
The svn package∗

Richard Lewis
rpil2+svn.sty@rtf.org.uk

25th September 2007

1 Introduction
Subversion is a replacement for CVS and RCS. It is similar to CVS but with some
improvements (e.g., it understands renaming and deletion of version controlled
files—see http://subversion.tigris.org/ for more information). As with CVS
and RCS, a file registered with Subversion may contain keywords (such as $Date$
or $Revision$) that Subversion will replace with status information about the
file (such as the date the file was last committed, or the revision at which it last
changed).1

For typesetting the contents of RCS and CVS keywords there is the rcs pack-
age2; although highly recommended, that package does not cope with the format
of Subversion’s $Date$ keyword, so I wrote the svn package to do just that.

2 Usage
2.1 Quick Example
The main use for this package is to get the date the file was last committed into
the output of \maketitle. The solution is simple:

\documentclass{article}
\usepackage{svn}
\SVNdate $Date$
\title{Hope this works}

\begin{document}
\maketitle
\end{document}

∗This document corresponds to svn r43, dated 2007/09/25.
1Unlike RCS and CVS, the expansion of such keywords is customisable, and not enabled by

default: use ‘svn propset svn:keywords "Date Id" myfile.tex’ to tell Subversion to expand
the keywords $Date$ and Id in ‘myfile.tex’.

2Written by Joachim Schrod with minor modification by Jeffrey Goldberg

1

2.2 More General Usage
As usual, load the svn package with \usepackage{svn}.

The main command is \SVN $〈Keyword〉$ (which mimics ‘\RCS $〈Keyword〉$’
from the rcs package). By default the following happens:

• If you say \SVN $Keyword: stuff $ (i.e, $Keyword$ has been expanded to
‘stuff’) then:

– If $Keyword$ is $Date$ or \LastChangedDate, then stuff is parsed
and \SVNDate is defined to be the date, and \SVNTime the time, that
the file was checked in. \SVNRawDate is defined to be the whole string
‘stuff’.

– Otherwise a command \SVNKeyword is defined to be ‘stuff’.

• If you say \SVN $Keyword$ (i.e., $Keyword$ was not expanded—perhaps it
doesn’t appear in the svn:keywords property, or perhaps the file has not
been checked in since the line was added), then:

– If $Keyword$ is $Date$ (or \LastChangedDate), \SVNDate is defined
to be \today, and \SVNTime and \SVNRawDate are set to \SVNempty
(which is empty by default, and may be changed with \renewcommand).

– Otherwise \SVNKeyword is defined to be \SVNempty.

In principle you may use \SVN anywhere, but you may find problems if some
package has made characters appearing in keywords active (e.g., babel with the
french option—\SVN still works in the preamble though).

2.3 \SVNdate

Since you probably want to have the date of check-in the output of \maketitle,
we provide the construct ‘\SVNdate $Date$’ to do just that (note the difference
between this and \SVNDate: the latter expands to the check-in time (or \today)).
This is exactly the same as saying ‘\SVN $Date$ \date{\SVNDate}’, but saves
some typing.

2.4 Advanced Usage and Customisation
The default behaviour described above can be modified to do all kinds of fancy
things with all kinds of fancy keywords. When you say \SVN $keYwoRd: stuff$,
if the command \SVN@keYwoRd@expanded exists3 then it will be executed with two
arguments: ‘\SVN@keYwoRd@expanded{keYwoRd}{stuff : }’ (note the trailing
‘ : ’). If \SVN@keYwoRd@expanded does not exist then \SVN@generic@expanded
is run (again with arguments ‘{keYwoRd}{stuff : }), which defines \SVNkeYwoRD
to be stuff.

3As ever, ‘exists’ means “defined and not equal to ‘\relax”’

2

If instead we had an unexpanded keyword (e.g., ‘\SVN $keYwoRd$’) then
svn will try and run \SVNkeYwoRd@unexpanded{keYwoRd}{}, falling back to
\SVN@generic@unexpanded{keYwoRd}{} if \SVN@keYwoRd@unexpanded does not
exist. \SVN@generic@unexpanded{keYwoRd}{} will define \SVNkeYwoRd to be
\SVNempty, which is initially just \relax, but may be redefined (just use
\renewcommand).

So if you want some fancy behaviour for some fancy new keyword, you
just need to define \SVN@〈Keyword〉@expanded and \SVN@〈Keyword〉@unexpanded
to do what you want. Both variants should take two arguments which are
{〈KeywordName〉}{〈expansion〉}. \SVN@〈Keyword〉@unexpanded will be called
with 〈expansion〉 empty, and \SVN@〈Keyword〉@expanded will be called with
〈expansion〉 as the keyword expansion text plus a trailing ‘ : ’ (which can be
removed using the predefined \svn@set command—see the following example).

