FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Fisch, KM Kozfkay, CC Ivy, JA Ryder, OA Waples, RS AF Fisch, Kathleen M. Kozfkay, Christine C. Ivy, Jamie A. Ryder, Oliver A. Waples, Robin S. TI Fish Hatchery Genetic Management Techniques: Integrating Theory with Implementation SO NORTH AMERICAN JOURNAL OF AQUACULTURE LA English DT Article ID CAPTIVE BREEDING PROGRAMS; EFFECTIVE POPULATION-SIZE; RUN CHINOOK SALMON; RIVER SOCKEYE-SALMON; CONSERVATION PROGRAMS; PAIRWISE RELATEDNESS; BROODSTOCK MANAGEMENT; DROSOPHILA POPULATIONS; FOUNDER REPRESENTATION; ONCORHYNCHUS-KISUTCH AB Artificial propagation of fish species in hatcheries has been conducted on a large scale for several decades. In recent years, however, there has been an increase in conservation hatcheries, which aim not only to produce fish for supplementing wild populations but also to preserve the genetic diversity and integrity of threatened or endangered species. Important considerations for the latter are maximizing genetic diversity and effective population size while minimizing inbreeding and adaptation to captivity. Several studies document the theoretical implementation of captive management strategies designed to achieve these goals. However, the practical application of many of these strategies to conservation hatcheries remains challenging, as the majority of the guidelines were developed for small zoo populations. The aims of this review are (1) to survey current fish conservation hatchery managers in order to assess current hatchery practices and goals; (2) to present available management strategies for conservation hatcheries that may minimize the genetic effects of artificial propagation; and (3) to present genetic management options and their trade-offs to managers developing fish conservation hatcheries. The results of the survey suggest that the majority of the responding conservation and nonconservation hatcheries use random broodstock selection and pairing techniques while valuing the importance of maintaining genetic diversity and effective population size and minimizing inbreeding. This article reviews the application of small-population management techniques to conservation hatcheries in an effort to increase their utility in recovery plans for endangered fish species. C1 [Fisch, Kathleen M.] Univ Calif Davis, Agr Expt Stn, Genom Variat Lab, Davis, CA 95616 USA. [Fisch, Kathleen M.] San Diego Zoo Global, Inst Conservat Res, Escondido, CA 92027 USA. [Kozfkay, Christine C.] Idaho Dept Fish & Game, Eagle, ID 83616 USA. [Ivy, Jamie A.] San Diego Zoo Global, Collect Dept, San Diego, CA 92112 USA. [Ryder, Oliver A.] San Diego Zoo Global, Inst Conservat Res, San Diego, CA 92027 USA. [Waples, Robin S.] NW Fisheries Sci Ctr, Natl Ocean & Atmospher Adm Fisheries, Seattle, WA 98112 USA. RP Fisch, KM (reprint author), Univ Calif Davis, Agr Expt Stn, Genom Variat Lab, One Shields Ave, Davis, CA 95616 USA. EM kfisch@ucsd.edu RI Waples, Robin/K-1126-2016 FU California Sea Grant Delta Science Program [U-04-SC-005] FX This work was supported by the California Sea Grant Delta Science Program (Agreement U-04-SC-005). We would like to thank Dan Schill and Paul Kline for their reviews of this manuscript. NR 115 TC 1 Z9 1 U1 3 U2 25 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1522-2055 EI 1548-8454 J9 N AM J AQUACULT JI N. Am. J. Aqualcult. PY 2015 VL 77 IS 3 BP 343 EP 357 DI 10.1080/15222055.2014.999846 PG 15 WC Fisheries SC Fisheries GA CP5US UT WOS:000359951100012 ER PT J AU Flagg, TA AF Flagg, Thomas A. TI Balancing Conservation and Harvest Objectives: a Review of Considerations for the Management of Salmon Hatcheries in the US Pacific Northwest SO NORTH AMERICAN JOURNAL OF AQUACULTURE LA English DT Review ID REPRODUCTIVE SUCCESS; WILD; PROGRAMS; FISH; POPULATIONS; STEELHEAD; FITNESS AB The U.S. Pacific Northwest (PNW) has one of the largest suites of hatchery programs for anadromous salmonids in the world, with about 500 programs producing about 325 million juvenile fish. A total of about 0.7 million Pink Salmon Oncorhynchus gorbuscha, 21 million steelhead O. mykiss, 50 million Chum Salmon O. keta, 32 million Sockeye Salmon O. nerka, 41 million Coho Salmon O. kisutch, and 182 million Chinook Salmon O. tshawytscha are released annually from PNW hatcheries. These fish provide for robust, sustainable fisheries, and their production and release are designed to meet legal agreements, international treaties, and treaty trust responsibilities. However, this level of hatchery production is often assumed to have negative effects on the conservation of U.S. Endangered Species Act-listed salmon populations in the region. A review of the development of best management practices to balance the conservation and sustainable fisheries goals for PNW salmon hatcheries indicates that to be successful every hatchery program must (1) be scientifically defensible and relate to both published standards and statistically relevant outcomes, (2) have well-defined and documented goals with explicit biological and operational specifications, and (3) have protocols in place that enable managers to respond adaptively to new information. The focus should be on the biological integrity of the populations being propagated in or influenced by the hatchery environment, as opposed to the management of the physical facilities. Complete documentation for a proposed hatchery action component should include items ranging from hatchery location and water source(s) to all aspects of animal husbandry and harvest and the management plans for adult returns. The current science for items should be described and the choice of an action component justified in terms of either the scientific or policy basis of the expect outcome. Where appropriate, complete monitoring and evaluation plans for the proposed actions need to be described. C1 NW Fisheries Sci Ctr, Manchester Res Stn, Manchester, WA 98353 USA. RP Flagg, TA (reprint author), NW Fisheries Sci Ctr, Manchester Res Stn, POB 130, Manchester, WA 98353 USA. EM tom.flagg@noaa.gov NR 45 TC 0 Z9 0 U1 11 U2 28 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1522-2055 EI 1548-8454 J9 N AM J AQUACULT JI N. Am. J. Aqualcult. PY 2015 VL 77 IS 3 BP 367 EP 376 DI 10.1080/15222055.2015.1044058 PG 10 WC Fisheries SC Fisheries GA CP5US UT WOS:000359951100014 ER PT J AU Fast, DE Bosch, WJ Johnston, MV Strom, CR Knudsen, CM Fritts, AL Temple, GM Pearsons, TN Larsen, DA Dittman, AH May, D AF Fast, David E. Bosch, William J. Johnston, Mark V. Strom, Charles R. Knudsen, Curtis M. Fritts, Anthony L. Temple, Gabriel M. Pearsons, Todd N. Larsen, Donald A. Dittman, Andrew H. May, Darran TI A Synthesis of Findings from an Integrated Hatchery Program after Three Generations of Spawning in the Natural Environment SO NORTH AMERICAN JOURNAL OF AQUACULTURE LA English DT Article ID SPRING CHINOOK SALMON; COLUMBIA RIVER-BASIN; LINKED-IMMUNOSORBENT-ASSAY; PRECOCIOUS MALE MATURATION; FISH STOCKING PROGRAMS; YAKIMA RIVER; REPRODUCTIVE SUCCESS; ONCORHYNCHUS-TSHAWYTSCHA; 1ST-GENERATION HATCHERY; LIFE-HISTORY AB The Cle Elum Supplementation and Research Facility in the Yakima River basin, Washington, is an integrated spring Chinook Salmon Oncorhynchus tshawytscha hatchery program designed to test whether artificial propagation can increase natural production and harvest opportunities while keeping ecological and genetic impacts within acceptable limits. Only natural-origin (naturally spawned) fish are used for hatchery broodstock. Spawning, incubation, and early rearing occur at a central facility; presmolts are transferred for final rearing, acclimation, and volitional release at sites adjacent to natural spawning areas, where returning adults can spawn with natural-origin fish. The first wild broodstock were collected in 1997, and age-4 adults have returned to the Yakima River since 2001. An unsupplemented population in the adjacent Naches River watershed provides a reference for evaluating environmental influences. The program has been comprehensively monitored from its inception. A synthesis of findings, many already published, is as follows: supplementation increased the harvest, redd counts, and spatial distribution of spawners; natural-origin returns were maintained; straying to nontarget systems was negligible; natural-origin females had slightly higher breeding success (production of surviving fry) in an artificial spawning channel, while the behavior and breeding success of natural-and hatchery-origin males were similar; hatchery-origin fish showed differences in morphometric and life history traits; high rates of hatchery age-2 (minijack) production were reported, but the observed proportions of out-migrating juvenile and adult (ages 4 and 5) returning males were comparable for hatchery-and natural-origin fish; hatchery smolts did not affect the levels of pathogens in natural smolts; and the ecological interactions attributed to the program were within adopted guidelines. Continued study is required to assess the long-term impacts on natural production and productivity. C1 [Fast, David E.; Bosch, William J.; Johnston, Mark V.; Strom, Charles R.] Yakama Nation Fisheries, Toppenish, WA 98948 USA. [Knudsen, Curtis M.] Oncorh Consulting, Olympia, WA 98501 USA. [Fritts, Anthony L.; Temple, Gabriel M.] Washington Dept Fish & Wildlife, Ellensburg, WA 98926 USA. [Pearsons, Todd N.] Grant Cty Publ Util Dist, Ephrata, WA 98823 USA. [Larsen, Donald A.; Dittman, Andrew H.] Natl Marine Fisheries Serv, Environm & Fisheries Sci Div, Seattle, WA 98112 USA. [May, Darran] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. RP Fast, DE (reprint author), Yakama Nation Fisheries, POB 151, Toppenish, WA 98948 USA. EM fast@yakama.com FU Bonneville Power Administration through the Northwest Power and Conservation Council's Fish and Wildlife Program; NOAA-Fisheries FX This project would not have been possible without the vision and leadership of Melvin Sampson, Levi George (to whom the CESRF is dedicated), and the Yakama Nation Tribal Council. Monitoring and evaluation efforts for this project are the result of a cooperative effort by many individuals from a variety of agencies, including the Yakama Nation Fisheries Program, the Washington Department of Fish and Wildlife, the U.S. Fish and Wildlife Service, and the National Oceanic and Atmospheric Administration-Fisheries, as well as some consultants and contractors. We thank all of the individuals involved for their efforts. We also need to recognize and thank the Columbia River Inter-Tribal Fish Commission, the University of Idaho, the University of Washington, the Pacific States Marine Fisheries Commission, Lars Mobrand, and Central Washington University for their many contributions to this project including recommendations, laboratory, and data services. We especially thank Bruce Watson, Joel Hubble, Gerry Lewis, Joe Hoptowit, Doug Neeley, Craig Busack, Bill Hopley, Lynn Hatcher, Steve Schroder, Ray Brunson, Joy Evered, Sharon Lutz, Joan Thomas, Kerry Naish, Charlie Waters, Brian Beckman, Pat Oshie, Pat Spurgin, and Peter Galbreath for their contributions to this project and paper. This work is funded by the Bonneville Power Administration through the Northwest Power and Conservation Council's Fish and Wildlife Program, with some monitoring and evaluation funding from NOAA-Fisheries. NR 146 TC 2 Z9 2 U1 3 U2 23 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1522-2055 EI 1548-8454 J9 N AM J AQUACULT JI N. Am. J. Aqualcult. PY 2015 VL 77 IS 3 BP 377 EP 395 DI 10.1080/15222055.2015.1024360 PG 19 WC Fisheries SC Fisheries GA CP5US UT WOS:000359951100015 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI The Coastal Ocean SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 3 EP 15 PG 13 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100003 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Drifters and Their Numerical Simulation SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 16 EP 37 PG 22 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100004 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI PARTICLES IN THE COASTAL OCEAN THEORY AND APPLICATIONS Preface SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Editorial Material; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP XIX EP + PG 29 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100001 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI PARTICLES IN THE COASTAL OCEAN THEORY AND APPLICATIONS Introduction and Scope SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Editorial Material; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP XXIX EP XXXIII PG 5 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100002 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Probability and Statistics - A Primer SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 38 EP 115 PG 78 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100005 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Dispersion by Random Walk SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 116 EP 170 PG 55 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100006 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Boundary Conditions, Boundary Layers, Sources SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 171 EP 193 PG 23 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100007 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Turbulence Closure SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 194 EP 224 PG 31 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100008 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Meshes: Interpolation, Navigation, and Fields SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 227 EP 270 PG 44 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100009 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Particles and Fields SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 271 EP 293 PG 23 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100010 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Noncohesive Sediment - Dense Particles SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 297 EP 336 PG 40 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100011 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Oil - Chemically Active Particles SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 337 EP 388 PG 52 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100012 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Individual-Based Models - Biotic Particles SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 389 EP 452 PG 64 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100013 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Complex Numbers SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 458 EP 460 PG 3 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100014 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Wiener Integrals SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 461 EP 462 PG 2 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100015 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Rates and Rate Limiters SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 463 EP 467 PG 5 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100016 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Diffusion Solutions SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 468 EP 469 PG 2 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100017 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Covariance Matrix for Shear and Convergence SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 470 EP 471 PG 2 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100018 ER PT J AU Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL AF Lynch, Daniel R. Greenberg, David A. Bilgili, Ata McGillicuddy, Dennis J., Jr. Manning, James P. Aretxabaleta, Alfredo L. BA Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL BF Lynch, DR Greenberg, DA Bilgili, A McGillicuddy, DJ Manning, JP Aretxabaleta, AL TI Distribution Properties for Linear Triangles SO PARTICLES IN THE COASTAL OCEAN: THEORY AND APPLICATIONS LA English DT Article; Book Chapter C1 [Lynch, Daniel R.] Dartmouth Coll, Engn, Hanover, NH 03755 USA. [Greenberg, David A.] Fisheries & Oceans Canada, Bedford Inst Oceanog, Dartmouth, NS B2Y 4A2, Canada. [Bilgili, Ata] Istanbul Tech Univ, Coastal & Ocean Engn, Istanbul, Turkey. [McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Manning, James P.] NOAA, Northeast Fisheries Sci Ctr, Washington, DC 20230 USA. [Aretxabaleta, Alfredo L.] Integrated Stat, Woods Hole, MA 02543 USA. RP Lynch, DR (reprint author), Dartmouth Coll, Engn, Hanover, NH 03755 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-1-107-06175-0 PY 2015 BP 474 EP 477 PG 4 WC Oceanography SC Oceanography GA BD0PN UT WOS:000357526100019 ER PT S AU Klimov, NN Purdy, T Ahmed, Z AF Klimov, Nikolai N. Purdy, Thomas Ahmed, Zeeshan BE VoDinh, T Lieberman, RA Gauglitz, GG TI On-Chip Silicon Photonic Thermometers: from Waveguide Bragg Grating to Ring Resonators sensors SO ADVANCED ENVIRONMENTAL, CHEMICAL, AND BIOLOGICAL SENSING TECHNOLOGIES XII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advanced Environmental, Chemical, and Biological Sensing Technologies XII CY APR 20-21, 2015 CL Baltimore, MD SP SPIE ID TEMPERATURE SENSOR; FIBER AB Fundamental limitations of resistance thermometry, as well as the desire to reduce sensor ownership cost has led to considerable interest in the development of photonic temperature sensors as an alternative to resistance thermometers. These innovative temperature sensors have the potential to leverage advances in frequency metrology to provide cost effective measurement solutions. Here we present the results of our efforst in developing novel photonic temperature sensors. Our preliminary results indicate that using photonic devices such as the ring resonators, photonic crystal cavities and Bragg reflectors we can achieve measurement capabilities that are on-par or better than the state of the art in resistance thermometry. C1 [Klimov, Nikolai N.] NIST, Thermodynam Metrol Grp, Sensor Sci Div, Phys Measurement Lab, Gaithersburg, MD 20899 USA. [Purdy, Thomas; Ahmed, Zeeshan] NIST, Quantum Opt Grp, Quantum Measurement Div, Phys Measurement Lab, Gaithersburg, MD 20899 USA. [Klimov, Nikolai N.] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA. RP Klimov, NN (reprint author), NIST, Thermodynam Metrol Grp, Sensor Sci Div, Phys Measurement Lab, Gaithersburg, MD 20899 USA. NR 24 TC 1 Z9 1 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-602-2 J9 PROC SPIE PY 2015 VL 9486 AR 948609 DI 10.1117/12.2176666 PG 8 WC Engineering, Biomedical; Remote Sensing; Optics SC Engineering; Remote Sensing; Optics GA BD3DE UT WOS:000359481900003 ER PT S AU Mohammad, I Romero-Talamas, C Kostov, D Wang, WP Liu, ZC Hussey, DS Baltic, E Jacobson, DL Gu, J Choa, FS AF Mohammad, Islam Romero-Talamas, Carlos Kostov, Dan Wang, Wanpeng Liu, Zhongchi Hussey, Daniel S. Baltic, Eli Jacobson, David L. Gu, Jerry Choa, Fow-Sen BE VoDinh, T Lieberman, RA Gauglitz, GG TI Global Nuclear Radiation Monitoring Using Plants SO ADVANCED ENVIRONMENTAL, CHEMICAL, AND BIOLOGICAL SENSING TECHNOLOGIES XII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advanced Environmental, Chemical, and Biological Sensing Technologies XII CY APR 20-21, 2015 CL Baltimore, MD SP SPIE DE Nuclear Monitoring; Nuclear Detections; Forensics; Chlorophyll Fluorescence; Plant Electricity ID CHLOROPHYLL AB Plants exhibit complex responses to changes in environmental conditions such as radiant heat flux, water quality, airborne pollutants, soil contents. We seek to utilize the natural chemical and electrophysiological response of plants to develop novel plant-based sensor networks. Our present work focuses on plant responses to high-energy radiation - with the goal of monitoring natural plant responses for use as benchmarks for detection and dosimetry. For our study, we selected a plants cactus, Arabidopsis, Dwarf mango (pine), Euymus and Azela. We demonstrated that the ratio of Chlorophyll a to Chlorophyll b of the leaves has changed due to the exposure gradually come back to the normal stage after the radiation die. We used blue laser-induced blue fluorescence-emission spectra to characterize the pigment status of the trees. Upon blue laser excitation (400 nm) leaves show a fluorescence emission in the red spectral region between 650 and 800nm (chlorophyll fluorescence with maxima near 690nm and 735 nm). Sample tree subjects were placed at a distance of 1m from NIST-certified 241AmBe neutron source (30 mCi), capable of producing a neutron field of about 13 mrem/h. This corresponds to an actual absorbed dose of similar to 1 mrad/h. Our results shows that all plants are sensitive to nuclear radiation and some take longer time to recover and take less. We can use their characteristics to do differential detection and extract nuclear activity information out of measurement results avoid false alarms produced environmental changes. Certainly the ultimate verification can be obtained from genetic information, which only need to be done when we have seen noticeable changes on plant optical spectra, mechanical strength and electrical characteristics. C1 [Mohammad, Islam; Romero-Talamas, Carlos; Kostov, Dan; Choa, Fow-Sen] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Wang, Wanpeng; Liu, Zhongchi] Univ Maryland, College Pk, MD 20742 USA. [Hussey, Daniel S.; Baltic, Eli; Jacobson, David L.] NIST, NCNR, Gaithersburg, MD 20899 USA. [Gu, Jerry] Marriotts Ridge High Sch, Marriottsville, MD 21104 USA. RP Mohammad, I (reprint author), Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. NR 11 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-602-2 J9 PROC SPIE PY 2015 VL 9486 AR 94860S DI 10.1117/12.2177532 PG 9 WC Engineering, Biomedical; Remote Sensing; Optics SC Engineering; Remote Sensing; Optics GA BD3DE UT WOS:000359481900016 ER PT J AU Han, GJ Wu, XR Zhang, SQ Liu, ZY Navon, IM Li, W AF Han, Guijun Wu, Xinrong Zhang, Shaoqing Liu, Zhengyu Navon, Ionel Michael Li, Wei TI A Study of Coupling Parameter Estimation Implemented by 4D-Var and EnKF with a Simple Coupled System SO ADVANCES IN METEOROLOGY LA English DT Article ID ENSEMBLE KALMAN FILTER; ADAPTIVE COVARIANCE INFLATION; VARIATIONAL DATA ASSIMILATION; SCALE NONSMOOTH OPTIMIZATION; SEQUENTIAL DATA ASSIMILATION; MEMORY BUNDLE METHOD; OPERATIONAL IMPLEMENTATION; CLIMATE ESTIMATION; CHAOTIC SYSTEMS; MODEL AB Coupling parameter estimation (CPE) that uses observations to estimate the parameters in a coupled model through error covariance between variables residing in different media may increase the consistency of estimated parameters in an air-sea coupled system. However, it is very challenging to accurately evaluate the error covariance between such variables due to the different characteristic time scales at which flows vary in different media. With a simple Lorenz-atmosphere and slab ocean coupled system that characterizes the interaction of two-timescale media in a coupled "climate" system, this study explores feasibility of the CPE with four-dimensional variational analysis and ensemble Kalman filter within a perfect observing system simulation experiment framework. It is found that both algorithms can improve the representation of air-sea coupling processes through CPE compared to state estimation only. These simple model studies provide some insights when parameter estimation is implemented with a coupled general circulation model for improving climate estimation and prediction initialization. C1 [Han, Guijun; Wu, Xinrong; Li, Wei] State Ocean Adm, Natl Marine Data & Informat Serv, Key Lab Marine Environm Informat Technol, Tianjin 300171, Peoples R China. [Zhang, Shaoqing] Princeton Univ, NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. [Liu, Zhengyu] Univ Wisconsin, Ctr Climate Res, Madison, WI 53706 USA. [Liu, Zhengyu] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA. [Liu, Zhengyu] Peking Univ, Lab Ocean Atmosphere Studies, Beijing 100871, Peoples R China. [Navon, Ionel Michael] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. RP Wu, XR (reprint author), State Ocean Adm, Natl Marine Data & Informat Serv, Key Lab Marine Environm Informat Technol, Tianjin 300171, Peoples R China. EM xinrong_wu@yahoo.com RI Navon, Ionel/A-5173-2008 OI Navon, Ionel/0000-0001-7830-7094 FU National Basic Research Program [2013CB430304]; National Natural Science Foundation [41306006, 41376015, 41376013, 41206178, 41176003]; National High-Tech RD Program [2013AA09A505]; NSF Grant of the US [0968383] FX This research is cosponsored by grants of the National Basic Research Program (2013CB430304), National Natural Science Foundation (41306006, 41376015, 41376013, 41206178, and 41176003), and National High-Tech R&D Program (2013AA09A505), and the NSF Grant of the US (0968383). NR 47 TC 1 Z9 1 U1 1 U2 7 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-9309 EI 1687-9317 J9 ADV METEOROL JI Adv. Meteorol. PY 2015 AR 530764 DI 10.1155/2015/530764 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CP0DQ UT WOS:000359546400001 ER PT J AU Tsuda, T Ikeda, Y Imanishi, A Kusumoto, S Kuwabata, S Stafford, GR Hussey, CL AF Tsuda, Tetsuya Ikeda, Yuichi Imanishi, Akihito Kusumoto, Shohei Kuwabata, Susumu Stafford, Gery R. Hussey, Charles L. TI Electrodeposition of Al-W-Mn Ternary Alloys from the Lewis Acidic Aluminum Chloride-1-Ethyl-3-methylimidazolium Chloride Ionic Liquid SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID MOLTEN-SALT; TUNGSTEN; PASSIVITY; FILMS; ELECTROCHEMISTRY; MELT AB The electrodeposition of non-equilibrium ternary Al-W-Mn alloys was examined in the Lewis acidic 66.7-33.3 m/o aluminum chloride-1-ethyl-3-methylimidazolium chloride (AlCl3-[C(2)mim]Cl) ionic liquid (IL). K-3[W2Cl9] and MnCl2 were added to provide sources of W and Mn. The Al-W-Mn alloys were deposited on Cu wire substrates rotated at a fixed rate of 1000 rpm by using a de galvanostatic method. The W content in the ternary Al-W-Mn alloys decreased with an increase in the deposition current density and was independent of the K-3[W2Cl9] and MnCl2 concentrations in the plating solution. However, both the current density and the metal salt concentrations affected the Mn content of the ternary alloys. X-ray diffraction and composition analysis of the resulting Al-W-Mn deposits revealed the presence of an amorphous non-equilibrium alloy phase without chloride contamination. The chloride-induced pitting potential of the Al-W-Mn ternary alloys was found to be superior to that of the related binary alloys, Al-W and Al-Mn, indicating that the presence of two transition metal solutes has a beneficial additive effect on the corrosion resistance of Al. (C) The Author(s) 2015. Published by ECS. All rights reserved. C1 [Tsuda, Tetsuya; Ikeda, Yuichi; Kuwabata, Susumu] Osaka Univ, Grad Sch Engn, Dept Appl Chem, Suita, Osaka 5650871, Japan. [Imanishi, Akihito; Kusumoto, Shohei] Osaka Univ, Grad Sch Engn Sci, Dept Chem, Toyonaka, Osaka 5608531, Japan. [Stafford, Gery R.] Natl Inst Stand & Technol, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Hussey, Charles L.] Univ Mississippi, Dept Chem & Biochem, University, MS 38677 USA. RP Tsuda, T (reprint author), Osaka Univ, Grad Sch Engn, Dept Appl Chem, Suita, Osaka 5650871, Japan. EM ttsuda@chem.eng.osaka-u.ac.jp; chclh@chem1.olemiss.edu RI Tsuda, Tetsuya/F-7234-2014 OI Tsuda, Tetsuya/0000-0001-9462-8066 FU Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) [24350071, 15H03591]; Advanced Low Carbon Technology Research and Development Program (ALCA) for Specially Promoted Research for Innovative Next Generation Batteries (SPRING); Japan Science and Technology Agency (JST); New Energy and Industrial Technology Development Organization (NEDO) FX Part of this research was supported by Grant-in-Aid for Scientific Research (B), grant No. 24350071 and 15H03591, from Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), by Advanced Low Carbon Technology Research and Development Program (ALCA) for Specially Promoted Research for Innovative Next Generation Batteries (SPRING), Japan Science and Technology Agency (JST), and by New Energy and Industrial Technology Development Organization (NEDO). This was "Paper 1487" presented at the 226th Meeting of the Electrochemical Society in Cancun, Mexico, October 5-9, 2014. A preliminary version of this manuscript appeared in ECS Trans., 64(4), 563 (2014). NR 35 TC 3 Z9 3 U1 9 U2 43 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2015 VL 162 IS 9 BP D405 EP D411 DI 10.1149/2.0051509jes PG 7 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA CO5CL UT WOS:000359177100047 ER PT J AU Schwarz, KA Sundararaman, R Moffat, TP Allison, TC AF Schwarz, Kathleen A. Sundararaman, Ravishankar Moffat, Thomas P. Allison, Thomas C. TI Formic acid oxidation on platinum: a simple mechanistic study SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ENHANCED RAMAN-SPECTROSCOPY; NOBLE-METAL ELECTRODES; FUEL-CELLS; ELECTROCATALYTIC OXIDATION; GALVANOSTATIC ELECTROOXIDATION; ELECTROLYTIC OXIDATION; POTENTIAL OSCILLATIONS; FILM ELECTRODE; SURFACE; GOLD AB The oxidation of small organic acids on noble metal surfaces under electrocatalytic conditions is important for the operation of fuel cells and is of scientific interest, but the basic reaction mechanisms continue to be a matter of debate. Formic acid oxidation on platinum is one of the simplest of these reactions, yet even this model system remains poorly understood. Historically, proposed mechanisms for the oxidation of formic acid involve the acid molecule as a reactant, but recent studies suggest that the formate anion is the reactant. Ab initio studies of this reaction do not address formate as a possible reactant, likely because of the difficulty of calculating a charged species near a charged solvated surface under potential control. Using the recently-developed joint density functional theory (JDFT) framework for electrochemistry, we perform ab initio calculations on a Pt(111) surface to explore this reaction and help resolve the debate. We find that when a formate anion approaches the platinum surface at typical operating voltages, with H pointing towards the surface, it reacts to form CO2 and adsorbed H with no barrier on a clean Pt surface. This mechanism leads to a reaction rate proportional to formate concentration and number of available platinum sites. Additionally, high coverages of adsorbates lead to large reaction barriers, and consequently, we expect the availability of metal sites to limit the experimentally observed reaction rate. C1 [Schwarz, Kathleen A.; Moffat, Thomas P.; Allison, Thomas C.] Natl Inst Stand & Technol, Mat Measurement Lab, Gaithersburg, MD 20899 USA. RP Schwarz, KA (reprint author), Natl Inst Stand & Technol, Mat Measurement Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM kas4@nist.gov RI Sundararaman, Ravishankar/F-6998-2015 OI Sundararaman, Ravishankar/0000-0002-0625-4592 FU NIST-NRC postdoctoral program; DOE Energy Innovation Hub through the Office of Science of the U.S. Department of Energy [DE-SC0004993]; Joint Center for Artificial Photosynthesis, through the Office of Science of the U.S. Department of Energy [DE-SC0004993] FX KAS acknowledges funding from the NIST-NRC postdoctoral program. RS was supported by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. NR 63 TC 8 Z9 8 U1 7 U2 37 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2015 VL 17 IS 32 BP 20805 EP 20813 DI 10.1039/c5cp03045e PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CO5ZU UT WOS:000359237800039 PM 26214401 ER PT J AU Li, XF AF Li Xiaofeng TI The first Sentinel-1 SAR image of a typhoon SO ACTA OCEANOLOGICA SINICA LA English DT Article DE SAR; Sentinel-1; MODIS; typhoon; sea surface wind ID SYNTHETIC-APERTURE RADAR; ATMOSPHERIC VORTEX STREETS; OCEAN; HURRICANES; WAVES AB In this note, we present the first Sentinel-1 synthetic aperture radar (SAR) typhoon image acquired in the northwest Pacific on October 4, 2014. The eye shape and sea surface wind patterns associated with Typhoon Phanfone are clearly shown in the high-quality SAR image. SAR winds retrieval procedure was given but the actual wind estimates will only be available after the European Space Agency (ESA) releases the official calibration coefficients in order to accurately derive the SAR-measured normalized radar cross section. This study demonstrates the advantage of Sentinel-1 SAR with regards to imaging fine scale typhoon patterns on the sea surface beneath storm clouds. This paper also advocates the use of Sentinel-1 SAR data that is made freely and openly available worldwide for the first time in civilian SAR history. C1 NOAA, GST, NESDIS, College Pk, MD 20740 USA. RP Li, XF (reprint author), NOAA, GST, NESDIS, College Pk, MD 20740 USA. EM Xiaofeng.Li@noaa.gov RI Li, Xiaofeng/B-6524-2008 OI Li, Xiaofeng/0000-0001-7038-5119 FU NOAA Product Development, Readiness, and Application (PDRA)/Ocean Remote Sensing (ORS) Program FX The NOAA Product Development, Readiness, and Application (PDRA)/Ocean Remote Sensing (ORS) Program funding. NR 17 TC 12 Z9 12 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0253-505X EI 1869-1099 J9 ACTA OCEANOL SIN JI Acta Oceanol. Sin. PD JAN PY 2015 VL 34 IS 1 BP 1 EP 2 DI 10.1007/s13131-015-0589-8 PG 2 WC Oceanography SC Oceanography GA AY6MI UT WOS:000347679900001 ER PT J AU Zhang, SQ Han, GJ Xie, YF Ruiz, JJ AF Zhang, Shaoqing Han, Guijun Xie, Yuanfu Jose Ruiz, Juan TI Data Assimilation in Numerical Weather and Climate Models SO ADVANCES IN METEOROLOGY LA English DT Editorial Material C1 [Zhang, Shaoqing] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. [Han, Guijun] State Ocean Adm, Natl Marine Data & Informat Serv, Tianjin 300171, Peoples R China. [Xie, Yuanfu] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Jose Ruiz, Juan] Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina. RP Zhang, SQ (reprint author), NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA. EM shaoqing.zhang@noaa.gov OI Zhang, Shaoqing/0000-0003-4085-9023 NR 0 TC 0 Z9 0 U1 0 U2 0 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-9309 EI 1687-9317 J9 ADV METEOROL JI Adv. Meteorol. PY 2015 AR 626893 DI 10.1155/2015/626893 PG 2 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CP0EB UT WOS:000359547500001 ER PT J AU Fielding, MD Chiu, JC Hogan, RJ Feingold, G Eloranta, E O'Connor, EJ Cadeddu, MP AF Fielding, M. D. Chiu, J. C. Hogan, R. J. Feingold, G. Eloranta, E. O'Connor, E. J. Cadeddu, M. P. TI Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID LIQUID WATER PATH; STRATOCUMULUS CLOUDS; STRATUS CLOUD; MICROWAVE RADIOMETER; SPATIAL VARIABILITY; STRATIFORM CLOUDS; EFFECTIVE RADIUS; DOPPLER RADAR; DROPLET SIZE; RAIN RATE AB Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m(-2). The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10-20 g m(-2). C1 [Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; O'Connor, E. J.