Lists in TEX's Mouth

Alan Jeffrey

1 Why lists?

Originally, I wanted lists in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ for a paper I was writing which contained a lot of facts.

Fact i Cows have four legs.
Fact ii People have two legs.
Fact iii Lots of facts in a row can be dull.
These are generated with commands like
\begin\{fact\} }
\backslash Forward\{Fac-yawn\}
Lots of facts in a row can be dull.
\end\{fact\} }
I can then refer to these facts by saying
\By [Fac-yawn, Fac-cows, Fac-people]
to get $[\mathrm{i}, \mathrm{ii}, \mathrm{iii}]$. And as if by magic, the facts come out sorted, rather than in the jumbled order I typed them. This is very useful, as I can reorganize my document to my heart's content, and not have to worry about getting my facts straight.

Originally I tried programming this sorting routine in T_{EX} 's list macros, from Appendix D of The $T_{E} X b o o k$, but I soon ran into trouble. The problem is that all the Appendix D macros work by assigning values to macros. For example:
\concatenate\foo=\bar\baz
expands out to
$\backslash t a=\backslash e x p a n d a f t e r\{\backslash$ bar $\}$
$\backslash t b=\backslash \operatorname{expandafter}\{\backslash b a z\}$
\edef $\backslash f o o\{\backslash t h e \backslash t a \backslash t h e \backslash t b\}$
which assigns the macro \backslash foo the contents of \backslash bar followed by the contents of \backslash baz. Programming sorting routines (which are usually recursive) in terms of these lists became rather painful, as I was constantly having to watch out for local variables, worrying about what happened if a local variable had the same name as a global one, and generally having a hard time.

Then I had one of those "flash of light" experiences - "You can do lambda-calculus in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$," I thought, and since you can do lists directly in lambda calculus, you should be able to do lists straightforwardly in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. And so you can. Well, fairly straightforwardly anyway.

So I went and did a bit of mathematics, and derived the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macros you see here. They were formally verified, and worked first time (modulo typing errors, of which there were two).

2 TEX's mouth and TEX's stomach

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$'s programming facilities come in two forms there are T_{E} 's macros which are expanded in its mouth, and some additional assignment operations like \def which take place in the stomach. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ can often spring surprises on you as exactly what gets evaluated where. For example, in EATEX I can put down a label by saying \label\{Here\}. Then I can refer back to that label by saying Section \sim ref $\{$ Here $\}$ which produces Section 2. Unfortunately, \ref $\{\mathrm{Here}\}$ does not expand out to 2 ! Instead, it expands out to:
\edef\@tempa\{\@nameuse\{r@Here\}\} \expandafter\@car\@tempa\@nil\null
This means that I can't say
\ifnum\ref\{Here\}<4 Hello\fi
and hope that this will expand out to Hello. Instead I get an error message. Which is rather a pity, as TEX's mouth is quite a powerful programming language (as powerful as a Turing Machine in fact).

3 Functions

A function is a mathematical object that takes in an argument (which could well be another function) and returns some other mathematical object. For example the function Not takes in a boolean and returns its complement. I'll write function application without brackets, so Not b is the boolean complement of b.

Function application binds to the left, so $f a b$ is $(f a) b$ rather than $f(a b)$. For example, Or $a b$ is the boolean or of a and b, and Or True is a perfectly good function that takes in a boolean and returns True.

The obvious equivalents of functions in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ are macros - if I define a function Foo to be:

$$
\text { Foo } x=\text { True }
$$

then it can be translated into $\mathrm{TEX}_{\mathrm{E}}$ as:

\def \backslash Foo\#1\{\True\}

So where Foo is a function that takes in one argument, $\backslash F O O$ is a macro that takes in one parameter. Nothing has changed except the jargon and the font. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macros can even be partially applied, for example if we defined:

$$
\text { Baz }=\text { Or True }
$$

then the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ equivalent would be

\backslash def \backslash Baz $\{\backslash 0 r \backslash T r u e\}$

Once $\backslash \mathrm{Baz}$ is expanded, it will expect to be given a parameter, but when we are defining things, we can go around partially applying them all we like.

Here, I'm using $=$ without formally defining it, which is rather naughty. If I say $x=y$, this means "given enough parameters, x and y will eventually expand out to the same thing." For example Foo = $B a z$, because for any x,

$$
\begin{aligned}
\text { Foo } x & \\
& =\text { True } \\
& =\text { Or True } x \\
& =\text { Baz } x
\end{aligned}
$$

Normally, functions have to respect equality which means that:

- if $x=y$ then $f x=f y$, and
- if x respects equality, then $f x$ respects equality.

