
The sclang-prettifier package∗

Julien Cretel
jubobs.tex at gmail.com

2014/06/14

Abstract
Built on top of the listings package, the sclang-prettifier package allows you

to effortlessly prettyprint SuperCollider source code in documents typeset
with LATEX & friends.

Contents

Introduction 3
1 Why this package? 3
2 sclang-prettifier in action 3

User’s guide 3
3 Installation 4
3.1 Package dependencies . 4
3.2 Installing sclang-prettifier . 4
4 Getting started 4
4.1 Loading sclang-prettifier . 4
4.2 Displayed listings . 5
4.3 Standalone listings . 5
4.4 Inline listings . 5
5 Advanced customization 5
5.1 sclang-prettifier’s key-value interface . 5
5.2 Changing the font of your SuperCollider listings 6

Miscellaneous 6
6 Missing features and known issues 6
7 Bug reports and feature suggestions 6
8 Acknowledgments 7

Implementation 7
∗This document corresponds to sclang-prettifier v0.1, dated 2014/06/14.

1

9 Preliminary checks 7
10 Package options 7
11 Required packages 8
12 Definition of the SuperCollider language 8
13 Symbols, classes and environment variables 9
14 Using into listings’ hooks 9
15 Key-value interface 11
16 User-level font macro 11
17 SuperCollider-IDE style 12

Index 13

2

Listing 1: Some dummy SuperCollider code
1 p.clear;
2
3 "Hello World!".postln;
4 ~grains.addSpec(\tfreq, [1, 40, \exp]);
5 ~grains.addSpec(\overlap, [0.1, 10, \exp]);
6 ~grains.addSpec(\pos, [0, b.duration]); // 3.43 is nice!
7 ~grains.addSpec(\rate, [0.5, 2, 'exp']);
8 /*
9 Dummy block comment.

10 */
11 ~grains = { |tfreq = 25, overlap = 6, pan = 0, amp = 0.2, pos =

3.43,
12 rate = 1|
13 var trig = Impulse.ar(tfreq);
14 TGrains.ar(2, trig, b, rate, pos, overlap / tfreq, pan, amp)
15 };
16 ~grains.play;

Introduction
1 Why this package?
SuperCollider is a programming language for real-time audio synthesis and al-
gorithmic composition. In February 2014, James Harkins, a SuperCollider user,
enquired on TeX.SX (here and here) about the possibility of using the listings pack-
age to automatically highlight syntactic elements of the SuperCollider language
such as symbols, environment variables, and classes, without having to list them
manually as listings keywords. My answers to James’s questions form the basis of
this package.

2 sclang-prettifier in action
The sclang-prettifier package defines a listings style, called SuperCollider-IDE,
that mimics the style of the SuperCollider IDE. For an example, see listing 1,
which is adapted from this TeX.SX question.

The sclang-prettifier package automatically highlights the following syntactic
elements of the SuperCollider language.

Keywords var

To-end-of-line and block comments //3.43 is nice!

Symbols \tfreq, 'exp', etc.

Environment variables ~grains

Classes Impulse, TGrains, etc.

3

http://supercollider.github.io
http://tex.stackexchange.com
http://tex.stackexchange.com/q/159245/21891
http://tex.stackexchange.com/q/159246/21891
http://tex.stackexchange.com/q/159245/21891

User’s guide
3 Installation
3.1 Package dependencies
sclang-prettifier requires relatively up-to-date versions of packages textcomp, xcolor,
and listings, all three of which ship with popular TEX distributions. It loads those
three packages without any options.

3.2 Installing sclang-prettifier
Once the package gets officially released on CTAN, you should be able to install
it directly through your package manager.

However, if you need to install sclang-prettifier manually, you should run

latex sclang-prettifier.ins

and copy the sclang-prettifier.sty file to a path where LATEX (or your pre-
ferred typesetting engine) can find it. To generate the documentation, run

pdflatex sclang-prettifier.dtx
makeindex -s gglo.ist -o sclang-prettifier.gls sclang-prettifier.glo
makeindex -s gind.ist -o sclang-prettifier.ind sclang-prettifier.idx
pdflatex sclang-prettifier.dtx
pdflatex sclang-prettifier.dtx

4 Getting started
As stated above, the sclang-prettifier package is built on top of the listings package.
If you already are a seasoned listings user, you should feel right at home. If you’re
not, be aware that this user’s guide makes use of some listings functionalities (such
as key-value options) without describing their usage. For more details on those
functionalities, you should consult the listings documentation.

