
The cuisine package

Ben Cohen

2014/06/26, v0.7

Abstract

This package provides an environment for typesetting recipes in steps in
which each ingredient is on the left of the page next to the method step
where it is used.

1 Introduction

There appear to be two styles of typesetting recipes in general use. The more com-
mon (at least in recipe books in the U.K.) is where the ingredients appear at the
top above the method, as in the class macros/latex/contrib/other/recipe. An-
other way is to have each ingredient next to the method step in which it appears, as
in the package macros/latex/contrib/supported/cooking; the cuisine pack-
age also uses this style, but closer to the format in Practical Professional Cookery
by H. L. Cracknell and R. J. Kaufmann.

2 Usage

The package is loaded using the header \usepackage{cuisine}; the available
options are:

• number Recipes will be numbered sequentially to the left of the recipe title.
(This is the default.) The recipe steps will always be numbered.

• nonumber Recipes will not be numbered.

• index Recipe titles will be written to the index for the document.

• noindex Recipe titles will not be written to the document index. (This is
the default.)

• contents Recipe titles will be written to the contents for the document.

• nocontents Recipe titles will not be written to the document contents.
(This is the default.)

1

You will need the package nicefrac; it comes with current versions of teTEX
and is also available from CTAN as part of the package units in macros/latex/

contrib/supported/units.

Each recipe is set out in a recipe environment. The three parameters are therecipe

title, and two recipe description fields—it is assumed that they are used for the
number of servings and the preparation time, for example:

\begin{recipe}{Title} {Number of servings} {Preparation time}
...
\end{recipe}

There is no reason why the descriptive fields cannot be used for other things (such
as the number of calories).

Within the environment, you type in method details directly, and you type\ingredient

\ing the ingredients using \ingredient or the shorter version \ing before the method
step beside which you want the ingredient to appear. A new method step is
started whenever there is method text before an \ingredient. Two consecutive
\ingredient declarations will appear next to the same method step.

The \ingredient command is used as follows:

\ingredient{Quantity} {Ingredient}

There is an optional first parameter which allows you to separate the numerical
quantity from the name of the unit of measurement:

\ingredient[Numerical quantity] {Unit of measurement} {Ingredient}

Examples include:

\ingredient{a pinch}{salt}

\ingredient[4]{oz}{sugar}

There is an alternative way to specify ingredients using a single description for\Ingredient

\Ing both the quantity and the ingredient, as follows:

\Ingredient{Ingredient and quantity}

This can be used where describing awkward descriptions of units. It would also
be preferable if you simply don’t like the appearance of separating units from
ingredients as required by \ingredient. (My taste has apparently changed over
the last decade and a half!) For example:

\Ingredient{zest and juice of 2 lemons}

\Ingredient{Worcestershire sauce, to taste}

2

Within the recipe you can use \fr to typeset fractions using \fr12 to get 1/2,\fr

or \fr{11}{12} to typeset 11/12. If the numerator or denominator of the fraction
is more than one digit long then you will need to enclose it in braces (otherwise
they are optional).

A degree symbol can be obtained using \degrees or the shorter form \0; for\degrees

\0

\X

\%

example 120\0 gives 120◦. A times symbol, × , can be obtained using \X. As is
usual with LATEX, to obtain a percent sign, %, you must use \% since % on its own
starts a comment.

3 More advanced usage

The cuisine package has been designed so that it is easy to vary the widths
of the columns. LATEX has very wide margins by default so the text width is
very narrow which may be unsuitable for typesetting recipes using this pack-
age. (It might be worth looking at the KOMA-Script classes in macros/latex/

contrib/supported/koma-script/ as an alternative to the standard LATEX
classes.)

The \RecipeWidths command is designed to be used in conjunction with the\RecipeWidths

LATEX commands for changing the page layout. It is used as follows:

\RecipeWidths{Total recipe width} {Number of servings width} {Step
number width} {Ingredient width} {Quantity width} {Units width}

The \ResetRecipeCounter command will reset the recipe counter so that sub-\ResetRecipeCounter

sequent recipes are numbered from 1.

Within the recipe environment, to force a new step if you do not want to\newstep

declare any ingredients, use the \newstep command. (A \newstep command
with no preceding ingredient or method text will be ignored to prevent completely
empty steps from appearing.)

\newpage ends the current step (as for \newstep) but also tells the environment\newpage

that the next step will appear on the next page. It is not normally necessary
to use this command since page breaking after each method step will be done
automatically by LATEX as necessary. Page breaks can only occur between method
steps; method steps will not be split across pages. (Consequently, it may be
advisable to keep method steps fairly short.)

To typeset text across the whole width of the recipe instead of just the width\freeform

of the method, use the \freeform command. This is equivalent to \noalign in
tables. Freeform text is not given a step number.

The recipe environment has an optional first parameter with which you can
assign a label to a recipe.

\begin{recipe}[Label]{Title} {Servings} {Preparation time}
...
\end{recipe}

3

\pageref and \ref then refer to the recipe page number and recipe number
respectively of the recipe with that label. For example, the label in the recipe below
will make \ref{Zabaglione} give recipe number 1. (Note that you cannot use
\label for this purpose within the environment because it breaks the formatting.)