However, some $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ control sequences don't obey this. For example, \string \backslash Foo and \string \backslash Baz are different, even though Foo $=B a z$. Hence string doesn't respect equality. Unless otherwise stated, we won't assume functions respect equality, although all the functions defined here do.

All of our functions have capital letters, so that their $\mathrm{TEX}_{\mathrm{E}}$ equivalents (\backslash Not, $\backslash \mathrm{Or}$ and so on) don't clash with standard $\mathrm{TEX}_{\mathrm{E}}$ or IATEX macros.

3.1 Identity

The simplest function is the identity function, called Identity funnily enough, which is defined:

$$
\text { Identity } x=x
$$

This, it must be admitted, is a pretty dull function, but it's a useful basic combinator. It can be implemented in $\mathrm{TEX}_{\mathrm{E}}$ quite simply.

```
\def\Identity#1{#1}
```

The rules around this definition mean that it is actually part of Lambda. sty and not just another example.

3.2 Error

Whereas Identity does nothing in a fairly pleasant sort of way, Error does nothing in a particularly brutal and harsh fashion. Mathematically, Error is the function that destroys everything else in front of it. It is often written as \perp.

$$
\text { Error } x=\text { Error }
$$

In practice, destroying the entire document when we hit one error is a bit much, so we'll just print out an error message. The user can carry on past an error at their own risk, as the code will no longer be formally verified.

```
\def\Error
    {\errmessage{Abandon verification all
```

preliminary draft, December 30, 2006 9:24

```
ye who enter here}}
```

Maybe this function ought to return a more useful error message ..

3.3 First and Second

Two other basic functions are First and Second, both of which take in two arguments, and do the obvious thing. They are defined:

$$
\begin{aligned}
\text { First } x y & =x \\
\text { Second } x y & =y
\end{aligned}
$$

We could, in fact, define Second in terms of Identity and First. For any x and y,

$$
\begin{aligned}
& \text { First Identity } x y \\
& =\text { Identity } y \\
& =y \\
& =\text { Second } x y
\end{aligned}
$$

So First Identity $=$ Second. This means that anywhere in our $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code we have \backslash First \backslash Identity we could replace it by \backslash Second. This is perhaps not the most astonishing $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ fact known to humanity, but this sort of proof did enable more complex bits of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ to be verified before they were run.

The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ definitions of \backslash First and \backslash Second are pretty obvious.

```
\def\First#1#2{#1}
\def\Second#1#2{#2}
```

Note that in TEX \First \backslash foo \backslash bar expands out to \backslash foo without expanding out \bar. This is very useful, as we can write macros that would take forever and a day to run if they expanded all their arguments, but which actually terminate quite quickly. This is called lazy evaluation by the functional programming community.

3.4 Compose

Given two functions f and g we would like to be able to compose them to produce a function that first applies g then applies f. Normally, this is written as $f \circ g$, but unfortunately TE_{E} doesn't have infix functions, so we'll have to write it Compose $f g$.

$$
\text { Compose } f g x=f(g x)
$$

¿From this definition, we can deduce that Compose is associative:

$$
\begin{aligned}
& \text { Compose }(\text { Compose f } g) h \\
& \quad=\text { Compose } f(\text { Compose } g h)
\end{aligned}
$$

and Identity is the left unit of Compose:

$$
\text { Compose Identity } f=f
$$

preliminary draft, December 30, 2006 9:24

The reader may wonder why Identity is called a left unit even though it occurs on the right of the Compose - this is a side-effect of using prefix notations where infix is more normal. The infix version of this equation is:

$$
\text { Identity } \circ f=f
$$

so Identity is indeed on the left of the composition.
Compose can be implemented in $\mathrm{TEX}_{\mathrm{E}}$ as
\def \Compose\#1\#2\#3\{\#1\{\#2\{\#3\}\}\}

3.5 Twiddle

Yet another useful little function is Twiddle, which takes in a function and reverses the order that function takes its (first two) arguments.

$$
\text { Twiddle } f x y=f y x
$$

Again, there aren't many immediate uses for such a function, but it'll come in handy later on. It satisfies the properties

$$
\begin{aligned}
\text { Twiddle First } & =\text { Second } \\
\text { Twiddle Second } & =\text { First } \\
\text { Compose Twiddle Twiddle } & =\text { Identity }
\end{aligned}
$$

Its TEX equivalent is
\def\Twiddle\#1\#2\#3\{\#1\{\#3\}\{\#2\}\}
This function is called "twiddle" because it is sometimes written \widetilde{f} (and \sim is pronounced "twiddle"). It also twiddles its arguments around, which is quite nice if your sense of humour runs to appalling puns.

