
The recipecard class∗

Ben Reish
ben.reish@alumni.oc.edu

October 23, 2006

Abstract

The point of this package is to typeset recipes. I tried cooking.sty and
did not like the results so I am making my own. Recipecard is an alternate
method for typesetting recipes. Created by Ben Reish c©2005

Contents

1 Introduction 1

2 Usage 2
2.1 Class Options . 2
2.2 User Commands . 2

3 Implementation 3
3.1 Class Definition . 3
3.2 Options . 3
3.3 User Commands . 4
3.4 Non-User Commands . 9

1 Introduction

For those who yearn to have typed note cards for their recipes, recipecard has
been created. The user can print out his or her recipes in this class and then cut
the pages along the box outlines for pieces that will fit on a notecard. Hopefully,
multiple dimensions of note cards will be accommodated. This class is based on
the article class. This class is issued under the LATEX2ε Project Public License.

The recipecard class was created to look like a recipe card. The card be-
gins with a title and across from the title is the number of servings the recipe
makes. Then comes three columns of ingredients if there are enough ingredients
and depending on the number of ingredients per column, which can be changed

∗This document corresponds to recipecard.dtx v2.0, dated 2006/10/03.

1

from recipe to recipe. After the ingredients comes the instructions on making the
recipe. Finally, if the user has used the \cookingtime and \cooktemp commands,
those two are below the instructions.

title

instructions

2 Usage

2.1 Class Options

The recipecard class has three Class Options which can be selected at the
\DocumentClass statement. Each option tells the class what size the card output
will be. The options are: fivebysevn (5 inches by 7 inches), fourbysix (4 inches
by 6 inches), and threebyfive (3 inches by 5 inches). The fivebysevn option is
intended for use with 5 inch by 7 inch note cards and places two note cards per
page. The fourbysix option is intended for use with 4 inch by 6 inch note cards
and places two note cards per page. The threebyfive option is intended for use
with 3 inch by 5 inch note cards and places two note cards per page. Originally,
the code should have been able to place four 3 inch by 5 inch note cards per page,
but that just did not work. One other thing that did not work is the ability to
automatically break long recipes onto separate note cards. That is something that
the user will have to take care of when the recipe prints.

The default option is the fivebyseven option. A sample \Documentclass
statement might look like: \documentclass[fourbysix]{recipecard}.

2.2 User Commands

The \ingredient {〈ingredient〉} command adds an ingredient to the next recipe.\ingredient

It is used before the recipe environment because the list it is creating is printed
at the beginning of the next instance of the recipe environment.

The \changeingrdlistnum {〈num〉} command will change the number of in-\changeingrdlistnum

gredients per column to 〈num〉. The user can create his or her own command
to shorten up the command name. It should be used before the instance of the
recipe environment that it is supposed to change. The user can make use of this
command as often as he or she likes. The command will change all the following
instances of the recipe environment as well. For a more uniform look to the
printed card, the user should divide the number of ingredients per recipe by 3 and
round up.

The recipe environment is the staging area for each recipe. Use it to grouprecipe

all the information about each recipe into one area. Its call out looks like:

2

\begin{recipe} {〈title〉} {〈servings〉} . . . \end{recipe}. The instructions for
making the recipe go in between the \begin and \end commands. The \cooktemp
and \cookingtime commands go in with the instructions.

The \cooktemp {〈temp〉} {〈deg〉} macro adds a cooking temperature to the\cooktemp

card. The 〈temp〉 is the numerical temperature. The 〈deg〉 is the units. Put ‘C’
in for 〈deg〉 for Celsius or ‘F’ for Fahrenheit. For example, if the user wanted
350◦ Fahrenheit for the cooking temperature, the command would look like:
\cooktemp{350}{F}

The \cookingtime {〈time〉} command adds a bold face “Cook Time: 〈time〉”\cookingtime

to the bottom of the card.