4 Fonts

The fonts used in the different parts of a recipe can be altered by changing
the definition of the following macros; this should be done using, for example,
\renewcommand*{\recipetitlefont}{\sffamily}.

\recipefont The default font used for the fonts below
\recipetitlefont The font for the recipe title
\recipeservingsfont The font for the number of servings
\recipetimefont The font for the preparation time
\recipenumberfont The font for the recipe number
\recipestepnumberfont The font for each step number
\recipequantityfont The font for the numerical quantity
\recipeunitfont The font for the unit of measurement

(or descriptive quantity)
\recipeingredientfont The font for the ingredient
\recipemethodfont The font for the method details
\recipefreeformfont The font for freeform descriptions

5 Examples

5.1 A simple example

There is only whitespace between the first three ingredients, so they are used for
the first step with the method text which follows. (Had there been text before the
first ingredient, that text would become the first step and the heating instruction
would be the second step.) The fourth \ingredient signals the end of the method
text and starts a new step. The final \end{recipe} finishes that step.

\begin{recipe}{Yorkshire Pudding}{4 portions}{1\fr12 hours}

\ingredient[\fr12]{pt}{milk}

\ingredient[2]{oz}{butter}

\ingredient[5]{oz}{self-raising flour}

Heat the milk and butter until nearly boiling. Add flour and allow to

seeth over.

\ingredient[3]{}{eggs}

\ingredient{to taste}{salt and pepper}

Add the remaining eggs and whisk again. Cook at 220\0C for about 1 hour.

\end{recipe}

4

Yorkshire Pudding 4 portions

11/2 hours

1 1/2 pt milk
2 oz butter
5 oz self-raising flour

Heat the milk and butter until
nearly boiling. Add flour and al-
low to seeth over.

2 3 eggs
to taste salt and pepper

Add the remaining eggs and
whisk again. Cook at 220◦C for
about 1 hour.

The recipe below is the same but using the single-argument \Ingredient com-
mand. As you can see, the alignment is different from that of \ingredient and
mixing them probably won’t produce a pleasing output. If you are using only
\Ingredient then the ingredients column can probably be made narrower (re-
member that this is still the sum of the quantity, unit and ingredient widths).

Yorkshire Pudding 4 portions

11/2 hours

1 1/2 pt milk
2 oz butter
5 oz self-raising flour

Heat the milk and butter until
nearly boiling. Add flour and al-
low to seeth over.

2 3 eggs
salt and pepper, to taste

Add the remaining eggs and
whisk again. Cook at 220◦C for
about 1 hour.

5.2 A more complex example

We can change the widths of the columns using, for example,

\RecipeWidths{.75\textwidth}{3cm}{0.5cm}{1.75cm}{.75cm}{.75cm}

and the small environment to produce a different layout. We can also change the
fonts, for example:

\renewcommand*{\recipetitlefont}{\large\bfseries\sffamily}

\renewcommand*{\recipenumberfont}{\large\bfseries\sffamily}

\renewcommand*{\recipequantityfont}{\sffamily\bfseries}

\renewcommand*{\recipeunitfont}{\sffamily}

\renewcommand*{\recipeingredientfont}{\sffamily}

\renewcommand*{\recipefreeformfont}{\itshape}

The example below demostrates the \newstep and \newpage commands, and
also how to use \freeform to create freeform text. \freeform can also be used

5

to create rules in the same way as when using \noalign in tables. In this case,
recipe numbering has been turned on, and the small environment is being used.
Note the label declaration “Zabaglione”.

\begin{recipe}[Zabaglione]{Zabaglione alla Marsala}{4 Portions}{\fr12 hour}

\freeform This is a well-known Italian recipe which is

great for piling on the calories.

\ingredient[6]{}{egg yolks}

\ingredient[2]{oz}{granulated sugar}

\ingredient[6--8]{tbsp}{Marsala (or sherry)}

\ingredient[\fr14]{oz}{gelatine}

\ingredient[2]{tbsp}{cold water}

In the top of a double boiler, combine the egg yolks with sugar and

Marsala, and whip the mixture over hot, but not boiling, water until it

thickens. Stir in gelatine, softened in cold water and dissolved over hot

water.

\ingredient[3]{tbsp}{brandy}

\ingredient[\fr38]{pt}{double cream}

Put the pan in a bowl of ice and stir the

zabaglione well until it is thick and free of bubbles. When it is almost

cold, fold in brandy and whipped cream and pour into individual moulds.

\freeform\rule{\textwidth}{0.05pt}\newpage

\freeform\rule{\textwidth}{0.05pt}

\ingredient[3]{}{egg yolks}

\ingredient[1]{oz}{granulated sugar}

\ingredient[3--4]{tbsp}{Marsala (or sherry)}

\ingredient[1\fr12]{tbsp}{brandy}

To make the sauce, combine egg yolks and sugar in the top of a double

saucepan. Whisk mixture over hot, but not boiling, water until the

sauce coats

the back of a spoon. Stir in the Marsala and brandy.

\newstep

Chill the zabaglione, unmould it, and serve with the sauce immediately.

\freeform\hrulefill

\end{recipe}

1 Zabaglione alla Marsala 4 Portions

1/2 hour

This is a well-known Italian recipe which is great for piling on the
calories.

