

LualgX
Reference
Manual

copyright : LuaTgX development team
more info : www.luatex.org
version : February 29, 2024

Contents

Introduction
1 Preamble
2 Basic TgX enhancements
2.1 Introduction
2.1.1 Primitive behaviour
2.1.2 Version information
2.2 UNICODE text support
2.2.1 Extended ranges
2.2.2 \Uchar
2.2.3 Extended tables
2.3 Attributes
2.3.1 Nodes
2.3.2 Attribute registers
2.3.3 Box attributes
2.4 LUA related primitives
2.4.1 \directlua
2.4.2 \latelua and \lateluafunction
2.4.3 \luaescapestring
2.4.4 \luafunction, \luafunctioncall and \luadef
2.4.5 \luabytecode and \luabytecodecall
2.5 Catcode tables
2.5.1 Catcodes
2.5.2 \catcodetable
2.5.3 \initcatcodetable
2.5.4 \savecatcodetable
2.6 Suppressing errors
2.6.1 \suppressfontnotfounderror
2.6.2 \suppresslongerror
2.6.3 \suppressifcsnameerror
2.6.4 \suppressoutererror
2.6.5 \suppressmathparerror
2.6.6 \suppressprimitiveerror
2.7 Fonts
2.7.1 Font syntax
2.7.2 \fontid and \setfontid
2.7.3 \noligs and \nokerns
2.7.4 \hospaces
2.8 Tokens, commands and strings
2.8.1 \scantextokens
2.8.2
\xtoksapp, \xtokspre
2.8.3

\toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre,

\csstring, \begincsname and \lastnamedcs

15
19

21
21
21
21
22
22
23
23
23
23
24
24
25
25
27
27
27
28
29
29
29
29
29
30
30
30
30
30
30
31
31
31
31
31
32
32
32

32
33

2.9

2.10

2.11

2.12

2.13

3.2

3.3

2.8.4 \clearmarks

2.8.5 \alignmark and \aligntab
2.8.6 \letcharcode

2.8.7 \glet

2.8.8 \expanded, \immediateassignment and \immediateassigned
2.8.9 \ifcondition

Boxes, rules and leaders

2.9.1 \outputbox

2.9.2 \vpack, \hpack and \tpack
2.9.3 \vsplit

2.9.4 Images and reused box objects
2.9.5 \nohrule and \novrule

2.9.6 \gleaders

Languages

2.10.1 \hyphenationmin

2.10.2 \boundary, \noboundary, \protrusionboundary and \wordboundary
2.10.3 \glyphdimensionsmode
Control and debugging

2.11.1 Tracing

2.11.2 \outputmode

2.11.3 \draftmode

Files

2.12.1 File syntax

2.12.2 Writing to file

Math

Modifications

The merged engines

3.1.1 The need for change

3.1.2 Changes from TgX 3.1415926
3.1.3 Changes from &-TgX 2.2

3.14 Changes from PDFTEX 1.40
3.1.5 Changes from ALEPH RC4
3.1.6 Changes from anywhere

3.1.7 Changes from standard WEB2C

The backend primitives

3.2.1 Less primitives

3.2.2 \pdfextension, \pdfvariable and \pdffeedback
3.2.3 Defaults

3.2.4 Backward compatibility

Directions

3.3.1 Four directions

3.3.2 How it works

3.3.3 Controlling glue with \breakafterdirmode

3.3.4 Controling parshapes with \shapemode

3.3.5 Symbols or numbers

33
33
33
34
34
35
36
36
36
36
36
37
37
37
37
37
38
38
38
38
38
39
39
39
39

41
41
41
41
42
42
45
46
46
46
46
47
51
52
53
53
53
55
56
56

3.4

4.1

4.2

4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Implementation notes

3.4.1 Memory allocation

3.4.2 Sparse arrays

3.4.3 Simple single-character csnames
3.4.4 The compressed format file

3.4.5 Binary file reading

3.4.6 Tabs and spaces

3.4.7 Hyperlinks

Using LUATEX

Initialization

4.1.1 LUATEX as a LUA interpreter
4.1.2 LUATEX as a LUA byte compiler
4.1.3 Other commandline processing
LUA behaviour

4.2.1 The LUA version

4.2.2 Integration in the TDS ecosystem
4.2.3 Loading libraries

4.2.4 Executing programs

4.2.5 Multibyte string functions

4.2.6 Extra os library functions

4.2.7 Binary input from files with fio
4.2.8 Binary input from strings with sio
4.2.9 Hashes conform sha2

4.2.10 Locales

LUA modules

Testing

Languages, characters, fonts and glyphs
Introduction

Characters, glyphs and discretionaries
The main control loop

Loading patterns and exceptions
Applying hyphenation

Applying ligatures and kerning
Breaking paragraphs into lines

The lang library

5.8.1 new and id

5.8.2 hyphenation

5.8.3 clear hyphenation and clean
5.8.4 patterns and clear patterns
5.8.5 hyphenationmin

5.8.6 [pre|post][ex|]lhyphenchar
5.8.7 hyphenate

5.8.8 [set|get]lhjcode

57
57
58
58
58
58
59
59

61
61
61
61
61
64
64
65
65
65
66
67
68
69
69
70
70
70

73
73
73
79
81
83
85
87
87
87
88
88
88
88
88
89
89

6.1
6.2
6.3

6.4
6.5

7.1
7.2
7.3

7.4

7.5

7.6

Font structure
The font tables
Real fonts
Virtual fonts

6.3.1
6.3.2
6.3.3

The structure
Artificial fonts
Example virtual font

The vf library
The font library

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
6.5.11

Math

Loading a TFM file
Loading a VF file

The fonts array
Checking a font’s status
Defining a font directly
Extending a font
Projected next font id
Font ids

Iterating over all fonts
\glyphdimensionsmode
\discretionaryligaturemode

Traditional alongside OPENTYPE
Unicode math characters
Math styles

7.3.1
7.3.2
7.3.3

\mathstyle
\Ustack
Cramped math styles

Math parameter settings

7.4.1
7.4.2

Many new \Umath* primitives
Font-based math parameters

Math spacing

7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9

Inline surrounding space

Pairwise spacing

Skips around display math

Nolimit correction

Math italic mess

Script and kerning

Fixed scripts

Penalties: \mathpenaltiesmode
Equation spacing: \mathegnogapstep

Math constructs

7.6.1
7.6.2
7.6.3
7.6.4
7.6.5

Unscaled fences
Accent handling
Radical extensions
Super- and subscripts
Scripts on extensibles

91

91

96

98

98
100
100
101
101
101
102
102
103
103
103
103
104
104
104
105

107
107
107
109
109
110
110
112
112
113
117
117
118
119
119
120
120
121
121
122
122
122
123
124
124
124

7.7

7.8

7.9

8.1
8.2

8.3

7.6.6
7.6.7

Fractions
Delimiters: \Uleft, \Umiddle and \Uright

Extracting values

7.7.1 Codes

7.7.2 Last lines

Math mode

7.8.1 Verbose versions of single-character math commands
7.8.2 Script commands \Unosuperscript and \Unosubscript
7.8.3 Allowed math commands in non-math modes

Goodies

7.9.1 Flattening: \mathflattenmode

7.9.2 Less Tracing

7.9.3 Math options with \mathdefaultsmode

7.9.4 Math options with \mathoption

Nodes

LUA node representation
Main text nodes

8.2.1 hlist nodes

8.2.2 vlist nodes

8.2.3 rule nodes

8.2.4 ins nodes

8.2.5 mark nodes

8.2.6 adjust nodes

8.2.7 disc nodes

8.2.8 math nodes

8.2.9 glue nodes

8.2.10 kern nodes

8.2.11 penalty nodes

8.2.12 glyph nodes

8.2.13 boundary nodes
8.2.14 local par nodes
8.2.15 dir nodes

8.2.16 marginkern nodes
Math noads

8.3.1 Math kernel subnodes
8.3.2 math char and math_text char subnodes
8.3.3 sub box and sub mlist subnodes
8.3.4 delim subnodes

8.3.5 Math core nodes
8.3.6 simple noad nodes
8.3.7 accent nodes

8.3.8 style nodes

8.3.9 choice nodes

8.3.10 radical nodes

8.3.11 fraction nodes
8.3.12 fence nodes

126
126
127
127
127
128
128
128
129
129
129
129
130
130

131
131
131
132
132
132
133
133
134
134
134
135
136
136
136
138
138
138
139
139
139
139
139
140
140
141
141
141
141
142
142
142

8.4 Front-end whatsits

8.5

8.6

8.7

8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6

open
write

close
user_defined
save_pos
late lua

DVI backend whatsits

8.5.1

special

PDF backend whatsits

8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7
8.6.8
8.6.9
8.6.10
8.6.11
8.6.12
8.6.13
8.6.14

pdf literal and pdf late literal

pdf refobj

pdf annot

pdf start link
pdf _end link
pdf dest

pdf action

pdf thread

pdf start thread
pdf end thread
pdf colorstack
pdf setmatrix
pdf save

pdf restore

The node library

8.7.1
8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.7
8.7.8
8.7.9
8.7.10
8.7.11
8.7.12
8.7.13
8.7.14
8.7.15
8.7.16
8.7.17
8.7.18
8.7.19
8.7.20
8.7.21

Introduction

is node

types and whatsits
id

type and subtype
fields

has field

new

free, flush node and flush list
copy and copy list
prev and next
current attr

hpack

vpack

prepend prevdepth
dimensions and rangedimensions
mlist to hlist
slide

tail
length and type count
is char and is glyph

143
143
143
143
143
144
144
144
144
145
145
145
145
145
146
146
146
147
147
147
147
148
148
148
148
148
149
149
149
149
150
150
150
150
151
151
151
152
152
153
153
154
154
154
155
155

8.8

8.9

8.10
8.11

9
9.1
9.2

8.7.22 traverse

8.7.23 traverse_id

8.7.24 traverse char and traverse glyph
8.7.25 traverse list

8.7.26 has _glyph

8.7.27 end_of _math

8.7.28 remove

8.7.29 insert before

8.7.30 insert after

8.7.31 first glyph

8.7.32 ligaturing

8.7.33 kerning

8.7.34 unprotect glyph[s]
8.7.35 protect glyph[s]
8.7.36 last node

8.7.37 write

8.7.38 protrusion skippable
Glue handling

8.8.1 setglue

8.8.2 getglue

8.8.3 is zero glue
Attribute handling

8.9.1 Attributes

8.9.2 attribute list nodes
8.9.3 attr nodes

8.94 has_attribute

8.9.5 get attribute

8.9.6 find attribute

8.9.7 set attribute

8.9.8 unset attribute

8.9.9 slide

8.9.10 check discretionary, check discretionaries
8.9.11 flatten discretionaries
8.9.12 family font

Two access models

Properties

LUA callbacks

Registering callbacks

File discovery callbacks

9.2.1 find read file and find write file
9.2.2 find font file

9.2.3 find output file

9.24 find format file

9.2.5 find vf file

9.2.6 find map file

9.2.7 find enc file

155
156
156
157
157
157
157
157
158
158
158
158
159
159
159
159
159
159
159
160
160
160
160
160
161
161
161
161
161
162
162
162
162
162
163
168

173
173
173
174
174
174
174
175
175
175

9.3

9.4

9.5

9.6

9.2.8
9.2.9
9.2.10
9.2.11
9.2.12

find pk file
find data file
find opentype file

find truetype file and find typel file

find image file

File reading callbacks

9.3.1
9.3.2

open read file
General file readers

Data processing callbacks

94.1
9.4.2
9.4.3

process input buffer

process output buffer

process _jobname

Node list processing callbacks

9.5.1
9.5.2
9.5.3
9.5.4
9.5.5
9.5.6
9.5.7
9.5.8
9.5.9
9.5.10
9.5.11
9.5.12
9.5.13
9.5.14
9.5.15
9.5.16
9.5.17
9.5.18

contribute filter
buildpage filter
build page insert
pre_linebreak filter
linebreak filter

append to vlist filter
post linebreak filter

hpack filter
vpack filter
hpack quality
vpack quality
process rule

pre output filter
hyphenate
ligaturing
kerning

insert local par
mlist to hlist

Information reporting callbacks

9.6.1
9.6.2
9.6.3
9.6.4
9.6.5
9.6.6
9.6.7
9.6.8
9.6.9
9.6.10
9.6.11
9.6.12
9.6.13

pre_dump

start_run

stop_run
start page number
stop page number
show_error_hook
show _error_message
show lua error hook
start file

stop file

call edit

finish synctex
wrapup_run

175
175
175
175
176
176
176
177
178
178
178
178
178
178
179
179
180
181
181
181
181
182
182
182
183
183
183
183
184
184
184
184
184
185
185
185
185
185
186
186
186
186
186
187
187

9.7 PDF related callbacks

9.7.1
9.7.2
9.7.3
9.7.4

finish pdffile

finish pdfpage

page order_ index
process pdf image content

9.8 Font-related callbacks

9.8.1
9.8.2
9.8.3

define font
glyph not found and glyph info
provide charproc data

10 The TgX related libraries
10.1 The lua library

10.1.1
10.1.2
10.1.3
10.1.4

Version information
Bytecode registers
Chunk name registers
Introspection

10.2 The status library
10.3 The tex library

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10
10.3.11
10.3.12
10.3.13
10.3.14
10.3.15
10.3.16
10.3.17
10.3.18
10.3.19

Introduction

Internal parameter values, set and get
Convert commands

Last item commands

Accessing registers: set*, get* and is*

Character code registers: [get|set]*code[s]

Box registers: [get|set]box

Reusing boxes: [use|save]boxresource and getboxresourcedimensions

triggerbuildpage

splitbox

Accessing math parameters: [get|set]math
Special list heads: [get|set]list
Semantic nest levels: getnest and ptr
Print functions

Helper functions

Functions for dealing with primitives
Core functionality interfaces
Randomizers

Functions related to synctex

10.4 The texconfig table
10.5 The texio library

10.5.1
10.5.2
10.5.3
10.5.4

write
write nl
setescape
closeinput

187
187
187
187
188
188
188
189
189

191
191
191
191
191
192
192
194
194
194
197
198
198
200
201
202
202
202
203
204
204
205
207
210
214
216
216
217
219
219
219
219
219

10.6 The token library

10.7

11
11.1

11.2

10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.6.6

The scanner

Picking up one token
Creating tokens
Macros

Pushing back

Nota bene

The kpse library

10.7.1
10.7.2
10.7.3
10.7.4
10.7.5
10.7.6
10.7.7
10.7.8
10.7.9
10.7.10
10.7.11
10.7.12
10.7.13
10.7.14
10.7.15
10.7.16
10.7.17

set program name and new
record input file and record output file
find file

lookup

init prog

readable file

expand path

expand var

expand braces

in_name_ ok

in _name ok silent extended
out_name ok

out name ok silent extended
show_path

var_value

version

check permission

The graphic libraries

The img library

11.1.1 new

11.1.2 fields

11.1.3 scan

11.1.4 copy

11.1.5 write, immediatewrite, immediatewriteobject

11.1.6 node

11.1.7 types

11.1.8 boxes

The mplib library

11.2.1 new

11.2.2 statistics

11.2.3 execute

11.2.4 finish

11.2.5 Result table

11.2.6 Subsidiary table formats

11.2.7 Pens and pen_info

11.2.8 Character size information
10

219
219
222
222
223
224
224
226
226
226
227
227
228
228
228
228
228
229
229
229
229
229
229
229
230

231
231
231
232
233
234
234
235
235
235
236
236
237
237
237
238
240
241
242

12

12.1
12.2
12.3
12.4
12.5
12.6

13
13.1

14
14.1

The fontloader
Getting quick information on a font
Loading an OPENTYPE or TRUETYPE file

Applying a ‘feature file’
Applying an ‘AFM file’
Fontloader font tables
Table types

12.6.1
12.6.2
12.6.3
12.6.4
12.6.5
12.6.6
12.6.7
12.6.8
12.6.9
12.6.10
12.6.11
12.6.12
12.6.13
12.6.14
12.6.15
12.6.16
12.6.17
12.6.18
12.6.19
12.6.20
12.6.21
12.6.22
12.6.23

The main table

glyphs

map

private

cidinfo

pfminfo

names

anchor _classes

gpos

gsub

ttf tables and ttf tab saved
mm

mark _classes

math

validation state
horiz_base and vert base
altuni

vert variants and horiz variants
mathkern

kerns

vkerns

texdata

lookups

The HarfBuzz libraries
The luaharfbuzz library

13.1.1

Example

The backend libraries
The pdf library

14.1.1 mapfile, mapline

14.1.2 [set|get][catalog|info|names|trailer]

14.1.3 [set|get][pageattributes|pageresources|pagesattributes]

14.1.4 [set|get][xformattributes|xformresources]

14.1.5 [set|get][major|minor]version

14.1.6 getcreationdate

14.1.7 [set|getlinclusionerrorlevel and [set|get]lignoreunknownimages

14.1.8 [set|get]lsuppressoptionalinfo, [set|get]trailerid,
[set|get]lomitcidset, [set|get]omitinfo and [set|get]omitmediabox

14.1.9 [set|get]l[obj|]lcompresslevel and [set|get]recompress

243
243
243
245
245
245
246
246
248
251
252
252
252
253
254
254
255
255
255
256
256
257
257
257
257
258
258
258
258
258

261
261
279

285
285
285
285
285
285
285
286
286

286
286

14.1.
14.1.
14.1.
14.1.
14.1.

14.1.
14.1.
14.1.
14.1.
14.1.

10
11
12
13
14

15
16
17
18
19

14.1.20
14.1.21
14.1.22

14.1.
14.1.
14.1.
14.1.
14.1.
14.1.

23
24
25
26
27
28

[set|get]lgentounicode
[set|get]ldecimaldigits
[set|get]lpkresolution
getlast[obj|link|annot] and getretval
getmaxobjnum and getobjtype, getfontname, getfontobjnum,
getfontsize, getxformname
[set|get]lorigin
[set|get]limageresolution
[set|get][link|dest|thread|xform]margin
get[pos|hpos|vpos]

[has|get]lmatrix

print

immediateobj

obj

refobj

reserveobj

getpageref

registerannot

newcolorstack

setfontattributes

14.2 The pdfe library

14.2.
14.2.
14.2.

1
2
3

14.2.4

14.2.
14.2.
14.2.
14.2.
14.2.
14.2.
14.2.

5
6
7
8
9
10
11

Introduction

open, new, getstatus, close, unencrypt

getsize, getversion, getnofobjects, getnofpages, getmemoryusage
get[catalog|trailer|info]

getpage, getbox
get[string|integer|number|boolean|name], type
get[dictionary|array|stream]
[open|close|readfrom|readfromwhole]stream
getfrom[dictionary|array]
[dictionary|array]ltotable

getfromreference

14.3 Memory streams
14.4 The pdfscanner library

Topics

Primitives

Callbacks

Nodes

Libraries

286
286
287
287

287
287
287
287
287
287
288
288
289
290
290
290
290
290
291
291
291
291
292
292
292
293
293
293
294
294
294
295
295

299

303

311

313

315

Statistics

323

Introduction

This is the reference manual of LuaTgX. We don’t claim it is complete and we assume that the
reader knows about TgX as described in “The TgX Book”, the “¢-TgX manual”, the “pdfTEX man-
ual”, etc. Additional reference material is published in journals of user groups and ConTgXt
related documentation.

It took about a decade to reach stable version 1.0, but for good reason. Successive versions
brought new functionality, more control, some cleanup of internals. Experimental features
evolved into stable ones or were dropped. Already quite early LuaTgX could be used for produc-
tion and it was used on a daily basis by the authors. Successive versions sometimes demanded
an adaption to the Lua interfacing, but the concepts were unchanged. The current version can
be considered stable in functionality and there will be no fundamental changes. Of course we
then can decide to move towards version 2.00 with different properties.

Don’t expect LuaTgX to behave the same as pdfIgX! Although the core functionality of that 8 bit
engine was starting point, it has been combined with the directional support of Omega (Aleph).
But, LuaTgX can behave different due to its wide (32 bit) characters, many registers and large
memory support. The pdf code produced differs from pdfTEX but users will normally not notice
that. There is native utf input, support for large (more than 8 bit) fonts, and the math machinery
is tuned for OpenType math. There is support for directional typesetting too. The log output
can differ from other engines and will likely differ more as we move forward. When you run
plain TgX for sure LuaTgX runs slower than pdfTEX but when you run for instance ConTgXt MkIV
in many cases it runs faster, especially when you have a bit more complex documents or input.
Anyway, 32 bit all-over combined with more features has a price, but on a modern machine this
is no real problem.

Testing is done with ConTgXt, but LuaTgX should work fine with other macro packages too. For
that purpose we provide generic font handlers that are mostly the same as used in ConTgXt.
Discussing specific implementations is beyond this manual. Even when we keep LuaTgX lean
and mean, we already have enough to discuss here.

LuaTgX consists of a number of interrelated but (still) distinguishable parts. The organization
of the source code is adapted so that it can glue all these components together. We continue
cleaning up side effects of the accumulated code in TgX engines (especially code that is not
needed any longer).

» We started out with most of pdfTgX version 1.40.9. The code base was converted to C and split
in modules. Experimental features were removed and utility macros are not inherited because
their functionality can be programmed in Lua. The number of backend interface commands
has been reduced to a few. The so called extensions are separated from the core (which we
try to keep close to the original TEX core). Some mechanisms like expansion and protrusion
can behave different from the original due to some cleanup and optimization. Some whatsit
based functionality (image support and reusable content) is now core functionality. We don’t
stay in sync with pdfTgX development.

» The direction model from Aleph RC4 (which is derived from Omega) is included. The related
primitives are part of core LuaTgX but at the node level directional support is no longer based

Introduction 15 *:‘

on so called whatsits but on real nodes with relevant properties. The number of directions is
limited to the useful set and the backend has been made direction aware.

» Neither Aleph’s I/O translation processes, nor tcx files, nor encTgX are available. These en-
coding-related functions are superseded by a Lua-based solution (reader callbacks). In a
similar fashion all file io can be intercepted.

» We currently use Lua 5.3.*. There are few Lua libraries that we consider part of the core
Lua machinery, for instance lpeg. There are additional Lua libraries that interface to the
internals of TEX. We also keep the Lua 5.2 bit32 library around.

» There are various TgX extensions but only those that cannot be done using the Lua interfaces.
The math machinery often has two code paths: one traditional and the other more suitable
for wide OpenType fonts. Here we follow the Microsoft specifications as much as possible.
Some math functionality has been opened up a bit so that users have more control.

» The fontloader uses parts of FontForge 2008.11.17 combined with additional code specific for
usage in a TgX engine. We try to minimize specific font support to what TgX needs: character
references and dimensions and delegate everything else to Lua. That way we keep TgX open
for extensions without touching the core. In order to minimize dependencies at some point
we may decide to make this an optional library.

» The MetaPost library is integral part of LuaTgX. This gives TgX some graphical capabilities
using a relative high speed graphical subsystem. Again Lua is used as glue between the
frontend and backend. Further development of MetaPost is closely related to LuaTgX.

» The virtual font technology that comes with TgX has been integrated into the font machinery
in a way that permits creating virtual fonts at runtime. Because LuaTgX can also act as a
Lua interpreter this means that a complete TgX workflow can be built without the need for
additional programs.