4.1 Loading sclang-prettifier
Simply write

\usepackage{sclang-prettifier}

somewhere in your preamble.
You may want to load the listings and xcolor packages with some options; in

that case, make sure those options are passed to those two packages before loading
the sclang-prettifier package.

The sclang-prettifier package currently offers two options.

framed

Draws (by default) a dark gray frame around each listing that uses the
SuperCollider-IDE style.

4

http://www.ctan.org
http://www.ctan.org/pkg/listings

numbered

Prints (by default) line numbers in light gray to the left of each listing that
uses the SuperCollider-IDE style.

4.2 Displayed listings
To typeset a SuperCollider listing embedded in your tex file, simply enclose it
in an lstlisting environment, and load the SuperCollider-IDE style in the
environment’s optional argument, using listings’ style key.

\begin{lstlisting}[style=SuperCollider-IDE]
...

\end{lstlisting}

4.3 Standalone listings
In practice, though, keeping your SuperCollider listings in external files—rather
than embedding them in a tex file—is preferable, for maintainability reasons.
To typeset a SuperCollider listing residing in an sc (or scx, or sco) file, simply
invoke the \lstinputlisting macro, load the SuperCollider-IDE style in the
environment’s optional argument, and specify the path to the file in question in
the mandatory argument.

\lstinputlisting[style=SuperCollider-IDE]{sample.sc}

4.4 Inline listings
You may want to typeset fragments of SuperCollider code within the main text
of your document. For instance, you may want to typeset the var keyword in a
sentence, in order to explain its usage. The \lstinline macro can be used for
typesetting such inline code.

\lstinline[style=SuperCollider-IDE]|var|

Arguably, typing all this only to typeset such a simple SuperCollider keyword can
rapidly become tedious. Fortunately, the listings allows you to define a character as
a shorthand for inline code, via the \lstMakeShortInline macro. However, this
character should ideally neither be used by the language itself nor occur elsewhere
in your document. Unfortunately, because the SuperCollider language already uses
most (all?) ASCII characters, your choice is limited. . . Proceed with caution. For
more details about inline code, see subsection 4.17 in the listings manual.

5 Advanced customization
5.1 sclang-prettifier’s key-value interface
The listings package provides a large number of options accessible via a nifty
key-value interface, which is described in its excellent documentation. The sclang-
prettifier package extends listings’ key-value interface interface by defining three
additional keys that allow you to customize the styles applied to SuperCollider
symbols, environment variables, and classes, should you wish to do so. All three
keys are prefixed by “sc”, to help you distinguish them from native listings keys.

5

http://www.ctan.org/pkg/listings

For each of the three keys described below, the value assigned to it in the
SuperCollider-IDE style is indicated on the right-hand side.

\color[RGB]{0,113,0}scsymbolstyle=〈style〉
This key determines the style applied to SuperCollider symbols. The last
token can be a one-parameter command, such as \textbf or \underbar.

\color[RGB]{147,70,14}scenvvarstyle=〈style〉
This key determines the style applied to SuperCollider environment vari-
ables. The last token can be a one-parameter command, such as \textbf or
\underbar.

\color[RGB]{0,40,211}scclassstyle=〈style〉
This key determines the style applied to SuperCollider classes. The last
token can be a one-parameter command, such as \textbf or \underbar.

5.2 Changing the font of your SuperCollider listings
The sclang-prettifier package uses the Computer Modern typewriter font by default,
which, arguably, is far from ideal. I encourage you to switch to your favourite
“programmer font” instead.

For pdflatex users, sclang-prettifier conveniently provides a macro for easily
selecting the Courier font—which is used by default by the SuperCollider IDE.

\scttfamily
selects the Courier font.

To use Courier in your SuperCollider listings, you must pass \scttfamily to
listings’ basicstyle key (after loading the SuperCollider-IDE style) and also—
this is important—load the fontenc package with option T1:

\usepackage[T1]{fontenc}

Miscellaneous
6 Missing features and known issues
The sclang-prettifier currently does not highlight numbers as the SuperCollider IDE
does. Highlighting numbers in listings in a robust manner is notoriously difficult;
I might implement a solution in the future, if I ever find a good one.