1 6 egg yolks
2 oz granulated

sugar
6–8 tbsp Marsala (or

sherry)
1/4 oz gelatine
2 tbsp cold water

In the top of a double boiler, com-
bine the egg yolks with sugar and
Marsala, and whip the mixture over
hot, but not boiling, water until it
thickens. Stir in gelatine, softened
in cold water and dissolved over hot
water.

6

2 3 tbsp brandy
3/8 pt double

cream

Put the pan in a bowl of ice and
stir the zabaglione well until it is
thick and free of bubbles. When it
is almost cold, fold in brandy and
whipped cream and pour into indi-
vidual moulds.

7

3 3 egg yolks
1 oz granulated

sugar
3–4 tbsp Marsala (or

sherry)
11/2 tbsp brandy

To make the sauce, combine egg
yolks and sugar in the top of a dou-
ble saucepan. Whisk mixture over
hot, but not boiling, water until the
sauce coats the back of a spoon. Stir
in the Marsala and brandy.

4 Chill the zabaglione, unmould it,
and serve with the sauce immedi-
ately.

6 Bugs, Issues, Features, . . .

• Method steps can’t be split across pages. This means you can get lots
of empty white space at the bottom of pages, especially if you have long
methods.

• There may be alignment problems if the recipe fonts differ much in height.

• Formatting doesn’t work very well when the ingredient quantity is too wide
for its box.

• There is no support for dual sets of quantities, for example where two systems
of measurement are used or for different numbers of servings. You can write
\ingredient{<4 oz>/<100 g>}{butter}, or use \Ingredient but I don’t
think implementing commands such as \ingredient[1]{oz}[25]{g}{butter}
would be worthwhile.

Please e-mail me at ben c@tiscali.co.uk if you can help find or solve any prob-
lems with this package.

7 Change History

v0.5 Written—release on CTAN.

v0.6 Fixed a couple of vertical alignment problems. Labelling of recipes for \ref. \X

(times) macro. Added different index and contents options, and corrected a bug
that sometimes gave the wrong page number. If recipe’s #4 is empty, don’t leave
a blank line. The step number width can be changed but the recipe number width
varies.

v0.7 Added the \Ingredient command for single-argument ingredients.

8

8 Identification section and initialisation

The package declaration follows the standard form.

1 \NeedsTeXFormat{LaTeX2e}

2 \ProvidesPackage{cuisine}[2014/06/26 v0.7 recipe typesetting]

We use the nicefrac package for “nice” fractions.

3 \RequirePackage{nicefrac}

9 Counters, booleans and lengths

r@cipenumber is the recipe number counter. This could be made dependent on,
say, the section number.

4 \newcounter{r@cipenumber}

\ResetRecipeCounter The \ResetRecipeCounter macro resets the recipe number counter to 0.

5 \DeclareRobustCommand{\ResetRecipeCounter}{%

6 \setcounter{r@cipenumber}{0}%

7 }

st@pnumber is the step counter within recipes. It is zeroed whenever the recipe
counter is incremented.

8 \newcounter{st@pnumber}[r@cipenumber]

ingr@dnumber is the ingredient counter within recipes and steps. It is zeroed
whenever the step counter is incremented.

9 \newcounter{ingr@dnumber}[st@pnumber]

ifnumb@ring determines whether or not recipe numbers are printed. (Step num-
bers will always be printed.)

10 \newif\ifnumb@ring

ifc@ntentsing determines whether we are writing the recipes to an contents file
or not.

11 \newif\ifc@ntentsing

ifind@xing determines whether we are writing the recipes to an index file or not.

12 \newif\ifind@xing

iffr@eforming determines whether or not we are in freeform mode.

13 \newif\iffr@eforming

ifn@wpaging determines whether or not the next step will be on a new page.

14 \newif\ifn@wpaging

\R@cipeWidth is the total width of the recipe.

15 \newlength{\R@cipeWidth}

9

The following are, respectively, the widths of the recipe number box, the recipe
title box, the recipe number-of-servings box, and the total of the recipe title and
number-of-servings boxes.

16 \newlength{\R@cipeNumberWidth}

17 \newlength{\R@cipeTitleWidth}

18 \newlength{\R@cipeServingsWidth}

19 \newlength{\R@cipeTandSWidth}

This is the distance ingredient (etc.) paragraphs are outdented.

20 \newlength{\R@cipeOutdent}

These are the horizontal spaces between the quantity and units, and between the
unit and the ingredient.

21 \newlength{\R@cipeIngQUSpace}

22 \newlength{\R@cipeIngUISpace}

These are the vertical distances for the recipe title-to-rule adjustments (usually
negative).

23 \newlength{\R@cipeTitleVerticalAdjustTop}

24 \newlength{\R@cipeTitleVerticalAdjustBot}

These are the widths of the ingredient descriptors and combinations of them.

25 \newlength{\R@cipeIngredientWidth}

26 \newlength{\R@cipeQuantityWidth}

27 \newlength{\R@cipeUnitsWidth}

28 \newlength{\R@cipeQandUWidth}

29 \newlength{\R@cipeIandUWidth}

30 \newlength{\R@cipeIQUWidth}

31 \newlength{\R@cipeSingleIngWidth}

\R@cipeMethodWidth is the width of the method text.