» The versions starting from 1.09 no longer use the poppler library for inclusion but a light-
weight dedicated one. This removes a dependency but also makes the inclusion code of
LuaTgX different from pdfTgX. In fact it was already much different due to the Lua image
interfacing.

We try to keep upcoming versions compatible but intermediate releases can contain experimen-
tal features. A general rule is that versions that end up on TgXLive and/or are released around
ConTgXt meetings are stable. Any version between the yearly TgXLive releases are to be con-
sidered beta and in the repository end up as trunk releases. We have an experimental branch
that we use for development but there is no support for any of its experimental features. Inter-
mediate releases (from trunk) are normally available via the ConTgXt distribution channels (the
garden and so called minimals).

Version 1.10 is more or less an endpoint in development: this is what you get. Because not only
ConTgXt, that we can adapt rather easily, uses LuaTgX, we cannot change fundamentals without
unforeseen consequences. By now it has been proven that Lua can be used to extend the core
functionality so there is no need to add more, and definitely no hard coded solutions for (not so)
common problems. Of course there will be bug fixes, maybe some optimization, and there might

- ~

e
‘\0; 16 Introduction

hy -

even be some additions or non-intrusive improvements, but only after testing outside the stable
release. After all, the binary is already more than large enough and there is not that much to
gain.

You might find Lua helpers that are not yet documented. These are considered experimental,
although when you encounter them in a ConTEXt version that has been around for a while you
can assume that they will stay. Of course it can just be that we forgot to document them yet.

A manual like this is not really meant as tutorial, for that we refer to documents that ship with
ConTgXt, articles, etc. It is also never complete enough for all readers. We try to keep up but the
reader needs to realize that it’s all volunteer work done in spare time. And for sure, complaining
about a bad manual or crappy documentation will not really motivate us to spend more time on
it. That being said, we hope that this document is useful.

Hans Hagen
Harmut Henkel
Taco Hoekwater
Luigi Scarso

Version : February 29, 2024
LuaTgX : luatex 1.18/ 7611
ConTgXt : MkIV 2023.05.05 18:36

Introduction 17 {\‘

- ~

M e _
k‘; 18 Introduction

- -

1 Preamble

This is a reference manual, not a tutorial. This means that we discuss changes relative to tradi-
tional TgX and also present new functionality. As a consequence we will refer to concepts that
we assume to be known or that might be explained later.

The average user doesn’t need to know much about what is in this manual. For instance fonts
and languages are normally dealt with in the macro package that you use. Messing around with
node lists is also often not really needed at the user level. If you do mess around, you’d better
know what you’re dealing with. Reading “The TgX Book” by Donald Knuth is a good investment
of time then also because it’s good to know where it all started. A more summarizing overview
is given by “TgX by Topic” by Victor Eijkhout. You might want to peek in “The £-TgX manual” and
documentation about pdfTgX.

But ... if you’'re here because of Lua, then all you need to know is that you can call it from within
a run. The macro package that you use probably will provide a few wrapper mechanisms but
the basic \directlua command that does the job is:

\directlua{tex.print("Hi there")}

You can put code between curly braces but if it’s a lot you can also put it in a file and load that
file with the usual Lua commands.

Ifyou still decide to read on, then it’s good to know what nodes are, so we do a quick introduction
here. If you input this text:

Hi There

eventually we will get a linked lists of nodes, which in ascii art looks like:

H<=>1<=> [glue] <=> T <=> h <=> e <=>r <=> ¢

When we have a paragraph, we actually get something:

[localpar] <=> H <=> i <=> [glue] <=> T <=> h <=> e <=> r <=> e <=> [qglue]

Each character becomes a so called glyph node, a record with properties like the current font,
the character code and the current language. Spaces become glue nodes. There are many node
types that we will discuss later. Each node points back to a previous node or next node, given
that these exist.

It’s also good to know beforehand that TgX is basically centered around creating paragraphs
and pages. The par builder takes a list and breaks it into lines. We turn horizontal material
into vertical. Lines are so called boxes and can be separated by glue, penalties and more. The
page builder accumulates lines and when feasible triggers an output routine that will take the
list so far. Constructing the actual page is not part of TgX but done using primitives that permit
manipulation of boxes. The result is handled back to TgX and flushed to a (often pdf) file.

The LuaTgX engine provides hooks for Lua code at nearly every reasonable point in the process:
collecting content, hyphenating, applying font features, breaking into lines, etc. This means

Preamble 19 {\‘

that you can overload TgX’s natural behaviour, which still is the benchmark. When we refer to
‘callbacks’ we means these hooks.

Where plain TgX is basically a basic framework for writing a specific style, macro packages
like ConTgXt and IXTEX provide the user a whole lot of additional tools to make documents look
good. They hide the dirty details of font management, language demands, turning structure
into typeset results, wrapping pages, including images, and so on. You should be aware of the
fact that when you hook in your own code to manipulate lists, this can interfere with the macro
package that you use.

When you read about nodes in the following chapters it’s good to keep in mind their commands
that relate to then. Here are a few:

COMMAND NODE EXPLANATION

\hbox hlist horizontal box

\vbox vlist wvertical box with the baseline at the bottom
\vtop vlist vertical box with the baseline at the top
\hskip glue horizontal skip with optional stretch and shrink
\vskip glue vertical skip with optional stretch and shrink
\kern kern horizontal or vertical fixed skip
\discretionary disc hyphenation point (pre, post, replace)

\char glyph a character

\hrule rule a horizontal rule

\vrule rule a vertical rule

\textdir(ection) dir a change in text direction

For now this should be enough to enable you to understand the next chapters.

0;‘ 20 Preamble

2 Basic TgX enhancements

2.1 Introduction

2.1.1 Primitive behaviour

From day one, LuaTgX has offered extra features compared to the superset of pdfIgX, which
includes e-TgX, and Aleph. This has not been limited to the possibility to execute Lua code via
\directlua, but LuaTgX also adds functionality via new TgX-side primitives or extensions to
existing ones.

When LuaTgX starts up in ‘iniluatex’ mode (Luatex -ini), it defines only the primitive commands
known by TgX82 and the one extra command \directlua. As is fitting, a Lua function has to be
called to add the extra primitives to the user environment. The simplest method to get access
to all of the new primitive commands is by adding this line to the format generation file:

\directlua { tex.enableprimitives('',tex.extraprimitives()) }

But be aware that the curly braces may not have the proper \catcode assigned to them at this
early time (giving a ‘Missing number’ error), so it may be needed to put these assignments before
the above line:

\catcode "\{=1
\catcode *\}=2

More fine-grained primitives control is possible and you can look up the details in section 10.3.16.
For simplicity’s sake, this manual assumes that you have executed the \directlua command as
given above.

The startup behaviour documented above is considered stable in the sense that there will not
be backward-incompatible changes any more. We have promoted some rather generic pdfTgX
primitives to core LuaTgX ones, and the few that we inherited from Aleph (Omega) are also
promoted. Effectively this means that we now only have the tex, etex and luatex sets left.

In Chapter 3 we discuss several primitives that are derived from pdfIgX and Aleph (Omega).
Here we stick to real new ones. In the chapters on fonts and math we discuss a few more new
ones.

2.1.2 Version information

2.1.2.1 \luatexbanner, \luatexversion and \luatexrevision
There are three new primitives to test the version of LuaTgX:

PRIMITIVE VALUE EXPLANATION

\luatexbanner This is LuaTeX, Version 1.18.0 the banner reported on the command line

Basic TgX enhancements 21 !

\luatexversion 118 a combination of major and minor number
\luatexrevision 0 the revision number, the current value is

The official LuaTgX version is defined as follows:

» The major version is the integer result of \ luatexversion divided by 100. The primitive is
an ‘internal variable’, so you may need to prefix its use with \the depending on the context.

» The minor version is the two-digit result of \luatexversion modulo 100.

» The revision is reported by \luatexrevision. This primitive expands to a positive integer.

» The full version number consists of the major version, minor version and revision, separated
by dots.

2.1.2.2 \formatname

The \formatname syntax is identical to \jobname. In iniTEX, the expansion is empty. Otherwise,
the expansion is the value that \jobname had during the iniTgX run that dumped the currently
loaded format. You can use this token list to provide your own version info.

2.2 UNICODE text support

2.2.1 Extended ranges

Text input and output is now considered to be Unicode text, so input characters can use the
full range of Unicode (22° + 21 — 1 = 0x10FFFF). Later chapters will talk of characters and
glyphs. Although these are not interchangeable, they are closely related. During typesetting, a
character is always converted to a suitable graphic representation of that character in a specific
font. However, while processing a list of to-be-typeset nodes, its contents may still be seen as a
character. Inside LuaTgX there is no clear separation between the two concepts. Because the
subtype of a glyph node can be changed in Lua it is up to the user. Subtypes larger than 255
indicate that font processing has happened.

A few primitives are affected by this, all in a similar fashion: each of them has to accommodate
for a larger range of acceptable numbers. For instance, \char now accepts values between 0
and 1,114,111. This should not be a problem for well-behaved input files, but it could create in-
compatibilities for input that would have generated an error when processed by older TeX-based
engines. The affected commands with an altered initial (left of the equal sign) or secondary (right
of the equal sign) value are: \char, \lccode, \uccode, \hjcode, \catcode, \sfcode, \efcode,
\lpcode, \rpcode, \chardef.

As far as the core engine is concerned, all input and output to text files is utf-8 encoded. Input
files can be pre-processed using the reader callback. This will be explained in section 9.3.
Normalization of the Unicode input is on purpose not built-in and can be handled by a macro
package during callback processing. We have made some practical choices and the user has to
live with those.

Output in byte-sized chunks can be achieved by using characters just outside of the valid Unicode
range, starting at the value 1,114,112 (0x110000). When the time comes to print a character
c>=1,114,112, LuaTgX will actually print the single byte corresponding to ¢ minus 1,114,112.

-7 =<
’
!

®
\0; 22 Basic TgX enhancements

\
-

Output to the terminal uses ~”" notation for the lower control range (c < 32), with the exception
of ~~I, ~J and ~"M. These are considered ‘safe’ and therefore printed as-is. You can disable
escaping with texio.setescape(false) in which case you get the normal characters on the
console.

2.2.2 \Uchar

The expandable command \Uchar reads a number between 0 and 1,114,111 and expands to the
associated Unicode character.

2.2.3 Extended tables

All traditional TEX and &-TgX registers can be 16-bit numbers. The affected commands are:

\count \countdef \box \wd
\dimen \dimendef \unhbox \ht
\skip \skipdef \unvbox \dp
\muskip \muskipdef \copy \setbox
\marks \toksdef \unhcopy \vsplit
\toks \insert \unvcopy

Because font memory management has been rewritten, character properties in fonts are no
longer shared among font instances that originate from the same metric file. Of course we
share fonts in the backend when possible so that the resulting pdf file is as efficient as possible,
but for instance also expansion and protrusion no longer use copies as in pdfTgX.

2.3 Attributes

2.3.1 Nodes

When TgX reads input it will interpret the stream according to the properties of the characters.
Some signal a macro name and trigger expansion, others open and close groups, trigger math
mode, etc. What's left over becomes the typeset text. Internally we get linked list of nodes.
Characters become glyph nodes that have for instance a font and char property and \kern
10pt becomes a kern node with a width property. Spaces are alien to TgX as they are turned
into glue nodes. So, a simple paragraph is mostly a mix of sequences of glyph nodes (words)
and glue nodes (spaces).

The sequences of characters at some point are extended with disc nodes that relate to hy-
phenation. After that font logic can be applied and we get a list where some characters can
be replaced, for instance multiple characters can become one ligature, and font kerns can be
injected. This is driven by the font properties.

Boxes (like \hbox and \vbox) become hlist or vlist nodes withwidth, height, depth and shift
properties and a pointer list to its actual content. Boxes can be constructed explicitly or can

Basic TEX enhancements 23 |

be the result of subprocesses. For instance, when lines are broken into paragraphs, the lines
are a linked list of hlist nodes.

So, to summarize: all that you enter as content eventually becomes a node, often as part of a
(nested) list structure. They have a relative small memory footprint and carry only the minimal
amount of information needed. In traditional TgX a character node only held the font and slot
number, in LuaTgX we also store some language related information, the expansion factor, etc.
Now that we have access to these nodes from Lua it makes sense to be able to carry more
information with an node and this is where attributes kick in.

2.3.2 Attribute registers

Attributes are a completely new concept in LuaTgX. Syntactically, they behave a lot like counters:
attributes obey TgX’s nesting stack and can be used after \the etc. just like the normal \count
registers.

\attribute (16-bit number) (optional equals) (32-bit number)
\attributedef (csname) (optional equals) (16-bit number)

Conceptually, an attribute is either ‘set’ or ‘unset’. Unset attributes have a special negative value
to indicate that they are unset, that value is the lowest legal value: -"7FFFFFFF in hexadecimal,
a.k.a. —2147483647 in decimal. It follows that the value -"7FFFFFFF cannot be used as a legal
attribute value, but you can assign - "7FFFFFFF to ‘unset’ an attribute. All attributes start out in
this ‘unset’ state in iniTEX.

Attributes can be used as extra counter values, but their usefulness comes mostly from the fact
that the numbers and values of all ‘set’ attributes are attached to all nodes created in their
scope. These can then be queried from any Lua code that deals with node processing. Further
information about how to use attributes for node list processing from Lua is given in chapter 8.

Attributes are stored in a sorted (sparse) linked list that are shared when possible. This permits
efficient testing and updating. You can define many thousands of attributes but normally such a
large number makes no sense and is also not that efficient because each node carries a (possibly
shared) link to a list of currently set attributes. But they are a convenient extension and one of
the first extensions we implemented in LuaTgX.

2.3.3 Box attributes

Nodes typically receive the list of attributes that is in effect when they are created. This moment
can be quite asynchronous. For example: in paragraph building, the individual line boxes are
created after the \par command has been processed, so they will receive the list of attributes
that is in effect then, not the attributes that were in effect in, say, the first or third line of the
paragraph.

Similar situations happen in LuaTgX regularly. A few of the more obvious problematic cases are
dealt with: the attributes for nodes that are created during hyphenation, kerning and ligatur-
ing borrow their attributes from their surrounding glyphs, and it is possible to influence box
attributes directly.

When you assemble a box in a register, the attributes of the nodes contained in the box are
unchanged when such a box is placed, unboxed, or copied. In this respect attributes act the

0;‘ 24 Basic TEX enhancements

same as characters that have been converted to references to glyphs in fonts. For instance,
when you use attributes to implement color support, each node carries information about its
eventual color. In that case, unless you implement mechanisms that deal with it, applying a color
to already boxed material will have no effect. Keep in mind that this incompatibility is mostly
due to the fact that separate specials and literals are a more unnatural approach to colors than
attributes.

It is possible to fine-tune the list of attributes that are applied to a hbox, vbox or vtop by the
use of the keyword attr. The attr keyword(s) should come before a to or spread, if that is also
specified. An example is:

\attribute997=123

\attribute998=456

\setbox0=\hbox {Hello}

\setbox2=\hbox attr 999 = 789 attr 998 = -"7FFFFFFF{Hello}

Box 0 now has attributes 997 and 998 set while box 2 has attributes 997 and 999 set while the
nodes inside that box will all have attributes 997 and 998 set. Assigning the maximum negative
value causes an attribute to be ignored.

To give you an idea of what this means at the Lua end, take the following code:

for b=0,2,2 do
for a=997, 999 do

tex.sprint("box ", b, " : attr ",a," : ",tostring(tex.box[b] [al))
tex.sprint("\\quad\\quad")
tex.sprint("list ",b, " : attr ",a," : ",tostring(tex.box[b].list[a]))
tex.sprint("\\par")

end

end

Later we will see that you can access properties of a node. The boxes here are so called hlist
nodes that have a field list that points to the content. Because the attributes are a list them-
selves you can access them by indexing the node (here we do that with [a]. Running this snippet
gives:

box 0 : attr 997 : 123 list 0 : attr 997 : 123
box 0 : attr 998 : 456 list 0 : attr 998 : 456
box 0 : attr 999 : nil list 0 : attr 999 : nil
box 2 : attr 997 : 123 list 2 : attr 997 : 123
box 2 : attr 998 : nil list 2 : attr 998 : 456

box 2 : attr 999 : 789 list 2 : attr 999 : nil

Because some values are not set we need to apply the tostring function here so that we get the
word nil.

2.4 LUA related primitives

2.4.1 \directlua

In order to merge Lua code with TgX input, a few new primitives are needed. The primitive

, \
Basic TEX enhancements 25 \‘;

\directlua is used to execute Lua code immediately. The syntax is

\directlua (general text)
\directlua (16-bit number) (general text)

The (general text) is expanded fully, and then fed into the Lua interpreter. After reading and
expansion has been applied to the (general text), the resulting token list is converted to a string
as if it was displayed using \the\toks. On the Lua side, each \directlua block is treated as a
separate chunk. In such a chunk you can use the local directive to keep your variables from
interfering with those used by the macro package.

The conversion to and from a token list means that you normally can not use Lua line comments
(starting with - -) within the argument. As there typically will be only one ‘line’ the first line com-
ment will run on until the end of the input. You will either need to use TgX-style line comments
(starting with %), or change the TgX category codes locally. Another possibility is to say:

\begingroup
\endlinechar=10
\directlua ...
\endgroup

Then Lua line comments can be used, since TgX does not replace line endings with spaces. Of
course such an approach depends on the macro package that you use.

The (16-bit number) designates a name of a Lua chunk and is taken from the lua.name array
(see the documentation of the lua table further in this manual). When a chunk name starts with
a @ it will be displayed as a file name. This is a side effect of the way Lua implements error
handling.

The \directlua command is expandable. Since it passes Lua code to the Lua interpreter its
expansion from the TgX viewpoint is usually empty. However, there are some Lua functions that
produce material to be read by TgX, the so called print functions. The most simple use of these
is tex.print(<string> s). The characters of the string s will be placed on the TgX input buffer,
that is, ‘before TEX'’s eyes’ to be read by TgX immediately. For example:

\count10=20
a\directlua{tex.print(tex.count[10]+5)}b
expands to

a25b

Here is another example:
$\pi = \directlua{tex.print(math.pi)}$

will result in
o =3.1415926535898

Note that the expansion of \directlua is a sequence of characters, not of tokens, contrary to all
TgX commands. So formally speaking its expansion is null, but it places material on a pseudo-file
to be immediately read by TgX, as €-TgX’'s \scantokens. For a description of print functions look
at section 10.3.14.

/0;. 26 Basic TEX enhancements

Because the (general text) is a chunk, the normal Lua error handling is triggered if there is a
problem in the included code. The Lua error messages should be clear enough, but the contex-
tual information is still pretty bad. Often, you will only see the line number of the right brace at
the end of the code.

While on the subject of errors: some of the things you can do inside Lua code can break up
LuaTgX pretty bad. If you are not careful while working with the node list interface, you may
even end up with assertion errors from within the TgX portion of the executable.

2.4.2 \latelua and \lateluafunction

Contrary to \directlua, \latelua stores Lua code in a whatsit that will be processed at the time
of shipping out. Its intended use is a cross between pdf literals (often available as \pdfliteral)
and the traditional TgX extension \write. Within the Lua code you can print pdf statements
directly to the pdf file via pdf.print, or you can write to other output streams via texio.write
or simply using Lua io routines.

\latelua (general text)
\latelua (16-bit number) (general text)

Expansion of macros in the final <general text> is delayed until just before the whatsit is exe-
cuted (like in \write). With regard to pdf output stream \latelua behaves as pdf page literals.
The name (general text) and (16-bit number) behave in the same way as they do for \directlua.

The \lateluafunction primitive takes a number and is similar to \luafunction but gets delated
to shipout time. It’s just there for completeness.

2.4.3 \luaescapestring

This primitive converts a TgX token sequence so that it can be safely used as the contents of a
Lua string: embedded backslashes, double and single quotes, and newlines and carriage returns
are escaped. This is done by prepending an extra token consisting of a backslash with category
code 12, and for the line endings, converting them to n and r respectively. The token sequence
is fully expanded.

\luaescapestring (general text)

Most often, this command is not actually the best way to deal with the differences between TgX
and Lua. In very short bits of Lua code it is often not needed, and for longer stretches of Lua
code it is easier to keep the code in a separate file and load it using Lua’s dofile:

\directlua { dofile('mysetups.lua') }

2.4.4 \luafunction, \luafunctioncall and \luadef

The \directlua commands involves tokenization of its argument (after picking up an optional
name or number specification). The tokenlist is then converted into a string and given to Lua to
turn into a function that is called. The overhead is rather small but when you have millions of
calls it can have some impact. For this reason there is a variant call available: \luafunction.
This command is used as follows:

Basic TEX enhancements 27 {\‘

\directlua {
local t = lua.get functions table()
t[1] = function() tex.print("!") end
t[2] = function() tex.print("?") end

\luafunctionl
\luafunction2

Of course the functions can also be defined in a separate file. There is no limit on the number of
functions apart from normal Lua limitations. Of course there is the limitation of no arguments
but that would involve parsing and thereby give no gain. The function, when called in fact gets
one argument, being the index, so in the following example the number 8 gets typeset.

\directlua {

local t = lua.get functions table()

t[8] = function(slot) tex.print(slot) end
}

The \luafunctioncall primitive does the same but is unexpandable, for instance in an \edef.
In addition LuaTgX provides a definer:

\luadef\MyFunctionA 1
\global\luadef\MyFunctionB 2
\protected\global\luadef\MyFunctionC 3

You should really use these commands with care. Some references get stored in tokens and
assume that the function is available when that token expands. On the other hand, as we have
tested this functionality in relative complex situations normal usage should not give problems.

2.4.5 \luabytecode and \luabytecodecall

Analogue to the function callers discussed in the previous section we have byte code callers.
Again the call variant is unexpandable.

\directlua {
lua.bytecode[9998] = function(s)
tex.sprint(s*token.scan _int())
end
lua.bytecode[5555] = function(s)
tex.sprint(s*token.scan dimen())
end

}

This works with:

\luabytecode 9998 5 \luabytecode 5555 5sp
\luabytecodecall9998 5 \luabytecodecall5555 5sp

, \
\0,’ 28 Basic TEX enhancements

The variable s in the code is the number of the byte code register that can be used for diagnostic
purposes. The advantage of bytecode registers over function calls is that they are stored in the
format (but without upvalues).

2.5 Catcode tables

2.5.1 Catcodes

Catcode tables are a new feature that allows you to switch to a predefined catcode regime
in a single statement. You can have a practically unlimited number of different tables. This
subsystem is backward compatible: if you never use the following commands, your document will
not notice any difference in behaviour compared to traditional TgX. The contents of each catcode
table is independent from any other catcode table, and its contents is stored and retrieved from
the format file.

2.5.2 \catcodetable

\catcodetable (15-bit number)

The primitive \catcodetable switches to a different catcode table. Such a table has to be previ-
ously created using one of the two primitives below, or it has to be zero. Table zero is initialized
by iniTgX.

