
Documentation of source codes with the LATEX

package documentation∗

Omar Salazar Morales

Laboratory for Automation, Microelectronics

and Computational Intelligence

Universidad Distrital Francisco José de Caldas

Engineering department

Bogotá, Colombia

osalazarm@correo.udistrital.edu.co

http://www.udistrital.edu.co

November 28, 2011

Abstract

This document shows the LATEX implementation of the package documenta-

tion. This package is intented for all software’s writers who want to document

their source codes by using the comments of the programming language. The

source files are processed with LATEX in order to generate the documentation

of them.

Contents

1 Introduction 2

2 Docstrip modules 2

3 How to use 2

4 Options 2

5 How it works 3

6 Implementation 5

6.1 Package’s identification . 5
6.2 Preliminaries . 5
6.3 Options . 5
6.4 The source code . 6

∗This document is the version v0.1, 2011/11/28.

1

1 Introduction

On environments of software developtment is necessary to make the documentation
of the source code according to its last modification. Sometimes, this is not easy,
because of documentation and source code are written on different files.

In order to avoid this situation, where a software maker have to write two
different files, LATEX gives the possibility to handle an unique file where source
code and documentation are together. Through the documentation package a
software maker can write the source code for his application, and inside of its
comments, he can document it. It’s only neccessary to put LATEX commands
inside the comments of the source files. Source files are then proccesed by LATEX
to get a beautiful document (PDF, DVI, PS, ...)

The real advantage of this technique is that LATEX will be present to handle all
the documentation. If a software maker wants to put a complex formula where he
explains a difficult algorithm, then he will be able to do it in the usual way with
LATEX commands.

2 Docstrip modules

This package has been developed with the typical LATEX’s documentation tech-
niques. Docstrip has been used for the preparation of the source code of the
package and its documentation.

The following docstrip modules were implemented to generate the different files
of this project.

Option Result

sty It generates the package’s file *.sty
drv It generates the LATEX documentation’s master file *.drv

3 How to use

This package is used in the usual way. You should use the \usepackage command\usepackage

in the preamble of your master’s documentation file as follows

\usepackage[<options>]{documentation}

The <options> are presented in the next section.

4 Options

java option is used when JAVA language is used. In this programming languagejava

the comment’s character is // when one-line’s comments are needed. If multi-line’s
comments are needed then /* and */ are neccessary. Then, all the comments inside
your JAVA code have to start with //, or to be enveloped with /* and */.

c option is used when C language is used (or any of its variants like C++c

2

or C#). This is the default option. This programming language uses the same
comment’s character as JAVA language, then, this option is the same as java.

assembler option is used when assembler language is used, for example, whenassembler

you are programming microcontrollers. In this programming language the com-
ment’s character is semicolon (;). All the comments (line-by-line) inside your
assembler code have to start with ;

5 How it works

1. You should create your source code as usual in C, C++, C#, JAVA or as-
sembler languages (this step is done inside an IDE (Integrated Development
Environment1)). These programming languages use the following comment’s
characters

Programming Comment’s Name of comment’s
language character character
C,C++,C#,JAVA // or /* and */ Double slash or slash with asterisk
Assembler ; Semicolon

2. Now, you can add the documentation of your source code inside the com-
ments. You can use LATEX commands as usual. You should think that you
are writing a LATEX document. If you need to use the comment’s character
inside your source code, then you will be able to use a LATEX command as
is shown in the following table

Programming language Character LATEX command
C,C++,C#,JAVA / \/

C,C++,C#,JAVA * *

Assembler ; \;

3. Any piece of source code have to be enveloped by \begin{sourcecode} and
\end{sourcecode}. Just before of these two LATEX commands, you have to
put your comment’s character without spaces. In C or JAVA, you have to
use // before \begin{sourcecode} and \end{sourcecode}. For example,
if you are writing a C code, then a piece of source code looks like

/*

This is helloworld.c

Comments with \LaTeX{} commands...