3 Implementation

3.1 Class Definition

1 \RequirePackage{calc,ifthen,boxedminipage}

The user will need the calc, ifthen, geometry, and boxedminipage packages for
the recipecard class to operate correctly. These should be available with the
user’s distribution of LATEX2ε or from CTAN at www.ctan.org.

The geometry package is used because it seems easier than attempting to use
the old style layout commands.

After requiring the geometry package, the code creates new boolean variables
and token registers for use later in the class.
2 \RequirePackage[letterpaper,noheadfoot]{geometry} %showframe

3 \newboolean{fiveseven} \newboolean{foursix} \newboolean{threefive}

4 \newtoks{\@ta} \newtoks{\@tb} \newtoks{\@listone} \newtoks\@listtwo

5 \newtoks\@listthree \def\@nil{}

6

7 \renewcommand{\normalsize}{\fontsize{10pt}{12pt}\usefont{T1}{ptm}{m}{n}%

8 \selectfont}

These commands are general specifications needed by any class. First, select the
default font. Then set up the page layout in general. After that, create a couple
of length dimensions so that each size of notecard can have its own height and
width of the ingredient columns.
9 \setlength{\textwidth}{7in} \setlength{\textheight}{10.25in}

10 \setlength{\paperwidth}{8.5in} \setlength{\paperheight}{11in}

11 \newlength{\@ingredientlist} \newlength{\@cardheight}

12 \newcommand{\textdegree}{\circ}

The \textdegree command is needed for the \cooktemp command which will
be described later. It is made available to the user at any point in the class by
defining a command for it.
3.2 Options

Next, the class-specific options are defined.
13 \DeclareOption{fivebyseven}{\geometry{%

14 body={7in,10.25in},left=.75in}% centering,right=.75in

3

15 \setlength{\@ingredientlist}{2in} \setlength{\@cardheight}{5in}%

16 \setboolean{fiveseven}{true}}

The fivebyseven option resets the page layout so that two 5 inch by 7 inch
notecards can be placed on the front of one page. There is a little extra space
so that the user can cut the pieces out without harming either notecard. This
option sets the 〈cardheight〉 to 5 inches and the ingredient list column width,
〈ingredientlist〉, to 2 inches. Finally, it sets the fiveseven boolean to true so that
any other things the class might need on a size specific basis can be set inside an
if statement later as necessary.
17 \DeclareOption{fourbysix}{\geometry{%

18 body={6in,8.15in},left=.75in}%right=1.75in

19 \setlength\@ingredientlist{1.75in}%

20 \setlength\@cardheight{4in} \setboolean{foursix}{true}}

The fourbysix option resets the page layout so that two 4 inch by 6 inch notecards
can be placed on the front of one page. There is a little extra space so that the
user can cut the pieces out without harming either notecard. This option sets the
〈cardheight〉 to 4 inches and the ingredient list column width, 〈ingredientlist〉, to
1.75 inches. Finally, it sets the foursix boolean to true so that any other things
the class might need on a size specific basis can be set inside an if statement later
as necessary.
21 \DeclareOption{threebyfive}{\geometry{%

22 landscape,body={10.25in,6.25in},left=.375in}%,right=.375in

23 \setlength\@ingredientlist{1.5in}%

24 \setlength\@cardheight{3in} \setboolean{threefive}{true}}

The threebyfive option resets the page layout so that four 3 inch by 5 inch
notecards can be placed on the front of one page. There is a little extra space
so that the user can cut the pieces out without harming either notecard. This
option sets the 〈cardheight〉 to 3 inches and the ingredient list column width,
〈ingredientlist〉, to 1.5 inches. Finally, it sets the threefive boolean to true so
that any other things the class might need on a size specific basis can be set inside
an if statement later as necessary. Note: The class does not print four 3” by 5”
notecards to the page. It only gets two to the page.
25 \DeclareOption{nothing}{\relax}

26

27 \DeclareOption*{\typeout{What’s \CurrentOption?}}

28

29 \ExecuteOptions{fivebyseven,nothing}

30

31 \ProcessOptions\relax

Once the options are defined, the class must be given a default option to use if
none is specified by the user. In this case, the fivebyseven option is chosen.
32

3.3 User Commands

The following commands are used to fill in the recipe cards’ information.