2.5.3 \initcatcodetable

\initcatcodetable (15-bit number)

The primitive \initcatcodetable creates a new table with catcodes identical to those defined
by iniTgX. The new catcode table is allocated globally: it will not go away after the current group
has ended. If the supplied number is identical to the currently active table, an error is raised.
The initial values are:

CATCODE CHARACTER EQUIVALENT CATEGORY

0 \ escape

5 M return car_ret

9 @ null ignore

10 <space> space spacer

11 a-z letter

11 A-Z letter

12 everything else other

14 % comment

15 "7 delete invalid char

2.5.4 \savecatcodetable

\savecatcodetable (15-bit number)

, \
Basic TEX enhancements 29 \‘,’

\savecatcodetable copies the current set of catcodes to a new table with the requested number.
The definitions in this new table are all treated as if they were made in the outermost level.

The new table is allocated globally: it will not go away after the current group has ended. If the
supplied number is the currently active table, an error is raised.

2.6 Suppressing errors

2.6.1 \suppressfontnotfounderror

If this integer parameter is non-zero, then LuaTgX will not complain about font metrics that are
not found. Instead it will silently skip the font assignment, making the requested csname for the
font \ifx equal to \nullfont, so that it can be tested against that without bothering the user.

\suppressfontnotfounderror = 1

2.6.2 \suppresslongerror

If this integer parameter is non-zero, then LuaTgX will not complain about \par commands en-
countered in contexts where that is normally prohibited (most prominently in the arguments of
macros not defined as \long).

\suppresslongerror = 1

2.6.3 \suppressifcsnameerror

If this integer parameter is non-zero, then LuaTgX will not complain about non-expandable com-
mands appearing in the middle of a \ifcsname expansion. Instead, it will keep getting expanded
tokens from the input until it encounters an \endcsname command. If the input expansion is un-
balanced with respect to \csname ...\endcsname pairs, the LuaTgX process may hang indefinitely.

\suppressifcsnameerror = 1

2.6.4 \suppressoutererror

If this new integer parameter is non-zero, then LuaTgX will not complain about \outer commands
encountered in contexts where that is normally prohibited.

\suppressoutererror =1

2.6.5 \suppressmathparerror

The following setting will permit \par tokens in a math formula:
\suppressmathparerror = 1

So, the next code is valid then:

$x+ 1=

, \
\‘,’ 30 Basic TEX enhancements

as

2.6.6 \suppressprimitiveerror

When set to a non-zero value the following command will not issue an error:
\suppressprimitiveerror =1

\primitive\notaprimitive
2.7 Fonts

2.7.1 Font syntax

LuaTgX will accept a braced argument as a font name:

\font\myfont = {cmrl@}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes
place inside the argument.

2.7.2 \fontid and \setfontid

\fontid\font

This primitive expands into a number. It is not a register so there is no need to prefix with
\number (and using \the gives an error). The currently used font id is 29. Here are some more:

STYLE COMMAND FONT ID

normal \tf 38
bold \bf 38
italic \it 50
bold italic \bi 51

These numbers depend on the macro package used because each one has its own way of dealing
with fonts. They can also differ per run, as they can depend on the order of loading fonts. For
instance, when in ConTgXt virtual math Unicode fonts are used, we can easily get over a hundred
ids in use. Not all ids have to be bound to a real font, after all it’s just a number.

The primitive \setfontid can be used to enable a font with the given id, which of course needs
to be a valid one.

2.7.3 \noligs and \nokerns

These primitives prohibit ligature and kerning insertion at the time when the initial node list is
built by LuaTgX'’s main control loop. You can enable these primitives when you want to do node
list processing of ‘characters’, where TgX’s normal processing would get in the way.

Basic TEX enhancements 31 {\‘,’

\noligs (integer)
\nokerns (integer)

These primitives can also be implemented by overloading the ligature building and kerning func-
tions, i.e. by assigning dummy functions to their associated callbacks. Keep in mind that when
you define a font (using Lua) you can also omit the kern and ligature tables, which has the same
effect as the above.

2.7.4 \nospaces

This new primitive can be used to overrule the usual \spaceskip related heuristics when a space
character is seen in a text flow. The value 1 triggers no injection while 2 results in injection of a
zero skip. In figure 2.1 we see the results for four characters separated by a space.

X XXX XXXX | XXXX
O / hsize 10mm 1 / hsize 10mm 2 / hsize 10mm
XXXX]
X X
X X
O / hsize 1mm 1 / hsize 1mm 2 / hsize 1mm

Figure 2.1 The \nospaces options.
2.8 Tokens, commands and strings

2.8.1 \scantextokens

The syntax of \scantextokens is identical to \scantokens. This primitive is a slightly adapted
version of e-TEX’'s \scantokens. The differences are:

» The last (and usually only) line does not have a \endlinechar appended.

» \scantextokens never raises an EOF error, and it does not execute \everyeof tokens.

» There are no ‘... while end of file ...’ error tests executed. This allows the expansion to end
on a different grouping level or while a conditional is still incomplete.

2.8.2 \toksapp, \tokspre, \etoksapp, \etokspre, \gtoksapp, \gtokspre,
\xtoksapp, \xtokspre

Instead of:
\toksO\expandafter{\the\toksO foo}
you can use:

\etoksapp0{foo}

- ~

’

{\0,’ 32 Basic TEX enhancements

\
-

The pre variants prepend instead of append, and the e variants expand the passed general text.
The g and x variants are global.

2.8.3 \csstring, \begincsname and \lastnamedcs

These are somewhat special. The \csstring primitive is like \string but it omits the leading
escape character. This can be somewhat more efficient than stripping it afterwards.

The \begincsname primitive is like \csname but doesn’t create a relaxed equivalent when there
is no such name. It is equivalent to

\ifcsname foo\endcsname
\csname foo\endcsname
\fi

The advantage is that it saves a lookup (don’t expect much speedup) but more important is that
it avoids using the \if test. The \lastnamedcs is one that should be used with care. The above
example could be written as:

\ifcsname foo\endcsname
\lastnamedcs
\fi

This is slightly more efficient than constructing the string twice (deep down in LuaTgX this also
involves some utf8 juggling), but probably more relevant is that it saves a few tokens and can
make code a bit more readable.

2.8.4 \clearmarks

This primitive complements the ¢-TgX mark primitives and clears a mark class completely, re-
setting all three connected mark texts to empty. It is an immediate command.

\clearmarks (16-bit number)

2.8.5 \alignmark and \aligntab

The primitive \alignmark duplicates the functionality of # inside alignment preambles, while
\aligntab duplicates the functionality of &.

2.8.6 \letcharcode

This primitive can be used to assign a meaning to an active character, as in:

\def\foo{bar} \letcharcodel23=\foo

This can be a bit nicer than using the uppercase tricks (using the property of \uppercase that
it treats active characters special).

Basic TEX enhancements 33 *:‘

2.8.7 \glet
This primitive is similar to:
\protected\def\glet{\global\let}

but faster (only measurable with millions of calls) and probably more convenient (after all we
also have \gdef).

2.8.8 \expanded, \immediateassignment and \immediateassigned

The \expanded primitive takes a token list and expands it content which can come in handy:
it avoids a tricky mix of \expandafter and \noexpand. You can compare it with what happens
inside the body of an \edef. But this kind of expansion it still doesn’t expand some primitive
operations.

\newcount\NumberOfCalls
\def\TestMe{\advance\NumberOfCallsl }

\edef\Tested{\TestMe foo:\the\NumberOfCalls}
\edef\Tested{\TestMe foo:\the\Number0fCalls}
\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\meaning\Tested

The result is a macro that has the not expanded code in its body
macro:->\advance \NumberOfCalls 1 foo:0

Instead we can define \TestMe in a way that expands the assignment immediately. You need of
course to be aware of preventing look ahead interference by using a space or \relax (often an
expression works better as it doesn’t leave an \relax).

\def\TestMe{\immediateassignment\advance\NumberOfCallsl }

\edef\Tested{\TestMe foo:\the\Number0fCalls}
\edef\Tested{\TestMe foo:\the\NumberOfCalls}
\edef\Tested{\TestMe foo:\the\NumberOfCalls}

\meaning\Tested

This time the counter gets updates and we don’t see interference in the resulting \Tested macro:
macro:->foo0:3

Here is a somewhat silly example of expanded comparison:

\def\expandeddoifelse#1#2#3#4%
{\immediateassignment\edef\tempa{#1}%
\immediateassignment\edef\tempb{#2}%

- ~

’

\: 0,’ 34 Basic TgX enhancements

\
-

\ifx\tempa\tempb
\immediateassignment\def\next{#3}%

\else
\immediateassignment\def\next{#4}%

\fi

\next}

\edef\Tested
{(\expandeddoifelse{abc}{def}{yes}{nop}/%
\expandeddoifelse{abc}{abc}{yes}{nop})}

\meaning\Tested

It gives:
macro:->(nop/yes)

A variant is:

\def\expandeddoifelse#1#2#3#4%
{\immediateassigned{
\edef\tempa{#1}%
\edef\tempb{#2}%
}%
\ifx\tempa\tempb
\immediateassignment\def\next{#3}%
\else
\immediateassignment\def\next{#4}%
\fi
\next}

The possible error messages are the same as using assignments in preambles of alignments and
after the \accent command. The supported assignments are the so called prefixed commands

(except box assignments).

2.8.9 \ifcondition

This is a somewhat special one. When you write macros conditions need to be properly balanced
in order to let TEX’s fast branch skipping work well. This new primitive is basically a no-op
flagged as a condition so that the scanner can recognize it as an if-test. However, when a real
test takes place the work is done by what follows, in the next example \something.

\unexpanded\def\something#1#2%
{\edef\tempa{#1}%
\edef\tempb{#2}
\ifx\tempa\tempb}

\ifcondition\something{a}{b}%
\ifcondition\something{a}{a}%

Basic TEX enhancements 35 {‘,’

true 1
\else
false 1
\fi
\else
\ifcondition\something{a}{a}%
true 2
\else
false 2
\fi
\fi

If you are familiar with MetaPost, this is a bit like vardef where the macro has a return value.
Here the return value is a test.

2.9 Boxes, rules and leaders

2.9.1 \outputbox

This integer parameter allows you to alter the number of the box that will be used to store the
page sent to the output routine. Its default value is 255, and the acceptable range is from 0 to
65535.

\outputbox = 12345

2.9.2 \vpack, \hpack and \tpack

These three primitives are like \vbox, \hbox and \vtop but don’t apply the related callbacks.

2.9.3 \vsplit

The \vsplit primitive has to be followed by a specification of the required height. As alternative
for the to keyword you can use upto to get a split of the given size but result has the natural
dimensions then.

2.9.4 Images and reused box objects

These two concepts are now core concepts and no longer whatsits. They are in fact now im-
plemented as rules with special properties. Normal rules have subtype 0, saved boxes have
subtype 1 and images have subtype 2. This has the positive side effect that whenever we need
to take content with dimensions into account, when we look at rule nodes, we automatically also
deal with these two types.

The syntax of the \save...resource is the same as in pdfTEX but you should consider them to
be backend specific. This means that a macro package should treat them as such and check for
the current output mode if applicable.

- ~

’

{\‘P 36 Basic TgX enhancements

\
-

COMMAND EXPLANATION

\saveboxresource save the box as an object to be included later
\saveimageresource save the image as an object to be included later
\useboxresource include the saved box object here (by index)
\useimageresource include the saved image object here (by index)

\lastsavedboxresourceindex the index of the last saved box object
\lastsavedimageresourceindex the index of the last saved image object
\lastsavedimageresourcepages the number of pages in the last saved image object

LuaTgX accepts optional dimension parameters for \use. . .resource in the same format as for
rules. With images, these dimensions are then used instead of the ones given to \useimagere-
source but the original dimensions are not overwritten, so that a \useimageresource without
dimensions still provides the image with dimensions defined by \saveimageresource. These
optional parameters are not implemented for \saveboxresource.

\useimageresource width 20mm height 10mm depth 5mm \lastsavedimageresourceindex
\useboxresource width 20mm height 10mm depth 5mm \lastsavedboxresourceindex

The box resources are of course implemented in the backend and therefore we do support the
attr and resources keys that accept a token list. New is the type key. When set to non-zero the
/Type entry is omitted. A value of 1 or 3 still writes a /BBox, while 2 or 3 will write a /Matrix.

2.9.5 \nohrule and \novrule

Because introducing a new keyword can cause incompatibilities, two new primitives were intro-
duced: \nohrule and \novrule. These can be used to reserve space. This is often more efficient
than creating an empty box with fake dimensions.

2.9.6 \gleaders

This type of leaders is anchored to the origin of the box to be shipped out. So they are like normal
\leaders in that they align nicely, except that the alignment is based on the largest enclosing
box instead of the smallest. The g stresses this global nature.

2.10 Languages

2.10.1 \hyphenationmin

This primitive can be used to set the minimal word length, so setting it to a value of 5 means
that only words of 6 characters and more will be hyphenated, of course within the constraints of
the \lefthyphenmin and \righthyphenmin values (as stored in the glyph node). This primitive
accepts a number and stores the value with the language.

2.10.2 \boundary, \noboundary, \protrusionboundary and \wordboundary

The \noboundary command is used to inject a whatsit node but now injects a normal node with
type boundary and subtype 0. In addition you can say:

Basic TEX enhancements 37 {\‘,

x\boundary 123\relax y

This has the same effect but the subtype is now 1 and the value 123 is stored. The traditional lig-
ature builder still sees this as a cancel boundary directive but at the Lua end you can implement
different behaviour. The added benefit of passing this value is a side effect of the generalization.
The subtypes 2 and 3 are used to control protrusion and word boundaries in hyphenation and
have related primitives.

2.10.3 \glyphdimensionsmode

Already in the early days of LuaTgX the decision was made to calculate the effective height and
depth of glyphs in a way that reflected the applied vertical offset. The height got that offset
added, the depth only when the offset was larger than zero. We can now control this in more
detail with this mode parameter. An offset is added to the height and/or subtracted from the
depth. The effective values are never negative. The zero mode is the default.

VALUE EFFECT

0 the old behaviour: add the offset to the height and only subtract the offset only from
the depth when it is positive

1 add the offset to the height and subtract it from the depth

2 add the offset to the height and subtract it from the depth but keep the maxima of the
current and previous results

3 use the height and depth of the glyph, so no offset is applied

2.11 Control and debugging

2.11.1 Tracing

If \tracingonline is larger than 2, the node list display will also print the node number of the
nodes.

2.11.2 \outputmode

The \outputmode variable tells LuaTgX what it has to produce:

VALUE OUTPUT

0 dvi code
1 pdf code

2.11.3 \draftmode

The value of the \draftmode counter signals the backend if it should output less. The pdf back-
end accepts a value of 1, while the dvi backend ignores the value. This is no critical feature so
we can remove it in future versions when it can make the backend cleaner.

- ~

’

{‘P 38 Basic TEX enhancements

\
-

2.12 Files

2.12.1 File syntax
LuaTgX will accept a braced argument as a file name:

\input {plain}
\openin 0 {plain}

This allows for embedded spaces, without the need for double quotes. Macro expansion takes
place inside the argument.

The \tracingfonts primitive that has been inherited from pdfTEX has been adapted to support
variants in reporting the font. The reason for this extension is that a csname not always makes
sense. The zero case is the default.

VALUE REPORTED

\foo xyz

\foo (bar)

<bar> xyz

<bar @ ..pt> xyz
<id>

<id: bar>

<id: bar @ ..pt> xyz

SO Ul kA WNEPR O

2.12.2 Writing to file

You can now open upto 127 files with \openout. When no file is open writes will go to the console
and log. As a consequence a system command is no longer possible but one can use 0s.execute
to do the same.

2.13 Math

We will cover math extensions in its own chapter because not only the font subsystem and spac-
ing model have been enhanced (thereby introducing many new primitives) but also because
some more control has been added to existing functionality. Much of this relates to the different
approaches of traditional TgX fonts and OpenType math.

Basic TgX enhancements 39 {‘/‘

, \
\‘,5 40 Basic TEX enhancements

3 Modifications

3.1 The merged engines

3.1.1 The need for change

The first version of LuaTgX only had a few extra primitives and it was largely the same as pdfTgX.
Then we merged substantial parts of Aleph into the code and got more primitives. When we got
more stable the decision was made to clean up the rather hybrid nature of the program. This
means that some primitives have been promoted to core primitives, often with a different name,
and that others were removed. This made it possible to start cleaning up the code base. In
chapter 2 we discussed some new primitives, here we will cover most of the adapted ones.

Besides the expected changes caused by new functionality, there are a number of not-so-ex-
pected changes. These are sometimes a side-effect of a new (conflicting) feature, or, more often
than not, a change necessary to clean up the internal interfaces. These will also be mentioned.

3.1.2 Changes from TgX 3.1415926

Of course it all starts with traditional TgX. Even if we started with pdfTgX, most still comes from
the original. But we divert a bit.

» The current code base is written in C, not Pascal. We use cweb when possible. As a conse-
quence instead of one large file plus change files, we now have multiple files organized in
categories like tex, pdf, lang, font, lua, etc. There are some artifacts of the conversion to
C, but in due time we will clean up the source code and make sure that the documentation is
done right. Many files are in the cweb format, but others, like those interfacing to Lua, are C
files. Of course we want to stay as close as possible to the original so that the documentation
of the fundamentals behind TgX by Don Knuth still applies.

» See chapter 5 for many small changes related to paragraph building, language handling and
hyphenation. The most important change is that adding a brace group in the middle of a word
(like in of{}fice) does not prevent ligature creation.

» There is no pool file, all strings are embedded during compilation.

» The specifier plus 1 fillll does not generate an error. The extra ‘1’ is simply typeset.

» The upper limit to \endlinechar and \newlinechar is 127.

» Magnification (\mag) is only supported in dvi output mode. You can set this parameter and it
even works with true units till you switch to pdf output mode. When you use pdf output you
can best not touch the \mag variable. This fuzzy behaviour is not much different from using
pdf backend related functionality while eventually dvi output is required.

After the output mode has been frozen (normally that happens when the first page is shipped
out) or when pdf output is enabled, the true specification is ignored. When you preload a
plain format adapted to LuaTgX it can be that the \mag parameter already has been set.

Modifications 41 *:

3.1.3 Changes from g-TgX 2.2

Being the de factor standard extension of course we provide the e-TgX functionality, but with a
few small adaptations.

» The &-TgX functionality is always present and enabled so the prepended asterisk or -etex
switch for iniTgX is not needed.

» The TgXXeT extension is not present, so the primitives \TeXXeTstate, \beginR, \beginL,
\endR and \endL are missing. Instead we used the Omega/Aleph approach to directionality
as starting point.

» Some of the tracing information that is output by £-TgX’s \tracingassigns and \tracingre-
stores is not there.

» Register management in LuaTgX uses the Omega/Aleph model, so the maximum value is
65535 and the implementation uses a flat array instead of the mixed flat & sparse model
from e-TgX.

» When kpathsea is used to find files, LuaTEX uses the ofm file format to search for font metrics.
In turn, this means that LuaTgX looks at the OFMFONTS configuration variable (like Omega and
Aleph) instead of TFMFONTS (like TgX and pdfIgX). Likewise for virtual fonts (LuaTgX uses the
variable OVFFONTS instead of VFFONTS).

» The primitives that report a stretch or shrink order report a value in a convenient
range zero upto four. Because some macro packages can break on that we also provide
\eTeXgluestretchorder and \eTeXglueshrinkorder which report values compatible with
e-TgX. The (new) fi value is reported as -1 (so when used in an \ifcase test that value
makes one end up in the \else).

3.1.4 Changes from PDFIEX 1.40

Because we want to produce pdf the most natural starting point was the popular pdfTEX pro-
gram. We inherit the stable features, dropped most of the experimental code and promoted
some functionality to core LuaTgX functionality which in turn triggered renaming primitives.

For compatibility reasons we still refer to \pdf. .. commands but LuaTgX has a different backend
interface. Instead of these primitives there are three interfacing primitives: \pdfextension,
\pdfvariable and \pdffeedback that take keywords and optional further arguments (below we
will still use the \pdf prefix names as reference). This way we can extend the features when
needed but don’t need to adapt the core engine. The front- and backend are decoupled as much
as possible.

» The (experimental) support for snap nodes has been removed, because it is much more natural
to build this functionality on top of node processing and attributes. The associated primitives
that are gone are: \pdfsnaprefpoint, \pdfsnapy, and \pdfsnapycomp.

» The (experimental) support for specialized spacing around nodes has also been removed. The
associated primitives that are gone are: \pdfadjustinterwordglue, \pdfprependkern, and
\pdfappendkern, as well as the five supporting primitives \knbscode, \stbscode, \shbscode,
\knbccode, and \knaccode.

» A number of ‘pdfTEX primitives’ have been removed as they can be implemented using
Lua: \pdfelapsedtime, \pdfescapehex, \pdfescapename, \pdfescapestring, \pdffile-
dump, \pdffilemoddate, \pdffilesize, \pdfforcepagebox, \pdflastmatch, \pdfmatch,

‘,\0 42 Modifications

\pdfmdfivesum, \pdfmovechars, \pdfoptionalwaysusepdfpagebox, \pdfoptionpdfinclu-
sionerrorlevel, \pdfresettimer, \pdfshellescape, \pdfstrcmp and \pdfunescapehex.
The version related primitives \pdftexbanner, \pdftexversion and \pdftexrevision are
no longer present as there is no longer a relationship with pdfTgX development.

The experimental snapper mechanism has been removed and therefore also the primitives
\pdfignoreddimen, \pdffirstlineheight, \pdfeachlineheight, \pdfeachlinedepth and
\pdflastlinedepth.

The experimental primitives \primitive, \ifprimitive, \ifabsnum and \ifabsdim are pro-
moted to core primitives. The \pdf* prefixed originals are not available.

Because LuaTgX has a different subsystem for managing images, more diversion from its
ancestor happened in the meantime. We don’t adapt to changes in pdfTgX.

Two extra token lists are provided, \pdfxformresources and \pdfxformattr, as an alterna-
tive to \pdfxform keywords.

Image specifications also support visiblefilename, userpassword and ownerpassword. The
password options are only relevant for encrypted pdf files.

The current version of LuaTgX no longer replaces and/or merges fonts in embedded pdf files
with fonts of the enveloping pdf document. This regression may be temporary, depending on
how the rewritten font backend will look like.

The primitives \pdfpagewidth and \pdfpageheight have been removed because \pagewidth
and \pageheight have that purpose.

The primitives \pdfnormaldeviate, \pdfuniformdeviate, \pdfsetrandomseed and
\pdfrandomseed have been promoted to core primitives without pdf prefix so the original
commands are no longer recognized.

The primitives \ifincsname, \expanded and \quitvmode are now core primitives.

As the hz and protrusion mechanism are part of the core the related primitives \lpcode,
\rpcode, \efcode, \leftmarginkern, \rightmarginkern are promoted to core primitives.
The two commands \protrudechars and \adjustspacing replace their prefixed with \pdf
originals.

The hz optimization code has been partially redone so that we no longer need to create extra
font instances. The front- and backend have been decoupled and more efficient (pdf) code is
generated.