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Feingold, G.] NOAA Earth Syst Res Lab, Boulder, CO USA. [Eloranta, E.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [O'Connor, E. J.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Cadeddu, M. P.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Fielding, MD (reprint author), Univ Reading, Dept Meteorol, Reading, Berks, England. EM m.d.fielding@pgr.reading.ac.uk RI Chiu, Christine/E-5649-2013; Hogan, Robin/M-6549-2016; Feingold, Graham/B-6152-2009; Manager, CSD Publications/B-2789-2015 OI Chiu, Christine/0000-0002-8951-6913; Hogan, Robin/0000-0002-3180-5157; FU Office of Science (BER), DOE [DE-SC0006933, DE-SC0007233, DE-SC0011666] FX ARM data are made available online through the US Department of Energy (DOE) as part of the Atmospheric Radiation Measurement Program at http://www.archive.arm.gov. This research was supported by the Office of Science (BER), DOE under grants DE-SC0006933, DE-SC0007233 and DE-SC0011666. Huiwen Xue is thanked for producing the large eddy simulations. The authors would like to thank Ernie Lewis and all those involved in making MAGIC happen. We acknowledge Horizon Lines and the Captain and crew of the Horizon Spirit for their and their hospitality, and the AMF2 technicians who performed the measurements. In particular we would like to thank David Troyan and Tami Toto for ship movement correction and Laurie Gregory, Richard Wagener and Cimel Electronique for their help with deploying the Cimel sun photometer on the ship. NR 84 TC 3 Z9 3 U1 3 U2 9 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2015 VL 8 IS 7 BP 2663 EP 2683 DI 10.5194/amt-8-2663-2015 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CN9WA UT WOS:000358799900003 ER PT J AU Pettibone, JM Louie, SM AF Pettibone, John M. Louie, Stacey M. TI Research highlights: detecting, characterizing and quantifying the presence and impact of carbon nanomaterials in environmental systems SO ENVIRONMENTAL SCIENCE-NANO LA English DT Editorial Material ID C-60; FULLERENES; NANOPARTICLES; WATER AB Here, we highlight articles examining different aspects contributing to the fate and role of carbon nanomaterials in environmental systems by developing new insight through measurement methodologies or systematic approaches. The first study examined the role of dissolved organic matter on the colloidal stability of bare and functionalized fullerene and used tools that provide data on the change in size and structure of aggregates with changing media composition. The origin of the aggregates in aqueous media observed is further discussed from other computational and experimental work from other groups. Another study focuses on the development of new mass spectrometry methods for improved detection and quantification of these species in complex media, which provides methods to better assess current methods for detection and water processing. The last study examines the role of carbon nanomaterials in soils and sediments, which provides data on the roles different carbon nanomaterials have in the bioavailability of contaminants. C1 [Pettibone, John M.; Louie, Stacey M.] Natl Inst Stand & Technol, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. RP Louie, SM (reprint author), Natl Inst Stand & Technol, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. EM stacey.louie@nist.gov NR 10 TC 2 Z9 2 U1 4 U2 11 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2051-8153 EI 2051-8161 J9 ENVIRON SCI-NANO JI Environ.-Sci. Nano PY 2015 VL 2 IS 4 BP 308 EP 311 DI 10.1039/c5en90014j PG 4 WC Chemistry, Multidisciplinary; Environmental Sciences; Nanoscience & Nanotechnology SC Chemistry; Environmental Sciences & Ecology; Science & Technology - Other Topics GA CO0UO UT WOS:000358869200001 ER PT S AU Serafy, JE Shideler, GS Araujo, RJ AF Serafy, Joseph E. Shideler, Geoffrey S. Araujo, Rafael J. BE Murchie, KJ Daneshgar, PP TI A Preliminary Assessment of Caribbean Reef Fish Abundance in Relation to Mangrove Forest Area SO MANGROVES AS FISH HABITAT SE American Fisheries Society Symposium LA English DT Proceedings Paper CT 2nd International Symposium on Mangroves as Fish Habitat CY APR 07-12, 2014 CL Mazatlan, MEXICO SP Amer Fisheries Soc, Western Div, Fisheries Conservat Fdn, Ambata Capital Partners, Monmouth Univ, Bahamas Natl Trust, Bonefish & Tarpon Trust, Cape Eleuthera Inst, Amer Fisheries Soc, Estuaries Sec, Ecologists Without Borders, Sustainable Fisheries Fdn, Illinois Nat Hist Survey, Univ Illinois, Dept Nat Resources & Environm Sci, Univ Nacl Autonoma Mexico ID COMMUNITIES C1 [Serafy, Joseph E.] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Miami, FL 33149 USA. [Serafy, Joseph E.; Shideler, Geoffrey S.; Araujo, Rafael J.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. RP Serafy, JE (reprint author), Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, 75 Virginia Beach Dr, Miami, FL 33149 USA. EM jserafy@rsmas.miami.edu NR 8 TC 0 Z9 0 U1 1 U2 5 PU AMER FISHERIES SOC PI BETHESDA PA 5410 GROSVENOR LANE, STE 110, BETHESDA, MD 20814-2199 USA SN 0892-2284 BN 978-1-934874-42-4 J9 AM FISH S S JI Am. Fish. Soc. Symp. PY 2015 VL 83 BP 57 EP 60 PG 4 WC Ecology; Fisheries SC Environmental Sciences & Ecology; Fisheries GA BD2JT UT WOS:000358811200004 ER PT J AU Coutre, KM Beaudreau, AH Malecha, PW AF Coutre, K. M. Beaudreau, A. H. Malecha, P. W. TI Temporal Variation in Diet Composition and Use of Pulsed Resource Subsidies by Juvenile Sablefish SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID PRINCE-WILLIAM-SOUND; LIONS EUMETOPIAS-JUBATUS; ANOPLOPOMA-FIMBRIA; PACIFIC SALMON; TERRESTRIAL ECOSYSTEMS; ENERGY ALLOCATION; CLUPEA-PALLASI; OCEAN CLIMATE; NORTHERN GULF; BERING-SEA AB Pulsed resources create an influx of energy that can provide individual and population level benefits to their consumers. As consumers, Sablefish Anoplopoma fimbria experience strong seasonal pulses in prey resources during their critical period of juvenile growth in the nearshore marine environment. This study described temporal patterns in diet composition of Sablefish (N = 1,081) ranging in size from 226 to 455 mm FL during July and September in St. John Baptist Bay, Alaska. Juvenile Sablefish exploited a large variety of prey taxa characteristic of a generalist predator and experienced significant diet shifts among sampling periods revealing seasonal and interannual variation in resource use. Diets appeared more diverse in 2012 when more invertebrate taxa were consumed compared with 2013 when diets were dominated by herring and salmonid offal. In September of both years, spawning Pink Salmon Oncorhynchus gorbuscha were observed within the study area and juvenile Sablefish capitalized on this high energy subsidy, and salmon carcasses were among the top contributors to their diets by weight. However, Sablefish also exploited in situ prey of lower energy, such as benthic invertebrates, suggesting that Sablefish are not entirely reliant on seasonally pulsed, high-energy prey. This study further emphasizes the significance of salmon as a vector of energy across ecosystems and is one of the first to document a marine teleost species scavenging on adult salmon carcasses in coastal marine waters. C1 [Coutre, K. M.; Beaudreau, A. H.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA. [Malecha, P. W.] Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, NOAA, Auke Bay Lab, Juneau, AK 99801 USA. RP Coutre, KM (reprint author), Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, 17101 Point Lena Loop Rd, Juneau, AK 99801 USA. EM kmcoutre@alaska.edu FU National Oceanic and Atmospheric Administration [NA08OAR4320751]; University of Alaska; University of Alaska Fairbanks; Cooperative Institute for Alaska Research FX This publication is the result, in part, of research sponsored by the Cooperative Institute for Alaska Research with funds from the National Oceanic and Atmospheric Administration under cooperative agreement NA08OAR4320751 with the University of Alaska. Additional funding was provided by the University of Alaska Fairbanks. The authors thank F. Mueter for invaluable discussion and feedback. We thank two anonymous reviewers whose thoughtful comments improved the paper. Also, thanks to K. Echave, D. Hanselman, P. Rigby, C. Rodgveller, B. Mecum, K. Fenske, N. Richardson, M. Chan, and S. Fouse for excellent field help, laboratory assistance, and feedback. Thanks to Sitka Sound Science Center, Island-view Charters, and the Sitka Fine Arts Camp for providing housing and resources necessary for sampling trips. NR 62 TC 1 Z9 1 U1 2 U2 9 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PY 2015 VL 144 IS 4 BP 807 EP 819 DI 10.1080/00028487.2015.1037015 PG 13 WC Fisheries SC Fisheries GA CO0PP UT WOS:000358854700013 ER PT J AU David, SR Kik, RS Diana, JS Rutherford, ES Wiley, MJ AF David, Solomon R. Kik, Richard S. Diana, James S. Rutherford, Edward S. Wiley, Michael J. TI Evidence of Countergradient Variation in Growth of Spotted Gars from Core and Peripheral Populations SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID LIFE-HISTORY TRAITS; LATITUDINAL VARIATION; MENIDIA-MENIDIA; GENETIC DIVERSITY; EVOLUTIONARY SIGNIFICANCE; ATLANTIC SILVERSIDES; WINTER MORTALITY; LARGEMOUTH BASS; GROWING-SEASON; REACTION NORMS AB Peripheral populations occupy the edge of a species' range and may exhibit adaptations to potentially "harsher" marginal environments compared with core populations. The peripheral population of Spotted Gar Lepisosteus oculatus in the Great Lakes basin represents the northern edge of the species' range and is completely disjunct from the core Mississippi River basin population. Age-0 Spotted Gars from the peripheral population experience a growing season approximately half that of the core population but reach similar sizes by winter, suggesting potential for countergradient variation in growth, i.e. an evolutionary response to an environmental gradient such as latitude to compensate for the usual phenotypic effect of that gradient. In this study we used two common garden experiments to investigate potential countergradient variation in growth of young-of-year Spotted Gars from peripheral populations in comparison with those from core populations. Our first experiment showed that in a common environment under temperatures within the first growing season (22-24 degrees C), Spotted Gars from the peripheral population had significantly higher growth rates than those from the core population. Final Spotted Gar weight-length ratio was also higher in the peripheral versus core population. In our second experiment, under three temperature treatments (16, 23, and 30 degrees C), maximum growth occurred at the highest temperature, whereas growth ceased at the lowest temperature for both populations. These results suggest that important genetic and physiological differences could exist between the two population groups, consistent with countergradient variation. Our findings indicate that countergradient growth variation can occur even in relatively slowly evolving fishes, such as gars (family Lepisosteidae), and that protection of peripheral populations should be a key component of fish conservation planning. C1 [David, Solomon R.] John G Shedd Aquarium, Daniel P Haerther Ctr Conservat & Res, Chicago, IL 60605 USA. [Kik, Richard S.] Belle Isle Conservancy, Detroit, MI 48214 USA. [Diana, James S.; Wiley, Michael J.] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA. [Rutherford, Edward S.] NOAA, Great Lakes Environm Res Lab, Ann Arbor, MI 48108 USA. RP David, SR (reprint author), John G Shedd Aquarium, Daniel P Haerther Ctr Conservat & Res, 1200 South Lake Shore Dr, Chicago, IL 60605 USA. EM sdavid@sheddaquarium.org FU University of Michigan School of Natural Resources and Environment; Michigan Department of Natural Resources; National Oceanic and Atmospheric Administration Great Lakes Environmental Research Laboratory; North American Native Fishes Association; Fish Doctors Ypsilanti FX Funding and support for this project were provided in part by the University of Michigan School of Natural Resources and Environment, Michigan Department of Natural Resources, National Oceanic and Atmospheric Administration Great Lakes Environmental Research Laboratory, North American Native Fishes Association, and Fish Doctors Ypsilanti. This is National Oceanic and Atmospheric Administration, Great Lakes Environmental Research Laboratory contribution 1759. We thank Quenton Fontenot and Allyse Ferrara of Nicholls State University for their expertise on gar spawning, as well as for the gar embryos from core populations. We also thank Brad Utrup, Madison Schaeffer, and Joe Nohner for assistance with common garden experiments and Barry OConnor for manuscript review. NR 73 TC 2 Z9 2 U1 2 U2 13 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PY 2015 VL 144 IS 4 BP 837 EP 850 DI 10.1080/00028487.2015.1040523 PG 14 WC Fisheries SC Fisheries GA CO0PP UT WOS:000358854700016 ER PT J AU Gulak, SJB Santiago, AJD Carlson, JK AF Gulak, S. J. B. Santiago, A. J. de Ron Carlson, J. K. TI Hooking mortality of scalloped hammerhead Sphyrna lewini and great hammerhead Sphyrna mokarran sharks caught on bottom longlines SO AFRICAN JOURNAL OF MARINE SCIENCE LA English DT Article; Proceedings Paper CT Sharks International Conference CY JUN, 2014 CL Durban, SOUTH AFRICA DE bycatch; hook timer; logistic regression; soak time; time on the hook ID GULF-OF-MEXICO; STOCK ASSESSMENT; CIRCLE HOOKS; RELEASE; FISHERIES; ATLANTIC; WATER AB The scalloped hammerhead Sphyrna lewini and the great hammerhead S. mokarran are typically caught as bycatch in a variety of fisheries and are listed as globally Endangered by the International Union for the Conservation of Nature. Due to very high at-vessel mortality for these species, research is needed on fishing methods to reduce mortality for longline-captured sharks. A series of fishing experiments were conducted employing hook timers and temperature-depth recorders on contracted commercial vessels fishing with bottom-longline gear to assess factors related to mortality. A total of 273 sets were deployed with 54 485 hook timers. Scalloped and great hammerheads had at-vessel mortality rates of 62.9% and 56.0%, respectively. Median hooking times for scalloped and great hammerheads were 3.5 h and 3.4 h, respectively, and 50% mortality was predicted at 3.5 h and 3.8 h. When these data are considered for potential management strategies to reduce the mortality of hammerhead sharks, a limitation on gear soak time would probably improve hammerhead shark survivorship. However, it may prove to be difficult for a fishery to remain economically viable if the soak time is limited to less than the median hooking time for the target species. Additional management options, such as time/area closures, may need to be explored to reduce bycatch mortality of scalloped and great hammerheads. C1 [Gulak, S. J. B.; Santiago, A. J. de Ron] Riverside Technol Inc, Natl Marine Fisheries Serv, Panama City Lab, Panama City Beach, FL USA. [Carlson, J. K.] Natl Marine Fisheries Serv, Panama City Lab, Panama City, FL 32408 USA. RP Carlson, JK (reprint author), Natl Marine Fisheries Serv, Panama City Lab, Panama City, FL 32408 USA. EM john.carlson@noaa.gov FU National Marine Fisheries Service (NMFS)-Cooperative Research Program and Highly Migratory Species Office FX We acknowledge funding from the National Marine Fisheries Service (NMFS)-Cooperative Research Program and Highly Migratory Species Office. We thank Jeff Lange, Brooks Doughtie, Jim Patterson, Michael Enzenauer and the other fisheries observers who helped collect data for this study. We also appreciate the cooperation of vessels in the NMFS Shark Research Fishery. Dean Courtney and Ivy Baremore helped with the use of the R statistical package. NR 27 TC 4 Z9 4 U1 7 U2 29 PU NATL INQUIRY SERVICES CENTRE PTY LTD PI GRAHAMSTOWN PA 19 WORCESTER STREET, PO BOX 377, GRAHAMSTOWN 6140, SOUTH AFRICA SN 1814-232X EI 1814-2338 J9 AFR J MAR SCI JI Afr. J. Mar. Sci. PY 2015 VL 37 IS 2 SI SI BP 267 EP 273 DI 10.2989/1814232X.2015.1026842 PG 7 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA CN8DA UT WOS:000358666800014 ER PT J AU Prager, KC Alt, DP Buhnerkempe, MG Greig, DJ Galloway, RL Wu, QZ Gulland, FMD Lloyd-Smith, JO AF Prager, K. C. Alt, David P. Buhnerkempe, Michael G. Greig, Denise J. Galloway, Renee L. Wu, Qingzhong Gulland, Frances M. D. Lloyd-Smith, James O. TI Antibiotic Efficacy in Eliminating Leptospiruria in California Sea Lions (Zalophus californianus) Stranding with Leptospirosis SO AQUATIC MAMMALS LA English DT Article DE antibiotic; California sea lion; Zalophus californianus; Leptospira interrogans; leptospiruria; renal disease; chronic shedding ID INTERROGANS SEROVAR POMONA; ANTIMICROBIAL AGENTS; DIAGNOSIS; SUSCEPTIBILITIES; COAST; PCR; SEROPREVALENCE; DOXYCYCLINE; PINNIPEDS; THERAPY AB Stranded California sea lions (Zalophus californianus) along the California coast have been diagnosed with leptospirosis every year since at least the 1980s. Between September 2010 and November 2011, we followed 14 stranded California sea lions that survived to release and evaluated antibiotic efficacy in eliminating leptospiruria (urinary shedding of leptospires). Leptospiruria was assessed by real-time PCR of urine and urine culture, with persistence assessed using longitudinally collected samples. Serum chemistry was used to assess recovery of normal renal function. Microscopic agglutination testing (MAT) was performed to assess serum anti-Leptospira antibody titers, and the MAT reactivity patterns were consistent with L. interrogans serovar Pomona infection frequently observed in this population. Animals were initially treated for 6 to 16 d (median = 10.5; mean = 10.8) with antibiotics from the penicillin family, with some receiving additional antibiotics to treat other medical conditions. All urine cultures were negative; therefore, the presence of leptospiruria was assessed using PCR. Leptospiruria continued beyond the initial course of penicillin family antibiotics in 13 of the 14 sea lions, beyond the last antibiotic dose in 11 of the 14 sea lions, beyond recovery of renal function in 13 of the 14 sea lions, and persisted for at least 8 to 86 d (median = 45; mean = 46.8). Five animals were released with no negative urine PCR results detected; thus, their total shedding duration may have been longer. Cessation of leptospiruria was more likely in animals that received antibiotics for a greater duration, especially if coverage was uninterrupted. Real-time PCR results indicate that an antibiotic protocol commonly used to treat leptospirosis in rehabilitating California sea lions does not eliminate leptospiruria. It is possible that antibiotic protocols given for a longer duration and/or including other antibiotics may be effective in eliminating leptospiruria. These results may have important human and animal health implications, especially in rehabilitation facilities, as Leptospira transmission may occur through contact with animals with persistent leptospiruria. C1 [Prager, K. C.; Buhnerkempe, Michael G.; Lloyd-Smith, James O.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. [Prager, K. C.; Buhnerkempe, Michael G.; Lloyd-Smith, James O.] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA. [Alt, David P.] Natl Anim Dis Ctr, Infect Bacterial Dis Res Unit, Ames, IA 50010 USA. [Greig, Denise J.; Gulland, Frances M. D.] Marine Mammal Ctr, Sausalito, CA 94965 USA. [Galloway, Renee L.] Ctr Dis Control & Prevent, Atlanta, GA 30333 USA. [Wu, Qingzhong] Natl Ocean Serv, Hollings Marine Lab, Charleston, SC 29412 USA. RP Prager, KC (reprint author), Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. EM kcprager@ucla.edu RI Lloyd-Smith, James/K-4080-2012 OI Lloyd-Smith, James/0000-0001-7941-502X FU John H. Prescott Marine Mammal Rescue Assistance Grant Program; National Science Foundation [OCE-1335657]; De Logi Chair in Biological Sciences; RAPIDD program of the Science and Technology Directorate, Department of Homeland Security; Fogarty International Center, National Institutes of Health FX This work was supported by the John H. Prescott Marine Mammal Rescue Assistance Grant Program; the National Science Foundation (OCE-1335657); the De Logi Chair in Biological Sciences; and the RAPIDD program of the Science and Technology Directorate, Department of Homeland Security and the Fogarty International Center, National Institutes of Health. The authors thank the staff and volunteers at The Marine Mammal Center in Sausalito, California, as they were integral to sample collection, sample management, and treatment choice, particularly Jen Soper, Carlos Rios, and William Van Bonn. NR 36 TC 0 Z9 0 U1 3 U2 8 PU EUROPEAN ASSOC AQUATIC MAMMALS PI MOLINE PA C/O DR JEANETTE THOMAS, BIOLOGICAL SCIENCES, WESTERN ILLIONIS UNIV-QUAD CITIES, 3561 60TH STREET, MOLINE, IL 61265 USA SN 0167-5427 J9 AQUAT MAMM JI Aquat. Mamm. PY 2015 VL 41 IS 2 BP 203 EP 212 DI 10.1578/AM.41.2.2015.203 PG 10 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA CN3AZ UT WOS:000358296900008 ER PT J AU Liu, J Scheuer, E Dibb, J Diskin, GS Ziemba, LD Thornhill, KL Anderson, BE Wisthaler, A Mikoviny, T Devi, JJ Bergin, M Perring, AE Markovic, MZ Schwarz, JP Campuzano-Jost, P Day, DA Jimenez, JL Weber, RJ AF Liu, J. Scheuer, E. Dibb, J. Diskin, G. S. Ziemba, L. D. Thornhill, K. L. Anderson, B. E. Wisthaler, A. Mikoviny, T. Devi, J. J. Bergin, M. Perring, A. E. Markovic, M. Z. Schwarz, J. P. Campuzano-Jost, P. Day, D. A. Jimenez, J. L. Weber, R. J. TI Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LIGHT-ABSORPTION ENHANCEMENT; SOUTHEASTERN UNITED-STATES; BIOMASS BURNING PARTICLES; SECONDARY ORGANIC AEROSOL; BLACK CARBON; OPTICAL-PROPERTIES; SOLAR-RADIATION; RESOLVED MEASUREMENTS; CHEMICAL-COMPOSITION; ANGSTROM EXPONENT AB Chemical components of organic aerosol (OA) selectively absorb light at short wavelengths. In this study, the prevalence, sources, and optical importance of this so-called brown carbon (BrC) aerosol component are investigated throughout the North American continental tropospheric column during a summer of extensive biomass burning. Spectrophotometric absorption measurements on extracts of bulk aerosol samples collected from an aircraft over the central USA were analyzed to directly quantify BrC abundance. BrC was found to be prevalent throughout the 1 to 12 km altitude measurement range, with dramatic enhancements in biomass-burning plumes. BrC to black carbon (BC) ratios, under background tropospheric conditions, increased with altitude, consistent with a corresponding increase in the absorption Angstrom exponent (AAE) determined from a three-wavelength particle soot absorption photometer (PSAP). The sum of inferred BC absorption and measured BrC absorption at 365 nm was within 3% of the measured PSAP absorption for background conditions and 22% for biomass burning. A radiative transfer model showed that BrC absorption reduced top-of-atmosphere (TOA) aerosol forcing by similar to 20% in the background troposphere. Extensive radiative model simulations applying this study background tropospheric conditions provided a look-up chart for determining radiative forcing efficiencies of BrC as a function of a surface-measured BrC : BC ratio and single scattering albedo (SSA). The chart is a first attempt to provide a tool for better assessment of brown carbon's forcing effect when one is limited to only surface data. These results indicate that BrC is an important contributor to direct aerosol radiative forcing. C1 [Liu, J.; Weber, R. J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Scheuer, E.; Dibb, J.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Diskin, G. S.; Ziemba, L. D.; Thornhill, K. L.; Anderson, B. E.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. [Mikoviny, T.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. [Devi, J. J.; Bergin, M.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Perring, A. E.; Markovic, M. Z.; Schwarz, J. P.] Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Chem Sci Div, Boulder, CO 80305 USA. [Perring, A. E.; Markovic, M. Z.; Schwarz, J. P.