
The Song[ook Package

Version 4.5

Christopher Rath
<Christopher@Rath.ca>

2010/04/30

Abstract

This package provides an all purpose songbook style for LATEX2e. The
package allows for three types of output from a single input file: words
and chords books for the musicians to play from, words only songbooks
for the congregation to sing from, and overhead transparency masters for
congregational use. The style will also print a table of contents, an index
sorted by title and first line, and an index sorted by key. It attempts to
handle songs in multiple keys, as well as songs in multiple languages.

Contents

I High Level Documentation 5

1 Description 5

2 Commands 6
2.1 Environments . 6
2.2 Primary Song[ook Macros . 9
2.3 Miscellaneous Commands . 12
2.4 Ifthen Commands . 12
2.5 Counters . 13
2.6 Spacing Commands . 13
2.7 String Constants . 14
2.8 Font Handling . 15
2.9 Deprecated Commands . 16

3 Usage Guidelines 16

4 Index/TOC Generation 18
4.1 Table of Contents Generation . 18
4.2 Title & First Line Index Generation 18
4.3 Song Key Index Generation . 18
4.4 Song Artist Index Generation . 19

5 Example 19

6 Dependencies 20

7 Files 21

8 See Also 21
8.1 Contributed Resources . 21
8.2 Other Similar Packages . 22

1

9 Bugs 22

10 Special Thanks 23

11 Author 23

12 .dtx Documentation Driver 24

II Detailed Documentation 25

13 Identification Part 25

14 Initial Code Part 25
14.1 If Constructs . 26

14.1.1 Song[ook Types . 26
14.1.2 Song[ook Subtypes . 26
14.1.3 Song Indicator . 26
14.1.4 Behaviour Flags . 27
14.1.5 Papesize Indicators . 27

14.2 Fonts . 28
14.2.1 Chord Fonts . 28
14.2.2 Title Block Fonts . 28
14.2.3 Versicle Tag Fonts . 29
14.2.4 Marginal Notes Fonts . 30
14.2.5 Song Body Fonts . 30
14.2.6 Other Fonts . 30
14.2.7 Compact Song Fonts . 30
14.2.8 Fonts Saving Variables . 31

14.3 Configurable Dimensions . 31
14.3.1 Published Dimensions . 31
14.3.2 Internal Dimensions . 32

14.4 Declaration Of Non-Core Options 33
14.4.1 Papersize Options . 33
14.4.2 Compactallsongs Option . 34
14.4.3 Compactsong Option . 35
14.4.4 Printallsongs Option . 35

14.5 Declaration Of Core Options . 35
14.5.1 chordbk Option . 36
14.5.2 wordbk Option . 38
14.5.3 overhead Option . 40

14.6 Execution Of Options . 42
14.7 Package Loading Part . 42
14.8 Main Code Part . 43

14.8.1 Constants & Variables . 44
14.8.2 Special Characters . 46
14.8.3 Table Of Contents & Indices 47
14.8.4 Some Other Hooks . 49
14.8.5 Miscellaneous Macros . 50
14.8.6 Primary Songbook Macros 51
14.8.7 Obsolete Macros . 66
14.8.8 Deprecated Macros . 67

Preface to version 4.5

What’s new in version 4.5:

2

• Added a compactsong option to the song environment; which allows per-
song use of compactsong formatting.

Preface to version 4.4

What’s new in version 4.4:

• there are no functional changes

• at Donald Arseneau’s request, added language to state that conditionals.sty
is public domain

Preface to version 4.3

What’s new in version 4.3:

• found a problem with the optional parameter to the xlatn environment added
in Release 4.2; that optional parameter has been removed

• a new songTranslation environment added to provide the required capability
for the Artist index option

• added a new song to the sample songbook to act as a test case for translation

Preface to version 4.2

What’s new in version 4.2:

• added a new Artist index option

• added a new optional parameter to the xlatn environment; in support of the
new Artist index option

Preface to version 4.1a

What’s new in version 4.1a:

• Corrected a bug whereby the new exclude song mode was throwing an error
when either the \SBRef or \SBMargNote commands were used

Preface to version 4.1

What’s new in version 4.1:

• a new optional 〈Include? 〉 parameter has been added to the song environ-
ment; that parameter allows you to have a song omitted from the printed
songbook yet still have the song counter incremented and the song’s table
of contents entry written to a separate TOC file (see the description of the
song environment, below, for more details)

• to go along with the new optional 〈Include? 〉 parameter is a new \usepackage{}

option, printallsongs, which overrides the individual song option declara-
tions and prints all the songs in the songbook

• the song “My Sun and My Shield” was removed from the sample songbook;
it turns out that this is a Ted Sandquist song and is not in the public domain

• chordbk’s compactsong option is still experimental

3

Preface to version 4.0

What’s new in version 4.0:

• the Song[ook style has now completed its transition to LATEX2e (I think):
there is now a single .sty file which accepts options in order to invoke the
different songbook styles. The Song[ook style now also accepts and produces
reasonable output for all of LATEX2e’s standard papersize options.

• the song title block (where the title, copyright info., etc. are listed) has
been changed, use of the \centerline macro has been replaced with a
center environment. This change is not compatible with previous versions of
songbook.sty and requires you to re-verify all page breaks (mostly in words-
only mode). The reason for making the change is to allow long song titles to
line-wrap (instead of hanging off the edge of the page), and this means that
the definition of the following macros has been changed: \STitle, \CpyRt,
\WAndM, and \ScriptRef. The centering of these lines is now also done
within a center environment; in each the centering may now be disabled by
adding an optional first parameter (any value except ‘Y’)

• since the change to the title block invalidated pagination of the previous ver-
sion I have taken the opportunity to fine tune the value of \SpaceAfterSong,
a value that is used primarily in words-only mode: the inter-song gap has
been decreased to \vspace{0ex plus10ex minus3ex} (from \vspace{0ex

plus15ex minus0ex})

• a new space command, \SpaceAfterTitleBlk, has been created to allow
the space between a song’s title block and its versicles to be tuned by the
user; this was a previously hardcoded value

• a bug in the SBBracket environment has been corrected: long lines were not
always exhibiting their hanging indentation

• the style now supports all of LATEX2e’s standard papersizes. While the out-
put will not be ideal for all papersizes, it does produce sane and usable
results for all papersizes. I would be most appreciative if European users
would send me page layout corrections for the A4, A5, and B5 sizes

• added a new environment, SBOpGroup (i.e., “an open group”), serves to
group the lines of a verse or chorus together, but not indent or label them.
Use of this environment allows for better control of font changes, proper
indentation of wrapped lines, and automatic spacing of open groups which
follow one another. I strongly suggest that SBOpGroup be used to enclose any
set of lines which don’t otherwise end up in one of the songbook environments
when typsetting with this package

• chordbk mode now supports one variation: compactsong. In compactsong

mode the songs are laid out in two columns; note that the song title block
spans the two columns. The songs are set in a smaller typeface to allow
them to fit into the smaller space two column mode supplies. This mode
should be considered experimental for the present time; see its description,
below, for more details

• conditionals.sty has been updated with more current information and
macros, as supplied by Donald Arseneau

• all of the verse-like environments now have their \baselineskip amount
expressly calculated just prior to laying out their lines. This has been done
in order to overcome the problem all previous versions of the songbook style
had which was that linespacing differed based upon whether a particular line

4

contained chords. Now all lines are spaced the same, regardless of whether
they contain a chord. I consider the previous behaviour—where linespacing
varied—to be a bug. If you really must retain the old behaviour this can be
done by inserting the following code into the preamble of your document:

\renewcommand{\sbSetsbBaselineSkipAmt}

{\setlength{\sbBaselineSkipAmt} {\baselineskip}}

• the \SBDefaultFont command no longer needs to be specified at the top of
each songbook

• fixed a bug that was inhibiting the Song[ook style from detecting blank and
empty song parameters

• the commands which had previously been listed as deprecated (i.e., to be
removed in some future release) have all been removed

• the following commands have been moved from the “Obsolete Macros” sec-
tion into “Deprecated Macros” section and will be removed in the next ma-
jor release of the Song[ook style: \False, \True, \ChordBk, \Overhead,
\SongEject, \WordBk, and \WordsOnly

A few minor changes were made during release testing of version 4.0. The
following changes occured between version 4.0pre2 and 4.0:

• the spacing around the SBBracket environment has been tuned :
\SpaceAfterSBBracket has been increased, and a new
\SpaceBeforeSBBracket amount has been added

• added missing space around the SBBracket* environment; using
\SpaceBeforeSBBracket and \SpaceAfterSBBracket

• removed unused length, \SBBracketHangAmt

• added a new \LeftMarginSBBracket length and rewrote the part of the
SBBracket environment that creates the tag and left indents the versicle.
The SBBracket environment now left aligns its words with those of the
SBVerse and SBChorus versicles.

Part I

High Level Documentation

1 Description

The Song[ook document style provides a core set of functions for the production
of songbooks. Three pre-defined songbook formats and one variation are provided
(and they are invoked via options to the \usepackage{songbook} command) and
they are typically used along with LATEX’s book class. One of the following options
must be specified or the Song[ook style will throw an error: chordbk, wordbk, or
overhead.

An empty minimal songbook looks like the following:

\documentclass{book}

\usepackage[chordbk]{songbook}

\begin{document}

\begin{song}{}{}{}{}{}{}

\end{song}

\end{document}

5

We’ll start by explaining the \usepackage[]{songbook} options:

chordbk a songbook suitable for musicians which gives both lyrics and wordschordbk

(this is the default mode of the Song[ook document style)—one variation to
this style is offered, compact song mode (see below). This option is specified
as \usepackage[chordbk]{songbook}

wordbk a words-only songbook suitable for mass distribution to those singing butwordbk

not playing an instrument. This option is specified as
\usepackage[wordbk]{songbook}

overhead to produce overhead transparencies from songbook source files. Thisoverhead

option is specified as \usepackage[overhead]{songbook}

Other additional options supported by the Song[ook style include all LATEX’s
standard papersize options, and:

compactsong this option only takes effect along with chordbk. It causes thecompactsong

songs to be set in two columns, where the song title information spans the
both columns. It is specified as
\usepackage[chordbk,compactsong]{songbook}

The version of compactsong provided in this release should be considered
experimental! The formatting produced in this mode is not always desirable.
An outstanding question to be answered is whether or not new songs title
blocks should span both columns, and whether each song should generate a
page break; in other words, should this feature set be implemented as two
pieces: compactsong and compactbook. The idea would be to provide a
compactsong environment, which could be judiciously used on a per song
basis, and a compactbook mode which would result in a compressed song-
book, where the words and chords book would look very much like a words
only songbook (but with chords).

printallsongs this option causes all songs in a songbook to be printed, regard-printallsongs

less of what 〈Include? 〉 option may have been specified on each individual
song environment

2 Commands

This section is broken into several subsections. Hopefully this makes the individual
commands easier to understand by placing them in a meaningful context. Since
some forward references exist, it may be necessary to read through the entire
Commands section a couple of times before it makes complete sense.

This reference section will present terse command and environment descrip-
tions; more detailed descriptions, along with examples, may be found in the im-
plementation detail section at the bottom of this document.

Note that each subsection’s descriptions are presented in alphabetical order;
while this doesn’t make the sections quite as easy to read, it makes them much
more useful for reference purposes.

2.1 Environments

The Song[ook style defines several new environments to make the formatting of
songbooks easier and more consistent (and most of them have parameters). Unless
otherwise noted, all of the environments are verse-like: wrapped lines are indented
more than the first line is indented.

\begin{SBBracket}{〈bracket tag〉}〈. . . stuff to enbracket. . . 〉
\end{SBBracket} is the environment used to mark certain lines of the songSBBracket

6

with a tag and bracket. An example usage is to mark the line of the song
played to end the piece, if it is somehow different than the chords played if
one were to repeat the song. For example:

Be\Ch{Am}{cause} of \Ch{Dm7}{what} the...

\end{SBChorus}

\begin{SBBracket}{Ending}

Give \Ch{F}{thanks,}\Ch{C/F}{} \Ch{Bb/F}{}...

\end{SBBracket}

This is very similar to the SBOccurs environment, the difference being how
the section of the song is marked.

There are two versions of this environment: SBBracket and SBBracket*.SBBracket*

They operate identically, except that the *ed version doesn’t print its tag
and bracket in words-only modes.

At present, \SBBracket and \SBBracket* are fragile and are not compatible
with SBVerse, SBChorus, or any other environment; with the exception of
the song environment.

\begin{SBChorus}〈. . . the chorus. . . 〉\end{SBChorus} is the environment toSBChorus

wrap around a chorus that you wish to be indented and given a chorus tag
(“Ch:”). A song with one verse and one chorus, where the chorus is sung
after the verse would probably use the SBChorus environment. Whereas,
if the chorus was sung first, an SBVerse environment would probably be
used. The indent amount for lines that are too long is set by redefining the
\HangAmt command.

The SBChorus* version of this command indents but does not place aSBChorus*

\SBChorusTag before the chorus.

\begin{SBExtraKeys}{〈song content〉}\end{SBExtraKeys} is the environmentSBExtraKeys

used when you wish to list the song again in another key. Typically, this
environment is used along with an \STitle command. For example:

\begin{SBExtraKeys}{

\STitle{You Alone}{D}

\begin{SBVerse}

\Ch{D}{Ho}\Ch{F#m}{ly,} \Ch{G}{Ho}\Ch{D}{ly,}

...

\end{SBVerse}

}\end{SBExtraKeys}

\begin{SBOccurs}{〈the occurrence〉}〈. . . stuff to group. . . 〉\end{SBOccurs} isSBOccurs

the environment used to mark a given line of the song with a tag and brack-
ets. For example “1,3” would designate that this passage applies to the 1st
and 3rd occurances. For example:

Be\Ch{Am}{cause} of \Ch{Dm7}{what} the...

\end{SBChorus}

\begin{SBOccurs}{1,3}

Give \Ch{F}{thanks,}\Ch{C/F}{} \Ch{Bb/F}{}...

\end{SBOccurs}

\begin{SBOpGroup}〈. . . stuff to group. . . 〉\end{SBOpGroup} is the environmentSBOpGroup

in which unmarked versicles are placed; so called “open groups”.

7

\begin{SBSection}〈. . . the section. . . 〉\end{SBSection} is very much likeSBSection

LATEX’s verse environment, except that here the sections are numbered. The
indent amount for lines that are too long is set using the \HangAmt command.
This environment would be used in place of the \SBVerse environment for
songs which are broken into pieces/sections, in place of, or in addition to,
verses.

The SBSection* version of this command indents but doesn’t place anSBSection*

\SBSectionCnt before the chorus. Similar to LATEX’s \section* command,
the section counter is not incremented either.

\begin{SBVerse}〈. . . the chorus. . . 〉\end{SBVerse} is the environment to wrapSBVerse

around a verse that you wish to be indented and given a verse number
(\SBVerseCnt). A song with one chorus and one verse, where the verse
is sung after the verse would probably use the SBChorus environment.
Whereas, if the chorus was sung first, an SBVerse environment would prob-
ably be used. The indent amount for lines that are too long is set with the
\HangAmt command.

The SBVerse* version of this environment indents but down not place anSBVerse*

\SBVerseCnt before the chorus; similar to LATEX’s \section* command, the
verse counter is not incremented either.

\begin{song}[〈1 〉]{〈2 〉} . . . {〈7 〉} 〈. . . the song. . . 〉\end{song} is the environ-song

ment which each song resides within. The parameter list is quite long, and
is defined as:

1. Optional format string (Include song? / Compact song mode?);

2. Song title;

3. Key song is written in;

4. Copyright information;

5. Name(s) of composer and lyricist;

6. Scripture reference for the song;

7. Copyright licensing information.

The song environment takes care of making index entries, incrementing
\SBSongCnt and page generation (if necessary). Note, this environment
makes use of \everypar. See the Example section, below, for a sample
one-song songbook document.

The optional format string parameter allows per-song control of certain type-
setting attributes. Each of the attributes is optional, and a single attribute,
or multiple attributes, may be used. The available values are:

Y or N These two characters tell Song[ook whether to include the song in
the songbook. This “Include this song?” option is referred to within
this documentation as “〈Include? 〉”. If you don’t specify a value (and
you typically will not), then it behaves as though you provided a value
of “Y”. When a value of “N” then the song is excluded from the current
songbook; however, a table of contents record is written to a separate
file (jobname.tocS).

C or F These two characters tell Song[ook whether the song should be pre-
sented in compactsong mode or full size presention mode (chordbk
formatting only).

Some predefined macros have been provided which allow conditional exclu-\CBExcl

\OHExcl

\WBExcl

\WOExcl

sion of a song (they are used in the optional parameter): \CBExcl, \OHExcl,
\WBExcl, and \WOExcl; respectively, these correspond to exclude in chordbk

8

mode, overhead mode, wordbk mode, and when in words-only (i.e., not in
chordbk) mode.

As an organisation’s songbook grows, and time passes, it is not uncommon
for the songbook to become overly large. The 〈Include? 〉 parameter allows
for a songbook’s songs to be easily removed and re-added, without requiring
old songbooks to be destroyed or overhead transparencies renumbered.

When the “copyright information” or “composer & lyricist” parameters are
left empty then the string defined by the \SBUnknownTag macro used (instead
of leaving whitespace in the song header.

\begin{songTranslation}{〈1 〉} . . . {〈4 〉} 〈. . . the translation. . . 〉\end{songTranslation}issongTranslation

the new song translation environment. The parameter list is defined as:

1. Translation language;

2. Translated song title (in the foreign language);

3. Translation permission;

4. Who performed the translation.

The songTranslation environment always occurs within a song environ-
ment; it resets the verse counter, causes the title and other parameter in-
formation to be displayed, and makes the appropriate index and table of
contents entries. It is important for the songTranslation environment to
occur within a song environment, because the songTranslation environ-
ment inherits the song environment’s \everypar definition.

\begin{xlatn}{〈1 〉} . . . {〈3 〉} 〈. . . the translation. . . 〉\end{xlatn}is the oldxlatn

song translation environment—this environment is considered obsolete and
will be removed in a future relase of the Song[ook macros; it has been re-
placed by the songTranslation environment. The parameter list is defined
as:

1. Translated song title (in the foreign language);

2. Translation permission;

3. Who performed the translation.

The xlatn environment always occurs within a song environment; it resets
the verse counter, causes the title and other parameter information to be
displayed, and makes the appropriate index and table of contents entries. It
is important for the xlatn environment to occur within a song environment,
because the xlatn environment inherits the song environment’s \everypar

definition.

2.2 Primary Song[ook Macros

Along with the Song[ook environments, these are the macros you will most often
use when constructing a songbook (of any style).

\CBPageBrk forces a new page if \ifChordBk is true.\CBPageBrk

\Ch{〈chord〉}{〈syllable〉} the chord over lyrics command definition. This is the\Ch

most commonly used command in the Song[ook style. The words-only sub-
style turns off the chord generation and just prints the second parameter.
The 〈chord〉 parameter is left-justified over the 〈syllable〉 parameter. Any
‘#’ or ‘b’ characters in the 〈chord〉 parameter are replaced with ‘]’ and ‘[’
characters, respectively. Also, if a bass note is specified in a chord (by way
of a ‘/’ character followed by the note) then it will appear in a smaller font
than the rest of the 〈chord〉.

9

It is often desireable to typeset a chord—or set of chords—inside square
brackets, to indicate that they are optional. A lighter weight font is probably
desired, so that the brackets do not detract from the chord name, so any
‘[’ and ‘]’ characters are typeset with the font specified by the \ChBkFont

macro.

To set the chord raise amount to a value that matches version 1.x and 2.x re-
leases of the Song[ook style, insert the following command into the preamble
of your document:

\renewcommand{\SBChordRaise}{\SBOldChordRaise}

\Chr{〈chord〉}{〈syllable〉} this command performs the same function as the \Ch\Chr

command with one exception: the \Chr command inserts a rule, at the height
specified by the \SBRuleRaiseAmount macro, when the chord is wider than
the syllable. The default value creates an extended em-dash-like rule; a value
of 0pt creates an underbar-like rule. See the Usage Guidelines section of this
document, below, for a more detailed explanation.

\ChX{〈chord〉}{〈syllable〉} this command performs the same function as the \Ch\ChX

command with one exception: the \ChX command causes spaces trailing the
command to be ignored. See the Usage Guidelines section of this document,
below, for a more detailed explanation.

\CSColBrk generates a column break here if we’re in compactsong mode.\CSColBrk

\makeArtistIndex starts creation of an index of songs by artist (composer). If\makeArtistIndex

you need to add your own information to this index use the \artistIndex[][]
command, documented in the Detailed Documentation section, below.

\makeKeyIndex starts creation of an index of songs by key. If you need to add\makeKeyIndex

your own information to this index use the \keyIndex[][] command, doc-
umented in the Detailed Documentation section, below.