When \adjustspacing has value 2, hz optimization will be applied to glyphs and kerns. When
the value is 3, only glyphs will be treated. A value smaller than 2 disables this feature.
With value of 1, font expansion is applied after TgX’s normal paragraph breaking routines
have broken the paragraph into lines. In this case, line breaks are identical to standard TgX
behavior (as with pdfTEX).

The \tagcode primitive is promoted to core primitive.

The \letterspacefont feature is now part of the core but will not be changed (improved).
We just provide it for legacy use.

The \pdfnoligatures primitive is now \ignoreligaturesinfont.

The \pdfcopyfont primitive is now \copyfont.

The \pdffontexpand primitive is now \expandglyphsinfont.

Because position tracking is also available in dvi mode the \savepos, \lastxpos and \lasty-
pos commands now replace their pdf prefixed originals.

The introspective primitives \pdflastximagecolordepth and \pdfximagebbox have been re-
moved. One can use external applications to determine these properties or use the built-in

Modifications 43 *:‘

img library.

» The initializers \pdfoutput has been replaced by \outputmode and \pdfdraftmode is now
\draftmode.

» The pixel multiplier dimension \pdfpxdimen lost its prefix and is now called \pxdimen.

» An extra \pdfimageaddfilename option has been added that can be used to block writing the
filename to the pdf file.

» The primitive \pdftracingfonts is now \tracingfonts as it doesn’t relate to the backend.

» The experimental primitive \pdfinsertht is kept as \insertht.

» There is some more control over what metadata goes into the pdf file.

» The promotion of primitives to core primitives as well as the separation of font- and backend
means that the initialization namespace pdftex is gone.

One change involves the so called xforms and ximages. In pdfIgX these are implemented as so
called whatsits. But contrary to other whatsits they have dimensions that need to be taken into
account when for instance calculating optimal line breaks. In LuaTgX these are now promoted
to a special type of rule nodes, which simplifies code that needs those dimensions.

Another reason for promotion is that these are useful concepts. Backends can provide the ability
to use content that has been rendered in several places, and images are also common. As already
mentioned in section 2.9.4, we now have:

LUATEX PDFTEX

\saveboxresource \pdfxform
\saveimageresource \pdfximage
\useboxresource \pdfrefxform
\useimageresource \pdfrefximage

\lastsavedboxresourceindex \pdflastxform
\lastsavedimageresourceindex \pdflastximage
\lastsavedimageresourcepages \pdflastximagepages

There are a few \pdffeedback features that relate to this but these are typical backend specific
ones. The index that gets returned is to be considered as ‘just a number’ and although it still
has the same meaning (object related) as before, you should not depend on that.

The protrusion detection mechanism is enhanced a bit to enable a bit more complex situations.
When protrusion characters are identified some nodes are skipped:

» zero glue » dir nodes

» penalties » empty horizontal lists

» empty discretionaries » local par nodes

» normal zero kerns » inserts, marks and adjusts
» rules with zero dimensions » boundaries

» math nodes with a surround of zero » whatsits

Because this can not be enough, you can also use a protrusion boundary node to make the next
node being ignored. When the value is 1 or 3, the next node will be ignored in the test when
locating a left boundary condition. When the value is 2 or 3, the previous node will be ignored
when locating a right boundary condition (the search goes from right to left). This permits

! \\ . .
\ ‘p 44 Modifications

protrusion combined with for instance content moved into the margin:

\protrusionboundaryl\llap{!\quad}«Who needs protrusion?»

3.1.5 Changes from ALEPH RC4

Because we wanted proper directional typesetting the Aleph mechanisms looked most attractive.
These are rather close to the ones provided by Omega, so what we say next applies to both these
programs.

>

>

The extended 16-bit math primitives (\omathcode etc.) have been removed.

The OCP processing has been removed completely and as a consequence, the following
primitives have been removed: \ocp, \externalocp, \ocplist, \pushocplist, \popoc-
plist, \clearocplists, \addbeforeocplist, \addafterocplist, \removebeforeocplist,
\removeafterocplist and \ocptracelevel.

LuaTgX only understands 4 of the 16 direction specifiers of Aleph: TLT (latin), TRT (arabic),
RTT (cjk), LTL (mongolian). All other direction specifiers generate an error. In addition to a
keyword driven model we also provide an integer driven one.

The input translations from Aleph are not implemented, the related primitives are not
available: \DefaultInputMode, \noDefaultInputMode, \noInputMode, \InputMode, \De-
faultOutputMode, \noDefaultOutputMode, \noOutputMode, \OutputMode, \DefaultInput-
Translation, \noDefaultInputTranslation, \noInputTranslation, \InputTranslation,
\DefaultOutputTranslation, \noDefaultOutputTranslation, \noOutputTranslation and
\OutputTranslation.

Several bugs have been fixed and confusing implementation details have been sorted out.
The scanner for direction specifications now allows an optional space after the direction is
completely parsed.