4 Booleans

As we're trying to program a sorting routine, it would be nice to be able to define orderings on things, and to do this we need some representation of boolean variables. Unfortunately TEX doesn't have a type for booleans, so we'll have to invent our own. We'll implement a boolean as a function b of the form

$$
b x y= \begin{cases}x & \text { if } b \text { is true } \\ y & \text { otherwise }\end{cases}
$$

More formally, a boolean b is a function which respects equality, such that for all f, g and z :

$$
b f g z=b(f z)(g z)
$$

and for all f and g which respect equality,

$$
b(f b)(g b)=b(f \text { First })(g \text { Second })
$$

All the functions in this section satisfy these properties. Surprisingly enough, so does Error, which is quite useful, as it allows us to reason about booleans which "go wrong".
preliminary draft, December 30, 2006 9:24

4.1 True, False and Not

Since we are implementing booleans as functions, we already have the definitions of True, False and Not.

$$
\begin{aligned}
\text { True } & =\text { First } \\
\text { False } & =\text { Second } \\
\text { Not } & =\text { Twiddle }
\end{aligned}
$$

So for free we get the following results:

$$
\begin{aligned}
\text { Not True } & =\text { False } \\
\text { Not False } & =\text { True } \\
\text { Compose Not Not } & =\text { Identity }
\end{aligned}
$$

The TEX implementation is not exactly difficult:

```
\let\True=\First
\let\False=\Second
\let\Not=\Twiddle
```


4.2 And and Or

The definitions of And and Or are:

$$
\begin{aligned}
\text { And } a b & = \begin{cases}b & \text { if } a \text { is true } \\
\text { False } & \text { otherwise }\end{cases} \\
\text { Or } a b & = \begin{cases}\text { True } & \text { if } a \text { is true } \\
b & \text { otherwise }\end{cases}
\end{aligned}
$$

With our definition of what a boolean is, this is just the same as

$$
\begin{aligned}
\text { And } a b & =a b \text { False } \\
\text { Or } a b & =a \text { True } b
\end{aligned}
$$

¿From these conditions, we can show that $A n d$ is associative, and has left unit True and left zeros False and Error:

$$
\begin{aligned}
\text { And }(\text { And } a b) c & =\text { And } a(\text { And } b c) \\
\text { And True } b & =b \\
\text { And False } b & =\text { False } \\
\text { And Error } b & =\text { Error }
\end{aligned}
$$

Or is associative, has left unit False and left zeros True and Error:

$$
\begin{aligned}
\text { Or }(\text { Or } a b) c & =\text { Or } a(\text { Or } b c) \\
\text { Or False } b & =b \\
\text { Or True } b & =\text { True } \\
\text { Or Error } b & =\text { Error }
\end{aligned}
$$

De Morgan's laws hold:

$$
\begin{aligned}
\operatorname{Not}(\text { And a b) } & =\operatorname{Or}(\operatorname{Not} a)(\text { Not b) } \\
\operatorname{Not}(\text { Or a b) } & =\operatorname{And}(\text { Not a) }(\text { Not b) }
\end{aligned}
$$

and $A n d$ and $O r$ left-distribute through one another:

$$
\begin{aligned}
& \text { Or } a(\text { And } b c)=\text { And }(\text { Or } a b)(\text { Or } a c) \\
& \text { And } a(\text { Or } b c)=\text { Or }(\text { And } a b)(\text { And } a c)
\end{aligned}
$$

preliminary draft, December 30, 2006 9:24

And and Or are not commutative, though. For example,

$$
\begin{aligned}
& \text { Or True Error } \\
& =\quad \text { True True Error } \\
& =\text { True }
\end{aligned}
$$

but

$$
\begin{aligned}
& \text { Or Error True } \\
& \quad=\quad \text { Error True True } \\
& \quad=\text { Error }
\end{aligned}
$$

This is actually quite useful since there are some booleans that need to return an error occasionally. If a is True when b is safe (i.e. doesn't become Error) and is False otherwise, we can say Or ab and know we're not going to get an error. This is handy for things like checking for division by zero, or trying to get the first element of an empty list.

Similarly, because of the possibility of Error, And and Or don't right-distribute through each other as

$$
\begin{aligned}
& \text { Or (And False Error) True } \\
& \quad \neq \text { And (Or False True) (Or Error True) }
\end{aligned}
$$

As errors shouldn't crop up, this needn't worry us too much.

```
\def\And#1#2{#1{#2}\False}
\def\Or#1#2{#1\True{#2}}
```


4.3 Lift

Quite a lot of the time we won't be dealing with booleans, but with predicates, which are just functions that return a boolean. For example, the predicate Lessthan is defined below so that Lessthan $i j$ is true whenever $i ; j$. Given a predicate p we would like to be able to lift it to Lift p, defined:

$$
\text { Lift pfgx }=p x f g x
$$

For example, Lift (Lessthan 0) $f g$ takes in a number and applies f to it if it is positive and g to it otherwise. This is quite useful for defining functions.
\def\Lift\#1\#2\#3\#4\{\#1\{\#4\}\{\#2\}\{\#3\}\{\#4\}\}