\makeTitleContents starts creation of a table of contents. If you need to add\makeTitleContents

your own information to this index use the \titleContents[][] command,
documented in the Detailed Documentation section, below.

\makeTitleContentsSkip starts creation of a table of contents of songs exluded\makeTitleContentsSkip

from the current songbook. This macro operates in the same manner as
\makeTitleContents.

\makeTitleIndex starts creation of a title and first line index. If you need to\makeTitleIndex

add your own information to this index use the \titleIndex[][] command,
documented in the Detailed Documentation section, below.

\NotWOPageBrk forces a new page if \ifWordsOnly is false.\NotWOPageBrk

\OHContPgFtr prints a page heading continuation footer on overheads; this macro\OHContPgFtr

must be manually inserted where needed. \OHContPgHdr is a no-op, except
when \ifOverhead is true.

\OHContPgHdr prints a page heading continuation header on overheads; this\OHContPgHdr

macro must be manually inserted where needed. \OHContPgHdr is a no-op,
except when \ifOverhead is true.

\OHPageBrk forces a new page if \ifOverhead is true.\OHPageBrk

\SBBridge{〈the bridge〉} is used to encapsulate a bridge: it causes 〈the bridge〉 to\SBBridge

be set with \SBBridgeTag, using in the \SBBridgeTagFont font. In words-
only mode this command is a no-op.

10

\SBEnd[〈use in words-only〉]{〈the ending〉} is used to encapsulate a song end-\SBEnd

ing: it causes 〈the ending〉 to be set with the \SBEndTag, using in the
\SBEndTagFont font. The first parameter is optional and if used is put
in square brackets; specifying any value except ‘N’ will cause the ending to
be used in words-only mode. Some examples of its intended use are:

This will cause the ending to be printed in words-only mode. Note how the
parameter is specified in square brackets!

\SBEnd[Y]{Give \Ch{F}{thanks,} \ldots}

In this case the ending is a no-op in words-only mode.

\SBEnd{\Ch{A}{} \Ch{B/A}{} \Ch{D}{}}

\SBIntro[〈use in words-only〉]{〈the introduction〉} is used to encapsulate anySBIntro

introduction to a song: it causes 〈the introduction〉 to be set with an intro
tag of “Intro:”, using in the \SBIntroTagFont font. The first parameter is
optional and if used is put in square brackets; specifying any value except
‘N’ will cause the ending to be used in words-only mode. Some examples of
its intended use are:

This will cause the ending to be printed in words-only mode. Note how the
parameter is specified in square brackets!

\SBIntro[Y]{\Ch{D}{} \Ch{C}{} Ooooh}

In this case the ending is a no-op in words-only mode.

\SBIntro{{\SBLyricNoteFont Guitar and drums}}

\SBMargNote{〈marginal note〉} is used to place a note of some kind in the margin\SBMargNote

of a songbook. In words-only mode this macro is a no-op.

\SBRef{〈book title〉}{〈page or song number〉} creates a reference in the margin\SBRef

to another music book, or tape. This provides a method for directing people
to resources they may use to learn the song. The marginal reference only
prints when \WordsOnly is \False.

\SBem prints an em-dash (i.e., “—”) when \WordsOnly is \False. See \SBen.\SBem

\SBen prints an en-dash (i.e., “–”) when \WordsOnly is \False. This allows us\SBen

to place a short rule within text in order place a chord earlier than a syllable;
yet, that rule will not appear in the words-only book. The words-only version
of this macro is a no-op. An example of its intended use is:

...flows like a ri\Ch{B/A}{\SBen ver,} flows...

\STitle{〈song title〉}{〈key〉} prints the 〈song title〉, preceded by the current\STitle

\SBSongCnt value and followed by the 〈key〉 the song is given in. \STitle is
most often used along with the SBExtraKeys environment. This command
resets the \SBVerseCnt and \SBSectionCnt counters.

\WBPageBrk forces a new page if \ifWordBk is true.\WBPageBrk

\WOPageBrk forces a new page if \ifWordsOnly is true.\WOPageBrk

11

2.3 Miscellaneous Commands

Not all of the commands listed here are commonly used in songbooks written using
one of the Song[ook styles. The commands are listed alphabetically.

\CpyRt{〈copyright info.〉} prints the copyright information line. This command\CpyRt

is not usually explicitly used in a songbook. It is called by the song envi-
ronment and will normally only be used there.

\FLineIdx{〈first line〉} make an entry in the Title & First Line Index file,\FLineIdx

“jobname .tIdx.”

\SBChorusMarkright hook to allow \SBSection’s \markright to be overridden.\SBChorusMarkright

\SBContinueMark conditionally produce a continuation symbol. If the con-\SBContinueMark

tents of \rightmark will result in nothing being typeset, then don’t out-
put the continuation mark; otherwise, output a continuation mark using the
\SBContinueTag command.

\SBSectionMarkright hook to allow \SBSection’s \markright to be overridden.\SBSectionMarkright

\SBVerseMarkright hook to allow \SBVerse’s \markright to be overridden.\SBVerseMarkright

\SongMarkboth hook to allow the song environment’s \markboth to be overrid-\SongMarkboth

den.

\STitleMarkboth hook to allow \STitle’s \markboth to be overridden.\STitleMarkboth

\ScriptRef{〈scripture address〉} is a scripture reference for the song. This com-\ScriptRef

mand has its name because the Song[ook style was written to produce song-
books for the church I am part of. This command is not usually explicitly
used in a songbook. It is called by the song environment and will normally
only be used there.

\WAndM{〈lyricist & composer〉} prints a line telling who wrote the words and\WAndM

music for this song. The string “W&M:” precedes the listing of the 〈lyricist
& composer〉 when it is printed. This command is not usually explicitly used
in a songbook. It is called by the song environment and will normally only
be used there.

2.4 Ifthen Commands

These \if tests are used to perform formatting that is dependent upon the type
of songbook you are creating. It is these \if tests which allow a single source file
to output the three songbook styles.

\ifSBinSongEnv is true if we are inside of a song environment.\ifSBinSongEnv

\ifChordBk is true if we are processing a chordbk document.\ifChordBk

\ifOverhead is true if we are processing an overhead document.\ifOverhead

\ifWordBk are we processing a wordbk document?\ifWordBk

\ifWordsOnly is true when we are typesetting a words-only document (i.e., no\ifWordsOnly

chords).

\ifNotWordsOnly is true if we are processing a document that displays chords.\ifNotWordsOnly

\ifCompactSongMode is set to true if you want songs presented in a compact\ifCompactSongMode

mode? It is initially set to false. Set this to true or false using the
\CompactSongModetrue and \CompactSongModefalse commands, respec-
tively.

12

\ifSongEject is set to true if we want a new page generated at the end of every\ifSongEject

song environment? A value of true means eject after every song environment
(default value is true).

Papersize tests have been provided in order to detect if a particular papersize
has been specified. These are only documented in the Detailed Documentation
section, below, since they are not generally needed.

2.5 Counters

These are the counters used in the various environments. Although you will gen-
erally not need to use them, they do sometimes come in handy; hence, they have
been documented here.

\theSBSongCnt counter is used for numbering the songs. When a song is listed\theSBSongCnt

multiple times (for multiple keys) the songs number must remain the same
each time.

\theSBSectionCnt the section counter is used for numbering sections as they\theSBSectionCnt

occur within a song.

\theSBVerseCnt the verse counter is used for numbering verses as they occur\theSBVerseCnt

within a song.

2.6 Spacing Commands

These commands define the amount of space to leave in various situations. Change
their values via LATEX’s \renewcommand command.

All of these spaces are defined as LATEX commands to overcome limitations in
LATEX length evaluation. For example, if \LeftMarginSBVerse were to be defined
as a length (i.e., using \newlength) and then immediately set to 4em’s, the specific
length would be evaluated with respect to the current font. This may not be what
is desired; instead a length evaluated with respect to the font in place at the start
of an SBVerse is probably what is desired. This can only be done by making these
lengths LATEX commands instead of lengths.

\HangAmt amount to indent when a line wraps.\HangAmt

\LeftMarginSBBracket is the amount of left margin to leave when the \SBBracketLeftMarginSBBracket

environment is in effect.

\LeftMarginSBChorus is the amount of left margin to leave when the \SBChorus\LeftMarginSBChorus

environment is in effect.

\LeftMarginSBSection is the amount of left margin to leave when the \SBSectionLeftMarginSBSection

environment is in effect.

\LeftMarginSBVerse is the amount of left margin to leave when the \SBVerse\LeftMarginSBVerse

environment is in effect.

\SBChordRaise the distance to raise the chords above the baseline of the text\SBChordRaise

they sit over.

\SBRuleRaiseAmount the distance to raise the rule (as specified by\SBRuleRaiseAmount

\SBIntersyllableRule) which fills the space between adjoining syllables.

\SpaceAboveSTitle is the amount of vertical space left by the STitle command\SpaceAboveSTitle

before it prints the song title line.

\SpaceAfterTitleBlk is the space inserted by the song environment between\SpaceAfterTitleBlk

the title block and the versicles.

13

\SpaceAfterChorus is the vertical space to leave after an SBChorus.\SpaceAfterChorus

\SpaceAfterOpGroup is the vertical space to leave after an SBOpGroup.\SpaceAfterOpGroup

\SpaceAfterSection is the vertical space to leave after an SBSection.\SpaceAfterSection

\SpaceAfterSBBracket is the vertical space to leave after an SBBracket.\SpaceAfterSBBracket

\SpaceAfterSong is the vertical space to leave after a song.\SpaceAfterSong

\SpaceAfterVerse is the vertical space to leave after an SBVerse.\SpaceAfterVerse

\SpaceBeforeSBBracket is the vertical space to leave before an SBBracket.\SpaceBeforeSBBracket

It is worth noting that the \SpaceAfterChorus, \SpaceAfterOpGroup,
\SpaceAfterSection, and \SpaceAfterSong, \SpaceAfterVerse macros all al-
low negative glue to be inserted; that is, the space may be shrunk as well as
expanded. If this proves problematic (due to sections being visibly pushed into
each other, the old spacing (as in versions 1.x and 2.x) can be restored by resetting
these macros to 0ex. For example:

\renewcommand{\SpaceAfterChorus} {\vspace{0ex}}

\renewcommand{\SpaceAfterOpGroup}{\vspace{0ex}}

\renewcommand{\SpaceAfterSection}{\vspace{0ex}}

\renewcommand{\SpaceAfterSong} {\vspace{0ex}}

\renewcommand{\SpaceAfterVerse} {\vspace{0ex}}

2.7 String Constants

These constants are provided so that users may easily customize the appearance
of formatted songs and songbooks. Use the \renewcommand command to change
the value of these constants.

\OHContPgFtrTag tag is inserted by the \OHContPgFtr command. The default\OHContPgFtrTag

value for this is “continued on next page\ldots”.

\OHContPgHdrTag tag is inserted by the \OHContPgHdr command. The default\OHContPgHdrTag

value for this is “\theSBSongCnt\ --- \theSongTitle, continued\ldots”.

\SBBaseLang tag is the name of the language of all songs not specified within\SBBaseLang

an songTranslation environment, and also as the default value of the
songTranslation environment’s optional song language parameter. The
default value for this is “English”.

\SBBridgeTag the Bridge Tag to insert before the start of a bridge. The default\SBBridgeTag

value for this is “Bridge:”.

\SBChorusTag the Chorus Tag to insert before the first line of a chorus. The\SBChorusTag

default value for this is “Ch:”.

\SBContinueTag the Continue Tag to insert in an\SBContinueTag

\SBContinueMark. The default value for this is “cont\ldots”.

\SBEndTag the End Tag to insert before the start of an ending (in an \SBEnd\SBEndTag

command). The default value for this is “End:”.

\SBIntersyllableRule the command(s) to draw the rule between adjoining syl-\SBIntersyllableRule

lables.

\SBIntroTag the Intro Tag to insert before the start of an introduction (in an\SBIntroTag

\SBIntro command). The default value for this is “Intro:”.

14

\SBPubDom the string to insert which indicates song is in the public domain. The\SBPubDom

default value for this is “Public Domain”. If you want to localize this string
in the song title block, be sure to use this public interface: the \CpyRt macro
uses \SBPubDom to determine whether or not to print the copyright symbol
(c©).

\SBUnknownTag the WAndM string to insert when either the author/artist or the\SBUnknownTag

copyright holder is unknown. The default value for this is “Unknown”.

\SBWAndMTag the tag to insert before the words and music entry printed in the\SBWAndMTag

song header. The default value for this is “W\&M:”.

2.8 Font Handling

Of all the font selection Song[ook macros, only one is commonly used by someone
writing a songbook: \SBLyricNoteFont. All the other font macros are only used
by an author to over-ride default behaviour, via the \renewcommand command.

\ChBassFont sets the font for the bass note in chords as printed by the \Ch, \Chr\ChBassFont

and \ChX commands.

\ChBkFont sets the font for square brackets typeset inside \Ch commands (and\ChBkFont

its variants).

\ChFont sets the font for chords as printed by the \Ch, \Chr, and \ChX commands.\ChFont

\CpyRtFont sets the font used to print the copyright line produced by the \CpyRt\CpyRtFont

command.

\CpyRtInfoFont sets the font used to print the 〈copyright licensing information〉\CpyRtInfoFont

parameter of the song environment; which appears after the 〈copyright
information〉 parameter under the 〈song title.〉

\SBBracketTagFont sets the font used to create the tag for an SBBracket envi-\SBBracketTagFont

ronment.

\SBBridgeTagFont sets the font used to create the tag for an SBBridge environ-\SBBridgeTagFont

ment.

\SBChorusTagFont sets the font used to print the chorus tag, \SBChorusTag.\SBChorusTagFont

\SBDefaultFont sets the default font for the songbook. As of version 4.0 there\SBDefaultFont

is no need for you to specify this command yourself.

\SBEndTagFont sets the font used to print the tag, \SBEndTag, for the \SBEnd\SBEndTagFont

command.

\SBIntroTagFont sets the font used to print the introduction tag, \SBIntroTag.\SBIntroTagFont

\SBLyricNoteFont sets the font used in comments placed within the lyrics giving\SBLyricNoteFont

musical direction. This is the only font command commonly used by the
writer of a songbook.

\SBMargNoteFont sets the font used in the marginal reference printed by the\SBMargNoteFont

\SBMargNote command.

\SBOccursBrktFont sets the font used to create the large left and right square\SBOccursBrktFont

brackets which delimit an SBOccurs environment.

\SBOccursTagFont sets the font used to create the \SBOccurs tag.\SBOccursTagFont

\SBRefFont sets the font used in the marginal reference printed by the \SBRef\SBRefFont

command.

15

\SBVerseNumberFont sets the font used to print the \SBVerseCnt in front of\SBVerseNumberFont

verses in an SBVerse environment.

\SBSectionNumberFont sets the font used to print the \SBSectionCnt in front\SBSectionNumberFont

of sections in an SBSection environment.

\STitleFont sets the font used to print the song title, as generated by the\STitleFont

\STitle command.

\STitleKeyFont sets the font used to print the key a song is written in, as\STitleKeyFont

generated by the \STitle command.

\STitleNumberFont sets the font used to print the \SBSongCnt in front of the\STitleNumberFont

song title, as generated by the \STitle command.

\ScriptRefFont sets the font used to print the scripture reference generated by\ScriptRefFont

the \ScriptRef command.

\WandMFont sets the font used to print the lyricist and composer line generated\WandMFont

by the \WandM command.

2.9 Deprecated Commands

The following commands will be discontinued in some future release of the
Song[ook style:

\ChordBk is set to \True if we’re producing words and chord books. Set to
\False, otherwise. Superceded by the \ifChordBk if.

\False is a constant used in TEX \if expressions. This command is now unnec-
essary.

\Overhead is set to \True if we’re producing overhead transparencies. Set to
\False, otherwise. Superceded by the \ifOverhead if.

\SongEject is a flag indicating whether or not the \song environment should
end the current page when the environment ends: \True means end the
page when the \song environment ends; \False means don’t end the page.
Superceded by the \ifSongEject if.

\True is a constant used in TEX \if expressions. This command is now unnec-
essary.

\WordBk is the flag which tells us whether we’re producing a songbook with just
words that is not a set of overhead masters. Superceded by the \ifWordBk

if.

\WordsOnly is the flag which tells us whether we’re producing a songbook with
just words, or set of overhead masters. Superceded by the \ifWordsOnly if.

3 Usage Guidelines

This section gives some guidelines for use of the commands and environments
offered by the Song[ook style. These are not absolute standards, merely the sug-
gestions that I have come up with after entering some 450 songs into a Song[ook
style based songbook. These guidelines rarely justify themselves, try things out
and decide for yourself whether they’re right or wrong.

1. Make each line of a song its own paragraph. This means that the songbook
file is mostly double spaced. This allows the file to more easily survive
encounters with users who edit the songbook source using a non-text-editor,
such as WordPerfect.

16

2. Use of the \Ch command:

• Always try to attach a chord to a single syllable. If you need to include
more than one syllable with the chord then include extra text in units
of syllables (whenever possible). For example:

Do: \Ch{G}{Halle}luia

Don’t: \Ch{G}{Hall}eluia

• Always include punctuation along with a syllable that has been included
in a \Ch command. For example:

Do: \Ch{G}{Lord!}

Don’t: \Ch{G}{Lord}!

• Only place a single chord within a \Ch command. For example:

Do: \Ch{[}{}\Ch{G}{} \Ch{D}{}\Ch{]}{}

Don’t: \Ch{[G D]}{}

3. Extension of syllables. Syllables may be extended at either/or both ends.
Each end should be done in a different way:

(a) One usually needs to make a syllable longer because the chord it is tied
to is too long. This type of extension should be done using the \Chr

command.

Do: \Chr{G\#m7/C}{Ho}\Ch{C}{ly}

Don’t: \Ch{G\#m7/C}{Ho\SBem}\Ch{C}{ly}

(b) Extending the beginning (i.e., delaying the start) of a syllable is gener-
ally required because the chord change needs to occur between syllables.
For example, when the chord change is on the beat and the syllable is
sung off-beat. Use \SBen and \SBem for this purpose.

Do: none Ho\Ch{D}{\SBen ly}

4. Typographic conventions. LATEX knows about certain ligatures; that is, it
groups certain sequences of letters into a single character unit. ff is one
of these ligatures and is typeset in a special way; however this cannot oc-
cur if the f’s are split by a \Ch command. Therefore, if at all possible,
never split up the following character sequences with the \Ch command:
ff, fi, ffi, fl, ffl.

Do: \Ch{C}{diffi}cult

Don’t: \Ch{C}{dif}ficult

5. Ordering of songs in the songbook. In order to allow LATEX2e to fill pages
in as natural a manner as possible, it is best to order the songs within
the songbook based upon a wordbk formatted songbook. In that way, the
words-only songbooks will contain optimally filled columns. Start by placing
the longest songs first, only inserting shorter songs to cause page breaks at
logical intervals.

6. Overheads that occupy more than one page. When in overhead mode, if a
song spills over onto a second page (or beyond), it is helpful to print an extra
header at the top of the page identifying which song the extra page belongs
to. This is accomplished with the \OHContPgHdr macro. For example, one
would insert the following lines where the new page is to occur:

\OHContPgFtr

\OHPageBrk

\OHContPgHdr

17

4 Index/TOC Generation

The Song[ook style provides facilities for title/first line index, song key index and
table of contents generation. While this facility is not yet completely developed, it
is much better than it was in early Song[ook releases, and it produces very usable
output!

4.1 Table of Contents Generation

Steps to follow in order to produce a table of contents:

1. Add a \makeTitleContents command to the preamble of your songbook.

2. Run LATEX2e on the songbook source.

3. Make your own copy of sampleToc.tex and customize its header and footer
definitions (so they match your songbook’s). Then change the name of the
file being \inputed to match your table of contents file.

4. Run LATEX2e on your copy of sampleToc.tex.

4.2 Title & First Line Index Generation

Steps to follow in order to produce a title and first line index:

1. Add a \makeTitleIndex command to the preamble of your songbook.

2. Run LATEX2e on the songbook source.

3. Run the ./mksbtdx shell script on the .tIdx file that was produced by the
previous step. Do this by typing “mksbtdx jobname” at a UNIX command
line. For example, the index file for sample-sb.tex was produced by typing
“mksbtdx sample-sb”.

4. Make your own copy of sampleTdx.tex and customize its header and footer
definitions (so they match your songbook’s). Then change the name of the
file being \inputed to match your index file. (./mksbtdx told you this file’s
name).

5. Run LATEX2e on your copy of sampleTdx.tex.

4.3 Song Key Index Generation

Steps to follow in order to produce a song key index:

1. Add a \makeKeyIndex command to the preamble of your songbook.

2. Run LATEX2e on the songbook source.

3. Run the ./mksbkdx shell script on the .kIdx file that was produced by the
previous step. Do this by typing “mksbkdx jobname” at a UNIX command
line. For example, the key index file for sample-sb.tex was produced by
typing “mksbkdx sample-sb”.

