
The ling-macros package
Version 2.2

Andrew McKenzie
andrew.mckenzie@ku.edu

http://people.ku.edu/∼a326m085

October 12, 2016

Contents

1 About ling-macros 1

2 General linguistics 2
2.1 Ordinary macros . 2
2.2 Macros for gb4e environment . 3
2.3 The context environment . 4

3 Phonology 4

4 Syntax 5

5 Semantics 6
5.1 Operators and Symbols . 6
5.2 Semantic types . 6
5.3 Sets . 7
5.4 Functions . 7
5.5 Scope brackets with \scopebox 8
5.6 Denotation brackets . 9

1 About ling-macros

The ling-macros package is designed to allow easier use of formal symbols
used in formal linguistics, especially in formal linguistics. The set arose from
the macros that I have been using over the years for papers and class handouts.
Suggestions and additions are welcome. Note: This is not the same package as
lingmacros, which is part of tree-dvips.

1

mailto:andrew.mckenzie@ku.edu
http://people.ku.edu/~a326m085

To call the package, type \usepackage{ling-macros} in the preamble of your
document. The package has the following options:

text-semantics typesets formal semantic expressions in upright
fashion rather than italicized or math fashion

shortspace removes space before, after, and between examples
in exe environment (see sect. 2.2)

leftflush pulls examples to the left edge in exe environment
(see sect. 2.2)

abstract combines shortspace and leftflush; useful for
abstracts (see sect. 2.2)

The ling-macros package calls for the following packages: stmaryrd, ulem,
amssymb, upgreek, gb4e, relsize, and pbox. Also included are call commands
for phonetic writing (tipa) and tree structures (qtree), but they are commented
out to prevent option clashes (look for %\RequirePackage{qtree}, etc., if you
want to turn them on for your version).

Using ling-macros is pretty straightforward, since it is just a series of macros.
The macros are organized by module of the grammar.

2 General linguistics

2.1 Ordinary macros

The following macros are used pretty generally throughout the subfields.

command purpose in source file in print
\nl null symbol \nl ∅
\m{. . . } small caps for morpheme gloss \m{acc.pl} acc.pl
\mc{. . . } small caps for morpheme gloss \mc{acc.pl} acc.pl
\mb wider hyphen for morpheme

breaks (can be changed globally)
ant\mb s ant−s

\ol{. . . } object language text \ol{clermontois} clermontois
\alert{. . . } highlights parts of examples work\alert{horse} workhorse
\term{. . . } highlights terminology being in-

troduced
\term{causative} causative

\ix{. . . } subscript index (upright text
with text-semantics option)

Bill\ix{j}, x\ix{cat} Billj , xcat

\ux{. . . } subscript index with upright text
(no matter what)

Bill\ux{j}, x\ux{cat} Billj, xcat

\superx{. . . } superscript index with upright
text

x\superx{3}, y\superx{i} x3, yi

2

The \alert{. . . } command is compatible with the beamer class. It puts high-
lighted text in boldface. This can be changed with renewcommand.

The \nl declaration requires the amssymb package. (\null is already used by
TEX for empty boxes, so it’s best not to replace it).

The \ol{. . . } command is for object language text. It is currently set to italics,
but you can change that globally or locally with a \renewcommand command.

The \m{. . . } command sets grammatical morphemes (m) in small caps. This
is helpful in glosses, notably using gb4e, since it makes the source easier to
read. Also, if you need to change the morphemes’ typesetting globally, a simple
\renewcommand of \m will suffice.

However, if you use the fontspec package for XeLATEX, beware, for it employs
\m for various diacritics. So you can comment it out and use \mc{. . . } for
morpheme caps instead. Also, \usepackage{ling-macros} must be placed in
your preamble after \usepackage{fontspec}.

2.2 Macros for gb4e environment

The following declarations make the use of the gb4e more streamlined and allow
for easy tweaking of example alignment.

declaration command it replaces purpose name origin
\bex \begin{exe} begin example environment begin exe
\fex \end{exe} end example environment finish exe

\bxl \begin{xlist} begin example subenvironment begin xlist
\fxl \end{xlist} end example subenvironment finish xlist

These declarations also define a number of variable widths that can be used
to reformat the example environments. The reformatting is done globally by
setting the package options leftflush, shortspace, or abstract.