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Weber, RJ (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM rodney.weber@eas.gatech.edu RI Liu, Jiumeng/K-2024-2012; Perring, Anne/G-4597-2013; Jimenez, Jose/A-5294-2008; schwarz, joshua/G-4556-2013; Manager, CSD Publications/B-2789-2015 OI Liu, Jiumeng/0000-0001-7238-593X; Perring, Anne/0000-0003-2231-7503; Jimenez, Jose/0000-0001-6203-1847; schwarz, joshua/0000-0002-9123-2223; FU GIT NASA [NNX12AB83G, NNX08AH80G]; UNH NASA [NNX12AB80G]; NASA [NNX12AC03G] FX This project was funded by GIT NASA contracts NNX12AB83G and NNX08AH80G and UNH NASA contract NNX12AB80G. Acetonitrile measurements onboard the DC-8 were supported by BMVIT/FFG-ALR and the NASA Postdoctoral Program. P. Campuzano-Jost, D. A. Day, and J. L. Jimenez were supported by NASA NNX12AC03G. The authors thank the DC3 personnel for logistical support. NR 70 TC 10 Z9 10 U1 3 U2 42 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 14 BP 7841 EP 7858 DI 10.5194/acp-15-7841-2015 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CN9VS UT WOS:000358799000007 ER PT J AU Veres, PR Roberts, JM Wild, RJ Edwards, PM Brown, SS Bates, TS Quinn, PK Johnson, JE Zamora, RJ de Gouw, J AF Veres, P. R. Roberts, J. M. Wild, R. J. Edwards, P. M. Brown, S. S. Bates, T. S. Quinn, P. K. Johnson, J. E. Zamora, R. J. de Gouw, J. TI Peroxynitric acid (HO2NO2) measurements during the UBWOS 2013 and 2014 studies using iodide ion chemical ionization mass spectrometry SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LASER-INDUCED FLUORESCENCE; REACTIVE NITROGEN; SOUTH-POLE; PERNITRIC ACID; BOUNDARY-LAYER; UPPER TROPOSPHERE; OZONE PRODUCTION; ISCAT 2000; CHEMISTRY; OH AB In this paper laboratory work is documented establishing iodide ion chemical ionization mass spectrometry (I- CIMS) as a sensitive method for the unambiguous detection of peroxynitric acid (HO2NO2; PNA). A dynamic calibration source for HO2NO2, HO2, and HONO was developed and calibrated using a novel total NOy cavity ring-down spectroscopy (CaRDS) detector. Photochemical sources of these species were used for the calibration and validation of the I- CIMS instrument for detection of HO2NO2. Ambient observations of HO2NO2 using I- CIMS during the 2013 and 2014 Uintah Basin Wintertime Ozone Study (UBWOS) are presented. Strong inversions leading to a build-up of many primary and secondary pollutants as well as low temperatures drove daytime HO2NO2 as high as 1.5 ppbv during the 2013 study. A comparison of HO2NO2 observations to mixing ratios predicted using a chemical box model describing an ozone formation event observed during the 2013 wintertime shows agreement in the daily maxima HO2NO2 mixing ratio, but a differences of several hours in the timing of the observed maxima. Observations of vertical gradients suggest that the ground snow surface potentially serves as both a net sink and source of HO2NO2 depending on the time of day. Sensitivity tests using a chemical box model indicate that the lifetime of HO2NO2 with respect to deposition has a non-negligible impact on ozone production rates on the order of 10 %. C1 [Veres, P. R.; Wild, R. J.; Edwards, P. M.; de Gouw, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Veres, P. R.; Roberts, J. M.; Wild, R. J.; Edwards, P. M.; Brown, S. S.; de Gouw, J.] NOAA Earth Syst Res Lab, Chem Sci Div, Boulder, CO USA. [Bates, T. S.; Johnson, J. E.] Univ Washington, Joint Inst Study Oceans & Atmosphere, Seattle, WA 98195 USA. [Bates, T. S.; Quinn, P. K.] Natl Ocean & Atmospher Adm, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Zamora, R. J.] NOAA Earth Syst Res Lab, Phys Sci Div, Boulder, CO USA. RP Veres, PR (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM patrick.veres@noaa.gov RI Brown, Steven/I-1762-2013; Bates, Timothy/L-6080-2016; Quinn, Patricia/R-1493-2016; Wild, Robert/I-1963-2013; Manager, CSD Publications/B-2789-2015; de Gouw, Joost/A-9675-2008; Veres, Patrick/E-7441-2010; Roberts, James/A-1082-2009; Edwards, Peter M./H-5236-2013 OI Quinn, Patricia/0000-0003-0337-4895; Wild, Robert/0000-0002-4800-5172; de Gouw, Joost/0000-0002-0385-1826; Veres, Patrick/0000-0001-7539-353X; Roberts, James/0000-0002-8485-8172; Edwards, Peter M./0000-0002-1076-6793 FU Uintah Impact Mitigation Special Service District (UIMSSD); Bureau of Land Management (BLM); Environmental Protection Agency (EPA); Utah State University; Western Energy Alliance; NOAA's Atmospheric Chemistry, Climate and Carbon Cycle program; Questar Energy Products FX The Uintah Basin Winter Ozone Studies were a joint project led and coordinated by the Utah Department of Environmental Quality (UDEQ) and supported by the Uintah Impact Mitigation Special Service District (UIMSSD), the Bureau of Land Management (BLM), the Environmental Protection Agency (EPA) and Utah State University. This work was funded in part by the Western Energy Alliance, and NOAA's Atmospheric Chemistry, Climate and Carbon Cycle program. We thank Questar Energy Products for site preparation and support. NR 63 TC 5 Z9 5 U1 7 U2 28 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 14 BP 8101 EP 8114 DI 10.5194/acp-15-8101-2015 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CN9VS UT WOS:000358799000022 ER PT J AU Molina, L Broquet, G Imbach, P Chevallier, F Poulter, B Bonal, D Burban, B Ramonet, M Gatti, LV Wofsy, SC Munger, JW Dlugokencky, E Ciais, P AF Molina, L. Broquet, G. Imbach, P. Chevallier, F. Poulter, B. Bonal, D. Burban, B. Ramonet, M. Gatti, L. V. Wofsy, S. C. Munger, J. W. Dlugokencky, E. Ciais, P. TI On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID FORESTS GREEN-UP; RAIN-FOREST; CARBON BALANCE; SOUTH-AMERICA; DRY SEASON; DROUGHT SENSITIVITY; SYNOPTIC VARIATIONS; CLIMATE-CHANGE; MODEL; TRENDS AB The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC) service is used to study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia during the period 2002-2010. The system assimilated surface measurements of atmospheric CO2 mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons) and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009. C1 [Molina, L.; Broquet, G.; Chevallier, F.; Ramonet, M.; Ciais, P.] IPSL, CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. [Imbach, P.] Trop Agr Res & Higher Educ Ctr, Climate Change Program, Turrialba 30501, Cartago, Costa Rica. [Poulter, B.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [Bonal, D.] INRA, UMR EEF, F-54280 Champenoux, France. [Gatti, L. V.] CNEN, IPEN, Lab Quim Atmosfer, Sao Paulo, SP, Brazil. [Wofsy, S. C.; Munger, J. W.] Harvard Univ, Sch Engn & Appl Sci, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Burban, B.] INRA, UMR Ecofog, Kourou 97387, French Guiana. [Dlugokencky, E.] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO 80305 USA. RP Molina, L (reprint author), IPSL, CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France. EM luis.molina@lsce.ipsl.fr RI Chevallier, Frederic/E-9608-2016; Munger, J/H-4502-2013; Gatti, Luciana/J-8569-2012 OI Chevallier, Frederic/0000-0002-4327-3813; Munger, J/0000-0002-1042-8452; FU French Ministry of Research; INRA; CNES; French ANR [CEBA: ANR-10-LABX-0025]; European Commission under the EU [283080]; ARIA Technologies; Thales Alenia Space; Veolia; CEA; UVSQ; CNRS FX We would like to thank Martin Jung (Max Planck Institute for Biogeochemistry) for the access to the upscaled NEE data. Data recorded at the GUY site were obtained in the framework of the GUYAFLUX project funded by the French Ministry of Research, INRA, and the CNES in the framework of the PO Feder Region Guyane. The GUYAFLUX project also received support from an Investissement d'Avenir grants of the French ANR (CEBA: ANR-10-LABX-0025). This study was co-funded by the European Commission under the EU Seventh Research Framework Programme (grant agreement no. 283080, Geocarbon project) and ARIA Technologies. G. Broquet acknowledges funding and support from the Chaire industrielle BridGES, a joint research program between Thales Alenia Space, Veolia, CEA, UVSQ and CNRS. NR 52 TC 1 Z9 1 U1 0 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 14 BP 8423 EP 8438 DI 10.5194/acp-15-8423-2015 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CN9VS UT WOS:000358799000036 ER PT J AU Zhang, L Sun, JY Shen, XJ Zhang, YM Che, H Ma, QL Zhang, YW Zhang, XY Ogren, JA AF Zhang, L. Sun, J. Y. Shen, X. J. Zhang, Y. M. Che, H. Ma, Q. L. Zhang, Y. W. Zhang, X. Y. Ogren, J. A. TI Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ALPINE SITE JUNGFRAUJOCH; OPTICAL-PROPERTIES; ATMOSPHERIC AEROSOLS; RADIATIVE PROPERTIES; DUST PARTICLES; INTEGRATING NEPHELOMETER; HYGROSCOPIC PROPERTIES; HUMIDIFICATION FACTORS; MONITORING SITES; REGIONAL AEROSOL AB Scattering of solar radiation by aerosol particles is highly dependent on relative humidity (RH) as hygroscopic particles take up water with increasing RH. To achieve a better understanding of the effect of aerosol hygroscopic growth on light scattering properties and radiative forcing, the aerosol scattering coefficients at RH in the range of 40 to similar to 90% were measured using a humidified nephelometer system in the Yangtze River Delta of China in March 2013. In addition, the aerosol size distribution and chemical composition were measured. During the observation period, the mean and standard deviation (SD) of enhancement factors at RH = 85% for the scattering coefficient (f(85 %)), backscattering coefficient (f(b)(85 %)), and hemispheric backscatter fraction (f(beta)(85 %)) were 1.58 +/- 0.12, 1.25 +/- 0.07, and 0.79 +/- 0.04, respectively, i.e., aerosol scattering coefficient and backscattering coefficient increased by 58 and 25% as the RH increased from 40 to 85 %. Concurrently, the aerosol hemispheric backscatter fraction decreased by 21 %. The relative amount of organic matter (OM) or inorganics in PM1 was found to be a main factor determining the magnitude of f (RH). The highest values of f (RH) corresponded to the aerosols with a small fraction of OM, and vice versa. The relative amount of NO3- in fine particles was strongly correlated with f (85 %), which suggests that NO3- played a vital role in aerosol hygroscopic growth during this study. The mass fraction of nitrate also had a close relationship to the curvature of the humidograms; higher mass fractions of nitrate were associated with humidograms that had the least curvature. Aerosol hygroscopic growth caused a 47% increase in the calculated aerosol direct radiative forcing at 85% RH, compared to the forcing at 40% RH. C1 [Zhang, L.; Sun, J. Y.; Shen, X. J.; Zhang, Y. M.; Che, H.; Zhang, Y. W.; Zhang, X. Y.] Chinese Acad Meteorol Sci, Inst Atmospher Composit, Key Lab Atmospher Chem CMA, Beijing 100081, Peoples R China. [Zhang, L.] Univ Chinese Acad Sci, Coll Earth Sci, Beijing 100049, Peoples R China. [Sun, J. Y.] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Cryospher Sci, Lanzhou 730000, Peoples R China. [Ma, Q. L.] Linan Reg Atmosphere Background Stn, Linan 311307, Peoples R China. [Ogren, J. A.] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Sun, JY (reprint author), Chinese Acad Meteorol Sci, Inst Atmospher Composit, Key Lab Atmospher Chem CMA, Beijing 100081, Peoples R China. EM jysun@cams.cma.gov.cn RI Ogren, John/M-8255-2015 OI Ogren, John/0000-0002-7895-9583 FU National Basic Research Program of China [2011CB403401]; National Natural Science Foundation of China [41475118, 41175113]; China International Science and Technology Cooperation Project [2009DFA22800]; CAMS Basis Research Project [2013Z007, 2013Y004]; Meteorological Special Project of China [GYHY-200906038, GYHY201206037]; CMA Innovation Team for Haze-fog Observation and Forecasts FX This work was supported by National Basic Research Program of China (2011CB403401), the National Natural Science Foundation of China (41475118, 41175113), China International Science and Technology Cooperation Project (2009DFA22800), CAMS Basis Research Project (2013Z007, 2013Y004), and the Meteorological Special Project of China (GYHY-200906038, GYHY201206037). This paper is partially supported by the CMA Innovation Team for Haze-fog Observation and Forecasts. The authors would also like to thank the Lin'an observational station staff for their support. The authors thank D. Covert of the Department of Atmospheric Sciences, University of Washington Seattle, USA, for useful discussions. NR 76 TC 7 Z9 8 U1 2 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 14 BP 8439 EP 8454 DI 10.5194/acp-15-8439-2015 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CN9VS UT WOS:000358799000037 ER PT J AU Wagner, NL Brock, CA Angevine, WM Beyersdorf, A Campuzano-Jost, P Day, DA de Gouw, JA Diskin, GS Gordon, TD Graus, MG Holloway, JS Huey, G Jimenez, JL Lack, DA Liao, J Liu, X Markovic, MZ Middlebrook, AM Mikoviny, T Peischl, J Perring, AE Richardson, MS Ryerson, TB Schwarz, JP Warneke, C Welti, A Wisthaler, A Ziemba, LD Murphy, DM AF Wagner, N. L. Brock, C. A. Angevine, W. M. Beyersdorf, A. Campuzano-Jost, P. Day, D. A. de Gouw, J. A. Diskin, G. S. Gordon, T. D. Graus, M. G. Holloway, J. S. Huey, G. Jimenez, J. L. Lack, D. A. Liao, J. Liu, X. Markovic, M. Z. Middlebrook, A. M. Mikoviny, T. Peischl, J. Perring, A. E. Richardson, M. S. Ryerson, T. B. Schwarz, J. P. Warneke, C. Welti, A. Wisthaler, A. Ziemba, L. D. Murphy, D. M. TI In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC(4)RS: observations of a modest aerosol enhancement aloft (vol 15, pg 7085, 2015) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Correction C1 [Wagner, N. L.; Brock, C. A.; Angevine, W. M.; de Gouw, J. A.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Lack, D. A.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Murphy, D. M.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Wagner, N. L.; Angevine, W. M.; Campuzano-Jost, P.; Day, D. A.; de Gouw, J. A.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Markovic, M. Z.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Schwarz, J. P.; Warneke, C.; Welti, A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Beyersdorf, A.; Diskin, G. S.; Ziemba, L. D.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Huey, G.; Liu, X.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Mikoviny, T.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Welti, A.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. RP Wagner, NL (reprint author), NOAA, Earth Syst Res Lab, 325 Broadway, Boulder, CO 80305 USA. EM nick.wagner@noaa.gov RI Murphy, Daniel/J-4357-2012; Perring, Anne/G-4597-2013; Jimenez, Jose/A-5294-2008; Warneke, Carsten/E-7174-2010; schwarz, joshua/G-4556-2013 OI Murphy, Daniel/0000-0002-8091-7235; Perring, Anne/0000-0003-2231-7503; Jimenez, Jose/0000-0001-6203-1847; schwarz, joshua/0000-0002-9123-2223 NR 1 TC 1 Z9 1 U1 1 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 14 BP 8455 EP 8455 DI 10.5194/acp-15-8455-2015 PG 1 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CN9VS UT WOS:000358799000038 ER PT J AU Meyer, J Rolf, C Schiller, C Rohs, S Spelten, N Afchine, A Zoger, M Sitnikov, N Thornberry, TD Rollins, AW Bozoki, Z Tatrai, D Ebert, V Kuhnreich, B Mackrodt, P Mohler, O Saathoff, H Rosenlof, KH Kramer, M AF Meyer, J. Rolf, C. Schiller, C. Rohs, S. Spelten, N. Afchine, A. Zoeger, M. Sitnikov, N. Thornberry, T. D. Rollins, A. W. Bozoki, Z. Tatrai, D. Ebert, V. Kuehnreich, B. Mackrodt, P. Moehler, O. Saathoff, H. Rosenlof, K. H. Kraemer, M. TI Two decades of water vapor measurements with the FISH fluorescence hygrometer: a review SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Review ID UPPER TROPOSPHERE; STATISTICAL-ANALYSIS; TROPICAL TROPOPAUSE; OPEN-PATH; STRATOSPHERE; CIRRUS; ICE; CALIBRATION; VALIDATION; SATELLITE AB For almost two decades, the airborne Fast In-situ Stratospheric Hygrometer (FISH) has stood for accurate and precise measurements of total water mixing ratios (WMR, gas phase + evaporated ice) in the upper troposphere and lower stratosphere (UT/LS). Here, we present a comprehensive review of the measurement technique (Lyman-alpha photofragment fluorescence), calibration procedure, accuracy and reliability of FISH. Crucial for FISH measurement quality is the regular calibration to a water vapor reference, namely the commercial frost-point hygrometer DP30. In the frame of this work this frost-point hygrometer is compared to German and British traceable metrological water standards and its accuracy is found to be 2-4 %. Overall, in the range from 4 to 1000 ppmv, the total accuracy of FISH was found to be 6-8 %, as stated in previous publications. For lower mixing ratios down to 1 ppmv, the uncertainty reaches a lower limit of 0.3 ppmv. For specific, non-atmospheric conditions, as set in experiments at the AIDA chamber - namely mixing ratios below 10 and above 100 ppmv in combination with high-and low-pressure conditions - the need to apply a modified FISH calibration evaluation has been identified. The new evaluation improves the agreement of FISH with other hygrometers to +/- 10% accuracy in the respective mixing ratio ranges. Furthermore, a quality check procedure for high total water measurements in cirrus clouds at high pressures (400-500 hPa) is introduced. The performance of FISH in the field is assessed by reviewing inter-comparisons of FISH water vapor data with other in situ and remote sensing hygrometers over the last two decades. We find that the agreement of FISH with the other hygrometers has improved over that time span from overall up to +/- 30% or more to about +/- 5-20% @ < 10 ppmv and to +/- 0-15% @ >10 ppmv. As presented here, the robust and continuous calibration and operation procedures of the FISH instrument over the last two decades establish the position of FISH as one of the core instruments for in situ observations of water vapor in the UT/LS. C1 [Meyer, J.; Rolf, C.; Schiller, C.; Rohs, S.; Spelten, N.; Afchine, A.; Kraemer, M.] Forschungszentrum Julich, Inst Energie & Klimaforsch 7, D-52425 Julich, Germany. [Rohs, S.] Forschungszentrum Julich, Inst Energie & Klimaforsch 8, D-52425 Julich, Germany. [Zoeger, M.] Deutsch Zentrum Luft & Raumfahrt, FX, D-82234 Oberpfaffenhofen, Germany. [Sitnikov, N.] Cent Aerol Observ, Dolgoprudnyi, Russia. [Thornberry, T. D.; Rollins, A. W.; Rosenlof, K. H.] NOAA, ESRL, Div Chem Sci, Boulder, CO USA. [Thornberry, T. D.; Rollins, A. W.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Bozoki, Z.; Tatrai, D.] Univ Szeged, Dept Opt & Quantum Elect, Szeged, Hungary. [Bozoki, Z.; Tatrai, D.] MTA SZTE Res Grp Photoacoust Spect, Szeged, Hungary. [Ebert, V.; Kuehnreich, B.; Mackrodt, P.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Ebert, V.; Kuehnreich, B.] Tech Univ Darmstadt, Reakt Stromungen & Messtech, D-64287 Darmstadt, Germany. [Moehler, O.; Saathoff, H.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res IMK AAF, D-76344 Eggenstein Leopoldshafen, Germany. RP Rolf, C (reprint author), Forschungszentrum Julich, Inst Energie & Klimaforsch 7, D-52425 Julich, Germany. EM c.rolf@fz-juelich.de RI Rosenlof, Karen/B-5652-2008; Schiller, Cornelius/B-1004-2013; Saathoff, Harald/J-8911-2012; Mohler, Ottmar/J-9426-2012; Rollins, Andrew/G-7214-2012; Rohs, Susanne/K-1483-2016; Kramer, Martina/A-7482-2013; Rolf, Christian/K-5275-2016; Manager, CSD Publications/B-2789-2015; OI Rosenlof, Karen/0000-0002-0903-8270; zoltan, Bozoki/0000-0003-3638-9524; Rohs, Susanne/0000-0001-5473-2934; Rolf, Christian/0000-0001-5329-0054; THORNBERRY, TROY/0000-0001-7478-1944 NR 53 TC 11 Z9 11 U1 5 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 14 BP 8521 EP 8538 DI 10.5194/acp-15-8521-2015 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CN9VS UT WOS:000358799000042 ER PT J AU Vogl, GW Donmez, MA AF Vogl, Gregory W. Donmez, M. A. TI A defect-driven diagnostic method for machine tool spindles SO CIRP ANNALS-MANUFACTURING TECHNOLOGY LA English DT Article DE Spindle; Condition monitoring; Vibration; Machine tools AB Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition. (c) 2015 CIRP. C1 [Vogl, Gregory W.; Donmez, M. A.] NIST, Engn Lab, Gaithersburg, MD 20899 USA. RP Vogl, GW (reprint author), NIST, Engn Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM gvogl@nist.gov NR 12 TC 2 Z9 2 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0007-8506 EI 1726-0604 J9 CIRP ANN-MANUF TECHN JI CIRP Ann-Manuf. Technol. PY 2015 VL 64 IS 1 BP 377 EP 380 DI 10.1016/j.cirp.2015.04.103 PG 4 WC Engineering, Industrial; Engineering, Manufacturing SC Engineering GA CN6OQ UT WOS:000358554500095 PM 28065985 ER PT J AU Li, B Wen, HM Wang, HL Wu, H Yildirim, T Zhou, W Chen, BL AF Li, Bin Wen, Hui-Min Wang, Hailong Wu, Hui Yildirim, Taner Zhou, Wei Chen, Banglin TI Porous metal-organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID CARBON-DIOXIDE; GAS-STORAGE; ROOM-TEMPERATURE; WORKING CAPACITY; BUILDING UNITS; CO2 BINDING; PORE-SPACE; ADSORPTION; HYDROGEN; FUNCTIONALIZATION AB The use of porous materials to store/deliver natural gas (mostly methane) in vehicles requires large amounts of methane being stored per unit volume. In this work, we report several porous metal-organic frameworks (MOFs) with NOTT-101 type structures, containing Lewis basic nitrogen sites through the incorporation of pyridine, pyridazine, and pyrimidine groups into the organic linkers. They exhibit significantly higher total volumetric methane storage capacities (similar to 249-257 cm(3) (STP) cm(-3) at room temperature (RT) and 65 bar) than NOTT-101a (here the MOF abbreviation with "a'' at the end represents the fully activated MOF). The most significant enhancement was observed on UTSA-76a with functional pyrimidine groups (237 cm(3) (STP) cm(-3) in NOTT-101a vs. 257 cm(3) (STP) cm(-3) in UTSA-76a). Several multivariate (MTV) MOFs constructed from two types of organic linkers (pyrimidine-functionalized and unfunctionalized) also show systematically improved methane storage capacities with increasing percentage of functionalized organic linkers. The immobilized functional groups have nearly no effect on the methane uptakes at 5 bar but significantly improve the methane storage capacities at 65 bar, so the reported MOFs exhibit excellent methane storage working capacities of similar to 188-197 cm(3) (STP) cm(-3). C1 [Li, Bin; Wen, Hui-Min; Wang, Hailong; Chen, Banglin] Univ Texas San Antonio, Dept Chem, San Antonio, TX 78249 USA. [Wu, Hui; Yildirim, Taner; Zhou, Wei] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Yildirim, Taner] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RP Li, B (reprint author), Univ Texas San Antonio, Dept Chem, One UTSA Circle, San Antonio, TX 78249 USA. EM wzhou@nist.gov; banglin.chen@utsa.edu RI Wu, Hui/C-6505-2008; Zhou, Wei/C-6504-2008; Chen, Banglin/F-5461-2010; yildirim, taner/A-1290-2009; Li, Bin/J-6124-2015; Wen, Huimin/G-6215-2015 OI Wu, Hui/0000-0003-0296-5204; Zhou, Wei/0000-0002-5461-3617; Chen, Banglin/0000-0001-8707-8115; Li, Bin/0000-0002-7774-5452; Wen, Huimin/0000-0002-3531-3379 FU Welch Foundation [AX-1730] FX This work was supported by an Award AX-1730 from Welch Foundation (BC). NR 55 TC 21 Z9 21 U1 26 U2 99 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PY 2015 VL 8 IS 8 BP 2504 EP 2511 DI 10.1039/c5ee01531f PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA CN8XZ UT WOS:000358730600028 ER PT J AU Wang, XZ Zhang, HG Li, XF Fu, B Guan, WB AF Wang, Xiaozhen Zhang, Huaguo Li, Xiaofeng Fu, Bin Guan, Weibing TI SAR imaging of a topography-induced current front in a tidal channel SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID SYNTHETIC-APERTURE RADAR; MODEL; CIRCULATION; BATHYMETRY; MECHANISM; IMAGES; WAVES; SEA AB A quasi-linear dark-bright feature was observed on a TerraSAR-X synthetic aperture radar (SAR) image acquired in the area of Pearl River Estuary (PRE), China, on 25 October 2010. Examining the detailed local bathymetry chart, we find that the feature is collocated with major axis of Lingding Channel in the waterway of PRE. In the study, we first run a 3-D hydrodynamic model to simulate the tidal currents within PRE, and then used the simulated current and local wind data as input to run a radar simulation model to calculate the variation of normalized radar cross section induced by these parameters. Ocean model simulation shows that surface currents were parallel to the major axis of the channel at the satellite overpass time. Radar model simulation results show good agreement between the simulated and actual SAR images. The quasi-linear dark-bright feature on the SAR image was found to be due to the surface current convergence and divergence caused by the bathymetry-induced tidal current variation. C1 [Wang, Xiaozhen; Zhang, Huaguo; Fu, Bin; Guan, Weibing] State Ocean Adm, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou, Zhejiang, Peoples R China. [Wang, Xiaozhen] Zhejiang Univ, Dept Earth Sci, Hangzhou 310003, Zhejiang, Peoples R China. [Li, Xiaofeng] NOAA, NESDIS, GTS, College Pk, MD USA. [Li, Xiaofeng] Shanghai Ocean Univ, Int Ctr Marine Studies, Shanghai, Peoples R China. RP Zhang, HG (reprint author), State Ocean Adm, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou, Zhejiang, Peoples R China. EM zhanghg@sio.org.cn RI Li, Xiaofeng/B-6524-2008 OI Li, Xiaofeng/0000-0001-7038-5119 FU Marine Scientific Public Welfare Research Special Foundation [201105001]; National Nature Science Foundation of China [41276083, 91128204]; Shanghai Oriental Scholar Program; NOAA Product Development, Readiness, and Application (PDRA)/Ocean Remote Sensing (ORS) Programme FX This work was supported by the Marine Scientific Public Welfare Research Special Foundation [201105001]; National Nature Science Foundation of China [41276083, 91128204]; Shanghai Oriental Scholar Program. This work was also supported by the NOAA Product Development, Readiness, and Application (PDRA)/Ocean Remote Sensing (ORS) Programme. NR 21 TC 1 Z9 1 U1 0 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0143-1161 EI 1366-5901 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2015 VL 36 IS 14 BP 3563 EP 3574 DI 10.1080/2150704X.2015.1043757 PG 12 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA CN8UK UT WOS:000358719900001 ER PT S AU Teran, M Martin, V Gesa, L Mateos, I Gibert, F Karnesis, N Ramos-Castro, J Schwarze, TS Gerberding, O Heinzel, G Guzman, F Nofrarias, M AF Teran, M. Martin, V. Gesa, Ll Mateos, I. Gibert, F. Karnesis, N. Ramos-Castro, J. Schwarze, T. S. Gerberding, O. Heinzel, G. Guzman, F. Nofrarias, M. GP IOP TI Towards a FPGA-controlled deep phase modulation interferometer SO 10TH INTERNATIONAL LISA SYMPOSIUM SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 10th International LISA Symposium CY MAY 18-23, 2014 CL Univ Florida, Gainesville, FL SP Inst High Energy Phys & Astrophys, Dept Phys, Dept Mech & Aerosp Engn, Coll Liberal Arts & Sci, Off Sponsored Res HO Univ Florida AB Deep phase modulation interferometry was proposed as a method to enhance homodyne interferometers to work over many fringes. In this scheme, a sinusoidal phase modulation is applied in one arm while the demodulation takes place as a post-processing step. In this contribution we report on the development to implement this scheme in a fiber coupled interferometer controlled by means of a FPGA, which includes a LEON3 soft-core processor. The latter acts as a CPU and executes a custom made application to communicate with a host PC. In contrast to usual FPGA-based designs, this implementation allows a real-time fine tuning of the parameters involved in the setup, from the control to the post-processing parameters. C1 [Teran, M.; Martin, V.; Gesa, Ll; Mateos, I.; Gibert, F.; Karnesis, N.; Nofrarias, M.] CSIC IEEC, Inst Ciencies Espai, Bellaterra, Spain. [Ramos-Castro, J.] Univ Politecn Cataluna, Barcelona, Spain. [Schwarze, T. S.; Gerberding, O.; Heinzel, G.] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Hannover, Germany. [Guzman, F.] NIST, Gaithersburg, MD 20899 USA. RP Teran, M (reprint author), CSIC IEEC, Inst Ciencies Espai, Bellaterra, Spain. EM nofrarias@ice.cat RI Nofrarias, Miquel/N-6249-2015 OI Nofrarias, Miquel/0000-0003-1518-2196 NR 6 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2015 VL 610 AR 012042 DI 10.1088/1742-6596/610/1/012042 PG 4 WC Astronomy & Astrophysics; Physics, Applied SC Astronomy & Astrophysics; Physics GA BD1MF UT WOS:000358149000042 ER PT S AU Centrone, A AF Centrone, Andrea BE Cooks, RG Pemberton, JE TI Infrared Imaging and Spectroscopy Beyond the Diffraction Limit SO ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 8 SE Annual Review of Analytical Chemistry LA English DT Article; Book Chapter DE s-SNOM; PTIR; resonance-enhanced AFM-IR; nanoscale infrared spectroscopy; nanomaterials; chemical composition ID NEAR-FIELD MICROSCOPY; ATOMIC-FORCE MICROSCOPE; METAL-ORGANIC FRAMEWORKS; BORON-NITRIDE NANOTUBES; QUANTUM CASCADE LASER; OPTICAL MICROSCOPY; SYNCHROTRON-RADIATION; THERMAL-CONDUCTIVITY; SPATIAL-RESOLUTION; PTIR TECHNIQUE AB Progress in nanotechnology is enabled by and dependent on the availability of measurement methods with spatial resolution commensurate with nanomaterials' length scales. Chemical imaging techniques, such as scattering scanning near-field optical microscopy (s-SNOM) and photothermal-induced resonance (PTIR), have provided scientists with means of extracting rich chemical and structural information with nanoscale resolution. This review presents some basics of infrared spectroscopy and microscopy, followed by detailed descriptions of s-SNOM and PTIR working principles. Nanoscale spectra are compared with far-field macroscale spectra, which are widely used for chemical identification. Selected examples illustrate either technical aspects of the measurements or applications in materials science. Central to this review is the ability to record nanoscale infrared spectra because, although chemical maps enable immediate visualization, the spectra provide information to interpret the images and characterize the sample. The growing breadth of nanomaterials and biological applications suggest rapid growth for this field. C1 NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. RP Centrone, A (reprint author), NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. EM andrea.centrone@nist.gov NR 151 TC 15 Z9 15 U1 6 U2 55 PU ANNUAL REVIEWS PI PALO ALTO PA 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA SN 1936-1327 BN 978-0-8243-4408-5 J9 ANNU REV ANAL CHEM JI Annu. Rev. Anal. Chem. PY 2015 VL 8 BP 101 EP 126 DI 10.1146/annurev-anchem-071114-040435 PG 26 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA BD1WZ UT WOS:000358482400006 PM 26001952 ER PT J AU Feingold, G Koren, I Yamaguchi, T Kazil, J AF Feingold, G. Koren, I. Yamaguchi, T. Kazil, J. TI On the reversibility of transitions between closed and open cellular convection SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LARGE-EDDY SIMULATIONS; MARINE BOUNDARY-LAYER; CLOUD-PRECIPITATION SYSTEM; OPEN CELLS; STRATOCUMULUS CLOUDS; CONDENSATION NUCLEI; VOCALS-REX; AEROSOL; MODEL; DRIZZLE AB The two-way transition between closed and open cellular convection is addressed in an idealized cloud-resolving modeling framework. A series of cloud-resolving simulations shows that the transition between closed and open cellular states is asymmetrical and characterized by a rapid ("runaway") transition from the closed-to the open-cell state but slower recovery to the closed-cell state. Given that precipitation initiates the closed-open cell transition and that the recovery requires a suppression of the precipitation, we apply an ad hoc time-varying drop concentration to initiate and suppress precipitation. We show that the asymmetry in the two-way transition occurs even for very rapid drop concentration replenishment. The primary barrier to recovery is the loss in turbulence kinetic energy (TKE) associated with the loss in cloud water (and associated radiative cooling) and the vertical stratification of the boundary layer during the open-cell period. In transitioning from the open to the closed state, the system faces the task of replenishing cloud water fast enough to counter precipitation losses, such that it can generate radiative cooling and TKE. It is hampered by a stable layer below cloud base that has to be overcome before water vapor can be transported more efficiently into the cloud layer. Recovery to the closed-cell state is slower when radiative cooling is inefficient such as in the presence of free tropospheric clouds or after sunrise, when it is hampered by the absorption of shortwave radiation. Tests suggest that recovery to the closed-cell state is faster when the drizzle is smaller in amount and of shorter duration, i.e., when the precipitation causes less boundary layer stratification. Cloud-resolving model results on recovery rates are supported by simulations with a simple predator-prey dynamical system analogue. It is suggested that the observed closing of open cells by ship effluent likely occurs when aerosol intrusions are large, when contact comes prior to the heaviest drizzle in the early morning hours, and when the free troposphere is cloud free. C1 [Feingold, G.; Yamaguchi, T.; Kazil, J.] NOAA Earth Syst Res Lab, Chem Sci Div, Boulder, CO 80305 USA. [Koren, I.] Weizmann Inst Sci, Rehovot, Israel. [Yamaguchi, T.; Kazil, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. RP Feingold, G (reprint author), NOAA Earth Syst Res Lab, Chem Sci Div, Boulder, CO 80305 USA. EM graham.feingold@noaa.gov RI Feingold, Graham/B-6152-2009; Manager, CSD Publications/B-2789-2015; Koren, Ilan/K-1417-2012; Yamaguchi, Takanobu/H-9169-2013 OI Koren, Ilan/0000-0001-6759-6265; Yamaguchi, Takanobu/0000-0001-8059-0757 FU NOAA's Climate Goal; Department of Energy's Atmospheric Science Program; European Research Council under the European Union's Seventh Framework Programme (FP7)/ERC [306965] FX G. Feingold, T. Yamaguchi, and J. Kazil are funded by NOAA's Climate Goal and the Department of Energy's Atmospheric Science Program. I. Koren is funded by the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement number [306965]. The authors are most grateful to Marat Khairoutdinov for sharing his System for Atmospheric Modeling and to P. Blossey for his help with the RRTM code integration. NR 33 TC 3 Z9 3 U1 1 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 13 BP 7351 EP 7367 DI 10.5194/acp-15-7351-2015 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CM8UT UT WOS:000357978300013 ER PT J AU Kaiser, J Wolfe, GM Min, KE Brown, SS Miller, CC Jacob, DJ deGouw, JA Graus, M Hanisco, TF Holloway, J Peischl, J Pollack, IB Ryerson, TB Warneke, C Washenfelder, RA Keutsch, FN AF Kaiser, J. Wolfe, G. M. Min, K. E. Brown, S. S. Miller, C. C. Jacob, D. J. deGouw, J. A. Graus, M. Hanisco, T. F. Holloway, J. Peischl, J. Pollack, I. B. Ryerson, T. B. Warneke, C. Washenfelder, R. A. Keutsch, F. N. TI Reassessing the ratio of glyoxal to formaldehyde as an indicator of hydrocarbon precursor speciation SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID OZONE MONITORING INSTRUMENT; VOLATILE ORGANIC-COMPOUNDS; UNITED-STATES; GAS-PHASE; IN-SITU; TROPOSPHERIC DEGRADATION; ATMOSPHERIC CHEMISTRY; MODEL DESCRIPTION; FINE-PARTICLE; AIR-POLLUTION AB The yield of formaldehyde (HCHO) and glyoxal (CHOCHO) from oxidation of volatile organic compounds (VOCs) depends on precursor VOC structure and the concentration of NOx (NOx = NO + NO2). Previous work has proposed that the ratio of CHOCHO to HCHO (R-GF) can be used as an indicator of precursor VOC speciation, and absolute concentrations of the CHOCHO and HCHO as indicators of NOx. Because this metric is measurable by satellite, it is potentially useful on a global scale; however, absolute values and trends in R-GF have differed between satellite and ground-based observations. To investigate potential causes of previous discrepancies and the usefulness of this ratio, we present measurements of CHOCHO and HCHO over the southeastern United States (SE US) from the 2013 SENEX (Southeast Nexus) flight campaign, and compare these measurements with OMI (Ozone Monitoring Instrument) satellite retrievals. High time-resolution flight measurements show that high R-GF is associated with monoterpene emissions, low R-GF is associated with isoprene oxidation, and emissions associated with oil and gas production can lead to small-scale variation in regional R-GF. During the summertime in the SE US, R-GF is not a reliable diagnostic of anthropogenic VOC emissions, as HCHO and CHOCHO production are dominated by isoprene oxidation. Our results show that the new CHOCHO retrieval algorithm reduces the previous disagreement between satellite and in situ R-GF observations. As the absolute values and trends in R-GF observed during SENEX are largely reproduced by OMI observations, we conclude that satellite-based observations of R-GF can be used alongside knowledge of land use as a global diagnostic of dominant hydrocarbon speciation. C1 [Kaiser, J.; Keutsch, F. N.