4.4 Lessthan and TEXif

Finally, we would like to be able to use $\mathrm{T}_{\mathrm{E}} \mathrm{X}$'s builtin booleans as well as our own. For example, we would like a predicate Lessthan such that:

$$
\text { Lessthan } i j= \begin{cases}\text { True } & \text { if } i j j \\ \text { False } & \text { if } i \geq j \\ \text { Error } & \text { otherwise }\end{cases}
$$

The Error condition happens if we try applying Lessthan to something that isn't a number - Lessthan True False
${ }^{1}$ Actually, that's a little white lie - trying to persuade $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ to do run-time type checking isn't much fun. So the TEX implementation of this is actually a refinement where the rror condition has been replaced by whatever it is $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ does
is Error ${ }^{1}$. This is fine as a mathematical definition, but how will we implement it? If we assume we have a macro \TeXif, which converts TEX if-statements into booleans, we could just define:

\def\Lessthan\#1\#2\{\TeXif\{\ifnum\#1<\#2 \}\}

So the question is just how to define \TeXif. Unfortunately, the "obvious" code does not work:
\def \TeXif\#1\#2\#3\{\#1\#2\else\#3\fi\}
For example, \TeXif $\backslash i f t r u e \backslash T r u e \backslash T r u e ~ d o e s n ' t ~ e x-~$ pand out to \True. Instead, it expands as:
\backslash TeXif \backslash iftrue \backslash True \backslash True
$=\backslash i f t r u e \backslash T r u e \backslash e l s e \backslash T r u e \backslash f i$
$=\backslash$ True $\backslash e l s e \backslash T r u e \backslash f i$
$=\backslash e l s e \backslash f i$
$=$
Another common $T_{E} X$ nique is to use a macro $\backslash n e x t$ to be the expansion text:
\def\TeXif\#1\#2\#3\%
$\{\# 1 \backslash \operatorname{def} \backslash$ next $\{\# 2\} \backslash e l$ se \backslash def \backslash next $\{\# 3\} \backslash$ fi \next\}
However, this uses TEX's stomach to do the \def, and we are trying to do this using only the mouth. One (slightly tricky) solution is to use pattern-matching to gobble up the offending \else and/or \fi.

```
\def\gobblefalse\else\gobbletrue\fi#1#2%
    {\fi#1}
\def\gobbletrue\fi#1#2%
    {\fi#2}
\def\TeXif#1%
    {#1\gobblefalse\else\gobbletrue\fi}
```

So if the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ if-statement is true, \gobblefalse gobbles up the false-text, otherwise \gobbletrue gobbles up the true-text. For example,

```
\TeXif\iftrue\True\True
    = \iftrue\gobblefalse\else
        \gobbletrue\fi\True\True
    = \gobblefalse\else
        \gobbletrue\fi\True\True
    = \fi\True
    = \True
```

Phew. And so we have booleans.

5 Lists

A list is a (possibly infinite) sequence of values. For example, the list $[1 ; 2 ; 3]$ contains three numbers, the
f you try doing \ifnum $x<y$ when x and y aren't numbers
list [] contains none, and the list $[1 ; 2 ; 3 ;:::]$ contains infinitely many. A list is either empty (written []) or is comprised of a head x and a tail $x s$ (in which case it's written $x: x s$). For example, $1: 2: 3:[]$ is [1;2;3].

In a similar fashion to the implementation of booleans, a list $x s$ is implemented as a function of the form
$x s f e= \begin{cases}e & \text { if } x s \text { is empty } \\ f y y s & \text { if } x s \text { has head } y \text { and tail } y s\end{cases}$
Again, we are implementing a datatype as a function, a quite powerful trick, just not one usually seen in $T_{E} X$. We will assume that whenever a list $x: x s$ is applied to f and $e, f x$ respects equality. This allows us to assume that if $x s=y s$ then $x: x s=x: y s$, which is handy.

5.1 Nil, Cons, Stream and Singleton

The simplest list is Nil, the empty list which we have been writing [].

$$
\text { Nil }=\text { Second }
$$

The other possible list is Cons x xs, which has head x and tail $x s$.

$$
\text { Cons xxsfe}=f x x s
$$

Every list can be constructed using these functions. The list $[1 ; 2 ; 3]$ is Cons 1 (Cons 2 (Cons 3 Nil)), and the list $[a ; a ; a ;:::]$ is Stream a where Stream is defined:

$$
\text { Stream } a=\text { Cons a }(\text { Stream } a)
$$

There's even at least one application for infinite lists, as we'll see in Section 7 .