Warning: The package options do not reformat exe environments unless you
use the \bex and \bxl declarations. Otherwise, one would need to adjust the
gb4e package itself.

The leftflush option puts example numbers to the left, but numbers 1-9
are not all the way to the left. To force them to be, place the declaration
\lessthanten in the document before the first example. This will place examples
10 and above too far left, so use the declaration \tenormore to undo this effect.

While we’re at it, here is a similar list of abbreviations for ordinary list envi-
ronments.

3

declaration command it replaces purpose name origin
\ben \begin{enumerate} begin enumerate environment begin enumerate
\fen \end{enumerate} end enumerate environment finish enumerate

\bit \begin{itemize} begin itemize environment begin itemize
\fit \end{itemize} end itemize environment finish itemize

2.3 The context environment

The context environment typesets the context used to elicit or set-up an ex-
ample. The typesetting can be changed globally.

Context:
Denny arrived at the restaurant, and sat at an empty table. The
moment he did so, a waiter approached and asked him:

(1) # Would you like some more water?

\begin{context}
Denny arrived at the restaurant, and sat at an empty table. The moment he
did so, a waiter approached and asked him:
\end{context}

\bex \ex[\#]{Would you like some water?} \fex

3 Phonology

OT Tableaux can be made with a number of packages, each with their own
macros for symbols. To write phonological rules, however, you can use the
following macros to simplify things.

command purpose source in print
\underlying{. . . } the input to the rule \underlying{+back} /+back/
\becomes the arrow \becomes →
\spoken{. . . } the output \spoken{–back} [–back]

\environ ‘in the environment of’ slash \environ /
\spot the exact spot of the change \spot
\syll syllable subscript [\syll]\syll [σ]σ
\fmleft feature matrix left bracket \fmleft
\fmright feature matrix right bracket \fmright

\fmat{. . . }{. . . } feature matrix line
\fmat{+}{coronal}
\fmat{-}{voiced}

[
+ coronal
− voiced

]
Combined, these get a source code like this, for a rule fronting a back vowel
between /i/ and any consonant:

4

\underlying{+back} \becomes \spoken{–back} \environ i\spot C

The commands \prule and \iparule are macros combining the above macros.

About the \prule{. . . }{. . . }{. . . } command: The first command is the under-
lying form, the second the spoken form, and the third the environment. The
\iparule{. . . }{. . . }{. . . } does the same, but puts everything in the rule in IPA.
The \iparule command requires the tipa package, which you probably already
use if you’re typesetting phonology.

\prule{+back}{–back}{i\spot C} /+back/ → [–back] / i C

\iparule{2}{E}{i\spot *C} /2/ → [E] / i C

The \fmat{. . . }{. . . }command is for feature matrices. Use \fmleft and \fmright
for each bracket, and for each line in the feature matrix, use \fmat{w}ith its
two arguments. The first argument will be +/−, and the second will be the
feature name.

You can put feature matrices inside a phonological rule command as well.

4 Syntax

For syntax trees, a tree package like qtree, tikz-qtree, or parsetree suffices.
The following macros allow quick and regular typing of some common syntactic
symbols, in better looking ways than are offered by ordinary distributions and
packages.

command purpose source in print
\head{. . . } the head circle \head{V} V◦

\xbar{. . . } the bar in X-bar \xbar{Asp} Asp
\lv little v \lv v
\feat{. . . } syntactic feature in trees \feat{fem} [fem]

\textfeat{. . . } syntactic feature in text \textfeat{fem} [fem]
\dcopy{. . . } deleted copy (strike-out)1 \dcopy{the car} the car
\mroot{. . . } morpheme root \mroot{car}

√
car

\ufeat{. . . } unvalued/uninterpretable feature in trees \ufeat{T} [uT:]

\unv{. . . } unvalued/uninterpretable feature \feat{\unv{T}} [uT:]

The \unv command should be used inside a \feat or \textfeat command, but of
course doesn’t have to be. If you want to use an upright φ symbol (φ), use the
\upphi declaration in math mode.