4. Make your own copy of sampleKdx.tex and customize its header and footer
definitions (so they match your songbook’s). Then change the name of the
file being \inputed to match your index file. (./mksbkdx told you this file’s
name).

5. Run LATEX2e on your copy of sampleKdx.tex.

18

4.4 Song Artist Index Generation

To produce an index by song artist (composer) follow the same steps as for song
key index generation, above, with the following exceptions:

• use \makeArtistIndex instead of \makeKeyIndex.

• use ./mksbadx instead of ./mksbkdx.

• use sampleAdx.tex instead of sampleKdx.tex.

5 Example

Here is an example songbook; where the the songbook contains exactly one song.

\documentstyle[12pt]{book}

\usepackage[chordbk]{songbook} %% Words & Chords edition.

%%

% C.C.L.I. license number definition; for copyright licensing info.

%%

\newcommand{\CCLInumber}{\#999999}

\newcommand{\CCLIed}{(CCLI \CCLInumber)}

\newcommand{\NotCCLIed}{}

\newcommand{\PGranted}{}

\newcommand{\PPending}{(Permission Pending)}

%%

% Turn on index and table of contents.

%%

\makeTitleIndex %% Title and First Line Index.

\makeTitleContents %% Table of Contents.

\makeKeyIndex %% Song Key Index.

\makeArtistIndex %% Index by Artist.

\begin{document}

%%

% Songbook begins.

%%

\begin{song}{What A Mighty God We Serve}{C}

{\SBPubDom}

{\SBUnknownTag}

{Isaiah 9:6}

{\NotCCLIed}

\renewcommand{\RevDate}{February~11,~1993}

\SBRef{Give Thanks}{Hosanna! Music Tape HM-7}

\SBRef{Hosanna! Music Book~I}{\#93}

\begin{SBOpGroup}

\Ch{C}{What} a mighty God we serve,

What a mighty God we \Ch{G7}{serve},

\Ch{C}{An}gels bow before Him,

\Ch{C}{Hea}ven and earth adore Him,

\Ch{C}{What} a mighty \Ch{G7}{God} we \Ch{C}{serve!}\Ch{[}{}\Ch{F}{}

\Ch{C}{}\Ch{]}{}

\end{SBOpGroup}

\begin{SBVerse}

O \Ch{C}{Zion,} O \Ch{F}{Zion,} that \Ch{G7}{bring}est good \Ch{C}{tid}ings,

Get thee \Ch{F}{up} into the \Ch{G7}{High} Moun\Ch{C}{tains}

Je\Ch{C}{ru}salem, Je\Ch{F}{ru}salem, that \Ch{G7}{bring}est good \Ch{C}{tid}ings

19

Lift up thy \Ch{F}{voice} with \Ch{G7}{all} thy \Ch{C}{strength}

Lift it \Ch{F}{up,} be not afraid;

Lift it \Ch{C}{up,} be not afraid

Say \Ch{Am}{unto} the \Ch{C}{ci}ties of \Ch{G7}{Judah,}

‘‘Behold your \Ch{C}{God,}\Ch{C7}{} Behold your \Ch{F}{God,}

Be\Ch{C}{hold} \Ch{G7}{your} \Ch{C}{God!’’}

\end{SBVerse}

\CBPageBrk

\begin{SBExtraKeys}{%

\STitle{What A Mighty God We Serve}{D}

\begin{SBOpGroup}

\Ch{D}{What} a mighty God we serve,

What a mighty God we \Ch{A7}{serve},

\Ch{D}{An}gels bow before Him,

\Ch{D}{Hea}ven and earth adore Him,

\Ch{D}{What} a mighty \Ch{A7}{God} we \Ch{D}{serve!}\Ch{[}{}\Ch{G}{}

\Ch{D}{}\Ch{]}{}

\end{SBOpGroup}

\begin{SBVerse}

O \Ch{D}{Zion,} O \Ch{G}{Zion,} that \Ch{A7}{bring}est good \Ch{D}{tid}ings,

Get thee \Ch{G}{up} to into the \Ch{A7}{High} Moun\Ch{D}{tains}

Je\Ch{D}{ru}salem, Je\Ch{G}{ru}salem, that \Ch{A7}{bring}est good

\Ch{D}{tid}ings

Lift up thy \Ch{G}{voice} with \Ch{A7}{all} thy \Ch{D}{strength}

Lift it \Ch{G}{up} be not afraid,

Lift it \Ch{D}{up} be not afraid

Say \Ch{Bm}{unto} the \Ch{D}{ci}ties of \Ch{A7}{Judah,}

‘‘Behold your \Ch{D}{God,}\Ch{D7}{} Behold your \Ch{G}{God,}

Be\Ch{D}{hold} \Ch{A7}{your} \Ch{D}{God!’’}

\end{SBVerse}

}\end{SBExtraKeys}

\end{song}

\end{document}

\bye

6 Dependencies

The Song[ook style is dependent upon four other LATEX2e styles: conditionals.sty,
calc.sty, ifthen.sty, multicol.sty, and xstring.sty. Conditionals.sty is
supplied with this package. Calc.sty, ifthen.sty, and multicol.sty are part
of the LATEX2e distribution. xstring.sty is available from CTAN.

Embedding guitar chord fingering charts within a songbook can be accom-
plished with the texchord.sty package; which is supplied in the contrib directory
of the Song[ook distribution.

20

7 Files

conditionals.sty Donald Arseneau’s conditional tests; included with Donald’s
kind permission.

mksbadx A shell script around makeindex to sort the song artist index.

mksbkdx A shell script around makeindex to sort the song key index.

mksbtdx A shell script around makeindex to sort the title & first line index.

relnotes.txt The Song[ook package release notes.

sample-sb.tex A sample songbook.

sampleAdx.tex Song artist index for the sample songbook.

sampleKdx.tex Song key index for the sample songbook.

sampleTdx.tex Title & first line index for the sample songbook.

sampleToc.tex TOC for the sample songbook.

songbook.ist The Song[ook package makeindex .ist file.

songbook.dtx The base style file.

songbook.inx The install script used to create songbook.sty.

8 See Also

Some resources you will find helpful when coding songbooks:

• LATEX A Document Preparation System, by Leslie Lamport

• The LATEX Companion, by Goossens, Mittlebach, & Samarin

• The Song[ook homepage, at URL http://rath.ca/Misc/Songbook/

• The TEX book, by Donald Knuth

8.1 Contributed Resources

A couple of Song[ook users have created additional resources intended to be used
with the Song[ook style. If you have written anything which you would like to
contribute to Song[ook style’s distribution, please let me know.

CarolBook a Song[ook formatted book containing words for all the Christmas
songs I’ve been able to find where the words are now in the public domain.
PDF versions of the file are included for quick and easy use.

crd2sb a perl script which converts Chord files into Songbook files. Contributed
by Abel Chow <abel@g2networks.com>. Note that a postscript formatter
for Chord songs can be ftp’ed from:
ftp://ftp.uu.net/doc/music/guitar/resources/misc/CHORD/.

modulate a perl script for modulating a song from one key to another. Con-
tributed by Christopher Rath <christopher@rath.ca>.

LYX Integration files for use of the Song[ookstyle with LYX. Christian Rid-
derström <chr@md.kth.se> has put together the necessary files to allow
Song[ooks to be edited using LYX. While these files are not distributed in
the Song[ook’s contrib files, they are available from
http://www.md.kth.se/~chr/lyx/songbook/Songbook.shtml.

21

texchord.sty LATEX macros for printing guitar fingering charts. Contributed
by Joel M. Hoffman <joel@wam.umd.edu>. Note, this style is no longer
actively supported by Joel.

8.2 Other Similar Packages

There are a number of song and songbook formatting packages available which at-
tempt to provide similar functionality to the Song[ook package (although, IMHO,
my package is better). Similar LATEX2e packages (of which the author is aware)
include:

chord.sty a song formatting package based on LATEX’s article style; written by
Olivier Biot (http://www.biot.yucom.be/).

Chordpack a utility for typesetting chordpro chord files in TeX; written by
Daniel Polansky (http://www.fi.muni.cz/~xpolansk/home.html) and
available at http://www.fi.muni.cz/~xpolansk/chordpack.

gchords.sty a TeX packages for typesetting guitar chord diagrams; written by
Kasper Peeters (http://www.damtp.cam.ac.uk/user/kp229/) and avail-
able at http://www.damtp.cam.ac.uk/user/kp229/gchords/.

Guitar.sty LATEX macros for typesetting guitar chords over song texts; writ-
ten by Martin Vth (http://www.mathematik.uni-wuerzburg.de/~vaeth/)
and available from
http://www.mathematik.uni-wuerzburg.de/~vaeth/download/.

GuitarTeX a graphical tool for editing chordpro chord files and printing them
in TeX; written by Joachim Miltz and available from
http://www.rz-home.de/~jmiltz/guitartex/.

song.sty a song formatting package based on LATEX’s book style; written by Jens
T. Berger Thielemann (http://www.stud.ifi.uio.no/~jensthi/).

9 Bugs

In the specific case where a \Ch, \Chr, or \ChX macro begins a paragraph that isn’t
inside one of Song[ook’s versicle environments, that line may not indent properly
in the chordbk substyle (specifically, a long, wrapped line won’t have its extra
indentation). I have been unable to identify the reason for the problem, although
it is easily reproducible. The best way to avoid this problem is through use of
the \SBOpGroup environment. If that isn’t possible, the problem may often be
overcome by starting such lines with an \mbox{} command; this inserts an empty
(i.e., zero width) mbox at the start of the line. For example:

\mbox{}\Ch{G}{Great} is the Lord \Ch{A}{even} beyond the

\Ch{D}{borders} of I\Chr{F#m}{srae}\Ch{Bm7}{l;}

The \emph macro is not completely compatible with \Ch and its friends. The
specific problem is that sharps can not be specified via ‘#’ within an \emph macro.
The following snippet,

\emph{for the \Ch{G/A}{King} of \Ch{F#}{kings.}}

will fail with the LATEX2e message,

! Illegal parameter number in definition of \\reserved\@a.

<to be read again>

22

The error message can be supressed by replacing ‘#’ with ‘##’, however this
results in a double-sharp being typeset. The problem can be worked-around by
replacing the snippet with:

\emph{for the \Ch{G/A}{King} of} \Ch{F#}{\emph{kings.}}

10 Special Thanks

Thanks to Donald Arseneau for writing the conditionals.sty file, and for helping
write the \Chord macro. Donald, you are one of the faithful who is always quick to
reply with correct answers to questions posted to comp.text.tex. Thanks again.

Thanks also to Philip Hirschhorn whose \Chord macro I ultimately used in
versions 1.0–2.3 of the Song[ook style, and to Olivier Boit who constructed a
similar chord macro which I used to enhance Philip’s code for version 3.0

A quick thank you to Herbert Martin Dietze <herbert@fh-wedel.de> for
noting that SBVerse* and its cousins were missing from the .sty file, and then
coding up an acceptable SBVerse* which I could quickly use as a model for the
other two missing environments.

For version 4.1, I am grateful to Mark Wooding for suggesting the method I
ultimately used for implementing the song environment’s 〈Include? 〉 option (al-
though I did not use his preferred method).

I am grateful to Adam Fletcher for prodding me to add the per-song
compactsong implementation; which took many years more than it should have
taken for me to get it coded.

11 Author

Christopher Rath christopher@rath.ca (613) 824-4584
1371 Major Rd.
Orleans, ON
Canada K1E 1H3

23

12 .dtx Documentation Driver

There is one last administrative detail to take care of before beginning the detailed
review: the insertion of the documentation driver (i.e., the code that builds the
documentation .dvi file.

1 〈∗driver〉
2 \documentclass{ltxdoc} \RequirePackage{calc} \EnableCrossrefs

3 \CodelineIndex

4 \RecordChanges % Gather update information

5 %\OnlyDescription % comment out for implementation details

6 %\OldMakeindex % use if your MakeIndex is pre-v2.9

7 \setlength\hfuzz{15pt} % dont make so many

8 \hbadness=7000 % over and under full box warnings

9 \def\MacroFont{\fontencoding\encodingdefault

10 \fontfamily\ttdefault

11 \fontseries\mddefault

12 \fontshape\updefault

13 \footnotesize}%

14

15 \voffset=-1.00in

16 \topmargin=0.5in

17 \headheight=0.0in

18 \headsep=0.20in

19 \textheight=9.4in

20 \footskip=0.4in

21

22 \newenvironment{ParameterList}

23 {\par\hskip 1.5em Parameters:\begin{list}{}

24 {\setlength{\topsep}{0pt}

25 \setlength{\parsep}{0pt}

26 \setlength{\itemsep}{0pt}

27 \setlength{\leftmargin}{\leftmargin + 1.5em}

28 \setlength{\parsep}{0pt}

29 }

30 }

31 {\end{list}\vskip 0.5ex

32 }

33 \newcommand{\parm}[1]{\texttt{[}\meta{#1}\texttt{]}}

34 \begin{document}

35 \setcounter{IndexColumns}{1}

36 \DocInput{songbook.dtx}

37 \end{document}

38 〈/driver〉

24

Part II

Detailed Documentation
This section contains style implementation details along with the detailed descrip-
tions and documentation for the Song[ook commands and environments. It is
strongly recommended that these detailed descriptions be reviewed at least once
as part of becoming familiar with the Song[ook style.

This coding style has been structured in a top down fashion which assume that
macros and environments must be declared before they are first used. TEX doesn’t
require this to be so, but since I’ve been coding software this way for 20+ years,
it’s easier for me to also maintain this structure here too.

13 Identification Part

The first section in songbook.sty is what LATEX2e calls the Implementation Part.
This is where Song[ook identifies itself to the outside world. As part of this section
an RCS “Id:” variable has been included as a TEX comment; the intent is that
this may assist with reporting problems later.

1 %%

2 %%

3 %% %%

4 %% I D E N T I F I C A T I O N P A R T %%

5 %% %%

6 %%

7 %%

8 %%

9 %% rcsid = @(#)$Id: songbook.dtx,v 1.16 2010-04-12 18:10:15 rathc Exp $

10 %%

11 \NeedsTeXFormat{LaTeX2e}

12 \ProvidesPackage{songbook}[2010/04/30 v4.5 All purpose Songbook style]

13 \typeout{Document Subclass: songbook 2010/04/30 v4.5 All purpose Songbook style}

14 Initial Code Part

The next section is called the Initial Code Part. This is where any dependen-
cies in the early sections of songbook.sty has are contained. In the case of the
Song[ook style we must declare our dependence on calc.sty here because some
of Song[ook’s declarative sections themselves contain calculations. In this section
we also declare the \if constructs used in the package.

14 %%

15 %%

16 %% %%

17 %% I N I T I A L C O D E P A R T %%

18 %% %%

19 %%

20 %%

21

22 %%==

23 %% E A R L Y P A C K A G E D E P E N D E N C I E S %

24 %%==

Page layout calculations have become overly complex and so as of version 4.0
we now require calc.sty to make them readable once again. In every instance
we could probably find a way to get along without calc.sty; however, since the
package is a part of the LATEX2e Base there is no logical reason to avoid its use.

25 \RequirePackage{calc}

26

25

14.1 If Constructs

Most of these \if contructs are needed for use in the Delaration Of Options
section of songbook.sty. In each case, we create the if statement (a.k.a. the
flag) and then immediately set it to a known value. Where there are several flags
which act as sort of radio buttons, all of the flags are set so that none of them is
selected; which has been done so that if we forget to deal with them properly in
the Declaration Of Options code it will eventually manifest itself as an error.

Since the majority of the \ifs have to be declared in this section, we will go
ahead and declare the remaining \ifs as well. It’s simpler to maintain them when
they are all in one place.

27 %%==

28 %% I F C O N S T R U C T S %

29 %%==

14.1.1 Song[ook Types

At any time, only one of \ifChordBk, \ifOverhead, or \ifWordBk may be true.
These \ifs correspond directly to the chordbk, overhead, and wordbk options;
one of which must be used in the \usepackage{} statement used to invoke the
Song[ook style. All three flags are set to \false, and this fact is use later in order
to confirm that the user had specified one of the 3 options in their document.

\ifChordBk \ifChordBk is true if the user specified the chordbk option.

\ifOverhead \ifOverhead is true if the user specified the overhead option.

\ifWordBk \ifWordBk is true if the user specified the wordbk option.

30 \newif\ifChordBk \ChordBkfalse

31 \newif\ifOverhead \Overheadfalse

32 \newif\ifWordBk \WordBkfalse

14.1.2 Song[ook Subtypes

A pair of \ifs are declared to indicate whether we are only typesetting words on
the page (i.e., the flag is false if we are typesetting words and chords). We are
in words only mode when the user has declared either the overhead or wordbk

options. When these flags are first declared they are set to the same value, false.

\ifWordsOnly \ifWordsOnly is true if we’re in words-only mode.

\ifNotWordsOnly \ifNotWordsOnly always has a value oposite the of \ifWordsOnly. \ifNotWordsOnly
is false if we are in words-only mode.

33 \newif\ifWordsOnly \WordsOnlyfalse

34 \newif\ifNotWordsOnly \NotWordsOnlyfalse

14.1.3 Song Indicator

\ifSBinSongEnv The \ifSBinSongEnv flag is provided to the style or a songbook’s author to detect
if the current text is inside of a song environment. This flag hasn’t proven to be
useful, but it doesn’t hurt anything to leave it around; so, it hasn’t been removed—
who knows, there may well be a user somewhere making use of it! The song

environment takes care of setting this flag’s status.

35 \newif\ifSBinSongEnv \SBinSongEnvfalse

26

14.1.4 Behaviour Flags

There are three flags which can be set in order to effect certain behaviours from
the Song[ook style. They are not related to one another but have been grouped
together since they are they all \ifs used to control Song[ook behaviour.

\ifCompactSongMode \ifCompactSongMode is set to true if you want songs presented in a compact mode.
It is initially set to false. This flag will only be set to true by the user; the style
itself does not toggle this flag. Set this to true by specifying the compactsong

option in the \usepackage statement.

\ifExcludeSong \ifExcludeSong is set to true if you want to have the current song excluded from
the songbook. It is initially set to false, and would only be set to true inside a
song environment, during processing of a song to be excluded. Its value is set
to true when you pass a value of “N” as the first (optional) parameter to a song

environment.

\ifPrintAllSongs \ifPrintAllSongs is set to true if you want to have Song[ook print all a song-
book’s songs regardless of what option may have been specified in each song.

\ifSamepageMode \ifSamepageMode indicates we want the Song[ook style to try and keep each song
together on the same page. Set this true or false using the \SamepageModetrue

and \SamepageModefalse commands, respectively. Important note: this com-
mand has not been documented in the High Level Documentation section, above;
\ifSamepageMode is very unreliable. The LATEX2e page breaking algorithms are
not happy when this mode is used. The the song environment description, below,
for a further explanation.

\ifSongEject \ifSongEject is set to true if we want a new page generated at the end of ev-
ery song environment. A value of true means eject after every song environ-
ment (default value is true). Set this true or false using the \SongEjecttrue and
\SongEjectfalse commands, respectively.

36 \newif\ifCompactAllMode \CompactAllModefalse

37 \newif\ifCompactSongMode\CompactSongModefalse

38 \newif\ifExcludeSong \ExcludeSongfalse

39 \newif\ifPrintAllSongs \PrintAllSongsfalse

40 \newif\ifSamepageMode \SamepageModefalse

41 \newif\ifSongEject \SongEjecttrue

14.1.5 Papesize Indicators

This next set of flags are needed to track the papersize specified by the user in then
processed in the Declaration Of Options section. This set of \ifs are mutually
exclusive and only one of them should be true at any one time. They are all
initially set to false; setting of a default value is done via an \ExecuteOptions{}

clause, below. These flags were created for use by the Song[ook style itself, but
have been made part of the public interface to simplify page layout coding related
to paper handling in a user’s own songbook.

\ifSBpaperA4 \ifSBpaperA4 is true if papersize is A4.

\ifSBpaperA5 \fSBpaperA5 is true if papersize is A5.

\ifSBpaperB5 \ifSBpaperB5 is true if papersize is B5.

\ifSBpaperLtr \ifSBpaperLtr is true if papersize is US Letter.

\ifSBpaperLgl \ifSBpaperLgl is true if papersize is US Legal.

27

\ifSBpaperExc \ifSBpaperExc is true if papersize is US Executive Letter.

42 \newif\ifSBpaperAfour \SBpaperAfourfalse

43 \newif\ifSBpaperAfive \SBpaperAfivefalse

44 \newif\ifSBpaperBfive \SBpaperBfivefalse

45 \newif\ifSBpaperLtr \SBpaperLtrfalse

46 \newif\ifSBpaperLgl \SBpaperLglfalse

47 \newif\ifSBpaperExc \SBpaperExcfalse

14.2 Fonts

Fonts are specified up-front in this section in order to simplify the \DeclareOption{}
clauses that follow (i.e., those clauses need only make changes against these base-
line settings). The fonts sizes and selections initially declared herein are those
necessary for chordbk songbooks.