4

\ingredient The \ingredient command is used to define the list of ingredients in the recipe.
It is the user-friendly way to add an ingredient. It uses a counter, 〈ingred@cnt〉,
to keep track of how many ingredients have been added. The counter is used
later. Then the command calls \@ddtoNgrList and passes its argument off to
that command. The argument of this command can be any length, but remember
that it will be wrapped to the next line if it is too long because of the width of
the ingredient columns.
33 \newcounter{ingred@cnt}\setcounter{ingred@cnt}{0}

34 \newcommand{\ingredient}[1]{%

35 \stepcounter{ingred@cnt}

36 \@ddtoNgrdList{#1}

37 %\typeout{\string\ingredient{#1}}

38 }

\changeingrdlistnum The \changeingrdlistnum macro allows the user to modify the number of ingre-
dients listed vertically before the class switches to the next column of ingredients.
The default value is 7. The number of rows in the ingredient list columns is stored
in the 〈ingred@list〉 counter.
39 \newcounter{ingred@list} \setcounter{ingred@list}{7}

40 \newcommand{\changeingrdlistnum}[1]{%

41 \setcounter{ingred@list}{#1}

42 }

recipe The recipe environment has several things going on. First, the class creates the
card width dimension, 〈@cardwidth〉. Depending on the size of cards the user wants
at the \documentclass instance, the length of 〈@cardwidth〉 is different. Any other
global settings that change due to the size of the card are to be implemented here.
Then the class creates several lengths and a save box called \@reccardbox to be
used with the \begin{lrbox} command. The boolean variables set during the
options section of the class come into play here.
43 \newdimen{\@cardwidth}

44 \ifthenelse{\boolean{fiveseven}}{\setlength\@cardwidth{7in}}{}

45 \ifthenelse{\boolean{foursix}}{\setlength\@cardwidth{6in}}{}

46 \ifthenelse{\boolean{threefive}}{\setlength\@cardwidth{5in}%

47 \changeingrdlistnum{4}

48 \renewcommand{\normalsize}{\fontsize{8pt}{10pt}%

49 \usefont{T1}{ptm}{m}{n}\selectfont}}{}

For the 3 inch by 5 inch card, the font needs to be smaller to help fit the same
amount of information on the card. The \normalsize command is renewed to
allow the smaller font.
50 \newsavebox{\@reccardbox} \newdimen{\@reccardh} \newdimen{\@rectemp}

51 \newdimen{\@hruleoffset} \newdimen{\@rectempa}

52 \newdimen{\@rectempb} \newdimen{\@rectempc} \newdimen{\BR@recd}

53 \setlength\@rectemp{\@cardheight-2\fboxsep-2\fboxrule-17pt}

54 \setlength{\@hruleoffset}{(\@cardwidth-2\fboxsep-2\fboxrule-.714\@cardwidth)/2}

The code sets the length of 〈@rectemp〉 to the height of the card minus two times
the separation distance for a framed box minus two times the thickness of the

5

framed box line minus seventeen points for the title font. The 〈@hruleoffset〉
length is the distance needed to center the horizontal rule that goes below the
ingredients and above the instructions.
55 \newenvironment{recipe}[2]{%

56 \ifthenelse{\equal{#2}{\@empty}}{\def\@recserv{}}%

57 {\def\@recserv{Serves: #2}}

58 \def\@rectitle{#1 \raggedright}

The author assumes that one would enter a title for each recipe so the most likely
unused argument would be the second one which is the number of serving the
recipe makes. The code checks to see if the second argument is empty. If it is
the code defines the internal command, \@recserv to be empty. If the it is not
empty, the code defines \@recserv as “Serves: 〈servings〉.” Then the code defines
the internal command \@rectitle as the first argument of recipe environment,
〈title〉 and applies the \raggedright command so that LATEX does not try to
stretch the title all the way across the card.