32 \newlength{\R@cipeMethodWidth}

\St@pNumberWidth is the width of the step number and \R@cipeStepWidth is the
width of everything within a step.

33 \newlength{\St@pNumberWidth}

34 \newlength{\R@cipeStepWidth}

The following macros are to set the lengths defined above.

\R@cipeMethodWidths \R@cipeMethodWidths is to set the widths of the boxes/columns used in the recipe
steps. There are four parameters: #1 is the step number width, #2 is the ingredient
width, #3 the quantity width, #4 the units width. The other lengths below are
deduced from these and \R@cipeMethodWidth. The 0.5cm values are to leave a
little space between the columns.

35 \DeclareRobustCommand*{\R@cipeMethodWidths}[4]{%

36 \setlength{\St@pNumberWidth}{#1}%

37 \setlength{\R@cipeIngredientWidth}{#2}%

38 \setlength{\R@cipeQuantityWidth}{#3}%

39 \setlength{\R@cipeUnitsWidth}{#4}%

40 \setlength{\R@cipeQandUWidth}{\R@cipeQuantityWidth}%

10

41 \addtolength{\R@cipeQandUWidth}{\R@cipeUnitsWidth}%

42 \setlength{\R@cipeIQUWidth}{\R@cipeQandUWidth}%

43 \addtolength{\R@cipeIQUWidth}{\R@cipeIngredientWidth}%

44 \addtolength{\R@cipeIQUWidth}{0.5cm}%

45 \setlength{\R@cipeIandUWidth}{\R@cipeIQUWidth}%

46 \addtolength{\R@cipeIandUWidth}{-\R@cipeQuantityWidth}%

47 \setlength{\R@cipeStepWidth}{\R@cipeWidth}%

48 \addtolength{\R@cipeStepWidth}{-\St@pNumberWidth}%

49 \setlength{\R@cipeMethodWidth}{\R@cipeStepWidth}%

50 \addtolength{\R@cipeMethodWidth}{-\R@cipeIngredientWidth}%

51 \addtolength{\R@cipeMethodWidth}{-\R@cipeQandUWidth}%

52 \addtolength{\R@cipeMethodWidth}{-0.5cm}%

53 \setlength{\R@cipeSingleIngWidth}{\R@cipeIQUWidth}%

Allow for the ingredient paragraph outdenting.

54 \addtolength{\R@cipeIngredientWidth}{-\R@cipeOutdent}

55 \addtolength{\R@cipeUnitsWidth}{-\R@cipeOutdent}

56 \addtolength{\R@cipeQandUWidth}{-\R@cipeOutdent}

57 \addtolength{\R@cipeSingleIngWidth}{-\R@cipeOutdent}

58 \addtolength{\R@cipeSingleIngWidth}{-\R@cipeIngQUSpace}

59 \addtolength{\R@cipeSingleIngWidth}{-\R@cipeIngUISpace}

60 }%

\R@cipeTitleWidths \R@cipeTitleWidths is to set the widths of the boxes/columns used in the recipe
title. There are two parameters: #1 is the number of servings width. The title
width is deduced from that.

61 \DeclareRobustCommand*{\R@cipeTitleWidths}[1]{%

62 \setlength{\R@cipeServingsWidth}{#1}%

63 \setlength{\R@cipeTitleWidth}{\R@cipeWidth}%

64 \addtolength{\R@cipeTitleWidth}{-\R@cipeServingsWidth}%

65 \setlength{\R@cipeTandSWidth}{\R@cipeServingsWidth}%

66 \addtolength{\R@cipeTandSWidth}{\R@cipeTitleWidth}%

67 }

\RecipeWidths \RecipeWidths combines the above macros in a useable form. There are six
parameters: #1 is the recipe width, #2 the number of servings width, #3 the step
number width, #4 the ingredient width, #5 the quantity width, #6 the units width.

68 \DeclareRobustCommand*{\RecipeWidths}[6]{%

69 \setlength{\R@cipeWidth}{#1}%

70 \R@cipeTitleWidths{#2}%

71 \R@cipeMethodWidths{#3}{#4}{#5}{#6}%

72 }%

Now we set up the default values. These appear to be reasonable for the LaTeX
default page layout (A4, portrait, one column, etc.) I don’t think the LaTeX
default width is good for a recipe book though!

73 \setlength{\R@cipeOutdent}{0.3cm}%

74 \setlength{\R@cipeIngQUSpace}{0.1cm}%

75 \setlength{\R@cipeIngUISpace}{0.2cm}%

11

76 \setlength{\R@cipeTitleVerticalAdjustTop}{-0.25cm}

77 \setlength{\R@cipeTitleVerticalAdjustBot}{-0.25cm}

78 \RecipeWidths{\textwidth}{3cm}{0.8cm}{3.5cm}{1cm}{1.7cm}

10 Fonts

This is where the default fonts are set up. \recipefont is the default font for
the other recipe fonts; thus the other fonts inherit from this but can be altered
individually.