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Wolfe, G. M.] Univ Maryland Baltimore Cty, Joint Ctr Earth Syst Technol, Baltimore, MD 21228 USA. [Wolfe, G. M.; Hanisco, T. F.] NASA, Atmospher Chem & Dynam Lab, Goddard Space Flight Ctr, Greenbelt, MD USA. [Min, K. E.; deGouw, J. A.; Graus, M.; Holloway, J.; Peischl, J.; Pollack, I. B.; Warneke, C.; Washenfelder, R. A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Min, K. E.; Brown, S. S.; deGouw, J. A.; Graus, M.; Holloway, J.; Peischl, J.; Pollack, I. B.; Ryerson, T. B.; Warneke, C.; Washenfelder, R. A.] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA. [Brown, S. S.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Miller, C. C.; Jacob, D. J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Jacob, D. J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. RP Kaiser, J (reprint author), Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. EM jen.b.kaiser@gmail.com RI Ryerson, Tom/C-9611-2009; Peischl, Jeff/E-7454-2010; Graus, Martin/E-7546-2010; Wolfe, Glenn/D-5289-2011; Washenfelder, Rebecca/E-7169-2010; de Gouw, Joost/A-9675-2008; Pollack, Ilana/F-9875-2012; Warneke, Carsten/E-7174-2010; Kaiser, Jennifer/N-7732-2014; Brown, Steven/I-1762-2013; Manager, CSD Publications/B-2789-2015 OI Peischl, Jeff/0000-0002-9320-7101; Graus, Martin/0000-0002-2025-9242; Washenfelder, Rebecca/0000-0002-8106-3702; de Gouw, Joost/0000-0002-0385-1826; FU US EPA Science to Achieve Results (STAR) program [83540601]; NASA Headquarters under the NASA Earth and Space Science Fellowship Program [NNX14AK97H]; NASA Aura Science Team FX The authors would like to acknowledge the contribution from all members of the SENEX flight and science teams. Funding was provided by US EPA Science to Achieve Results (STAR) program grant 83540601. This research has not been subjected to any EPA review and therefore does not necessarily reflect the views of the agency, and no official endorsement should be inferred. J. Kaiser acknowledges support from NASA Headquarters under the NASA Earth and Space Science Fellowship Program - grant NNX14AK97H. This work was also supported as part of the NASA Aura Science Team. NR 51 TC 9 Z9 9 U1 8 U2 42 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 13 BP 7571 EP 7583 DI 10.5194/acp-15-7571-2015 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CM8UT UT WOS:000357978300027 ER PT J AU Shinozuka, Y Clarke, AD Nenes, A Jefferson, A Wood, R McNaughton, CS Strom, J Tunved, P Redemann, J Thornhill, KL Moore, RH Lathem, TL Lin, JJ Yoon, YJ AF Shinozuka, Y. Clarke, A. D. Nenes, A. Jefferson, A. Wood, R. McNaughton, C. S. Strom, J. Tunved, P. Redemann, J. Thornhill, K. L. Moore, R. H. Lathem, T. L. Lin, J. J. Yoon, Y. J. TI The relationship between cloud condensation nuclei (CCN) concentration and light extinction of dried particles: indications of underlying aerosol processes and implications for satellite-based CCN estimates SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GENERAL-CIRCULATION MODEL; OPTICAL-PROPERTIES; VERTICAL PROFILES; FIELD CAMPAIGNS; AIRBORNE; REMOTE; MODIS; VARIABILITY; PARAMETERS; POLLUTION AB We examine the relationship between the number concentration of boundary-layer cloud condensation nuclei (CCN) and light extinction to investigate underlying aerosol processes and satellite-based CCN estimates. For a variety of airborne and ground-based observations not dominated by dust, regression identifies the CCN (cm(-3)) at 0.4 +/- 0.1% supersaturation with 10(0.3 alpha+1.3)sigma(0.75) where sigma (Mm(-1)) is the 500 nm extinction coefficient by dried particles and alpha is the Angstrom exponent. The deviation of 1 km horizontal average data from this approximation is typically within a factor of 2.0. partial derivative logCCN / partial derivative log sigma is less than unity because, among other explanations, growth processes generally make aerosols scatter more light without increasing their number. This, barring special meteorology-aerosol connections, associates a doubling of aerosol optical depth with less than a doubling of CCN, contrary to previous studies based on heavily averaged measurements or a satellite algorithm. C1 [Shinozuka, Y.] NASA, Ames Res Ctr, Cooperat Res Earth Sci & Technol, Moffett Field, CA 94035 USA. [Shinozuka, Y.] Bay Area Environm Res Inst, Petaluma, CA USA. [Clarke, A. D.; McNaughton, C. S.] Univ Hawaii, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. [Nenes, A.; Lathem, T. L.; Lin, J. J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Nenes, A.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Jefferson, A.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Jefferson, A.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Wood, R.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [McNaughton, C. S.] Golder Associates, Saskatoon, SK, Canada. [Strom, J.; Tunved, P.] Stockholm Univ, Dept Appl Environm Sci, S-10691 Stockholm, Sweden. [Redemann, J.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Thornhill, K. L.] Sci Syst & Applicat Inc, Hampton, VA USA. [Moore, R. H.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Lathem, T. L.] Phillips 66 Res Ctr, Bartlesville, OK USA. [Yoon, Y. J.] Korea Polar Res Inst, Inchon, South Korea. RP Shinozuka, Y (reprint author), NASA, Ames Res Ctr, Cooperat Res Earth Sci & Technol, Moffett Field, CA 94035 USA. EM yohei.shinozuka@nasa.gov RI Wood, Robert/A-2989-2008 OI Wood, Robert/0000-0002-1401-3828 FU NASA [NNX12AO27G]; KOPRI [NRF-2011-0021063] FX We thank Teruyuki Nakajima, Kazuaki Kawamoto, Steve Howell, Steffen Freitag, Chris Terai, Allison McComiskey, Andreas Beyersdorf, Bruce Anderson, Phil Russell, John Livingston, Sam LeBlanc, Tom Ackerman, Masataka Shiobara, Rob Levy, Meloe Kacenelenbogen, Qian Tan, Kirk Knobelspiesse, Connor Flynn, Trish Quinn and the two anonymous reviewers for valuable input. Funding through NASA New (Early Career) Investigator Program (NNX12AO27G) is gratefully acknowledged. The Svalbard CCN measurement was supported by the KOPRI project: NRF-2011-0021063. Aerosol observations at the Zeppelin station were supported by the Swedish EPA. NR 67 TC 7 Z9 7 U1 3 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 13 BP 7585 EP 7604 DI 10.5194/acp-15-7585-2015 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CM8UT UT WOS:000357978300028 ER PT J AU Mao, YH Li, QB Henze, DK Jiang, Z Jones, DBA Kopacz, M He, C Qi, L Gao, M Hao, WM Liou, KN AF Mao, Y. H. Li, Q. B. Henze, D. K. Jiang, Z. Jones, D. B. A. Kopacz, M. He, C. Qi, L. Gao, M. Hao, W. -M. Liou, K. -N. TI Estimates of black carbon emissions in the western United States using the GEOS-Chem adjoint model SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BIOMASS BURNING EMISSIONS; TERM CLIMATE-CHANGE; AIR-QUALITY; HIGH-RESOLUTION; NORTH-AMERICA; CO EMISSIONS; BURNED-AREA; ATMOSPHERIC TRANSPORT; AMMONIA EMISSIONS; DATA ASSIMILATION AB We estimate black carbon (BC) emissions in the western United States for July-September 2006 by inverting surface BC concentrations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network using a global chemical transport model (GEOS-Chem) and its adjoint. Our best estimate of the BC emissions is 49.9 Gg at 2 degrees x 2.5 degrees (a factor of 2.1 increase) and 47.3 Gg at 0.5 degrees x 0.667 degrees (1.9 times increase). Model results now capture the observed major fire episodes with substantial bias reductions (similar to 35% at 2 degrees x 2.5 degrees and similar to 15% at 0.5 degrees x 0.667 degrees). The emissions are similar to 20-50% larger than those from our earlier analytical inversions (Mao et al., 2014). The discrepancy is especially drastic in the partitioning of anthropogenic versus biomass burning emissions. The August biomass burning BC emissions are 4.6-6.5 Gg and anthropogenic BC emissions 8.6-12.8 Gg, varying with the model resolution, error specifications, and subsets of observations used. On average both anthropogenic and biomass burning emissions in the adjoint inversions increase 2-fold relative to the respective a priori emissions, in distinct contrast to the halving of the anthropogenic and tripling of the biomass burning emissions in the analytical inversions. We attribute these discrepancies to the inability of the adjoint inversion system, with limited spatiotemporal coverage of the IMPROVE observations, to effectively distinguish collocated anthropogenic and biomass burning emissions on model grid scales. This calls for concurrent measurements of other tracers of biomass burning and fossil fuel combustion (e.g., carbon monoxide and carbon isotopes). We find that the adjoint inversion system as is has sufficient information content to constrain the total emissions of BC on the model grid scales. C1 [Mao, Y. H.; Li, Q. B.; He, C.; Qi, L.; Gao, M.; Liou, K. -N.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Mao, Y. H.; Li, Q. B.; Jones, D. B. A.; He, C.; Qi, L.; Gao, M.; Liou, K. -N.] Univ Calif Los Angeles, Joint Inst Reg Earth Syst Sci & Engn, Los Angeles, CA 90095 USA. [Mao, Y. H.] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China. [Henze, D. K.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Jiang, Z.; Jones, D. B. A.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Kopacz, M.] NOAA, Climate Program Off, Silver Spring, MD 20910 USA. [Hao, W. -M.] US Forest Serv, Fire Sci Lab, Missoula, MT 59808 USA. RP Li, QB (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM qli@atmos.ucla.edu RI Chem, GEOS/C-5595-2014 FU NASA [NNX09AF07G]; EPA-STAR [83503701] FX This research was supported by NASA grant NNX09AF07G from the Atmospheric Chemistry Modeling and Analysis Program (ACMAP). The GEOS-Chem model is managed by the Atmospheric Chemistry Modeling group at Harvard University; support for the adjoint comes the Henze group at CU Boulder, which additionally recognizes support from EPA-STAR grant 83503701 (this manuscript does not reflect official EPA agency views or policies). We thank Feng Deng and Ray Nassar for helpful discussions. NR 101 TC 2 Z9 2 U1 2 U2 14 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 13 BP 7685 EP 7702 DI 10.5194/acp-15-7685-2015 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CM8UT UT WOS:000357978300033 ER PT J AU Taylor, DD Schreiber, NJ Brown, CM Arevalo-Lopez, AM Rodriguez, EE AF Taylor, Daniel D. Schreiber, Nathaniel J. Brown, Craig M. Arevalo-Lopez, Angel M. Rodriguez, Efrain E. TI Stabilization of cubic Sr2FeMoO6 through topochemical reduction SO CHEMICAL COMMUNICATIONS LA English DT Article ID ORDERED DOUBLE PEROVSKITES; MAGNETIC-PROPERTIES; ELECTRONIC-STRUCTURE; OXIDE; TRANSITION; HYDRIDE; CONDUCTIVITY; TEMPERATURE; DIFFRACTION; DEFECTS AB Sr2FeMoO6 has been extensively studied for application in spintronic devices. Through the topochemical de-intercalation of oxygen anions with metal hydride reduction, we demonstrate that the high temperature cubic phase is stabilized, at room temperature, whilst leaving the magnetic ordering intact. Synchrotron X-ray and neutron powder diffraction were used to characterize the structure and stoichiometry of the reduced oxide. C1 [Taylor, Daniel D.; Schreiber, Nathaniel J.; Rodriguez, Efrain E.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Brown, Craig M.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Brown, Craig M.] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA. [Arevalo-Lopez, Angel M.] Univ Edinburgh, Ctr Sci Extreme Condit, Edinburgh EH9 3FD, Midlothian, Scotland. [Rodriguez, Efrain E.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Rodriguez, EE (reprint author), Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. EM efrain@umd.edu RI Taylor, Daniel/B-9345-2013; Brown, Craig/B-5430-2009; Arevalo-Lopez, Angel/C-5597-2013 OI Taylor, Daniel/0000-0003-1862-3946; Brown, Craig/0000-0002-9637-9355; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; University of Maryland FX Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We also acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. Certain commercial equipment, instruments, or materials are identified in this document. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that the products identified are necessarily the best available for the purpose. We thank the University of Maryland for its funding support. NR 28 TC 3 Z9 3 U1 3 U2 27 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2015 VL 51 IS 61 BP 12201 EP 12204 DI 10.1039/c5cc04145g PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CN2CP UT WOS:000358228300010 PM 26136224 ER PT J AU Lawler, KV Hulvey, Z Forster, PM AF Lawler, Keith V. Hulvey, Zeric Forster, Paul M. TI On the importance of a precise crystal structure for simulating gas adsorption in nanoporous materials SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID METAL-ORGANIC FRAMEWORKS; FORCE-FIELD; HKUST-1; SITES; ZIF-8; XE; KR AB We show that simulation of gas adsorption in nanoporous sorbents may be highly sensitive to accurate crystallographic coordinates, even for frameworks anticipated to have low flexibility. C1 [Lawler, Keith V.; Hulvey, Zeric; Forster, Paul M.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Hulvey, Zeric] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Hulvey, Zeric] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Forster, PM (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM Paul.Forster@unlv.edu FU Department of Energy, Office of Nuclear Energy through a grant under the Nuclear Energy University Programs (NEUP) FX This work was supported by the Department of Energy, Office of Nuclear Energy through a grant under the Nuclear Energy University Programs (NEUP). NR 18 TC 5 Z9 5 U1 2 U2 17 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2015 VL 17 IS 29 BP 18904 EP 18907 DI 10.1039/c5cp01544h PG 4 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CN1VD UT WOS:000358207400004 PM 26133672 ER PT S AU Cooksey, CC Tsai, BK Allen, DW AF Cooksey, Catherine C. Tsai, Benjamin K. Allen, David W. BE Ranney, KI Doerry, A Gilbreath, GC Hawley, CT TI Spectral reflectance variability of skin and attributing factors SO RADAR SENSOR TECHNOLOGY XIX; AND ACTIVE AND PASSIVE SIGNATURES VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Radar Sensor Technology XIX and Active and Passive Signatures VI CY APR 20-23, 2015 CL Baltimore, MD SP SPIE DE Skin; spectral; reflectance; traceable data; reference data; signatures; variability ID DIFFUSE-REFLECTANCE AB Knowledge of the spectral reflectance signature of human skin over a wide spectral range will help advance the development of sensing systems for many applications, ranging from medical treatment to security technology. A critical component of the signature of human skin is the variability across the population. We describe a simple measurement method to measure human skin reflectance of the inside of the forearm. The variability of the reflectance spectra for a number of subjects measured at NIST is determined using statistical methods. The degree of variability is explored and discussed. We also propose a method for collaborating with other scientists, outside of NIST, to expand the data set of signatures to include a more diverse population and perform a meta-analysis to further investigate the variability of human skin reflectance. C1 [Cooksey, Catherine C.; Tsai, Benjamin K.; Allen, David W.] NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA. RP Cooksey, CC (reprint author), NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA. NR 20 TC 2 Z9 2 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-577-3 J9 PROC SPIE PY 2015 VL 9461 AR 94611M DI 10.1117/12.2184485 PG 8 WC Engineering, Electrical & Electronic; Optics; Telecommunications SC Engineering; Optics; Telecommunications GA BD1LU UT WOS:000358140900051 ER PT S AU Li, Z Yang, DW Hong, Y Qi, YC Cao, Q AF Li, Zhe Yang, Dawen Hong, Yang Qi, Youcun Cao, Qing BE Chen, Y Neale, C Cluckie, I Su, Z Zhou, J Huang, Q Xu, Z TI Evaluation of radar-based precipitation estimates for flash flood forecasting in the Three Gorges Region SO REMOTE SENSING AND GIS FOR HYDROLOGY AND WATER RESOURCES SE IAHS Publication LA English DT Proceedings Paper CT 3rd Remote Sensing and Hydrology Symposium (RSHS 14) / 3rd International Conference of GIS/RS in Hydrology, Water Resources and Environment (ICGRHWE 14) CY AUG 24-27, 2014 CL Guangzhou, PEOPLES R CHINA SP IAHS, Int. Commiss Remote Sens, Sun Yat-Sen Univ, Univ Swansea, Univ Nebraska, K C Wong Educ Fdn, Nat Sci Fdn DE weather radar; precipitation; distributed hydrological model; flood forecasting ID RAINFALL AB Spatial rainfall pattern plays a critical role in determining hydrological responses in mountainous areas, especially for natural disasters such as flash floods. In this study, to improve the skills of flood forecasting in the mountainous Three Gorges Region (TGR) of the Yangtze River, we developed a first version of a high-resolution (1 km) radar-based quantitative precipitation estimation (QPE) consideration of many critical procedures, such as beam blockage analysis, ground-clutter filter, rain type identification and adaptive Z-R relations. A physically-based distributed hydrological model (GBHM) was established and further applied to evaluate the performance of radar-based QPE for regional flood forecasting, relative to the gauge-driven simulations. With two sets of input data (gauge and radar) collected during summer 2010, the applicability of the current radar-based QPE to rainstorm monitoring and flash flood forecasting in the TGR is quantitatively analysed and discussed. C1 [Li, Zhe; Yang, Dawen] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China. [Hong, Yang] Univ Oklahoma, Dept Civil Engn & Environm Sci, Norman, OK 73072 USA. [Qi, Youcun] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73072 USA. [Qi, Youcun] NOAA, OAR, Natl Severe Storms Lab, Norman, OK 73072 USA. [Cao, Qing] Enterprise Elect Corp, Norman, OK 73072 USA. RP Li, Z (reprint author), Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China. EM zli09@mails.tsinghua.edu.cn RI Hong, Yang/D-5132-2009 OI Hong, Yang/0000-0001-8720-242X NR 11 TC 1 Z9 1 U1 0 U2 3 PU INT ASSOC HYDROLOGICAL SCIENCES PI WALLINGFORD PA INST OF HYDROLOGY, WALLINGFORD OX10 8BB, ENGLAND SN 0144-7815 BN 978-1-907161-46-9 J9 IAHS-AISH P PY 2015 VL 368 BP 89 EP 95 PG 7 WC Environmental Sciences; Remote Sensing; Water Resources SC Environmental Sciences & Ecology; Remote Sensing; Water Resources GA BD1EM UT WOS:000357968900015 ER PT J AU Himes-Cornell, A Hoelting, K AF Himes-Cornell, Amber Hoelting, Kristin TI Resilience strategies in the face of short- and long-term change: out-migration and fisheries regulation in Alaskan fishing communities SO ECOLOGY AND SOCIETY LA English DT Article DE Alaska; communities; fisheries privatization; out-migration; resilience; well-being ID SOCIAL-ECOLOGICAL SYSTEMS; COMMERCIAL FISHERIES; ENVIRONMENTAL-CHANGE; QUOTA PROGRAM; MANAGEMENT; VULNERABILITY; RESOURCE; NORTH; SUSTAINABILITY; IMPACTS AB Historically, communities persisted in remote, isolated areas of Alaska in large part because of the abundance of marine and terrestrial resources, as well as the ability of local people to opportunistically access those resources as they became available. Species switching and the ability to shift effort away from fisheries during poor years allowed local residents to diversify their livelihoods in the face of uncertainties and ecological change. The advent of modern fisheries management, which views Alaskan fisheries as the property of all citizens of the United States, has fundamentally altered the relationship of place-based communities to fishery resources. Local access to fisheries has been particularly affected by the development of transferable fishing privileges, making it possible for fishing rights to leave place-based communities through the choices of individual community members to sell or to move away. When fishing communities in Alaska lose active fishing businesses, over time the loss of various types of community capital will follow, including human, social, cultural, technical, and financial capital. In some cases, communities are able to adapt or transform through diversification of their local economies. In other cases, no alternatives to a fishery-based economy are accessible. We have used resilience theory to explore drivers of change affecting Alaskan fishing communities. Emphasis was placed on two primary change drivers, the regulatory environment and rural out-migration, as well as their interconnections and their impacts on individuals, communities, and the larger social-ecological system. We summarized several government programs that have been implemented to support the continued participation of communities in Alaskan fisheries. In addition, we reviewed informal and private-sector efforts to generate resilience strategies that can facilitate new entry into fisheries or retain fishing businesses and fishing rights within communities, as well as respond to increasing uncertainty related to the global market and climate changes. C1 [Himes-Cornell, Amber] NOAA, Silver Spring, MD 20910 USA. [Hoelting, Kristin] Colorado State Univ, Ft Collins, CO 80523 USA. RP Himes-Cornell, A (reprint author), NOAA, Silver Spring, MD 20910 USA. OI Himes-Cornell, Amber/0000-0003-3695-2241 NR 121 TC 4 Z9 4 U1 7 U2 29 PU RESILIENCE ALLIANCE PI WOLFVILLE PA ACADIA UNIV, BIOLOGY DEPT, WOLFVILLE, NS B0P 1X0, CANADA SN 1708-3087 J9 ECOL SOC JI Ecol. Soc. PY 2015 VL 20 IS 2 AR 9 DI 10.5751/ES-07074-200209 PG 16 WC Ecology; Environmental Studies SC Environmental Sciences & Ecology GA CM3ZB UT WOS:000357622800001 ER PT S AU Henn, MA Barnes, BM Zhang, NF Zhou, H Silver, RM AF Henn, Mark-Alexander Barnes, Bryan M. Zhang, Nien Fan Zhou, Hui Silver, Richard M. BE Bodermann, B Frenner, K Silver, RM TI The effect of systematic errors on the hybridization of optical critical dimension measurements SO MODELING ASPECTS IN OPTICAL METROLOGY V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Modeling Aspects in Optical Metrology V CY JUN 23-25, 2015 CL Munich, GERMANY SP SPIE DE hybrid metrology; electromagnetic simulation; sensitivity and uncertainty evaluation AB In hybrid metrology two or more measurements of the same measurand are combined to provide a more reliable result that ideally incorporates the individual strengths of each of the measurement methods. While these multiple measurements may come from dissimilar metrology methods such as optical critical dimension microscopy (OCD) and scanning electron microscopy (SEM), we investigated the hybridization of similar OCD methods featuring a focus-resolved simulation study of systematic errors performed at orthogonal polarizations. Specifically, errors due to line edge and line width roughness (LER, LWR) and their superposition (LEWR) are known to contribute a systematic bias with inherent correlated errors. In order to investigate the sensitivity of the measurement to LEWR, we follow a modeling approach proposed by Kato et al. who studied the effect of LEWR on extreme ultraviolet (EUV) and deep ultraviolet (DUV) scatterometry. Similar to their findings, we have observed that LEWR leads to a systematic bias in the simulated data. Since the critical dimensions (CDs) are determined by fitting the respective model data to the measurement data by minimizing the difference measure or chi square function, a proper description of the systematic bias is crucial to obtaining reliable results and to successful hybridization. In scatterometry, an analytical expression for the influence of LEWR on the measured orders can be derived, and accounting for this effect leads to a modification of the model function that not only depends on the critical dimensions but also on the magnitude of the roughness. For finite arrayed structures however, such an analytical expression cannot be derived. We demonstrate how to account for the systematic bias and that, if certain conditions are met, a significant improvement of the reliability of hybrid metrology for combining both dissimilar and similar measurement tools can be achieved. C1 [Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui; Silver, Richard M.] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA. [Zhang, Nien Fan] NIST, Stat Engn Div, Gaithersburg, MD 20899 USA. RP Henn, MA (reprint author), NIST, Semicond & Dimens Metrol Div, 100 Bur Dr MS 8212, Gaithersburg, MD 20899 USA. EM mark.henn@nist.gov NR 14 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-686-2 J9 PROC SPIE PY 2015 VL 9526 AR 95260V DI 10.1117/12.2189928 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA BD1DS UT WOS:000357949800025 ER PT S AU Bostelman, R Hong, T Marvel, J AF Bostelman, Roger Hong, Tsai Marvel, Jeremy BE Braun, JJ TI Performance Measurement of Mobile Manipulators SO MULTISENSOR, MULTISOURCE INFORMATION FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS 2015 SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Multisensor, Multisource Information Fusion - Architectures, Algorithms, and Applications CY APR 21, 2015 CL Baltimore, MD SP SPIE DE mobile manipulator; reproducible performance; smart manufacturing; ground truth; test methods; artifact AB This paper describes a concept for measuring the reproducible performance of mobile manipulators to be used for assembly or other similar tasks. An automatic guided vehicle with an onboard robot arm was programmed to repeatedly move to and stop at a novel, reconfigurable mobile manipulator artifact (RMMA), sense the RMMA, and detect targets on the RMMA. The manipulator moved a laser retroreflective sensor to detect small reflectors that can be reconfigured to measure various manipulator positions and orientations (poses). This paper describes calibration of a multi-camera, motion capture system using a 6 degree-of-freedom metrology bar and then using the camera system as a ground truth measurement device for validation of the reproducible mobile manipulator's experiments and test method. Static performance measurement of a mobile manipulator using the RMMA has proved useful for relatively high tolerance pose estimation and other metrics that support standard test method development for indexed and dynamic mobile manipulator applications. C1 [Bostelman, Roger] NIST, Engn Lab, Intelligent Syst Div, Gaithersburg, MD 20899 USA. [Bostelman, Roger] Univ Bourgogne, IEM, Le2i, F-21078 Dijon, France. RP Bostelman, R (reprint author), NIST, Engn Lab, Intelligent Syst Div, 100 Bur Dr,MS8230, Gaithersburg, MD 20899 USA. EM roger.bostelman@nist.gov NR 12 TC 1 Z9 1 U1 0 U2 0 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-614-5 J9 PROC SPIE PY 2015 VL 9498 AR 94980E DI 10.1117/12.2177344 PG 10 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BD1LA UT WOS:000358123800011 ER PT J AU Royer, JR Burton, GL Blair, DL Hudson, SD AF Royer, John R. Burton, George L. Blair, Daniel L. Hudson, Steven D. TI Rheology and dynamics of colloidal superballs SO SOFT MATTER LA English DT Article ID SPHERICAL BROWNIAN PARTICLES; DIGITAL VIDEO MICROSCOPY; TIME SELF-DIFFUSION; LOW SHEAR VISCOSITY; DENSE SUSPENSIONS; GLASS-TRANSITION; CONCENTRATED DISPERSIONS; STRUCTURAL RELAXATION; HYDRODYNAMIC FRICTION; FREQUENCY VISCOSITY AB Recent advances in colloidal synthesis make it possible to generate a wide array of precisely controlled, non-spherical particles. This provides a unique opportunity to probe the role that particle shape plays in the dynamics of colloidal suspensions, particularly at higher volume fractions, where particle interactions are important. We examine the role of particle shape by characterizing both the bulk rheology and micro-scale diffusion in a suspension of pseudo-cubic silica superballs. Working with these well-characterized shaped colloids, we can disentangle shape effects in the hydrodynamics of isolated particles from shape-mediated particle interactions. We find that the hydrodynamic properties of isolated superballs are marginally different from comparably sized hard spheres. However, shape-mediated interactions modify the suspension microstructure, leading to significant differences in the self-diffusion of the superballs. While this excluded volume interaction can be captured with a rescaling of the superball volume fraction, we observe qualitative differences in the shear thickening behavior of moderately concentrated superball suspensions that defy simple rescaling onto hard sphere results. This study helps to define the unknowns associated with the effects of shape on the rheology and dynamics of colloidal solutions. C1 [Royer, John R.; Burton, George L.; Hudson, Steven D.