Then the code checks the second and third ingredient lists, \@listtwo and
\@listthree, for emptiness. The code assumes that there will be at least one or
two ingredients per recipe and therefore does not check the first list. If either is
empty, the code enters a blank list \item command into the empty list to avoid an
error when LATEX processes an empty ingredient list token in a list environment.
59 \ifthenelse{\equal{\the\@listtwo}{\@empty}}{\@listtwo={\item {}}}{}

60 \ifthenelse{\equal{\the\@listthree}{\@empty}}{\@listthree={\item {}}}{}

Next, the code begins an lrbox environment which is like a \savebox, but as an
environment, it can have more than just static text put in it. This is used so that
the whole card in its entirety (title, ingredients, instructions, cooking times and
temperatures) can be placed in a \boxedminipage command in the ending of the
recipe environment. The \boxedminipage command creates the outline for the
card for cutting purposes.

Inside the lrbox, the code starts a minipage environment which will contain
all the text on the card. Its width is the card width minus twice the thickness of
the line that surrounds the boxedminipage minus twice the separation distance
between the line and the inside text.

Then the code changes the font for the title and servings; then places the title
with a horizontal fill white space between it and the number of servings; and then
switches back to normal font.
61 \begin{lrbox}{\@reccardbox}

62 \begin{minipage}[t]{\@cardwidth-2\fboxsep-2\fboxrule}

63 \noindent\fontsize{14.4}{17} \usefont{T1}{pzc}{mb}{it}%

64 \@rectitle\hspace{\fill}\@recserv\normalsize\normalfont\par

Here begins three separate minipage instances; one for each list of ingredients.
The first and second minipage instances are separated with a 3 point space, as
are the second and third minipage instances. Each minipage is 〈@ingredientlist〉
wide which is set depending upon the size of card the user is wanting.

Inside each of the three minipage instances is a \begin{list} command.
This command defines a list environment that better meets the needs of the

6

recipecard class. The 〈leftmargin〉 distance indents the text by 1
4 inch which

makes the text that is word wrapped to the next line indent a noticeable amount.
The 〈itemindent〉 pulls the first line of each item back out to the edge of the
line instead of being indented in a 1

4 inch. The code also adds a \raggedright
command to the end of the list definition which causes LATEX to not try to stretch
the text of the item across the whole line. After the list is defined, the contents
of \@listone are placed in the list environment and the environment is closed.
65 \begin{minipage}[t]{\@ingredientlist}

66 \begin{list}{}{\setlength\leftmargin{.25in}%

67 \setlength\itemindent{-.25in}\raggedright}\the\@listone%

68 \end{list}\end{minipage}

69 \typeout{first box}

70 \hspace{3pt plus 0pt minus 6pt}

71 \begin{minipage}[t]{\@ingredientlist}

72 \begin{list}{}{\setlength\leftmargin{.25in}%

73 \setlength\itemindent{-.25in}\raggedright}\the\@listtwo%

74 \end{list}\end{minipage}

75 \typeout{second box}

76 \hspace{3pt plus 0pt minus 6pt}

77 \begin{minipage}[t]{\@ingredientlist}

78 \begin{list}{}{\setlength\leftmargin{.25in}%

79 \setlength\itemindent{-.25in}\raggedright}\the\@listthree%

80 \end{list}\end{minipage}

81 \typeout{third box}

82 \hspace{\fill}

83 \par

Following the three lists of ingredients, the code skips 3 points vertically and then
skips the value of 〈@hruleoffset〉 horizontally. Then the code places a line down
to separate the ingredients from the instructions. Next, the code skips 3 points
vertically before starting the instructions.