The ~" notation has been extended: after ~~"" four hexadecimal characters are expected and
after ~*~""" six hexadecimal characters have to be given. The original TgX interpretation is
still valid for the ~" case but the four and six variants do no backtracking, i.e. when they are
not followed by the right number of hexadecimal digits they issue an error message. Because
~~~ is a normal TgX case, we don’t support the odd number of ~*""* either.

Glues immediately after direction change commands are not legal breakpoints.

Several mechanisms that need to be right-to-left aware have been improved. For instance
placement of formula numbers.

The page dimension related primitives \pagewidth and \pageheight have been promoted to
core primitives. The \hoffset and \voffset primitives have been fixed.

The primitives \charwd, \charht, \chardp and \charit have been removed as we have the
e-TgX variants \fontchar*.

The two dimension registers \pagerightoffset and \pagebottomoffset are now core prim-
itives.

The direction related primitives \pagedir, \bodydir, \pardir, \textdir, \mathdir and
\boxdir are now core primitives.

The promotion of primitives to core primitives as well as removing of all others means that
the initialization namespace aleph that early versions of LuaTgX provided is gone.

Modifications 45 *:‘



The above let’s itself summarize as: we took the 32 bit aspects and much of the directional
mechanisms and merged it into the pdfTgX code base as starting point for further development.
Then we simplified directionality, fixed it and opened it up.

3.1.6 Changes from anywhere

The \partokenname and \partokencontext primitives are taken from the pdfIgX change file
posted on the implementers list. They are explained in the pdfIgX manual and are classified as
e-TEX extensions.

3.1.7 Changes from standard WEB2C

The compilation framework is web2c and we keep using that but without the Pascal to C step.
This framework also provides some common features that deal with reading bytes from files and
locating files in tds. This is what we do different:

» There is no mltex support.

» There is no enctex support.

» The following encoding related command line switches are silently ignored, even in non-Lua
mode: -8bit, -translate-file, -mltex, -enc and -etex.

» The \openout whatsits are not written to the log file.

» Some of the so-called web2c extensions are hard to set up in non-kpse mode because
texmf.cnf is not read: shell-escape is off (but that is not a problem because of Lua’s 0s.ex-
ecute), and the paranoia checks on openin and openout do not happen. However, it is easy
for a Lua script to do this itself by overloading io.open and alike.

» The ‘E’ option does not do anything useful.

3.2 The backend primitives

3.2.1 Less primitives

In a previous section we mentioned that some pdfTEX primitives were removed and others pro-
moted to core LuaTgX primitives. That is only part of the story. In order to separate the backend
specific primitives in de code these commands are now replaced by only a few. In traditional
TEX we only had the dvi backend but now we have two: dvi and pdf. Additional functionality is
implemented as ‘extensions’ in TEX speak. By separating more strickly we are able to keep the
core (frontend) clean and stable and isolate these extensions. If for some reason an extra back-
end option is needed, it can be implemented without touching the core. The three pdf backend
related primitives are:

\pdfextension command [specification]
\pdfvariable name
\pdffeedback name

An extension triggers further parsing, depending on the command given. A variable is a (kind
of) register and can be read and written, while a feedback is reporting something (as it comes
from the backend it’s normally a sequence of tokens).

- ~

‘:0\, 46 Modifications

hy -



3.2.2 \pdfextension, \pdfvariable and \pdffeedback

In order for LuaTgX to be more than just TEX you need to enable primitives. That has already
been the case right from the start. If you want the traditional pdfTEX primitives (for as far their

functionality is still around) you now can do this:

\protected\def\pdfliteral {\pdfextension literal}
\protected\def\pdflateliteral {\pdfextension lateliteral}
\protected\def\pdfcolorstack {\pdfextension colorstack}
\protected\def\pdfsetmatrix {\pdfextension setmatrix}
\protected\def\pdfsave {\pdfextension save\relax}
\protected\def\pdfrestore {\pdfextension restore\relax}
\protected\def\pdfobj {\pdfextension obj }
\protected\def\pdfrefobj {\pdfextension refobj }
\protected\def\pdfannot {\pdfextension annot }
\protected\def\pdfstartlink {\pdfextension startlink }
\protected\def\pdfendlink {\pdfextension endlink\relax}
\protected\def\pdfoutline {\pdfextension outline }
\protected\def\pdfdest {\pdfextension dest }
\protected\def\pdfthread {\pdfextension thread }
\protected\def\pdfstartthread {\pdfextension startthread }
\protected\def\pdfendthread {\pdfextension endthread\relax}
\protected\def\pdfinfo {\pdfextension info }
\protected\def\pdfcatalog {\pdfextension catalog }
\protected\def\pdfnames {\pdfextension names }
\protected\def\pdfincludechars {\pdfextension includechars }
\protected\def\pdffontattr {\pdfextension fontattr }
\protected\def\pdfmapfile {\pdfextension mapfile }
\protected\def\pdfmapline {\pdfextension mapline }
\protected\def\pdftrailer {\pdfextension trailer }
\protected\def\pdfglyphtounicode {\pdfextension glyphtounicode }
\protected\def\pdfrunninglinkoff {\pdfextension linkstate 1 }
\protected\def\pdfrunninglinkon {\pdfextension linkstate 0 }

The introspective primitives can be defined as:

\def\pdftexversion {\numexpr\pdffeedback
\def\pdftexrevision {\pdffeedback
\def\pdflastlink {\numexpr\pdffeedback
\def\pdfretval {\numexpr\pdffeedback
\def\pdflastobj {\numexpr\pdffeedback
\def\pdflastannot {\numexpr\pdffeedback
\def\pdfxformname {\numexpr\pdffeedback
\def\pdfcreationdate {\pdffeedback
\def\pdffontname {\numexpr\pdffeedback
\def\pdffontobjnum {\numexpr\pdffeedback
\def\pdffontsize {\dimexpr\pdffeedback
\def\pdfpageref {\numexpr\pdffeedback

version\relax}
revision}
lastlink\relax}
retval\relax}
lastobj\relax}
lastannot\relax}
xformname\relax}
creationdate}
fontname\relax}
fontobjnum\relax}
fontsize\relax}
pageref\relax}

// \\
o . ! \
Modifications 47 ‘,



\def\pdfcolorstackinit

The configuration related registers have become:

{\pdffeedback colorstackinit}

\edef\pdfcompresslevel {\pdfvariable compresslevel}
\edef\pdfobjcompresslevel {\pdfvariable objcompresslevel}
\edef\pdfrecompress {\pdfvariable recompress}
\edef\pdfdecimaldigits {\pdfvariable decimaldigits}
\edef\pdfgamma {\pdfvariable gamma}
\edef\pdfimageresolution {\pdfvariable imageresolution}
\edef\pdfimageapplygamma {\pdfvariable imageapplygamma}
\edef\pdfimagegamma {\pdfvariable imagegamma}
\edef\pdfimagehicolor {\pdfvariable imagehicolor}
\edef\pdfimageaddfilename {\pdfvariable imageaddfilename}
\edef\pdfpkresolution {\pdfvariable pkresolution}
\edef\pdfpkfixeddpi {\pdfvariable pkfixeddpi}
\edef\pdfinclusioncopyfonts {\pdfvariable inclusioncopyfonts}
\edef\pdfinclusionerrorlevel {\pdfvariable inclusionerrorlevel}
\edef\pdfignoreunknownimages {\pdfvariable ignoreunknownimages}
\edef\pdfgentounicode {\pdfvariable gentounicode}
\edef\pdfomitcidset {\pdfvariable omitcidset}
\edef\pdfomitcharset {\pdfvariable omitcharset}
\edef\pdfomitinfodict {\pdfvariable omitinfodict}
\edef\pdfomitmediabox {\pdfvariable omitmediabox}
\edef\pdfpagebox {\pdfvariable pagebox}
\edef\pdfminorversion {\pdfvariable minorversion}
\edef\pdfuniqueresname {\pdfvariable uniqueresname}
\edef\pdfhorigin {\pdfvariable horigin}
\edef\pdfvorigin {\pdfvariable vorigin}
\edef\pdflinkmargin {\pdfvariable linkmargin}
\edef\pdfdestmargin {\pdfvariable destmargin}
\edef\pdfthreadmargin {\pdfvariable threadmargin}
\edef\pdfxformmargin {\pdfvariable xformmargin}
\edef\pdfpagesattr {\pdfvariable pagesattr}
\edef\pdfpageattr {\pdfvariable pageattr}
\edef\pdfpageresources {\pdfvariable pageresources}
\edef\pdfxformattr {\pdfvariable xformattr}
\edef\pdfxformresources {\pdfvariable xformresources}
\edef\pdfpkmode {\pdfvariable pkmode}

\edef\pdfsuppressoptionalinfo
\edef\pdftrailerid

{\pdfvariable suppressoptionalinfo }
{\pdfvariable trailerid }

The variables are internal ones, so they are anonymous. When you ask for the meaning of a few
previously defined ones:

- ~

// \\
! \ . .
\ 0, 48 Modifications

hy -



\meaning\pdfhorigin
\meaning\pdfcompresslevel
\meaning\pdfpageattr

you will get:

macro:->[internal backend dimension]
macro:->[internal backend integer]
macro:->[internal backend tokenlist]

The \edef can also be a \def but it’s a bit more efficient to expand the lookup related register
beforehand.

The backend is derived from pdfTEX so the same syntax applies. However, the outline command
accepts a objnum followed by a number. No checking takes place so when this is used it had
better be a valid (flushed) object.

In order to be (more or less) compatible with pdfIgX we also support the option to suppress
some info but we do so via a bitset:

\pdfvariable suppressoptionalinfo \numexpr

0
+ 1 % PTEX.FullBanner
+ 2 % PTEX.FileName
+ 4 % PTEX.PageNumber
+ 8 % PTEX.InfoDict
+ 16 % Creator
+ 32 % CreationDate
+ 64 % ModDate
+ 128 % Producer
+ 256 % Trapped
+ 512 % ID
\relax

In addition you can overload the trailer id, but we don’t do any checking on validity, so you have
to pass a valid array. The following is like the ones normally generated by the engine. You even
need to include the brackets here!

\pdfvariable trailerid {[
<FA052949448907805BA83C1E78896398>
<FA052949448907805BA83C1E78896398>

1}

Although we started from a merge of pdfTEX and Aleph, by now the code base as well as func-
tionality has diverted from those parents. Here we show the options that can be passed to the
extensions. The shipout option is a compatibility feature. Instead one can use the deferred
prefix.

\pdfextension literal
[shipout] [ direct | page | raw ] { tokens }

Modifications 49 *:



\pdfextension dest
num integer | name { tokens }!crlf
[ fitbh | fitbv | fitb | fith| fitv | fit |
fitr <rule spec> | xyz [ zoom <integer> ]

\pdfextension annot
reserveobjnum | useobjnum <integer>
{ tokens }

\pdfextension save
\pdfextension restore

\pdfextension setmatrix
{ tokens }

[ \immediate ] \pdfextension obj
reserveobjnum

[ \immediate ] \pdfextension obj
[ useobjnum <integer> ]
[ uncompressed ]
[ stream [ attr { tokens } ] 1
[ file ]
{ tokens }

\pdfextension refobj
<integer>

\pdfextension colorstack
<integer>
set { tokens } | push { tokens } | pop | current

\pdfextension startlink
[ attr { tokens } 1]
user { tokens } | goto | thread
[ file { tokens } 1]
[ page <integer> { tokens } | name { tokens } | num integer ]
[ newwindow | nonewwindow ]

\pdfextension endlink

\pdfextension startthread
num <integer> | name { tokens }

\pdfextension endthread

\pdfextension thread
num <integer> | name { tokens }

\pdfextension outline

- ~

// \\
! \ . .
\‘. 50 Modifications

hy -



[ attr { tokens } ]

[ useobjnum <integer> ]
[ count <integer> ]

{ tokens }

\pdfextension glyphtounicode
{ tokens }
{ tokens }

\pdfextension catalog
{ tokens }
[ openaction
user { tokens } | goto | thread
[ file { tokens } 1]
[ page <integer> { tokens } | name { tokens } | num <integer> ]
[ newwindow | nonewwindow ] ]

\pdfextension fontattr
<integer>
{tokens}

\pdfextension mapfile
{tokens}

\pdfextension mapline
{tokens}

\pdfextension includechars
{tokens}

\pdfextension info
{tokens}

\pdfextension names
{tokens}

\pdfextension trailer
{tokens}

3.2.3 Defaults

The engine sets the following defaults.

\pdfcompresslevel 9

\pdfobjcompresslevel 1 % used: (0,9)
\pdfrecompress 0 % mostly for debugging
\pdfdecimaldigits 4 % used: (3,6)
\pdfgamma 1000

\pdfimageresolution 71

Modifications 51



\pdfimageapplygamma 0

\pdfimagegamma 2200
\pdfimagehicolor 1
\pdfimageaddfilename 1
\pdfpkresolution 72
\pdfpkfixeddpi 0
\pdfinclusioncopyfonts 0
\pdfinclusionerrorlevel 0
\pdfignoreunknownimages 0
\pdfgentounicode 0
\pdfomitcidset 0
\pdfomitcharset 0
\pdfomitinfodict 0
\pdfomitmediabox 0
\pdfpagebox 0
\pdfminorversion 4
\pdfuniqueresname 0
\pdfhorigin lin
\pdfvorigin lin
\pdflinkmargin Opt
\pdfdestmargin Opt
\pdfthreadmargin Opt
\pdfxformmargin Opt

3.2.4 Backward compatibility
If you also want some backward compatibility, you can add:

\let\pdfpagewidth \pagewidth
\let\pdfpageheight \pageheight

\let\pdfadjustspacing \adjustspacing
\let\pdfprotrudechars \protrudechars

\let\pdfnoligatures \ignoreligaturesinfont
\let\pdffontexpand \expandglyphsinfont
\let\pdfcopyfont \copyfont

\let\pdfxform \saveboxresource
\let\pdflastxform \lastsavedboxresourceindex
\let\pdfrefxform \useboxresource
\let\pdfximage \saveimageresource
\let\pdflastximage \lastsavedimageresourceindex
\let\pdflastximagepages\lastsavedimageresourcepages
\let\pdfrefximage \useimageresource

- ~

{‘\. 52 Modifications



\let\pdfsavepos \savepos
\let\pdflastxpos \lastxpos
\let\pdflastypos \lastypos
\let\pdfoutput \outputmode
\let\pdfdraftmode \draftmode
\let\pdfpxdimen \pxdimen
\let\pdfinsertht \insertht

\let\pdfnormaldeviate \normaldeviate

\let\pdfuniformdeviate \uniformdeviate
\let\pdfsetrandomseed \setrandomseed

\let\pdfrandomseed \randomseed

\let\pdfprimitive \primitive
\let\ifpdfprimitive \ifprimitive

\let\ifpdfabsnum \ifabsnum
\let\ifpdfabsdim \ifabsdim
And even:

\newdimen\pdfeachlineheight
\newdimen\pdfeachlinedepth
\newdimen\pdflastlinedepth
\newdimen\pdffirstlineheight
\newdimen\pdfignoreddimen

3.3 Directions

3.3.1 Four directions

The directional model in LuaTgX is inherited from Omega/Aleph but we tried to improve it a bit.
At some point we played with recovery of modes but that was disabled later on when we found
that it interfered with nested directions. That itself had as side effect that the node list was no
longer balanced with respect to directional nodes which in turn can give side effects when a
series of dir changes happens without grouping.

When extending the pdf backend to support directions some inconsistencies were found and as
a result we decided to support only the four models that make sense TLT (latin), TRT (arabic),
RTT (cjk) and LTL (mongolian).

3.3.2 How it works

The approach is that we again make the list balanced but try to avoid some side effects. What
happens is quite intuitive if we forget about spaces (turned into glue) but even there what hap-
pens makes sense if you look at it in detail. However that logic makes in-group switching kind

Modifications 53 *:‘



of useless when no proper nested grouping is used: switching from right to left several times
nested, results in spacing ending up after each other due to nested mirroring. Of course a
sane macro package will manage this for the user but here we are discussing the low level dir
injection.

This is what happens:

\textdir TRT nur {\textdir TLT run \textdir TRT NUR} nur

This becomes stepwise:

injected: [+TRT]nur {[+TLT]run [+TRT]INUR} nur
balanced: [+TRTInur {[+TLT]run [-TLT][+TRTINUR[-TRT]} nur[-TRT]
result : run {RUNrun } run

And this:
\textdir TRT nur {nur \textdir TLT run \textdir TRT NUR} nur
becomes:

injected: [+TRT]nur {nur [+TLT]run [+TRT]INUR} nur
balanced: [+TRTInur {nur [+TLT]run [-TLT][+TRTINUR[-TRT]} nur[-TRT]
result : run {run RUNrun } run

Now, in the following examples watch where we put the braces:
\textdir TRT nur {{\textdir TLT run} {\textdir TRT NUR}} nur

This becomes:
run RUN run run

Compare this to:
\textdir TRT nur {{\textdir TLT run }{\textdir TRT NUR}} nur

Which renders as:
run RUNrun run

So how do we deal with the next?

\def\ltr{\textdir TLT\relax}
\def\rtl{\textdir TRT\relax}

run {\rtl nur {\1tr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

It gets typeset as:

run run RUNrun RUNrun run
run run runRUN runRUN run

- ~

{‘\‘ 54 Modifications



We could define the two helpers to look back, pick up a skip, remove it and inject it after the dir
node. But that way we loose the subtype information that for some applications can be handy to
be kept as-is. This is why we now have a variant of \textdir which injects the balanced node
before the skip. Instead of the previous definition we can use:

\def\ltr{\linedir TLT\relax}
\def\rt1{\linedir TRT\relax}

and this time:

run {\rtl nur {\1tr run \rtl NUR \ltr run \rtl NUR} nur}
run {\ltr run {\rtl nur \ltr RUN \rtl nur \ltr RUN} run}

comes out as a properly spaced:

run run RUN run RUN run run
run run run RUN run RUN run

Anything more complex that this, like combination of skips and penalties, or kerns, should be
handled in the input or macro package because there is no way we can predict the expected
behaviour. In fact, the \linedir is just a convenience extra which could also have been imple-
mented using node list parsing.

Directions are complicated by the fact that they often need to work over groups so a separate
grouping related stack is used. A side effect is that there can be paragraphs with only a local
par node followed by direction synchronization nodes. Paragraphs like that are seen as empty
paragraphs and therefore ignored. Because \noindent doesn’t inject anything but a \indent
injects an box, paragraphs with only an indent and directions are handled as paragraphs with
content.

3.3.3 Controlling glue with \breakafterdirmode

Glue after a dir node is ignored in the linebreak decision but you can bypass that by setting
\breakafterdirmode to 1. The following table shows the difference. Watch your spaces.

pre {\textdir TLT xxx} post pre pre
XXX post XXX

post

pre {\textdir TLT xxx }post pre pre
XXX XXX

post post

pre{ \textdir TLT xxx} post pre pre
XXX post XXX

post

pre{ \textdir TLT xxx }post pre pre
XXX XXX

post post

Modifications 55 *:‘



pre { \textdir TLT xxx } post pre pre

XXX XXX
post
post
pre {\textdir TLT\relax\space xxx} post pre pre
XXX post
XXX
post

3.3.4 Controling parshapes with \shapemode

Another adaptation to the Aleph directional model is control over shapes driven by \hangindent
and \parshape. This is controlled by a new parameter \shapemode:

VALUE \HANGINDENT \PARSHAPE

0 normal normal
1 mirrored normal
2 normal mirrored
3 mirrored  mirrored

The value is reset to zero (like \hangindent and \parshape) after the paragraph is done with.
You can use negative values to prevent this. In figure 3.1 a few examples are given.

3.3.5 Symbols or numbers

Internally the implementation is different from Aleph. First of all we use no whatsits but dedi-
cated nodes, but also we have only 4 directions that are mapped onto 4 numbers. A text direction
node can mark the start or end of a sequence of nodes, and therefore has two states. At the TgX
end we don’t see these states because TgX itself will add proper end state nodes if needed.

The symbolic names TLT, TRT, etc. originate in Omega. In LuaTgX we also have a number based
model which sometimes makes more sense.

VALUE EQUIVALENT

0 TLT
1 TRT
2 LTL
3 RTT

We support the Omega primitives \textdir, \pardir, \pagedir, \pardir and \mathdir. These
accept three character keywords. The primitives that set the direction by number are: \textdi-
rection, \pardirection, \pagedirection and \bodydirection and \mathdirection. When
specifying a direction for a box you can use bdir instead of dir.

- ~

{\“‘ 56 Modifications



We thrive in information-thick worlds because of our

marvelous and everyday capacity to select, edit, sin-

gle out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down,
choose, categorize, catalog, classify, list, abstract, scan, look into,
idealize, isolate, discriminate, distinguish, screen, pigeonhole, pick
over, sort, integrate, blend, inspect, filter, lump, skip, smooth, chunk,
average, approximate, cluster, aggregate, outline, summarize, item-
ize, review, dip into, flip through, browse, glance into, leaf through,
skim, refine, enumerate, glean, synopsize, winnow the wheat from

TLT: hangindent

e thrive in information-thick worlds because of our mar-
velous and everyday capacity to select, edit, single out,

structure, highlight, group, pair, merge, harmonize, syn-
thesize, focus, organize, condense, reduce, boil down, choose, catego-
rize, catalog, classify, list, abstract, scan, look into, idealize, isolate,
discriminate, distinguish, screen, pigeonhole, pick over, sort, integrate,
blend, inspect, filter, lump, skip, smooth, chunk, average, approximate,
cluster, aggregate, outline, summarize, itemize, review, dip into, flip
through, browse, glance into, leaf through, skim, refine, enumerate,
glean, synopsize, winnow the wheat from the chaff and separate the
sheep from the goats

TLT: parshape

ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW

-nis ,tide ,tceles ot yticapac yadyreve dna suolevram

-rah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts ,tuo elg
nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,ezisehtnys ,ezinom
otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezirogetac ,esoohc
kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid ,etalosi ,ezilaedi
knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni,dnelb ,etargetni,tros ,revo
rmeti ,ezirammus ,eniltuo ,etagergga ,retsulc ,etamixorppa ,egareva
hguorht fael ,otni ecnalg ,esworb ,hguorht pifl ,otni pid ,weiver ,ezi
morf taechw eht wonniw ,ezisponys ,naelg ,etaremune ,enfier ,miks
staog eht morf peehs eht etarapes dna ffahc eht

fram ruo fo esuaceb sdIrow kciht-noitamrofni ni evirht eW
,tuo elgnis ,tide ,tceles ot yticapac yadyreve dna suolev
-nys ,ezinomrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts
rogetac ,esoohc ,nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,eziseht
etalosi ,ezilaedi ,otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezin
etargetni ,tros ,revo kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid
etamixorppa ,egareva ,knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni ,dnelb
pifl ,otni pid ,weiver ,ezimeti ,ezirammus ,eniltuo ,etagergga ,retsulc
etaremune ,enfier ,miks ,hguorht fael ,otni ecnalg ,esworb ,hguorht
eht etarapes dna ffahc eht morf taehw eht wonniw ,ezisponys ,naelg
staog eht morf peeh

TRT: hangindent mode 0

TRT: parshape mode 0

ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht eW

rnis ,tide ,tceles ot yticapac yadyreve dna suolevram

rrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts ,tuo elg

nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,ezisehtnys ,ezinom
otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezirogetac ,esoohc
kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid ,etalosi ,ezilaedi
,knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni,dnelb ,etargetni,tros ,revo
rmeti ,ezirammus ,eniltuo ,etagergga ,retsulc ,etamixorppa ,egareva
hguorht fael ,otni ecnalg ,esworb ,hguorht pifl ,otni pid ,weiver ,ezi
morf tachw eht wonniw ,ezisponys ,naelg ,etaremune ,enfier ,miks
staog eht morf peehs eht etarapes dna ffahc eht

-ram ruo fo esuaceb sdlrow kciht-noitamrofni ni evirht e
,tuo elgnis ,tide ,tceles ot yticapac yadyreve dna suolev

-nys ,ezinomrah ,egrem ,riap ,puorg ,thgilhgih ,erutcurts

rogetac ,esoohc ,nwod liob ,ecuder ,esnednoc ,ezinagro ,sucof ,eziseht
etalosi ,ezilaedi ,otni kool ,nacs ,tcartsba ,tsil ,yfissalc ,golatac ,ezin
etargetni ,tros ,revo kcip ,elohnoegip ,neercs ,hsiugnitsid ,etanimircsid
etamixorppa ,egareva knuhc ,htooms ,piks ,pmul ,retlfi ,tcepsni ,dnelb
pifl ,otni pid ,weiver ,ezimeti ,ezirammus ,eniltuo ,etagergga ,retsulc
etaremune ,enfier ,miks ,hguorht fael ,otni ecnalg ,esworb ,hguorht
eht etarapes dna ffahc eht morf taechw eht wonniw ,ezisponys ,naelg
staog eht morf peehs

TRT: hangindent mode 1 & 3

TRT: parshape mode 2 & 3

Figure 3.1 The effect of shapemode.

3.4 Implementation notes

3.4.1 Memory allocation

The single internal memory heap that traditional TEX used for tokens and nodes is split into two
separate arrays. Each of these will grow dynamically when needed.

The texmf.cnf settings related to main memory are no longer used (these are: main_memory,
mem_bot, extra mem top and extra mem bot). ‘Out of main memory’ errors can still occur, but
the limiting factor is now the amount of RAM in your system, not a predefined limit.

Also, the memory (de)allocation routines for nodes are completely rewritten. The relevant code
now lives in the C file texnode. ¢, and basically uses a dozen or so ‘avail’ lists instead of a doubly-
linked model. An extra function layer is added so that the code can ask for nodes by type instead
of directly requisitioning a certain amount of memory words.

Because of the split into two arrays and the resulting differences in the data structures, some
of the macros have been duplicated. For instance, there are now vlink and vinfo as well as
token_link and token_info. All access to the variable memory array is now hidden behind a
macro called vmem. We mention this because using the TgXbook as reference is still quite valid

Modifications 57




but not for memory related details. Another significant detail is that we have double linked node
lists and that most nodes carry more data.

The input line buffer and pool size are now also reallocated when needed, and the texmf.cnf
settings buf size and pool size are silently ignored.

3.4.2 Sparse arrays

The \mathcode, \delcode, \catcode, \sfcode, \lccode and \uccode (and the new \hjcode)
tables are now sparse arrays that are implemented in C. They are no longer part of the TgX
‘equivalence table’ and because each had 1.1 million entries with a few memory words each,
this makes a major difference in memory usage. Performance is not really hurt by this.

The \catcode, \sfcode, \lccode, \uccode and \hjcode assignments don’t show up when using
the &-TgX tracing routines \tracingassigns and \tracingrestores but we don’t see that as a
real limitation.

A side-effect of the current implementation is that \global is now more expensive in terms of
processing than non-global assignments but not many users will notice that.

The glyph ids within a font are also managed by means of a sparse array as glyph ids can go up
to index 22! — 1 but these are never accessed directly so again users will not notice this.

3.4.3 Simple single-character csnames

Single-character commands are no longer treated specially in the internals, they are stored in
the hash just like the multiletter csnames.

The code that displays control sequences explicitly checks if the length is one when it has to
decide whether or not to add a trailing space.

Active characters are internally implemented as a special type of multi-letter control sequences
that uses a prefix that is otherwise impossible to obtain.

3.4.4 The compressed format file

The format is passed through z1ib, allowing it to shrink to roughly half of the size it would have
had in uncompressed form. This takes a bit more cpu cycles but much less disk io, so it should
still be faster. We use a level 3 compression which we found to be the optimal trade-off between
filesize and decompression speed.

3.4.5 Binary file reading

All of the internal code is changed in such a way that if one of the read xxx_file callbacks is not
set, then the file is read by a C function using basically the same convention as the callback: a
single read into a buffer big enough to hold the entire file contents. While this uses more memory
than the previous code (that mostly used getc calls), it can be quite a bit faster (depending on
your io subsystem).

/ ‘\6 58 Modifications



3.4.6 Tabs and spaces

We conform to the way other TgX engines handle trailing tabs and spaces. For decades trailing
tabs and spaces (before a newline) were removed from the input but this behaviour was changed
in September 2017 to only handle spaces. We are aware that this can introduce compatibility
issues in existing workflows but because we don’t want too many differences with upstream
TeXLive we just follow up on that patch (which is a functional one and not really a fix). It is up to
macro packages maintainers to deal with possible compatibility issues and in LuaTgX they can
do so via the callbacks that deal with reading from files.

The previous behaviour was a known side effect and (as that kind of input normally comes from
generated sources) it was normally dealt with by adding a comment token to the line in case the
spaces and/or tabs were intentional and to be kept. We are aware of the fact that this contradicts
some of our other choices but consistency with other engines and the fact that in kpse mode a
common file io layer is used can have a side effect of breaking compatibility. We still stick to our
view that at the log level we can (and might be) more incompatible. We already expose some
more details.

3.4.7 Hyperlinks

There is an experimental feature that makes multi-line hyper links behave a little better, fixing
some side effects that showed up in r2l typesetting but also can surface in 12r. Because this got
unnoticed till 2023, and because it depends bit on how macro packages deal with hyper links,
the fix is currently under parameter control:

\pdfvariable linking =1

That way (we hope) legacy documents come out as expected, whatever those expectations are.
One of the aspects dealt with concerns (unusual) left and right skips.

Modifications 59 *:‘



60 Modifications



4 Using LUATEX

4.1 Initialization

4.1.1 LUATEX as a LUA interpreter
There are some situations that make LuaTgX behave like a standalone Lua interpreter:

» ifa --luaonly option is given on the commandline, or
» if the executable is named texlua or luatexlua, or
» if the only non-option argument (file) on the commandline has the extension lua or luc.

In this mode, it will set Lua’s arg[0] to the found script name, pushing preceding options in
negative values and the rest of the command line in the positive values, just like the Lua inter-
preter.

LuaTgX will exit immediately after executing the specified Lua script and is, in effect, a somewhat
bulky stand alone Lua interpreter with a bunch of extra preloaded libraries.

4.1.2 LUATEX as a LUA byte compiler
There are two situations that make LuaTgX behave like the Lua byte compiler:

» ifa --luaconly option is given on the command line, or
» if the executable is named texluac

In this mode, LuaTgX is exactly like luac from the stand alone Lua distribution, except that
it does not have the -1 switch, and that it accepts (but ignores) the --luaconly switch. The
current version of Lua can dump bytecode using string.dump so we might decide to drop this
version of LuaTgX.

4.1.3 Other commandline processing

When the LuaTgX executable starts, it looks for the - -lua command line option. If there is no