79 \newcommand*\recipefont{\normalfont}

80 \newcommand*\recipetitlefont{\recipefont}

81 \newcommand*\recipenumberfont{\recipefont}

82 \newcommand*\recipestepnumberfont{\recipefont}

83 \newcommand*\recipequantityfont{\recipefont}

84 \newcommand*\recipeunitfont{\recipefont}

85 \newcommand*\recipeingredientfont{\recipefont}

86 \newcommand*\recipemethodfont{\recipefont}

87 \newcommand*\recipeservingsfont{\recipefont}

88 \newcommand*\recipetimefont{\recipefont}

89 \newcommand*\recipefreeformfont{\recipefont}

11 Boxes

\st@pingrbox is to hold the ingredients cumulatively as each \ingredient com-
mand is processed; \st@pingrtmpbox and \titl@tmpbox are used as temporary
transfer boxes.

90 \newsavebox{\st@pingrbox}

91 \newsavebox{\st@pingrtmpbox}

92 \newsavebox{\titl@tmpbox}

This is used to hold a single ingredient as it is being processed:

93 \newsavebox{\st@pIQUbox}

This is to hold the method (or freeform) text for the step:

94 \newsavebox{\st@pmethodbox}

12 Options

nonumber — Should recipes be numbered? (The default is yes.)

95 \DeclareOption{number}{\numb@ringtrue}

96 \DeclareOption{nonumber}{\numb@ringfalse}

contents — Should recipes be indexed to a file? (The default is no.)

97 \DeclareOption{contents}{\c@ntentsingtrue}

98 \DeclareOption{nocontents}{\c@ntentsingfalse}

12

index — Should recipes be indexed to a file? (The default is no.)

99 \DeclareOption{index}{\ind@xingtrue}

100 \DeclareOption{noindex}{\ind@xingfalse}

Process the options, using the defaults if necessary.

101 \ExecuteOptions{number,noindex,nocontents}

102 \ProcessOptions\relax

13 The main macros

13.1 Macros for displaying the steps and title

\Displ@ySt@p \Displ@ySt@p displays the ingredients and method for the current step and resets
things ready for the next step.

103 \DeclareRobustCommand{\Displ@ySt@p}{%

First, increment the step counter and put extra vertical space between steps. (But
it isn’t uniform yet, unfortunately.)

104 \stepcounter{st@pnumber}%

Display this step.

105 \makebox[\R@cipeWidth]{%

106 \makebox[\St@pNumberWidth][l]{\recipestepnumberfont\arabic{st@pnumber}}%

107 \usebox{\st@pingrbox}%

108 \usebox{\st@pmethodbox}%

109 }%

Finally, clear the step storage boxes for the next step.

110 \savebox{\st@pingrbox}[\R@cipeIQUWidth]{}

111 }%

\Fr@eFormStep \Fr@eFormStep displays a free form description; it works in the same way as
\Displ@ySt@p.

112 \DeclareRobustCommand{\Fr@eFormStep}{%

113 \usebox{\st@pmethodbox}%

114 \savebox{\st@pmethodbox}[\R@cipeMethodWidth]{}%

115 }%

\DisplaySt@p This calls one of the two display routines above, depending on whether we are
freeforming or not.

116 \DeclareRobustCommand{\DisplaySt@p}{%

117 \iffr@eforming%

118 \Fr@eFormStep%

119 \else%

120 \Displ@ySt@p%

121 \fi%

122 \ifn@wpaging%

123 \recipen@wpage%

124 \else%

13

125 \vskip0.2cm%

126 \fi%

127 \n@wpagingfalse%

128 }%

\r@cipetitle \r@cipetitle displays the recipe title construction, given the parameters #1 the
title, #2 the number of servings and #3 the preparation time.

129 \DeclareRobustCommand{\r@cipetitle}[3]{%

The \parskip ensures that the distance between the rule and the text above and
below does not change when the page’s vertical glue “sets”. The following displays
the text line above the rule; the recipe number width is automatically determined
here.

130 \mbox{%

131 \makebox[\R@cipeWidth][t]{%

132 \parbox[t]{\R@cipeWidth}{%

133 \ifnumb@ring%

134 \savebox{\titl@tmpbox}{%

135 {\recipenumberfont\arabic{r@cipenumber}\ \ }%

136 }%

137 \setlength{\R@cipeNumberWidth}{\wd\titl@tmpbox}%

138 \addtolength{\R@cipeTitleWidth}{-\R@cipeNumberWidth}%

139 \addtolength{\R@cipeTandSWidth}{-\R@cipeNumberWidth}%

140 \lineskip0pt\mbox{}\\[-\baselineskip]%

141 \parbox[b]{\R@cipeNumberWidth}{%

142 \rule{0pt}{\baselineskip}%

143 \strut\usebox{\titl@tmpbox}%

144 \strut%

145 }%

146 \makebox[\R@cipeTandSWidth][t]{%

147 \parbox[t]{\R@cipeTandSWidth}{%

148 \lineskip0pt\mbox{}\\[-\baselineskip]%

149 \parbox[b]{\R@cipeTitleWidth}{%

150 \rule{0pt}{\baselineskip}%

151 \strut{\recipetitlefont #1}\strut\hfill}%

152 \parbox[b]{\R@cipeServingsWidth}{%

153 \strut{\hfill\recipeservingsfont #2}\strut}%

154 }%

155 }%

156 \addtolength{\R@cipeTandSWidth}{\R@cipeNumberWidth}%

157 \addtolength{\R@cipeTitleWidth}{\R@cipeNumberWidth}%

158 \else%

159 \lineskip0pt\mbox{}\\[-\baselineskip]%

160 \parbox[b]{\R@cipeTitleWidth}{%

161 \rule{0pt}{\baselineskip}%

162 \strut{\recipetitlefont #1}\strut\hfill}%

163 \parbox[b]{\R@cipeServingsWidth}{%

164 \strut{\hfill\recipeservingsfont #2}\strut}%

165 \fi%

14

166 }%

167 }%

168 }\par%

Next we display the rule, being careful not to allow page breaks during the title,
using the adjustments as specified above. (This is a bit vague and nasty...)

