
The runcode package – troubleshooting

Haim Bar and HaiYing Wang

August 17, 2022

When using the runcode package, you have to be aware of some usage rules, so this document
attempts to anticipate all the possible user or system errors, and show how to interpret the output
and fix the problems.

Before you start using runcode

Before using the package make sure that you have Python (version 3.x) installed and in your
path. Also, you must install the required LATEX packages: morewrites, tcolorbox, xcolor, inpu-
tenc, textgreek, filecontents, xifthen, xparse, xstring, and fvextra. The minted package is optional
but recommended.

If you try to compile this file from its tex source, you will get errors (because the purpose of this
document is to demonstrate errors and how to fix them.) It is assumed that you are using a cloned
runcode repository, so files used in this document are ones in the directory structure as it is stored
on github.

The files generated by runcode live in the project’s directory, so we assume the user has the
necessary permissions to create, modify, delete files and subfolder.

For the server mode the folder must contain a configuration file for each statistical language used
(R, julia, matlab, Python). If such files don’t exist, runcode will create them with default values.
Remember to check if the defaults work for you. For example, you may need to change the port
number, or increase the timeout parameter.

Some possible errors and solutions

Problem:
runcode functions are not executed.

Possible reason and solution:
Check if you enabled the shell-escape option when the document is compiled. If not, you will see
warnings in the project’s log file. For example:

Package ifplatform Warning:

shell escape is disabled, so I can only detect \ifwindows.

! Package minted Error: You must invoke LaTeX with the -shell-escape flag.

Possible reason and solution:
Check if the command-line tools you invoke from runcode are installed, and in your path (e.g., R,
Julia, Matlab, Python).

Notes: The runcode package can call any command-line function when it is used in ‘batch-mode’.
That is, when the command-line tool is called separately each time a computation is performed from
within the tex document (upon compilation). When using R, Julia, Python, or Matlab, the user
can maintain a continuous session to the corresponding command-line tool. This saves initialization
time, and allows to keep a session’s history, for performing steps sequentially and efficiently. This is
the recommended way to use runcode with R, Julia, Python, and Matlab. At the present time, no
other languages are supported for ‘server-mode’ operation.

Problem:
Code highlighting is not working properly.

1

Possible reason and solution:
When code is included in the manuscript, it is done via the \showCode command. By default, the
code-highlighting it done via the minted package. If code highlighting doesn’t work, check if the
minted package is installed properly. Python (3.x) also has to be installed, and also the Pygments
package (which has to be installed via pip3). If you have trouble with the installation of minted,
use the nominted option when you include the runcode package. This will cause runcode to use the
fvextra for code display, instead.

Problem:
Embedded code is not shown.

Possible reason and solution:
Check if you specified the source file correctly. \showCode prints the source code, using minted for
a pretty layout. It takes 4 arguments. Arg #1 is the programming language, Arg #2 is the source
file name, Args #3 and #4 are the first and last line to show (optional). If the source file name does
not exist, you will get a red and bold error message. For example:

\showCode{R}{Sim23.R}

showCode: File Sim23.R does not exist!
In contrast, when the file exists, as in this example

\showCode{R}{paper/supplement/Code/code1.R}

the file will be shown correctly:

set.seed(0) ## fix the random number

x = rnorm(100)

y = 1+x+rnorm(100)

fit = lm(y~x)

print(summary(fit))

Possible reason and solution:
If the programming language is misspecified or not recognized by minted or fvextra, the code high-
lighting may not be shown correctly.

\showCode{matlab}{paper/supplement/Code/code1.R}

set.seed(0) ## fix the random number

x = rnorm(100)

y = 1+x+rnorm(100)

fit = lm(y~x)

print(summary(fit))

Possible reason and solution:
If the line number in Arg #3 exceeds the actual number of lines in the code, the code box will
be empty, and the LATEX compiler will show an error message in its log file (‘Empty verbatim
environment’). For example:

\showCode{R}{paper/supplement/Code/code1.R}[6][8]

Some LATEX compilers will stop the compilation when they encounter ‘Empty verbatim environment’
but will allow you to manually continue the compilation (and the generated pdf will contain an empty
box with no code in it.)
If the number in Arg. #4 is greater than the number of lines in the file, minted will show the code
up to the last line (so this misspecification is harmless).

\showCode{R}{paper/supplement/Code/code1.R}[4][8]

fit = lm(y~x)

print(summary(fit))

Notes: Remember that the compiler is case-sensitive, so test.R is not the same as Test.R.

Problem:
Errors when running code.

2

Possible reason and solution:
In batch-mode with \runExtCode, if the source file name does not exist, you will get a red and bold
error message:
\runExtCode{julia}{test2.jl}{test2}

runExtCode: File test2.jl does not exist!
Again, check for spelling errors in the file name, which is the most common reason for such problems.

Similarly, when using the server-mode of runcode, we can use the shortcuts to R, Julia, Python, or
Matlab instead of \runExtCode. The usage is similar, but the language name is inferred from the
command. For example, we can have:
\runR{paper/supplement/Code/code1.R}{testWithrunR}

If the source code file doesn’t exist, we get an error message as with \runExtCode

\runJulia{test2.jl}{test2}

runExtCode: File test2.jl does not exist!