- -lua option, the command line is interpreted in a similar fashion as the other TgX engines.
Some options are accepted but have no consequence. The following command-line options are
understood:

COMMANDLINE ARGUMENT EXPLANATION

--credits display credits and exit

--debug-format enable format debugging

--draftmode switch on draft mode i.e. generate no output in pdf mode
--[no-]Jcheck-dvi-total-pages exit when DVI exceeds 65535 pages (default: check)
--[no-]file-line-error disable/enable file:line:error style messages

--[no-]file-line-error-style aliasesof --[no-]file-line-error

Using LuaTgX 61 {\"‘,



- - Tmt=FORMAT
--halt-on-error
--help

--ini

--interaction=STRING

- - jobname=STRING

- -kpathsea-debug=NUMBER

--lua=FILE

- -luadebug
--[no-Imktex=FMT
--nosocket
--no-socket
--socket

--output-comment=STRING

--output-directory=DIR
--output-format=FORMAT

- -progname=STRING
--recorder

--safer
--[no-]shell-escape
--shell-restricted
--synctex=NUMBER
--utc

--version

load the format file FORMAT

stop processing at the first error

display help and exit

be iniluatex, for dumping formats

set interaction mode: batchmode, nonstopmode, scrollmode
or errorstopmode

set the job name to STRING

set path searching debugging flags according to the bits of
NUMBER

load and execute a Lua initialization script

enable the debug library

disable/enable mktexFMT generation with FMT is tex or tfm
disable the Lua socket library

disable the Lua socket library

enable the Lua socket library

use STRING for dvi file comment instead of date (no effect for
pdf)

use DIR as the directory to write files to

use FORMAT for job output; FORMAT is dvi or pdf

set the program name to STRING

enable filename recorder

disable easily exploitable Lua commands

disable/enable system calls

restrict system calls to a list of commands given in texmf.cnf
enable synctex

use utc times when applicable

display version and exit

We don’t support \write 18 because 0s.execute can do the same. It simplifies the code and

makes more write targets possible.

The value to use for \ jobname is decided as follows:

>

If --jobname is given on the command line, its argument will be the value for \jobname,
without any changes. The argument will not be used for actual input so it need not exist. The
- - jobname switch only controls the \ jobname setting.

Otherwise, \jobname will be the name of the first file that is read from the file system, with
any path components and the last extension (the part following the last .) stripped off.
There is an exception to the previous point: if the command line goes into interactive mode
(by starting with a command) and there are no files input via \everyjob either, then the
\jobname is set to texput as a last resort.

The file names for output files that are generated automatically are created by attaching the
proper extension (log, pdf, etc.) to the found \ jobname. These files are created in the directory
pointed to by --output-directory, or in the current directory, if that switch is not present.
If --output-directory is not empty, its value it’s copied to the TEXMF_OUTPUT DIRECTORY env.
variable; if it’s empty, the value of TEXMF QUTPUT DIRECTORY is the value of the output directory.

62 Using LuaTgX



Without the - - lua option, command line processing works like it does in any other web2c-based
typesetting engine, except that LuaTgX has a few extra switches and lacks some others. Also, if
the - - lua option is present, LuaTEX will enter an alternative mode of command line processing
in comparison to the standard web2c programs. In this mode, a small series of actions is taken
in the following order:

1. First, it will parse the command line as usual, but it will only interpret a small subset of the
options immediately: --safer, --nosocket, --no-socket, --socket, --[no-]shell-escape,
--enable-writel8, --disable-writel8, --shell-restricted, --help, --version, and
--credits.

2. Next LuaTgX searches for the requested Lua initialization script. If it cannot be found using
the actual name given on the command line, a second attempt is made by prepending the
value of the environment variable LUATEXDIR, if that variable is defined in the environment.

3. Then it checks the various safety switches. You can use those to disable some Lua commands
that can easily be abused by a malicious document. Currently --safer nils the following
functions:

LIBRARY FUNCTIONS

0s execute exec kpsepopen spawn setenv rename remove tmpdir
io popen output tmpfile
1fs rmdir mkdir mkdirp chdir lock touch

Furthermore, it disables loading of compiled Lua libraries and it makes io.open() fail on
files that are opened for anything besides reading.
Finally, it disables the socket library unconditionally (but not the mime library which is always
available).
From version 1.18.0 and if kpathsea is used, with the exception of debug. traceback the debug
library is not enabled by default; it can be enabled with the - -luadebug switch. The debug
library is always enabled in shell-escape mode.
Also from version 1.18.0 and if kpathsea is used, the functions os.rename,os.re-
move, LUfs.attributes, 1fs.chdir, 1fs.lock dir, 1fs.dir, 1fs.link, 1fs.mkdir,
1fs.mkdirp, Ulfs.rmdir, 1fs.symlinkattributes, 1fs.touch return true if both
kpse.in name ok silent extended and kpse.out name ok silent extended validate the
pathname; 1fs.attributes, lfs.dirand Lfs.symlinkattributes are validated only against
kpse.in name ok silent extended.

4. When LuaTgX starts it sets the locale to a neutral value. If for some reason you use o0s.set-
locale, you need to make sure you nil it afterwards because otherwise it can interfere with
code that for instance generates dates. You can ignore the locale with:

os.setlocale(nil,nil)

The --nosocket or --no-socket option makes the socket library unavailable, so that Lua
cannot use networking; - -socket option makes the socket library available.

The switches - -[no-]shell-escape, --[enable|disable] -writel8, and - -shell-restricted
have the same effects as in pdfIgX, and additionally make io.popen(), os.execute, os.exec,
0s.kpsepopen and os.spawn adhere to the requested option.

Using LuaTgX 63 {\‘.



By default the socket library is not enabled: one can enable it with with --socket or
with --shell-escape (but without - -shell-restricted) and disable it with --nosocket (or
--no-socket) or unconditionally with - -safer.
In case of conflictual options, the most restrictive wins.
The mime library is always available.

5. Next the initialization script is loaded and executed. From within the script, the entire com-
mand line is available in the Lua table arg, beginning with arg[0], containing the name of
the executable. As consequence warnings about unrecognized options are suppressed.

Command line processing happens very early on. So early, in fact, that none of TgX’s initializa-
tions have taken place yet. For that reason, the tables that deal with typesetting, like tex, token,
node and pdf, are off-limits during the execution of the startup file (they are nil’d). Special care
is taken that texio.write and texio.write n1l function properly, so that you can at least report
your actions to the log file when (and if) it eventually becomes opened (note that TgX does not
even know its \ jobname yet at this point).

Everything you do in the Lua initialization script will remain visible during the rest of the run,
with the exception of the TgX specific libraries like tex, token, node and pdf tables. These will
be initialized to their documented state after the execution of the script. You should not store
anything in variables or within tables with these four global names, as they will be overwritten
completely.

We recommend you use the startup file only for your own TgX-independent initializations (if
you need any), to parse the command line, set values in the texconfig table, and register the
callbacks you need.

LuaTgX allows some of the command line options to be overridden by reading values from the
texconfig table at the end of script execution (see the description of the texconfig table later
on in this document for more details on which ones exactly).

Unless the texconfig table tells LuaTgX not to initialize kpathsea at all (set texcon-
fig.kpse_init to false for that), LuaTgX acts on some more command line options after the
initialization script is finished: in order to initialize the built-in kpathsea library properly, LuaTgX
needs to know the correct program name to use, and for that it needs to check - -progname, or
--ini and - -fmt, if - -progname is missing.

From version 1.17.1, in dvi mode the new commandline switch --check-dvi-total-pages, en-
abled by default, checks that the total number of pages does not exceeds 65535, and in case the
run abort. This breaks the compatibility with pdfTgX where, as in TgX, when the total number
of pages is greater than 65535 the file will lie. The previous behaviour can be restored with
--[no-]check-dvi-total-pages.

4.2 LUA behaviour

4.2.1 The LUA version

We currently use Lua 5.3 and will follow developments of the language but normally with some
delay. Therefore the user needs to keep an eye on (subtle) differences in successive versions of

- ~

{\‘.‘, 64 Using LuaTgX

hy -



the language. Also, LuajitTgX lags behind in the sense that LuaJIT is not in sync with regular
Lua development. Here is an example of one aspect.

Luas tostring function (and string.format may return values in scientific notation, thereby
confusing the TgX end of things when it is used as the right-hand side of an assignment to a
\dimen or \count. The output of these serializers also depend on the Lua version, so in Lua 5.3
you can get different output than from 5.2.

4.2.2 Integration in the TDS ecosystem

The main TgX distributions follow the TgX directory structure (tds). LuaTgX is able to use the
kpathsea library to find require()d modules. For this purpose, package.searchers[2] is re-
placed by a different loader function, that decides at runtime whether to use kpathsea or the
built-in core Lua function. It uses kpathsea when that is already initialized at that point in time,
otherwise it reverts to using the normal package.path loader.

Initialization of kpathsea can happen either implicitly (when LuaTgX starts up and the startup
script has not set texconfig.kpse init to false), or explicitly by calling the Lua function
kpse.set program name().

4.2.3 Loading libraries

LuaTgX is able to use dynamically loadable Lua libraries, unless - -safer was given as an option
on the command line. For this purpose, package.searchers[3] is replaced by a different loader
function, that decides at runtime whether to use kpathsea or the built-in core Lua function. It
uses kpathsea when that is already initialized at that point in time, otherwise it reverts to using
the normal package.cpath loader.

This functionality required an extension to kpathsea. There is a new kpathsea file format:
kpse clua format that searches for files with extension .d1l1 and .so. The texmf.cnf setting
for this variable is CLUAINPUTS, and by default it has this value:

CLUAINPUTS=. : $SELFAUTOLOC/lib/{$progname, $engine, }/lua//

This path is imperfect (it requires a tds subtree below the binaries directory), but the architec-
ture has to be in the path somewhere, and the currently simplest way to do that is to search
below the binaries directory only. Of course it no big deal to write an alternative loader and use
that in a macro package. One level up (a 1ib directory parallel to bin) would have been nicer,
but that is not doable because TgXLive uses a bin/<arch> structure.

Loading dynamic Lua libraries will fail if there are two Lua libraries loaded at the same time
(which will typically happen on win32, because there is one Lua 5.3 inside LuaTgX, and another
will likely be linked to the dll file of the module itself).

4.2.4 Executing programs

In keeping with the other TgX-like programs in TgXLive, the Lua functions os.execute, os.kpse-
popen and io.popen, as well as the two new functions 0s.exec and o0s.spawn that are explained
below, take the value of shell escape and/or shell escape commands in account. Whenever

Using LuaTgX 65 (“



}
\

’

~

-

LuaTgX is run with the assumed intention to typeset a document (and by that we mean that it is
called as luatex, as opposed to texlua, and that the command line option - -luaonly was not
given), it will only run the four functions above if the matching texmf.cnf variable(s) or their
texconfig (see section 10.4) counterparts allow execution of the requested system command.
In ‘script interpreter’ runs of LuaTgX, these settings have no effect, and all four functions have
their original meaning.

Some libraries have a few more functions, either coded in C or in Lua. For instance, when we
started with LuaTgX we added some helpers to the luafilesystem namespace 1fs. The two
boolean functions 1fs.isdir and lfs.isfile were speedy and better variants of what could
be done with 1fs.attributes. The additional function 1fs.shortname takes a file name and
returns its short name on win32 platforms; 1fs.mkdirp is like 1fs.mkdir but make parent di-
rectories as needed. Finally, for non-win32 platforms only, we provided 1fs. readlink that takes
an existing symbolic link as argument and returns its name. However, the 1fs library evolved
so we have dropped these in favour of pure Lua variants. The shortname helper is obsolete and
now just returns the name.

4.2.5 Multibyte string functions

The string library has a few extra functions, for example string.explode. This function takes
upto two arguments: string.explode(s[,m]) and returns an array containing the string argu-
ment s split into sub-strings based on the value of the string argument m. The second argument is
a string that is either empty (this splits the string into characters), a single character (this splits
on each occurrence of that character, possibly introducing empty strings), or a single character
followed by the plus sign + (this special version does not create empty sub-strings). The default
value for mis * + (multiple spaces). Note: m is not hidden by surrounding braces as it would be
if this function was written in TgX macros.

The string library also has six extra iterators that return strings piecemeal: string.utfval-
ues, string.utfcharacters, string.characters, string.characterpairs, string.bytes and
string.bytepairs.

» string.utfvalues(s): an integer value in the Unicode range

» string.utfcharacters(s): a string with a single utf-8 token in it

» string.characters(s): a string containing one byte

» string.characterpairs(s): two strings each containing one byte or an empty second string
if the string length was odd

» string.bytes(s): a single byte value

» string.bytepairs(s): two byte values or nil instead of a number as its second return value
if the string length was odd

The string.characterpairs() and string.bytepairs() iterators are useful especially in the
conversion of utf16 encoded data into utf8.

There is also a two-argument form of string.dump(). The second argument is a boolean which,
if true, strips the symbols from the dumped data. This matches an extension made in luajit.
This is typically a function that gets adapted as Lua itself progresses.

The string library functions len, lower, sub etc. are not Unicode-aware. For strings in the
utf8 encoding, i.e., strings containing characters above code point 127, the corresponding func-

".‘, 66 Using LuaTgX



tions from the slnunicode library can be used, e.g., unicode.utf8.1len, unicode.utf8.lower
etc. The exceptions are unicode.utf8.find, that always returns byte positions in a string, and
unicode.utf8.match and unicode.utf8.gmatch. While the latter two functions in general are
Unicode-aware, they fall-back to non-Unicode-aware behavior when using the empty capture
() but other captures work as expected. For the interpretation of character classes in uni-
code.utf8 functions refer to the library sources at http://luaforge.net/projects/sin.

Version 5.3 of Lua provides some native utf8 support but we have added a few similar helpers
too: string.utfvalue, string.utfcharacter and string.utflength.

» string.utfvalue(s): returns the codepoints of the characters in the given string
» string.utfcharacter(c,...): returns a string with the characters of the given code points
» string.utflength(s): returns the length of the given string

These three functions are relative fast and don’t do much checking. They can be used as building
blocks for other helpers.

4.2.6 Extra os library functions

The os library has a few extra functions and variables: os.selfdir, os.exec, os.kpse-
popen, os.socketgettime, os.socketsleep, os.spawn, os.setenv, os.env, os.gettimeofday,
os.times, os.sleep, os.tmpdir, os.type, os.name and 0s.uname,os uname, that we will discuss
here.

» o0s.selfdir is a variable that holds the directory path of the actual executable. For example:

\directlua{tex.sprint(os.selfdir)}.

» os.exec(commandline) is a variation on os.execute. Here commandline can be either a
single string or a single table.

- If the argument is a table LuaTgX first checks if there is a value at integer index zero. If
there is, this is the command to be executed. Otherwise, it will use the value at integer
index one. If neither are present, nothing at all happens.

- The set of consecutive values starting at integer 1 in the table are the arguments that
are passed on to the command (the value at index 1 becomes arg[0]). The command is
searched for in the execution path, so there is normally no need to pass on a fully qualified
path name.

- If the argument is a string, then it is automatically converted into a table by splitting on
whitespace. In this case, it is impossible for the command and first argument to differ
from each other.

- In the string argument format, whitespace can be protected by putting (part of) an argu-
ment inside single or double quotes. One layer of quotes is interpreted by LuaTgX, and
all occurrences of \", \'' or \\ within the quoted text are unescaped. In the table format,
there is no string handling taking place.

This function normally does not return control back to the Lua script: the command will

replace the current process. However, it will return the two values nil and error if there

was a problem while attempting to execute the command.

On MS Windows, the current process is actually kept in memory until after the execution of

the command has finished. This prevents crashes in situations where TgXLua scripts are run

inside integrated TgX environments.

Using LuaTgX 67 (‘.



}
\

’

~

-

The original reason for this command is that it cleans out the current process before starting
the new one, making it especially useful for use in TgXLua.

0s.kpsepopen(commandline, [opt]) is similar to i0.popen but with a preliminary check of
the commandline; if the check is ok then the return value is the same as in io.popen; Other-
wise it will return the two values nil and error.

0s.socketgettime and os.socketsleep are the same as for socket.gettime and
socket.sleep but they are always available.

os.spawn(commandline) is a returning version of os.exec, with otherwise identical calling
conventions.

If the command ran ok, then the return value is the exit status of the command. Otherwise,
it will return the two values nil and error.

os.setenv(key,value) sets a variable in the environment. Passing nil instead of a value
string will remove the variable.

0s.env is a hash table containing a dump of the variables and values in the process envi-
ronment at the start of the run. It is writeable, but the actual environment is not updated
automatically.

os.gettimeofday() returns the current ‘Unix time’, but as a float. This function is not avail-
able on the SunOS platforms, so do not use this function for portable documents.

0s.times ()returns the current process times according to the Unix C library function ‘times’.
This function is not available on the MS Windows and SunOS platforms, so do not use this
function for portable documents.

os.sleep(interval[, unit]) suspends the execution of the current run for a given number
of seconds. If the optional argument unit is present, the function waits interval / units
seconds. os.sleep(1l, 1000) for example pauses the program for one millisecond.
os.tmpdir([template]) creates a directory in the ‘current directory’ with the name lua-
tex. XXXXXX where the X-es are replaced by a unique string. The function also returns this
string, so you can 1fs.chdir() into it, or nil if it failed to create the directory. The user
is responsible for cleaning up at the end of the run, it does not happen automatically. You
can also use your own template for the name of the temporary folder. However, the passed
string must end with six capital X-es. For example, the template tmp.XXXXXX could result in
the folder name tmp.vX3gPo.

os.typeisa string that gives a global indication of the class of operating system. The possible
values are currently windows, unix, and msdos (you are unlikely to find this value ‘in the wild’).
0S.name is a string that gives a more precise indication of the operating system. These pos-
sible values are not yet fixed, and for os.type values windows and msdos, the os.name values
are simply windows and msdos

The list for the type unix is more precise: linux, freebsd, kfreebsd, cygwin, openbsd, so-
laris, sunos (pre-solaris), hpux, irix, macosx, gnu (hurd), bsd (unknown, but bsd-like), sysv
(unknown, but sysv-like), generic (unknown).

0s.uname returns a table with specific operating system information acquired at runtime.
The keys in the returned table are all string values, and their names are: sysname, machine,
release, version, and nodename.

4.2.7 Binary input from files with fio

There is a whole set of helpers for reading numbers and strings from a file: fio.readcardi-

"“, 68 Using LuaTgX



nall, fio.readcardinal2, fio.readcardinal3, fio.readcardinal4, fio.readcardinaltable,
fio.readintegerl, fio.readinteger2, fio.readinteger3, fio.readinteger4, fio.readin-
tegertable, fio.readfixed2, fio.readfixed4, fio.read2dot14, fio.setposition, fio.get-
position, fio.skipposition, fio.readbytes, fio.readbytetable. They work on normal Lua
file handles.

This library provides a set of functions for reading numbers from a file and in addition to the
regular io library functions.

readcardinall(f) a 1 byte unsigned integer
readcardinal2(f) a 2 byte unsigned integer
readcardinal3(f) a 3 byte unsigned integer
readcardinal4(f) a 4 byte unsigned integer
readcardinaltable(f,n,b) n cardinals of b bytes
readintegerl(f) a 1 byte signed integer
readinteger2(f) a 2 byte signed integer
readinteger3(f) a 3 byte signed integer
readinteger4(f) a 4 byte signed integer
readintegertable(f,n,b) nintegers of b bytes
readfixed2(f) a 2 byte float (used in font files)
readfixed4(f) a 4 byte float (used in font files)
read2dot14(f) a 2 byte float (used in font files)
setposition(f,p) goto position p

getposition(f) get the current position
skipposition(f,n) skip n positions
readbytes(f,n) n bytes

readbytetable(f,n) n bytes

There are eight additional little endian variants for the cardinal[1-4] and integer[1-4] read-
ers: cardinal[l-4]le and integer[1-4]1le.

4.2.8 Binary input from strings with sio

A similar set of function as in the fio library is available in the sio library: sio.readcardi-
nall, sio.readcardinal2, sio.readcardinal3, sio.readcardinal4, sio.readcardinaltable,
sio.readintegerl, sio.readinteger2, sio.readinteger3, sio.readinteger4, sio.readin-
tegertable, sio.readfixed2, sio.readfixed4, sio.read2dotl4, sio.setposition, sio.get-
position, sio.skipposition, sio.readbytes and sio.readbytetable. Here the first argu-
ment is a string instead of a file handle. More details can be found in the previous section.

4.2.9 Hashes conform sha2

This library is a side effect of the pdfe library that needs such helpers. The sha2.digest256,
sha2.digest384 and sha2.digest512 functions accept a string and return a string with the
hash.

Using LuaTgX 69 {\“



4.2.10 Locales

In stock Lua, many things depend on the current locale. In LuaTgX, we can’t do that, because it
makes documents unportable. While LuaTgX is running if forces the following locale settings:

LC_CTYPE=C
LC_COLLATE=C
LC_NUMERIC=C

4.3 LUA modules

Some modules that are normally external to Lua are statically linked in with LuaTgX, because
they offer useful functionality:

» 1lpeg, by Roberto Ierusalimschy, http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html. This
library is not Unicode-aware, but interprets strings on a byte-per-byte basis. This mainly
means that lpeg.S cannot be used with utf8 characters encoded in more than two bytes, and
thus lpeg.S will look for one of those two bytes when matching, not the combination of the
two. The same is true for lpeg.R, although the latter will display an error message if used
with multibyte characters. Therefore lpeg.R('aa') results in the message bad argument #1
to 'R' (range must have two characters), since to lpeg, a is two 'characters’ (bytes), so
aa totals three. In practice this is no real issue and with some care you can deal with Unicode
just fine.

» slnunicode, from the selene libraries, http://luaforge.net/projects/sln. This library has been
slightly extended so that the unicode.utf8.* functions also accept the first 256 values of
plane 18. This is the range LuaTgX uses for raw binary output, as explained above. We have
no plans to provide more like this because you can basically do all that you want in Lua.

» Tluazip, from the kepler project, http://www.keplerproject.org/luazip/.

» Tluafilesystem, also from the kepler project, http://www.keplerproject.org/luafilesystem/.

» 1zlib, by Tiago Dionizio, http://luaforge.net/projects/lzlib/.

» md>5, by Roberto Ierusalimschy http://www.inf.puc-rio.br/~roberto/md5/md5-5/md5.html.

» Tluasocket, by Diego Nehab http://w3.impa.br/~diego/software/luasocket/. The . lua support
modules from luasocket are also preloaded inside the executable, there are no external file
dependencies.

4.4 Testing

For development reasons you can influence the used startup date and time. This can be done in
two ways.

1. By setting the environmment variable SOURCE_DATE_EPOCH. This will influence the TgX para-
meters time and date, the random seed, the pdf timestamp and the pdf id that is derived
from the time as well. This variable is consulted when the kpse library is enabled. Resolving
is delegated to this library.

2. By setting the start_time variable in the texconfig table; as with other variables we use the
internal name there. For compatibility reasons we also honour a SOURCE_DATE EPOCH entry.

- ~

{\“\' 70 Using LuaTgX

hy -



It should be noted that there are no such variables in other engines and this method is only
relevant in case the while setup happens in Lua.

When Universal Time is needed, you can pass the flag utc to the engine. This property also works
when the date and time are set by LuaTgX itself. It has a complementary entry use_utc_time in
the texconfig table.

There is some control possible, for instance prevent filename to be written to the pdf file. This is
discussed elsewhere. In ConTEXt we provide the command line argument - -nodates that does
a bit more disabling of dates.

Using LuaTgX 71 “



72 Using LuaTgX



5 Languages, characters, fonts and
glyphs

5.1 Introduction

LuaTgX’s internal handling of the characters and glyphs that eventually become typeset is quite
different from the way TgX82 handles those same objects. The easiest way to explain the differ-
ence is to focus on unrestricted horizontal mode (i.e. paragraphs) and hyphenation first. Later
on, it will be easy to deal with the differences that occur in horizontal and math modes.

In TgX82, the characters you type are converted into char node records when they are encoun-
tered by the main control loop. TgX attaches and processes the font information while creating
those records, so that the resulting ‘horizontal list’ contains the final forms of ligatures and im-
plicit kerning. This packaging is needed because we may want to get the effective width of for
instance a horizontal box.

When it becomes necessary to hyphenate words in a paragraph, TgX converts (one word at time)
the char node records into a string by replacing ligatures with their components and ignoring
the kerning. Then it runs the hyphenation algorithm on this string, and converts the hyphenated
result back into a ‘horizontal list’ that is consecutively spliced back into the paragraph stream.
Keep in mind that the paragraph may contain unboxed horizontal material, which then already
contains ligatures and kerns and the words therein are part of the hyphenation process.

Those char node records are somewhat misnamed, as they are glyph positions in specific fonts,
and therefore not really ‘characters’ in the linguistic sense. There is no language information in-
side the char node records at all. Instead, language information is passed along using language
whatsit nodes inside the horizontal list.

In LuaTgX, the situation is quite different. The characters you type are always converted into
glyph node records with a special subtype to identify them as being intended as linguistic char-
acters. LuaTgX stores the needed language information in those records, but does not do any
font-related processing at the time of node creation. It only stores the index of the current font
and a reference to a character in that font.

When it becomes necessary to typeset a paragraph, LuaTgX first inserts all hyphenation points
right into the whole node list. Next, it processes all the font information in the whole list (creating
ligatures and adjusting kerning), and finally it adjusts all the subtype identifiers so that the
records are ‘glyph nodes’ from now on.

5.2 Characters, glyphs and discretionaries

TEX82 (including pdfIgX) differentiates between char nodes and 1ig nodes. The former are
simple items that contained nothing but a ‘character’ and a ‘font’ field, and they lived in the
same memory as tokens did. The latter also contained a list of components, and a subtype
indicating whether this ligature was the result of a word boundary, and it was stored in the
same place as other nodes like boxes and kerns and glues.

Languages, characters, fonts and glyphs 73 |



In LuaTgX, these two types are merged into one, somewhat larger structure called a glyph node.
Besides having the old character, font, and component fields there are a few more, like ‘attr’ that