The \everypar token is expanded at the beginning of each new paragraph.
This code places a 1em space () indent at the start each paragraph. Because of
this, to obtain a fully left aligned sentence or statement, the user will need to use
a command like: \hspace{-1em}.
84 \vspace{3pt} \hspace{\@hruleoffset}%

85 \rule{.714\@cardwidth}{0.7pt}%

86 \par\vspace{3pt} \hspace{1em}%

87 \everypar={\hspace{1em}}

88 }{%

Here begins the commands that are executed at the end of the user-entered text.
The code places \@cooktime and \@cooktemp at the bottom left and right, respec-
tively, of the instructions. Then the code ends the overall minipage and lrbox.
89 \par \noindent \@cooktime \hspace{\fill} \@cooktemp%\par

90 \end{minipage}\end{lrbox}

91 \vspace{-.25in} \hspace{-21pt}

Here the code inserts the contents of the lrbox, \@reccardbox, into a boxed
minipage. Then the clean up code starts. Zero the counter, empty the list tokens,

7

and empty the cooking commands. The cooking commands use a global definition
because they are placed inside the recipe environment, which causes the changes
made inside the environment to be reset when the environment ends. The global
definition steps out of the environment and makes the changes so that they do not
reset when the environment closes.
92 \begin{boxedminipage}[t]{\@cardwidth}%

93 \rule[-\@rectemp]{0pt}{\@rectemp} \hspace{-4pt}

94 \usebox{\@reccardbox}%

95 \end{boxedminipage}

96 \ifthenelse{\boolean{threefive}}{\hspace{.5ex}}{\par\vspace{.35in}}

97 \setcounter{ingred@cnt}{0}%

98 \@listone={}

99 \@listtwo={}

100 \@listthree={}

101 \gdef\@cooktime{} \gdef\@cooktemp{}

102 \everypar={}

103 %\typeout{\string\pagetotal\space\the\pagetotal}

104 %\typeout{\string\@listone\space‘\the\@listone’}

105 }

\cookingtime The \cookingtime {〈time〉} macro adds a cook time to the card. This command
uses an internal command, \@cooktime, to place text on the recipe card. The
recipe environment has the internal command called out right after the instruc-
tions which causes \@cooktime to be expanded whether or not the user has used
\cookingtime. If the user has not used \cookingtime, then the \@cooktime com-
mand expands to an empty space. If he or she has used it, then \@cooktime is
defined as “Cook Time: 〈time〉” which is expanded when the recipe environment
calls the \@cooktime command. The \hspace{-1em} is because this command is
always at the left of the new paragraph, which because of the \everypar com-
mand in the recipe environment, has a 1em indent before it. The negative one
here moves the text back up to the edge. The author wanted the cook time to
stand out so the bold face font was used.

106 \def\@cooktime{}

107 \newcommand{\cookingtime}[1]{%

108 \def\@cooktime{\hbox{\hspace{-1em}\bfseries Cook Time: #1}}

109 }

\cooktemp The \cooktemp command uses an internal command, \@cooktemp to insert the
cooking temperature into the recipe. As with \@cooktime, \@cooktemp is called
by the recipe environment regardless of it being empty or not. Again, the author
wanted the cooking temperature to stand out so the code uses the bold font.

110 \def\@cooktemp{}

111 \newcommand{\cooktemp}[2]{%

112 \def\@cooktemp{\hbox{\bfseries %

113 Temperature: #1\textdegree\hspace{-1.5pt}#2}}

114 }

8

3.4 Non-User Commands

Here are the commands that only the class may call. These commands help to
hide and safeguard the inner workings of the class.

\@ddtoNgrdList The \@ddtoNgrdList {〈ingredient〉} adds the latest ingredient to one of the token
lists for the printout of the recipe card. This is an internal function and is not
user friendly. It calculates which column to put the current ingredient into using
the number of ingredients listed so far and the maximum number allowed in each
column.