The singleton list [a] is Singleton a, defined as:

$$
\text { Singleton } a=\text { Cons a Nil }
$$

These all have straightforward TEX definitions.

```
\let\Nil=\Second
\def\Cons#1#2#3#4{#3{#1}{#2}}
\def\Stream#1{\Cons{#1}{\Stream{#1}}}
\def\Singleton#1{\Cons{#1}\Nil}
```


5.2 Head and Tail

So, we can construct any list we like, but we still can't get any information out of it. To begin with, we'd like to be able to get the head and tail of a list.

$$
\begin{aligned}
\text { Head xs } & =\text { xs First Error } \\
\text { Tail xs } & =\text { xs Second Error }
\end{aligned}
$$

For example, the tail of $x: x s$ is

$$
\begin{aligned}
\text { Tail } & (\text { Cons } x \text { xs }) \\
& =\text { Cons } x \text { xs Second Error } \\
& =\text { Second } x x s \\
& =x s
\end{aligned}
$$

preliminary draft, December 30, 2006 9:24

The tail of [] is, as one would expect,
Tail Nil

$$
\begin{aligned}
& =\text { Nil Second Error } \\
& =\text { Error }
\end{aligned}
$$

And the head of Stream a is

$$
\begin{aligned}
\text { Head } & (\text { Stream a }) \\
& =\text { Stream a First Error } \\
& =\text { Cons a }(\text { Stream a) First Error } \\
& =\text { First } a(\text { Stream a) } \\
& =a
\end{aligned}
$$

So we can get the head of an infinite list in finite time. This is fortunate, as otherwise there wouldn't be much point in allowing infinite objects.

```
\def\Head#1{#1\First\Error}
\def\Tail#1{#1\Second\Error}
```


5.3 Foldl and Foldr

Using Head and Tail we can get at the beginning of any non-empty list, but in general we need more information than that. Rather than write a whole bunch of recursive functions on lists, I'll implement two fairly general functions, with which we can implement (almost) everything else.

Foldl and Foldr both take in functions and apply them recursively to a list. Foldl starts at the left of the list, and Foldr starts at the right. For example,

$$
\begin{aligned}
& \text { Foldl fe} \text { [1;2;3] }=f(f(f e 1) 2) 3 \\
& \text { Foldr } f e[1 ; 2 ; 3]=f 1(f 2(f 3 e))
\end{aligned}
$$

These functions will be used a lot later on. Foldl can be defined:

$$
\begin{aligned}
\text { Foldl } f \text { exs } & =x s\left(\text { Foldl }^{\prime} f e\right) e \\
\text { Foldl' } f \text { exxs } & =\text { Foldl } f(f \text { ex) xs }
\end{aligned}
$$

So Foldl fe[] is
Foldl f e Nil

$$
\begin{aligned}
& =\operatorname{Nil}\left(\text { Foldl }^{\prime} f e\right) e \\
& =e
\end{aligned}
$$

And Foldl $f e(x: x s)$ is
Foldl fe(Cons x xs)
$=$ Cons xxs (Foldl' fe) e
$=$ Foldl' f exxs
$=\operatorname{Foldl} f(f e x) x s$
For example, Foldl $f e[1 ; 2 ; 3]$ is
Foldl $f e[1 ; 2 ; 3]$
$=\operatorname{Foldl} f(f e 1)[2 ; 3]$
$=\operatorname{Foldl} f(f(f e 1) 2)[3]$
preliminary draft, December 30, 2006 9:24

$$
\begin{aligned}
& =\text { Foldl } f(f(f(f e 1) 2) 3)[] \\
& =f(f(f e 1) 2) 3
\end{aligned}
$$

as promised. Similarly, we can define Foldr as

$$
\begin{aligned}
\text { Foldr } f \text { exs } & =x s\left(\text { Foldr }^{\prime} f e\right) e \\
\text { Foldr } r^{\prime} f e x s & =f x(\text { Foldr } f \text { exs })
\end{aligned}
$$

For Foldr f to respect equality, $f x$ should respect equality.