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Royer, John R.] Univ Maryland, IBBR, Rockville, MD 20850 USA. [Burton, George L.; Blair, Daniel L.] Georgetown Univ, Dept Phys, Washington, DC 20057 USA. [Burton, George L.; Blair, Daniel L.] Georgetown Univ, Inst Soft Matter Synth & Metrol, Washington, DC 20057 USA. RP Royer, JR (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. EM john.royer@nist.gov; steven.hudson@nist.gov RI Royer, John/E-8056-2016; Blair, Daniel/C-7911-2017 OI Royer, John/0000-0002-8368-7252; FU NIST National Research Council FX We thank D. Audus and J. Douglas for insightful discussions and for sharing computational results. We also thank L. Rossi and S. Sacanna for advice on the superball synthesis. J.R.R. gratefully acknowledges the support of a NIST National Research Council postdoctoral fellowship. Certain instruments and materials are identified in this paper to adequately specify the experimental details. Such identification does not imply recommendation by the National Institute of Standards and Technology nor does it imply the materials are necessarily the best available for the purpose. NR 62 TC 5 Z9 5 U1 6 U2 37 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X EI 1744-6848 J9 SOFT MATTER JI Soft Matter PY 2015 VL 11 IS 28 BP 5656 EP 5665 DI 10.1039/c5sm00729a PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA CM6HJ UT WOS:000357788700009 PM 26078036 ER PT S AU Grychtol, P Kfir, O Knut, R Turgut, E Zusin, D Popmintchev, D Popmintchev, T Nembach, H Shaw, J Fleischer, A Kapteyn, H Murnane, M Cohen, O AF Grychtol, Patrik Kfir, Ofer Knut, Ronny Turgut, Emrah Zusin, Dmitriy Popmintchev, Dimitar Popmintchev, Tenio Nembach, Hans Shaw, Justin Fleischer, Avner Kapteyn, Henry Murnane, Margaret Cohen, Oren BE Yamanouchi, I Cundiff, S DeVivieRiedle, R KuwataGonokami, M DiMauro, L TI X-Ray Magnetic Circular Dichroism Probed Using High Harmonics SO ULTRAFAST PHENOMENA XIX SE Springer Proceedings in Physics LA English DT Proceedings Paper CT 19th International Conference on Ultrafast Phenomena CY JUL 07-11, 2014 CL Okinawa, JAPAN SP Japan Intense Light Field Sci Soc, Ctr Ultrafast Intense Laser Sci, Univ Tokyo AB We demonstrate the first generation and phase matching of circularly-polarized high harmonics, which are bright enough for X-ray magnetic circular dichroism measurements at the M absorption edges of the magnetic materials Fe, Co and Ni. C1 [Grychtol, Patrik; Knut, Ronny; Turgut, Emrah; Zusin, Dmitriy; Popmintchev, Dimitar; Popmintchev, Tenio; Kapteyn, Henry; Murnane, Margaret] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Grychtol, Patrik; Knut, Ronny; Turgut, Emrah; Zusin, Dmitriy; Popmintchev, Dimitar; Popmintchev, Tenio; Kapteyn, Henry; Murnane, Margaret] Univ Colorado, JILA, Boulder, CO 80309 USA. [Kfir, Ofer; Fleischer, Avner; Cohen, Oren] Technion Israel Inst Technol, Inst Solid State, IL-32000 Haifa, Israel. [Kfir, Ofer; Fleischer, Avner; Cohen, Oren] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Knut, Ronny; Nembach, Hans; Shaw, Justin] NIST, Electromagnet Div, Boulder, CO 80305 USA. [Fleischer, Avner] Ort Braude Coll, Dept Phys & Opt Engn, IL-21982 Karmiel, Israel. RP Grychtol, P (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM p.grychtol@jila.colorado.edu RI Popmintchev, Dimitar/A-2164-2011; Popmintchev, Tenio/B-6715-2008 OI Popmintchev, Dimitar/0000-0001-8203-4703; Popmintchev, Tenio/0000-0002-2023-2226 NR 13 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0930-8989 BN 978-3-319-13242-6; 978-3-319-13241-9 J9 SPRINGER PROC PHYS PY 2015 VL 162 BP 60 EP 63 DI 10.1007/978-3-319-13242-6_15 PG 4 WC Physics, Applied SC Physics GA BD0UY UT WOS:000357738800015 ER PT S AU Cundiff, ST Almand-Hunter, AE Li, H Mootz, M Kira, M Koch, SW AF Cundiff, S. T. Almand-Hunter, A. E. Li, H. Mootz, M. Kira, M. Koch, S. W. BE Yamanouchi, I Cundiff, S DeVivieRiedle, R KuwataGonokami, M DiMauro, L TI Quantum Droplets of Electrons and Holes in GaAs Quantum Wells SO ULTRAFAST PHENOMENA XIX SE Springer Proceedings in Physics LA English DT Proceedings Paper CT 19th International Conference on Ultrafast Phenomena CY JUL 07-11, 2014 CL Okinawa, JAPAN SP Japan Intense Light Field Sci Soc, Ctr Ultrafast Intense Laser Sci, Univ Tokyo AB We present evidence for electron-hole quantum droplets in GaAs quantum wells using spectrally-resolved transient-absorption spectroscopy. Quantum droplets have a correlation function characteristic of a liquid, but have quantized binding energy, unlike macroscopic droplets. C1 [Cundiff, S. T.; Almand-Hunter, A. E.; Li, H.] NIST, JILA, Boulder, CO 80309 USA. [Cundiff, S. T.; Almand-Hunter, A. E.; Li, H.] Univ Colorado, Boulder, CO 80309 USA. [Mootz, M.; Kira, M.; Koch, S. W.] Univ Marburg, Dept Phys, D-35032 Marburg, Germany. RP Cundiff, ST (reprint author), NIST, JILA, Boulder, CO 80309 USA. EM cundiff@jila.colorado.edu; kira@Staff.Uni-Marburg.DE NR 7 TC 0 Z9 0 U1 1 U2 2 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0930-8989 BN 978-3-319-13242-6; 978-3-319-13241-9 J9 SPRINGER PROC PHYS PY 2015 VL 162 BP 264 EP 266 DI 10.1007/978-3-319-13242-6_64 PG 3 WC Physics, Applied SC Physics GA BD0UY UT WOS:000357738800064 ER PT S AU Suzuki, T Singh, R Akimov, IA Bayer, M Reuter, D Wieck, AD Cundiff, ST AF Suzuki, T. Singh, R. Akimov, I. A. Bayer, M. Reuter, D. Wieck, A. D. Cundiff, S. T. BE Yamanouchi, I Cundiff, S DeVivieRiedle, R KuwataGonokami, M DiMauro, L TI Rabi Oscillations in an InAs Quantum Dot Ensemble Observed in Pre-pulse 2D Coherent Spectroscopy SO ULTRAFAST PHENOMENA XIX SE Springer Proceedings in Physics LA English DT Proceedings Paper CT 19th International Conference on Ultrafast Phenomena CY JUL 07-11, 2014 CL Okinawa, JAPAN SP Japan Intense Light Field Sci Soc, Ctr Ultrafast Intense Laser Sci, Univ Tokyo AB We have observed Rabi oscillations in an InAs quantum dot ensemble by using optical pre-pulse 2D coherent spectroscopy. The polarization for 2D coherent spectroscopy is set to be cross-linear in order to obtain biexciton signal, which enables us to distinguish the signals from the ground and excited states. Furthermore, the spectral domain in 2D can reveal the coherent evolution in an inhomogeneously broadened ensemble. With increasing pre-pulse intensity, the signals attributed to the ground and excited states exhibit the sinusoidal decrease and increase, respectively. The observed excitation behavior is well reproduced by a damped oscillation model. From the fitting the pulse area achieved in this work is deduced to be 0.41 pi and the dipole moment is estimated as 29 Debye. C1 [Suzuki, T.; Singh, R.; Cundiff, S. T.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Suzuki, T.; Singh, R.; Cundiff, S. T.] NIST, Boulder, CO 80309 USA. [Akimov, I. A.; Bayer, M.] Tech Univ Dortmund, Expt Phys 2, D-44221 Dortmund, Germany. [Reuter, D.; Wieck, A. D.] Ruhr Univ Bochum, Lehrstuhl Angew Festkoerperphys, D-44780 Bochum, Germany. RP Suzuki, T (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. EM takeshi.suzuki@jila.colorado.edu; andreas.wieck@ruhr-uni-bochum.de; cundiff@jila.colorado.edu RI Wieck, Andreas Dirk/C-5129-2009 OI Wieck, Andreas Dirk/0000-0001-9776-2922 NR 3 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0930-8989 BN 978-3-319-13242-6; 978-3-319-13241-9 J9 SPRINGER PROC PHYS PY 2015 VL 162 BP 271 EP 274 DI 10.1007/978-3-319-13242-6_66 PG 4 WC Physics, Applied SC Physics GA BD0UY UT WOS:000357738800066 ER PT J AU Emmons, LK Arnold, SR Monks, SA Huijnen, V Tilmes, S Law, KS Thomas, JL Raut, JC Bouarar, I Turquety, S Long, Y Duncan, B Steenrod, S Strode, S Flemming, J Mao, J Langner, J Thompson, AM Tarasick, D Apel, EC Blake, DR Cohen, RC Dibb, J Diskin, GS Fried, A Hall, SR Huey, LG Weinheimer, AJ Wisthaler, A Mikoviny, T Nowak, J Peischl, J Roberts, JM Ryerson, T Warneke, C Helmig, D AF Emmons, L. K. Arnold, S. R. Monks, S. A. Huijnen, V. Tilmes, S. Law, K. S. Thomas, J. L. Raut, J. -C. Bouarar, I. Turquety, S. Long, Y. Duncan, B. Steenrod, S. Strode, S. Flemming, J. Mao, J. Langner, J. Thompson, A. M. Tarasick, D. Apel, E. C. Blake, D. R. Cohen, R. C. Dibb, J. Diskin, G. S. Fried, A. Hall, S. R. Huey, L. G. Weinheimer, A. J. Wisthaler, A. Mikoviny, T. Nowak, J. Peischl, J. Roberts, J. M. Ryerson, T. Warneke, C. Helmig, D. TI The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GENERAL-CIRCULATION MODEL; BIOMASS BURNING EMISSIONS; EARTH SYSTEM MODEL; TROPOSPHERIC CHEMISTRY; TRANSPORT MODEL; ARCTIC TROPOSPHERE; LIGHTNING PARAMETERIZATION; VERTICAL DISTRIBUTIONS; LOWERMOST STRATOSPHERE; ATMOSPHERIC CHEMISTRY AB A model intercomparison activity was inspired by the large suite of observations of atmospheric composition made during the International Polar Year (2008) in the Arctic. Nine global and two regional chemical transport models participated in this intercomparison and performed simulations for 2008 using a common emissions inventory to assess the differences in model chemistry and transport schemes. This paper summarizes the models and compares their simulations of ozone and its precursors and presents an evaluation of the simulations using a variety of surface, balloon, aircraft and satellite observations. Each type of measurement has some limitations in spatial or temporal coverage or in composition, but together they assist in quantifying the limitations of the models in the Arctic and surrounding regions. Despite using the same emissions, large differences are seen among the models. The cloud fields and photolysis rates are shown to vary greatly among the models, indicating one source of the differences in the simulated chemical species. The largest differences among models, and between models and observations, are in NOy partitioning (PAN vs. HNO3) and in oxygenated volatile organic compounds (VOCs) such as acetaldehyde and acetone. Comparisons to surface site measurements of ethane and propane indicate that the emissions of these species are significantly underestimated. Satellite observations of NO2 from the OMI (Ozone Monitoring Instrument) have been used to evaluate the models over source regions, indicating anthropogenic emissions are underestimated in East Asia, but fire emissions are generally overestimated. The emission factors for wildfires in Canada are evaluated using the correlations of VOCs to CO in the model output in comparison to enhancement factors derived from aircraft observations, showing reasonable agreement for methanol and acetaldehyde but underestimate ethanol, propane and acetone, while overestimating ethane emission factors. C1 [Emmons, L. K.; Tilmes, S.; Apel, E. C.; Hall, S. R.; Weinheimer, A. J.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [Arnold, S. R.; Monks, S. A.] Univ Leeds, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England. [Huijnen, V.] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands. [Law, K. S.; Thomas, J. L.; Raut, J. -C.; Bouarar, I.] Univ Versailles St Quentin, Univ Paris 06, Sorbonne Univ, CNRS,INSU,LATMOS IPSL,UMR8190, Paris, France. [Turquety, S.; Long, Y.] Ecole Polytech, CNRS, Lab Meteorol Dynam, IPSL,UMR8539, F-91128 Palaiseau, France. [Duncan, B.; Steenrod, S.; Strode, S.; Thompson, A. M.] NASA Goddard, Atmospher Chem & Dynam Lab, Greenbelt, MD USA. [Flemming, J.] ECMWF, Reading, Berks, England. [Mao, J.] NOAA, GFDL, Princeton, NJ USA. [Mao, J.] Princeton Univ, Princeton, NJ 08544 USA. [Langner, J.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden. [Tarasick, D.] Environm Canada, Downsview, ON, Canada. [Blake, D. R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Cohen, R. C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Dibb, J.] Univ New Hampshire, Durham, NH 03824 USA. [Diskin, G. S.] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23665 USA. [Fried, A.] Univ Colorado, Boulder, CO 80309 USA. [Huey, L. G.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Wisthaler, A.; Mikoviny, T.] Univ Innsbruck, A-6020 Innsbruck, Austria. [Wisthaler, A.; Mikoviny, T.] Univ Oslo, Oslo, Norway. [Nowak, J.; Peischl, J.; Roberts, J. M.; Ryerson, T.; Warneke, C.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Helmig, D.] Univ Colorado, INSTAAR, Boulder, CO 80309 USA. [Strode, S.] Univ Space Res Assoc, Columbia, MD USA. RP Emmons, LK (reprint author), Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. EM emmons@ucar.edu RI Ryerson, Tom/C-9611-2009; Peischl, Jeff/E-7454-2010; Roberts, James/A-1082-2009; Strode, Sarah/H-2248-2012; Cohen, Ronald/A-8842-2011; Warneke, Carsten/E-7174-2010; Raut, Jean-Christophe/G-3946-2016; Nowak, John/B-1085-2008; Mao, Jingqiu/F-2511-2010; Duncan, Bryan/A-5962-2011; Emmons, Louisa/R-8922-2016; Manager, CSD Publications/B-2789-2015; Thompson, Anne /C-3649-2014 OI Raut, Jean-Christophe/0000-0002-3552-2437; Arnold, Steve/0000-0002-4881-5685; MONKS, SARAH/0000-0003-3474-027X; Tarasick, David/0000-0001-9869-0692; Huijnen, Vincent/0000-0002-2814-8475; Peischl, Jeff/0000-0002-9320-7101; Roberts, James/0000-0002-8485-8172; Strode, Sarah/0000-0002-8103-1663; Cohen, Ronald/0000-0001-6617-7691; Nowak, John/0000-0002-5697-9807; Mao, Jingqiu/0000-0002-4774-9751; Emmons, Louisa/0000-0003-2325-6212; Thompson, Anne /0000-0002-7829-0920 FU NASA [NNX08AD29G]; French Agence National de Recherche (ANR) CLIMSLIP project; CNRS-LEFE; ANR; CNES; GENCI-IDRIS [2014-017141]; European Commission [218793]; Swedish Environmental Protection Agency [NV-09414-12]; Swedish Climate and Clean Air research program, SCAC; BMVIT-FFG/ALR; NOAA Climate and Health of the Atmosphere programs; NOAA Climate Program Office [NA13OAR4310071]; National Aeronautics and Space Administration through the Science Mission Directorate, Tropospheric Composition Program [NNX08AD22G]; National Science Foundation; Office of Science (BER) of the US Department of Energy FX The numerous individuals who provided observations used in this study are gratefully acknowledged, including William H. Brune, Jingqiu Mao, Xinrong Ren, and David Shelow of Pennsylvania State University for the ARCTAS DC8 LIF OH measurements; Paul Wennberg and John Crounse of California Institute of Technology for the ARCTAS DC8 CIT-CIMS data (supported by NASA award NNX08AD29G); Steve Montzka of NOAA/ESRL/GMD for NOAA P3 flask samples of propane during ARCPAC; Joost de Gouw of NOAA/ESRL/CSD for ARCPAC PTRMS VOC observations; and John Holloway of NOAA/ESRL/CSD for ARCPAC CO and SO2 (UV fluorescence) measurements.; The GEOS-5 data used with CAM-chem in this study have been provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. We acknowledge the free use of tropospheric NO2 column data from the OMI sensor from www.temis.nl. French co-authors acknowledge funding from the French Agence National de Recherche (ANR) CLIMSLIP project and CNRS-LEFE. POLARCAT-France was supported by ANR, CNRS-LEFE and CNES. This work was performed in part using HPC resources from GENCI-IDRIS (grant 2014-017141). V. Huijnen acknowledges funding from the European Commission under the Seventh Framework Programme (contract number 218793). Contributions by SMHI were funded by the Swedish Environmental Protection Agency under contract NV-09414-12 and through the Swedish Climate and Clean Air research program, SCAC. A. Wisthaler acknowledges support from BMVIT-FFG/ALR. ARCPAC was supported in part by the NOAA Climate and Health of the Atmosphere programs. J. Mao acknowledges the NOAA Climate Program Office's grant NA13OAR4310071. L. K. Emmons acknowledges support from the National Aeronautics and Space Administration under award no. NNX08AD22G issued through the Science Mission Directorate, Tropospheric Composition Program. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the US Department of Energy. The National Center for Atmospheric Research is funded by the National Science Foundation. NR 92 TC 15 Z9 17 U1 3 U2 36 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 12 BP 6721 EP 6744 DI 10.5194/acp-15-6721-2015 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CL6ZC UT WOS:000357117500011 ER PT J AU Goncalves, WA Machado, LAT Kirstetter, PE AF Goncalves, W. A. Machado, L. A. T. Kirstetter, P-E TI Influence of biomass aerosol on precipitation over the Central Amazon: an observational study SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BLACK CARBON PARTICLES; MARINE STRATOCUMULUS; ABSORBING AEROSOLS; VERTICAL PROFILES; BURNING AEROSOL; RADAR DATA; CLOUDS; CLIMATE; IMPACT; SMOKE AB Understanding the influence of biomass burning aerosol on clouds and precipitation in the Amazon is key to reducing uncertainties in simulations of climate change scenarios with regard to deforestation fires. Here, we associate rainfall characteristics obtained from an S-band radar in the Amazon with in situ measurements of biomass burning aerosol for the entire year of 2009. The most important results were obtained during the dry season (July-December). The results indicate that the influence of aerosol on precipitating systems is modulated by the atmospheric degree of instability. For less unstable atmospheres, the higher the aerosol concentration is, the lower the precipitation is over the region. In contrast, for more unstable cases, higher concentrations of black carbon are associated with greater precipitation, increased ice content, and larger rain cells; this finding suggests an association with long-lived systems. The results presented are statistically significant. However, due to limitations imposed by the available data set, important features, such as the contribution of each mechanism to the rainfall suppression, need further investigation. Regional climate model simulations with aircraft and radar measurements would help clarify these questions. C1 [Goncalves, W. A.; Machado, L. A. T.] Ctr Weather Forecasting & Climate Studies CPTEC, Natl Inst Space Res INPE, Sao Paulo, Brazil. [Kirstetter, P-E] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA. [Kirstetter, P-E] NOAA, Natl Severe Storm Lab, Tulsa, OK USA. RP Goncalves, WA (reprint author), Ctr Weather Forecasting & Climate Studies CPTEC, Natl Inst Space Res INPE, Sao Paulo, Brazil. EM goncalves.weber@gmail.com RI Kirstetter, Pierre/E-2305-2013 OI Kirstetter, Pierre/0000-0002-7381-0229 FU FAPESP CHUVA project [2009/15235-8]; [CNPq-141952/2010-5] FX This study was funded by the following grants: CNPq-141952/2010-5 and FAPESP CHUVA project 2009/15235-8. We thank Paulo Artaxo for the discussions and for providing the EUCAARI database, and the Amazon Protection National System (SIPAM) for the S-band radar data set. NR 63 TC 7 Z9 7 U1 6 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 12 BP 6789 EP 6800 DI 10.5194/acp-15-6789-2015 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CL6ZC UT WOS:000357117500015 ER PT J AU Kramer, LJ Helmig, D Burkhart, JF Stohl, A Oltmans, S Honrath, RE AF Kramer, L. J. Helmig, D. Burkhart, J. F. Stohl, A. Oltmans, S. Honrath, R. E. TI Seasonal variability of atmospheric nitrogen oxides and non-methane hydrocarbons at the GEOSummit station, Greenland SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BIOMASS-BURNING EMISSIONS; POLARCAT SUMMER CAMPAIGN; HIGH NORTHERN LATITUDES; LONG-RANGE TRANSPORT; BOUNDARY-LAYER; ARCTIC TROPOSPHERE; REACTIVE NITROGEN; POLLUTION TRANSPORT; CARBON-MONOXIDE; SATELLITE-OBSERVATIONS AB Measurements of atmospheric nitrogen oxides NOx (NOx = NO + NO2), peroxyacetyl nitrate (PAN), NOy, and non-methane hydrocarbons (NMHC) were taken at the Greenland Environmental Observatory at Summit (GEOSummit) station, Greenland (72.34A degrees N, 38.29A degrees W; 3212 m a.s.l.), from July 2008 to July 2010. The data set represents the first year-round concurrent record of these compounds sampled at a high latitude Arctic site. Here, the study focused on the seasonal variability of these important ozone (O-3) precursors in the Arctic troposphere and the impact from transported anthropogenic and biomass burning emissions. Our analysis shows that PAN is the dominant NOy species in all seasons at Summit, varying from 42 to 76 %; however, we find that odd NOy species (odd NOy = NOy - PAN - NOx) contribute a large amount to the total NOy speciation. We hypothesize that the source of this odd NOy is most likely alkyl nitrates and nitric acid (HNO3) from transported pollution, and photochemically produced species such as nitrous acid (HONO). FLEXPART retroplume analyses and black carbon (BC) tracers for anthropogenic and biomass burning (BB) emissions were used to identify periods when the site was impacted by polluted air masses. Europe contributed the largest source of anthropogenic emissions during the winter months (November-March) with 56 % of the total anthropogenic BC tracer originating from Europe in 2008-2009 and 69 % in 2009-2010. The polluted plumes resulted in mean enhancements above background levels up to 334, 295, 88, and 1119 pmol mol(-1) for NOy, PAN, NOx, and ethane, respectively, over the two winters. Enhancements in O-3 precursors during the second winter were typically higher, which may be attributed to the increase in European polluted air masses transported to Summit in 2009-2010 compared to 2008-2009. O-3 levels were highly variable within the sampled anthropogenic plumes with mean Delta O-3 levels ranging from -6.7 to 7.6 nmol mol(-1) during the winter periods. North America was the primary source of biomass burning emissions during the summer; however, only 13 BB events were observed as the number of air masses transported to Summit, with significant BB emissions, was low in general during the measurement period. The BB plumes were typically very aged, with median transport times to the site from the source region of 14 days. The analyses of O-3 and precursor levels during the BB events indicate that some of the plumes sampled impacted the atmospheric chemistry at Summit, with enhancements observed in all measured species. C1 [Kramer, L. J.; Honrath, R. E.] Michigan Technol Univ, Atmospher Sci Program, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. [Helmig, D.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Burkhart, J. F.] Univ Oslo, Dept Geosci, Oslo, Norway. [Burkhart, J. F.] Univ Calif, Sierra Nevada Res Inst, Merced, CA USA. [Stohl, A.] Norwegian Inst Air Res NILU, Kjeller, Norway. [Oltmans, S.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Oltmans, S.] Univ Colorado, CIRES, Boulder, CO 80309 USA. RP Kramer, LJ (reprint author), Michigan Technol Univ, Atmospher Sci Program, Dept Geol & Min Engn & Sci, Houghton, MI 49931 USA. EM lkramer@mtu.edu RI Stohl, Andreas/A-7535-2008; Burkhart, John/B-7095-2008 OI Stohl, Andreas/0000-0002-2524-5755; Burkhart, John/0000-0002-5587-1693 FU NASA ROSES program [NNX07AR26G]; Norwegian Research Council of POLARCAT-Norway; Norwegian Research Council [ES432275]; US National Science Foundation [NSF1023651] FX The authors acknowledge support for this project from the NASA ROSES program, grant number NNX07AR26G. A. Stohl was supported by the Norwegian Research Council in the framework of POLARCAT-Norway. Support for J. F. Burkhart was provided jointly under the Norwegian Research Council (project ES432275) and the US National Science Foundation (NSF1023651). The authors would like to acknowledge Mike Dziobak at Michigan Tech for all his valuable work with the instrumentation and Brie Van Dam and Jacques Heuber from The University of Colorado, Boulder, assisting with the measurements. We would like to thank the 109th Air National Guard and the support staff and science technicians from CH2M Hill Polar Field Services for their valuable assistance and the Danish Commission for Scientific Research for providing access to GEOSummit station. The authors would also like to thank Jack Dibb and Meredith Hastings for sharing the HNO3 and HONO data from Summit. NR 111 TC 4 Z9 5 U1 2 U2 24 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 12 BP 6827 EP 6849 DI 10.5194/acp-15-6827-2015 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CL6ZC UT WOS:000357117500019 ER PT J AU Turner, AJ Jacob, DJ Wecht, KJ Maasakkers, JD Lundgren, E Andrews, AE Biraud, SC Boesch, H Bowman, KW Deutscher, NM Dubey, MK Griffith, DWT Hase, F Kuze, A Notholt, J Ohyama, H Parker, R Payne, VH Sussmann, R Sweeney, C Velazco, VA Warneke, T Wennberg, PO Wunch, D AF Turner, A. J. Jacob, D. J. Wecht, K. J. Maasakkers, J. D. Lundgren, E. Andrews, A. E. Biraud, S. C. Boesch, H. Bowman, K. W. Deutscher, N. M. Dubey, M. K. Griffith, D. W. T. Hase, F. Kuze, A. Notholt, J. Ohyama, H. Parker, R. Payne, V. H. Sussmann, R. Sweeney, C. Velazco, V. A. Warneke, T. Wennberg, P. O. Wunch, D. TI Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID COLUMN OBSERVING NETWORK; IN-SITU MEASUREMENTS; UNITED-STATES; SURFACE MEASUREMENTS; NITROGEN DEPOSITION; ATMOSPHERIC METHANE; AIRCRAFT CAMPAIGN; GREENHOUSE GASES; MOLE FRACTION; AVERAGED CH4 AB We use 2009-2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to estimate global and North American methane emissions with 4A degrees x 5A degrees and up to 50 km x 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL, TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global adjoint-based inversion yields a total methane source of 539 Tg a(-1) with some important regional corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide error characterization. We infer a US anthropogenic methane source of 40.2-42.7 Tg a(-1), as compared to 24.9-27.0 Tg a(-1) in the EDGAR and EPA bottom-up inventories, and 30.0-44.5 Tg a(-1) in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the southern-central US, the Central Valley of California, and Florida wetlands; large isolated point sources such as the US Four Corners also contribute. Using prior information on source locations, we attribute 29-44 % of US anthropogenic methane emissions to livestock, 22-31 % to oil/gas, 20 % to landfills/wastewater, and 11-15 % to coal. Wetlands contribute an additional 9.0-10.1 Tg a(-1). C1 [Turner, A. J.; Jacob, D. J.; Maasakkers, J. D.; Lundgren, E.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Jacob, D. J.; Wecht, K. J.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Andrews, A. E.; Sweeney, C.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Biraud, S. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Boesch, H.; Parker, R.] Univ Leicester, Dept Phys & Astron, Earth Observat Sci Grp, Leicester LE1 7RH, Leics, England. [Boesch, H.; Parker, R.] Univ Leicester, Natl Ctr Earth Observat, Leicester, Leics, England. [Bowman, K. W.; Payne, V. H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Deutscher, N. M.; Griffith, D. W. T.; Velazco, V. A.] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW 2522, Australia. [Deutscher, N. M.; Notholt, J.; Warneke, T.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. [Dubey, M. K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Hase, F.] Karlsruhe Inst Technol, IMK ASF, D-76021 Karlsruhe, Germany. [Kuze, A.; Ohyama, H.] Japan Aerosp Explorat Agcy, Tsukuba, Ibaraki, Japan. [Ohyama, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Sussmann, R.] Karlsruhe Inst Technol, IMK IFU, Garmisch Partenkirchen, Germany. [Sweeney, C.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Wennberg, P. O.; Wunch, D.] CALTECH, Pasadena, CA 91125 USA. RP Turner, AJ (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM aturner@fas.harvard.edu RI Dubey, Manvendra/E-3949-2010; Velazco, Voltaire/H-2280-2011; Boesch, Hartmut/G-6021-2012; Biraud, Sebastien/M-5267-2013; Chem, GEOS/C-5595-2014; KUZE, AKIHIKO/J-2074-2016; Sussmann, Ralf/K-3999-2012; Notholt, Justus/P-4520-2016 OI Dubey, Manvendra/0000-0002-3492-790X; Velazco, Voltaire/0000-0002-1376-438X; Biraud, Sebastien/0000-0001-7697-933X; KUZE, AKIHIKO/0000-0001-5415-3377; Notholt, Justus/0000-0002-3324-885X FU NASA Carbon Monitoring System; Department of Energy (DOE) Computational Science Graduate Fellowship (CSGF); California Energy Commission's Natural Gas Program [DE-AC02-05CH11231]; NASA; UK National Centre for Earth Observation (NCEO); ESA Climate Change Initiative (ESA GHG-CCI); NASA [NNX11AG01G, NAG5-12247, NNG05-GD07G]; NASA Orbiting Carbon Observatory Program; EU project InGOS; EU project ICOS-INWIRE; Senate of Bremen; Australian Research Council [DP0879468, LP0562346]; EC within the INGOS project; New Zealand Foundation of Research Science and Technology [CO1X0204, CO1X0703, CO1X0406]; NIWA's Atmosphere Research Programme 3 [2011/13]; LANL-LDRD [20110081DR]; Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [A-1102]; Office of Biological and Environmental Research of the US Department of Energy as part of the Atmospheric Radiation Measurement Program (ARM), ARM Aerial Facility [DE-AC02-05CH11231]; Terrestrial Ecosystem Science Program FX This work was supported by the NASA Carbon Monitoring System and a Department of Energy (DOE) Computational Science Graduate Fellowship (CSGF) to A. J. Turner. We also thank the Harvard SEAS Academic Computing center for access to computing resources. Special thanks to S. C. Wofsy for providing HIPPO aircraft data, and J. B. Miller and M. Parker for providing NOAA/ESRL Global Greenhouse Gas Reference Network data. We thank M. L. Fischer and the CALGEM team at LBNL for their contributions to data collection at tower sites in central California as supported by the California Energy Commission's Natural Gas Program through a grant to the US Department of Energy under contract no. DE-AC02-05CH11231. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. R. Parker and H. Boesch acknowledge funding from the UK National Centre for Earth Observation (NCEO) and the ESA Climate Change Initiative (ESA GHG-CCI). TCCON data at Park Falls, Lamont, and JPL is funded by NASA grants NNX11AG01G, NAG5-12247 and NNG05-GD07G, and the NASA Orbiting Carbon Observatory Program. We are grateful to the DOE ARM program for technical support in Lamont and J. Ayers for technical support in Park Falls. TCCON data from Bialystok and Bremen is funded by the EU projects InGOS and ICOS-INWIRE, and by the Senate of Bremen. TCCON data from Darwin is funded by NASA grants NAG5-12247 and NNG05-GD07G and the Australian Research Council, DP0879468 and LP0562346. We are grateful to the DOE ARM program for technical support in Darwin. Garmisch TCCON work has been performed as part of the ESA GHG-cci project via subcontract with the University of Bremen. In addition, we acknowledge funding by the EC within the INGOS project. From 2004 to 2011 the Lauder TCCON program was funded by the New Zealand Foundation of Research Science and Technology contracts CO1X0204, CO1X0703 and CO1X0406. Since 2011, the program has been funded by NIWA's Atmosphere Research Programme 3 (2011/13 Statement of Corporate Intent). M. K. Dubey thanks LANL-LDRD for funding 20110081DR for monitoring at Four Corners. We thank B. Henderson (LANL) for help with retrievals at Four Corners. A part of work at JAXA was supported by the Environment Research and Technology Development Fund (A-1102) of the Ministry of the Environment, Japan. Observations collected in the Southern Great plains were supported by the Office of Biological and Environmental Research of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of the Atmospheric Radiation Measurement Program (ARM), ARM Aerial Facility, and Terrestrial Ecosystem Science Program. HIPPO aircraft data are available at http://hippo.ornl.gov, TCCON data are available at http://tccon.ornl.gov, and NOAA/ESRL Global Greenhouse Gas Reference Network data are available at http://www.esrl.noaa.gov/gmd/ccgg/flask.php. NR 76 TC 33 Z9 33 U1 11 U2 58 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 12 BP 7049 EP 7069 DI 10.5194/acp-15-7049-2015 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CL6ZC UT WOS:000357117500034 ER PT J AU Wagner, NL Brock, CA Angevine, WM Beyersdorf, A Campuzano-Jost, P Day, D de Gouw, JA Diskin, GS Gordon, TD Graus, MG Holloway, JS Huey, G Jimenez, JL Lack, DA Liao, J Liu, X Markovic, MZ Middlebrook, AM Mikoviny, T Peischl, J Perring, AE Richardson, MS Ryerson, TB Schwarz, JP Warneke, C Welti, A Wisthaler, A Ziemba, LD Murphy, DM AF Wagner, N. L. Brock, C. A. Angevine, W. M. Beyersdorf, A. Campuzano-Jost, P. Day, D. de Gouw, J. A. Diskin, G. S. Gordon, T. D. Graus, M. G. Holloway, J. S. Huey, G. Jimenez, J. L. Lack, D. A. Liao, J. Liu, X. Markovic, M. Z. Middlebrook, A. M. Mikoviny, T. Peischl, J. Perring, A. E. Richardson, M. S. Ryerson, T. B. Schwarz, J. P. Warneke, C. Welti, A. Wisthaler, A. Ziemba, L. D. Murphy, D. M. TI In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC(4)RS: observations of a modest aerosol enhancement aloft SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; PARTICULATE MATTER MASS; OPTICAL DEPTH; SATELLITE-OBSERVATIONS; CARBON-MONOXIDE; CUMULUS CLOUDS; US; ABSORPTION; PARTICLES; AIRCRAFT AB Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC(4)RS). Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were 10 % larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10 % to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary aerosol aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. The first study attributes the layer aloft to secondary organic aerosol (SOA) while the second study speculates that the layer aloft could be SOA or secondary particulate sulfate. In contrast to these hypotheses, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD. C1 [Wagner, N. L.; Brock, C. A.; Angevine, W. M.; de Gouw, J. A.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Lack, D. A.; Liao, J.; Markovic, M. Z.; Middlebrook, A. M.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Murphy, D. M.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Wagner, N. L.; Angevine, W. M.; Campuzano-Jost, P.; Day, D.; de Gouw, J. A.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Markovic, M. Z.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Schwarz, J. P.; Warneke, C.; Welti, A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Beyersdorf, A.; Diskin, G. S.; Ziemba, L. D.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Campuzano-Jost, P.; Day, D.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Huey, G.; Liu, X.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Mikoviny, T.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Welti, A.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Wisthaler, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. RP Wagner, NL (reprint author), NOAA, Earth Syst Res Lab, 325 Broadway, Boulder, CO 80305 USA. EM nick.wagner@noaa.gov RI schwarz, joshua/G-4556-2013; Murphy, Daniel/J-4357-2012; Manager, CSD Publications/B-2789-2015; Perring, Anne/G-4597-2013; Wagner, Nicholas/E-7437-2010; Lack, Daniel/I-9053-2012; Ryerson, Tom/C-9611-2009; Peischl, Jeff/E-7454-2010; Angevine, Wayne/H-9849-2013; Graus, Martin/E-7546-2010; de Gouw, Joost/A-9675-2008; Jimenez, Jose/A-5294-2008; Gordon, Timothy/H-9497-2013; Warneke, Carsten/E-7174-2010; Middlebrook, Ann/E-4831-2011 OI schwarz, joshua/0000-0002-9123-2223; Murphy, Daniel/0000-0002-8091-7235; Perring, Anne/0000-0003-2231-7503; Peischl, Jeff/0000-0002-9320-7101; Angevine, Wayne/0000-0002-8021-7116; Graus, Martin/0000-0002-2025-9242; de Gouw, Joost/0000-0002-0385-1826; Jimenez, Jose/0000-0001-6203-1847; Gordon, Timothy/0000-0002-5128-9532; Middlebrook, Ann/0000-0002-2984-6304 FU BMVIT/FFG-ALR of the Austrian Space Application Program (ASAP 8) [833451]; NASA [NNX12AC03G]; NSF [AGS-1243354]; NOAA's Health of the Atmosphere Program and Atmospheric Chemistry, Carbon Cycles, and Climate Program; NASA's Radiation Sciences Program [NNH12AT31I] FX We thank the NOAA WP-3D and NASA DC-8 scientists, flight crews, and support staff for their outstanding efforts in the field. In particular we would like to thank M. K. Trainer for flight planning during SENEX. Isoprene measurements during SEAC4RS were supported by BMVIT/FFG-ALR in the frame of the Austrian Space Application Program (ASAP 8, project 833451). PCJ, DAD, and JLJ measured aerosol mass and composition during SEAC4RS and were supported by NASA NNX12AC03G and NSF AGS-1243354. Additionally, the SEARCH aerosol network provided surface measurement used in overflight comparisons, and we thank Brent Holben and Brad Gingrey and their staff for establishing and maintaining the Centreville AERONET sites used in this investigation. This analysis is funded by the NOAA's Health of the Atmosphere Program and Atmospheric Chemistry, Carbon Cycles, and Climate Program and by NASA's Radiation Sciences Program under Award NNH12AT31I. NR 65 TC 12 Z9 12 U1 4 U2 31 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 12 BP 7085 EP 7102 DI 10.5194/acp-15-7085-2015 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CL6ZC UT WOS:000357117500036 ER PT J AU Song, S Selin, NE Soerensen, AL Angot, H Artz, R Brooks, S Brunke, EG Conley, G Dommergue, A Ebinghaus, R Holsen, TM Jaffe, DA Kang, S Kelley, P Luke, WT Magand, O Marumoto, K Pfaffhuber, KA Ren, X Sheu, GR Slemr, F Warneke, T Weigelt, A Weiss-Penzias, P Wip, DC Zhang, Q AF Song, S. Selin, N. E. Soerensen, A. L. Angot, H. Artz, R. Brooks, S. Brunke, E. -G. Conley, G. Dommergue, A. Ebinghaus, R. Holsen, T. M. Jaffe, D. A. Kang, S. Kelley, P. Luke, W. T. Magand, O. Marumoto, K. Pfaffhuber, K. A. Ren, X. Sheu, G. -R. Slemr, F. Warneke, T. Weigelt, A. Weiss-Penzias, P. Wip, D. C. Zhang, Q. TI Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GASEOUS ELEMENTAL MERCURY; AIR-SEA EXCHANGE; DRY DEPOSITION; NATURAL SOURCES; ATLANTIC-OCEAN; NORTH-ATLANTIC; DIFFUSION-COEFFICIENT; SOUTHERN-HEMISPHERE; OXIDIZED MERCURY; DEPLETION EVENTS AB We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg-0 observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg-0 and wet deposition measurements. The optimized global mercury emission to the atmosphere is 5.8 Gg yr(-1). The ocean accounts for 3.2 Gg yr(-1) (55 % of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg-0. The optimized Asian anthropogenic emission of Hg-0 (gas elemental mercury) is 650-1770 Mg yr(-1), higher than its bottom-up estimates (550-800 Mg yr(-1)). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition. C1 [Song, S.; Selin, N. E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Selin, N. E.] MIT, Engn Syst Div, Cambridge, MA 02139 USA. [Soerensen, A. L.] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA. [Soerensen, A. L.] Stockholm Univ, Dept Appl Environm Sci, S-10691 Stockholm, Sweden. [Angot, H.; Dommergue, A.; Magand, O.] Univ Grenoble Alpes, CNRS, LGGE, Grenoble, France. [Artz, R.; Kelley, P.; Luke, W. T.; Ren, X.] NOAA, Air Resources Lab, College Pk, MD USA. [Brooks, S.] Univ Tennessee, Inst Space, Dept Mech Aerosp & Biomed Engn, Tullahoma, TN 37388 USA. [Brunke, E. -G.] CSIR, South African Weather Serv, Stellenbosch, South Africa. [Conley, G.] Ohio Univ, Ctr Air Qual, Athens, OH 45701 USA. [Ebinghaus, R.; Weigelt, A.] Helmholtz Zentrum Geesthacht, Inst Coastal Res, D-21502 Geesthacht, Germany. [Holsen, T. M.] Clarkson Univ, Dept Civil & Environm Engn, Potsdam, NY USA. [Jaffe, D. A.] Univ Washington, Sch Sci Technol Engn & Math, Bothell, WA USA. [Jaffe, D. A.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Kang, S.] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, State Key Lab Cryospher Sci, Lanzhou, Peoples R China. [Kang, S.] Chinese Acad Sci, CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing, Peoples R China. [Kelley, P.; Ren, X.] Univ Maryland, Cooperat Inst Climate & Satellites, College Pk, MD 20742 USA. [Marumoto, K.] Natl Inst Minamata Dis, Environm Chem Sect, Kumamoto, Japan. [Pfaffhuber, K. A.] Norwegian Inst Air Res NILU, Tromso, Norway. [Sheu, G. -R.] Natl Cent Univ, Dept Atmospher Sci, Jhongli, Taiwan. [Slemr, F.] Max Planck Inst Chem, Air Chem Div, D-55128 Mainz, Germany. [Warneke, T.] Univ Bremen, Inst Environm Phys, D-28359 Bremen, Germany. [Weiss-Penzias, P.] Univ Calif Santa Cruz, Microbiol & Environm Toxicol, Santa Cruz, CA 95064 USA. [Wip, D. C.] Anton de Kom Univ Suriname, Paramaribo, Surinam. [Zhang, Q.] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Tibetan Environm Changes & Land Surface P, Beijing, Peoples R China. RP Song, S (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. EM song33@mit.edu RI Dommergue, Aurelien/A-2829-2009; Song, Shaojie/A-1948-2012; Artz, Richard/P-6371-2015; Luke, Winston/D-1594-2016; Kelley, Paul/C-9155-2016; Selin, Noelle/A-4158-2008; Ren, Xinrong/E-7838-2015; Chem, GEOS/C-5595-2014 OI Dommergue, Aurelien/0000-0002-8185-9604; Song, Shaojie/0000-0001-6395-7422; Artz, Richard/0000-0002-1335-0697; Luke, Winston/0000-0002-1993-2241; Selin, Noelle/0000-0002-6396-5622; Ren, Xinrong/0000-0001-9974-1666; FU US NSF Atmospheric Chemistry Program [1053648]; EU-FP7 project GMOS; Labex OSUG@2020 [ANR10 LABX56]; LEFE CNRS/INSU (program SAMOA); French Polar Institute IPEV, GMOStral [1028]; project NSFC [41225002]; Environment Canada; Ministry of the Environment (Japan); SEARCH network by Southern Company; SEARCH network by EPRI FX This work is supported by the US NSF Atmospheric Chemistry Program #1053648. A. Dommergue, O. Magand, and H. Angot acknowledge the EU-FP7 project GMOS, Labex OSUG@2020 (ANR10 LABX56) and LEFE CNRS/INSU (program SAMOA) for funding, and the French Polar Institute IPEV (Program 1028, GMOStral) for logistical and financial support. S. Kang and Q. Zhang acknowledge support by project NSFC (41225002). We thank Environment Canada, Ministry of the Environment (Japan), the SEARCH network (sponsored by Southern Company and EPRI), X. Feng and X. Fu (IGCAS, China), K. Crist (Ohio University), and all other investigators for providing observational data, H. Amos (Harvard) for assistance and helpful discussions on the global biogeochemical box model, and J. Kuss (IOW, Germany), C. D. Holmes (FSU), Y. Zhang and E. S. Corbitt (Harvard) for helpful discussions. We also thank two anonymous referees for their helpful comments. NR 164 TC 22 Z9 24 U1 10 U2 54 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 12 BP 7103 EP 7125 DI 10.5194/acp-15-7103-2015 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CL6ZC UT WOS:000357117500037 ER PT S AU Charalampidis, D Gundam, M Ioup, GE Ioup, JW Thompson, CH AF Charalampidis, Dimitrios Gundam, Madhuri Ioup, George E. Ioup, Juliette W. Thompson, Charles H. BE Sadjadi, FA Mahalanobis, A TI Stereo image segmentation with application in underwater fish detection and tracking SO AUTOMATIC TARGET RECOGNITION XXV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Automatic Target Recognition XXV CY APR 20-22, 2015 CL Baltimore, MD SP SPIE DE Fish image segmentation; stereo images; underwater image sequences ID LIVE FISH AB Most often, background subtraction and image segmentation methods use images or video captured using a single camera. However, segmentation can be improved using stereo images by reducing errors caused due to illumination fluctuations and object occlusion. This work proposes a background subtraction and image segmentation method for images obtained using a two camera stereo system. Stereo imaging is often employed in order to obtain depth information. On the other hand, the objective of this work is mainly to extract accurate boundaries of objects from stereo images, which are otherwise difficult to obtain. Improving the outline detection accuracy is vital for object recognition applications. An application of the proposed technique is presented for the detection and tracking of fish in underwater image sequences. Outline fish detection is a challenging task since fish are not rigid objects. Moreover, color is not necessarily a reliable means to segment underwater images, therefore, grayscale images are used. Due to these two reasons, and due to the fact that underwater images captured in non-controlled environments are often blurry and poorly illuminated, commonly used local correlation methods are not sufficient for stereo image matching. The proposed algorithm improves segmentation in several scenarios including cases where fish are occluded by other fish regions. Although the work concentrates on segmenting fish images, it can be employed in other underwater image segmentation applications where visible-light cameras are used. C1 [Charalampidis, Dimitrios; Gundam, Madhuri] Univ New Orleans, Dept Elect Engn, New Orleans, LA 70148 USA. [Ioup, George E.; Ioup, Juliette W.] Univ New Orleans, Dept Phys, New Orleans, LA 70148 USA. [Thompson, Charles H.] NOAA, Southeast Fisheries Sci Ctr, Stennis Space Ctr, MS USA. RP Charalampidis, D (reprint author), Univ New Orleans, Dept Elect Engn, New Orleans, LA 70148 USA. EM dcharala@uno.edu NR 15 TC 0 Z9 0 U1 2 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-592-6 J9 PROC SPIE PY 2015 VL 9476 AR 94760H DI 10.1117/12.2177648 PG 9 WC Engineering, Electrical & Electronic; Optics; Telecommunications SC Engineering; Optics; Telecommunications GA BD0OD UT WOS:000357464100014 ER PT J AU Weng, ES Malyshev, S Lichstein, JW Farrior, CE Dybzinski, R Zhang, T Shevliakova, E Pacala, SW AF Weng, E. S. Malyshev, S. Lichstein, J. W. Farrior, C. E. Dybzinski, R. Zhang, T. Shevliakova, E. Pacala, S. W. TI Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition SO BIOGEOSCIENCES LA English DT Article ID GLOBAL VEGETATION MODELS; LINE SIMULATION CHARACTERISTICS; TERRESTRIAL CARBON-CYCLE; TEMPERATE FOREST; CO2 ENRICHMENT; STOMATAL CONDUCTANCE; ECOSYSTEM DYNAMICS; STAND DEVELOPMENT; TROPICAL FORESTS; BIOSPHERE MODEL AB The long-term and large-scale dynamics of ecosystems are in large part determined by the performances of individual plants in competition with one another for light, water, and nutrients. Woody biomass, a pool of carbon (C) larger than 50% of atmospheric CO2, exists because of height-structured competition for light. However, most of the current Earth system models that predict climate change and C cycle feedbacks lack both a mechanistic formulation for height-structured competition for light and an explicit scaling from individual plants to the globe. In this study, we incorporate height-structured competition for light, competition for water, and explicit scaling from individuals to ecosystems into the land model version 3 (LM3) currently used in the Earth system models developed by the Geophysical Fluid Dynamics Laboratory (GFDL). The height-structured formulation is based on the perfect plasticity approximation (PPA), which has been shown to accurately scale from individual-level plant competition for light, water, and nutrients to the dynamics of whole communities. Because of the tractability of the PPA, the coupled LM3-PPA model is able to include a large number of phenomena across a range of spatial and temporal scales and still retain computational tractability, as well as close linkages to mathematically tractable forms of the model. We test a range of predictions against data from temperate broadleaved forests in the northern USA. The results show the model predictions agree with diurnal and annual C fluxes, growth rates of individual trees in the canopy and understory, tree size distributions, and species-level population dynamics during succession. We also show how the competitively optimal allocation strategy - the strategy that can competitively exclude all others - shifts as a function of the atmospheric CO2 concentration. This strategy is referred to as an evolutionarily stable strategy (ESS) in the ecological literature and is typically not the same as a productivity-or growth-maximizing strategy. Model simulations predict that C sinks caused by CO2 fertilization in forests limited by light and water will be down-regulated if allocation tracks changes in the competitive optimum. The implementation of the model in this paper is for temperate broadleaved forest trees, but the formulation of the model is general. It can be expanded to include other growth forms and physiologies simply by altering parameter values. C1 [Weng, E. S.; Farrior, C. E.; Dybzinski, R.; Pacala, S. W.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. [Malyshev, S.; Shevliakova, E.] Princeton Univ, Cooperat Inst Climate Sci, Princeton, NJ 08544 USA. [Malyshev, S.; Shevliakova, E.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08544 USA. [Lichstein, J. W.; Zhang, T.] Univ Florida, Dept Biol, Gainesville, FL 32611 USA. RP Weng, ES (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. EM weng@princeton.edu RI Weng, Ensheng/E-4390-2012; OI Weng, Ensheng/0000-0002-1858-4847; Farrior, Caroline/0000-0001-8999-4264 FU USDA Forest Service Northern Research Station [09-JV-11242306-051, 13-JV-11242315-066, 11-JV-11242306-059]; Princeton Environment Institute; National Oceanic and Atmospheric (US Department of Commerce) [NA08OAR4320752] FX Funding was provided by the USDA Forest Service Northern Research Station (agreements 09-JV-11242306-051, 13-JV-11242315-066, and 11-JV-11242306-059) and the Princeton Environment Institute. E. Shevliakova and S. Malyshev acknowledge support from the National Oceanic and Atmospheric (US Department of Commerce) through grant NA08OAR4320752. We thank Catherine Raphael of the Geophysical Fluid Dynamics Laboratory for drawing Fig. S1a, and Richard Birdsey and Yude Pan of the USDA Forest Service for helpful comments on an earlier version of this paper. We thank Takashi Kohyama, Rosie Fisher, Benjamin Poulter, and Matthew Smith for careful and thoughtful reviews that helped in greatly improving the clarity of the paper. NR 103 TC 7 Z9 7 U1 4 U2 33 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2015 VL 12 IS 9 BP 2655 EP 2694 DI 10.5194/bg-12-2655-2015 PG 40 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CK4FT UT WOS:000356178900004 ER PT J AU Le Quere, C Moriarty, R Andrew, RM Peters, GP Ciais, P Friedlingstein, P Jones, SD Sitch, S Tans, P Arneth, A Boden, TA Bopp, L Bozec, Y Canadell, JG Chini, LP Chevallier, F Cosca, CE Harris, I Hoppema, M Houghton, RA House, JI Jain, AK Johannessen, T Kato, E Keeling, RF Kitidis, V Goldewijk, KK Koven, C Landa, CS Landschutzer, P Lenton, A Lima, ID Marland, G Mathis, JT Metzl, N Nojiri, Y Olsen, A Ono, T Peng, S Peters, W Pfeil, B Poulter, B Raupach, MR Regnier, P Rodenbeck, C Saito, S Salisbury, JE Schuster, U Schwinger, J Seferian, R Segschneider, J Steinhoff, T Stocker, BD Sutton, AJ Takahashi, T Tilbrook, B van der Werf, GR Viovy, N Wang, YP Wanninkhof, R Wiltshire, A Zeng, N AF Le Quere, C. Moriarty, R. Andrew, R. M. Peters, G. P. Ciais, P. Friedlingstein, P. Jones, S. D. Sitch, S. Tans, P. Arneth, A. Boden, T. A. Bopp, L. Bozec, Y. Canadell, J. G. Chini, L. P. Chevallier, F. Cosca, C. E. Harris, I. Hoppema, M. Houghton, R. A. House, J. I. Jain, A. K. Johannessen, T. Kato, E. Keeling, R. F. Kitidis, V. Goldewijk, K. Klein Koven, C. Landa, C. S. Landschuetzer, P. Lenton, A. Lima, I. D. Marland, G. Mathis, J. T. Metzl, N. Nojiri, Y. Olsen, A. Ono, T. Peng, S. Peters, W. Pfeil, B. Poulter, B. Raupach, M. R. Regnier, P. Roedenbeck, C. Saito, S. Salisbury, J. E. Schuster, U. Schwinger, J. Seferian, R. Segschneider, J. Steinhoff, T. Stocker, B. D. Sutton, A. J. Takahashi, T. Tilbrook, B. van der Werf, G. R. Viovy, N. Wang, Y. -P. Wanninkhof, R. Wiltshire, A. Zeng, N. TI Global carbon budget 2014 SO EARTH SYSTEM SCIENCE DATA LA English DT Article ID LAND-USE CHANGE; ENVIRONMENT SIMULATOR JULES; CO2 FLUX VARIABILITY; MIXED-LAYER SCHEME; EARTH SYSTEM MODEL; ATMOSPHERIC CO2; DIOXIDE EMISSIONS; INTERANNUAL VARIABILITY; TERRESTRIAL ECOSYSTEMS; INTERNATIONAL-TRADE AB Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), E-FF was 8.9 +/- 0.4 GtC yr(-1), E-LUC 0.9 +/- 0.5 GtC yr(-1), G(ATM) 4.3 +/- 0.1 GtC yr(-1), S-OCEAN 2.6 +/- 0.5 GtC yr(-1), and S-LAND 2.9 +/- 0.8 GtC yr(-1). For year 2013 alone, E-FF grew to 9.9 +/- 0.5 GtC yr(-1), 2.3% above 2012, continuing the growth trend in these emissions, E-LUC was 0.9 +/- 0.5 GtC yr(-1), G(ATM) was 5.4 +/- 0.2 GtC yr(-1), S-OCEAN was 2.9 +/- 0.5 GtC yr(-1), and S-LAND was 2.5 +/- 0.9 GtC yr(-1). G(ATM) was high in 2013, reflecting a steady increase in E-FF and smaller and opposite changes between S-OCEAN and S-LAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 +/- 0.10 ppm averaged over 2013. We estimate that E-FF will increase by 2.5% (1.3-3.5 %) to 10.1 +/- 0.6 GtC in 2014 (37.0 +/- 2.2 GtCO(2) yr(-1)), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of E-FF and assumed constant E-LUC for 2014, cumulative emissions of CO2 will reach about 545 +/- 55 GtC (2000 +/- 200 GtCO(2)) for 1870-2014, about 75% from E-FF and 25% from E-LUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quere et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014). C1 [Le Quere, C.; Moriarty, R.; Jones, S. D.] Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England. [Andrew, R. M.; Peters, G. P.] Ctr Int Climate & Environm Res Oslo CICERO, Oslo, Norway. [Ciais, P.; Bopp, L.; Chevallier, F.; Peng, S.; Viovy, N.] UVSQ, CNRS, Inst Pierre Simon Laplace, Lab Sci Climat & Environm,CEA,CE Orme Merisiers, F-91191 Gif Sur Yvette, France. [Friedlingstein, P.] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England. [Sitch, S.; Schuster, U.] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4QE, Devon, England. [Tans, P.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Arneth, A.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm, D-82467 Garmisch Partenkirchen, Germany. [Boden, T. A.] Oak Ridge Natl Lab, Carbon Dioxide Informat Anal Ctr CDIAC, Oak Ridge, TN USA. [Bozec, Y.] CNRS, Equipe Chim Marine, Stn Biolog Roscoff, UMR7144, F-29680 Roscoff, France. [Bozec, Y.] Univ Paris 06, Sorbonne Univ, Adaptat & Diversite Milieu Marin UMR7144, Stn Biol Roscoff, F-29680 Roscoff, France. [Canadell, J. G.] CSIRO Oceans & Atmosphere Flagship, Global Carbon Project, Canberra, ACT 2601, Australia. [Chini, L. P.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Cosca, C. E.; Mathis, J. T.; Sutton, A. J.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Harris, I.] Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England. [Hoppema, M.] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-27515 Bremerhaven, Germany. [Houghton, R. A.] Woods Hole Res Ctr WHRC, Falmouth, MA 02540 USA. [House, J. I.] Univ Bristol, Dept Geog, Cabot Inst, Bristol BS8 1TH, Avon, England. [Jain, A. K.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61821 USA. [Johannessen, T.; Landa, C. S.; Olsen, A.; Pfeil, B.; Schwinger, J.] Univ Bergen, Geophys Inst, N-5007 Bergen, Norway. [Johannessen, T.; Landa, C. S.; Olsen, A.; Pfeil, B.; Schwinger, J.] Bjerknes Ctr Climate Res, N-5007 Bergen, Norway. [Kato, E.; Nojiri, Y.] Natl Inst Environm Studies NIES, Ctr Global Environm Res, Tsukuba, Ibaraki 3058506, Japan. [Kato, E.] Inst Appl Energy IAE, Tokyo 1050003, Japan. [Keeling, R. F.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Kitidis, V.] Plymouth Marine Lab, Plymouth PL1 3DH, Devon, England. [Goldewijk, K. Klein] PBL Netherlands Environm Assessment Agcy, The Hague, Netherlands. [Goldewijk, K. Klein] Univ Utrecht, Utrecht, Netherlands. [Koven, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Landschuetzer, P.] ETH, Inst Biogeochem & Pollutant Dynam, Environm Phys Grp, CH-8092 Zurich, Switzerland. [Lenton, A.] CSIRO Oceans & Atmosphere Flagship, Hobart, Tas, Australia. [Lima, I. D.] Woods Hole Oceanog Inst WHOI, Woods Hole, MA 02543 USA. [Marland, G.] Appalachian State Univ, Res Inst Environm Energy & Econ, Boone, NC 28608 USA. [Metzl, N.] Univ Paris 06, Sorbonne Univ, CNRS, IRD,MNHN,LOCEAN IPSL Lab, F-75252 Paris, France. [Ono, T.] Fisheries Res Agcy, Natl Res Inst Fisheries Sci, Kanazawa Ku, Yokohama, Kanagawa 2368648, Japan. [Peters, W.] Wageningen Univ, Environm Sci Grp, Dept Meteorol & Air Qual, NL-6700 AA Wageningen, Netherlands. [Poulter, B.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [Raupach, M. R.] Australian Natl Univ, ANU Climate Change Inst, Fenner Sch Environm & Soc, Canberra, ACT 0200, Australia. [Regnier, P.] Univ Libre Bruxelles, Dept Earth & Environm Sci, B-1050 Brussels, Belgium. [Roedenbeck, C.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Saito, S.] Japan Meteorol Agcy, Global Environm & Marine Dept, Marine Div, Chiyoda Ku, Tokyo 1008122, Japan. [Salisbury, J. E.] Univ New Hampshire, Ocean Proc Anal Lab, Durham, NH 03824 USA. [Seferian, R.] CNRS, CNRM GAME, Meteo France CNRS, F-31100 Toulouse, France. [Segschneider, J.] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. [Steinhoff, T.] GEOMAR Helmholtz Ctr Ocean Res Kiel, D-24105 Kiel, Germany. [Stocker, B. D.] Univ Bern, Climate & Environm Phys, Bern, Switzerland. [Stocker, B. D.] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland. [Stocker, B. D.] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Ascot SL5 7PY, Berks, England. [Sutton, A. J.] Univ Washington, Joint Inst Study Atmosphere & Oceans, Seattle, WA 98195 USA. [Takahashi, T.] Lamont Doherty Earth Observ Columbia Univ, Palisades, NY 10964 USA. [Tilbrook, B.] CSIRO Oceans & Atmosphere, Hobart, Tas, Australia. [Tilbrook, B.] Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia. [van der Werf, G. R.] Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands. [Wang, Y. -P.] CSIRO Ocean & Atmosphere, Aspendale, Vic 3195, Australia. [Wanninkhof, R.] NOAA, AOML, Miami, FL 33149 USA. [Wiltshire, A.] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. [Zeng, N.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. RP Le Quere, C (reprint author), Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. EM c.lequere@uea.ac.uk RI Sutton, Adrienne/C-7725-2015; Jain, Atul/D-2851-2016; Koven, Charles/N-8888-2014; Le Quere, Corinne/C-2631-2017; wang, yp/A-9765-2011; Lenton, Andrew/D-2077-2012; Klein Goldewijk, Kees/L-5567-2013; Canadell, Josep/E-9419-2010; Peters, Wouter/B-8305-2008; Zeng, Ning/A-3130-2008; Friedlingstein, Pierre/H-2700-2014; van der Werf, Guido/M-8260-2016; Stocker, Benjamin/K-3194-2015; Tilbrook, Bronte/A-1522-2012; Olsen, Are/A-1511-2011; Lima, Ivan/A-6823-2016; House, Joanna/B-6477-2016; Nojiri, Yukihiro/D-1999-2010; Peng, Shushi/J-4779-2014; Chevallier, Frederic/E-9608-2016 OI Hoppema, Mario/0000-0002-2326-619X; Poulter, Benjamin/0000-0002-9493-8600; Kitidis, Vassilis/0000-0003-3949-3802; Moriarty, Roisin/0000-0003-1993-1756; Andrew, Robbie/0000-0001-8590-6431; Sutton, Adrienne/0000-0002-7414-7035; Jain, Atul/0000-0002-4051-3228; Koven, Charles/0000-0002-3367-0065; Le Quere, Corinne/0000-0003-2319-0452; Lenton, Andrew/0000-0001-9437-8896; Jones, Steve/0000-0003-0522-9851; Canadell, Josep/0000-0002-8788-3218; Peters, Wouter/0000-0001-8166-2070; Zeng, Ning/0000-0002-7489-7629; van der Werf, Guido/0000-0001-9042-8630; Stocker, Benjamin/0000-0003-2697-9096; Tilbrook, Bronte/0000-0001-9385-3827; Olsen, Are/0000-0003-1696-9142; Lima, Ivan/0000-0001-5345-0652; House, Joanna/0000-0003-4576-3960; Nojiri, Yukihiro/0000-0001-9885-9195; Peng, Shushi/0000-0001-5098-726X; Chevallier, Frederic/0000-0002-4327-3813 FU International Opportunities Fund [NE/103002X/1]; UKOARP [NE/H017046/1]; Norwegian Research Council [236296]; US Department of Energy, Office of Science, Biological and Environmental Research (BER) programmes under US Department of Energy [DE-AC05-00OR22725]; Region Bretagne; INSU (LEFE/MERMEX) for CARBORHONE cruises; Australian Climate Change Science Programme; ICOSD through the German Federal Ministry of Education and Research (BMBF) [01 LK 1224I]; Leverhulme Early Career Fellowship; US National Science Foundation [NSF AGS 12-43071]; US Department of Energy, Office of Science, and BER programmes [DOE DE-SC0006706]; NASA LCLUC programme [NASA NNX14AD94G]; Environment Research and Technology Development Fund of the Ministry of Environment of Japan [S-10]; Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231]; U. S. National Science Foundation [NSF AGS-1048827]; Institut National des Sciences de l'Univers (INSU); Institut Paul Emile Victor (IPEV) for OISO cruises; Centre for Climate Dynamics at the Bjerknes Centre for Climate Research; NOAA/NASA; ICOS-D [BMBF FK 01LK1101C]; Swiss National Science Foundation; FP7 through project EMBRACE [282672]; NOAA; Comer Education and Science Foundation; Australian Department of the Environment and the Integrated Marine Observing System; UK DECC/Defra Met Office Hadley Centre Climate Programme [GA01101]; EU FP7 [283080]; COMBINE [226520]; EU FP7 through project CARBOCHANGE [264879]; EU [GA603542, GA282672, 283576]; EMBRACE [GA282672]; DOE [DE-SC0005090]; NSF [ATM-1036399]; NOAA [NA10OAR4320156]; [CG29] FX NERC provided funding to C. Le Quere, R. Moriarty, and the GCP though their International Opportunities Fund specifically to support this publication (NE/103002X/1), and to U. Schuster through UKOARP (NE/H017046/1). G. P. Peters and R. M. Andrews were supported by the Norwegian Research Council (236296). T. A. Boden was supported by US Department of Energy, Office of Science, Biological and Environmental Research (BER) programmes under US Department of Energy contract DE-AC05-00OR22725. Y. Bozec was supported by Region Bretagne, CG29, and INSU (LEFE/MERMEX) for CARBORHONE cruises. J. G. Canadell and M. R. Raupach were supported by the Australian Climate Change Science Programme. M. Hoppema received ICOSD funding through the German Federal Ministry of Education and Research (BMBF) to the AWI (01 LK 1224I). J. I. House was supported by a Leverhulme Early Career Fellowship. A. K. Jain was supported by the US National Science Foundation (NSF AGS 12-43071) the US Department of Energy, Office of Science, and BER programmes (DOE DE-SC0006706) and the NASA LCLUC programme (NASA NNX14AD94G). E. Kato was supported by the Environment Research and Technology Development Fund (S-10) of the Ministry of Environment of Japan. C. Koven was supported by the Director, Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of their Regional and Global Climate Modeling Program. I. D. Lima was supported by the U. S. National Science Foundation (NSF AGS-1048827). N. Metzl was supported by Institut National des Sciences de l'Univers (INSU) and Institut Paul Emile Victor (IPEV) for OISO cruises. A. Olsen was supported by the Centre for Climate Dynamics at the Bjerknes Centre for Climate Research. J. E. Salisbury was supported by grants from NOAA/NASA. T. Steinhoff was supported by ICOS-D (BMBF FK 01LK1101C). B. D. Stocker was supported by the Swiss National Science Foundation and FP7 funding through project EMBRACE (282672). A. J. Sutton was supported by NOAA. T. Takahashi was supported by grants from NOAA and the Comer Education and Science Foundation. B. Tilbrook was supported by the Australian Department of the Environment and the Integrated Marine Observing System. A. Wiltshire was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). P. Ciais, W. Peters, C. Le Quere, P. Regnier, and U. Schuster were supported by the EU FP7 through project GEOCarbon (283080). A. Arneth, P. Ciais, S. Sitch, and A. Wiltshire were supported by COMBINE (226520). V. Kitidis, M. Hoppema, N. Metzl, C. Le Quere, U. Schuster, J. Schwiger, J. Segschneider, and T. Steinhoff were supported by the EU FP7 through project CARBOCHANGE (264879). A. Arnet, P. Friedlingstein, B. Poulter, and S. Sitch were supported by the EU FP7 through projects LUC4C (GA603542). P. Friedlingstein was also supported by EMBRACE (GA282672). F. Chevallier and G. R. van der Werf were supported by the EU FP7 through project MACC-II (283576). This is NOAA-PMEL contribution number 4216. Contributions from the Scripps Institution of Oceanography were supported by DOE grant DE-SC0005090, NSF grant ATM-1036399, and NOAA grant NA10OAR4320156. NR 128 TC 111 Z9 111 U1 24 U2 209 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1866-3508 EI 1866-3516 J9 EARTH SYST SCI DATA JI Earth Syst. Sci. Data PY 2015 VL 7 IS 1 BP 47 EP 85 DI 10.5194/essd-7-47-2015 PG 39 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Geology; Meteorology & Atmospheric Sciences GA CL4PC UT WOS:000356934300005 ER PT J AU Jiang, LQ O'Connor, SA Arzayus, KM Parsons, AR AF Jiang, L. -Q. O'Connor, S. A. Arzayus, K. M. Parsons, A. R. TI A metadata template for ocean acidification data SO EARTH SYSTEM SCIENCE DATA LA English DT Article AB This paper defines the best practices for documenting ocean acidification (OA) data and presents a framework for an OA metadata template. Metadata is structured information that describes and locates an information resource. It is the key to ensuring that a data set will be accessible into the future. With the rapid expansion of studies on biological responses to OA, the lack of a common metadata template to document the resulting data poses a significant hindrance to effective OA data management efforts. In this paper, we present a metadata template that can be applied to a broad spectrum of OA studies, including those studying the biological responses to OA. The "variable metadata section", which includes the variable name, observation type, whether the variable is a manipulation condition or response variable, and the biological subject on which the variable is studied, forms the core of this metadata template. Additional metadata elements, such as investigators, temporal and spatial coverage, and data citation, are essential components to complete the template. We explain the structure of the template, and define many metadata elements that may be unfamiliar to researchers. C1 [Jiang, L. -Q.