115 \newcounter{@tempa}\newcounter{@tempb} \newcounter{@tempc}

116 \newcommand{\@ddtoNgrdList}[1]{%

117 \setcounter{@tempa}{\theingred@list+1}%

118 \setcounter{@tempb}{2*\theingred@list+1}%

119 \setcounter{@tempc}{3*\theingred@list+1}%

After initializing the limit numbers for the columns of ingredients, decide what
column (1, 2, or 3) to put the latest ingredient into. If this is the first time through
the sequence, clear the lists.

120 \ifthenelse{\value{ingred@cnt}=1}{%

121 \@ta={} \@listone={} \@listtwo={} \@listthree={}%

122 }{}

123 \ifthenelse{\value{ingred@cnt}<\value{@tempa}}{%

124 %\typeout{\string\@listone :\space\the\@listone}

125 \expandafter\@ta\expandafter=%

126 \expandafter{\the\@listone \item #1}

127 \@listone=\@ta}{%

128 \ifthenelse{\(\value{ingred@cnt}>\value{@tempa}%

129 \or \value{ingred@cnt}=\value{@tempa}%

130 \)\and\value{ingred@cnt}<\value{@tempb}}{%

This if statement states, “if the value of 〈ingred@cnt〉 is greater than the value of
〈@tempa〉 (which is the number of ingredients per column plus one) or equal to
the value of 〈@tempa〉” and “the value of 〈ingred@cnt〉 is less than the value of
〈@tempb〉 (which is the number of ingredients per column times two plus one).”
If the previous is true the code then evaluates the following statement.

131 \expandafter\@ta\expandafter=%

132 \expandafter{\the\@listtwo \item #1}

The \expandafter’s skip the following token, so the previous statement, on
the first time through reads “\the\@listtwo” which expands to the contents
of \@listtwo and then returns to the beginning of the statement. Then the code
reads back through the statement. It has used the \expandafter’s so they are not
there for the second reading of the statement. The second time through, the state-
ment reads, “\@ta={\item 〈ingredient1 〉 ... \item (now it inputs the contents
of the first argument of the command).” Now \@ta is the whole of \@listtwo
plus the statement, “\item 〈ingredient5 〉” (for example). Lastly, the code sets
\@listtwo to the value of \@ta.

133 \@listtwo=\@ta}{%

134 \ifthenelse{\(\value{ingred@cnt}>\value{@tempb}%

9

135 \or \value{ingred@cnt}=\value{@tempb}\)\and%

136 \value{ingred@cnt}<\value{@tempc}}{%

137 \expandafter\@ta\expandafter=%

138 \expandafter{\the\@listthree \item #1}

139 \@listthree=\@ta}{%

The first two columns are pretty self-explanatory. If the ingredient counter
(〈ingred@cnt〉) is greater than the number of items per column (〈ingred@list〉)
times 3, then an error is necessary. To continue processing, the class adds the
offending item to the last column any way but puts out an error. As noted in the
error message, the way around the error is to use \changeingrdlistnum command
to change the number of ingredients allowed per column.

140 \ifthenelse{\(\value{ingred@cnt}>\value{@tempc}%

141 \or\value{ingred@cnt}=\value{@tempc}\)}{%

142 \setcounter{ingred@cnt}{2}

143 \expandafter\@ta\expandafter=%

144 \expandafter{\the\@listthree \item #1}

145 \@listthree=\@ta}{%

146 \ClassError{recipecard}{More than \the@tempc\space ingredients for

147 one recipe card}{Unfortunately, the card

148 design only allows for three columns of a total of

149 \the@tempc\space ingredients. Hint: change the value of

150 \string\changeingrdlistnum.