When we do the unfolding, we discover that

$$
\begin{aligned}
\text { Foldr } f e[] & =e \\
\text { Foldr } f e(x: x s) & =f e(\text { Foldr } f \text { exs })
\end{aligned}
$$

Foldr tends to be more efficient than Foldl, because Foldl has to run along the entire list before it can start applying f, whereas Foldr can apply f straight away. If f is a lazy function, this can make quite a difference. Foldl on infinite lists, anyone?

```
\def\Foldl#1#2#3%
    {#3{\Foldl@{#1}{#2}}{#2}}
\def\Foldl@#1#2#3#4%
    {\Foldl{#1}{#1{#2}{#3}}{#4}}
\def\Foldr#1#2#3%
    {#3{\Foldr@{#1}{#2}}{#2}}
\def\Foldr@#1#2#3#4%
    {#1{#3}{\Foldr{#1}{#2}{#4}}}
```


5.4 Cat

Given two lists, we would like to be able to stick them together, which is what Cat (short for "concatenate") does. For example, Cat $[1 ; 2][3 ; 4]$ is $[1 ; 2 ; 3$; It can be defined using Foldr:

$$
\text { Cat xs ys }=\text { Foldr Cons ys xs }
$$

So

$$
\begin{aligned}
\text { Cat } & {[1 ; 2][3 ; 4] } \\
& =\text { Foldr Cons }[3 ; 4][1 ; 2] \\
& =\text { Cons } 1(\text { Foldr Cons }[3 ; 4][2]) \\
& =\text { Cons } 1(\text { Cons } 2(\text { Foldr Cons }[3 ; 4][1)) \\
& =\text { Cons } 1(\text { Cons } 2[3 ; 4]) \\
& =[1 ; 2 ; 3 ; 4]
\end{aligned}
$$

The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code for \backslash Cat is suspiciously similar to its mathematical definition.

```
\def\Cat#1#2{\Foldr\Cons{#2}{#1}}
```


5.5 Reverse

We can reverse any list with the function Reverse, defined using Foldl:

$$
\text { Reverse }=\text { Foldl (Twiddle Cons) Nil }
$$

For example, Reverse $[1 ; 2 ; 3]$ can be calculated:
Reverse $[1 ; 2 ; 3]$

$$
\begin{aligned}
& =\text { Foldl (Twiddle Cons) Nil [1;2;3] } \\
& =\text { Twiddle Cons }
\end{aligned}
$$

(Twiddle Cons (Twiddle Cons Nil 1) 2) 3
$=$ Cons 3 (Cons $2($ Cons 1 Nil))
$=[3 ; 2 ; 1]$
The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code for \backslash Reverse doesn't even take in any parameters.

```
\def\Reverse{\Foldl{\Twiddle\Cons}\Nil}
```


5.6 All, Some and Isempty

Given a predicate p, we can find out if all the elements of a list satisfy p with All p. Similarly we can find if something in the list satisfies p with Some p. For example,

$$
\begin{aligned}
\text { All }(\text { Lessthan } 1)[1 ; 2 ; 3] & =\text { False } \\
\text { Some }(\text { Lessthan } 1)[1 ; 2 ; 3] & =\text { True }
\end{aligned}
$$

These can be defined

$$
\begin{aligned}
\text { All } p & =\text { Foldr (Compose And p) True } \\
\text { Some } p & =\text { Foldr (Compose Or p) False }
\end{aligned}
$$

For example, Isempty can be defined

$$
\text { Isempty }=\text { All (First False })
$$

This is probably not the most efficient check in the rld, but we hardly ever need it - Foldl or Foldr will normally do the job.
\def \backslash All \#1 $\{\backslash$ Foldr\{ \backslash Compose \backslash And\{ $\# 1\}\} \backslash$ True $\}$
\backslash def \backslash Some\#1\{\Foldr\{\Compose\Or\{\#1\}\}\False\}
\backslash def \backslash Isempty\{ \backslash All $\{\backslash$ First \backslash False $\}\}$

5.7 Filter

Filter takes a predicate p and a list $x s$, and returns a list containing only those elements of $x s$ that satisfy p. For example,

$$
\text { Filter }(\text { Lessthan } 1)[1 ; 2 ; 3]=[2 ; 3]
$$

Filter can be defined as a Foldr:
Filter $p=$ Foldr (Lift p Cons Second) Nil
Another easy bit of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$:
\def \backslash Filter\#1\%
$\{\backslash F o l d r\{\backslash \operatorname{Lift}\{\# 1\} \backslash$ Cons \backslash Second $\} \backslash N i l\}$
preliminary draft, December 30, 2006 9:24

5.8 Map

Map takes a function f and a list $x s$ and applies f to every element of $x s$. For example,

$$
\operatorname{Map} f(1 ; 2 ; 3]=[f 1 ; f 2 ; f 3]
$$

This is another job for Foldr.

$$
\text { Map } f=\text { Foldr }(\text { Compose Cons } f) \text { Nil }
$$

We shall see Map used later on, to convert from a list of names such as [Fac-yawn, Fac-cows], to a list of labels such as [i, iii].

```
\def\Map#1{\Foldr{\Compose\Cons{#1}}\Nil}
```