169 %% \nopagebreak

170 %% \vspace{\R@cipeTitleVerticalAdjustTop}%

171 \nopagebreak

172 \rule[-\R@cipeTitleVerticalAdjustTop]{\R@cipeWidth}{0.4pt}\par%

173 \nopagebreak

174 \vskip\R@cipeTitleVerticalAdjustBot%

175 %% \vspace{\R@cipeTitleVerticalAdjustBot}%

176 \nopagebreak

Finally we display the text line below the rule if it isn’t empty:

177 \ifx\relax#3\relax%

178 \else

179 \makebox[\R@cipeWidth][r]{\recipetimefont #3}\par%

180 \fi

181 \nopagebreak

182 }%

13.2 Macros for the method box

These macros are to input the method box \st@pmethodbox, and are hence called
at the start and end of the method box, or equivalently the end and start of the
ingredient (etc.) macros.

\r@cipesloppy This is a version of which doesn’t cause problems with the definition! (The LATEX
definition has a problem where the empty box detection in \pr@ingred fails.)

183 \def\r@cipesloppy{%

184 \tolerance 9999%

185 \emergencystretch 3em%

186 \hfuzz.5pt%

187 \vfuzz.5pt%

This is not in \sloppy: avoid warning on underfull boxes, which are more common
since the columns are very narrow. This value may need to be adjusted...

188 \hbadness 1500%

189 }%

\pr@ingred This macro is called at the start of ingredients (that is, the end of the method box).
It first ends the minipage–box which was started in the previous \p@stingred.

190 \DeclareRobustCommand{\pr@ingred}{%

191 \endminipage\end{lrbox}%

Here we compare the width of the \st@pmethodbox with zero to determine whether
anything was entered into it. (The idea for determining whether box is empty was
from Donald Arseneau, comp.text.tex.)

15

192 \ifdim\wd\st@pmethodbox=0in%

193 % \PackageWarning{cuisine}{No text}% % use for testing

194 \else%

195 % \PackageWarning{cuisine}{Method text}%

196 \DisplaySt@p%

197 \fi%

198 }%

\p@stingred And this macro is called at the end of ingredients (the start of the method box).
This is very odd. Using \begin{lrbox}...\end{lrbox} isn’t supposed to work
properly over an environment definition (and doesn’t seem to, either). So we use
\lrbox...\endlrbox. But we want to nest a \minipage inside this, which fails.
But it does work with \begin{lrbox}\minipage...\endminipage\end{lrbox}.

WHY?!
What happens, anyway, is that a new minipage–box is started. Provided the user
doesn’t put anything other than whitespace and comments between this and the
next \pr@ingred then the box will be empty. This is how \p@stingred knows
whether to display the step or not when called by \ingr@dient.

199 \DeclareRobustCommand{\p@stingred}{%

200 \fr@eformingfalse%

201 \begin{lrbox}{\st@pmethodbox}\minipage[t]{\R@cipeMethodWidth}%

202 \recipemethodfont%

203 \noindent%

204 \ignorespaces%

205 \r@cipesloppy%

206 }%

13.3 Step terminating macros

These macros call \pr@ingred and \p@stingred, and can (through \pr@ingred)
cause the next step to be started.

\m@thodend The \m@thodend command (which is \newstep in the environment) forces a new
step unless there is no method and no ingredient.

207 \DeclareRobustCommand{\m@thodend}{%

208 \endminipage\end{lrbox}%

209 \ifdim\wd\st@pmethodbox=0in%

210 \ifnum\value{ingr@dnumber}>0%

In this case, the method box is empty so we put something in it to avoid problems
with alignment.

211 \savebox{\st@pmethodbox}[\R@cipeMethodWidth]{\mbox{}}%

212 \DisplaySt@p%

213 \fi%

214 \else%

215 \DisplaySt@p%

216 \fi%

217 \p@stingred%

218 }%

16

\r@cipen@wpage \r@cipen@wpage is a macro which sets \n@wpagingtrue—so that the next step
will appear on the next page—and then forces the next step.

219 \DeclareRobustCommand\r@cipen@wpage{\global\n@wpagingtrue\m@thodend}

\fr@eform \fr@eform is for freeform text, like \noalign in tables. Again, as for \m@thodend,
we want to force the new step unless there is no method and no ingredient.