151 Congratulations! You have used more ingredients

152 than this Class was designed for.}

153 }

154 }

155 }

156 }

157 %\typeout{ingred@cnt\space\theingred@cnt}

158 }

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@cardheight
. 11, 15, 20, 24, 48

\@cardwidth 38–
41, 49, 57, 80, 87

\@cooktemp
. . 84, 96, 105, 107

\@cooktime
. . 84, 96, 101, 103

\@ddtoNgrdList . 31, 110

\@empty 51, 54, 55

\@hruleoffset 46, 49, 79

\@ingredientlist . .
. 11, 15,
19, 23, 60, 66, 72

\@listone 4, 62, 93, 99,
116, 119, 121, 122

\@listthree 5,
55, 74, 95, 116,
133, 134, 139, 140

\@listtwo . . . 4, 54,
68, 94, 116, 127, 128

\@reccardbox . 45, 56, 89

\@reccardh 45

\@recserv . . . 51, 52, 59

\@rectemp . . . 45, 48, 88

\@rectempa 46

\@rectempb 47

\@rectempc 47

\@rectitle 53, 59

10

\@ta 4, 116, 120,
122, 126, 128,
132, 134, 138, 140

\@tb 4

B
\boolean 39–41, 91
\BR@recd 47

C
\changeingrdlistnum

. . . . 2, 34, 42, 145
\circ 12
\ClassError 141
\cookingtime 3, 101
\cooktemp 3, 105
\CurrentOption 25

D
\DeclareOption

. . . . 13, 17, 21, 25

E
environments:

recipe 38
environments:recipe

recipe 2
\equal 51, 54, 55
\everypar 82, 97
\ExecuteOptions . . . 26

F
\fboxrule . . . 48, 49, 57

\fboxsep 48, 49, 57
\fill 59, 77, 84
\fontsize 7, 43, 58

G
\gdef 96

I
\ingredient 2, 28
\item 54, 55,

121, 127, 133, 139
\itemindent . . 62, 68, 74

L
\leftmargin . . 61, 67, 73

N
\newboolean 3
\newcounter . 28, 34, 110
\newdimen . . . 38, 45–47
\newenvironment . . . 50
\newlength 11
\newsavebox 45
\newtoks 4, 5
\noindent 58, 84
\normalfont 59
\normalsize . . . 7, 43, 59

P
\paperheight 10
\paperwidth 10
\ProcessOptions . . . 26

R

recipe (environment)
. 2, 38

\relax 26

\renewcommand 7, 43

\RequirePackage . . 1, 2

\rule 80, 88

S

\selectfont 8, 44

\setboolean . . 16, 20, 24

\space 98, 99,
119, 141, 144, 152

\stepcounter 30

T

\textdegree 12, 108

\textheight 9

\textsuperscript . . 12

\textwidth 9

\the@tempc . . . 141, 144

\theingred@cnt 152

\theingred@list 112–114

U

\usebox 89

\usefont 7, 44, 58

V

\vspace . . 79, 81, 86, 91

Change History

v1.0

General: Initial version 1

v1.2

\@ddtoNgrdList: Implemented the
ability to change how many
rows were in each column of the
ingredients list. 9

\changeingrdlistnum: Added the
ability to manipulate how many
rows are in each column of the
ingredients list. 5

v1.3

\cookingtime: Added the cook

time to the card. 8

\cooktemp: Added the cooking tem-
perature to the card. 8

recipe: Added support for 5x7
notecards. 5

v1.5

recipe: Added support for 4x6 and
3x5 notecards. 5

v1.52

recipe: Fixed a bug in the 3x5
notecard display that was drop-
ping the third list of ingredients
to the bottom of the first list.

11

Also added an indent to para-
graphs in the instructions sec-
tion of the recipe environment. 5

v1.53
General: Added figure to help de-

scribe the layout of the recipe
card. 2

v1.6
General: Added more verbage to

the explanations of how the
code operates. 1

v1.7
General: Added sections and sub-

sections to class documenta-
tion. 1

v2
General: Added table of contents to

first page. 1

12