5.9 Insert

The only function we need which isn't easily defined as a reduction is Insert, which inserts an element into a sorted list. For example,

$$
\text { Insert Lessthan } 3[1 ; 2 ; 4 ; 5]=[1 ; 2 ; 3 ; 4 ; 5]
$$

Insert takes in an ordering as its first parameter, so we're not stuck with one particular order. It is defined directly in terms of the definition of lists.

$$
\begin{aligned}
\text { Insert o } x \text { xs }= & x s\left(\text { Insert }^{\prime} \text { o } x\right)(\text { Singleton } x) \\
\text { Insert } \text { o } x y y s= & o x y \\
& (\text { Cons } x(\text { Cons } y y s)) \\
& (\text { Cons } y(\text { Insert o } x y s))
\end{aligned}
$$

We can then define the function all this has been leading up to, Insertsort which takes an ordering and a list, and insert-sorts the list according to the ordering. For example,

```
Insertsort Lessthan [2;3;1;2] = [1;2;2;3]
```

We can implement this as a fold:

$$
\text { Insertsort o }=\text { Foldr }(\text { Insert o) Nil }
$$

And so we've got sorted lists.

```
\def\Insert#1#2#3%
    {#3{\Insert@{#1}{#2}}{\Singleton{#2}}}
\def\Insert@#1#2#3#4%
    {#1{#2}{#3}%
        {\Cons{#2}{\Cons{#3}{#4}}}%
        {\Cons{#3}{\Insert{#1}{#2}{#4}}}}
\def\Insertsort#1{\Foldr{\Insert{#1}}\Nil}
```

Interestingly, as we have implemented unbounded lists in TEX's mouth, this means we can implement a Turing Machine. So, if you believe the ChurchTuring thesis, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$'s mouth is as powerful as any computer anywhere. Isn't that good to know?

6 Sorting reference lists

So, these are the macros I've got to play with - how do we apply them to sorting lists of references? Well, I'm using $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$, which keeps the current reference in a macro called \@currentlabel, which is 6 at the moment, as this is Section 6. So I just need to store the value of \@currentlabel somehow.

Fortunately, I'm only ever going to be making references to facts earlier on in the document, in order to make sure I'm not proving any results in terms of themselves. So I don't need to play around with auxiliary files, and can just do everything in terms of macros.

6.1 Number and Label

Each label in the document is given a unique number, in the order the labels were put down. So the number of Fac-cows is \Number\{Fac-cows\}, which expands out to 1 , the number of Fac-people is 2, and so on.

Each number has an associated label with it. For example, the first label is \Label\{1\}, which is i, the second label is ii and so on. So to find the label for Fac-cows, we say \Label\{ \backslash Number $\{$ Fac-cows $\}\}$ which expands out to i .

These numbers and labels are kept track of in macros. For example, the number of Fac-cows is kept in Number-Fac-cows. Similarly, the first label is kept in Label-1. As these macros have dashes in their names, they aren't likely to be used already.

So the $\mathrm{TEX}_{\mathrm{E}}$ code for \backslash Number and \Label is pretty simple.
\def \Number\#1\{\csname Number-\#1\endcsname\} \backslash def \backslash Label\#1\{\csname Label-\#1\endcsname\}

6.2 Lastnum and Forward

The number of the most recent label is kept in \Lastnum. \newcount\Lastnum
To put down a label Foo, I type \Forward\{Foo\}. This increments the counter \Lastnum, and \xdefs Number-Foo to be the value of \Lastnum, which is now 4. So \Number\{Foo\} now expands to 4. Similarly, it \xdefs Label-4 to be \@currentlabel, which is currently 6.2. So \Label\{\Number\{Foo\}\} now expands to 6.2.
\def \backslash Forward\#1\%
$\{\backslash g l o b a l \backslash a d v a n c e \backslash L a s t n u m$ by 1
\csnameafter $\backslash x d e f\{N u m b e r-\# 1\} \%$ \{\the\Lastnum\}\%
\csnameafter\xdef\{Label-\the\Lastnum\}\% \{\@currentlabel\}\}
This uses \csnameafter $\backslash f o o\{b a r\}$, which expands out to \foo \bar.
preliminary draft, December 30, 2006 9:24

```
\def\csnameafter#1#2%
    {\expandafter#1\csname#2\endcsname}
```