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Cooperat Inst Climate & Satellites Maryland, College Pk, MD 20740 USA. [O'Connor, S. A.] ADNET Syst Inc, Bethesda, MD 20817 USA. [Arzayus, K. M.; Parsons, A. R.] NOAA, Natl Ctr Environm Informat, Silver Spring, MD 20910 USA. RP Jiang, LQ (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Cooperat Inst Climate & Satellites Maryland, 5825 Univ Res Ct, College Pk, MD 20740 USA. EM liqing.jiang@noaa.gov RI Jiang, Li-Qing/G-5228-2014 OI Jiang, Li-Qing/0000-0003-3311-1658 FU Ocean Acidification Program (OAP) of the National Oceanic and Atmospheric Administration (NOAA) FX This work was supported by the Ocean Acidification Program (OAP) of the National Oceanic and Atmospheric Administration (NOAA). Discussions with Hernan E. Garcia (National Centers for Environmental Information) benefitted the metadata template development. We thank Philip Goldstein (University of Colorado) for his contribution to the metadata template development and his comments on an earlier draft of the paper. Alex Kozyr (Carbon Dioxide Information Analysis Center) provided help with the documentation of chemical OA data sets. We are grateful to Andrew Dickson of Scripps Institution of Oceanography and Fiz Perez of the Spanish National Research Council for their insightful comments on the template. Jacqueline Mize (National Coastal Data Development Center) and Sheri Philips (National Centers for Environmental Information) provided tremendous help on the use of the ISO 19115-2 format and the creation of the ISO version of the template. We thank the associate editor, Robert Key; two reviewers, Cynthia Chandler and Anton Velo; and two readers, J.-P. Gattuso and Yan Yang, for their excellent comments that helped to improve both the template and the paper. We thank Linda Jenkins (National Coastal Data Development Center) for her technical editing. We also thank Chris Chambers, Thomas Hurst, Chris Long, Annette DesRochers, Molly Timmers, Nina Bednarsek, Donald Christopher Melrose, Derek Manzello, Renee Carlton, Jessica Morgan (NOAA), and David Kline (Scripps Institution of Oceanography) for their comments on the template. Rob Ragsdale (US Integrated Ocean Observing System), Emilio Mayoga (University of Washington), and Sara Haines (University of North Carolina) contributed to the development of definitions for some of the variables. We are indebted to Dean Perry and Dylan Redman (NOAA Northeast Fisheries Science Center) for allowing us to use their metadata records as a real world example of our metadata submission form. We thank Mark Fornwall (United States Geological Survey) for his comments to improve the paper. NR 0 TC 1 Z9 1 U1 4 U2 11 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1866-3508 EI 1866-3516 J9 EARTH SYST SCI DATA JI Earth Syst. Sci. Data PY 2015 VL 7 IS 1 BP 117 EP 125 DI 10.5194/essd-7-117-2015 PG 9 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Geology; Meteorology & Atmospheric Sciences GA CL4PC UT WOS:000356934300009 ER PT J AU Estilow, TW Young, AH Robinson, DA AF Estilow, T. W. Young, A. H. Robinson, D. A. TI A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring SO EARTH SYSTEM SCIENCE DATA LA English DT Article ID INTERACTIVE MULTISENSOR SNOW; ICE MAPPING SYSTEM; VARIABILITY AB This paper describes the long-term, satellite-based visible snow cover extent National Oceanic and Atmospheric Administration (NOAA) climate data record (CDR) currently available for climate studies, monitoring, and model validation. This environmental data product is developed from weekly Northern Hemisphere snow cover extent data that have been digitized from snow cover maps onto a Cartesian grid draped over a polar stereographic projection. The data have a spatial resolution of 190.6 km at 60 degrees latitude, are updated monthly, and span the period from 4 October 1966 to the present. The data comprise the longest satellite-based CDR of any environmental variable. Access to the data is provided in Network Common Data Form (netCDF) and archived by NOAA's National Climatic Data Center (NCDC) under the satellite Climate Data Record Program (doi: 10.7289/V5N014G9). The basic characteristics, history, and evolution of the data set are presented herein. In general, the CDR provides similar spatial and temporal variability to its widely used predecessor product. Key refinements included in the CDR improve the product's grid accuracy and documentation and bring metadata into compliance with current standards for climate data records. C1 [Estilow, T. W.; Robinson, D. A.] Rutgers State Univ, Dept Geog, Piscataway, NJ 08854 USA. [Young, A. H.] NOAA, NCDC, Asheville, NC 28801 USA. RP Estilow, TW (reprint author), Rutgers State Univ, Dept Geog, 54 Joyce Kilmer Ave, Piscataway, NJ 08854 USA. EM thomas.estilow@rutgers.edu FU NOAA/NCDC Climate Data Record Program FX The NOAA/NCDC Climate Data Record Program funded this project. The authors wish to thank D. Wunder, H. Brown, C. Hutchins, S. Ansari, R. McFadden and the entire Snow Cover Integrated Product Team (IPT) at NCDC for supporting the Research to Operations (R2O) process. Special appreciation goes to J. Biard for his review of the CDR and technical assistance with reprocessing the NOAA grid and to R. Brown whose helpful comments improved this manuscript. NR 26 TC 9 Z9 9 U1 0 U2 14 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1866-3508 EI 1866-3516 J9 EARTH SYST SCI DATA JI Earth Syst. Sci. Data PY 2015 VL 7 IS 1 BP 137 EP 142 DI 10.5194/essd-7-137-2015 PG 6 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Geology; Meteorology & Atmospheric Sciences GA CL4PC UT WOS:000356934300011 ER PT S AU Dogan, G AF Dogan, Guenay BA Tai, XC BF Tai, XC BE Bae, E Chan, TF Lysaker, M TI An Efficient Curve Evolution Algorithm for Multiphase Image Segmentation SO ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, EMMCVPR 2015 SE Lecture Notes in Computer Science LA English DT Proceedings Paper CT 10th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR) CY JAN 13-16, 2015 CL Hong Kong, PEOPLES R CHINA SP Hong Kong Univ Sci & Technol, Hong Kong Univ Sci & Technol, Jockey Club Inst Adv Study ID SHAPE OPTIMIZATION APPROACH; ACTIVE CONTOURS; GRAPH CUTS; MINIMIZATION; MUMFORD; MODEL AB We propose a novel iterative algorithm for multiphase image segmentation by curve evolution. Specifically, we address a multiphase version of the Chan-Vese piecewise constant segmentation energy. Our algorithm is efficient: it is based on an explicit Lagrangian representation of the curves and it converges in a relatively small number of iterations. We devise a stable curvature-free semi-implicit velocity computation scheme. This enables us to take large steps to achieve sharp decreases in the multiphase segmentation energy when possible. The velocity and curve computations are linear with respect to the number of nodes on the curves, thanks to a finite element discretization of the curve and the gradient descent equations, yielding essentially tridiagonal linear systems. The step size at each iteration is selected using a non-monotone line search algorithm ensuring rapid progress and convergence. Thus, the user does not need to specify fixed step sizes or iteration numbers. We also introduce a novel dynamic stopping criterion, robust to various imaging conditions, to decide when to stop the iterations. Our implementation can handle topological changes of curves, such as merging and splitting as well. This is a distinct advantage of our approach, because we do not need to know the number of phases in advance. The curves can merge and split during the evolution to detect the correct regions, especially the number of phases. C1 NIST, Theiss Res, Gaithersburg, MD 20899 USA. RP Dogan, G (reprint author), NIST, Theiss Res, 100 Bur Dr,Stop 8910, Gaithersburg, MD 20899 USA. EM gunay.dogan@nist.gov NR 28 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 0302-9743 BN 978-3-319-14612-6; 978-3-319-14611-9 J9 LECT NOTES COMPUT SC PY 2015 VL 8932 BP 292 EP 306 PG 15 WC Computer Science, Artificial Intelligence; Computer Science, Theory & Methods; Imaging Science & Photographic Technology SC Computer Science; Imaging Science & Photographic Technology GA BD0ON UT WOS:000357502000022 ER PT S AU Arnone, R Vandermeulen, R Ignatov, A Cayula, JF AF Arnone, Robert Vandermeulen, Ryan Ignatov, Alexander Cayula, Jean Francois BE Hou, WW Arnone, RA TI Seasonal trends of ACSPO VIIRS SST product characterized by the differences in orbital overlaps for various water types SO OCEAN SENSING AND MONITORING VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Sensing and Monitoring VII CY APR 21-22, 2015 CL Baltimore, MD SP SPIE DE Sea Surface Temperature; Satellite; SNPP VIIRS; Coastal; Validation; Algorithms AB The uncertainty of the Advanced Clear-Sky Processor for Oceans (ACSPO) Sea Surface Temperature (SST) products from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite is examined using consecutive orbital overlaps in coastal waters of the Gulf of Mexico. The overlapping region on the left and right side of the VIIRS swath at 23-35 degree latitude covers approximately 500 pixels, which occur within 100 minutes and can provide a total of 4 SST products (2 day and 2 night) per day. By assuming the ocean SST should be similar on each side of the swath in this short time period, diel changes are examined and the uncertainty of SST retrieval is determined by comparing with buoy-derived SST. The VIIRS ACSPO product from NOAA STAR was used to determine the difference in SST within the overlapping regions. These SST changes are evaluated between consecutive orbits to validate the accuracy of SST algorithms on each side of the swath at high sensor angles. The SST product differences across the swath can result from surface glint, sensor angular impacts and sensor characteristics such as half angle mirror side (HAM) and calibration. The absolute diurnal SST changes that can occur within 100 minutes are evaluated with the buoy and VIIRS-derived SST. Sensitivity of the SST to water types is evaluated by measuring diurnal differences for open ocean, shelf and coastal waters. The 100 minute VIIRS SST overlap shows the capability to monitor the diurnal ocean heating and cooling which are associated with water mass optical absorption. The seasonal trends of the difference in SST at the overlaps for these water masses were tracked on a monthly basis. The unique capability of using the same VIIRS sensor for self-characterization can provide a method to define the uncertainty of ocean products and characterize the diurnal changes for different water types. C1 [Arnone, Robert; Vandermeulen, Ryan] Univ So Mississippi, Dept Marine Sci, Stennis Space Ctr, MS 39529 USA. [Ignatov, Alexander] NOAA Ctr Satellite Applicat & Res STAR, College Pk, MD 20740 USA. [Cayula, Jean Francois] Vencore North Amer, Stennis Space Ctr, MS 39529 USA. RP Arnone, R (reprint author), Univ So Mississippi, Dept Marine Sci, Stennis Space Ctr, MS 39529 USA. RI Ignatov, Alexander/F-5594-2010 OI Ignatov, Alexander/0000-0002-7463-5944 NR 14 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-575-9 J9 PROC SPIE PY 2015 VL 9459 AR UNSP 94590T DI 10.1117/12.2179731 PG 7 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BD0SJ UT WOS:000357647400018 ER PT S AU Churnside, JH AF Churnside, James H. BE Hou, WW Arnone, RA TI Bio-Optical Model of Remote Sensing Signals in a Stratified Ocean SO OCEAN SENSING AND MONITORING VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Sensing and Monitoring VII CY APR 21-22, 2015 CL Baltimore, MD SP SPIE DE ocean color; lidar; ocean remote sensing; thin layers; chlorophyll; phytoplankton ID INHERENT OPTICAL-PROPERTIES; CHLOROPHYLL-A CONCENTRATION; CASE-1 WATERS; DIFFUSE-REFLECTANCE; OCEANOGRAPHIC LIDAR; INVERSION MODELS; PIGMENT PROFILE; SCATTERING; COLOR; COASTAL AB Several semi-analytic models exist for the inherent optical properties of sea water, at least for Case 1 waters. In these waters, models based on chlorophyll-a concentration seem to be fairly successful. For passive remote sensing, the critical properties are the backscattering coefficient and the zenith diffuse attenuation coefficient. The former describes the total scattering at angles > 0.5 pi steradians. The diffuse attenuation coefficient is not strictly an inherent optical property, because it depends on the sun angle. The zenith diffuse attenuation coefficient, defined as the attenuation of a diffuse source located at the zenith, depends only on the optical properties of the water. The observed remote sensing reflectance can be estimated from these two parameters and the solar zenith angle. Most of the investigations to date have assumed that the chlorophyll concentration does not vary with depth. This assumption is often quite good, because of the limited penetration of light into sea water. We will consider the case of intense thin plankton layers on a shallow pycnocline, where this assumption might not be valid. For active remote sensing, an additional parameter is important. This parameter is the volume scattering function at a scattering angle of pi steradians, which is the sum of contributions from sea water and particles in the water. The sea water contribution is known. The particulate contribution can be modeled as the product of the scattering coefficient, which depends on chlorophyll concentration, and the phase function at p steradians, which does not. C1 NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. RP Churnside, JH (reprint author), NOAA, Earth Syst Res Lab, 325 Broadway, Boulder, CO 80305 USA. EM james.h.churnside@noaa.gov RI Churnside, James/H-4873-2013 NR 43 TC 0 Z9 0 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-575-9 J9 PROC SPIE PY 2015 VL 9459 AR 94590M DI 10.1117/12.2179770 PG 8 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BD0SJ UT WOS:000357647400013 ER PT S AU He, K Ignatov, A Kihai, Y Liang, XM Cao, CY Stroup, J AF He, Kai Ignatov, Alexander Kihai, Yury Liang, Xingming Cao, Changyong Stroup, John BE Hou, WW Arnone, RA TI Sensor Stability for SST (3S) Monitoring System SO OCEAN SENSING AND MONITORING VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ocean Sensing and Monitoring VII CY APR 21-22, 2015 CL Baltimore, MD SP SPIE DE AVHRR; 3S; calibration; gain; offset; sea surface temperature (SST); brightness temperature (BT) ID HIGH-RESOLUTION RADIOMETER; INFRARED CHANNELS; CALIBRATION DATA; AVHRR AB AVHRR clear-sky brightness temperatures (BTs) over ocean and derived sea surface temperatures (SSTs) are produced at NOAA from several polar and geostationary sensors, including AVHRRs onboard US NOAA and European MetOp satellites. Analyses in the Monitoring of IR Clear-sky Radiances over Oceans for SST system (MICROS; www.star.nesdis.noaa.gov/sod/sst/micros/) suggest that artifacts in SSTs are strongly linked to anomalies in BTs. To attribute anomalous BTs to calibration information reported on L1b data, NOAA established another online system, Sensor Stability for SST (3S; www.star.nesdis.noaa.gov/sod/sst/3s/). The 3S monitors orbital statistics of calibration gains and offsets in AVHRR SST bands, along with the onboard measurements of blackbody temperature, blackbody view count (BC) and space view count (SC), from which the gain and offset are calculated. Sun and moon geometry configuration, which may affect the BC and SC, is also monitored, as well as the length of the "satellite night" (part of the orbit, when the satellite is in the Earth shadow and AVHRR calibration is presumably more accurate). Currently, the 3S displays time series of all statistics for NOAA-15 to -19, MetOp-A and -B. This presentation describes the 3S system. C1 [He, Kai; Ignatov, Alexander; Kihai, Yury; Liang, Xingming; Cao, Changyong; Stroup, John] NOAA Ctr Satellite Applicat & Res STAR, College Pk, MD 20740 USA. [He, Kai; Kihai, Yury] Global Sci & Technol Inc, Greenbelt, MD 20770 USA. [Liang, Xingming] CIRA, Ft Collins, CO 80523 USA. [Stroup, John] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20770 USA. RP He, K (reprint author), NOAA Ctr Satellite Applicat & Res STAR, College Pk, MD 20740 USA. RI Ignatov, Alexander/F-5594-2010; Cao, Changyong/F-5578-2010; Liang, Xingming/H-7368-2014 OI Ignatov, Alexander/0000-0002-7463-5944; Liang, Xingming/0000-0001-5641-0509 NR 13 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-575-9 J9 PROC SPIE PY 2015 VL 9459 AR 94590Z DI 10.1117/12.2177292 PG 11 WC Remote Sensing; Optics SC Remote Sensing; Optics GA BD0SJ UT WOS:000357647400021 ER PT S AU Reed, JK Harter, S Farrington, S David, A AF Reed, John K. Harter, Stacey Farrington, Stephanie David, Andrew BE Bortone, SA TI Characterization and interrelationships of deepwater coral/sponge habitats and fish communities off Florida SO INTERRELATIONSHIPS BETWEEN CORALS AND FISHERIES SE CRC Marine Biology Series LA English DT Proceedings Paper CT Workshop on Interrelationships between Coral Reefs and Fisheries CY MAY 20-22, 2013 CL Tampa, FL ID GULF-OF-MEXICO; OCULINA CORAL ECOSYSTEM; SOUTH ATLANTIC BIGHT; SHELF-EDGE REEFS; LOPHELIA-PERTUSA; POURTALES TERRACE; CONTINENTAL-SHELF; BLAKE PLATEAU; UNITED-STATES; IMPACTS C1 [Reed, John K.; Farrington, Stephanie] Florida Atlantic Univ, Harbor Branch, Inst Oceanog, Ft Pierce, FL 34946 USA. [Harter, Stacey; David, Andrew] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Panama City, FL USA. RP Reed, JK (reprint author), Florida Atlantic Univ, Harbor Branch, Inst Oceanog, Ft Pierce, FL 34946 USA. NR 49 TC 0 Z9 0 U1 1 U2 1 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA SN 2154-7769 BN 978-1-4665-8831-8; 978-1-4665-8830-1 J9 CRC MAR BIOL SER JI CRC Mar. Biol. Ser. PY 2015 BP 51 EP 82 PG 32 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA BC9ZZ UT WOS:000357007100005 ER PT S AU Jaap, WC Ross, SW Brooke, S Arnold, WS AF Jaap, Walter C. Ross, Steve W. Brooke, Sandra Arnold, William S. BE Bortone, SA TI Factors affecting coral reef fisheries in the eastern Gulf of Mexico SO INTERRELATIONSHIPS BETWEEN CORALS AND FISHERIES SE CRC Marine Biology Series LA English DT Proceedings Paper CT Workshop on Interrelationships between Coral Reefs and Fisheries CY MAY 20-22, 2013 CL Tampa, FL ID SOUTHEASTERN UNITED-STATES; FLORIDA PLATFORM MARGIN; CARBONATE RAMP SLOPE; CENTRAL WEST FLORIDA; CLIMATE-CHANGE; DEEP-SEA; OCEAN ACIDIFICATION; LOPHELIA-PERTUSA; TOPOGRAPHIC FEATURES; SPECIES EQUILIBRIUM C1 [Jaap, Walter C.] Lithophyte Res LLC, St Petersburg, FL 33704 USA. [Ross, Steve W.] Univ N Carolina, Ctr Marine Sci, Wilmington, NC 28401 USA. [Brooke, Sandra] Florida State Univ, Coastal & Marine Lab, St Teresa, FL USA. [Arnold, William S.] Natl Marine Fisheries Serv, Southeast Reg Off, St Petersburg, FL USA. RP Jaap, WC (reprint author), Lithophyte Res LLC, St Petersburg, FL 33704 USA. NR 125 TC 0 Z9 0 U1 5 U2 9 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA SN 2154-7769 BN 978-1-4665-8831-8; 978-1-4665-8830-1 J9 CRC MAR BIOL SER JI CRC Mar. Biol. Ser. PY 2015 BP 83 EP 112 PG 30 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA BC9ZZ UT WOS:000357007100006 ER PT J AU Valivarthi, R Lucio-Martinez, I Chan, P Rubenok, A John, C Korchinski, D Duffin, C Marsili, F Verma, V Shaw, MD Stern, JA Nam, SW Oblak, D Zhou, Q Slater, JA Tittel, W AF Valivarthi, Raju Lucio-Martinez, Itzel Chan, Philip Rubenok, Allison John, Caleb Korchinski, Daniel Duffin, Cooper Marsili, Francesco Verma, Varun Shaw, Mathew D. Stern, Jeffrey A. Nam, Sae Woo Oblak, Daniel Zhou, Qiang Slater, Joshua A. Tittel, Wolfgang TI Measurement-device-independent quantum key distribution: from idea towards application SO JOURNAL OF MODERN OPTICS LA English DT Article DE quantum key distribution; quantum communication; Bell-state measurement ID DISTRIBUTION-SYSTEM; CRYPTOGRAPHY; NETWORK; SECURITY; PHOTONS; QKD AB We assess the overall performance of our quantum key distribution (QKD) system implementing the measurement-device-independent (MDI) protocol using components with varying capabilities such as different single-photon detectors and qubit preparation hardware. We experimentally show that superconducting nanowire single-photon detectors allow QKD over a channel featuring 60dB loss, and QKD with more than 600 bits of secret key per second (not considering finite key effects) over a 16dB loss channel. This corresponds to 300 and 80km of standard telecommunication fiber, respectively. We also demonstrate that the integration of our QKD system into FPGA-based hardware (instead of state-of-the-art arbitrary waveform generators) does not impact on its performance. Our investigation allows us to acquire an improved understanding of the trade-offs between complexity, cost and system performance, which is required for future customization of MDI-QKD. Given that our system can be operated outside the laboratory over deployed fiber, we conclude that MDI-QKD is a promising approach to information-theoretic secure key distribution. C1 [Valivarthi, Raju; Lucio-Martinez, Itzel; Chan, Philip; Rubenok, Allison; John, Caleb; Korchinski, Daniel; Duffin, Cooper; Oblak, Daniel; Zhou, Qiang; Slater, Joshua A.; Tittel, Wolfgang] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB, Canada. [Valivarthi, Raju; Lucio-Martinez, Itzel; Rubenok, Allison; Korchinski, Daniel; Duffin, Cooper; Oblak, Daniel; Zhou, Qiang; Slater, Joshua A.; Tittel, Wolfgang] Univ Calgary, Dept Phys & Astron, Calgary, AB, Canada. [Chan, Philip; John, Caleb] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB, Canada. [Verma, Varun; Nam, Sae Woo] Natl Inst Stand & Technol, Boulder, CO USA. [Marsili, Francesco; Shaw, Mathew D.; Stern, Jeffrey A.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Valivarthi, R (reprint author), Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB, Canada. EM vrrvaliv@ucalgary.ca RI Slater, Joshua/F-2523-2011; Tittel, Wolfgang/A-1600-2011 FU Alberta Innovates Technology Futures; National Science and Engineering Research Council of Canada; Calgary Urban Alliance; National Nature Science Foundation of China [61405030]; Oversea Academic Training Fund of the University of Electronic Science and Technology of China; US Defense Advanced Research Projects Agency InPho Program; Killam Trusts; National Aeronautics and Space Administration FX This work was supported through Alberta Innovates Technology Futures, the National Science and Engineering Research Council of Canada (through their Discover Grant and CryptoWorks 21 CREATE programs), the Calgary Urban Alliance, the National Nature Science Foundation of China [grant number 61405030], the Oversea Academic Training Fund of the University of Electronic Science and Technology of China, the US Defense Advanced Research Projects Agency InPho Program, and the Killam Trusts. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. W.T. is a senior fellow of the Canadian Institute for Advanced Research. NR 56 TC 13 Z9 13 U1 8 U2 18 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0340 EI 1362-3044 J9 J MOD OPTIC JI J. Mod. Opt. PY 2015 VL 62 IS 14 BP 1141 EP 1150 DI 10.1080/09500340.2015.1021725 PG 10 WC Optics SC Optics GA CM1CW UT WOS:000357418700004 ER PT J AU Mora, EA Lindley, ST Erickson, DL Klimley, AP AF Mora, E. A. Lindley, S. T. Erickson, D. L. Klimley, A. P. TI Estimating the Riverine Abundance of Green Sturgeon Using a Dual-Frequency Identification Sonar SO NORTH AMERICAN JOURNAL OF FISHERIES MANAGEMENT LA English DT Article ID ACIPENSER-MEDIROSTRIS; SACRAMENTO RIVER; LIFE-HISTORY; ROGUE RIVER; HABITAT USE; CALIFORNIA; DIDSON; MOVEMENT; BEHAVIOR; SIZE AB To determine the total number of Green Sturgeon Acipenser medirostris present in the Rogue River, Oregon, we compared plot sampling using a dual-frequency identification sonar (DIDSON), a density-based estimation technique combining the number of individuals detected and the area sampled, to a concurrent mark-recapture estimate. Using the DIDSON-based method, we estimated the total abundance of Green Sturgeon to be 223 (95% confidence interval = 180-266). The mark-recapture method resulted in an estimate of 236 individuals (150-424). The noninvasive DIDSON transect estimates resulted in tighter confidence intervals and required fewer technician hours to collect the data than did the mark- recapture method (37 h versus 232 h, respectively). Precise estimates of the abundance and distribution of Green Sturgeon are important components to species recovery and management. Thus, this new technique has the potential to greatly improve population monitoring and is an excellent tool to identify occupied habitats. C1 [Mora, E. A.; Klimley, A. P.] Univ Calif Davis, Dept Wildlife Fish & Conservat Biol, Davis, CA 95616 USA. [Mora, E. A.; Lindley, S. T.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95054 USA. [Lindley, S. T.] Natl Marine Fisheries Serv, Fisheries Ecol Div, Santa Cruz, CA 95060 USA. [Erickson, D. L.