we will see in section 8.2.12, these nodes also contain a subtype, that codes four main types and
two additional ghost types. For ligatures, multiple bits can be set at the same time (in case of a
single-glyph word).

» character, for characters to be hyphenated: the lowest bit (bit 0) is set to 1.

» glyph, for specific font glyphs: the lowest bit (bit 0) is not set.

» ligature, for constructed ligatures bit 1 is set.

» ghost, for so called ‘ghost objects’ bit 2 is set.

» left, forligatures created from a left word boundary and for ghosts created from \leftghost
bit 3 gets set.

» right, for ligatures created from a right word boundary and for ghosts created from \right-
ghost bit 4 is set.

The glyph nodes also contain language data, split into four items that were current when the
node was created: the \setlanguage (15 bits), \lefthyphenmin (8 bits), \righthyphenmin
(8 bits), and \uchyph (1 bit).

Incidentally, LuaTgX allows 16383 separate languages, and words can be 256 characters long.
The language is stored with each character. You can set \firstvalidlanguage to for instance 1
and make thereby language 0 an ignored hyphenation language.

The new primitive \hyphenationmin can be used to signal the minimal length of a word. This
value is stored with the (current) language.

Because the \uchyph value is saved in the actual nodes, its handling is subtly different from
TEX82: changes to \uchyph become effective immediately, not at the end of the current partial
paragraph.

Typeset boxes now always have their language information embedded in the nodes themselves,
so there is no longer a possible dependency on the surrounding language settings. In TgX82, a
mid-paragraph statement like \unhbox0 would process the box using the current paragraph lan-
guage unless there was a \setlanguage issued inside the box. In LuaTgX, all language variables
are already frozen.

In traditional TgX the process of hyphenation is driven by lccodes. In LuaTgX we made this de-
pendency less strong. There are several strategies possible. When you do nothing, the currently
used lccodes are used, when loading patterns, setting exceptions or hyphenating a list.

When you set \savinghyphcodes to a value greater than zero the current set of Lccodes will be
saved with the language. In that case changing a lccode afterwards has no effect. However,
you can adapt the set with:

\hjcode a="a

This change is global which makes sense if you keep in mind that the moment that hyphenation
happens is (normally) when the paragraph or a horizontal box is constructed. When \savinghy-
phcodes was zero when the language got initialized you start out with nothing, otherwise you
already have a set.

When a \hjcode is greater than 0 but less than 32 it indicates the to be used length. In the follow-
ing example we map a character (x) onto another one in the patterns and tell the engine that e

“, 74 Languages, characters, fonts and glyphs



counts as one character. Because traditionally zero itself is reserved for inhibiting hyphenation,
a value of 32 counts as zero.

Here are some examples (we assume that French patterns are used):

foobar foo-bar

\hjcode “x="0 fxxbar fxx-bar
\lefthyphenmin 3 edipus @di-pus
\lefthyphenmin 4 edipus @dipus
\hjcode "@=2 edipus @di-pus

\hjcode "i=32 \hjcode "d=32 edipus edipus

Carrying all this information with each glyph would give too much overhead and also make the
process of setting up these codes more complex. A solution with hjcode sets was considered but
rejected because in practice the current approach is sufficient and it would not be compatible
anyway.

Beware: the values are always saved in the format, independent of the setting of \savinghyph-
codes at the moment the format is dumped.

A boundary node normally would mark the end of a word which interferes with for instance
discretionary injection. For this you can use the \wordboundary as a trigger. Here are a few
examples of usage:

discrete---discrete
discrete—discrete
discrete\discretionary{}{}{---}discrete

discrete
discrete

discrete\wordboundary\discretionary{}{}{---}discrete

dis-
crete
discrete

discrete\wordboundary\discretionary{}{}{---}\wordboundary discrete

dis-
crete
dis-
crete

discrete\wordboundary\discretionary{---}{}{}\wordboundary discrete

dis-
crete—
dis-
crete

Languages, characters, fonts and glyphs 75 *:



We only accept an explicit hyphen when there is a preceding glyph and we skip a sequence of
explicit hyphens since that normally indicates a -- or --- ligature in which case we can in a
worse case usage get bad node lists later on due to messed up ligature building as these dashes
are ligatures in base fonts. This is a side effect of separating the hyphenation, ligaturing and
kerning steps.

The start and end of a sequence of characters is signalled by a glue, penalty, kern or boundary
node. But by default also a hlist, vlist, rule, dir, whatsit, ins, and adjust node indicate a
start or end. You can omit the last set from the test by setting \hyphenationbounds to a non-zero
value:

VALUE BEHAVIOUR

0 not strict

1 strict start

2 strict end

3 strict start and strict end

The word start is determined as follows:

NODE BEHAVIOUR

boundary yes when wordboundary

hlist when hyphenationbounds 1 or 3

vlist when hyphenationbounds 1 or 3

rule when hyphenationbounds 1 or 3

dir when hyphenationbounds 1 or 3

whatsit when hyphenationbounds 1 or 3

glue yes

math skipped

glyph exhyphenchar (one only) : yes (so no - —)

otherwise yes

The word end is determined as follows:

NODE BEHAVIOUR

boundary yes

glyph yes when different language
glue yes

penalty yes

kern yes when not italic (for some historic reason)
hlist when hyphenationbounds 2 or 3
vlist when hyphenationbounds 2 or 3
rule when hyphenationbounds 2 or 3
dir when hyphenationbounds 2 or 3
whatsit when hyphenationbounds 2 or 3
ins when hyphenationbounds 2 or 3
adjust when hyphenationbounds 2 or 3

Figures 5.1 upto 5.5 show some examples. In all cases we set the min values to 1 and make sure
that the words hyphenate at each character.

‘/‘, 76 Languages, characters, fonts and glyphs



Figure 5.1 one

0- o- onet- onetwo
n- n- w-
et- etwo 0
W-
0
0 1 2 3

Figure 5.2 one\null two

o- o- onet- onetwo
n- n- w-
et- etwo o]
W-
0
0 1 2 3

Figure 5.3 \null one\null two

o- o- onetwo onetwo
n- n-
et- etwo
W-
0
0 1 2 3

Figure 5.4 one\null two\null

In traditional TgX ligature building and hyphenation are interwoven with the line break mech-
anism. In LuaTgX these phases are isolated. As a consequence we deal differently with (a se-
quence of) explicit hyphens. We already have added some control over aspects of the hyphen-
ation and yet another one concerns automatic hyphens (e.g. - characters in the input).

When \automatichyphenmode has a value of 0, a hyphen will be turned into an automatic discre-
tionary. The snippets before and after it will not be hyphenated. A side effect is that a leading
hyphen can lead to a split but one will seldom run into that situation. Setting a pre and post
character makes this more prominent. A value of 1 will prevent this side effect and a value of
2 will not turn the hyphen into a discretionary. Experiments with other options, like permitting
hyphenation of the words on both sides were discarded.

In figure 5.6 and 5.7 we show what happens with three samples:

Input A:

before-after \par
before--after \par

Languages, characters, fonts and glyphs 77 {\‘,



o- o- onetwo onetwo
n- n-
et- etwo
W-
o]
0 1 2 3

Figure 5.5 \null one\null two\null

before-after before- before- before-after
before--after after after before--after
before---after| |before-- before--after before---after
after before---after
before---
after
A O bem A 0 2pt A 1 2pt A 2 2pt
-before i} -before -before
after- before after- after-
--before after- --before --before
after-- --before after-- after--
---before after-- ---before ---before
after--- ---before after--- after---
after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt
before-after before- before- before-after
before--after after after before--after
before---after| |before-- before--after before---after

after before---after
before- - -
after
C 0 6em C 0 2pt C1 2pt C 2 2pt

Figure 5.6 The automatic modes 0 (default), 1 and 2, with a \hsize of
6em and 2pt (which triggers a linebreak).

before---after \par
Input B:

-before \par
after- \par
--before \par
after-- \par
---before \par
after--- \par

78 Languages, characters, fonts and glyphs



before-after beforeB beforeB before-after
before--after Aafter Aafter before--after
before---after| |before-B before--after before---after
Aafter before---after
before--B
Aafter
A O 6em A 0 2pt A 1 2pt A 2 2pt
-before B -before -before
after- Abefore after- after-
--before after- --before --before
after-- --before after-- after--
---before after-- ---before ---before
after--- ---before after--- after---
after---

B 0 6em B 0 2pt B 1 2pt B 2 2pt
before-after beforeB beforeB before-after
before--after Aafter Aafter before--after
before---after| |before-B before--after before---after

Aafter before---after
before--B
Aafter
C 0 6em C 0 2pt C 1 2pt C 2 2pt

Figure 5.7 The automatic modes 0 (default), 1 and 2, with \preexhy-
phenchar and \postexhyphenchar set to characters A and B.

Input C:

before-after \par
before--after \par
before---after \par

As with primitive companions of other single character commands, the \ - command has a more
verbose primitive version in \explicitdiscretionary and the normally intercepted in the hy-
phenator character - (or whatever is configured) is available as \automaticdiscretionary.

5.3 The main control loop

In LuaTgX's main loop, almost all input characters that are to be typeset are converted into glyph
node records with subtype ‘character’, but there are a few exceptions.

1. The \accent primitive creates nodes with subtype ‘glyph’ instead of ‘character’: one for the
actual accent and one for the accentee. The primary reason for this is that \accent in TEX82
is explicitly dependent on the current font encoding, so it would not make much sense to

Languages, characters, fonts and glyphs 79 {\‘)



attach a new meaning to the primitive’s name, as that would invalidate many old documents
and macro packages. A secondary reason is that in TgX82, \accent prohibits hyphenation of
the current word. Since in LuaTgX hyphenation only takes place on ‘character’ nodes, it is
possible to achieve the same effect. Of course, modern Unicode aware macro packages will
not use the \accent primitive at all but try to map directly on composed characters.

This change of meaning did happen with \char, that now generates ‘glyph’ nodes with a
character subtype. In traditional TgX there was a strong relationship between the 8-bit input
encoding, hyphenation and glyphs taken from a font. In LuaTgX we have utf input, and in
most cases this maps directly to a character in a font, apart from glyph replacement in the
font engine. If you want to access arbitrary glyphs in a font directly you can always use Lua
to do so, because fonts are available as Lua table.

2. All the results of processing in math mode eventually become nodes with ‘glyph’ subtypes.
In fact, the result of processing math is just a regular list of glyphs, kerns, glue, penalties,
boxes etc.

3. The Aleph-derived commands \leftghost and \rightghost create nodes of a third subtype:
‘ghost’. These nodes are ignored completely by all further processing until the stage where
inter-glyph kerning is added.

4. Automatic discretionaries are handled differently. TEX82 inserts an empty discretionary after
sensing an input character that matches the \hyphenchar in the current font. This test is
wrong in our opinion: whether or not hyphenation takes place should not depend on the
current font, it is a language property.!

In LuaTgX, it works like this: if LuaTgX senses a string of input characters that matches the
value of the new integer parameter \exhyphenchar, it will insert an explicit discretionary
after that series of nodes. Initially TEX sets the \exhyphenchar="\-. Incidentally, this is a
global parameter instead of a language-specific one because it may be useful to change the
value depending on the document structure instead of the text language.

The insertion of discretionaries after a sequence of explicit hyphens happens at the same
time as the other hyphenation processing, not inside the main control loop.

The only use LuaTgX has for \hyphenchar is at the check whether a word should be consid-
ered for hyphenation at all. If the \hyphenchar of the font attached to the first character node
in a word is negative, then hyphenation of that word is abandoned immediately. This behav-
iour is added for backward compatibility only, and the use of \hyphenchar=-1 as a means of
preventing hyphenation should not be used in new LuaTgX documents.

5. The \setlanguage command no longer creates whatsits. The meaning of \setlanguage is
changed so that it is now an integer parameter like all others. That integer parameter is used
in \glyph node creation to add language information to the glyph nodes. In conjunction, the
\language primitive is extended so that it always also updates the value of \setlanguage.

6. The \noboundary command (that prohibits word boundary processing where that would nor-
mally take place) now does create nodes. These nodes are needed because the exact place
of the \noboundary command in the input stream has to be retained until after the ligature
and font processing stages.

7. There is no longer a main_loop label in the code. Remember that TEX82 did quite a lot of
processing while adding char nodes to the horizontal list? For speed reasons, it handled

! When TeX showed up we didn’t have Unicode yet and being limited to eight bits meant that one sometimes had to
compromise between supporting character input, glyph rendering, hyphenation.

‘/‘, 80 Languages, characters, fonts and glyphs



that processing code outside of the ‘main control’ loop, and only the first character of any
‘word’ was handled by that ‘main control’ loop. In LuaTgX, there is no longer a need for that
(all hard work is done later), and the (now very small) bits of character-handling code have
been moved back inline. When \tracingcommands is on, this is visible because the full word
is reported, instead of just the initial character.

Because we tend to make hard coded behaviour configurable a few new primitives have been
added:

\hyphenpenaltymode
\automatichyphenpenalty
\explicithyphenpenalty

The first parameter has the following consequences for automatic discs (the ones resulting from
an \exhyphenchar:

MODE AUTOMATIC DISC - EXPLICIT DISC \ -

0 \exhyphenpenalty \exhyphenpenalty

1 \hyphenpenalty \hyphenpenalty

2 \exhyphenpenalty \hyphenpenalty

3 \hyphenpenalty \exhyphenpenalty

4 \automatichyphenpenalty \explicithyphenpenalty
5 \exhyphenpenalty \explicithyphenpenalty
6 \hyphenpenalty \explicithyphenpenalty
7 \automatichyphenpenalty \exhyphenpenalty

8 \automatichyphenpenalty \hyphenpenalty

other values do what we always did in LuaTgX: insert \exhyphenpenalty.

5.4 Loading patterns and exceptions

Although we keep the traditional approach towards hyphenation (which is still superior) the
implementation of the hyphenation algorithm in LuaTgX is quite different from the one in TEX82.

After expansion, the argument for \patterns has to be proper utf8 with individual patterns sep-
arated by spaces, no \char or \chardefd commands are allowed. The current implementation
is quite strict and will reject all non-Unicode characters. Likewise, the expanded argument for
\hyphenation also has to be proper utf8, but here a bit of extra syntax is provided:

1. Three sets of arguments in curly braces ({}{}{}) indicate a desired complex discretionary,
with arguments as in \discretionary’s command in normal document input.

2. A - indicates a desired simple discretionary, cf. \- and \discretionary{-}{}{} in normal
document input.

3. Internal command names are ignored. This rule is provided especially for \discretionary,
but it also helps to deal with \relax commands that may sneak in.

4. An = indicates a (non-discretionary) hyphen in the document input.

The expanded argument is first converted back to a space-separated string while dropping the
internal command names. This string is then converted into a dictionary by a routine that creates

Languages, characters, fonts and glyphs 81 !



key-value pairs by converting the other listed items. It is important to note that the keys in an
exception dictionary can always be generated from the values. Here are a few examples:

VALUE IMPLIED KEY (INPUT) EFFECT
ta-ble table ta\-ble (= ta\discretionary{-}{}{}ble)
ba{k-}{}{c}tken backen ba\discretionary{k-}{}{c}ken

The resultant patterns and exception dictionary will be stored under the language code that is
the present value of \language.

In the last line of the table, you see there is no \discretionary command in the value: the
command is optional in the TgX-based input syntax. The underlying reason for that is that it is
conceivable that a whole dictionary of words is stored as a plain text file and loaded into LuaTgX
using one of the functions in the Lua lang library. This loading method is quite a bit faster than
going through the TgX language primitives, but some (most?) of that speed gain would be lost if
it had to interpret command sequences while doing so.

It is possible to specify extra hyphenation points in compound words by using {-}{}{-} for the
explicit hyphen character (replace - by the actual explicit hyphen character if needed). For
example, this matches the word ‘multi-word-boundaries’ and allows an extra break inbetween
‘boun’ and ‘daries’:

\hyphenation{multi{-}{}{-}word{-}{}{-}boun-daries}

The motivation behind the e-TgX extension \savinghyphcodes was that hyphenation heavily de-
pended on font encodings. This is no longer true in LuaTgX, and the corresponding primitive is
basically ignored. Because we now have \hjcode, the case relate codes can be used exclusively
for \uppercase and \lowercase.

The three curly brace pair pattern in an exception can be somewhat unexpected so we will try
to explain it by example. The pattern foo{}{}{x}bar pattern creates a lookup fooxbar and the
pattern foo{}{}{}bar creates foobar. Then, when a hit happens there is a replacement text
(x) or none. Because we introduced penalties in discretionary nodes, the exception syntax now
also can take a penalty specification. The value between square brackets is a multiplier for
\exceptionpenalty. Here we have set it to 10000 so effectively we get 30000 in the example.

x{a-}{-b}{}Ix{a-}{-bH{}Ix{a-}{-b}H{Ix{a-}{-b}{}xx

10em 3em Oem 6em
123 xxxxxx 123 |123 123 123 xxxxxx
XXa- Xa- XXXXXX XXa-
-bxa- -bxa- -bxxxx xxa-
-bxa- -bxa- -bxxxx 123

-bxx -bxa-

123 -bxx

123

! 82 Languages, characters, fonts and glyphs



x{a-}{-b}{}Ix{a-}{-b}{}[31x{a-}{-b}{}[1]x{a-}{-b}{}xx

10em 3em Oem 6em
123 xxxxxx 123 |123 123 123 xxxxa-
xa- xa- -bxx XXXXXX
-bxxxa- -bxxxa- XXXXXX Xa-
-bxx -bxx -bxxxxx 123
123 123

z{a-}{-b}{z}{a-}{-b}{z}

{a-}{-b}{z}{a-}{-b}{z}z

10em

3em

Oem

6em

123 zzzzzz 123

123
zza-
-ba-
-bzz
123

123
za-
-ba-
-ba-
-ba-
-bz
123

123 zzzz77
777777 7ZZa-
-bzz 777777
123

z{a-}{-b}{z}{a-}{-b}{z}[3]

{a-}{-b}{z}[1]{a-}{-b}{z}z

10em 3em Oem 6em
123 zzzzzz 123 |123 123 123 zzzza-
za- za- -bz  zz7777
-bzza- -bzza- 777777  Za-
-bz -bz -bzzzz 123
123 123

5.5 Applying hyphenation

The internal structures LuaTgX uses for the insertion of discretionaries in words is very different
from the ones in TEX82, and that means there are some noticeable differences in handling as

well.

First and foremost, there is no ‘compressed trie’ involved in hyphenation. The algorithm still
reads pattern files generated by Patgen, but LuaTgX uses a finite state hash to match the pat-
terns against the word to be hyphenated. This algorithm is based on the ‘libhnj’ library used by

OpenOffice, which in turn is inspired by TgX.

There are a few differences between LuaTgX and TgX82 that are a direct result of the implemen-

tation:

» LuaTgX happily hyphenates the full Unicode character range.

» Pattern and exception dictionary size is limited by the available memory only, all allocations
are done dynamically. The trie-related settings in texmf.cnf are ignored.

» Because there is no ‘trie preparation’ stage, language patterns never become frozen. This
means that the primitive \patterns (and its Lua counterpart lang.patterns) can be used at

any time, not only in iniTgX.

Languages, characters, fonts and glyphs 83



» Only the string representation of \patterns and \hyphenation is stored in the format file.
At format load time, they are simply re-evaluated. It follows that there is no real reason to
preload languages in the format file. In fact, it is usually not a good idea to do so. It is much
smarter to load patterns no sooner than the first time they are actually needed.

» LuaTgX uses the language-specific variables \prehyphenchar and \posthyphenchar in the
creation of implicit discretionaries, instead of TEX82’s \hyphenchar, and the values of the
language-specific variables \preexhyphenchar and \postexhyphenchar for explicit discre-
tionaries (instead of TEX82’s empty discretionary).

» The value of the two counters related to hyphenation, \hyphenpenalty and \exhyphen-
penalty, are now stored in the discretionary nodes. This permits a local overload for explicit
\discretionary commands. The value current when the hyphenation pass is applied is used.
When no callbacks are used this is compatible with traditional TgX. When you apply the Lua
lang.hyphenate function the current values are used.

» The hyphenation exception dictionary is maintained as key-value hash, and that is also dy-
namic, so the hyph size setting is not used either.

Because we store penalties in the disc node the \discretionary command has been extended
to accept an optional penalty specification, so you can do the following:

\hsizelmm

1:foo{\hyphenpenalty 10000\discretionary{}{}{}}bar\par
2:foo\discretionary penalty 10000 {}{}{}bar\par
3:foo\discretionary{}{}{}bar\par

This results in:

1:foobar
2:foobar

3:foo
bar

Inserted characters and ligatures inherit their attributes from the nearest glyph node item (usu-
ally the preceding one, but the following one for the items inserted at the left-hand side of a
word).

Word boundaries are no longer implied by font switches, but by language switches. One word
can have two separate fonts and still be hyphenated correctly (but it can not have two different
languages, the \setlanguage command forces a word boundary).

All languages start out with \prehyphenchar="\-, \posthyphenchar=0, \preexhyphenchar=0
and \postexhyphenchar=0. When you assign the values of one of these four parameters, you
are actually changing the settings for the current \language, this behaviour is compatible with
\patterns and \hyphenation.

LuaTgX also hyphenates the first word in a paragraph. Words can be up to 256 characters long
(up from 64 in TEX82). Longer words are ignored right now, but eventually either the limitation
will be removed or perhaps it will become possible to silently ignore the excess characters (this
is what happens in TEX82, but there the behaviour cannot be controlled).

‘/‘, 84 Languages, characters, fonts and glyphs



If you are using the Lua function lang.hyphenate, you should be aware that this function expects
to receive a list of ‘character’ nodes. It will not operate properly in the presence of ‘glyph’,
‘ligature’, or ‘ghost’ nodes, nor does it know how to deal with kerning.

5.6 Applying ligatures and kerning

After all possible hyphenation points have been inserted in the list, LuaTEX will process the list
to convert the ‘character’ nodes into ‘glyph’ and ‘ligature’ nodes. This is actually done in two
stages: first all ligatures are processed, then all kerning information is applied to the result list.
But those two stages are somewhat dependent on each other: If the used font makes it possible
to do so, the ligaturing stage adds virtual ‘character’ nodes to the word boundaries in the list.
While doing so, it removes and interprets \noboundary nodes. The kerning stage deletes those
word boundary items after it is done with them, and it does the same for ‘ghost’ nodes. Finally,
at the end of the kerning stage, all remaining ‘character’ nodes are converted to ‘glyph’ nodes.

This word separation is worth mentioning because, if you overrule from Lua only one of the two
callbacks related to font handling, then you have to make sure you perform the tasks normally
done by LuaTgX itself in order to make sure that the other, non-overruled, routine continues to
function properly.

Although we could improve the situation the reality is that in modern OpenType fonts ligatures
can be constructed in many ways: by replacing a sequence of characters by one glyph, or by
selectively replacing individual glyphs, or by kerning, or any combination of this. Add to that
contextual analysis and it will be clear that we have to let Lua do that job instead. The generic
font handler that we provide (which is part of ConTgXt) distinguishes between base mode (which
essentially is what we describe here and which delegates the task to TgX) and node mode (which
deals with more complex fonts.

Let’s look at an example. Take the word office, hyphenated of-fice, using a ‘normal’ font with
all the f-f and f-i type ligatures:

initial {oH{fH{f}H{i}{c}{e}

after hyphenation  {o}{f}{{-},{}, {}}H{f}{i}{c}{e}
first ligature stage {o}{{f-},{f}, {<ff>}}{i}{c}{e}
final result {o}{{f-},{<fi>}, {<ffi>}}{c}{e}

That’s bad enough, but let us assume that there is also a hyphenation point between the f and
the i, to create of - f-ice. Then the final result should be:

{o}{{f-},
{{f-},
{1},
{<fi>}},
{{<ff>-},
{1},
{<ffi>}}}{c}{e}

with discretionaries in the post-break text as well as in the replacement text of the top-level
discretionary that resulted from the first hyphenation point.

Languages, characters, fonts and glyphs 85 *:‘



Here is that nested solution again, in a different representation:

PRE POST REPLACE
topdisc f- (1) sub 1 sub 2
sub 1 f- (2) i (3) <fi> (4)
sub 2 <ff>- (5) i (6) <ffi> (7)

When line breaking is choosing its breakpoints, the following fields will eventually be selected:

of-f-ice f- (1)

f- ()

i (3)

of-fice f- (1)
<fi> (4)

off-ice <ff>- (5)
i (6)

office <ffi> (7)

The current solution in LuaTgX is not able to handle nested discretionaries, but it is in fact
smart enough to handle this fictional of - f-ice example. It does so by combining two sequential
discretionary nodes as if they were a single object (where the second discretionary node is
treated as an extension of the first node).

One can observe that the of-f-ice and off-ice cases both end with the same actual post re-
placement list (i), and that this would be the case even if i was the first item of a potential
following ligature like ic. This allows LuaTgX to do away with one of the fields, and thus make
the whole stuff fit into just two discretionary nodes.

The mapping of the seven list fields to the six fields in this discretionary node pair is as follows:

FIELD DESCRIPTION

discl.pre f- (D)
discl.post <fi> (4)
discl.replace <ffi> (7)
disc2.pre f- (2)
disc2.post i (3,6)
disc2.replace <ff>- (5)

What is actually generated after ligaturing has been applied is therefore:

{o}{{f-},
{<fi>},
{<ffi>}}
{{f-},
{1},
{<ff>-}}{c}{e}

The two discretionaries have different subtypes from a discretionary appearing on its own: the
first has subtype 4, and the second has subtype 5. The need for these special subtypes stems

‘/‘, 86 Languages, characters, fonts and glyphs



from the fact that not all of the fields appear in their ‘normal’ location. The second discretionary
especially looks odd, with things like the <ff>- appearing in disc2. replace. The fact that some
of the fields have different meanings (and different processing code internally) is what makes it
necessary to have different subtypes: this enables LuaTgX to distinguish this sequence of two
joined discretionary nodes from the case of two standalone discretionaries appearing in a row.

Of course there is still that relationship with fonts: ligatures can be implemented by mapping a
sequence of glyphs onto one glyph, but also by selective replacement and kerning. This means
that the above examples are just representing the traditional approach.

5.7 Breaking paragraphs into lines

This code is almost unchanged, but because of the above-mentioned changes with respect to
discretionaries and ligatures, line breaking will potentially be different from traditional TgX.
The actual line breaking code is still based on the TgX82 algorithms, and it does not expect
there to be discretionaries inside of discretionaries. But, as patterns evolve and font handling
can influence discretionaries, you need to be aware of the fact that long term consistency is not
an engine matter only.

But that situation is now fairly common in LuaTgX, due to the changes to the ligaturing mech-
anism. And also, the LuaTgX discretionary nodes are implemented slightly different from the
TEX82 nodes: the no_break text is now embedded inside the disc node, where previously these
nodes kept their place in the horizontal list. In traditional TgX the discretionary node contains
a counter indicating how many nodes to skip, but in LuaTgX we store the pre, post and replace
text in the discretionary node.

The combined effect of these two differences is that LuaTgX does not always use all of the poten-
tial breakpoints in a paragraph, especially when fonts with many ligatures are used. Of course
kerning also complicates matters here.

5.8 The lang library

5.8.1 new and id

This library provides the interface to LuaTgX's structure representing a language, and the asso-
ciated functions.

lang.new()
lang.new(<number> id)

<language> 1
<language> 1

This function creates a new userdata object. An object of type <language> is the first argument
to most of the other functions in the lang library. These functions can also be used as if they
were object methods, using the colon syntax. Without an argument, the next available internal
id number will be assigned to this object. With argument, an object will be created that links to
the internal language with that id number.

<number> n = lang.id(<language> 1)

Languages, characters, fonts and glyphs 87 {\‘



The number returned is the internal \language id number this object refers to.

5.8.2 hyphenation