7 Bug reports and feature suggestions
The development version of sclang-prettifier is currently hosted on GitHub at
Jubobs/sclang-prettifier. If you find an issue in sclang-prettifier that this manual
does not mention, if you would like to see a feature implemented in the pack-
age, or if you can think of ways in which the sclang-prettifier documentation could
be improved, please add an entry to the repository’s issue tracker on GitHub;
alternatively, you can send me an email at jubobs.tex@gmail.com

6

https://github.com/Jubobs/sclang-prettifier/
mailto:jubobs.tex@gmail.com

8 Acknowledgments
Thanks to the developers of the listings package, without which sclang-prettifier
would never have existed. I’m also in debt to many TeX.SX users for their help,
encouragements, and suggestions. Thanks in particular to James Harkins, whose
questions inspired me to write this package, and to Marco Daniel, Enrico Gregorio
(egreg), and Heiko Oberdiek, whose contributions to TeX.SX proved particularly
helpful for the development of this package.

Implementation
Be aware that, for “namespacing”, the sclang-prettifier package uses, not a prefix,
but the “scpr” suffix (preceded by an @ character) throughout.

9 Preliminary checks
\lstoptcheck@scpr Because the listings options noaspects, 0.21, and savemem are incompatible with

sclang-prettifier, checking whether the listings package has been loaded with any of
those options is a good idea; if so, we should issue an error. This macro checks
whether listings was loaded with a given option and, if so, throws an error.

1 \newcommand\lstoptcheck@scpr[1]
2 {%
3 \@ifpackagewith{listings}{#1}%
4 {
5 \PackageError{sclang-prettifier}%
6 {incompatible listings’ option #1}%
7 {%
8 Make sure the ‘listings’ package
9 doesn’t get loaded with option ‘#1’%

10 }
11 }
12 {}
13 }

We now use this macro to make sure that none of the problematic listings options
has been passed to listings during an earlier loading of that package.
14 \lstoptcheck@scpr{noaspects}
15 \lstoptcheck@scpr{0.21}
16 \lstoptcheck@scpr{savemem}

10 Package options
Framed listings

\ifframed@scpr@ This option draws (by default) a frame around each listing that uses the
SuperCollider-IDE style.
17 \newif\ifframed@scpr@
18 \DeclareOption{framed}{\framed@scpr@true}

7

http://tex.stackexchange.com

Numbered lines

\ifnumbered@scpr@ This option prints (by default) line numbers to the left of each listing that uses
the SuperCollider-IDE style.
19 \newif\ifnumbered@scpr@
20 \DeclareOption{numbered}{\numbered@scpr@true}

Draft This option is simply passed to listings.
21 \DeclareOption{draft}{\PassOptionsToPackage{\CurrentOption}{listings}}

Final This option is simply passed to listings.
22 \DeclareOption{final}{\PassOptionsToPackage{\CurrentOption}{listings}}

Discard undefined options We discard any other option passed to sclang-
prettifier by the user and issue a warning.
23 \DeclareOption*%
24 {%
25 \OptionNotUsed
26 \PackageWarning{sclang-prettifier}{Unknown ‘\CurrentOption’ option}
27 }

Process options
28 \ProcessOptions\relax

11 Required packages
The sclang-prettifier package require three packages without any package option:
the textcomp package, in order to use listings’ upquote key; the xcolor package, in
order to color our SuperCollider code; and, of course, the listings package.
29 \RequirePackage{textcomp}[2005/09/27]
30 \RequirePackage{xcolor}[2007/01/21]
31 \RequirePackage{listings}[2013/08/26]

12 Definition of the SuperCollider language
Language name

\language@scpr To avoid code duplication in this package file, we define a macro that expands to
the name of our new language, SuperCollider.
32 \newcommand\language@scpr{SuperCollider}

\languageNormedDefd@scpr However, because listings “normalizes” language names internally, we also need to
define a macro that expands to the normalized name of the new language.
33 \expandafter\lst@NormedDef\expandafter\languageNormedDefd@scpr%
34 \expandafter{\language@scpr}

8

Language definition We can now define our new listings language, using some
\expandafter trickery on \lstdefinelanguage.
35 \expandafter\expandafter\expandafter\lstdefinelanguage\expandafter
36 {\language@scpr}
37 {%
38 morekeywords = {var},
39 alsoletter = \\~,
40 alsoother = @,
41 sensitive = true,
42 morecomment = [l]{//},
43 morecomment = [s]{/*}{*/},
44 morestring = [s]{"}{"},
45 moredelim = [s][\symbolStyle@scpr]{’}{’},
46 }[keywords,strings,comments]

13 Symbols, classes and environment variables
Storing relevant characters To detect whether an identifier is an environment
variable or a symbol, we will need to test whether the identifier in question starts
with a tilde or a backslash, respectively. listings developer’s guide tells us that the
only safe way to test against a character is to store it in a macro using listings’
internal macro \lst@SaveOutputDef.