*/

//\begin{sourcecode}

#include<stdio.h> // Header file

//\end{sourcecode}

1Typical IDEs are KDevelop on Linux systems, Eclipse on Windows systems or Microsoft

Visual Studio on Windows systems. Be careful when you’re saving your source files on these
IDEs. You should guarantee that they have the right coding as ASCII files

3

//

// More comments with \LaTeX{} commands...

//

//\begin{sourcecode}

void main (void)

{

printf("Hello world!\n"); // "Hello world" message

}

//\end{sourcecode}

/*

More comments with \LaTeX{} commands...

*/

In C or JAVA you can use // or /* and */ to add comments, but you have
to use // before \begin{sourcecode} and \end{sourcecode}.

4. You can add a master’s documentation file (*.tex) in your IDE. In the
preamble of this file you have to use \usepackage[<options>]{documentation}.
Now, you can read all your source files of your project with the LATEX com-
mand \inputsourcecode{<source file>} where <source file> is the
path of your source file with its extension2.

For the previous example, this file looks like

%

% This is dochelloword.tex

%

\documentclass{article}

\usepackage[c]{documentation} % Needed

\begin{document}

\inputsourcecode{helloworld.c} % input your source code

\end{document}

You can use any LATEX class (for example, article, book, report, ...) and any
number of \inputsourcecode commands in order to read any number of
source files.

5. Run LATEX as usual to get the documentation of your source code. In the pre-
vious example, run dochelloword.tex through LATEX. \inputsourcecode

will read your source files and it will extract the documentation from the
comments.

2Extension is needed because of some IDEs create different files with the same name and
different extensions

4

6 Implementation

6.1 Package’s identification

\NeedsTeXFormat

\ProvidesPackage

Package documentation was created to use it with LATEX2ε.

1 %<*sty>

2 \NeedsTeXFormat{LaTeX2e}%

3 \ProvidesPackage{documentation}%

4 [2011/11/28 v0.1 Make the documentation for your source code]%

6.2 Preliminaries

\ifDOC@javalang

\ifDOC@Clang

\ifDOC@assemblerlang

The boolean variables \ifDOC@...lang are used to determine which programming
language is especified by the user according to the following table.

Variable Programming language
\ifDOC@javalang JAVA
\ifDOC@Clang C (or C++ and C#)
\ifDOC@assemblerlang Assembler

These variables begin with a false value.

5 \newif\ifDOC@javalang \DOC@javalangfalse

6 \newif\ifDOC@Clang \DOC@Clangfalse

7 \newif\ifDOC@assemblerlang\DOC@assemblerlangfalse

6.3 Options

java java option calls all the necessary code which is needed to make the documentation
for JAVA language. This programming language uses the comment’s characters
// for one-line’s comments and /*...*/ for multi-line’s comments.

This option gives true value to \ifDOC@javalang and false to others. Inside
this option, \DOC@changeccofcommentchar and \DOC@definecsofcommentchar

are defined in order to change the \catcode of / and * as desire, and to define
the macros \/ and * to print / and * inside the text of the source files.

8 \DeclareOption{java}{%

9 \DOC@javalangtrue \DOC@Clangfalse

10 \DOC@assemblerlangfalse

11 \gdef\DOC@changeccofcommentchar#1{\catcode‘/=#1

12 \catcode‘*=#1}%

13 \gdef\DOC@definecsofcommentchar{\chardef\/=‘/

14 \chardef*=‘*}}%

c This option is almost the same as java.

15 \DeclareOption{c}{%

16 \DOC@javalangfalse \DOC@Clangtrue

17 \DOC@assemblerlangfalse

18 \gdef\DOC@changeccofcommentchar#1{\catcode‘/=#1

5

19 \catcode‘*=#1}%

20 \gdef\DOC@definecsofcommentchar{\chardef\/=‘/

21 \chardef*=‘*}}%

assembler assembler option calls all the necessary code which is needed to make the doc-
umentation for assembler language. This programming language uses the com-
ment’s characters ; for all kind of comments.

This option gives true value to \ifDOC@assemblerlang and false to others.
Inside this option, \DOC@changeccofcommentchar and \DOC@definecsofcommentchar
are defined in order to change the \catcode of ; as desire, and to define the macro
\; to print ; inside the text of the source files.