Use the \featuresize{〈size〉} command to adjust the size of features in \feat{. . . }.

The \xbar{. . . } command places a bar over the entire head name. For a prime
symbol instead, you can use use the \pri declaration.

1Requires the ulem package

5

For bracket subscript labels, you can use the \ix{. . . } or \ux{. . . } commands.

{[}\ux{TP} \head{T} [\ux{VP} \head{V} [\ux{DP} D◦]]]
[TP T◦ [VP V◦ [DP D◦]]]

5 Semantics

Formal semantics uses math mode more clearly than most areas of linguistics.
You can use the \form{. . . } command to put anything into math mode. More
recently, semanticists have been writing formulas in text, with mathematical
symbols. Using the text-semantics option will convert these formulas from
math mode to text mode. Some symbols you will want to stay in math mode.
Putting them between $. . . $ often creates errors. Instead, the \ensuremath{. . . }
command will protect them. For short, you can use the \f{. . . } command for
any symbol you want to remain in math mode even as \form{. . . } is redefined
as text mode.

Along with formal expressions, the \readas{. . . } command is used with deno-
tations to write formal expressions out in metalanguage.

J every car K = λQ ∈ Det. ∀y[car(y) = 1→ Q(y) = 1]
read: the function from properties of entities to truth values such that for all
y, if y is a car, then Q(y) = 1

5.1 Operators and Symbols

Operators all require math mode, and putting them in math mode makes source
documents hard to read. These macros simplify the writing of common opera-
tors, and make the source code more intuitive to read.

command purpose source in print
\lam{variable} lambda operator \lam{x} λx
\lamd{var.}{type} lambda operator with domain Dtype \lam{P}{s,t} λP ∈ Ds,t

\all{var.} universal quantifier \all{x} ∀x
\some{var.} existential quantifier \some{x} ∃x
\no{var.} negative quantifier \no{x} ¬∃x
\ddet{var.} iota-operator (definite determiner) \ddet{x} ιx
\pri prime symbol in text or math mode x\pri x′

5.2 Semantic types

The \type{. . . } command is used for writing semantic types. It places its ar-
gument in ordered pair brackets, in math mode. It can be used inside the
arguments of another \type command to get complex types.

6

\type{e,t} 〈e, t〉
\type{e,\type{s,t}} 〈e, 〈s, t〉〉
\type{\type{e,t},\type{\type{e,t},t}} 〈〈e, t〉, 〈〈e, t〉, t〉〉

Since \type places its arguments in math mode, it can be used for ordinary or-
dered pairs as well. For simple types, which don’t require ordered pair brackets,
simply place the type in math mode: e, t ⇒ e, t

The text-semantics option will not put types in text mode. If you really want
semantic types with upright letters, use the \uptype{. . . } command wherever
you’d use \type{. . . }.

5.3 Sets

The \set{. . . } and \varset{. . . } commands are used to write sets. The \set
command is purely for making the source code more intuitive, since \{ is not
exactly hard to type. The \varset command (‘variable set’) writes an abstracted
set. \varset uses a vertical line for ‘such that’. For the older colon notation, use
the \cvarset command.

\set{a, b, c, d} { a, b, c, d }
\varset{x \f{\in} D}{x is happy} { x ∈ D | x is happy }
\cvarset{x}{x is happy} { x : x is happy }

5.4 Functions

Use the command \funcnot{. . . }{. . . }{. . . }{. . . }{. . . }, which allows quick writ-
ing of functions in an explicit functional notation (hence the name). The first
argument is the variable representing the function; the second is the domain of
the function, the third is the range, the fourth is the argument variable, and
the fifth are the truth conditions.