\tilde@scpr We save the tilde character thus.
47 \lst@SaveOutputDef{‘~}\tilde@scpr

\dollar@scpr We save the dollar-sign character thus.
48 \lst@SaveOutputDef{‘$}\dollar@scpr

No need for such definition for the backslash: listings already stores the back-
slash in a macro called \lstum@backslash.

14 Using into listings’ hooks
We apply some necessary patches in two listings’ hooks; but first, we define a
couple of helper macros.

Helper macros

\getfirstchar@scpr
\getfirstchar@@scpr

\firstchar@scpr

Of these three helper macros, the first two macros extract the first character
token in a given sequence of character tokens and store it in the third macro. This
approach is adapted from this TeX.SX answer by Marco Daniel.
49 \newcommand\getfirstchar@scpr{}
50 \newcommand\getfirstchar@@scpr{}
51 \newcommand\firstchar@scpr{}
52 \def\getfirstchar@scpr#1{\getfirstchar@@scpr#1\relax}
53 \def\getfirstchar@@scpr#1#2\relax{\def\firstchar@scpr{#1}}

9

http://tex.stackexchange.com/a/159267/21891

Output (See the listings documentation for more details on this hook.)

\addedToOutput@scpr We add this macro (initially empty) to listings’ Output hook.
54 \newcommand\addedToOutput@scpr{}
55 \lst@AddToHook{Output}{\addedToOutput@scpr}

\currentchar@scpr This count is used to test a character token against A-Z.
56 \newcount\currentchar@scpr

\@ddedToOutput@scpr The \addedToOutput@scpr} macro is let to this one under certain conditions
(more details follow).
57 \newcommand\@ddedToOutput@scpr
58 {%

If we’re in listings’ processing mode. . .
59 \ifnum\lst@mode=\lst@Pmode%

. . . we save the first character token in the identifier being processed to a macro
called \firstchar@scpr.
60 \expandafter\getfirstchar@scpr\expandafter{\the\lst@token}%

If that token is a backslash, we apply the style associated to symbols.
61 \expandafter\ifx\firstchar@scpr\lstum@backslash%
62 \let\lst@thestyle\symbolStyle@scpr%

If that token is a dollar sign, we have a SuperCollider “character”. we apply the
style associated to symbols (as in the SuperCollider IDE).
63 \else
64 \expandafter\ifx\firstchar@scpr\dollar@scpr%
65 \let\lst@thestyle\symbolStyle@scpr%

If that that token is a tilde, we apply the style associated to environment variables.
66 \else
67 \expandafter\ifx\firstchar@scpr\tilde@scpr%
68 \def\lst@thestyle{\envvarStyle@scpr}%

Otherwise, if that character is a capital letter (A-Z), we apply the style associated
to classes.
69 \else
70 \currentchar@scpr=65
71 \loop
72 \expandafter\ifnum%
73 \expandafter‘\firstchar@scpr=\currentchar@scpr%
74 \let\lst@thestyle\classStyle@scpr%
75 \let\iterate\relax%
76 \fi
77 \advance\currentchar@scpr by \@ne%
78 \unless\ifnum\currentchar@scpr>90%
79 \repeat%
80 \fi
81 \fi
82 \fi
83 \fi

Whatever style was applied, we still check whether the identifier is a keyword; if
it is one, the keyword style is applied to it.
84 \lsthk@DetectKeywords%
85 }

10

http://www.ctan.org/pkg/listings

PreInit (See the listings documentation for more details on this hook.) Because
the \lst@AddToHook affects hooks globally (i.e. for all listings), we must apply our
patches only when required, i.e. in listings that use SuperCollider, and not in
others. The PreInit, which is called at the very beginning of each listing, is where
we do that. We check whether \lst@language and \languageNormedDefd@scpr
expand (once) to the same replacement text and only apply our patches under
that condition.
86 \lst@AddToHook{PreInit}
87 {%
88 \ifx\lst@language\languageNormedDefd@scpr%
89 \let\addedToOutput@scpr\@ddedToOutput@scpr%
90 \fi
91 }

15 Key-value interface
We extend listings’ key-value interface by defining several additional keys, which
we will use to define a style similar to that of the SuperCollider IDE, and which
will allow the user to customize the style of their SuperCollider listings.