22 \DeclareOption{assembler}{%

23 \DOC@javalangfalse \DOC@Clangfalse

24 \DOC@assemblerlangtrue

25 \gdef\DOC@changeccofcommentchar#1{\catcode‘;=#1}%

26 \gdef\DOC@definecsofcommentchar{\chardef\;=‘;}}%

All the other options which are specified by the user, but which are not defined,
give an error message as unknown options.

27 \DeclareOption*{%

28 \PackageError{documentation}%

29 {Unknown option ‘\CurrentOption’}%

30 {See the documentation for more details}}%

Now, it’s necessary to process all the options which were especified by the user.
c option is used as the default.

31 \ExecuteOptions{c}\ProcessOptions\relax

6.4 The source code

sourcecode \begin{sourcecode} and \end{sourcecode} is the way as an user gives the
source code for his application. All source code has to be enveloped with
this environment in order to write it verbatim. The real difference with
respect to verbatim is that sourcecode recognizes the comment’s charac-
ter of the programming language. This environment permits to write the
comment’s character inside without any special LATEX command (like \/, *

or \;). The only restriction is that you have to use the comment’s char-
acter of your programming language just before \begin{sourcecode} and
\end{sourcecode} without spaces between them. sourcecode uses the in-
ternal macros \@verbatim, \frenchspacing, \@vobeyspaces, \if@newlist,
\leavevmode and \endtrivlist. See ltmiscen.dtx for more details.

32 \def\sourcecode{\DOC@changeccofcommentchar{12}%

33 \@verbatim \frenchspacing\@vobeyspaces \DOC@sourcecode}%

34 \def\endsourcecode{\if@newlist \leavevmode\fi\endtrivlist}%

\DOC@sourcecode \DOC@sourcecode recognizes the beginning and the end of the real source code by
using the comment’s character of your programming language. Then, this macro

6

depends on the language. This macro begins changing some \catcodes of some
characters because it’s needed to say to LATEX where is the end of the source code.
This is done inside a group because it’s needed to keep local all changes.

35 \begingroup

36 \catcode‘|=0 \catcode‘[= 1

37 \catcode‘]=2 \catcode‘\{=12

38 \catcode‘\}=12 \catcode‘\\=12

39 |catcode‘/=12 |catcode‘;=12

Now, \DOC@sourcecode is defined according to the language. It’s needed to
say to LATEX that source code will finish with the comment’s character of the
programming language which is followed by \end{sourcecode} without spaces.
At the end, the group is closed.

40 |ifDOC@javalang

41 |gdef|DOC@sourcecode#1//\end{sourcecode}[#1|end[sourcecode]]%

42 |fi

43 |ifDOC@Clang

44 |gdef|DOC@sourcecode#1//\end{sourcecode}[#1|end[sourcecode]]%

45 |fi

46 |ifDOC@assemblerlang

47 |gdef|DOC@sourcecode#1;\end{sourcecode}[#1|end[sourcecode]]%

48 |fi

49 |endgroup

\inputsourcecode This is the way as an user \inputs his source code. This command uses the
classical \input LATEX command. It begins with the definition of \DOC@path as
the path of the source file. \DOC@path is necessary because of UNIX systems use /
as a delimiter on its directory tree (for example /usr/share/local/), and JAVA
and C use the same character as comment’s character. Everything is done inside
a group.

50 \def\inputsourcecode#1{%

51 \begingroup

52 \def\DOC@path{#1}%

Now, it’s time to define the right command secuence if an user wants to print
the comment’s character inside the documentation, also, it’s changed the \catcode
of the comment’s character which is treated as an space (catcode 10).

53 \DOC@definecsofcommentchar

54 \DOC@changeccofcommentchar{10}%

At the end, the source file is red. Notice that \inputsourcecode keeps all
changes local. Then, your source file doesn’t affect any other part of your LATEX
document.

55 \expandafter\input\DOC@path

56 \endgroup}%

57 〈/sty〉

7

Change History

v0.1

General: Initial version 1

8