220 \DeclareRobustCommand{\fr@eform}{%

221 \endminipage\end{lrbox}%

222 \ifdim\wd\st@pmethodbox=0in%

223 \ifnum\value{ingr@dnumber}>0%

224 \savebox{\st@pmethodbox}[\R@cipeMethodWidth]{\mbox{}}%

225 \DisplaySt@p%

226 \fi%

227 \else%

228 \DisplaySt@p%

229 \fi%

The rest is like \p@stingred:

230 \fr@eformingtrue%

231 \begin{lrbox}{\st@pmethodbox}\minipage[t]{\R@cipeWidth}%

232 \recipefreeformfont%

233 \noindent%

234 \ignorespaces%

235 \r@cipesloppy%

236 }%

\ingr@dient The \ingr@dient command takes 3 parameters, one optional. #3 is the ingredient.
If #1 is non-blank then #1 is the numerical quantity and #2 the unit of measure,
otherwise #2 is the quantity. Start by ending the method box.

237 \DeclareRobustCommand{\ingr@dient}[3][]{%

238 \pr@ingred%

The following is the main bit to typeset the ingredients list. (Thanks to Ulrike
Fischer, comp.text.tex, for help with aligning box baselines.)
This is a hack to see if #1 is empty (Patrick Guio, comp.text.tex).

239 \ifx\relax#1\relax%

If it is empty we typeset #2 in the whole QandU width. We align the top of the
ingredient box with the bottom of the quantity box but have the baseline as the
top line of the quantity box. Use ragged right because the column is too narrow
for flush right.

240 \savebox{\st@pIQUbox}[\R@cipeIQUWidth][t]{%

241 \parbox[t]{\R@cipeIQUWidth}{%

242 \lineskip0pt\mbox{}\\[-\baselineskip]%

243 \rule{\R@cipeOutdent}{0cm}%

244 \parbox[b]{\R@cipeQandUWidth}{%

245 \raggedright\recipeunitfont%

246 \setlength{\parindent}{-\R@cipeOutdent}%

17

This sees whether the text is large enough to fit on one line, in which case it
centres it; otherwise it formats it sensibly.
Note: the \hfill matches another one elsewhere to centre the line.

247 \savebox{\st@pingrtmpbox}{#2}%

248 \ifdim\wd\st@pingrtmpbox>\R@cipeQandUWidth%

249 \rule{0pt}{\baselineskip}%

250 \strut #2\strut%

251 \else%

252 \noindent%

253 \rule{0pt}{\baselineskip}%

254 \strut #2\hfill\strut%

255 \fi%

256 }%

257 \rule{\R@cipeIngUISpace}{0cm}%

258 \rule{\R@cipeOutdent}{0cm}%

259 \parbox[t]{\R@cipeIngredientWidth}{\raggedright%

260 \recipeingredientfont%

261 \setlength{\parindent}{-\R@cipeOutdent}%

262 \strut #3\strut}%

263 }%

264 }%

265 \else

If #1 was not empty, typeset #1 and #2 separately. First align the top of the
ingredient box with the bottom of the unit box but have the baseline as the top
line of the unit box; then repeat with that box below the quantity box.

266 \savebox{\st@pingrtmpbox}[\R@cipeIandUWidth][t]{%

267 \parbox[t]{\R@cipeIandUWidth}{%

268 \lineskip0pt\mbox{}\\[-\baselineskip]%

269 \rule{\R@cipeOutdent}{0cm}%

270 \parbox[b]{\R@cipeUnitsWidth}{%

271 \raggedright\recipeunitfont%

272 \setlength{\parindent}{-\R@cipeOutdent}%

273 \rule{0pt}{\baselineskip}%

274 \strut #2\strut\hfill}%

275 \rule{\R@cipeIngUISpace}{0cm}%

276 \rule{\R@cipeOutdent}{0cm}%

277 \parbox[t]{\R@cipeIngredientWidth}{%

278 \raggedright\recipeingredientfont%

279 \setlength{\parindent}{-\R@cipeOutdent}%

280 \strut #3\strut}%

281 }%

282 }%

283 \savebox{\st@pIQUbox}[\R@cipeIQUWidth][t]{%

284 \parbox[t]{\R@cipeIQUWidth}{%

285 \lineskip0pt\mbox{}\\[-\baselineskip]%

286 \parbox[b]{\R@cipeQuantityWidth}{\rule{0pt}{\baselineskip}%

287 \hfill %

288 \raggedright\recipequantityfont%

289 \strut #1\strut%

18

290 \rule{\R@cipeIngQUSpace}{0cm}}%

291 \usebox{\st@pingrtmpbox}%

292 }%

293 }%

294 \fi%

Use \st@pingrtmpbox as a temporary holding box. The \lineskip0pt and the
\struts ensure that the ingredients’ and the method text’s baselines are aligned
correctly.

295 \savebox{\st@pingrtmpbox}[\R@cipeIQUWidth][t]{\usebox{\st@pingrbox}}%

296 \savebox{\st@pingrbox}[\R@cipeIQUWidth][t]{%

297 \begin{minipage}[t]{\R@cipeIQUWidth}%

298 \lineskip0pt%

299 \ifnum\value{ingr@dnumber}>0%

300 \usebox{\st@pingrtmpbox}\par%

301 \usebox{\st@pIQUbox}\strut%

302 \else%

303 \usebox{\st@pIQUbox}\strut%

304 \fi%

305 \end{minipage}%

306 }%

307 % \usebox{\st@pingrbox} % For testing: show cumulative boxes.