Symbol style

scsymbolstyle
\classStyle@scpr

This key determines the style applied to SuperCollider symbols.
92 \newcommand\symbolStyle@scpr{}
93 \lst@Key{scsymbolstyle}\relax%
94 {\def\symbolStyle@scpr{#1}}

Environment-variable style

scenvvarstyle
\envvarStyle@scpr

This key determines the style applied to SuperCollider environment variables.
95 \newcommand\envvarStyle@scpr{}
96 \lst@Key{scenvvarstyle}\relax%
97 {\def\envvarStyle@scpr{#1}}

Class style

scclassstyle
\classStyle@scpr

This key determines the style applied to SuperCollider classes.
98 \newcommand\classStyle@scpr{}
99 \lst@Key{scclassstyle}\relax%

100 {\def\classStyle@scpr{#1}}

16 User-level font macro
\scttfamily This user-level macro can be used for selecting the Courier font family, which is

used by default in the SuperCollider IDE (v3.6.6, at least), and which, contrary
to TEX default font family (Computer Modern), comes with a boldface version.

101 \newcommand\scttfamily{\fontfamily{pcr}\selectfont}

11

http://www.ctan.org/pkg/listings

17 SuperCollider-IDE style
The SuperCollider-IDE style mimics the default style of the SuperCollider IDE.

\toks@scpr We allocate a token list register in which we store settings that we’ll use to define
the style.

102 \newtoks\toks@scpr
103 \toks@scpr=%
104 {
105 language = \languageNormedDefd@scpr,
106 basicstyle = \color{black}\ttfamily\normalsize,
107 breaklines = true,
108 showspaces = false,
109 showstringspaces = false,
110 upquote = true,
111 rulecolor = \color{black!67},
112 numberstyle = \color{black!33},
113 keywordstyle = \color[RGB]{000,045,231}\bfseries,
114 commentstyle = \color[RGB]{202,018,000} ,
115 stringstyle = \color[RGB]{095,095,095} ,
116 scsymbolstyle = \color[RGB]{000,113,000} ,
117 scenvvarstyle = \color[RGB]{147,070,014} ,
118 scclassstyle = \color[RGB]{000,040,211} ,
119 }

120 \ifframed@scpr@
121 \toks@scpr\expandafter{\the\toks@scpr frame=single,}
122 \fi
123 \ifnumbered@scpr@
124 \toks@scpr=\expandafter{\the\toks@scpr numbers=left,}
125 \fi
126 \begingroup\edef\@tempa{\endgroup
127 \noexpand\lstdefinestyle{SuperCollider-IDE}{\the\toks@scpr}
128 }\@tempa

12

Change History

v0.1
General: Initial release. 1

Index

Symbols
\@ddedToOutput@scpr 57, 89

A
\addedToOutput@scpr 54, 89

C
\classStyle@scpr 74, 92, 98
\currentchar@scpr . . 56, 70, 73, 77, 78

D
\dollar@scpr 48, 64

E
\envvarStyle@scpr 68, 95

F
\firstchar@scpr 49, 61, 64, 67, 73

G
\getfirstchar@@scpr 49
\getfirstchar@scpr 49, 60

I
\ifframed@scpr@ 17, 120
\ifnumbered@scpr@ 19, 123

K
keys

scclassstyle 11
scenvvarstyle 11
scsymbolstyle 11

L
\language@scpr 32, 34, 36
\languageNormedDefd@scpr . 33, 88, 105
\lstoptcheck@scpr 1, 14–16

S
\scttfamily 101
\symbolStyle@scpr . . 45, 62, 65, 92, 94

T
\tilde@scpr 47, 67
\toks@scpr 102, 121, 124, 127

U
unknown

\scttfamily 6
scclassstyle 6
scenvvarstyle 6
scsymbolstyle 6

13

	Introduction
	Why this package?
	sclang-prettifier in action

	User's guide
	Installation
	Package dependencies
	Installing sclang-prettifier

	Getting started
	Loading sclang-prettifier
	Displayed listings
	Standalone listings
	Inline listings

	Advanced customization
	sclang-prettifier's key-value interface
	Changing the font of your SuperCollider listings

	Miscellaneous
	Missing features and known issues
	Bug reports and feature suggestions
	Acknowledgments

	Implementation
	Preliminary checks
	Package options
	Required packages
	Definition of the SuperCollider language
	Symbols, classes and environment variables
	Using into listings' hooks
	Key-value interface
	User-level font macro
	SuperCollider-IDE style

	Index

