter number, that is, the value of \c@(counter). This command will
silently overwrite any existing definition.

\newcounterrepresentation{({command)}{{definition)}
Defines a new counter representation command and its internal equivalent. In the (definition)
#1 is used to refer to the counter number, that is, the value of \c@(counter). This command will
issue an error if either the user command or the internal command (cf: \arabic and \@arabic)
already exist.

\providecounterrepresentation{(command)}{(definition)}
Provides a new counter representation command and its internal equivalent. In the (definition)
#1 is used to refer to the counter number, that is, the value of \c@(counter). This command will
define the commands only if neither the user command nor the internal command (cf. \arabic
and \@arabic) already exist and will do nothing if either of them exist.

\renewcounterrepresentation{(command)}{(definition)}
Redefines an existing counter representation command and its internal equivalent. In the
(definition) #1 is used to refer to the counter number, that is, the value of \c@(counter). This
command will issue an error if neither the user command nor the internal command (c¢f. \arabic
and \@arabic) already exist.

Let’s take a look at what is actually defined by these commands:

1 \makeatletter\ttfamily

. before:\par

3 \meaning\arabic\par

4+ \meaning\@arabic

5

6 \renewcounterrepresentation\arabic{\the\numexpr#l\relax}%
; after:\par

s \meaning\arabic\par

9 \meaning\@arabic

before:
macro:#1l->\expandafter \@arabic \csname c@#1l\endcsname

29

8. Usage of the Various Functions

macro:#1l->\number #1

after:

macro:#1->\expandafter \@arabic \csname c@#l\endcsname
macro:#1->\the \numexpr #l\relax

As you can see nothing bad happens. The commands are only a convenient interface. Let’s
take a look at some more realistic examples. The above redefinition was only a demonstration.
For example you may want to have a representation which calculates the displayed value from
the counter value?

1 \newcounterrepresentation\minusone{\the\numexpr#l-1\relax}%

> \newcounterrepresentation\multoffourrm{\romannumeral\numexpr (4x*#1)-4\relax}%
3 % \newrobustcmd is provided by the “etoolbox' package

4+ \newrobustcmd*\circlenumber[1]{%

5 \tikz[baseline]\node[anchor=base,draw, shape=circlel{\number#1l};}%
6 \newcounterrepresentation\circled{\circlenumber{#1}}%

;- \makeatletter

s \newcounterrepresentation\twodigits{\two@digits{#1}}%

s \makeatother

10 \newcounter{test}%

1 \setcounter{test}{9}

13 \minusone{test}\par

14 \multoffourrm{test}\par
15 \circled{test}\par

16 \twodigits{test}

XXX11

8.7.3. Expandable Document Commands

The commands presented in this section are highly experimental. Use them only if you really
have to!

\newexpandablecmd=*{{cs)} [{(num args)]1[{default opt)1{(definition)}
Introduced in This command has the same syntax as \newcommand. The difference is that if (cs) is defined
version 0.7 with an optional argument it is still fully expandable. This comes with a cost: in order to still
being able to check for the optional argument it needs to see a following token as argument. If
it is used without optional argument and has no mandatory arguments it may be necessary

30

8. Usage of the Various Functions

to add a trailing \empty or something. There’s another drawback: a command \test thus
defined cannot distinguish between \test[] and \test{[}] and will misinterpret the second
as a present optional argument.

My recommendation is to never use this for defining a user command.? Use it in code you can
control and only if you have to.

If you define a command without optional argument this command falls back to \newcommand.

\renewexpandablecmd*{{cs)} [(num args)][{default opt)]{{definition)}

Introduced in The equivalent of \ renewcommand. See description of \newexpandablecmd for further details.
version 0.7

\provideexpandablecmd*{{cs)} [(num args)][{default opt)1{(definition)}
Introduced in The equivalent of \providecommand. See description of \newexpandablecmd for further details.
version 0.7

8.8. Additional Functionality Provided by cNLTX-TOOLS
8.8.1. Commands for Defining Different Document Macros

The cNLTx-TOOLS package defines some additional macros which provide useful functionality
also in contexts not documenting a BIEX package.

\newname{{cs) }{(first name) (last name)}
Changed in Defines (cs) to write out the full name and add an index entry sorted by the last name. Also
version 0.12 defines a starred variant of (cs) that only writes the last name but still adds the full index entry.

\namex{(first name) (last name)}
Changed in Typesets a name according to the same specs as the names defined with \newname. Also adds
version 0.12 the name to the index. The starred version only writes the name but doesn’t add the name to the
index. Index entries either have the form (last name) or (last name), (first name) depending
on the usage of the optional argument. It’s safer to define a dedicated macro with \newname to
get consistent index entries.

\cnltxacronym{{pdf and sort string)}{{acronym)}
Typesets (acronym) with small caps and uses (pdf and sort string) as PDF string and for sorting
the index entry that is added. This command was used to define \1ppl and \ctan. This is not
intended as a replacement for packages like acro [Nie19] or glossaries [Tal19]! In fact it is a “poor
man’s” solution that allows me not to require one of those packages.

\newabbrx{{control sequence)}{(definition)}
Defines the abbreviation (control sequence) with the definition (definition). The star argument
prevents that a dot is added at the end of the definition. An error is raised if (control sequence)
already exists.

\renewabbrx{(control sequence)}{{definition)}
Redefines the abbreviation (control sequence) with the definition (definition). The star argument
prevents that a dot is added at the end of the definition. An error is raised if (control sequence)
does not exist already.

20. I can see the contradiction here: if a command is no user command there is no need for an optional argument.

31

8. Usage of the Various Functions

\defabbrx{(control sequence)}{(definition)}
Defines or overwrites the abbreviation (control sequence) with the definition (definition). The
star argument prevents that a dot is added at the end of the definition.

\cnltxtimeformat{(abbreviation)} Default: \textsc{\,#1}
Used in some predefined abbreviations.

\cnltxlatin{(abbreviation)} Default: \textit{#1}
Used in some localization strings.

= {(definition)} Default: \scshape
Formatting of the acronyms as typeset with \cnltxacronym.

= {(formatting commands)} Default: #1
The formatting of names created with \newname or typeset with \name. Names typeset through
the bibliography style cnltx are also formatted according to this option. (formatting commands)
should contain #1 for the actual name.

= {(formatting commands)} Default: \textsc{#1}
The formatting of the last names created with \newname or typeset with \name. Names typeset
through the bibliography style cnltx are also formatted according to this option. (formatting
commands) should contain #1 for the actual name.

= {(formatting commands)} Default: #1
The formatting of first names created with \newname or typeset with \name. Names typeset
through the bibliography style cnltx are also formatted according to this option. (formatting
commands) should contain #1 for the actual name.

A short example of the usage of \newname and \cnltxacronym:

1 \newname\carlisle{David Carlisle}%

> \carlisle\ is a well-known member of the \LaTeX\ community. \carlislex is
the author of many packages such as \pkgx{longtable}. Take a look in the
index where you'll find \carlislex mentioned.

[= NI NN

\lppl\ is defined as \cnltxacronym{LPPL}{lppl}.

David CARLISLE is a well-known member of the KIEX community. David CARLISLE
is the author of many packages such as longtable. Take a look in the index where you’ll
find David CARLISLE mentioned.

LPPL is defined as LPPL.

32

8. Usage of the Various Functions

8.8.2. Defining Abbreviations

In section 8.8.1 when describing \newabbr and similar commands I said “The star argument
prevents that a dot is added at the end of the definition”. W