Possible reason and solution:
Check that the correct executable is used, since \runExtCode requires the specific program and
command line arguments. For example, using R as the executable will not work in the following
example:
\runExtCode{R}{paper/supplement/Code/code1.R}{testWithR}

It will create the file generated/testWithR.tex, and in it you will see
ARGUMENT 'paper/supplement/Code/code1.R' __ignored__

This is a fatal error – the compiler will get stuck because it will wait for the code to finish, and the
compilation process will have to be terminated by the user. The correct way to use \runExtCode

with R in batch-mode is
\runExtCode{Rscript --save --restore}{paper/supplement/Code/code1.R}{test}

See the package’s documentation for more working examples.

Possible reason and solution:
Check for syntax errors int the code. In the server-mode only, \inln, \inlnR, \inlnJulia, \inlnPython,
and \inlnMatlab commands can be used to execute short source code and embed the resulting out-
put within the text. It takes 3 arguments. Arg #1 is the executable program; Arg #2 is the source
code Arg #3 is the type output (if skipped or with empty value the default type is inline; vbox =
verbatim in a box).
If the code contains a syntax error, the error produced by the statistical software will be embedded
in the text. For example, if we use Factorial, instead of the real function (factorial) we get an error
message:
The factorial of 6 is \inlnR{```cat(Factorial(6))```}.

would produce the following:
The factorial of 6 is Error in Factorial(6) : could not find function ”Factorial”.

Such errors are not due to LATEX syntax or compilation, so runcode doesn’t highlight them. Auto-
matically identifying and highlighting such errors would require case-by-case analysis of the output
of specific command-line tools. For now, it’s up to the user to check the code before it is embedded
in the tex document, and to check the output after the compilation.

Notes: Recall that \runExtCode which is used to run an external code takes 4 arguments: Arg #1
is the executable program, Arg #2 is the source file name, Arg #3 is the output file name (optional
- if not given, the counter codeOutput is used). Arg #4 controls when to run the code (optional - if
not given, it listens to \runcode; run = force the code to run; cache or anything else = use cache).
The first argument can be any command-line executable, including user-defined program names
(compiled code, aliases, etc.). Because of that, we do not perform validity check before trying to
execute it. For example, the following will not produce any error message:
\runExtCode{C}{test.R}{}

but it will be possible to see an empty file in the generated folder. This will be obvious to the
user once the \includeOutput command is executed in order to embed results in the compiled pdf
document.

Problem:
Output is not produced, or unexpected/incorrect results are shown.

3

Possible reason and solution:
This could happen due to incorrect usage of the \includeOutput function, which is used to embed
the output from executed code. It takes 2 arguments: Arg #1 is the output file name (optional - if
not given, the counter codeOutput is used). Arg #2 is the optional type output with default ”vbox”
(vbox = verbatim in a box, tex = pure latex, or inline). For example, if we run the code
\runR{paper/supplement/Code/code1.R}{testWithrunR}

Then to see the output, the correct usage is
\includeOutput{testWithrunR}[vbox]

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-1.5900 -0.8153 -0.1531 0.6379 2.8379

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.95130 0.09629 9.88 <2e-16 ***

x 1.13879 0.10960 10.39 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9626 on 98 degrees of freedom

Multiple R-squared: 0.5242, Adjusted R-squared: 0.5193

F-statistic: 108 on 1 and 98 DF, p-value: < 2.2e-16

Although the physical file is named generated/testWithrunR.tex, we drop the generated/ prefix and
the .tex suffix. If we do include them, the file will not be found and we’ll get an error message:
\includeOutput{testWithrunR.tex}[vbox]

Output file generated/testWithrunR.tex.tex not found. Check the file name (it may
be that the file name was given with the suffix .tex. If so, remove it). If the file name is
correct the problem may be because code execution is disabled and no cache is available. If
so, force the code to run again (using the [run] option).

Notes: If anything other than vbox, tex, or inline is provided in the square brackets when using
\includeOutput, the output will be embedded in the document as plain text. While no error or
warning is raised, this may cause problems in the compilation of the tex file and therefore should
be avoided. (For example, if the output contains underscores then the compiler will report an error
because it would appear that math symbols are used in text mode).

Possible reason and solution:
When using one of the inln functions, the code does not produce any output. In some cases it is
perfectly fine if embedded code does not produce output, but when using \inln this is not the case,
so runcode checks if the command used within \inln produced a zero-byte output file. If it did,
runcode will show an appropriate message, like in the following example. Note that the reason no
output is produced is that file.csv does not exist.
The number of columns is \inlnR{```dat <- read.csv("file.csv"); cat(ncol(dat))```}.

This will result in:
The number of columns is **ZERO BYTES IN OUTPUT**.

Possible reason and solution:
When using one of the inln functions, more than one line of output is produced by the code. The
\inln commands are designed to put a single string in a line, so the code which produces the output
should not include a new line. For example, the following is incorrect:
The factorial of 6 is \inlnR{```cat(factorial(6),"\\n")```}.