Fonts are handled by way of LATEX2e commands defined using the \newcommand
command. This was done specifically so that traditional LATEX2e font selection
occurs in the context the Song[ook font command is used. I may have completely
misunderstood how LATEX2e does its font selection, in which case my implementa-
tion choice here is pointless; however, until proven otherwise. . . here it is.1 Change
these font specifiers via LATEX2e’s \renewcommand.

48 %%==

49 %% F O N T S %

50 %%==

14.2.1 Chord Fonts

These font selectors are used to determine how chords are printed in words and
chords songbooks:

\ChBassFont \ChBassFont sets the font for the bass note in chords as printed by the \Ch, \Chr,
and \ChX commands.

\ChBkFont \ChBkFont sets the font for square brackets typeset by \Ch, \Chr, and \ChX com-
mands.

\ChFont \ChFont sets the font for chords as printed by the \Ch, \Chr, and \ChX commands.
This used to be set to \bf\sf (i.e., cmss12 at 14.4pt).

51 \newcommand{\ChBassFont}{\normalsize\bf\sf} % = cmss12 at 12.0pt

52 \newcommand{\ChFont}{\large\fontfamily{\sfdefault}%

53 \fontseries{sbc}\fontshape{n}\selectfont} %=cmssbc12 at 14.4pt

54 \newcommand{\ChBkFont}{\ChFont\fontseries{m} %

55 \selectfont} % =cmssm12 at 14.4pt

14.2.2 Title Block Fonts

These font selectors are used to select the fonts used in the Title Block that occurs
that the start of each song:

\CpyRtFont \CpyRtFont sets the font used to print the copyright symbol produced by the
\CpyRt command.

\CpyRtInfoFont \CpyRtInfoFont sets the font used to print the copyright licensing information pa-
rameter of the \song environment; which appears after the copyright information
parameter under the song title.

\STitleFont \STitleFont sets the font used to print the song title, as generated by the \STitle
command.

\STitleKeyFont \STitleKeyFont sets the font used to print the key a song is written in, as gener-
ated by the \STitle command.

1Given that doc.dtx uses fonts in this fashion, I feel I’m in pretty good company.

28

\STitleNumberFont \STitleNumberFont sets the font used to print the \SBSongCnt in front of the
song title, as generated by the \STitle command. This is one of two Song[ook
font commands that are implemented using a real LATEX2e \font command; this
turned out to be the easiest manner in which to obtain the desired fonts. In order to
make the \STitleNumberFont’s behaviour the the same as the other Song[ook font
commands, the implementation is done indirectly; whereby the \font command
is inserted into the \STitleNumberFont command so that it may be changed by
the user in the same way as the other font commands in this package.

\ScriptRefFont \ScriptRefFont sets the font used to print the scripture reference generated by
the \ScriptRef command.

\WandMFont \WandMFont sets the font used to print the lyricist and composer line generated
by the \WandM command.

56 \newcommand{\CpyRtFont}{\footnotesize} % = cmr10 at 10pt

57 \newcommand{\CpyRtInfoFont}{\tiny} % = cmss8 at 8pt

58 \newcommand{\STitleFont}{\large\bf\sf} % = cmss12 at 14.4pt

59 \newcommand{\STitleKeyFont}{\large} % = cmr12 at 14.4pt

60 \font\STNFont=cmtt12 at 20pt

61 \newcommand{\STitleNumberFont}{\STNFont} % = cmtt12 at 20pt

62 \newcommand{\ScriptRefFont}{\footnotesize} % = cmr10 at 10pt

63 \newcommand{\WandMFont}{\footnotesize} % = cmr10 at 10pt

14.2.3 Versicle Tag Fonts

These font selectors are used to select the fonts used to tag verses, choruses,
bridges, and other elements with which a song is constructed (e.g., verse numbers,
“Ch:” chorus indicator, etc.):

\SBBracketTagFont \SBBracketTagFont sets the font used to create the tag for an SBBracket envi-
ronment.

\SBBridgeTagFont \SBBridgeTagFont sets the font used to create the tag for an SBBridge environ-
ment.

\SBChorusTagFont \SBChorusTagFont sets the font used to print the chorus tag, \SBChorusTag.

\SBEndTagFont \SBEndTagFont sets the font used to print the tag, \SBEndTag, for the \SBEnd

command.

\SBIntroTagFont \SBIntroTagFont sets the font used to print the introduction tag, \SBIntroTag.

\SBOccursBrktFont \SBOccursBrktFont sets the font used to create the large left and right square
brackets used to delimit the \SBOccurs environment.

\SBOccursTagFont \SBOccursTagFont sets the font used to create the \SBOccurs tag.

\SBVerseNumberFont \SBVerseNumberFont sets the font used to print the \SBVerseCnt in front of verses
in an SBVerse environment.

\SBSectionNumberFont \SBSectionNumberFont sets the font used to print the \SBSectionCnt in front of
sections in an SBSection environment.

64 \newcommand{\SBBracketTagFont}{\small\bf\sf} % = cmss10 at 10.0pt

65 \newcommand{\SBBridgeTagFont}{\SBEndTagFont} % = cmss10 at 10.9pt

66 \newcommand{\SBChorusTagFont}{\small\bf\sf} % = cmss10 at 10.9pt

67 \newcommand{\SBEndTagFont}{\small\bf\sf} % = cmss10 at 10.9pt

68 \newcommand{\SBIntroTagFont}{\SBEndTagFont} % = cmss10 at 10.9pt

69 \font\SBOBFont=cmss17 at 30pt

70 \newcommand{\SBOccursBrktFont}{\SBOBFont} % = cmss17 at 30pt

71 \newcommand{\SBOccursTagFont}{\small\bf\sf} % = cmss10 at 10.0pt

72 \newcommand{\SBVerseNumberFont}{\small\bf\sf} % = cmss10 at 10.9pt

73 \newcommand{\SBSectionNumberFont}{\small\bf\sf} % = cmss10 at 10.9pt

74

29

14.2.4 Marginal Notes Fonts

These font selectors are used to select the fonts used when Song[ook commands
make notations in the margin of the songbook:

\SBMargNoteFont \SBMargNoteFont sets the font used in the marginal reference printed by the
\SBMargNote command.

\SBRefFont \SBRefFont sets the font used in the marginal reference printed by the \SBRef

command.

75 \newcommand{\SBMargNoteFont}{\scriptsize} % = cmti8 at 8pt

76 \newcommand{\SBRefFont}{\SBMargNoteFont} % = cmti8 at 8pt

14.2.5 Song Body Fonts

These font selector command are used to select fonts which are used within the
body of songs:

\SBDefaultFont \SBDefaultFont sets the default font for the songbook. We will insert an occur-
rence of this command at the top of the songbook using the \AtBeginDocument{}

clause, below.

\SBLyricNoteFont \SBLyricNoteFont sets the font used in comments placed within the lyrics giving
musical direction. This is the only font command commonly used by the writer of
a songbook. For example, to tag a line to be sung only by the Cantor and another
by everyone, one would write:

{\SBLyricNoteFont (Cantor)} Give thanks to the Lord.

{\SBLyricNoteFont (All)} His love endures forever.

77 \newcommand{\SBDefaultFont}{\fontfamily{\rmdefault}%

78 \large} % = cmr12 at 14.4pt

79 \newcommand{\SBLyricNoteFont}{\footnotesize\sf} % = cmss10 at 10pt

14.2.6 Other Fonts

The remaining font selector commands:

\SBOHContTagFont \SBOHContTagFont sets the font used to print the \OHContPgFtr and \OHContPgHdr.

80 \newcommand{\SBOHContTagFont}{\small\bf\sf\itshape} % = cmss10 at 10.9pt

81

14.2.7 Compact Song Fonts

Downsized fonts to allow song to fit into half the space (i.e., two column mode) for
compactsong printing; although the title will not be reset since it will be presented
unchanged from normal chordbk mode.

\ChBassFontCS

\ChFontCS

\ChBkFontCS

\SBDefaultFontCS

\SBOccursBrktFontCS

82 \newcommand{\ChBassFontCS}{\small\bf\sf} % = cmss12 at 11.0pt

83 \newcommand{\ChFontCS}{\normalsize\fontfamily{\sfdefault}%

84 \fontseries{sbc}\fontshape{n}\selectfont} % = cmssbc12 at 12.0pt

85 \newcommand{\ChBkFontCS}{\ChFont\fontseries{m} %

86 \selectfont} % = cmssm12 at 12.0pt

87 \newcommand{\SBDefaultFontCS}{\normalsize} % = cmr12 at 12.0pt

88 \newcommand{\SBOccursBrktFontCS}{\large\bf\sf} % = cmss10 at 10.9pt

89

30

14.2.8 Fonts Saving Variables

Variables in which to save the current fonts before we make changes for compact-
song mode. We’ll use them restore the original values again after leaving compact
song mode.

\ChBassFontSav

\ChFontSav

\ChBkFontSav

\SBDefaultFontSav

\SBOccursBrktFontSav

\SBFontSavVar

90 \newcommand{\ChBassFontSav}{\relax}%

91 \newcommand{\ChFontSav}{\relax}%

92 \newcommand{\ChBkFontSav}{\relax}%

93 \newcommand{\SBDefaultFontSav}{\relax}%

94 \newcommand{\SBOccursBrktFontSav}{\relax}%

95 \newcommand{\SBFontSavVar}{\relax}%

96

14.3 Configurable Dimensions

In this section we define the spaces to leave in various situations.
All of these spaces are defined as LATEX2e commands to overcome limitations

in length evaluation. For example, if \LeftMarginSBVerse were to be defined as
a length, and then immediately set to 4ems the specific length would be evaluated
with respect to the current font. This is not be what is desired; instead a length
evaluated with respect to the font in place at the start of an SBVerse is what is
desired. This can only be done by making these lengths LATEX2e commands.

97 %%==

98 %% C O N F I G U R A B L E D I M E N S I O N S %

99 %%==

14.3.1 Published Dimensions

While the bulk of the declared dimensions have been created to make the Song[ook
style more user configurable, there are also some dimensions which were created
for internal use. This first section describes the user configurable dimensions:

\HangAmt \HangAmt is the amount to indent when a line wraps. This has been defined using
\newcommand instead of \newlength so that any unit definitions are evaluated at
the time the \HangAmt command is used.

\LeftMarginSBBracket \LeftMarginSBBracket is the amount of left margin left in front of SBBrackets
and SBBracket*s in the songbook. The value for this variable has been chosen
such that the song-words for SBVerses, SBChoruses, and SBBrackets all align
against the same left margin when printing standard words & chords songbooks.

\LeftMarginSBChorus \LeftMarginSBChorus is the amount of left margin left in front of named choruses
in the songbook. In most cases \LeftMarginSBChorus, \LeftMarginSBSection,
and \LeftMarginSBVerse should all be the same value.

\LeftMarginSBSection \LeftMarginSBSection is the amount of left margin left in front of sections in
the songbook.

\LeftMarginSBVerse \LeftMarginSBVerse is the amount of left margin left in front of verses in the
songbook.

\SBChordRaise \SBChordRaise is the distance to raise the chords above the baseline of the text
they sit over.

\SBRuleRaiseAmount \SBRuleRaiseAmount is the distance to raise the rule (as specified by
\SBIntersyllableRule) which fills the space between adjoining syllables.

\SpaceAboveSTitle \SpaceAboveSTitle is the space skipped by the \STitle macro before it prints
the song title.

31

\SpaceAfterTitleBlk \SpaceAfterTitleBlk is the space inserted by the song environment between the
title block and the versicles.

\SpaceAfterChorus \SpaceAfterChorus is the vertical space to leave after an SBChorus environment.

\SpaceAfterOpGroup \SpaceAfterOpGroup is the vertical space to leave after an SBOpGroup environ-
ment.

\SpaceAfterSBBracket \SpaceAfterSBBracket is the vertical space to leave after an SBBracket environ-
ment. This has proven troublesome to choose (see also \SpaceBeforeSBBracket

because the list environment that produces the versicle inside of the SBBracket

environment is itself enclosed inside of a math construct (which requires the list

to have its vertical spacing supressed—otherwise the vertical line forming the
left bracket encloses unnecessary whitespace). The vertical spacing around a list
is created by way of some nontrivial macros and can’t simply be copied into
some other context. Thus, the choice of values for \SpaceAfterSBBracket and
\SpaceBeforeSBBracket have been rather arbitrarily chosen.

\SpaceAfterSection \SpaceAfterSection is the vertical space to leave after an SBSection environ-
ment.

\SpaceAfterSong \SpaceAfterSong is the vertical space to leave after a song.

\SpaceAfterVerse \SpaceAfterVerse is the vertical space to leave after an SBVerse environment.

\SpaceBeforeSBBracket \SpaceBeforeBBracket is the vertical space to leave before an SBBracket envi-
ronment. None of the other versicles have an extra space inserted before them.
See \SpaceAfterSBBracket for further explanation.

100 \newcommand{\HangAmt} {1.5em}

101 \newcommand{\LeftMarginSBBracket}{2.85em}

102 \newcommand{\LeftMarginSBChorus} {4em}

103 \newcommand{\LeftMarginSBSection}{\LeftMarginSBChorus}

104 \newcommand{\LeftMarginSBVerse} {\LeftMarginSBChorus}

105 \newcommand{\SBChordRaise} {2.25ex}

106 \newcommand{\SBOldChordRaise} {2.90ex}

107 \newcommand{\SBRuleRaiseAmount} {0.57ex}

108 \newcommand{\SpaceAboveSTitle} {0.5in}

109 \newcommand{\SpaceAfterTitleBlk} {-1.75ex}

110 \newcommand{\SpaceAfterChorus} {\vspace{0ex plus0ex minus3ex}}

111 \newcommand{\SpaceAfterOpGroup} {\vspace{0ex plus0ex minus3ex}}

112 \newcommand{\SpaceAfterSBBracket}{\vspace{2ex plus1ex minus1ex}}

113 \newcommand{\SpaceAfterSection} {\vspace{0ex plus0ex minus3ex}}

114 \newcommand{\SpaceAfterSong} {\vspace{0ex plus10ex minus3ex}}

115 \newcommand{\SpaceAfterVerse} {\vspace{0ex plus0ex minus3ex}}

116 \newcommand{\SpaceBeforeSBBracket}{\vspace{1ex plus1ex minus1ex}}

117

14.3.2 Internal Dimensions

These variables are used internally within Song[ook macros. They are not part
of the published songbook.sty interface; but a few of them can be used to tune
some of its functions.

\chSpaceTolerance

\chMiniSpace

The \chSpaceTolerance and \chMiniSpace lengths are used in the \Chr macro.

\sbBaselineSkipAmt \sbBaselineSkipAmt is used internally in SBVerse, SBChorus, and all the other
versicle environments; where hanging indentation has been accomplished using a
specially defined list environment. The value of \sbBaselineSkipAmt is recalcu-
lated immediately before each being used in each hanging indent list.

118 \newlength{\chSpaceTolerance} \setlength{\chSpaceTolerance}{1.5mm}

119 \newlength{\chMiniSpace} \setlength{\chMiniSpace} {0.3mm}

120 \newlength{\sbBaselineSkipAmt} \setlength{\sbBaselineSkipAmt}{0pt}

121

32

\textwidthSav

\evensidemarginSav

\marginparwidthSav

\marginparsepSav

\chSpaceToleranceSav

\HangAmtSav

\LeftMarginSBChorusSav

\LeftMarginSBSectionSav

\LeftMarginSBVerseSav

The \textwidthSav, \evensidemarginSav, \marginparwidthSav, \chSpaceToleranceSav,
\HangAmtSav, \LeftMarginSBChorusSav, \LeftMarginSBSectionSav, and \LeftMarginSBVerse

lengths are used in compactsong processing; to save and then restore values from.

122 \newlength{\textwidthSav}

123 \newlength{\evensidemarginSav}

124 \newlength{\marginparsepSav}

125 \newlength{\marginparwidthSav}

126 \newlength{\chSpaceToleranceSav}

127 \newcommand{\HangAmtSav}{}

128 \newcommand{\LeftMarginSBChorusSav}{}

129 \newcommand{\LeftMarginSBSectionSav}{}

130 \newcommand{\LeftMarginSBVerseSav}{}

131

14.4 Declaration Of Non-Core Options

In the Declaration Of Options section of the .sty file we deal with the various op-
tions which a user may specify in the options part of the \usepackage{songbook}
command. Since the Song[ook style accepts standard LATEX2e papersize options,
we deal with those in addition to the style’s own options. The documentation
of these options is broken into two parts: the core options (chordbk, wordbk, &
overhead), and the non-core options (all the rest).

The LATEX2e documentation specifies that the options will be processed in the
order in which they are listed in the .sty file. We take advantage of this fact and
cause all of the options except the core three (chordbk, wordbk, & overhead) to
simply set flags which indicate they were user-specified. The core options then do
all the work.

132 %%

133 %%

134 %% %%

135 %% D E C L A R A T I O N O F O P T I O N S %%

136 %% %%

137 %%

138 %%

139

14.4.1 Papersize Options

Paper selection options inherited from Book Class. We process these first in
order to remember what paper size the user has selected; before processing the
Song[ook’s own options.

The code in each of these \DeclareOption{} clauses sets the \SBpaper. . .
flags to unambiguously indicate which papersize the user specified.

140 %%===%

141 %% P A P E R S I Z E O P T I O N S %

142 %%===%

a4paper

143 \DeclareOption{a4paper}{% Paper size: 210mm x 297mm

144 \SBpaperAfourtrue

145 \SBpaperAfivefalse

146 \SBpaperBfivefalse

147 \SBpaperLtrfalse

148 \SBpaperLglfalse

149 \SBpaperExcfalse

150 }

151

a5paper

152 \DeclareOption{a5paper}{% Paper size: 148mm x 210mm

153 \SBpaperAfourfalse

154 \SBpaperAfivetrue

155 \SBpaperBfivefalse

33

156 \SBpaperLtrfalse

157 \SBpaperLglfalse

158 \SBpaperExcfalse

159 }

160

b5paper

161 \DeclareOption{b5paper}{% Paper size: 176mm x 250mm

162 \SBpaperAfourfalse

163 \SBpaperAfivefalse

164 \SBpaperBfivetrue

165 \SBpaperLtrfalse

166 \SBpaperLglfalse

167 \SBpaperExcfalse

168 }

169

letterpaper

170 \DeclareOption{letterpaper}{% Paper size: 8.5in x 11in

171 \SBpaperAfourfalse

172 \SBpaperAfivefalse

173 \SBpaperBfivefalse

174 \SBpaperLtrtrue

175 \SBpaperLglfalse

176 \SBpaperExcfalse

177 }

178

legalpaper

179 \DeclareOption{legalpaper}{% Paper size: 8.5in x 14in

180 \SBpaperAfourfalse

181 \SBpaperAfivefalse

182 \SBpaperBfivefalse

183 \SBpaperLtrfalse

184 \SBpaperLgltrue

185 \SBpaperExcfalse

186 }

187

executivepaper

188 \DeclareOption{executivepaper}{% Paper size: 7.25in x 10.5in

189 \SBpaperAfourfalse

190 \SBpaperAfivefalse

191 \SBpaperBfivefalse

192 \SBpaperLtrfalse

193 \SBpaperLglfalse

194 \SBpaperExctrue

195 }

196

14.4.2 Compactallsongs Option

This option tells the Song[ook style to present all the songs in a compact form,
regardless of what has been specified in each song. For chordbk mode this means
presenting the songs in two columns per page using a smaller font. When I can
figure out what this option should mean for the other modes I’ll code them up. In
the mean time, wordbk and overhead modes simply ignore the compactallsongs

option. Like the papersize options, the compactallsongs processing here simply
sets a flag; the actual code required to implement compactallsongs mode is
embedded below inside the three core options.

197 %%===%

198 %% C O M P A C T A L L S O N G S O P T I O N %

199 %%===%

34

compactallsongs

200 \DeclareOption{compactallsongs}{%

201 %%%

202 % Set flag to indicate the user wants compact song mode

203 % for all songs.

204 \CompactAllModetrue

205 }

206

14.4.3 Compactsong Option

This option has been replaced with the combination of a new compactallsongs

option and per-song specification of compactsong mode (see the documentation
for the song environmnet.

So, we now stop processing and print an error message telling the user that
the option has been removed.

207 %%===%

208 %% C O M P A C T S O N G O P T I O N %

209 %%===%

compactsong

210 \DeclareOption{compactsong}{%

211 \errmessage{The compactsong Songbook option has been

212 removed and replaced with a combination of a global

213 compactallsongs Songbook option and a per-song

214 environment compactsong option. See the song

215 environment’s documentation}

216 }

217

14.4.4 Printallsongs Option

This option tells the Song[ook style to print all songs in the songbook, regard-
less of what has been specified in each song. Like the papersize options, the
printallsongs processing here simply sets a flag; the actual code required to im-
plement printallsongs mode is embedded below inside the song environment.