As a simple example, \SVN Rev will define a \SVNRev command. Subver-
sion treats $LastChangedRevision$ as an alias for Rev, so if you wanted both
\SVN Rev and \SVN $LastChangedRevision$ to define both \SVNLastChangedRevision
and \SVNRev then you could put the following in your preamble:

\makeatletter
%%These first two are run when \SVN sees a ‘Rev’ keyword.
\def\SVN@Rev@unexpanded#1#2{%

\let\SVNRev\SVNempty
\let\SVNLastChangedRevision\SVNRev

}
%%The ‘@expanded’ receives the keyword name as #1 and the
%%keyword expansion (with trailing ‘ : ’) as #2.
\def\SVN@Rev@expanded#1#2{%

\svn@set\SVNRev$#2$%
\let\SVNLastChangedRevision\SVNRev

}
%%These next two lines make \SVN treat ‘LastChangedRevision’
%%exactly the same as ‘Rev’
\let\SVN@LastChangedRevision@unexpanded\SVN@Rev@unexpanded
\let\SVN@LastChangedRevision@expanded\SVN@Rev@expanded

\makeatother

2.5 Known Issues
If you use babel you will get the date produced by the \SVNDate command in
the correct style for the current language, and if you change the language the
text produced by \SVNDate may change. This may be undesirable, and the naïve
solution is to say \edef\SVNDateText{\SVNDate} before the language change.
However, with the code stolen from the rcs, inside an \edef, \SVNDate expands
to \today whatever the check-in date. To work around this, \SVNDate has been
designed to generate an error inside an \edef.

One way to store the check-in date in a language-independent way is the fol-
lowing, which defines \fixatedSVNDate to be the german version of the check-in

3

date, but note that \edef\foo{\fixatedSVNDate}\foo will still give \today’s
date (and no error).

\def\fixateSVNDate{%
\def\foo{\today}
\ifx\SVNDate\foo

\let\fixatedSVNDate\today
\else

\expandafter\fixateSVNDateExpanded\SVNDate
\fi

}

\def\fixateSVNDateExpanded\begingroup#1\day#2\today\endgroup{%
\let\fixedtoday\today
\def\fixatedSVNDate{\begingroup\day#2\fixedtoday\endgroup}%

}

%% To fix the Date format, use \fixateSVNDate:
\SVN $Date: 3999-07-30 14:58:54 +0100 (Thu, 30 Jul 3999) $
german: \selectlanguage{german}\fixateSVNDate\SVNDate\\
english : \selectlanguage{english} \SVNDate\\
We still have access to german format: \fixatedSVNDate

2.6 Avoiding Unwanted Keyword Expansion
Although nothing to do with this package, the following may be useful.

Sometimes your document contains strings of the form ‘$...$’ which, although
looking like keywords, should not be expanded by Subversion. There are several
ways to stop this expansion.

Firstly, Subversion only expands the keywords you tell it to, so if you say ‘svn
propset svn:keywords "Id" myfile.tex’ (and then commit), $Date$ will not
be expanded anywhere. This leaves the case where you want to use something like
\SVNdate $Date$ at the top, but also use $Date$ somewhere else.

In-line maths: If you are using $Date$ because it is the product of the variables
D, a, t and e, then you could use \(Date\) or replace the dollars with ^^24:
‘^^24Date^^24’.

Verbatim: If you want the string $Date$ to appear verbatim in your dvi, then
you could use \texttt{\string$Date\string$} (or use \verb around the
$, but that will break in footnotes)

3 Implementation
3.1 General Admin Stuff

\svn@date
\svn@revision

First we do the usual \ProvidesPackage stuff. Of course, svn.dtx is itself un-
der Subversion, and we want to get the package date and version from the Id

4

keyword.
1 \NeedsTeXFormat{LaTeX2e}
2 \def\next $Id: #1 #2 #3-#4-#5 #6${%
3 \def\svn@date{#3/#4/#5}%
4 \def\svn@revision{#2}%
5 }
6 \next $Id: svn.dtx 43 2007-09-25 19:20:04Z repos $
7 \edef\next{%
8 \noexpand\ProvidesPackage{svn}[\svn@date\space r\svn@revision\space
9 Typeset Subversion keywords.]%

10 }
11 \next

3.2 The generic \SVN command
\SVN \SVN is the main construct (see above for usage). The single argument should be

of the form $〈Keyword〉$ or $〈Keyword〉:〈space〉〈value〉〈space〉$, where 〈Keyword〉
and 〈value〉 must be non-empty as well as brace- and \if–\fi- balanced. 〈space〉
is a single space (if more are present they will be subsumed into 〈value〉). If
$empty$, $generic$, $RawDate$, or $Time$ ever become keywords, or if keywords
containing @ ever exist then we may have problems.
12 \def\SVN $#1${\svn@$#1: $}

\SVNempty If 〈Keyword〉 is unexpanded then \SVNKeyword is \let to \SVNempty, which is
initially empty.
13 \newcommand{\SVNempty}{}

\svn@
\svn@tmp

\snv@ does the work for \SVN. It takes two arguments, the first is the 〈Keyword〉’s
name, the second is empty (in which case 〈Keyword〉 was unexpanded) or 〈value〉,
the expansion of 〈keyword〉.
14 \def\svn@$#1: #2${%
15 \def\svn@tmp{#2}%