\funcnot{f}{D}{R}{y}{1 iff \form{y} is a bandit}

With no options : f : D → R
∀y ∈ D, f(y) = 1 iff y is a bandit

With text-semantics option : f : D → R
∀y ∈ D, f(y) = 1 iff y is a bandit

Functions can be embedded in others by putting the second function in the
truth-conditions of the first

\funcnot{f}{D\ix{e}}{D\ix{et}}{x}{%
\funcnot{g}{D\ix{e}}{D\ix{t}}{y}{1 iff \form{y} is tall}%
}%

7

f : De → Det

∀x ∈ De, f(x) = g : De → Dt

∀y ∈ De, g(y) = 1 iff y is tall

To write a function in array format requires math mode and the array environ-
ment. This is inconvenient, so the following macros simplify this.

1. The \fleft (function left) declaration gives the left bracket.

2. The \func{domain}{range} command is used for each line of the function.

3. The \fright (function right) declaration gives the right bracket.

To write the function { 〈a, 1〉, 〈b, 2〉 }:
\fleft%
\func{a}{1}%
\func{b}{2}%
\fright%

[
a → 1
b → 2

]

These macros can be used recursively.

\fleft%
\func{a}{% range of a
\fleft \func{c}{1}%

\func{d}{2}%
\fright}% end of range of a
\fright%

[
a →

[
c → 1
d → 2

]]

5.5 Scope brackets with \scopebox

The \scopebox{. . . } command places brackets ([]) around an expression to
signal its scope. This command allows the use of multi-line scope brackets, to
make things easier to read. If you put more than one scope box inside the largest
one, you should use \innerscopebox{. . . } for the inside ones.

Compare the following formulas, with simple brackets, and then with \scopebox{. . . }.

∀x[dog(x)& on(the car)(x)→ ∃y[cat(y) & ∃e[perfective(e) & chase(x)(y)(e)]]]

∀x

 dog(x) & on(the car)(x) →

∃y
[

cat(y) &
∃e[perf(e) & chase(x)(y)(e)]

]
Note: These commands force their expression to be in text mode, because they
rely on \pbox{. . . }, which is part of the pbox package.
Note 2: Sometimes you may need to add spaces to the outside scopebox (with

˜) to make sure it’s the widest.

8

5.6 Denotation brackets

Several commands involve double brackets for denotations (or interpretation
functions). These all require the stmaryrd package, which is called by the
ling-macros package.

Many commands involve assignment modifications. These modifications are
already in math mode, so any use of $ in them will lead to an error. If you need
to use math mode inside these, use \ensuremath{. . . } or \f{. . . }.

command purpose source in print

\den{. . . } denotation brackets \den{car} J car K
\dena{. . . }{. . . } denotation w/ assignment \dena{car}{g} J car Kg
\denac{. . . }{. . . } d.b. w/ asst., context c \denac{car}{g} J car Kgc

\denamod{..}{..}{..} d.b. w/ modified assignment \denamod{car}{g}{x\to 1} J car Kg
x→1

\denacmod{..}{..}{..} d.b. w/ modified asst, context c \denacmod{car}{g}{x\to 1} J car Kg
x→1
c

There is also a series of commands which are identical to those of the \den
family, except that the text is already in the object language font (\ol). These
commands declutter the source code. With \ol set to \itshape:

command purpose source in print

\denol{. . . } denotation brackets \denol{car} J car K
\denola{. . . }{. . . } denotation w/ assignment \denola{car}{g} J car Kg
\denolac{. . . }{. . . } d.b. w/ asst., context c \denolac{car}{g} J car Kgc

\denolamod{..}{..}{..} d.b. w/ modified assignment \denolamod{car}{g}{x\to 1} J car Kg
x→1

\denolacmod{..}{..}{..} d.b. w/ modified asst, context c \denolacmod{car}{g}{x\to 1} J car Kg
x→1
c

9

	About ling-macros
	General linguistics
	Ordinary macros
	Macros for KUBluegb4e environment
	The KUBluecontext environment

	Phonology
	Syntax
	Semantics
	Operators and Symbols
	Semantic types
	Sets
	Functions
	Scope brackets with KUBlue"026E30F scopebox
	Denotation brackets