218 %%===%

219 %% P R I N T A L L S O N G S O P T I O N %

220 %%===%

printallsongs

221 \DeclareOption{printallsongs}{%

222 %%%

223 % Set flag to indicate the user wants to print all songs.

224 \PrintAllSongstrue

225 }

226

14.5 Declaration Of Core Options

Now we deal with the Options which set up the songbook instances appropri-
ately; i.e., a “words-only”, “chords & words”, or “overhead master” book (wordbk,
chordbk, & overhead). These option declarations take advantage of the fact that
we have already been told what paper size to design for.

The style has been constructed on the underlying assumption that the user
must specify one of the core options. To that end, we will later throw an error
if none of these three options was executed (done at \AtBeginDocument time, see
the top of the Main Code Part for details).

227 %%===%

228 %% S O N G B O O K C O R E O P T I O N S %

229 %%===%

35

14.5.1 chordbk Option

chordbk The chordbk option is executed here.
Each of the core options is structured similarly. As as result, the documentation

for the first one, chordbk, will be more detailed, and the other two subsections
will refer to this one.

230 \DeclareOption{chordbk}{%

Set flags to indicate that we are in chordbk mode. Set flags to indicate we are
not in words-only mode. Indicate that we do want a page eject after every song.

231 \ChordBktrue

232 \WordBkfalse

233 \Overheadfalse

234 \WordsOnlyfalse

235 \NotWordsOnlytrue

236 \SongEjecttrue

237

Page Layout This first part specifies the page layout considerations.
Page layout usage recommendation: copy the appropriate page layout com-

mands to the preamble of your own document and customize them appropriately.
This will over-ride the default layout specified herein. Use a structure like this one
to handle the three songbook types automatically for your songbooks:

\ifChordBk

<page layout for Words & Chords books>

\else\ifWordBk

<page layout for Words-Only books>

\else\ifOverhead

<page layout for Overhead masters>

\fi\fi\fi

The only way I found to get these page layouts successfully built was to draw
the various frames in a drawing package and then use a combination of page
measurements and hand calculations to ensure I had everything done correctly.
One of the key concepts that had not been evident to me until just recently
was that on even pages the \marginparsep and \marginparwidth variables exist
inside the \evensidemargin; this fact is not explicitly mentioned in any LATEX
manual I have read, not even in “The LATEX Companion”!

The negative \hoffset and \voffset are to overcome the DVI driver default
left and top margins of 1in, and all page layout commands herein assume these
offsets have been “unset” in this fashion.

238 \voffset=-1.00in

239 \hoffset=-1.00in

240

Papersize-dependant processing. In general we don’t change anything except
the page layout, however for smaller page sizes the some of the fonts are reduced
to ensure that the songs fit reasonably onto the page.

241 \ifSBpaperAfour

242 \topmargin=0.5in

243 \headheight=0.21in

244 \headsep=0.2in

245 \textheight=10.0in

246 \footskip=0.19in

247 %

248 \oddsidemargin=0.618in

249 \evensidemargin=1.4in

250 \textwidth=6.25in

251 \marginparsep=0.2in

252 \marginparwidth=0.8in

253 \else\ifSBpaperAfive

254 \topmargin=6.0mm

36

255 \headheight=5.334mm

256 \headsep=2.666mm

257 \textheight=185.17mm

258 \footskip=4.826mm

259 %

260 \oddsidemargin=12.0mm

261 \evensidemargin=30.0mm

262 \textwidth=106.0mm

263 \marginparsep=3.68mm

264 \marginparwidth=20.32mm

Downsize the fonts to allow song to fit into the smaller A5 papersize.

265 \renewcommand{\ChBassFont}{\small\bf\sf} % = cmss12 at 11.0pt

266 \renewcommand{\ChFont}{\normalsize\fontfamily{\sfdefault}%

267 \fontseries{sbc}\fontshape{n}\selectfont} %=cmssbc12 at 12.0pt

268 \renewcommand{\ChBkFont}{\ChFont\fontseries{m} %

269 \selectfont} % =cmssm12 at 12.0pt

270 \renewcommand{\SBDefaultFont}{\normalsize} % = cmr12 at 12.0pt

271 \renewcommand{\SBOccursBrktFont}{\large\bf\sf} % = cmss10 at 10.9pt

272 \else\ifSBpaperBfive

273 \topmargin=10.0mm

274 \headheight=5.334mm

275 \headsep=5.0mm

276 \textheight=214.84mm

277 \footskip=4.826mm

278 %

279 \oddsidemargin=20.0mm

280 \evensidemargin=34.0 mm

281 \textwidth=122.0mm

282 \marginparsep=3.68mm

283 \marginparwidth=20.32mm

Downsize the fonts to allow song to fit into the smaller B5 papersize.

284 \renewcommand{\ChBassFont}{\small\bf\sf} % = cmss12 at 11.0pt

285 \renewcommand{\ChFont}{\normalsize\fontfamily{\sfdefault}%

286 \fontseries{sbc}\fontshape{n}\selectfont} %=cmssbc12 at 12.0pt

287 \renewcommand{\ChBkFont}{\ChFont\fontseries{m} %

288 \selectfont} % =cmssm12 at 12.0pt

289 \renewcommand{\SBDefaultFont}{\normalsize} % = cmr12 at 12.0pt

290 \renewcommand{\SBOccursBrktFont}{\large\bf\sf} % = cmss10 at 10.9pt

291 \else\ifSBpaperLtr

292 \topmargin=0.5in

293 \headheight=0.21in

294 \headsep=0.20in

295 \textheight=9.4in

296 \footskip=0.19in

297 %

298 \oddsidemargin=0.75in

299 \evensidemargin=1.5in

300 \textwidth=6.25in

301 \marginparsep=0.2in

302 \marginparwidth=0.8in

303 \else\ifSBpaperLgl

304 \topmargin=0.5in

305 \headheight=0.21in

306 \headsep=0.20in

307 \textheight=12.4in

308 \footskip=0.19in

309 %

310 \oddsidemargin=0.75in

311 \evensidemargin=1.5in

312 \textwidth=6.25in

313 \marginparsep=0.2in

314 \marginparwidth=0.8in

315 \else\ifSBpaperExc

316 \topmargin=0.25in

317 \headheight=0.21in

318 \headsep=0.165in

319 \textheight=9.435in

320 \footskip=0.19in

321 %

37

322 \oddsidemargin=0.5in

323 \evensidemargin=1.25in

324 \textwidth=5.5in

325 \marginparsep=0.2in

326 \marginparwidth=0.8in

327 \fi\fi\fi\fi\fi\fi

328

Enable ragged bottom.

329 \raggedbottom

330 }

331

14.5.2 wordbk Option

wordbk The wordbk option is executed here.

332 \DeclareOption{wordbk}{%

Set flags to indicate we are in wordbk mode. Set flags to indicate we are in
words-only mode. Indicate that we do not want a page eject after every song.

333 \ChordBkfalse

334 \WordBktrue

335 \Overheadfalse

336 \WordsOnlytrue

337 \NotWordsOnlyfalse

338 \SongEjectfalse

339

Set fonts for wordbk use.

340 \renewcommand{\SBDefaultFont}{\normalsize}

341 \font\mySTNFont=cmtt12 at 17pt

342 \renewcommand{\STitleNumberFont}{\mySTNFont}

343 \renewcommand{\CpyRtFont}{\scriptsize}

344 \renewcommand{\WandMFont}{\scriptsize}

345 \renewcommand{\ScriptRefFont}{\scriptsize}

346 \renewcommand{\SBOccursBrktFont}{\large\bf\sf}

347

Reset a few of the song spacing amounts.

348 \renewcommand{\SpaceAboveSTitle} {0.25in}

349 \renewcommand{\LeftMarginSBChorus} {1.5em}

350 \renewcommand{\LeftMarginSBSection}{\LeftMarginSBChorus}

351 \renewcommand{\LeftMarginSBVerse} {\LeftMarginSBChorus}

352

See the page layout comment in the \DeclareOption{chordbk} section, above,
for usage recommendations w.r.t. page layout commands.

The negative \hoffset and \voffset are to overcome the DVI driver default
left and top margins of 1in, and all page layout commands herein assume these
offsets have been “unset” in this fashion.

353 \voffset=-1.00in

354 \hoffset=-1.00in

355

Papersize-dependant processing.

356 \ifSBpaperAfour

357 \topmargin=0.5in

358 \headheight=0.21in

359 \headsep=0.2in

360 \textheight=10.0in

361 \footskip=0.19in

362 %

363 \oddsidemargin=0.618in

364 \evensidemargin=0.4in

365 \textwidth=7.25in

366 \marginparsep=0.0in

367 \marginparwidth=0.0in

38

368 \else\ifSBpaperAfive

369 \topmargin=6.0mm

370 \headheight=5.334mm

371 \headsep=2.666mm

372 \textheight=185.17mm

373 \footskip=4.826mm

374 %

375 \oddsidemargin=12.0mm

376 \evensidemargin=6.0mm

377 \textwidth=130.0mm

378 \marginparsep=0.0mm

379 \marginparwidth=0.0mm

380 \else\ifSBpaperBfive

381 \topmargin=10.0mm

382 \headheight=5.334mm

383 \headsep=5.0mm

384 \textheight=214.84mm

385 \footskip=4.826mm

386 %

387 \oddsidemargin=20.0mm

388 \evensidemargin=10.0mm

389 \textwidth=146.0mm

390 \marginparsep=0.0mm

391 \marginparwidth=0.0mm

392 \else\ifSBpaperLtr

393 \topmargin=0.5in

394 \headheight=0.21in

395 \headsep=0.10in

396 \textheight=9.4in

397 \footskip=0.29in

398 %

399 \oddsidemargin=0.75in

400 \evensidemargin=0.5in

401 \textwidth=7.25in

402 \marginparsep=0.0in

403 \marginparwidth=0.0in

404 \else\ifSBpaperLgl

405 \topmargin=0.5in

406 \headheight=0.21in

407 \headsep=0.20in

408 \textheight=12.4in

409 \footskip=0.19in

410 %

411 \oddsidemargin=0.75in

412 \evensidemargin=0.5in

413 \textwidth=7.25in

414 \marginparsep=0.0in

415 \marginparwidth=0.0in

416 \else\ifSBpaperExc

417 \topmargin=0.25in

418 \headheight=0.21in

419 \headsep=0.165in

420 \textheight=9.435in

421 \footskip=0.19in

422 %

423 \oddsidemargin=0.5in

424 \evensidemargin=0.25in

425 \textwidth=6.5in

426 \marginparsep=0.0in

427 \marginparwidth=0.0in

428 \fi\fi\fi\fi\fi\fi

429

Set ragged-right margins.

430 \raggedright

431

Do CompactSong processing, which at this time is nothing except resetting
the compactallsongs flag back to false; to ensure that no compactallsongs pro-
cessing occurs. We take time to print a warning message for the user to remind

39

them that the compactallsongs option will not have any effect at this time.

432 \ifCompactAllMode

433 \typeout{‘‘compactallsongs’’ mode not implemented for Wordbk mode.}

434 \CompactAllModefalse

435 \fi

436 }

437

14.5.3 overhead Option

overhead The wordbk option is executed here.

438 \DeclareOption{overhead}{%

Set flags to indicate we are in overhead mode. Set flags to indicate we are in
words-only mode. Indicate that we do want a page eject after every song.

439 \ChordBkfalse

440 \WordBkfalse

441 \Overheadtrue

442 \WordsOnlytrue

443 \NotWordsOnlyfalse

444 \SongEjecttrue

445

Set fonts for overhead use. Before doing any font stuff, change the regular
sans serif font to demi-bold condensed.

446 \def\@mss{cmssdc10}

447 \renewcommand{\SBDefaultFont}{\LARGE\bf\sf}

448 \renewcommand{\STitleNumberFont}{\Large\sf}

449 \renewcommand{\STitleFont}{\LARGE\sf}

450 \renewcommand{\CpyRtFont}{\normalsize\rm}

451 \renewcommand{\CpyRtInfoFont}{\normalsize\rm}

452 \renewcommand{\WandMFont}{\normalsize\rm}

453 \renewcommand{\ScriptRefFont}{\normalsize\rm}

454 \renewcommand{\SBLyricNoteFont}{\normalsize\rm}

455 \renewcommand{\SBChorusTagFont}{\Large\sf}

456 \renewcommand{\SBVerseNumberFont}{\Large\sf}

457 \renewcommand{\SBSectionNumberFont}{\Large\sf}

458 \renewcommand{\SBOccursTagFont}{\Large\sf}

459 \renewcommand{\SBOccursBrktFont}{\huge\sf}

460 \renewcommand{\SBBracketTagFont}{\Large\sf}

461 \renewcommand{\SBOHContTagFont}{\Large\sf\itshape}

462

Reset a few of the song spacing amounts.

463 \renewcommand{\SpaceAboveSTitle} {0.25in}

464 \renewcommand{\LeftMarginSBBracket}{2.25em}

465 \renewcommand{\LeftMarginSBChorus} {1.5em}

466 \renewcommand{\LeftMarginSBSection}{\LeftMarginSBChorus}

467 \renewcommand{\LeftMarginSBVerse} {\LeftMarginSBChorus}

468

Reset the . For some reason I’m not getting good results with the default
value.

469 \renewcommand{\baselinestretch}{.9}

470

See the page layout comment in the \DeclareOption{chordbk} section, above,
for usage recommendations w.r.t. page layout commands.

General note re: \textwidth and overhead tranparencies: it is my personal
experience that with font sizes used in overhead mode, a \textwidth of greater
than 6in produces too wide an image for use in all situations. Depending upon how
you intend to use your overheads, you may be able to use a wider image, however
if you are uncertain I strongly recommend you stick with the 6in \textwidth that
is specified herein.

40

The negative \hoffset and \voffset are to overcome the DVI driver default
left and top margins of 1in, and all page layout commands herein assume these
offsets have been “unset” in this fashion.

471 \voffset=-1.00in

472 \hoffset=-1.00in

473

Papersize-dependant processing.

474 \ifSBpaperAfour

475 \topmargin=0.25in

476 \headheight=0.25in

477 \headsep=0.0in

478 \textheight=10.3in

479 \footskip=0.2in

480 %

481 \oddsidemargin=1.134in

482 \evensidemargin=1.134in

483 \textwidth=6.0in

484 \marginparsep=0.0in

485 \marginparwidth=0.0in

486 \else\ifSBpaperAfive

487 \topmargin=0.0mm

488 \headheight=5.334mm

489 \headsep=0.0mm

490 \textheight=193.666mm

491 \footskip=4.826mm

492 %

493 \oddsidemargin=9.0mm

494 \evensidemargin=9.0mm

495 \textwidth=130.0mm

496 \marginparsep=0.0mm

497 \marginparwidth=0.0mm

498 \else\ifSBpaperBfive

499 \topmargin=0.666mm

500 \headheight=5.334mm

501 \headsep=0.0mm

502 \textheight=229.0mm

503 \footskip=4.826mm

504 %

505 \oddsidemargin=15.0mm

506 \evensidemargin=15.0mm

507 \textwidth=146.0mm

508 \marginparsep=0.0mm

509 \marginparwidth=0.0mm

510 \else\ifSBpaperLtr

511 \topmargin=0.25in

512 \headheight=0.25in

513 \headsep=0.0in

514 \textheight=9.75in

515 \footskip=0.2in

516 %

517 \oddsidemargin=1.25in

518 \evensidemargin=1.25in

519 \textwidth=6.0in

520 \marginparsep=0.0in

521 \marginparwidth=0.0in

522 \else\ifSBpaperLgl

523 \topmargin=0.25in

524 \headheight=0.25in

525 \headsep=0.0in

526 \textheight=12.8in

527 \footskip=0.2in

528 %

529 \oddsidemargin=1.25in

530 \evensidemargin=1.25in

531 \textwidth=6.0in

532 \marginparsep=0.0in

533 \marginparwidth=0.0in

534 \else\ifSBpaperExc

535 \topmargin=0.25in

41

536 \headheight=0.21in

537 \headsep=0.0in

538 \textheight=9.6in

539 \footskip=0.19in

540 %

541 \oddsidemargin=0.625in

542 \evensidemargin=0.625in

543 \textwidth=6.0in

544 \marginparsep=0.0in

545 \marginparwidth=0.0in

546 \fi\fi\fi\fi\fi\fi

547

Set ragged-botton and ragged-right margins.

548 \raggedright

549 \raggedbottom

550

Do compactallsongs processing, which at this time is nothing except resetting
the compactallsongs flag back to false; to ensure that no compactallsongs pro-
cessing occurs. We take time to print a warning message for the user to remind
them that the compactallsongs option will not have any effect at this time.

551 \ifCompactAllMode

552 \typeout{‘‘compactallsongs’’ mode not implemented for Overhead mode.}

553 \CompactAllModefalse

554 \fi

555 }

556

14.6 Execution Of Options

Here we tell the the Song[ook style to execute the user’s declared options.
First set up a default paper size, just in case the user didn’t specify one. Then

process the user specified options. It is mandatory for one of the songbook type
options to be declared, but rather than delare a default we will throw an error
(see below at the top of the Main Code Part).

557 %%

558 %%

559 %% %%

560 %% E X E C U T I O N O F O P T I O N S %%

561 %% %%

562 %%

563 %%

564

565 \ExecuteOptions{letterpaper}

566 \ProcessOptions

567

14.7 Package Loading Part

In this section of the style we load the remaining styles upon which the Song[ook
style is dependant.

568 %%

569 %%

570 %% %%

571 %% P A C K A G E L O A D I N G P A R T %%

572 %% %%

573 %%

574 %%

575

Donald Arseneau’s conditionals.sty. This style is bundled with the
Song[ook style (Donald has often posted the macros to the USENET comp.text.tex
newsgroup, but they haven’t been formally submitted to CTAN.

576 \RequirePackage{conditionals}

577

42

Leslie Lamport’s & David Carlilse’s ifthen.sty. This style is part of the
LATEX2e distribution.

578 \RequirePackage{ifthen}

579

We load Christian Tellechea’s xtring package to enable the new optional song
format string available for the song environment. This style is available on CTAN.

580 \RequirePackage{xstring}

581

We load Frank Mittelbach’s multicol package to enable use of compactsong
mode. We specify the date of the 1.5u release; since we make use of the
\columnbreak command which was only added in 1.5u.

582 \RequirePackage{multicol}[1999/05/25]

583

14.8 Main Code Part

The Main Code Part is the main part of the style. All of the “hard working”
macros are detailed below.

584 %%

585 %%

586 %% %%

587 %% M A I N C O D E P A R T %%

588 %% %%

589 %%

590 %%

591

The user must specify at least one of the chordbk, wordbk, or overhead op-
tions; otherwise we throw an error. This bit of code performs that check at the
start of the users document.

We check to see if at least one of the core options have been specified by the
user by populating an \hbox{} with the digit “1” if an option was specified. If no
core option was specified then the \hbox{} will be empty and we throw an error.

\AtBeginDocument

592 \AtBeginDocument{%

593 \setbox0=\hbox{}

594 %

595 \ifChordBk\setbox0=\hbox{1}\fi

596 \ifWordBk\setbox0=\hbox{1}\fi

597 \ifOverhead\setbox0=\hbox{1}\fi

598 %

599 \ifthenelse{\wd0 = 0}

600 {\errmessage{No songbook option (i.e., type) specified.

601 Specify a songbook mode in your usepackage

602 statement; one of: [chordbk], [wordbk], or [overhead]}}

603 {\relax}

604

If the user had specified one of the required options then we continue with
setting things up. At present, the only housekeeping item that needs attention is to
set the default font for the songbook. We do this by inserting the \SBDefaultFont
here; this lifts from the user the burden of having to remember to specifying inside
the songbook.

605 \SBDefaultFont

606 }

607

43

14.8.1 Constants & Variables

Define Counters used herein.

608 %%==

609 %% C O N S T A N T S & V A R I A B L E S %

610 %%==

611

\theSBSongCnt The \theSBSongCnt counter is used for numbering the songs. When a song is
listed multiple times (for multiple keys) the songs number must remain the same
each time.

\theSBSectionCnt The \theSBSectionCnt counter is used for numbering sections as they occur
within a song.

\theSBVerseCnt The \theSBVerseCnt counter is used for numbering verses as they occur within a
song.

612 \newcounter{SBSongCnt}

613 \newcounter{SBSectionCnt}

614 \newcounter{SBVerseCnt}

615

String Constants Declare string constants.
These constants are provided so that users may easily customize the appearance

of formatted songs and songbooks. Use the \renewcommand command to change
the value of these constants.

\OHContPgFtrTag The \OHContPgFtrTag tag is inserted by the \OHContPgFtr command. The de-
fault value for this is “continued on next page\ldots”.