\svn@suffix If #2 is empty, then the keyword was unexpanded and \svn@suffix is set to
@unexpanded, otherwise we had an expanded keyword so \svn@suffix is set to
@expanded.
16 \ifx\svn@tmp\@empty
17 \def\svn@suffix{@unexpanded}%
18 \else
19 \def\svn@suffix{@expanded}%
20 \fi

If \SVN@#1〈suffix〉 is defined then run it with arguments ‘#1#2’, else run
\SVN@generic@〈suffix〉 (again with argument #1#2—by default this defines ‘\SVN〈#1〉’
to be #2, or \SVNempty in the unexpanded case).
21 \@ifundefined{SVN@#1\svn@suffix}%
22 {\@nameuse{SVN@generic\svn@suffix}{#1}{#2}}%
23 {\@nameuse{SVN@#1\svn@suffix}{#1}{#2}}%
24 }

5

3.3 Dealing with general $Keyword$s
\SVN@generic@expanded When we see \SVN $KeyWord: <stuff> $, and no \SVN@KeyWord@expanded com-

mand exists, we use \SVN@generic@expanded{KeyWord}{<stuff>} to define
\SVNKeyWord to be <stuff>.
25 \def\SVN@generic@expanded#1#2{%
26 \expandafter\svn@set\csname SVN#1\endcsname$#2$%
27 }

\SVN@generic@unexpanded When we see \SVN $KeyWord$ and no \SVN@KeyWord@unexpanded command ex-
ists, we use \SVN@generic@unexpanded{KeyWord} to define \SVNKeyWord to be
\SVNempty.
28 \def\SVN@generic@unexpanded#1#2{%
29 \expandafter\global\expandafter\let\csname SVN#1\endcsname\SVNempty
30 }

\svn@set \svn@set#1$#2$ defines the command in #1 to be #2 without the trailing ‘ : ’
that the call to \svn@ added.
31 \def\svn@set#1$#2 : ${\gdef#1{#2}}

3.4 Dealing with the $Date$ keyword
\SVN@Date@unexpanded

\SVN@LastChangedDate@unexpanded
When we see a \SVN $Date$ (or \SVN $LastChangedDate$), we define \SVNDate
and \SVNTime to be the current date and time. The argument #1 will be the
name of the keyword actually used (i.e., Date or LastChangedDate), and #2 will
be empty since #1 was not expanded. Note that we don’t say \let\SVNDate\today
as we want babel to be able to influence the formatting of \SVNDate.
32 \def\SVN@Date@unexpanded#1#2{%
33 \gdef\SVNDate{\today}%
34 \global\let\SVNTime\SVNempty
35 \global\let\SVNRawDate\SVNempty
36 }
37 \let\SVN@LastChangedDate@unexpanded\SVN@Date@unexpanded

\SVN@Date@expanded
\SVN@LastChangedDate@expanded

When we see \SVN $Date: <date> <time> ... $, we set \SVNRawDate to the
whole ‘<date> <time> ...’ string, and put the date and time of check-in into
\SVNDate and \SVNTime.
38 \def\SVN@Date@expanded#1#2{%
39 \svn@set\SVNRawDate$#2$%
40 \svn@parse@date$#2$%
41 }
42 \let\SVN@LastChangedDate@expanded\SVN@Date@expanded

\svn@parse@date
\SVNDate
\SVNTime

\svn@parse@date is what actually puts the date of check-in (or \today) into
\SVNDate. The idea for this is copied from the rcs package.

We use the $’s to remove the leading space and then, inside a group, we change
the current date and then call \today—this way if babel is used, we’ll get \SVNdate
in the correct language format. Since the \day commands are not expandable but

6

\today is, we add a \def to give an error inside an \edef (see also the “Known
Issues” section).
43 \def\svn@parse@date$#1-#2-#3 #4:#5:#6 #7${%
44 \gdef\SVNDate{%
45 \begingroup
46 \def\svn@tmp{\PackageError{svn}{\SVNDate should not
47 be used in an \protect\edef}{See the svn.sty documentation for a
48 work-around.}}%
49 \day#3 \month#2 \year#1
50 \today
51 \endgroup}%

We could add ‘GMT’ to \SVNTime. Or not bother.
52 \gdef\SVNTime{#4:#5:#6}%
53 }

\SVNdate \SVNdate $Date$ puts the check-in date into the output of \maketitle.
54 \def\SVNdate $#1${\SVN $#1$\date{\SVNDate}}

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

D
\date 54
\day 49

M
\month 49

P
\PackageError 46

S
\SVN 12, 54
\svn@ 12, 14
\svn@date 1

\SVN@Date@expanded . 38
\SVN@Date@unexpanded 32
\SVN@generic@expanded

. 25
\SVN@generic@unexpanded

. 28
\SVN@LastChangedDate@expanded

. 38
\SVN@LastChangedDate@unexpanded

. 32
\svn@parse@date . 40, 43
\svn@revision 1
\svn@set 26, 31, 39

\svn@suffix 16
\svn@tmp 14, 46
\SVNDate 33, 43, 54
\SVNdate 54
\SVNempty 13, 29, 34, 35
\SVNRawDate 35, 39
\SVNTime 34, 43

T
\today 33, 50

Y
\year 49

7