You can hyphenate a string directly with:

<string> n = lang.hyphenation(<language> 1)
lang.hyphenation(<language> 1, <string> n)

5.8.3 clear_hyphenation and clean

This either returns the current hyphenation exceptions for this language, or adds new ones. The
syntax of the string is explained in section 5.4.

lang.clear hyphenation(<language> 1)
This call clears the exception dictionary (string) for this language.

<string> n = lang.clean(<language> 1, <string> o)
<string> n lang.clean(<string> o)

This function creates a hyphenation key from the supplied hyphenation value. The syntax of the
argument string is explained in section 5.4. This function is useful if you want to do something
else based on the words in a dictionary file, like spell-checking.

5.8.4 patterns and clear_patterns

<string> n = lang.patterns(<language> 1)
lang.patterns(<language> 1, <string> n)

This adds additional patterns for this language object, or returns the current set. The syntax of
this string is explained in section 5.4.

lang.clear patterns(<language> 1)

This can be used to clear the pattern dictionary for a language.

5.8.5 hyphenationmin
This function sets (or gets) the value of the TgX parameter \hyphenationmin.

n = lang.hyphenationmin(<language> 1)
lang.hyphenationmin(<language> 1, <number> n)

5.8.6 [pre|post][ex]|]hyphenchar

<number> n = lang.prehyphenchar(<language> 1)

/‘) 88 Languages, characters, fonts and glyphs



lang.prehyphenchar(<language> 1, <number> n)

<number> n = lang.posthyphenchar(<language> 1)
lang.posthyphenchar(<language> 1, <number> n)

These two are used to get or set the ‘pre-break’ and ‘post-break’ hyphen characters for implicit
hyphenation in this language. The intial values are decimal 45 (hyphen) and decimal O (indicat-
ing emptiness).

<number> n = lang.preexhyphenchar(<language> 1)
lang.preexhyphenchar(<language> 1, <number> n)

<number> n = lang.postexhyphenchar(<language> 1)
lang.postexhyphenchar(<language> 1, <number> n)

These gets or set the ‘pre-break’ and ‘post-break’ hyphen characters for explicit hyphenation in
this language. Both are initially decimal O (indicating emptiness).

5.8.7 hyphenate

The next call inserts hyphenation points (discretionary nodes) in a node list. If tail is given as
argument, processing stops on that node. Currently, success is always true if head (and tail,
if specified) are proper nodes, regardless of possible other errors.

<boolean> success = lang.hyphenate(<node> head)
<boolean> success = lang.hyphenate(<node> head, <node> tail)

Hyphenation works only on ‘characters’, a special subtype of all the glyph nodes with the node
subtype having the value 1. Glyph modes with different subtypes are not processed. See sec-
tion 5.2 for more details.

5.8.8 [set|get]hjcode
The following two commands can be used to set or query hj codes:

lang.sethjcode(<language> 1, <number> char, <number> usedchar)
<number> usedchar = lang.gethjcode(<language> 1, <number> char)

When you set a hjcode the current sets get initialized unless the set was already initialized due
to \savinghyphcodes being larger than zero.

Languages, characters, fonts and glyphs 89 *:



90 Languages, characters, fonts and glyphs



60 Font structure

6.1 The font tables

All TgX fonts are represented to Lua code as tables, and internally as C structures. All keys in
the table below are saved in the internal font structure if they are present in the table returned
by the define font callback, or if they result from the normal tfm/vf reading routines if there
is no define font callback defined.

The column ‘vf” means that this key will be created by the font.read vf() routine, ‘tfm’ means
that the key will be created by the font.read tfm() routine, and ‘used’ means whether or not
the LuaTgX engine itself will do something with the key. The top-level keys in the table are as
follows:

KEY VF TFM USED VALUE TYPE DESCRIPTION

name yes yes yes string metric (file) name

area no yes vyes string (directory) location, typically empty
used no yes yes boolean indicates usage (initial: false)
characters yes yes yes table the defined glyphs of this font

checksum yes yes no number default: 0

designsize no yes yes number expected size (default: 655360 == 10pt)
direction no yes yes number default: 0

encodingbytes no no yes number default: depends on format
encodingname no no yes string encoding name

fonts yes no yes table locally used fonts

psname no no yes string This is the PostScript fontname in the in-

coming font source, and it’s used as font-
name identifier in the pdf output. This

has to be a valid string, e.g. no spaces and
such, as the backend will not do a cleanup.
This gives complete control to the loader.

fullname no no yes string output font name, used as a fallback in the
pdf output if the psname is not set

subfont no no yes number default: 0, index in (ttc) font with multiple
fonts

header yes no no string header comments, if any

hyphenchar no no yes number default: TgX’'s \hyphenchar

parameters no yes yes hash default: 7 parameters, all zero

size no yes yes number the required scaling (by default the same
as designsize)

skewchar no no yes number default: TEX's \skewchar

type yes no yes string basic type of this font

format no no yes string disk format type

embedding no no yes string pdf inclusion

filename no no yes string the name of the font on disk

// \\
/ \
Font structure 91 \‘;



tounicode

stretch
shrink

step
expansion factor

attributes
cache

nomath

oldmath

slant

extend

squeeze

width

mode

no

no

no

no
no

no
no

no

no

no

no

no

no

no

yes

no

no

no
no

no
no

no

no

no

no

no

no

no

yes

yes

yes

yes
no

yes
yes

yes

yes

yes

yes

yes

yes

yes

number

number

number

number
number

string
string

boolean

boolean

number

number

number

number

number

When this is set to 1 LuaTgX assumes per-
glyph tounicode entries are present in the
font.

the ‘stretch’ value from \expandglyphsin-
font

the ‘shrink’ value from \expandglyphsin-
font

the ‘step’ value from \expandglyphsinfont
the actual expansion factor of an expanded
font

the \pdffontattr

This key controls caching of the Lua ta-

ble on the TgX end where yes means: use
a reference to the table that is passed to
LuaTgX (this is the default), and no means:
don’t store the table reference, don’t cache
any Lua data for this font while renew
means: don’t store the table reference, but
save a reference to the table that is created
at the first access to one of its fields in the
font.

This key allows a minor speedup for text
fonts. If it is present and true, then Lua-
TeX will not check the character entries for
math-specific keys.

This key flags a font as representing an

old school TgEX math font and disables the
OpenType code path.

This parameter will tilt the font and does
the same as SlantFont in the map file for
Typel fonts.

This parameter will scale the font horizon-
tally and does the same as ExtendFont in
the map file for Typel fonts.

This parameter will scale the font vertically
and has no equivalent in the map file.

The backend will inject pdf operators that
set the penwidth. The value is (as usual

in TgX) divided by 1000. It works with the
mode file.

The backend will inject pdf operators that
relate to the drawing mode with 0 being a
fill, 1 being an outline, 2 both draw and fill
and 3 no painting at all.

The saved reference in the cache option is thread-local, so be careful when you are using corou-

- ~

// \\
/ \
! 0; 92 Font structure

e



tines: an error will be thrown if the table has been cached in one thread, but you reference it
from another thread.

The key name is always required. The keys stretch, shrink, step only have meaning when used
together: they can be used to replace a post-loading \expandglyphsinfont command. The
auto_expand option is not supported in LuaTgX. In fact, the primitives that create expanded or
protruding copies are probably only useful when used with traditional fonts because all these
extra OpenType properties are kept out of the picture. The expansion factor is value that
can be present inside a font in font.fonts. It is the actual expansion factor (a value between
-shrink and stretch, with step step) of a font that was automatically generated by the font
expansion algorithm.

The subfont parameter can be used to specify the subfont in a ttc font. When given, it is used
instead of the psname and fullname combination. The first subfont has number 1. A zero value
signals using the names as lookup.

Because we store the actual state of expansion with each glyph and don’t have special font
instances, we can change some font related parameters before lines are constructed, like:

font.setexpansion(font.current(),100,100,20)

This is mostly meant for experiments (or an optimizing routing written in Lua) so there is no
primitive.

The key attributes can be used to set font attributes in the pdf file. The key used is set by the
engine when a font is actively in use, this makes sure that the font’s definition is written to the
output file (dvi or pdf). The tfm reader sets it to false. The direction is a number signalling the
‘normal’ direction for this font. There are sixteen possibilities:

DIR # DIR # DIR # DIR|

LT 4 RT 8 TT 12 BT
LL 5 RL 9 TL 13 BL
IB 6 RB 10 TB 14 BB
LR 7 RR 11 TR 15 BR

‘

w N =R o

These are Omega-style direction abbreviations: the first character indicates the ‘first’ edge of
the character glyphs (the edge that is seen first in the writing direction), the second the ‘top’
side. Keep in mind that LuaTgX has a bit different directional model so these values are not used
for anything.

The parameters is a hash with mixed key types. There are seven possible string keys, as well as
a number of integer indices (these start from 8 up). The seven strings are actually used instead
of the bottom seven indices, because that gives a nicer user interface.

The names and their internal remapping are:

NAME REMAPPING

slant 1
space 2
space_stretch 3
space shrink 4

!
Font structure 93 \‘



x_height 5
quad
extra_ space 7

()}

The keys type, format, embedding, fullname and filename are used to embed OpenType fonts

in the result pdf.

The characters table is a list of character hashes indexed by an integer number. The number

is the ‘internal code’ TEX knows this character by.

Two very special string indexes can be used also: left boundary is a virtual character whose
ligatures and kerns are used to handle word boundary processing. right boundary is similar
but not actually used for anything (yet).

Each character hash itself is a hash. For example, here is the character ‘f’ (decimal 102) in the
font cmrl®@ at 10pt. The numbers that represent dimensions are in scaled points.

[102] = {
["width"] = 200250,
["height"] = 455111,
["depth"] = 0,
["italic"] = 50973,
["kerns"] = {
[63] = 50973,
[93] = 50973,
[39] = 50973,
[33] = 50973,
[41] = 50973
b
["ligatures"] = {
[102] = { ["char"]
[168] = { ["char"]
[165] = { ["char"]
}
}

= 11,
13,
12,

["type"]
["type"]
["type"]

I n
oo o]

The following top-level keys can be present inside a character hash:

KEY VF
width yes
height no
depth no
italic no
top accent no
bot accent no

left _protruding no
right protruding no

\
0; 94 Font structure

TFM

yes
yes
yes
yes

no

no

no
no

USED
yes
yes
yes
yes

maybe

maybe

maybe
maybe

TYPE

number
number
number
number
number

number

number
number

DESCRIPTION

character’s width, in sp (default 0)

character’s height, in sp (default 0)
character’s depth, in sp (default 0)

character’s italic correction, in sp (default zero)
character’s top accent alignment place, in sp
(default zero)

character’s bottom accent alignment place,
in sp (default zero)

character’s \lpcode

character’s \rpcode



expansion factor no no maybe number character’s \efcode

tounicode no no maybe string character’s Unicode equivalent(s), in utf-16BE
hexadecimal format

next no yes yes number the ‘nextlarger’ character index

extensible no yes yes  table the constituent parts of an extensible recipe

vert variants no no yes  table constituent parts of a vertical variant set

horiz variants no no yes  table constituent parts of a horizontal variant set

kerns no yes yes  table kerning information

ligatures no yes yes  table ligaturing information

commands yes no yes  array virtual font commands

name no no no string the character (PostScript) name

index no no yes number the (OpenType or TrueType) font glyph index

used no yes yes  boolean typeset already (default: false)

mathkern no no yes  table math cut-in specifications

The values of top_accent, bot _accent and mathkern are used only for math accent and super-
script placement, see page 107 in this manual for details. The values of left protruding and
right protruding are used only when \protrudechars is non-zero. Whether or not expan-
sion factor is used depends on the font’s global expansion settings, as well as on the value of
\adjustspacing.

The usage of tounicode is this: if this font specifies a tounicode=1 at the top level, then LuaTgX
will construct a /ToUnicode entry for the pdf font (or font subset) based on the character-level
tounicode strings, where they are available. If a character does not have a sensible Unicode
equivalent, do not provide a string either (no empty strings).

If the font level tounicode is not set, then LuaTgX will build up /ToUnicode based on the TgX
code points you used, and any character-level tounicodes will be ignored. The string format
is exactly the format that is expected by Adobe CMap files (utf-16BE in hexadecimal encoding),
minus the enclosing angle brackets. For instance the tounicode for a fi ligature would be
00660069. When you pass a number the conversion will be done for you.

A math character can have a next field that points to a next larger shape. However, the presence
of extensible will overrule next, if that is also present. The extensible field in turn can be
overruled by vert variants, the OpenType version. The extensible table is very simple:

KEY TYPE DESCRIPTION

top number top character index

mid number middle character index
bot number bottom character index
rep number repeatable character index

The horiz variants and vert variants are arrays of components. Each of those components
is itself a hash of up to five keys:

KEY TYPE EXPLANATION

glyph number The character index. Note that this is an encoding number, not a name.
extender number One (1) if this part is repeatable, zero (0) otherwise.

start number The maximum overlap at the starting side (in scaled points).

/ \
Font structure 95 \‘



end number The maximum overlap at the ending side (in scaled points).
advance number The total advance width of this item. It can be zero or missing, then the
natural size of the glyph for character component is used.

The kerns table is a hash indexed by character index (and ‘character index’ is defined as either
a non-negative integer or the string value right boundary), with the values of the kerning to
be applied, in scaled points.

The ligatures table is a hash indexed by character index (and ‘character index’ is defined as
either a non-negative integer or the string value right boundary), with the values being yet
another small hash, with two fields:

KEY TYPE DESCRIPTION

type number the type of this ligature command, default 0
char number the character index of the resultant ligature

The char field in a ligature is required. The type field inside a ligature is the numerical or
string value of one of the eight possible ligature types supported by TgX. When TgX inserts a
new ligature, it puts the new glyph in the middle of the left and right glyphs. The original left
and right glyphs can optionally be retained, and when at least one of them is kept, it is also
possible to move the new ‘insertion point’ forward one or two places. The glyph that ends up to
the right of the insertion point will become the next ‘left’.

EXTUAL (KNUTH) NUMBER STRING RESUL

L+r=:n 0 = |n

l+r=:|n 1 =:] Inr
1L+r |=:n 2 |=: | tn
L+r |=:]n 3 [=:] | tnr
1L+ r=:|>n 5 =:|> njir
1L+ r |=:>n 6 |=:> l|n
L+r |=:]>n 7 |=:]> 1|nr
1L+r |=:]>>n 11 |=:]>> 1ln|r

The default value is 0, and can be left out. That signifies a ‘normal’ ligature where the ligature
replaces both original glyphs. In this table the | indicates the final insertion point.

The commands array is explained below.

6.2 Real fonts

Whether or not a TgX font is a ‘real’ font that should be written to the pdf document is decided
by the type value in the top-level font structure. If the value is real, then this is a proper font,
and the inclusion mechanism will attempt to add the needed font object definitions to the pdf.
Values for type are:

VALUE DESCRIPTION

real this is a base font
virtual this is a virtual font

/‘) 96 Font structure



The actions to be taken depend on a number of different variables:

» Whether the used font fits in an 8-bit encoding scheme or not. This is true for traditional TEX
fonts that communicate via tfm files.

» The type of the disk font file, for instance a bitmap file or an outline Typel, TrueType or
OpenType font.

» Thelevel of embedding requested, although in most cases a subset of characters is embedded.
The times when nothing got embedded are (in our opinion at least) basically gone.

A font that uses anything other than an 8-bit encoding vector has to be written to the pdf in
a different way. When the font table has encodingbytes set to 2, then it is a wide font, in all
other cases it isn’t. The value 2 is the default for OpenType and TrueType fonts loaded via Lua.
For Typel fonts, you have to set encodingbytes to 2 explicitly. For pk bitmap fonts, wide font
encoding is not supported at all.

If no special care is needed, LuaTgX falls back to the mapfile-based solution used by pdfTEX
and dvips, so that legacy fonts are supported transparently. If a ‘wide’ font is used, the new
subsystem kicks in, and some extra fields have to be present in the font structure. In this case,
LuaTgX does not use a map file at all. These extra fields are: format, embedding, fullname,
cidinfo (as explained above), filename, and the index key in the separate characters.

The format variable can have the following values. type3 fonts are provided for backward
compatibility only, and do not support the new wide encoding options.

VALUE DESCRIPTION

typel this is a PostScript Typel font

type3 this is a bitmapped (pk) font

truetype thisis a TrueType or TrueType-based OpenType font
opentype this is a PostScript-based OpenType font

Valid values for the embedding variable are:

VALUE DESCRIPTION

no don’t embed the font at all
subset include and atttempt to subset the font
full include this font in its entirety

The other fields are used as follows. The fullname will be the PostScript/pdf font name. The
cidinfo will be used as the character set: the CID /0rdering and /Registry keys. The filename
points to the actual font file. If you include the full path in the filename or if the file is in the
local directory, LuaTgX will run a little bit more efficient because it will not have to re-run the
find * file callback in that case.

Be careful: when mixing old and new fonts in one document, it is possible to create PostScript
name clashes that can result in printing errors. When this happens, you have to change the
fullname of the font to a more unique one.

Typeset strings are written out in a wide format using 2 bytes per glyph, using the index key
in the character information as value. The overall effect is like having an encoding based on
numbers instead of traditional (PostScript) name-based reencoding. One way to get the correct

/ \
Font structure 97 \‘



index numbers for Typel fonts is by loading the font via fontloader.open and use the table
indices as index fields.

In order to make sure that cut and paste of the final document works okay you can best make
sure that there is a tounicode vector enforced. Not all pdf viewers handle this right so take
Acrobat as reference.

6.3 Virtual fonts

6.3.1 The structure

You have to take the following steps if you want LuaTgX to treat the returned table from de-
fine font as a virtual font:

» Set the top-level key type to virtual. In most cases it’s optional because we look at the
commands entry anyway.

» Make sure there is at least one valid entry in fonts (see below), although recent versions of
LuaTgX add a default entry when this table is missing.

» Add a commands array to those characters that matter. A virtual character can itself point to
virtual characters but be careful with nesting as you can create loops and overflow the stack
(which often indicates an error anyway).

The presence of the toplevel type key with the specific value virtual will trigger handling of
the rest of the special virtual font fields in the table, but the mere existence of ‘type’ is enough to
prevent LuaTgX from looking for a virtual font on its own. This also works ‘in reverse’: if you are
absolutely certain that a font is not a virtual font, assigning the value real to type will inhibit
LuaTgX from looking for a virtual font file, thereby saving you a disk search. This only matters
when we load a tfm file.

The fonts is an (indexed) Lua table. The values are one- or two-key hashes themselves, each
entry indicating one of the base fonts in a virtual font. In case your font is referring to itself,
you can use the font.nextid () function which returns the index of the next to be defined font
which is probably the currently defined one. So, a table looks like this:

fonts = {
{ name "ptmr8a", size = 655360 },
{ name = "psyr", size = 600000 },
{ id = 38 }

}

The first referenced font (at index 1) in this virtual font is ptrmr8a loaded at 10pt, and the second
is psyr loaded at a little over 9pt. The third one is a previously defined font that is known to
LuaTgX as font id 38. The array index numbers are used by the character command definitions
that are part of each character.

The commands array is a hash where each item is another small array, with the first entry rep-
resenting a command and the extra items being the parameters to that command. The allowed
commands and their arguments are:

/‘) 98 Font structure



COMMAND ARGUMENTS TYPE DESCRIPTION

font 1 number select a new font from the local fonts table

char 1 number typeset this character number from the current font,
and move right by the character’s width

node 1 node output this node (list), and move right by the width of
this list

slot 2 2 numbers a shortcut for the combination of a font and char com-
mand

push 0 save current position

nop 0 do nothing

pop 0 pop position

rule 2 2 numbers output a rule ht x wd, and move right.

down 1 number move down on the page

right 1 number move right on the page

special 1 string output a \special command

pdf 2 2 strings output a pdf literal, the first string is one of origin,

page, text, font, direct or raw; if you have one string
only origin is assumed

lua 1 string, function execute a Lua script when the glyph is embedded; in
case of a function it gets the font id and character code
passed

image 1 image output an image (the argument can be either an <im-
age> variable or an image spec table)

comment  any any the arguments of this command are ignored

When a font id is set to 0 then it will be replaced by the currently assigned font id. This prevents
the need for hackery with future id’s. Normally one could use font.nextid but when more
complex fonts are built in the meantime other instances could have been loaded.

The pdf option also accepts a mode keyword in which case the third argument sets the mode.
That option will change the mode in an efficient way (passing an empty string would result in
an extra empty lines in the pdf file. This option only makes sense for virtual fonts. The font
mode only makes sense in virtual fonts. Modes are somewhat fuzzy and partially inherited from
pdfTEX.

MODE DESCRIPTION

origin enter page mode and set the position

page enter page mode

text enter text mode

font enter font mode (kind of text mode, only in virtual fonts)
always finish the current string and force a transform if needed
raw finish the current string

You always need to check what pdf code is generated because there can be all kind of inter-
ferences with optimization in the backend and fonts are complicated anyway. Here is a rather
elaborate glyph commands example using such keys:

/ \
Font structure 99 \‘



commands = {

{ "push" }, -- remember where we are
{ "right", 5000 }, -- move right about 0.08pt
{ "font", 3 }, -- select the fonts[3] entry
{ "char", 97 }, -- place character 97 (ASCII 'a')
-- { "slot", 2, 97 }, -- an alternative for the previous two
{ "pop" 1}, -- go all the way back
{ "down", -200000 }, -- move upwards by about 3pt
{ "special", "pdf: 1 0 0 rg" } -- switch to red color
-- { "pdf", "origin", "1 0 0 rg" } -- switch to red color (alternative)
{ "rule", 500000, 20000 } -- draw a bar
{ "special", "pdf: 0 g" } -- back to black
-- { "pdf", "origin", "0 g" } -- back to black (alternative)

The default value for font is always 1 at the start of the commands array. Therefore, if the virtual
font is essentially only a re-encoding, then you do usually not have created an explicit ‘font’
command in the array.

Rules inside of commands arrays are built up using only two dimensions: they do not have depth.
For correct vertical placement, an extra down command may be needed.

Regardless of the amount of movement you create within the commands, the output pointer will
always move by exactly the width that was given in the width key of the character hash. Any
movements that take place inside the commands array are ignored on the upper level.

The special can have a pdf:, pdf:origin:, pdf:page:, pdf:direct: or pdf:raw: prefix. When
you have to concatenate strings using the pdf command might be more efficient.

6.3.2 Artificial fonts

Even in a ‘real’ font, there can be virtual characters. When LuaTgX encounters a commands field
inside a character when it becomes time to typeset the character, it will interpret the commands,
just like for a true virtual character. In this case, if you have created no ‘fonts’ array, then the
default (and only) ‘base’ font is taken to be the current font itself. In practice, this means that
you can create virtual duplicates of existing characters which is useful if you want to create
composite characters.

Note: this feature does not work the other way around. There can not be ‘real’ characters in a
virtual font! You cannot use this technique for font re-encoding either; you need a truly virtual
font for that (because characters that are already present cannot be altered).

6.3.3 Example virtual font

Finally, here is a plain TgX input file with a virtual font demonstration:

\directlua {
callback.register('define font',

- ~

i \\
\0; 100 Font structure



function (name,size)

if name == 'cmrlO-red' then
local f = font.read tfm('cmrl0',size)
f.name = 'cmrlO-red'
f.type = 'virtual'
f.fonts = {
{ name = 'cmrl0', size = size }
}

for i,v in pairs(f.characters) do
if string.char(i):find('[tacohanshartmut]') then
v.commands = {
{ "special"”, "pdf: 1 0 0 rg" },

{ "char", i},
{ "special", "pdf: 0 g" },
}
end
end
return f
else
return font.read tfm(name,size)
end
end
)
}
\font\myfont = cmrl0-red at 10pt \myfont This is a line of text \par
\font\myfontx = cmrl0 at 10pt \myfontx Here is another line of text \par

6.4 The vf library

The vf library can be used when Lua code, as defined in the commands of the font, is executed.
The functions provided are similar as the commands: char, down, fontid, image, node, nop, pop,
push, right, rule, special and pdf. This library has been present for a while but not been
advertised and tested much, if only because it’s easy to define an invalid font (or mess up the
pdf stream). Keep in mind that the Lua snippets are executed each time when a character is
output.

6.5 The font library

The font library provides the interface into the internals of the font system, and it also contains
helper functions to load traditional TgX font metrics formats. Other font loading functionality is
provided by the fontloader library that will be discussed in the next section.

6.5.1 Loading a TFM file

The behaviour documented in this subsection is considered stable in the sense that there will
not be backward-incompatible changes any more.

Font structure 101



<table> fnt =
font.read tfm(<string> name, <number> s)

The number is a bit special:

» If it is positive, it specifies an ‘at size’ in scaled points.
» If it is negative, its absolute value represents a ‘scaled’ setting relative to the designsize of
the font.

6.5.2 Loading a VF file

The behavior documented in this subsection is considered stable in the sense that there will not
be backward-incompatible changes any more.

<table> vf fnt =
font.read vf(<string> name, <number> s)

The meaning of the number s and the format of the returned table are similar to the ones in the
read tfm function.

6.5.3 The fonts array
The whole table of TEX fonts is accessible from Lua using a virtual array.

font.fonts[n] = { ... }
<table> f = font.fonts[n]

Because this is a virtual array, you cannot call pairs on it, but see below for the font.each
iterator.
The two metatable functions implementing the virtual array are:

<table> f = font.getfont(<number> n)
font.setfont(<number> n, <table> f)

Note that at the moment, each access to the font.fonts or call to font.getfont creates a Lua
table for the whole font unless you cached it. If you want a copy of the internal data you can use
font.getcopy:

<table> f = font.getcopy(<number> n)

This one will return a table of the parameters as known to TgX. These can be different from the
ones in the cached table:

<table> p = font.getparameters(<number> n)

Also note the following: assignments can only be made to fonts that have already been defined
in TEX, but have not been accessed at all since that definition. This limits the usability of the
write access to font.fonts quite a lot, a less stringent ruleset will likely be implemented later.

- ~

i \\
\0; 102 Font structure

e



6.5.4 Checking a font’s status
You can test for the status of a font by calling this function:

<boolean> f =
font.frozen(<number> n)

The return value is one of true (unassignable), false (can be changed) or nil (not a valid font
at all).

6.5.5 Defining a font directly

You can define your own font into font. fonts by calling this function:

<number> i =
font.define(<table> f)

The return value is the internal id number of the defined font (the index into font