\OHContPgHdrTag The \OHContPgHdrTag tag is inserted by the \OHContPgHdr command. The de-
fault value for this is “\theSBSongCnt\ --- \theSongTitle, continued\ldots”.

\SBBaseLang The \SBBaseLang tag is the name of the language of all songs not specified
within an songTranslation environment, and also as the default value of the
songTranslation environment’s optional song language parameter. The default
value for this is “English”.

\SBBridgeTag The \SBBridgeTag tag is inserted before the start of a bridge. The default value
for this is “Bridge:”.

\SBChorusTag The \SBChorusTag tag is inserted before the first line of a chorus. The default
value for this is “Ch:”.

\SBContinueTag The \SBContinueTag tag is inserted in an \SBContinueMark. The default value
for this is “cont\ldots”.

\SBEndTag The \SBEndTag tag is inserted before the start of an ending (in an \SBEnd com-
mand). The default value for this is “End:”.

\SBIntersyllableRule The \SBIntersyllableRule tag is actually the command(s) used to draw the rule
between adjoining syllables.

\SBIntroTag The \SBIntroTag tag is inserted before the start of an introduction (in an
\SBIntro command). The default value for this is “Intro:”.

\SBPubDom The \SBPubDom tag is used to indicate that a song is in the public domain. The
default value for this is “Public Domain”. If you want to localize this string in
the song title block, be sure to use this public interface: the \CpyRt macro uses
\SBPubDom to determine whether or not to print the copyright symbol (c©).

44

\SBUnknownTag The \SBUnknownTag tag is used with the \WAndM command and is the string to
insert when either the author/artist or the copyright holder is unknown. The
default value for this is “Unknown”.

\SBWAndMTag The \SBWAndMTag the tag is insert before the words and music entry printed in
the song header. The default value for this is “W&M:”.

\Songbook The macro used to print this style’s name. The ‘b’ in the word songbook has been
replace with a flat ([).

616 \newcommand{\OHContPgFtrTag} {continued on next page\ldots}

617 \newcommand{\OHContPgHdrTag} {\theSBSongCnt\ --- \theSongTitle, continued\ldots}

618 \newcommand{\SBBaseLang} {English}

619 \newcommand{\SBBridgeTag} {Bridge:}

620 \newcommand{\SBChorusTag} {Ch:}

621 \newcommand{\SBContinueTag} {cont\ldots}

622 \newcommand{\SBEndTag} {End:}

623 \newcommand{\SBIntersyllableRule}{\hrulefill}

624 \newcommand{\SBIntroTag} {Intro:}

625 \newcommand{\SBPubDom} {Public Domain}

626 \newcommand{\SBUnknownTag} {Unknown}

627 \newcommand{\SBWAndMTag} {W\&M:}

628 \newcommand{\Songbook} {\textrm{Song\flatook}}

629

Internal Song Variables Declare song attribute variables.
These variables are intended for consumption within the songbook style itself,

so they will not be documented in the High Level Documentation section, above.

\theSongComposer \theSongComposer is the composer and lyricist of the last song.

\theSongComposerU \theSongComposerU takes the value of \theSongComposer except when the song
composer parameter was left empty in the songbook; in which case this variable
will be assigned the value of \SBUnknownTag.

\theSongKey \theSongKey is the key of the last song. This variable must be reset within the
\STitle command, as well as at the start of the song environment, because of the
way in which extra keys are handled.

\theSongLicense \theSongLicense is the copyright license info.

\theSongTitle \theSongTitle is the title of the last song.

\theCopyRtInfo \theCopyRtInfo is the copyright information of the last song. This includes the
copyright licensing information.

\theScriptureRef \theScriptureRef is the scripture reference of the last song.

\theXlatnBy \theXlatnBy is who translated the song.

\theXlatnLang \theXlatnLang is the language the song has been translated into.

\theXlatnPerm \theXlatnPerm is the permission details for the last song translation. This variable
is reset to an empty string at the start of each song environment.

\theXlatnTitle \theXlatnTitle is the title of the last song-translation. This variable is reset to
an empty string at the start of each song environment.

630 \newcommand{\theSongComposer}{the Composer}

631 \newcommand{\theSongComposerU}{the ComposerU}

632 \newcommand{\theSongCopyRt}{the Copyright}

633 \newcommand{\theSongKey}{the Key}

634 \newcommand{\theSongLicense}{the License}

635 \newcommand{\theSongScriptRef}{the Scripture}

636 \newcommand{\theSongTitle}{the Title}

637 \newcommand{\theXlatnBy}{the Translator}

638 \newcommand{\theXlatnLang}{the Language}

639 \newcommand{\theXlatnPerm}{the Permission}

640 \newcommand{\theXlatnTitle}{the Translation Title}

641

45

14.8.2 Special Characters

Some macros to ease the entry of special characters in songbooks.

642 %%===%

643 %% S P E C I A L C H A R A C T E R S %

644 %%===%

645

\SBem \SBem — em-dash macro definition.
Parameters:

None.

Generate an em-dash within a songbook. This macro is used to place in em-
dash within text when we’re not in words-only mode. This allows us to place
dashes within text in order place a chord earlier than a sylable; yet, that dash
will not appear in the words-only book. The words-only version of this macro is
a no-op. Example of intended use:

646 \newcommand{\SBem}{\ifWordsOnly\relax\else---\fi}

647

\SBen \SBen — en-dash macro definition.
Parameters:

None.

Generate an en-dash within a songbook. This macro is used to place in en-dash
within text when we’re not in words-only mode; just like \SBem. The words-only
version of this macro is a no-op.

648 \newcommand{\SBen}{\ifWordsOnly\relax\else--\fi}

649

\SBContinueMark \SBContinueMark — conditionally produce a continuation symbol.
Parameters:

None.

If the contents of \rightmark will result in nothing being typeset, then don’t
output the continuation mark; otherwise, output a continuation mark using the
\SBContinueTag command.

650 \newcommand{\SBContinueMark}{%

651 \setbox0=\hbox{\rightmark}

652 \ifthenelse{\lengthtest{\wd0 = 0pt}}

653 {\relax}%

654 {\SBContinueTag}%

655 }

656

\OHContPgFtr \OHContPgFtr — macro to print page footing continuation headers on overheads.
Parameters:

None.

This macro must be manually inserted where needed. It is generally used in
conjunction with the \OHPageBrk and \OHPageHdr macros. \OHContPgFtr is a
no-op, except when \ifOverhead is true.

657 \newcommand{\OHContPgFtr}{%

658 \ifOverhead

659 \vskip .25in

660 \centerline{\SBOHContTagFont\OHContPgFtrTag}

661 \else%

662 \relax%

663 \fi}

\OHContPgHdr \OHContPgHdr — macro to print page heading continuation headers on overheads.
Parameters:

None.

46

This macro must be manually inserted where needed. It is generally used in
conjunction with the \OHPageBrk macro. \OHContPgHdr is a no-op, except when
\ifOverhead is true.

664 \newcommand{\OHContPgHdr}{%

665 \ifOverhead

666 \centerline{\SBOHContTagFont\OHContPgHdrTag}

667 \vskip .25in

668 \else%

669 \relax%

670 \fi}

671

14.8.3 Table Of Contents & Indices

The macros used to create the Key Index, the Title & First Line Index, and
the Table Of Contents. Planned enhancements are the addition of a Scripture
Index and a Artist Index ; i.e., an index of the \ScriptRef{} and \WandM{} entries,
respectively.

Most of the specific code involved in managing the index files and writing the
entries was copied from latex.tex (version 2.09) and then modified to suit our
purposes here.

672 %%===%

673 %% T A B L E O F C O N T E N T S %

674 %% %

675 %% A N D I N D I C E S %

676 %%===%

\makeArtistIndex \makeArtistIndex starts the creation of an index of artists.
Parameters:

None.

677 \def\makeArtistIndex{\if@filesw \newwrite\@artistIndexfile

678 \immediate\openout\@artistIndexfile=\jobname.aIdx

679 \def\artistIndex{\@bsphack\begingroup

680 \def\protect####1{\string####1\space}\@sanitize

681 \@wrArtistIndex}\typeout

682 {Writing index file \jobname.aIdx }\fi}

683

\artistIndex \artistIndex[〈1 〉][〈2 〉] makes an entry in the index of songs by artist.
Parameters:
〈1 〉 Song artist.
〈2 〉 Song title and number.

684 \def\@wrArtistIndex#1#2{\let\thepage\relax

685 \xdef\@gtempa{\write\@artistIndexfile{\string

686 \indexentry{#1}{#2}}}\endgroup\@gtempa

687 \if@nobreak \ifvmode\nobreak\fi\fi\@esphack}

688

689 \def\artistIndex{\@bsphack\begingroup \@sanitize\@artistIndex}

690

691 \def\@artistIndex#1#2{\endgroup\@esphack}

692

\makeKeyIndex \makeKeyIndex starts the creation of an index of songs by key.
Parameters:

None.

693 \def\makeKeyIndex{\if@filesw \newwrite\@keyIndexfile

694 \immediate\openout\@keyIndexfile=\jobname.kIdx

695 \def\keyIndex{\@bsphack\begingroup

696 \def\protect####1{\string####1\space}\@sanitize

697 \@wrKeyIndex}\typeout

698 {Writing index file \jobname.kIdx }\fi}

699

47

\keyIndex \keyIndex[〈1 〉][〈2 〉] makes an entry in the index of songs by key.
Parameters:
〈1 〉 Song key and title.
〈2 〉 Song number.

700 \def\@wrKeyIndex#1#2{\let\thepage\relax

701 \xdef\@gtempa{\write\@keyIndexfile{\string

702 \indexentry{#1}{#2}}}\endgroup\@gtempa

703 \if@nobreak \ifvmode\nobreak\fi\fi\@esphack}

704

705 \def\keyIndex{\@bsphack\begingroup \@sanitize\@keyIndex}

706

707 \def\@keyIndex#1#2{\endgroup\@esphack}

708

\makeTitleIndex \makeTitleIndex starts creation of a title & first line index.
Parameters:

None.

709 \def\makeTitleIndex{\if@filesw \newwrite\@titleIndexfile

710 \immediate\openout\@titleIndexfile=\jobname.tIdx

711 \def\titleIndex{\@bsphack\begingroup

712 \def\protect####1{\string####1\space}\@sanitize

713 \@wrTitleIndex}\typeout

714 {Writing index file \jobname.tIdx }\fi}

715

\titleIndex \titleIndex[〈1 〉][〈2 〉] makes an entry in the title & first line index.
Parameters:
〈1 〉 Song title or first line.
〈2 〉 Song number.

716 \def\@wrTitleIndex#1#2{\let\thepage\relax

717 \xdef\@gtempa{\write\@titleIndexfile{\string

718 \indexentry{#1}{#2}}}\endgroup\@gtempa

719 \if@nobreak \ifvmode\nobreak\fi\fi\@esphack}

720

721 \def\titleIndex{\@bsphack\begingroup \@sanitize\@titleIndex}

722

723 \def\@titleIndex#1#2{\endgroup\@esphack}

724

\makeTitleContents \makeTitleContents starts creation of a table of contents.
Parameters:

None.

725 \def\makeTitleContents{\if@filesw \newwrite\@titleContentsfile

726 \immediate\openout\@titleContentsfile=\jobname.toc

727 \def\titleContents{\@bsphack\begingroup

728 \def\protect####1{\string####1\space}\@sanitize

729 \@wrTitleContents}\typeout

730 {Writing table of contents file \jobname.toc }\fi}

731

\titleContents \titleContents[〈1 〉][〈2 〉] makes an entry in the table of contents file.
Parameters:
〈1 〉 Song number.
〈2 〉 Song title.

732 \def\@wrTitleContents#1#2{\let\thepage\relax

733 \xdef\@gtempa{\write\@titleContentsfile{\string

734 \item\ \theSBSongCnt. #1\protect\hbox{, \thepage}}}\endgroup\@gtempa

735 \if@nobreak \ifvmode\nobreak\fi\fi\@esphack}

736

737 \def\titleContents{\@bsphack\begingroup \@sanitize\@titleContents}

738

739 \def\@titleContents#1#2{\endgroup\@esphack}

740

48

\SBtocSEntry \SBtocSEntry is the macro that encloses each skipped song TOC entry. The
intent is that when you format your skipped TOC list you redefine \SBtocSEntry

appropriately (assuming you are not happy with the default value).
Parameters:
〈1 〉 Song number.
〈2 〉 Song title.
〈3 〉 Page number.

741 \newcommand{\SBtocSEntry}[3]{#1. \textit{#2}\hbox{, #3}}

742

\makeTitleContentsSkip \makeTitleContentsSkip starts creation of a table of contents of songs excluded
from the songbook.

Parameters:
None.

743 \def\makeTitleContentsSkip{\if@filesw \newwrite\@titleContentsSkipfile

744 \immediate\openout\@titleContentsSkipfile=\jobname.tocS

745 \def\titleContentsSkip{\@bsphack\begingroup

746 \def\protect####1{\string####1\space}\@sanitize

747 \@wrTitleContentsSkip}\typeout

748 {Writing table of contents (skipped) file \jobname.tocS }\fi}

749

\titleContentsSkip \titleContentsSkip[〈1 〉][〈2 〉] makes an entry in the table of contents file.
Parameters:
〈1 〉 Song number.
〈2 〉 Song title.

750 \def\@wrTitleContentsSkip#1#2{\let\thepage\relax

751 \xdef\@gtempa{\write\@titleContentsSkipfile{\string

752 \item\ \protect\SBtocSEntry{\theSBSongCnt}{#1}{\thepage}}}\endgroup\@gtempa

753 \if@nobreak \ifvmode\nobreak\fi\fi\@esphack}

754

755 \def\titleContentsSkip{\@bsphack\begingroup \@sanitize\@titleContentsSkip}

756

757 \def\@titleContentsSkip#1#2{\endgroup\@esphack}

758

\FLineIdx \FLineIdx[〈1 〉] adds a first line of song entry to the song & title index file (.idx).
Parameters:
〈1 〉 First line of song.

759 \newcommand{\FLineIdx}[1]{\titleIndex{#1@{\it #1\/}}{\theSBSongCnt}}

760

14.8.4 Some Other Hooks

The macros have been provided to allow the user additional control of songbooks
created by the Song[ook package.

761 %%===%

762 %% S O M E O T H E R H O O K S %

763 %%===%

764

\SBChorusMarkright The \SBChorusMarkright[〈1 〉] hook to allow \SBSection’s \markright to be
overridden.

765 \newcommand{\SBChorusMarkright}[1]{\markright{#1}}

766

\SBVerseMarkright The \SBVerseMarkright[〈1 〉] hook to allow \SBVerse’s \markright to be over-
ridden.

767 \newcommand{\SBVerseMarkright}[1]{\markright{#1}}

768

49

\SBSectionMarkright The \SBSectionMarkright[〈1 〉] hook to allow \SBSection’s \markright to be
overridden.

769 \newcommand{\SBSectionMarkright}[1]{\markright{\alph{#1}}}

770

\SongMarkboth The \SongMarkboth[〈1 〉][〈2 〉] hook to allow the song environment’s \markboth
to be overridden.

771 \newcommand{\SongMarkboth}[2]{\markboth{#1}{#2}}

772

\STitleMarkboth The \STitleMarkboth[〈1 〉][〈2 〉] hook to allow \Stitle’s \markboth to be over-
ridden.

773 \newcommand{\STitleMarkboth}[2]{\markboth{#1}{#2}}

774

14.8.5 Miscellaneous Macros

This section contains a few miscellaneous macros used by the main macros that
then follow.

775 %%===%

776 %% M I S C E L L A N E O U S M A C R O S %

777 %%===%

778

\CpyRt The \CpyRt[〈1 〉][〈2 〉][〈3 〉] copyright info. macro definition.
Parameters:
〈1 〉 Centre this line Y/N? (optional)
〈2 〉 Copyright information.
〈3 〉 Copyright licensing information.

This command is not usually explicitly used in a songbook. It is called by the
song environment and will normally only be used there.

The first parameter to this macro is optional and is used to surpress the cen-
tering of the Scripture reference (i.e., if the parameter is specified, and that value
is not ‘Y’ then the center environment will not be created around the reference.

779 \newcommand{\CpyRt}[3][Y]{%

780 \if#1Y\begin{center}\fi

781 \if\blank{#2}%

782 \if\blank{#3}%

783 {\CpyRtFont\copyright \SBUnknownTag{} \CpyRtInfoFont}%

784 \else

785 {\CpyRtFont\copyright \SBUnknownTag{} \CpyRtInfoFont #3}%

786 \fi%

787 \else%

788 \ifthenelse{\equal{#2}{\SBPubDom}}

789 {%then

790 {\CpyRtFont #2 \CpyRtInfoFont #3}%

791 }{%else

792 {\CpyRtFont\copyright #2 \CpyRtInfoFont #3}%

793 }%fi

794 \fi%

795 \if#1Y\end{center}\fi

796 }

797

\ScriptRef The \ScriptRef[〈1 〉][〈2 〉] macro indicates a scripture reference.
Parameters:
〈1 〉 Centre this line Y/N? (optional)
〈2 〉 Address of scripture reference for the song.

Used to indicate a scripture reference for the song. May either be the scripture
being quoted in the song, or a scripture which supports the theology presented in
the song.

50

The first parameter to this macro is optional and is used to surpress the cen-
tering of the Scripture reference (i.e., if the parameter is specified, and that value
is not ‘Y’ then the center environment will not be created around the reference.

798 \newcommand{\ScriptRef}[2][Y]{%

799 \if#1Y\begin{center}\fi

800 {\ScriptRefFont #2}%

801 \if#1Y\end{center}\fi

802 }

803

\WAndM The \WAndM[〈1 〉][〈2 〉] macro indicates Words and Music authorship.
Parameters:
〈1 〉 Centre this line Y/N? (optional)
〈2 〉 Name(s) of the composer and lyricist.

This command is not usually explicitly used in a songbook. It is called by the
song environment and will normally only be used there.

The first parameter to this macro is optional and is used to surpress the cen-
tering of the composer & lyricist (i.e., if the parameter is specified, and that value
is not ‘Y’ then the center environment will not be created around the composer &
lyricist.

804 \newcommand{\WAndM}[2][Y]{%

805 \if#1Y\begin{center}\fi

806 \if\blank{#2}%

807 {\WandMFont\SBWAndMTag ~\SBUnknownTag}%

808 \else

809 {\WandMFont\SBWAndMTag ~#2}%

810 \fi

811 \if#1Y\end{center}\fi

812 }

813

\sbSetsbBaselineSkipAmt \sbSetsbBaselineSkipAmt sets the \sbBaselineSkipAmt length.
Parameters:

None.

This command is only used internally within the songbook style. It is invoked
just prior to any use of the sbBaselineSkipAmt length and it calculated the proper
value based upon all the fonts chosen at that particular moment in time. It does
this by creating an \hbox{} that contains one letter with a chord overtop of it;
the height and depth of that \hbox{} added together then become the baseline
skip.

814 \newcommand{\sbSetsbBaselineSkipAmt}{

815 \ifChordBk%

816 \setbox0=\hbox{\strut\raise\SBChordRaise\hbox{\ChFont\sbChord{}A\relax\strut}A}%

817 \setlength{\sbBaselineSkipAmt}{\ht0 + \dp0}%

818 \else%

819 \setlength{\sbBaselineSkipAmt}{\baselineskip}%

820 \fi%

821 }

822

14.8.6 Primary Songbook Macros

The macros in this section comprise those most often used by Song[ook users.

823 %%===%

824 %% P R I M A R Y S O N G B O O K M A C R O S %

825 %%===%

826

\STitle \STitle[〈1 〉][〈2 〉][〈3 〉] is the song title macro.
Parameters:
〈1 〉 Centre this line Y/N? (optional)
〈2 〉 Song’s title.

51

〈3 〉 Song’s Key.

Before printing the title we reset the \SBVerseCnt and \SBSectionCnt coun-
ters back to zero. This is for songs which are printed in more than one key, because
the verse count always begins at “1.” for each key.

The first parameter to this macro is optional and is used to surpress the cen-
tering of the title (i.e., if the parameter is specified, and that value is not ‘Y’ then
the center environment will not be created around the title.

This macro also makes an entry in the key index file; except in the case where
a song is not being included, in which case no entry is made.