308 \stepcounter{ingr@dnumber}%

309 \p@stingred%

310 }%

\Ingr@dient The \Ingr@dient command takes just one parameter. It fits in the same final
box as \ingr@dient but is much simpler. Start by ending the method box.

311 \DeclareRobustCommand{\Ingr@dient}[1]{%

312 \pr@ingred%

We typeset #1 in the single ingredient width, which is the IQU width minus the
outdent. Use ragged right because the column is too narrow for flush right.

313 \savebox{\st@pIQUbox}[\R@cipeSingleIngWidth][t]{%

314 \parbox[t]{\R@cipeSingleIngWidth}{%

315 \lineskip0pt\mbox{}\\[-\baselineskip]%

316 \rule{\R@cipeOutdent}{0cm}%

317 \parbox[t]{\R@cipeSingleIngWidth}{\raggedright%

318 \recipeingredientfont%

319 \setlength{\parindent}{-\R@cipeOutdent}%

320 \strut #1\strut}%

321 }%

322 }%

Use \st@pingrtmpbox as a temporary holding box. The \lineskip0pt and the
\struts ensure that the ingredients’ and the method text’s baselines are aligned
correctly.

323 \savebox{\st@pingrtmpbox}[\R@cipeIQUWidth][t]{\usebox{\st@pingrbox}}%

324 \savebox{\st@pingrbox}[\R@cipeIQUWidth][t]{%

325 \begin{minipage}[t]{\R@cipeIQUWidth}%

19

326 \lineskip0pt%

327 \ifnum\value{ingr@dnumber}>0%

328 \usebox{\st@pingrtmpbox}\par%

329 \usebox{\st@pIQUbox}\strut%

330 \else%

331 \usebox{\st@pIQUbox}\strut%

332 \fi%

333 \end{minipage}%

334 }%

335 % \usebox{\st@pingrbox} % For testing: show cumulative boxes.

336 \stepcounter{ingr@dnumber}%

337 \p@stingred%

338 }%

14 The recipe environment

recipe This is the main environment in the package. Its 3 parameters are #2 is the recipe
title, #3 is the number of portions, and #3 the preparation time. Of course, #3 and
#4 can be whatever you like but that is one way of using them. #1 is the label.

339 \newenvironment{recipe}[4][]{%

These are the things that are put at the start of the recipe environment. First,
set things up. Increment the recipe counter (which can be used in \label), make
command aliases and empty the boxes. Note that \label is set through #1, not
\label.

340 \refstepcounter{r@cipenumber}

341 \ifx\relax#1\relax

342 \else

343 \label{#1}

344 \fi

345 \let\label\relax

346 \let\newstep\m@thodend

347 \let\recipen@wpage\newpage

348 \let\newpage\r@cipen@wpage

349 \let\0\d@grees

350 \let\X\tim@s

351 \let\degrees\d@grees

352 \let\fr\fr@ction

353 \let\ing\ingr@dient

354 \let\ingredient\ingr@dient

355 \let\Ing\Ingr@dient

356 \let\Ingredient\Ingr@dient

357 \let\freeform\fr@eform

358 \n@wpagingfalse%

359 \setlength{\parindent}{0pt}

360 \savebox{\st@pingrbox}[\R@cipeIQUWidth]{}

361 \savebox{\st@pmethodbox}[\R@cipeMethodWidth]{}

20

Make sure that the recipe is spaced appropriately from the preceding text and
start a new page if necessary. This is not part of \r@cipetitle because putting
the break after \addcontentsline might yield the wrong page number. The blank
line below is intentional.

362

363 \bigskip\medskip

364 \pagebreak[0]

365 \parskip0pt%

Next deal with the contents/index entry if we need to. Again, the \nopagebreak

prevents the contents line occurring on the previous page.

366 \ifc@ntentsing%

367 \addcontentsline{toc}{subsection}{#2}%

368 \fi%

369 \ifind@xing%

370 \index{#2 (\arabic{r@cipenumber})}%

371 \fi%

372 \nopagebreak%

Display the title and start the method box.

373 \r@cipetitle{#2}{#3}{#4}

374 \vskip0.2cm%

375 \p@stingred%

376 }%

377 {%

These are the things put at the end of recipes. End the method box and deal with
the last step. Give a warning if the recipe is empty. It is apparently not necessary
to reset the earlier assignments and \parindent.

378 \pr@ingred%

379 \ifnum\value{st@pnumber}=0% then complain!

380 \PackageWarning{cuisine}{The recipe did not have any steps}%

381 \fi%

382

383 \pagebreak[0]%

384 \medskip%

This prevents indentation problems after the end of the environment.

385 \@endpetrue%

386 }%

15 Miscellaneous useful macros

\d@grees This is to typeset a degrees symbol.

387 \DeclareRobustCommand{\d@grees}{%

388 ${}^\circ$%

389 }%

\tim@s This is to typeset a times symbol (like ×).

21

390 \DeclareRobustCommand{\tim@s}{%

391 \relax${}\times{}$\relax%

392 }%

\fr@ction This is to typeset fractions, currently using package nicefrac.

393 % \begin{macrocode}

394 \DeclareRobustCommand{\fr@ction}[2]{%

395 \nicefrac#1#2%

396 }%

22