6.3 Listize, Unlistize and Show

At the moment, lists have to be built up using \Cons and $\backslash \mathrm{Nil}$, which is rather annoying. Similarly, we can't actually do anything with a list once we've built it. We'd like some way of converting lists in the form $[\mathrm{a}, \mathrm{b}, \mathrm{c}]$ to and from the form $[a ; b ; c]$. This is done with \Listize and \Unlistize. So \Listize[a,b, c] expands to \backslash Cons\{a\}\{\Cons\{b\}\{\Cons\{c\}\{\Nil\} $\}$
Similarly, \Unlistize takes the list $[a ; b ; c]$ and expands out to [a, b, c]. \Unlistize is done with a Foldr.

```
\def\Unlistize#1{[#1\Unlistize@{}]}
\def\Unlistize@#1{#1\Foldr\Commaize{}}
\def\Commaize#1#2{, #1#2}
```

The macro \Listize is just a TEX hack with pattern matching. It would have been nice to use \@ifnextchar for this, but that uses \futurelet, which doesn't expand in the mouth. Oh well.

```
\def\Listize[#1]%
    {\Listize@[#1,\relax]}
\def\Listize@#1,#2]%
    {\TeXif{\ifx\relax#2}%
        {\Singleton{#1}}%
        {\Cons{#1}{\Listize@#2]}}
```

This only works for nonempty lists - \Listize[] produces the singleton list \Singleton\{\}. It also uses \backslash relax as its end-of-list character, so lists with $\backslash r e l a x$ in them have to be done by hand. You can't win them all. So
\$\Unlistize\{ \backslash Listize $[\mathrm{a}, \mathrm{b}, \mathrm{c}]\}$ \$
produces $[a ; b ; c]$. This is such a common construction that I've defined a macro \Show such that \backslash Show \backslash foo expands out to
\Unlistize\{\foo\{\Listize[a, b, c]\}\}
For example, the equation

$$
\text { Filter }(\text { Lessthan } 1)[1 ; 2 ; 3]=[2 ; 3]
$$

was generated with

```
\begin{eqnarray*}
    Filter\,(Lessthan\,1)\, [1, 2, 3]
        &=& \Show\Filter{\Lessthan 1}[1,2,3]
\end{eqnarray*}
```

Many of the examples in this article were typeset this way.

```
\def\Show#1[#2]%
    {\Unlistize{#1{\Listize[#2]}}}
```


6.4 By

Given these macros, we can now sort any list of references with Bylist, defined

$$
\begin{aligned}
\text { Bylist xs }= & \text { Map Label } \\
& \quad(\text { Insertsort Lessthan } \\
& \quad(\text { Map Number } x s))
\end{aligned}
$$

This takes in a list of label names like Fac-yawn, converts it into a list of numbers with Map Number, sorts the resulting list with Insertsort Lessthan, and finally converts all the numbers into labels like iii with Map Label. For example,
Bylist [Fac-yawn; Fac-cows]

$$
\begin{aligned}
= & \text { Map Label (Insertsort Lessthan } \\
& \quad(\text { Map Number [Fac-yawn; Fac-cows }])) \\
= & \text { Map Label (Insertsort Lessthan }[3 ; 1]) \\
= & \text { Map Label }[1 ; 3] \\
= & {[i ; \text { iii }] }
\end{aligned}
$$

The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code for this is
\def \Bylist\#1\%
$\{\backslash$ Map\Label
\{\Insertsort\Lessthan
$\{\backslash$ Map $\$ Number $\{\# 1\}\}\}\}$
So we can now stick all this together, and define the macro \By that prints out lists of references. It is

\backslash def \backslash By $\{\backslash$ Show \backslash Bylist $\}$

So \By[Fac-yawn,Fac-cows] is [i, iii]. Which is quite nice.

7 Other applications

Is all this worth it? Well, I've managed to get my lists of facts in order, but that's not the world's most astonishing application. There are other things that these lists are useful for, though.

For example, Damian Cugley has a macro package whder development for laying out magazines. MAGTEX's output routine needs to be quite smart, as magazines often have gaps where illustrations or photographs are going to live. In general, each block of text needs to be output in a different fashion from every other block of text. This will be handled by keeping an infinite list of output routines. Each time a box is cut off the scroll to be output, the head of the list is chopped off and is used as the output routine for that box. That way, quite complex page shapes can be built up.

Mainly, though, these macros were written just as a challenge. I learned quite a lot about $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and needed some $T_{E X}$ niques I'd never seen before. It was also quite pleasing to see that $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ code can be formally verified, albeit in a rather noddy way.

Without some sort of abstract view of lists, these $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macros could not have been written.

8 Acknowledgements

Thanks to Jeremy Gibbons for letting me bounce ideas off him and spotting the duff ones, to Damian Cugley for saying "Do you really think $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is meant to do this?", and to the Problem Solving Club for hearing me out. This work was sponsored by the Science and Engineering Research Council and Hewlett Packard.

\diamond Alan Jeffrey
Programming Research Group
Oxford University
11 Keble Road
Oxford OX1 3QD
Alan.Jeffrey@uk.ac.oxford.prg