827 \newcommand{\STitle}[3][Y]{%

828 \setcounter{SBVerseCnt}{0}%

829 \setcounter{SBSectionCnt}{0}%

830 \ifExcludeSong\relax%

831 \else\keyIndex{{\protect\sbChord#3\protect\relax} -- #2}{\theSBSongCnt}\fi%

832 \vspace{\SpaceAboveSTitle}%

833 \if#1Y\begin{center}\fi

834 {\STitleNumberFont\theSBSongCnt}{\STitleFont\ --- #2}%

835 \ifWordsOnly\relax\else{\STitleKeyFont\ [{\sbChord#3\relax}]}\fi%

836 \if#1Y\end{center}\fi

837 \STitleMarkboth{#2}{\relax}%

838 }

839

song song[〈1 〉]. . . [〈7 〉] is the environment within which a song is entered.
Parameters:
〈1 〉 Song format string (optional).
〈2 〉 Title of song.
〈3 〉 Key song is written in.
〈4 〉 Copyright information.
〈5 〉 Name(s) of composer and lyricist.
〈6 〉 Scripture reference for the song.
〈7 〉 Copyright licensing information.

The song environment encapsulates a song, including multiple appearances for
multiple keys and translations. We increment the song counter and then cause
the title and other parameter information to be displayed.

Song Format String (options) The first parameter is optional and its default
value is “YF”. Each letter in the format string controls one aspect of a song’s
formating. The format string options are:

Parameters:
Y N : Include song in book; specify “Y” or “N”?
C F : compactsong or not (full size); specify “C” or “F”?

YN: Include Song in Book? When the value of 〈YN: Include Song in
Book? 〉 is “Y” then all processing is done normally. If the value of 〈YN: Include
Song in Book? 〉 is “N” then:

• the songcounter is incremented;

• a TOC index entry is written to a skipped-entry files, with each entry brack-
etted by some extra code (compared to the non-skipped-entry files);

• consider making 〈Include? 〉 look for several values to allow exclusions/inclusions
to only happen for certain types of songbooks.

If both “Y” and “N” are specified, then “Y” is taken as the specified value.
Don’t forget that a value of “N” will be overridden by the global printallsongs
option.

52

The skipped-entry TOC file is named *.tocS. The purpose of creating a sepa-
rate file is twofold: (1) to allow normal songbook processing to simply omit these
not-included files; (2) to allow the skipped entries to be easily added back into
the TOC processing process through simple appending of the files to the standard
TOC file.

CF: Compactsong or Full Size? When the value of 〈CF: Compactsong or
Full Size? 〉 is “F” then all processing is done normally. If the value is “C” then the
song is printed in compactsong mode. If both “F” and “F” are specified, then “F”
is taken as the specified value. Don’t forget that a value of “F” will be overridden
by the global compactallsongs option.

840 \newenvironment{song}[7][YF]{ % Comment markers to negate

841 \IfSubStr{\uppercase{#1}}{N}{\ExcludeSongtrue}{\relax}% newlines.

842 \IfSubStr{\uppercase{#1}}{Y}{\ExcludeSongfalse}{\relax}%

843 \ifPrintAllSongs\ExcludeSongfalse\fi %

844 \IfSubStr{\uppercase{#1}}{C}{\CompactSongModetrue}{\relax}% newlines.

845 \IfSubStr{\uppercase{#1}}{F}{\CompactSongModefalse}{\relax}%

846 \ifCompactAllMode\CompactSongModetrue\fi %

847 \SongMarkboth{\relax}{\relax} %

848 \SBinSongEnvtrue %

849 \renewcommand{\SBinSongEnv}{\True} %

850 \ifWordsOnly %

851 \setlength{\parindent}{0pt} %

852 \fi %

Store each of the parameters in a macro to make them easily accessible later.
This isn’t as useful as it should be due to my inability to properly detect in the
title block macros whether or not the parameter is nil or blank when one of these
\the macros is passed instead of the native parameter itself.

We clear the translation macros now, since the songTranslation environment
is only valid inside a song environment, and we are now declaring a new song.

853 \renewcommand{\theSongComposer}{#5} %

854 \if\blank{#5} %

855 \renewcommand{\theSongComposerU}{\SBUnknownTag}%

856 \else %

857 \renewcommand{\theSongComposerU}{#5} %

858 \fi %

859 \renewcommand{\theSongCopyRt}{#4} %

860 \renewcommand{\theSongKey}{#3} %

861 \renewcommand{\theSongLicense}{#7} %

862 \renewcommand{\theSongScriptRef}{#6} %

863 \renewcommand{\theSongTitle}{#2} %

864 \renewcommand{\theXlatnBy}{} %

865 \renewcommand{\theXlatnLang}{\SBBaseLang} %

866 \renewcommand{\theXlatnPerm}{} %

867 \renewcommand{\theXlatnTitle}{} %

868 %

869 \addtocounter{SBSongCnt}{1} %

870 %

Write table of contents and index entries in reponse to the user’s 〈Include? 〉
directive.

871 \ifExcludeSong %

872 \titleContentsSkip{\theSongTitle}{\theSongKey}%

873 \else %

874 \titleIndex{\theSongTitle}{\theSBSongCnt} %

875 \titleContents{\theSongTitle}{\theSongKey} %

876 \artistIndex{\theSongComposerU+\theSongTitle}{\theSBSongCnt}%

877 \fi %

Now we deal with the user’s 〈Include? 〉 directive. If 〈Include? 〉 is “Y” then we
will cause normal songbook processing to occur; otherwise we’ll simply insert a
\relax macro. I have implemented this feature using a memory hungry method:
when excluding a song, put the lyrics into box2 and then discard it without using it.
Although Mark Wooding suggested using this method, he also provided a pointer

53

to a more robust method: using the sverb package that is part of ‘mdwtools’
collection (specifically, the \ignoreenv{} command).

878 \ifExcludeSong\setbox2=\vbox\bgroup\fi%

Try to keep the song title and all its contents on the same page; if that is what
is desired.

879 \ifSamepageMode%

880 \begin{samepage}%

881 \fi%

CompactSong Font Processing Downsize fonts to allow song to fit into half
the space (i.e., two column mode); although the title will not be reset since it will
be presented unchanged from normal chordbk mode.

882 \ifCompactSongMode

883 \renewcommand{\ChBassFontSav}{\ChBassFont} %

884 \renewcommand{\ChFontSav}{\ChFont} %

885 \renewcommand{\ChBkFontSav}{\ChBkFont} %

886 \renewcommand{\SBDefaultFontSav}{\SBDefaultFont} %

887 \renewcommand{\SBOccursBrktFontSav}{\SBOccursBrktFont}%

888 %

889 \renewcommand{\ChBassFont}{\ChBassFontCS} %

890 \renewcommand{\ChFont}{\ChFontCS} %

891 \renewcommand{\ChBkFont}{\ChBkFontCS} %

892 \renewcommand{\SBDefaultFont}{\SBDefaultFontCS} %

893 \renewcommand{\SBOccursBrktFont}{\SBOccursBrktFontCS}%

894 %

895 % Multicol specific changes.

896 % \begin{macrocode}

897 \setlength{\columnsep}{0.25in}

898

Remove side-margin, since marginal notes are not allowed when using multi-
col.sty; but, we save their values before changing them.

899 \setlength{\textwidthSav} {\textwidth}

900 \setlength{\evensidemarginSav}{\evensidemargin}

901 \setlength{\marginparsepSav} {\marginparsep}

902 \setlength{\marginparwidthSav}{\marginparwidth}

903 %

904 \addtolength{\textwidth} {\marginparsep + \marginparwidth}

905 \addtolength{\evensidemargin}{-\marginparsep - \marginparwidth}

906 \setlength {\marginparsep} {0in}

907 \setlength {\marginparwidth}{0in}

908

Reduce minimum spacing amount used in \Chr macro (since we’re now using
a smaller font for lyrics and chords.

909 \setlength{\chSpaceToleranceSav}{\chSpaceTolerance}

910 %

911 \setlength{\chSpaceTolerance}{1.0mm}

912

Remove the extra space before Verses, etc.

913 \renewcommand{\HangAmtSav} {\HangAmt}

914 \renewcommand{\LeftMarginSBChorusSav} {\LeftMarginSBChorus}

915 \renewcommand{\LeftMarginSBSectionSav}{\LeftMarginSBSection}

916 \renewcommand{\LeftMarginSBVerseSav} {\LeftMarginSBVerse}

917 %

918 \renewcommand{\HangAmt} {1.5em}

919 \renewcommand{\LeftMarginSBChorus} {2em}

920 \renewcommand{\LeftMarginSBSection}{\LeftMarginSBChorus}

921 \renewcommand{\LeftMarginSBVerse} {\LeftMarginSBChorus}

922 \fi

Whereever you see a parameter used directly, and not the parameter macro
just set, above, it is because I haven’t figured out how the receiving macro can
deal with accepting its input via a macro (and not via the native parameter). In

54

general this is because the receiving macro is attempting to detect and empty or
blank parameter.

The second parameter is used directly here when \STitle is invoked (instead
of \theSongKey), because I can’t figure out how to cause the sharp and flat sub-
stitution to occur within the context of the \renewcommand statement, above.

923 \begin{center}

924 \STitle[N]{\theSongTitle}{#3}\\

925 \vspace{-.5ex}

926 \CpyRt[N]{#4}{#7}\\

927 \vspace{-.5ex}

928 \WAndM[N]{#5}\\

929 \if\given{#6}%

930 \vspace{-.75ex}

931 \ScriptRef[N]{\theSongScriptRef}\\

932 \fi%

933 \end{center}%

934 \vspace{\SpaceAfterTitleBlk}

If we’re in compactsong mode then put us into multicols{2} mode.

935 \ifCompactSongMode

936 \begin{multicols*}{2}

937 \raggedcolumns

938 \fi

939 \SBDefaultFont%

940 }%

This brings the song environment’s open clause to a close.
The close clause now starts. We begin by closing out the SamepageMode and

CompactSongMode environments, as applicable. For CompactSongMode we need to
restore the fonts and lengths.

941 {\ifSamepageMode%

942 \end{samepage}%

943 \fi%

944 \ifCompactSongMode

945 \renewcommand{\ChBassFont}{\ChBassFontSav} %

946 \renewcommand{\ChFont}{\ChFontSav} %

947 \renewcommand{\ChBkFont}{\ChBkFontSav} %

948 \renewcommand{\SBDefaultFont}{\SBDefaultFontSav} %

949 \renewcommand{\SBOccursBrktFont}{\SBOccursBrktFontSav}%

950 %

951 \setlength{\textwidth} {\textwidthSav}

952 \setlength{\evensidemargin}{\evensidemarginSav}

953 \setlength{\marginparsep} {\marginparsepSav}

954 \setlength{\marginparwidth}{\marginparwidthSav}

955 %

956 \renewcommand{\HangAmt} {\HangAmtSav}

957 \renewcommand{\LeftMarginSBChorus} {\LeftMarginSBChorusSav}

958 \renewcommand{\LeftMarginSBSection}{\LeftMarginSBSectionSav}

959 \renewcommand{\LeftMarginSBVerse} {\LeftMarginSBVerseSav}

960 %

961 \end{multicols*}

962 \fi

963 \ifSongEject%

964 \vfill\pagebreak%

965 \else%

966 \SpaceAfterSong\pagebreak[1]%

967 \fi%

Here’s where we close out the 〈Include? 〉 if-then-else. Note that we immedi-
ately clear box2 before proceding (an attempt to free up the memory we’ve just
consumed).

968 \ifExcludeSong\egroup\setbox2=\hbox{}\fi%

969 \renewcommand{\SBinSongEnv}{\False}%

970 \SBinSongEnvfalse%

971 }

972

55

\CBExcl

\OHExcl

\WBExcl

\WOExcl

The \CBExcl, \OHExcl, \WBExcl, and \WOExcl macros exist to be passed as pa-
rameters to the song environment’s 〈Include? 〉 parameter. The parameters cause
the song to be excluded when processing the particular Song[ook type:

CBExcl Exclude the song when in chordk mode

OHExcl Exclude the song when in overhead mode

WBExcl Exclude the song when in wordbk mode

WOExcl Exclude the song when in either wordbk or overhead mode

Here’s an example usage which shows a song to be excluded when in chordbk

mode:

\documentclass{book}

\usepackage[chordbk]{songbook}

\begin{document}

\begin{song}[\CBExcl]{title}{}{}{}{}{}

some lyrics

\end{song}

\end{document}

973 \newcommand{\CBExcl}{\ifChordBk N\else Y\fi}

974 \newcommand{\OHExcl}{\ifOverhead N\else Y\fi}

975 \newcommand{\WBExcl}{\ifWordBk N\else Y\fi}

976 \newcommand{\WOExcl}{\ifWordsOnly N\else Y\fi}

xlatn xlatn[〈1 〉][〈2 〉][〈3 〉] is the old song-translation environment.
Parameters:
〈1 〉 Title of the translated song.
〈2 〉 Translation permission.
〈3 〉 Who performed the translation.

The xlatn environment is considered obsolete and will be removed from a
future release of the Song[ook macros.

The xlatn environment always occurs within a song environment. We reset the
verse counter then cause the title and other parameter information to be displayed.

977 \newenvironment{xlatn}[3]{% Comment marker negates the newline.

978 \renewcommand{\theXlatnBy}{#3}%

979 \renewcommand{\theXlatnPerm}{#2}%

980 \renewcommand{\theXlatnTitle}{#1}%

981 %

982 \titleIndex{\theXlatnTitle}{\theSBSongCnt}%

983 \titleContents{\theXlatnTitle}{\theSongKey}%

984 %

985 \begin{center}

986 \STitle[N]{\theXlatnTitle}{\theSongKey}\\

987 \CpyRt[N]{\theSongCopyRt}{\theSongLicense}\\

988 \if\nil{#2}%

989 \relax%

990 \else%

991 \vspace{-.5ex}

992 {\CpyRtFont\theXlatnPerm}\\

993 \fi

994 \if\nil{#3}%

995 \relax%

996 \else%

997 \vspace{-.5ex}

998 {\CpyRtFont\theXlatnBy}\\

999 \fi

1000 \end{center}%

1001 %

1002 \setcounter{SBVerseCnt}{0}%

1003 \setcounter{SBSectionCnt}{0}%

1004 }{\relax}

56

songTranslation songTranslation[〈1 〉][〈2 〉][〈3 〉] is the song-translation environment.
Parameters:
〈1 〉 Language of translated song.
〈2 〉 Title of the translated song.
〈3 〉 Translation permission.
〈4 〉 Who performed the translation.

The songTranslation environment always occurs within a song environment.
We reset the verse counter then cause the title and other parameter information
to be displayed.

The xlatn environment was the original song translation environment, but
with the addition of an additional parameter (the “Language of translated song.”
parameter) it made most sense to create a new environment which simply deals
with the new parameter and then calls the old environment. At some point in the
future, when the xlatn environment is removed, the xlatn code will be moved
here.

1005 \newenvironment{songTranslation}[4]{% Comment marker negates the newline.

1006 \renewcommand{\theXlatnBy}{#4}%

1007 \begin{xlatn}{#2}{#3}{#4}%

1008 }{\end{xlatn}}

\sbChord \sbChord changes a sequence of characters into a chord.
Parameters:
〈1 〉 Chord.

The original version of this function was written by Philip Hirschhorn
<psh@math.mit.edu> or <phirschhorn@lucy.wellesley.edu>.

Scan the sequence of characters in Chord. Replace ‘#’ characters with]’s and
‘b’ characters with [. This produces more realistic looking chord symbols (which
also take up less space than their phoney counterparts). We also look for ‘/’
characters, and insert a \ChBassFont command into the stream when a ‘/’ is
found. This makes the bass note of the chord to appear in a smaller font.

1009 \def\sbChord#1{%

1010 \ifx#1\relax%

1011 \let\next=\relax%

1012 \else%

1013 \ifx#1##% double sharp because we’re inside a \def

1014 \sharp%

1015 \else%

1016 \ifx#1b%

1017 \flat%

1018 \else%

1019 \ifx#1/%

1020 \ChBassFont /%

1021 \else%

1022 \ifx#1[%

1023 \bgroup\ChBkFont [\egroup%

1024 \else%

1025 \ifx#1]%

1026 \bgroup\ChBkFont]\egroup%

1027 \else%

1028 #1%

1029 \fi%

1030 \fi%

1031 \fi%

1032 \fi%

1033 \fi%

1034 \let\next=\sbChord%

1035 \fi%

1036 \next%

1037 }

1038

\Ch

\ChX

\Chr

\Ch[〈1 〉][〈2 〉] is the chord over lyrics macro.
\ChX is the Chord over lyrics macro, but deleting trailing spaces.
\Chr is the Chord over lyrics macro, but inserting a rule, when necessary.

57

Parameters:
〈1 〉 Chord.
〈2 〉 Syllable that chord is to be left justified over.

The words-only style file turns off the chord generation and just prints the
second parameter.

The \ChX version of this macro is used for the benefit of the words-only style
to ensure that spaces following the macro are removed. For example, an interword
space containing a couple of extra chords would be written as (this is not usually
necessary, but sometimes there is no other way to elliminate spurious white space
from a words-only songbook):

\ChX{D7}{ing} \ChX{E}{} \ChX{D}{} \Ch{A}{You}

The \Chr version of this macro inserts a rule, at the height specified by the
\SBRuleRaiseAmount macro, when the chord is wider than the syllable. The
default value creates an extended em-dash-like rule; a value of 0pt creates an
underbar-like rule. More details about the \Chr command follow below, just
preceeding its definition.

This code is based on macros from Olivier Biot’s (http://www.biot.yucom.be/)
chord.sty file. Changes made by me:

• removed annoying space between \SBIntersyllableRules when they butt
up against one another

• changed the default \ChordRaise value to something closer to what my
previous version of the \Ch command used to set

• renamed the commands: \@ to \Ch, and \@@ to \Chr

• renamed the variables used to adjust \Ch’s behaviour, to ensure no conflict
exists with Olivier’s macro.

1039 \newcommand{\Ch}[2]{{%

1040 \ifChordBk%

1041 \setbox1=\hbox{\ChFont\sbChord#1\relax\strut}%

1042 \setbox0=\hbox{#2}%

1043 \ifdim\wd1<\wd0%

1044 \strut\raise\SBChordRaise\copy1\kern-\wd1\copy0%

1045 \else%

1046 \strut\copy0\kern-\wd0\strut\raise\SBChordRaise\copy1%

1047 \fi%

1048 \else%

1049 #2%

1050 \fi}}

1051

The \ChX code.

1052 \newcommand{\ChX}[2]{%

1053 \ifWordsOnly%

1054 \if\nil{#2}%

1055 \ignorespaces%

1056 \else%

1057 #2%

1058 \fi%

1059 \else%

1060 \Ch{#1}{#2}%

1061 \fi}

1062

The \Chr code and a detailed macro description & definition.
We start with some internal scratch variables. Any value they have prior to

\Chr’s execution will be discarded each time.

1063 \newlength{\chCriticDim}

1064 \newlength{\chSpaceDim}

58

DEF\Chr#1#2

BEGIN

\box1 == \hbox{... #1 --> Chord ...}

\box0 == \hbox{... #2 --> Syllable ...}

\chCriticDim == \wd0 - \chSpaceTolerance - 2 \chMiniSpace

IFF \wd1 > \chCriticDim

\chCriticDim == \wd1 - \wd0 - \chSpaceTolerance - 2 \chMiniSpace

IFF \chCriticDim > 0mm

\chSpaceDim == \wd1 - \wd0 + \chSpaceTolerance

ELSE

\chSpaceDim == \chSpaceTolerance

FFI

\chCriticDim == \chSpaceDim - 2 \chSpaceTolerance

\raise \SBChordRaise \copy1 \kern - \wd1

IFF \wd0 == 0mm

\kern - 2 \chMiniSpace

FFI

\copy0

\hbox to \chCriticDim{\hss\raise\SBRuleRaiseAmount

\hbox to \chSpaceDim{\SBIntersyllableRule}\hss}

ELSE

\raise \SBChordRaise \copy1 \kern - \wd1 \copy0

FFI

END

1065 \newcommand{\Chr}[2]{{%

1066 \ifChordBk

1067 \setbox1=\hbox{\ChFont\sbChord#1\relax\strut}%

1068 \setbox0=\hbox{#2}%

1069 \setlength{\chCriticDim}{\wd0 - \chSpaceTolerance}%

1070 \advance\chCriticDim by 2\chMiniSpace%

1071 \ifdim\wd1>\chCriticDim%

1072 \chCriticDim \wd1%

1073 \advance\chCriticDim by -\wd0%

1074 \advance\chCriticDim by -\chSpaceTolerance%

1075 \advance\chCriticDim by -2\chMiniSpace%

1076 \ifdim\chCriticDim>0mm%

1077 \chSpaceDim \wd1%

1078 \advance\chSpaceDim by -\wd0%

1079 \advance\chSpaceDim by \chSpaceTolerance%

1080 \else%

1081 \chSpaceDim\chSpaceTolerance%

1082 \fi%

1083 \chCriticDim \chSpaceDim%

1084 \advance\chCriticDim by 2\chMiniSpace%

1085 \strut\raise\SBChordRaise\copy1\kern-\wd1\ifdim\wd0=0mm\kern-2\chMiniSpace\fi%

1086 \copy0\hbox to\chCriticDim{\hss%

1087 \raise\SBRuleRaiseAmount\hbox to\chSpaceDim{\SBIntersyllableRule}\hss}%

1088 \else%

1089 \strut\raise\SBChordRaise\copy1\kern-\wd1%

1090 \copy0%

1091 \fi%

1092 \else%

1093 #2%

1094 \fi}%

1095 }

1096

\SBMargNote \SBMargNote[〈1 〉] creates a Song[ook marginal note.
Parameters:
〈1 〉 Text of note to place in margin.