The factorial of 6 is **ZERO BYTES IN OUTPUT**. The correct way is:

4

The factorial of 6 is \inlnR{```cat(factorial(6))```}.

which produces the following: The factorial of 6 is 720.
Similarly, if we want to print more than a one-line string, we should use the vbox option (or use
\includeOutput.) For example,
A matrix \inlnR{```matrix(1:9,ncol=3,nrow=3)```}.

Will appear like this: A matrix [,1] [,2] [,3] [1,] 1 4 7 [2,] 2 5 8 [3,] 3 6 9.
A matrix \inlnR{```matrix(1:9,ncol=3,nrow=3)```}[vbox].

Will look better: A matrix

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

.
Possible reason and solution:
This type of problem can also be due to invalid output in the cache files. If for some reason, the cache
files contain special characters or an underscore in text-mode, then the output will be corrupted. It
is recommended to clear the cache, and if server-mode is used to also restart the server. For example,
suppose that the directory of the project is called proj, and we’re using Python in server-mode. From
the command line, run the following:

cd proj

rm -f proj.aux generated/*.txt nohup.out proj.synctex.gz

python3 -c 'from talk2stat.talk2stat import client; client("./","python","QUIT")'

rm -f serverPIDpython.txt pythondebug.txt talk2stat.log

Then, recompile the project.

Possible reason and solution:
Invalid, missing, or unexpected output can be due to having another runcode running on the system,
but in another directory. If this happens, you will see a message in the log file saying that the server
is already running. When multiple projects attempt to connect with the statistical software through
the same port, only the first invocation will succeed but the subsequent ones will be connected to
the first one. This will create unexpected results for all projects using the same port. Suppose your
new project is B, and the runcode server of project A is still running and using the same port. In
this case you may, for example,

• Accidentally overwrite variables in project A, or use the wrong ones in project B if they were
also defined in A;

• Try to run code which is stored in project B, but you get an error message in the pdf file such as
‘cannot open file ’mycode.R’: No such file or directory’. The reason for this error
is that the other instance of the runcode server uses project A’s base directory, and the file
mycode.R is not in the right path.

To fix it, you can do one of the following:

1. configure each project to use another port to communicate with talk2stat (which will prevent
any conflict between the projects), or,

2. you can stop all instances of talk2stat running on the system before compiling your current
project.

To do the latter, find all the talk2stat processes, and find the corresponding directories. For example,
suppose that multiple projects use talk2stat to communicate with Julia. From the command-line,
do the following:

cd proj

ps -ef | grep talk2stat # get all the PIDs. E.g., 36797

on Mac:

lsof -a -d cwd -p 36797

on Linux:

pwdx 36797

5

lsof or pwdx will give you the directory name of the other projects which run talk2stat

cd to each directory, and run:

python3 -c 'from talk2stat.talk2stat import client; client("./","julia","QUIT")'

rm -f serverPIDjulia.txt juliadebug.txt talk2stat.log

Possible reason and solution:
If the correct output is in the files in generated directory, but it’s not showing in the pdf file, it can
be due to the LATEX compiler’s naming of temporary files. Usually, the auto-generated file names
start with the main tex file name (e.g. if the main tex file is called troubleshoot.tex then runcode
will create files such as troubleshoot_inln5.tex). However, working with Overleaf we noticed
that their compiler uses another convention for temporary file names. To prevent such problems,
you can add the following in the preamble of the main document:

\edef\TeXjobname{\jobname} % (this line is not really essential.)

\edef\jobname{\detokenize{troubleshoot}}

Problem:
Working in server-mode, the server is stopped after each compilation.

Possible reason and solution:
If you are using the server-mode, be aware that some editors terminate all child processes at the
end of LATEXcompilation. For example, Emacs with Auctex behaves this way. For this case, use the
nohup option, and the server will not be terminated by the parent process.
If you want the server to be stopped after each compilation (regardless of the editor you are using),
use the stopserver option. While you are compiling the tex document often, you may want to keep
the server side running in order to save time during initialization, and to maintain the variables and
results already in memory. However, it is a good idea to use the stopserver option when you are
done, just to prevent any conflicts (see above).
It’s recommended to check that port numbers are unique, and when a project is not expected to be
compiled for a while to enable the stopserver option.

Problem:
The process seems to hang during code execution when the LATEX document is compiled.

Possible reason and solution:
We mentioned that code being sent to the software must be syntactically valid. In addition, keep in
mind that the server waits for complete commands. So, for example, if we try
The factorial of 6 is \inlnR{```cat(factorial(6)```}.

it will cause the server to hang because it awaits the closing parenthesis. Eventually, it will time out
but the code cannot be executed, so the desired output will not be produced, and an error message
will replace the output, as in the following example. The timeout interval is set in the config files
for R, Julia, Python, and Matlab. The factorial of 6 is \inlnR{```cat(factorial(6)```}.

The factorial of 6 is TIMED OUT+.
In this example the cat statement is missing a closing parenthesis.

6