Used to place a note of some kind in the margin of a songbook, or within a
footnote when in CompactSong mode. In words-only mode this macro is a no-op.

If we are excluding a song then we have \SBMargNote take no action. We do
this to be sure that no footnotes are generated, and to prevent the error that will
occur from attempting to use the \marginpar command within a \vbox{}.

1097 \newcommand{\SBMargNote}[1]{%

1098 \ifExcludeSong%

59

1099 \relax%

1100 \else\ifWordsOnly%

1101 \relax%

1102 \else\ifCompactSongMode%

1103 \footnote{{\SBMargNoteFont{#1}}}%

1104 \else%

1105 \marginpar{{\begin{flushleft}\SBRefFont{#1}\end{flushleft}}}%

1106 \fi\fi\fi}

1107

\SBRef \SBRef creates a song reference in the margin.
Parameters:
〈1 〉 Songbook/CD/tape name.
〈2 〉 Page/Song number within book referenced by 〈1 〉, or tape/CD pub-
lisher info.

Used to indicate a source for the full SATB music for this song, or what
CD/cassette the song can be found on. In words-only mode this macro is a no-op.
This normally appears in the margin of the songbook, but in CompactSong mode
the information appears in a footnote that is always numbered ‘0’ (even if there
is more than one reference in a song.

If we are excluding a song then we have \SBRef take no action. We do this to
be sure that no footnotes are generated, and to prevent the error that will occur
from attempting to use the \marginpar command within a \vbox{}.

1108 \newcommand{\SBRef}[2]{%

1109 \ifExcludeSong%

1110 \relax%

1111 \else\ifWordsOnly%

1112 \relax%

1113 \else\ifCompactSongMode%

1114 \footnotetext[0]{{\SBRefFont{\em #1}, {#2}.}}%

1115 \else%

1116 \marginpar{{\begin{flushleft}\SBRefFont{\em #1}, {#2}.\end{flushleft}}}%

1117 \fi\fi\fi}

1118

SBVerse

SBVerse*

The SBVerse and SBVerse* environments encapsulate a verse.
Parameters:

None.

Very much like LATEX’s verse environment, except that here the verses are
numbered. The indent amount for lines that are too long is set with the \HangAmt

command (see the constant definitions at the top of this document).
A version of this command which indents but down not place an \SBVerseCnt

before the chorus is available as SBVerse*. Similar to LATEX’s \section* com-
mand, the verse counter is not incremented either.

1119 \newenvironment{SBVerse}{%

1120 \sbSetsbBaselineSkipAmt%

1121 \bgroup%

1122 \addtocounter{SBVerseCnt}{1}%

1123 \SBVerseMarkright{\theSBVerseCnt}%

1124 \begin{list}{{\SBVerseNumberFont\theSBVerseCnt .}}

1125 {\setlength {\leftmargin} {\LeftMarginSBVerse + \HangAmt}

1126 \setlength{\itemindent} {-\HangAmt}

1127 \setlength{\listparindent}{-\HangAmt}

1128 \setlength{\parsep} {0pt}

1129 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1130 }%

1131 \item}

1132 {\end{list}%

1133 \egroup%

1134 \SpaceAfterVerse}

1135

The SBVerse* code. Coding of this environment courtesy of Herbert Martin
Dietze <herbert@fh-wedel.de>.

60

1136 \newenvironment{SBVerse*}{%

1137 \sbSetsbBaselineSkipAmt%

1138 \bgroup%

1139 \begin{list}{{\SBVerseNumberFont }}

1140 {\setlength {\leftmargin} {\LeftMarginSBVerse + \HangAmt}

1141 \setlength{\itemindent} {-\HangAmt}

1142 \setlength{\listparindent}{-\HangAmt}

1143 \setlength{\parsep} {0pt}

1144 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1145 }%

1146 \item}

1147 {\end{list}%

1148 \egroup%

1149 \SpaceAfterVerse}

1150

SBSection

SBSection*

The SBSection and SBSection* environments encapsulate a section.
Parameters:

None.

Very much like LATEX’s verse environment, except that here the sections are
numbered. The indent amount for lines that are too long is set with the \HangAmt

command (see the constant definitions at the top of this file).
A version of this command which indents but doesn’t place an \SBSectionCnt

before the chorus is available as SBSection*. Similar to LATEX’s \section* com-
mand, the section counter is not incremented either.

1151 \newenvironment{SBSection}{%

1152 \sbSetsbBaselineSkipAmt%

1153 \bgroup%

1154 \addtocounter{SBSectionCnt}{1}%

1155 \SBSectionMarkright{SBSectionCnt}

1156 \begin{list}{{\SBSectionNumberFont\alph{SBSectionCnt})}}

1157 {\setlength {\leftmargin} {\LeftMarginSBSection + \HangAmt}

1158 \setlength{\itemindent} {-\HangAmt}

1159 \setlength{\listparindent}{-\HangAmt}

1160 \setlength{\parsep} {0pt}

1161 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1162 }%

1163 \item}

1164 {\end{list}%

1165 \egroup%

1166 \SpaceAfterSection}

1167

The SBSection* code. Coding of this environment courtesy of Herbert Martin
Dietze <herbert@fh-wedel.de>.

1168 \newenvironment{SBSection*}{%

1169 \sbSetsbBaselineSkipAmt%

1170 \bgroup%

1171 \begin{list}{{\SBSectionNumberFont }}

1172 {\setlength {\leftmargin} {\LeftMarginSBSection + \HangAmt}

1173 \setlength{\itemindent} {-\HangAmt}

1174 \setlength{\listparindent}{-\HangAmt}

1175 \setlength{\parsep} {0pt}

1176 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1177 }%

1178 \item}

1179 {\end{list}%

1180 \egroup%

1181 \SpaceAfterSection}

1182

\SBChorus

\SBChorus*

The SBChorus and SBChorus* environments encapsulate a chorus.
Parameters:

None.

Very much like LATEX’s verse environment, except that here a \SBChorusTag

tag is inserted to demark the start of the chorus. The indent amount for lines that

61

are too long is set with the \HangAmt command (see the constant definitions at
the top of this file).

A version of this command which indents but does not place a \SBChorusTag

before the chorus is available as SBChorus*.

1183 \newenvironment{SBChorus}{%

1184 \sbSetsbBaselineSkipAmt%

1185 \bgroup%

1186 \SBChorusMarkright{\SBChorusTag}

1187 \begin{list}{{\SBChorusTagFont\SBChorusTag}}

1188 {\setlength {\leftmargin} {\LeftMarginSBChorus + \HangAmt}

1189 \setlength{\itemindent} {-\HangAmt}

1190 \setlength{\listparindent}{-\HangAmt}

1191 \setlength{\parsep} {0pt}

1192 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1193 }%

1194 \item}

1195 {\end{list}%

1196 \egroup%

1197 \SpaceAfterChorus%

1198 }

1199

The SBChorus* code. Coding of this environment courtesy of Herbert Martin
Dietze <herbert@fh-wedel.de>.

1200 \newenvironment{SBChorus*}{%

1201 \sbSetsbBaselineSkipAmt%

1202 \bgroup%

1203 \begin{list}{{\SBChorusTagFont }}

1204 {\setlength {\leftmargin} {\LeftMarginSBChorus + \HangAmt}

1205 \setlength{\itemindent} {-\HangAmt}

1206 \setlength{\listparindent}{-\HangAmt}

1207 \setlength{\parsep} {0pt}

1208 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1209 }%

1210 \item}

1211 {\end{list}%

1212 \egroup%

1213 \SpaceAfterChorus}

1214

\SBOpGroup \SBOpGroup identifies an open chorus/verse.
Parameters:

None.

This environment is akin to SBChorus, except that no tag and no indentation
is performed. This environment serves two purposes:

1. Identify a verse or chorus that is unmarked (by way of a tag) and the left
margin of the block is not indented.

2. Puts the verse or chorus in a list environment so that wrapping lines are
properly indented.

1215 \newenvironment{SBOpGroup}{%

1216 \sbSetsbBaselineSkipAmt%

1217 \bgroup%

1218 \begin{list}{\hbox{}}

1219 {\setlength {\leftmargin} {\HangAmt}

1220 \setlength{\itemindent} {-\HangAmt}

1221 \setlength{\listparindent}{-\HangAmt}

1222 \setlength{\topsep} {0pt}

1223 \setlength{\parsep} {0pt}

1224 \setlength{\labelwidth} {0pt}

1225 \setlength{\labelsep} {0pt}

1226 \setlength{\baselineskip} {\sbBaselineSkipAmt}

1227 }%

1228 \item}

1229 {\end{list}%

62

1230 \egroup%

1231 \SpaceAfterOpGroup}

1232

\SBBridge \SBBridge[〈1 〉] identifies a bridge.
Parameters:
〈1 〉 The Bridge.

This command is used to encapsulate a bridge that occurs in a song. In words-
only mode this command is a no-op.

1233 \newcommand{\SBBridge}[1]{%

1234 \ifWordsOnly%

1235 \relax%

1236 \else%

1237 \sbSetsbBaselineSkipAmt%

1238 \bgroup%

1239 \begin{list}{{\SBBridgeTagFont\SBBridgeTag}}

1240 {\setlength {\leftmargin} {\LeftMarginSBChorus}%

1241 \setlength{\parsep} {0pt}

1242 \setlength{\baselineskip}{\sbBaselineSkipAmt}

1243 }%

1244 \item #1

1245 \end{list}%

1246 \egroup\par

1247 \fi}

1248

\SBEnd \SBEnd[〈1 〉][〈2 〉] identifies a song ending.
Parameters:
〈1 〉 Display in words-only? (optional)
〈2 〉 The Ending.

This command is used to encapsulate the ending of a song. If the first param-
eter is not specified, or if it is ‘N’, then in words-only mode this command is a
no-op.

1249 \newcommand{\SBEnd}[2][N]{%

1250 \ifthenelse{\equal{\ifWordsOnly Y\fi}{Y}

1251 \and \equal{N}{#1}}%

1252 {\relax}%

1253 {\sbSetsbBaselineSkipAmt%

1254 \bgroup%

1255 \begin{list}{{\SBEndTagFont\SBEndTag}}

1256 {\setlength {\leftmargin} {\LeftMarginSBChorus}

1257 \setlength{\parsep} {0pt}

1258 \setlength{\baselineskip}{\sbBaselineSkipAmt}

1259 }%

1260 \item #2

1261 \end{list}%

1262 \egroup\par}

1263 }

1264

\SBIntro \SBIntro[〈1 〉][〈2 〉] identifiesd an introduction.
Parameters:
〈1 〉 Display in words-only? (optional)
〈2 〉 The Introduction.

This command is used to encapsulate an introduction to a song. If the first
parameter is not specified, or if it is ‘N’, then in words-only mode this command
is a no-op.

1265 \newcommand{\SBIntro}[2][N]{%

1266 \ifthenelse{\equal{\ifWordsOnly Y\fi}{Y}

1267 \and \equal{N}{#1}}%

1268 {\relax}%

1269 {\sbSetsbBaselineSkipAmt%

1270 \bgroup%

1271 \begin{list}{{\SBIntroTagFont\SBIntroTag}}%

63

1272 {\setlength {\leftmargin} {\LeftMarginSBChorus}%

1273 \setlength{\parsep} {0pt}

1274 \setlength{\baselineskip}{\sbBaselineSkipAmt}

1275 }%

1276 \item #2

1277 \vspace{-\topsep}%\vspace{-\partopsep}%

1278 \end{list}%

1279 \egroup\par}%

1280 }

1281

SBBracket

SBBracket*

The SBBracket[〈1 〉] and SBBracket[〈1 〉] environments encapsulates a bracketed
versicle.

Parameters:
〈1 〉 Some tag is inserted before the bracket to indicate the significance of
the bracketed area.

There are two versions of this environment: SBBracket and SBBracket*. They
operate identically, except that the *ed version doesn’t print its tag and bracket
in words-only modes.

This is a more versatile, and better formatted version of SBBridge, SBOccurs,
etc.; and it is recommended that this be used in the others place.

Starting in version 4.0 of the style, the left-hand indentation of this envi-
ronment has been chosen such that the SBVerse, SBChorus, and SBBracket song-
words all align against the same left margin when printing standard words & chords
songbooks.

1282 \newenvironment{SBBracket}[1]{%

1283 \SpaceBeforeSBBracket

1284 \sbSetsbBaselineSkipAmt%

1285 \setbox0=\hbox to \LeftMarginSBBracket{\parbox{\LeftMarginSBBracket}%

1286 {\flushright{\hspace{0pt}\SBBracketTagFont #1}}}%

1287 \hbox\bgroup%

1288 \rightskip=\LeftMarginSBBracket%

1289 $\raisebox{1.25ex}{\copy0}%

1290 \left\lbrack%

1291 \vcenter\bgroup%

1292 \begin{list}{\hbox{}}% %

1293 {\setlength {\leftmargin} {\HangAmt + 0.5em}% This list

1294 \setlength{\rightmargin} {\LeftMarginSBBracket}%

1295 \setlength{\itemindent} {-\HangAmt}% % been copied

1296 \setlength{\listparindent}{-\HangAmt}% % verbatim from

1297 \setlength{\topsep} {0pt}% % the SBOpGroup

1298 \setlength{\parsep} {0pt}% % environment,

1299 \setlength{\labelwidth} {0pt}% % above and then

1300 \setlength{\labelsep} {0pt}% % modified slightly.

1301 \setlength{\baselineskip} {\sbBaselineSkipAmt}%

1302 }% %

1303 \item%

1304 }{%

1305 \end{list}%

1306 \egroup%

1307 \right.$%

1308 \rightskip=0pt

1309 \egroup

1310 \SpaceAfterSBBracket

1311 }

1312

The SBBracket* code.

1313 \newenvironment{SBBracket*}[1]{%

1314 \SpaceBeforeSBBracket

1315 \sbSetsbBaselineSkipAmt%

1316 \ifNotWordsOnly

1317 \setbox0=\hbox to \LeftMarginSBBracket{\parbox{\LeftMarginSBBracket}%

1318 {\flushright{\hspace{0pt}\SBBracketTagFont #1}}}%

1319 \hbox\bgroup%

1320 \rightskip=\LeftMarginSBBracket%

1321 $\raisebox{1.25ex}{\copy0}%

64

1322 \left\lbrack%

1323 \vcenter\bgroup%

1324 \fi

1325 \begin{list}{\hbox{}}% %

1326 {\setlength {\leftmargin} {\HangAmt + 0.5em}% This list

1327 \setlength{\rightmargin} {\LeftMarginSBBracket}%

1328 \setlength{\itemindent} {-\HangAmt}% % been copied

1329 \setlength{\listparindent}{-\HangAmt}% % verbatim from

1330 \setlength{\topsep} {0pt}% % the SBOpGroup

1331 \setlength{\parsep} {0pt}% % environment,

1332 \setlength{\labelwidth} {0pt}% % above and then

1333 \setlength{\labelsep} {0pt}% % modified slightly.

1334 \setlength{\baselineskip} {\sbBaselineSkipAmt}%

1335 }% %

1336 \item%

1337 }{%

1338 \end{list}%

1339 \ifNotWordsOnly

1340 \egroup%

1341 \right.$%

1342 \rightskip=0pt

1343 \egroup

1344 \fi

1345 \SpaceAfterSBBracket

1346 }

1347

SBOccurs The SBOccurs[〈1 〉] environment encapsulates an occurance.
Parameters:
〈1 〉 Occurance number(s). For example “1,3” would designate that this
passage applies to the 1st and 3rd occurances.

1348 \newenvironment{SBOccurs}[1]{%

1349 {\SBOccursTagFont #1\SBOccursBrktFont [}

1350 }

1351 {{\SBOccursBrktFont]}}

1352

SBExtraKeys The SBExtraKeys[〈1 〉] environment encapsulates extra song keys.
Parameters:
〈1 〉 This parameter actually is used to either pass or not pass all the
content of the environment on to the LATEXprocessor.

Songs are frequently listed in more than one key. This is ok for books with
chords, however the words-only edition should only print one occurance of a song.
So, any extra keys are placed in a SBExtraKey environment. This allows them to
be shut off when they’re not needed.

This was coded some years ago and I probably wouldn’t do it this way again;
however, it works so I’m not inclined to better it.

1353 \newenvironment{SBExtraKeys}[1]{%

1354 \ifWordsOnly%

1355 \relax%

1356 \else%

1357 #1

1358 \fi}

1359 {}

1360

\CBPageBrk \CBPageBrk[〈1 〉] generates a page break here if we’re in Chordbk mode.
Parameters:
〈1 〉 Take effect in CompactSong mode too? (optional)

When we’re also in CompactSong mode we will only execute the page break if
a parameter other than ‘N’ has been passed.

1361 \newcommand{\CBPageBrk}[1][N]{%

1362 \ifChordBk%

1363 \ifCompactSongMode

65

1364 \ifthenelse{\equal{#1}{N}}

1365 {\relax}

1366 {\vfill\pagebreak}

1367 \else

1368 \vfill\pagebreak

1369 \fi

1370 \fi}

1371

\CSColBrk \CSColBrk generates a column break here if we’re in compactsong mode.
Parameters:

None.

1372 \newcommand{\CSColBrk}{%

1373 \ifCompactSongMode%

1374 \columnbreak%

1375 \fi}

1376

\NotWOPageBrk \NotWOPageBrk generates a page break here if we’re not in words-only mode.
Parameters:

None.

1377 \newcommand{\NotWOPageBrk}{%

1378 \ifWordsOnly%

1379 \relax%

1380 \else%

1381 \pagebreak

1382 \fi}

1383

\OHPageBrk \OHPageBrk generates a page break here if we’re in overhead mode.
Parameters:

None.

1384 \newcommand{\OHPageBrk}{%

1385 \ifOverhead%

1386 \pagebreak

1387 \fi}

1388

\WBPageBrk \WBPageBrk generates a page break here if we’re in workbk mode.
Parameters:

None.

1389 \newcommand{\WBPageBrk}{%

1390 \ifWordBk%

1391 \pagebreak

1392 \fi}

1393

\WOPageBrk \WOPageBrk generates a page break here if we’re in words-only mode.
Parameters:

None.

1394 \newcommand{\WOPageBrk}{%

1395 \ifWordsOnly%

1396 \pagebreak

1397 \fi}

1398

14.8.7 Obsolete Macros

The macros in this section are no longer recommended, but will continue to exist
in the next version of the style. Existing users of this style should upgrade their
source files to make use of the new, replacement, mechanisms offered by the style.

1399 %%===%

1400 %% O B S O L E T E M A C R O S %

1401 %%===%

1402

66

The xlatn environment is obsolete, but for the sake of code-clarity the code
has not been moved into the Obsolete Macros section of this document.

14.8.8 Deprecated Macros

The macros in this section will be deleted in the next version of the style. Where
these old macros conflict with new ones they have been renamed by placing a
lowercase ‘o’ at the start of each macro name; this makes them easily accessible
yet out of the way.

1403 %%===%

1404 %% D E P R E C A T E D M A C R O S %

1405 %%===%

1406

Boolean Contants In the early releases, before I knew about LATEX’s \newif

command I had coded \ifs using these contants. These should have been removed
some time ago, but I had neglected placing them into this Deprecated Macros
section and so hadn’t given proper notice. Consider this notice.

\False

\True

\ChordBk

\Overhead

\SongEject

\WordBk

\WordsOnly

\SBinSongEnv

\False is defined for use in \if macro contructs and the other constants in this
style.
\True is defined for use in \if macro contructs and the other constants in this
style.
\ChordBk tells if we are processing a chordbk.sty document.
\Overhead tells if we are processing an overhead.sty document.
\SongEject specifies if we want to end the current page at the end of every song

environment. A value of \True means eject after every song environment.
\WordBk tells if we are processing a wordbk.sty document
\WordsOnly is equal to \True if we’re in words-only mode. The default value will
be \False, as that is how all of the commands in this file will act.
\SBinSongEnv tells if we are inside of a song environment. This is re-defined as
we enter and exit the song environment.

1407 \newcommand{\False}{0}

1408 \newcommand{\True}{1}

1409 \newcommand{\ChordBk}{\False}

1410 \newcommand{\Overhead}{\False}

1411 \newcommand{\SongEject}{\True}

1412 \newcommand{\WordBk}{\False}

1413 \newcommand{\WordsOnly}{\False}

1414 \newcommand{\SBinSongEnv}{\False}

1415

End of songbook.sty file.

1416 \endinput

1417

67