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Pew Inst Ocean Sci, Miami, FL 33149 USA. [Erickson, D. L.] Oregon Dept Fish & Wildlife, Marine Resources Program, Newport, OR 97365 USA. RP Mora, EA (reprint author), Univ Calif Davis, Dept Wildlife Fish & Conservat Biol, One Shields Ave, Davis, CA 95616 USA. EM ethan.mora@gmail.com FU National Marine Fisheries Service Species of Concern Grant; United States Army Corps; University of Miami, Pew Institute for Ocean Science FX We thank the Oregon Department of Fish and Wildlife, Gold Beach Office, for their assistance with DIDSON and net sampling. Blair Krohn, John Webber, Ryan Battleson, Kelly Timchak, and Phaedra Doukakis were especially helpful in this endeavor. Michael Mohr of the National Marine Fisheries Service in Santa Cruz, California, provided the abundance estimators. Neil Willits of the University of California at Davis provided statistical guidance during the preparation of this manuscript. This research was partially supported by a National Marine Fisheries Service Species of Concern Grant, a grant from the United States Army Corps, and the University of Miami, Pew Institute for Ocean Science. We thank Joseph E. Hightower and three anonymous reviewers for comments on early drafts of this paper. NR 38 TC 0 Z9 0 U1 5 U2 12 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0275-5947 EI 1548-8675 J9 N AM J FISH MANAGE JI North Am. J. Fish Manage. PY 2015 VL 35 IS 3 BP 557 EP 566 DI 10.1080/02755947.2015.1017119 PG 10 WC Fisheries SC Fisheries GA CM0SP UT WOS:000357389100014 ER PT J AU Krzyzanowski, N Porcar, L Garg, S Butler, P Castro-Roman, F Bautista, PJ Perez-Salas, U AF Krzyzanowski, Natalie Porcar, Lionel Garg, Sumit Butler, Paul Castro-Roman, Francisco Jesus Bautista, Pedro Perez-Salas, Ursula TI Reply to the 'Comment on "Cholesterol Solubility Limit in Lipid Membranes probed by Small Angle Neutron Scattering and MD simulations"' by R. Epand, Soft Matter, 2015, 11, DOI: 10.1039/C4SM02819H SO SOFT MATTER LA English DT Editorial Material ID DOMAIN FORMATION; BILAYERS; PHOSPHOLIPIDS; SEPARATION; MIXTURES; EPR AB In the comment by Epand et al. on our recent article, it is stated that the term "cholesterol solubility limit" is misused. As Epand et al. point out, there is extensive literature on cholesterol phase separation in phospholipid bilayers and this term is used to define the appearance of cholesterol crystals. Moreover, as they state, this does not preclude them from existing as bilayered crystals or cholesterol-only domains within the membrane itself. Since our SANS data directly measured the maximum amount of cholesterol harboured by POPC and POPS membranes, it may have been more appropriate to use the term "cholesterol saturation limit". Nonetheless, we stated that the saturation and solubility limits of cholesterol coincide in both POPC and POPS. Epand and et al. suggest that the data shown was insufficient to uphold this claim. Herein, we present data that supports the coincidence of cholesterol's saturation limit with cholesterol's solubility limit in 100 nm POPS unilamellar vesicles, where previously it has been reported to not be the case. C1 [Krzyzanowski, Natalie; Garg, Sumit; Perez-Salas, Ursula] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Porcar, Lionel] Inst Laue Langevin, Large Scale Struct Grp, F-38042 Grenoble, France. [Porcar, Lionel; Butler, Paul] Univ Delaware, Dept Chem Engn, Colburn Lab, Newark, DE USA. [Garg, Sumit; Perez-Salas, Ursula] Argonne Natl Lab, Div Mat Sci, Lemont, IL USA. [Butler, Paul] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Castro-Roman, Francisco; Jesus Bautista, Pedro] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. RP Perez-Salas, U (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. EM ursulaps@uic.edu RI Butler, Paul/D-7368-2011 NR 17 TC 2 Z9 2 U1 2 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X EI 1744-6848 J9 SOFT MATTER JI Soft Matter PY 2015 VL 11 IS 27 BP 5582 EP 5584 DI 10.1039/c5sm01071c PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA CL7ZQ UT WOS:000357192200021 ER PT S AU Hillberry, LE Rice, JP AF Hillberry, Logan E. Rice, Joseph P. BE Holst, GC Krapels, KA TI Spectral homogenization techniques for the Hyperspectral Image Projector SO INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XXVI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Infrared Imaging Systems - Design, Analysis, Modeling, and Testing XXVI CY APR 21-23, 2015 CL Baltimore, MD SP SPIE DE diffuser; fiber bundle; hardware-in-the-loop; hyperspectral; imaging; scene projector; spectral uniformity ID RADIOMETRIC APPLICATIONS AB In an effort to improve technology for performance testing and calibration of multispectral and hyperspectral imagers, the National Institute of Standards and Technology (NIST) has been developing a Hyperspectral Image Projector (HIP) capable of projecting dynamic scenes than include distinct, programmable spectra in each of its 1024 x 768 spatial pixels. The HIP is comprised of a spectral engine, which is a light source capable generating the spectra in the scene, coupled to a spatial engine, capable of projecting the spectra into the correct locations of the scene. In the prototype HIP, the light exiting the Visible-Near-Infrared (VNIR) / Short-Wavelength Infrared (SWIR) spectral engine is spectrally dispersed and needs to be spectrally homogenized before it enters the spatial engine. In this paper we describe the results from a study of several different techniques for performing this spectral homogenization. These techniques include an integrating sphere, a liquid light guide, a randomized fiber bundle, and an engineered diffuser, in various combinations. The spectral uniformity of projected HIP scenes is measured and analyzed using the spectral angle mapper (SAM) algorithm over the VNIR spectral range. The SAM provides a way to analyze the spectral uniformity independently from the radiometric uniformity. The goal of the homogenizer is a spectrally uniform and bright projected image. An integrating sphere provides the most spectrally uniform image, but at a great loss of light compared with the other methods. The randomized fiber bundle generally outperforms the liquid light guide in both spectral homogenization and brightness. Using an engineered diffuser with the randomized fiber bundle increases the spectral uniformity by a factor of five, with a decrease in brightness by a factor of five, compared with the randomized fiber bundle alone. The combination of an engineered diffuser with a randomized fiber bundle provides comparable spectral uniformity to the integrating sphere while enabling 40 times greater brightness. C1 [Hillberry, Logan E.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Rice, Joseph P.] NIST, Gaithersburg, MD 20899 USA. RP Hillberry, LE (reprint author), Colorado Sch Mines, Dept Phys, 1523 Illinois St, Golden, CO 80401 USA. NR 13 TC 0 Z9 0 U1 1 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-568-1 J9 PROC SPIE PY 2015 VL 9452 AR 94520Z DI 10.1117/12.2177180 PG 8 WC Engineering, Electrical & Electronic; Optics; Imaging Science & Photographic Technology SC Engineering; Optics; Imaging Science & Photographic Technology GA BC9NS UT WOS:000356673800031 ER PT S AU Podobedov, VB Eppeldauer, GP Larason, TC AF Podobedov, Vyacheslav B. Eppeldauer, George P. Larason, Thomas C. BE Holst, GC Krapels, KA TI New night vision goggle gain definition SO INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING XXVI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Infrared Imaging Systems - Design, Analysis, Modeling, and Testing XXVI CY APR 21-23, 2015 CL Baltimore, MD SP SPIE DE night vision goggle (NVG); NVG radiometric quantities; night sky AB A new definition is proposed for the calibration of Night Vision Goggle (NVG) gains. This definition is based on the measurement of radiometric input and output quantities of the NVG. While the old definition used the "equivalent fL" which is a non SI traceable luminance unit, the new definition utilizes the radiance quantities that are traceable to the SI units through NIST standards. The new NVG gain matches the previous one as a result of the application of a correction coefficient originating from the conversion of the radiance to luminance units. The new definition was tested at the NIST Night Vision Calibration Facility and the measurement results were compared to the data obtained with a Hoffman Test Set Model ANV-126. Comparing the radiometric quantities of the Hoffman Test Set and those measured by the NIST transfer standard radiometer, indicates that the observed differences up to 15 % were due to the calibration and experimental errors of the ANV-126 Test Set. In view of different spectral characteristics of luminophores that can be utilized in the NVG design, the simulation of the NVG output for gain measurement was performed. The NVG output was simulated with a sphere-based source using different LEDs and the measured gain was compared to that obtained with the ANV-126 internal luminance meter. The NVG gain uncertainty analysis was performed for the Type A, B, and C goggles. C1 [Podobedov, Vyacheslav B.; Eppeldauer, George P.; Larason, Thomas C.] NIST, Gaithersburg, MD 20899 USA. RP Podobedov, VB (reprint author), NIST, Gaithersburg, MD 20899 USA. EM vyacheslav.podobedov@nist.gov NR 9 TC 0 Z9 0 U1 3 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-568-1 J9 PROC SPIE PY 2015 VL 9452 AR 945214 DI 10.1117/12.2176344 PG 10 WC Engineering, Electrical & Electronic; Optics; Imaging Science & Photographic Technology SC Engineering; Optics; Imaging Science & Photographic Technology GA BC9NS UT WOS:000356673800035 ER PT J AU Park, J Sweet, WV Heitsenrether, R AF Park, J. Sweet, W. V. Heitsenrether, R. TI Water level oscillations in Monterey Bay and Harbor SO OCEAN SCIENCE LA English DT Article ID SUBMARINE-CANYON; MICROSEISMS; SYSTEM; OCEAN; CALIFORNIA; WAVES; MODEL; TIDE; CA AB Seiches are normal modes of water bodies responding to geophysical forcings with potential to significantly impact ecology and maritime operations. Analysis of high-frequency (1 Hz) water level data in Monterey, California, identifies harbor modes between 10 and 120 s that are attributed to specific geographic features. It is found that modal amplitude modulation arises from cross-modal interaction and that offshore wave energy is a primary driver of these modes. Synchronous coupling between modes is observed to significantly impact dynamic water levels. At lower frequencies with periods between 15 and 60 min, modes are independent of offshore wave energy, yet are continuously present. This is unexpected since seiches normally dissipate after cessation of the driving force, indicating an unknown forcing. Spectral and kinematic estimates of these low-frequency oscillations support the idea that a persistent anticyclonic mesoscale gyre adjacent to the bay is a potential mode driver, while discounting other sources. C1 [Park, J.] Natl Pk Serv, Homestead, FL 33030 USA. [Sweet, W. V.] NOAA, Silver Spring, MD USA. [Heitsenrether, R.] NOAA, Chesapeake, VA USA. RP Park, J (reprint author), Natl Pk Serv, 950 N Krome Ave, Homestead, FL 33030 USA. EM joseph_park@nps.gov NR 34 TC 2 Z9 2 U1 0 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1812-0784 J9 OCEAN SCI JI Ocean Sci. PY 2015 VL 11 IS 3 BP 439 EP 453 DI 10.5194/os-11-439-2015 PG 15 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA CL1BC UT WOS:000356676300008 ER PT S AU Allman, MS Verma, VB Stevens, M Gerrits, T Horansky, RD Lita, AE Marsili, F Beyer, A Shaw, MD Kumor, D Mirin, R Nam, SW AF Allman, M. S. Verma, V. B. Stevens, M. Gerrits, T. Horansky, R. D. Lita, A. E. Marsili, F. Beyer, A. Shaw, M. D. Kumor, D. Mirin, R. Nam, S. W. BE Prochazka, I Sobolewski, R James, RB TI A Near-Infrared 64-pixel Superconducting Nanowire Single Photon Detector Array with Integrated Multiplexed Readout SO PHOTON COUNTING APPLICATIONS 2015 SE Proceedings of SPIE LA English DT Proceedings Paper CT SPIE Conference on Photon Counting Applications CY APR 13-15, 2015 CL Prague, CZECH REPUBLIC SP SPIE DE nanowire; SNSPD; array ID CIRCUIT; EFFICIENCY AB We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed. C1 [Allman, M. S.; Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W.] NIST, Boulder, CO 80305 USA. [Marsili, F.; Beyer, A.; Shaw, M. D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kumor, D.] Purdue Univ, W Lafayette, IN 47907 USA. RP Allman, MS (reprint author), NIST, 325 Broadway, Boulder, CO 80305 USA. OI Mirin, Richard/0000-0002-4472-4655 NR 17 TC 0 Z9 0 U1 2 U2 10 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-625-1 J9 PROC SPIE PY 2015 VL 9504 AR 950402 DI 10.1117/12.2181024 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BC9LO UT WOS:000356607100002 ER PT J AU Arnold, SR Emmons, LK Monks, SA Law, KS Ridley, DA Turquety, S Tilmes, S Thomas, JL Bouarar, I Flemming, J Huijnen, V Mao, J Duncan, BN Steenrod, S Yoshida, Y Langner, J Long, Y AF Arnold, S. R. Emmons, L. K. Monks, S. A. Law, K. S. Ridley, D. A. Turquety, S. Tilmes, S. Thomas, J. L. Bouarar, I. Flemming, J. Huijnen, V. Mao, J. Duncan, B. N. Steenrod, S. Yoshida, Y. Langner, J. Long, Y. TI Biomass burning influence on high-latitude tropospheric ozone and reactive nitrogen in summer 2008: a multi-model analysis based on POLMIP simulations SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID HIGH NORTHERN LATITUDES; PEROXYACETYL NITRATE PAN; GAS-PHASE REACTIONS; ATMOSPHERIC CHEMISTRY; SATELLITE-OBSERVATIONS; PHOTOCHEMICAL DATA; SOURCE ATTRIBUTION; POLLUTION TRANSPORT; ARCTIC TROPOSPHERE; LAGRANGIAN MODEL AB We have evaluated tropospheric ozone enhancement in air dominated by biomass burning emissions at high latitudes (>50 degrees N) in July 2008, using 10 global chemical transport model simulations from the POLMIP multimodel comparison exercise. In model air masses dominated by fire emissions, Delta O-3/Delta CO values ranged between 0.039 and 0.196 ppbv ppbv(-1) (mean: 0.113 ppbv ppbv(-1)) in freshly fire-influenced air, and between 0.140 and 0.261 ppbv ppb(-1) (mean: 0.193 ppbv) in more aged fire-influenced air. These values are in broad agreement with the range of observational estimates from the literature. Model Delta PAN/Delta CO enhancement ratios show distinct groupings according to the meteorological data used to drive the models. ECMWF-forced models produce larger Delta PAN/Delta CO values (4.47 to 7.00 pptv ppbv(-1)) than GEOS5-forced models (1.87 to 3.28 pptv ppbv(-1)), which we show is likely linked to differences in efficiency of vertical transport during poleward export from mid-latitude source regions. Simulations of a large plume of biomass burning and anthropogenic emissions exported from towards the Arctic using a Lagrangian chemical transport model show that 4-day net ozone change in the plume is sensitive to differences in plume chemical composition and plume vertical position among the POLMIP models. In particular, Arctic ozone evolution in the plume is highly sensitive to initial concentrations of PAN, as well as oxygenated VOCs (acetone, acetaldehyde), due to their role in producing the peroxyacetyl radical PAN precursor. Vertical displacement is also important due to its effects on the stability of PAN, and subsequent effect on NOx abundance. In plumes where net ozone production is limited, we find that the lifetime of ozone in the plume is sensitive to hydrogen peroxide loading, due to the production of HOx from peroxide photolysis, and the key role of HO2 + O-3 in controlling ozone loss. Overall, our results suggest that emissions from biomass burning lead to large-scale photochemical enhancement in high-latitude tropospheric ozone during summer. C1 [Arnold, S. R.; Monks, S. A.] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. [Emmons, L. K.; Tilmes, S.] NCAR, Atmospher Chem Div, Boulder, CO USA. [Law, K. S.; Thomas, J. L.; Bouarar, I.] Univ Versailles St Quentin, Univ Paris 06, Paris, France. [Law, K. S.; Thomas, J. L.; Bouarar, I.] CNRS INSU, UMR 8190, Paris, France. [Ridley, D. A.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Turquety, S.; Long, Y.] CNRS, IPSL, Lab Meteorol Dynam, UMR8539, F-91128 Palaiseau, France. [Flemming, J.] ECMWF, Reading, Berks, England. [Huijnen, V.] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands. [Mao, J.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Mao, J.] Natl Ocean & Atmospher Adm, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Duncan, B. N.; Steenrod, S.; Yoshida, Y.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Langner, J.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden. RP Arnold, SR (reprint author), Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds LS2 9JT, W Yorkshire, England. EM s.arnold@leeds.ac.uk RI Mao, Jingqiu/F-2511-2010; Duncan, Bryan/A-5962-2011; Emmons, Louisa/R-8922-2016; OI Mao, Jingqiu/0000-0002-4774-9751; Emmons, Louisa/0000-0003-2325-6212; Arnold, Steve/0000-0002-4881-5685; MONKS, SARAH/0000-0003-3474-027X; Huijnen, Vincent/0000-0002-2814-8475 FU NCAR Advanced Study Program via a Faculty Fellowship award; NCAR Atmospheric Chemistry Division; EurEX project - UK Natural Environment Research Council [NE/H020241/1]; US National Science Foundation; National Aeronautics and Space Administration through the Science Mission Directorate, Tropospheric Composition Program [NNX08AD22G]; project Agence National de Recherche (ANR) Climate Impact of Short-lived Climate Forcers and Methane in the Arctic (CLIMSLIP) [Blanc SIMI 5-6 021 01]; project Agence National de Recherche (ANR) CLIMSLIP-LEFE (CNRS-INSU); European Union [283576]; Swedish Environmental Protection Agency [NV-09414-12]; Swedish Climate and Clean Air research programme, SCAC FX S. R. Arnold acknowledges support from the NCAR Advanced Study Program via a Faculty Fellowship award, and the NCAR Atmospheric Chemistry Division. S. R. Arnold and S. A. Monks were supported by the EurEX project, funded by the UK Natural Environment Research Council (ref: NE/H020241/1). L. K. Emmons and S. Tilmes acknowledge the National Center for Atmospheric Research, which is sponsored by the US National Science Foundation. Author L. K. Emmons acknowledges support from the National Aeronautics and Space Administration under Award No. NNX08AD22G issued through the Science Mission Directorate, Tropospheric Composition Program. Authors K. S. Law, J. L. Thomas, S. Turquety and Y. Long acknowledge support from projects Agence National de Recherche (ANR) Climate Impact of Short-lived Climate Forcers and Methane in the Arctic (CLIMSLIP) Blanc SIMI 5-6 021 01 and CLIMSLIP-LEFE (CNRS-INSU). V. Huijnen acknowledges funding from the European Union's Seventh Framework Programme (FP7) under Grant Agreement no. 283576. Contributions from the Swedish Meteorological and Hydrological Institute were funded by the Swedish Environmental Protection Agency under contract NV-09414-12 and through the Swedish Climate and Clean Air research programme, SCAC. NR 60 TC 7 Z9 8 U1 2 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 11 BP 6047 EP 6068 DI 10.5194/acp-15-6047-2015 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CK4GG UT WOS:000356180900004 ER PT J AU Millet, DB Baasandorj, M Farmer, DK Thornton, JA Baumann, K Brophy, P Chaliyakunnel, S de Gouw, JA Graus, M Hu, L Koss, A Lee, BH Lopez-Hilfiker, FD Neuman, JA Paulot, F Peischl, J Pollack, IB Ryerson, TB Warneke, C Williams, BJ Xu, J AF Millet, D. B. Baasandorj, M. Farmer, D. K. Thornton, J. A. Baumann, K. Brophy, P. Chaliyakunnel, S. de Gouw, J. A. Graus, M. Hu, L. Koss, A. Lee, B. H. Lopez-Hilfiker, F. D. Neuman, J. A. Paulot, F. Peischl, J. Pollack, I. B. Ryerson, T. B. Warneke, C. Williams, B. J. Xu, J. TI A large and ubiquitous source of atmospheric formic acid SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; CRIEGEE INTERMEDIATE CH2OO; IONIZATION MASS-SPECTROMETER; TALL TOWER MEASUREMENTS; US UPPER MIDWEST; OH-INITIATED OXIDATION; GAS-PHASE OZONOLYSIS; IN-SITU MEASUREMENTS; ACETIC-ACIDS; BOUNDARY-LAYER AB Formic acid (HCOOH) is one of the most abundant acids in the atmosphere, with an important influence on precipitation chemistry and acidity. Here we employ a chemical transport model (GEOS-Chem CTM) to interpret recent airborne and ground-based measurements over the US Southeast in terms of the constraints they provide on HCOOH sources and sinks. Summertime boundary layer concentrations average several parts-per-billion, 2-3 x larger than can be explained based on known production and loss pathways. This indicates one or more large missing HCOOH sources, and suggests either a key gap in current understanding of hydrocarbon oxidation or a large, unidentified, direct flux of HCOOH. Model-measurement comparisons implicate biogenic sources (e. g., isoprene oxidation) as the predominant HCOOH source. Resolving the unexplained boundary layer concentrations based (i) solely on isoprene oxidation would require a 3 x increase in the model HCOOH yield, or (ii) solely on direct HCOOH emissions would require approximately a 25 x increase in its biogenic flux. However, neither of these can explain the high HCOOH amounts seen in anthropogenic air masses and in the free troposphere. The overall indication is of a large biogenic source combined with ubiquitous chemical production of HCOOH across a range of precursors. Laboratory work is needed to better quantify the rates and mechanisms of carboxylic acid production from isoprene and other prevalent organics. Stabilized Criegee intermediates (SCIs) provide a large model source of HCOOH, while acetaldehyde tautomerization accounts for similar to 15% of the simulated global burden. Because carboxylic acids also react with SCIs and catalyze the reverse tautomerization reaction, HCOOH buffers against its own production by both of these pathways. Based on recent laboratory results, reaction between CH3O2 and OH could provide a major source of atmospheric HCOOH; however, including this chemistry degrades the model simulation of CH3OOH and NOx : CH3OOH. Developing better constraints on SCI and RO2 + OH chemistry is a high priority for future work. The model neither captures the large diurnal amplitude in HCOOH seen in surface air, nor its inverted vertical gradient at night. This implies a substantial bias in our current representation of deposition as modulated by boundary layer dynamics, and may indicate an HCOOH sink underestimate and thus an even larger missing source. A more robust treatment of surface deposition is a key need for improving simulations of HCOOH and related trace gases, and our understanding of their budgets. C1 [Millet, D. B.; Baasandorj, M.; Chaliyakunnel, S.; Hu, L.] Univ Minnesota, Dept Soil Water & Climate, Minneapolis, MN 55108 USA. [Farmer, D. K.; Brophy, P.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Baumann, K.] Atmospheric Res & Anal Inc, Cary, NC 27513 USA. [de Gouw, J. A.; Graus, M.; Koss, A.; Neuman, J. A.; Peischl, J.; Pollack, I. B.; Ryerson, T. B.; Warneke, C.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80305 USA. [de Gouw, J. A.; Graus, M.; Koss, A.; Neuman, J. A.; Peischl, J.; Pollack, I. B.; Warneke, C.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Paulot, F.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Williams, B. J.] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Xu, J.] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada. RP Millet, DB (reprint author), Univ Minnesota, Dept Soil Water & Climate, Minneapolis, MN 55108 USA. EM dbm@umn.edu RI Millet, Dylan/G-5832-2012; Neuman, Andy/A-1393-2009; Ryerson, Tom/C-9611-2009; Peischl, Jeff/E-7454-2010; Koss, Abigail/B-5421-2015; Graus, Martin/E-7546-2010; de Gouw, Joost/A-9675-2008; Pollack, Ilana/F-9875-2012; Thornton, Joel/C-1142-2009; Lee, Ben/G-7007-2014; Warneke, Carsten/E-7174-2010; Chem, GEOS/C-5595-2014; Manager, CSD Publications/B-2789-2015; OI Neuman, Andy/0000-0002-3986-1727; Peischl, Jeff/0000-0002-9320-7101; Graus, Martin/0000-0002-2025-9242; de Gouw, Joost/0000-0002-0385-1826; Thornton, Joel/0000-0002-5098-4867; Lee, Ben/0000-0002-5057-2168; Hu, Lu/0000-0002-4892-454X FU National Science Foundation [1148951, 0937004]; Minnesota Supercomputing Institute; Southern Company; EPRI; US EPA Science to Achieve Results (STAR) program [R835402]; EPA STAR [83540601] FX This research was supported by the National Science Foundation (grants #1148951 and 0937004) and by the Minnesota Supercomputing Institute. We are indebted to Jean-Francois Muller, John Orlando, Carl Percival, Andrew Rickard, Paul Shepson, Domenico Taraborrelli, and Paul Wennberg for a number of illuminating discussions that benefited this work. We thank John Holloway, Thomas Hanisco, Glenn Wolfe, and Frank Keutsch for providing CO and HCHO measurements during SENEX, as well as Ron Cohen, Bill Brune, David Tan, and Brian Heikes for providing NO, NO2, and CH3OOH measurements during INTEX-A and INTEX-B. SOAS measurements used here were performed at the Centreville, AL, SEARCH site, which is funded by Southern Company and EPRI. We thank Bob Yantosca for his work developing compatibility for GEOS-FP within GEOS-Chem. We also thank Jay Turner as well as Dhruv Mitroo and the rest of the ACT Lab at WUStL for their help during the SLAQRS deployment. BJW acknowledges the US EPA Science to Achieve Results (STAR) program (grant #R835402) for support during SLAQRS. HCHO measurements during SENEX were also supported by EPA STAR (grant #83540601). This research has not been subjected to any EPA review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred. NR 146 TC 13 Z9 13 U1 11 U2 73 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 11 BP 6283 EP 6304 DI 10.5194/acp-15-6283-2015 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CK4GG UT WOS:000356180900018 ER PT J AU Creamean, JM Ault, AP White, AB Neiman, PJ Ralph, FM Minnis, P Prather, KA AF Creamean, J. M. Ault, A. P. White, A. B. Neiman, P. J. Ralph, F. M. Minnis, P. Prather, K. A. TI Impact of interannual variations in sources of insoluble aerosol species on orographic precipitation over California's central Sierra Nevada SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CLOUD CONDENSATION NUCLEI; SLIGHTLY SOLUBLE ORGANICS; WESTERN UNITED-STATES; ICE-NUCLEATION; AIR-POLLUTION; ATMOSPHERIC RIVERS; INORGANIC SALT; NORTH-AMERICA; DUST; PARTICLES AB Aerosols that serve as cloud condensation nuclei (CCN) and ice nuclei (IN) have the potential to profoundly influence precipitation processes. Furthermore, changes in orographic precipitation have broad implications for reservoir storage and flood risks. As part of the CalWater field campaign (2009-2011), the variability and associated impacts of different aerosol sources on precipitation were investigated in the California Sierra Nevada using an aerosol time-of-flight mass spectrometer for precipitation chemistry, S-band profiling radar for precipitation classification, remote sensing measurements of cloud properties, and surface meteorological measurements. The composition of insoluble residues in precipitation samples collected at a surface site contained mostly local biomass burning and longrange- transported dust and biological particles (2009), local sources of biomass burning and pollution (2010), and longrange transport (2011). Although differences in the sources of insoluble residues were observed from year to year, the most consistent source of dust and biological residues were associated with storms consisting of deep convective cloud systems with significant quantities of precipitation initiated in the ice phase. Further, biological residues were dominant (up to 40 %) during storms with relatively warm cloud temperatures (up to -15 degrees C), supporting the important role bioparticles can play as ice nucleating particles. On the other hand, lower percentages of residues from local biomass burning and pollution were observed over the three winter seasons (on average 31 and 9 %, respectively). When precipitation quantities were relatively low, these insoluble residues most likely served as CCN, forming smaller more numerous cloud droplets at the base of shallow cloud systems, and resulting in less efficient riming processes. Ultimately, the goal is to use such observations to improve the mechanistic linkages between aerosol sources and precipitation processes to produce more accurate predictive weather forecast models and improve water resource management. C1 [Creamean, J. M.; White, A. B.; Neiman, P. J.] NOAA, Earth Syst Res Lab, Div Phys Sci, Boulder, CO 80304 USA. [Creamean, J. M.; Ault, A. P.; Prather, K. A.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Ralph, F. M.; Prather, K. A.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Minnis, P.] NASA, Langley Res Ctr, Hampton, VA 23681 USA. RP Prather, KA (reprint author), Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM kprather@ucsd.edu RI Ault, Andrew/E-4594-2011; Prather, Kimberly/A-3892-2008 OI Ault, Andrew/0000-0002-7313-8559; Creamean, Jessie/0000-0003-3819-5600; Prather, Kimberly/0000-0003-3048-9890 FU California Energy Commission [UCOP/CIEE C-09-07, CEC 500-09-043]; National Research Council; NASA; DOE ARM Program FX Surface meteorological measurements and S-PROF radar data were retrieved from NOAA HMT-West (http://hmt.noaa.gov/). Funding was provided by the California Energy Commission under contract UCOP/CIEE C-09-07 and CEC 500-09-043. J. Creamean was partially supported by the National Research Council Research Associateship Program. P. Minnis was supported by the NASA Modeling, Analysis, and Prediction Program and the DOE ARM Program. J. Mayer, D. Collins, J. Cahill, M. Zauscher, E. Fitzgerald, C. Gaston, and M. Moore from UCSD provided assistance with equipment preparation and setup at SPD. The deployment of the NOAA and UCSD/SIO equipment at SPD involved many field staff, particularly C. King (NOAA). The Forest Hill Power Utility District is acknowledged for hosting the sampling site at SPD. A. Martin (UCSD), G. Wick (NOAA), and D. Gottas (NOAA) provided insightful discussions. NR 72 TC 8 Z9 8 U1 3 U2 38 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 11 BP 6535 EP 6548 DI 10.5194/acp-15-6535-2015 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CK4GG UT WOS:000356180900034 ER PT J AU Nevison, CD Manizza, M Keeling, RF Kahru, M Bopp, L Dunne, J Tjiputra, J Ilyina, T Mitchell, BG AF Nevison, C. D. Manizza, M. Keeling, R. F. Kahru, M. Bopp, L. Dunne, J. Tjiputra, J. Ilyina, T. Mitchell, B. G. TI Evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data (vol 12, pg 193, 2015) SO BIOGEOSCIENCES LA English DT Correction C1 [Nevison, C. D.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Manizza, M.; Keeling, R. F.; Kahru, M.; Mitchell, B. G.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Bopp, L.] CNRS CEA UVSQ, UMR8212, IPSL LSCE, Gif Sur Yvette, France. [Dunne, J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Tjiputra, J.] Uni Res, Uni Climate, Bergen, Norway. [Tjiputra, J.] Bjerknes Ctr Climate Res, Bergen, Norway. [Ilyina, T.] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. RP Nevison, CD (reprint author), Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. EM cynthia.nevison@colorado.edu NR 1 TC 0 Z9 0 U1 2 U2 9 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2015 VL 12 IS 10 BP 2891 EP 2891 DI 10.5194/bg-12-2891-2015 PG 1 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CK4FW UT WOS:000356179300005 ER PT J AU Rodgers, KB Lin, J Frolicher, TL AF Rodgers, K. B. Lin, J. Froelicher, T. L. TI Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model SO BIOGEOSCIENCES LA English DT Article ID LINE SIMULATION CHARACTERISTICS; CLIMATE-CHANGE; INTERDECADAL VARIABILITY; ANTHROPOGENIC CARBON; SOUTHERN-OCEAN; CMIP5 MODELS; PART I; CO2; FORMULATION; TRENDS AB Marine ecosystems are increasingly stressed by human-induced changes. Marine ecosystem drivers that contribute to stressing ecosystems - including warming, acidification, deoxygenation and perturbations to biological productivity - can co-occur in space and time, but detecting their trends is complicated by the presence of noise associated with natural variability in the climate system. Here we use large initial-condition ensemble simulations with an Earth system model under a historical/RCP8.5 (representative concentration pathway 8.5) scenario over 1950-2100 to consider emergence characteristics for the four individual and combined drivers. Using a 1-standard-deviation (67% confidence) threshold of signal to noise to define emergence with a 30-year trend window, we show that ocean acidification emerges much earlier than other drivers, namely during the 20th century over most of the global ocean. For biological productivity, the anthropogenic signal does not emerge from the noise over most of the global ocean before the end of the 21st century. The early emergence pattern for sea surface temperature in low latitudes is reversed from that of subsurface oxygen inventories, where emergence occurs earlier in the Southern Ocean. For the combined multiple-driver field, 41% of the global ocean exhibits emergence for the 2005-2014 period, and 63% for the 2075-2084 period. The combined multiple-driver field reveals emergence patterns by the end of this century that are relatively high over much of the Southern Ocean, North Pacific, and Atlantic, but relatively low over the tropics and the South Pacific. For the case of two drivers, the tropics including habitats of coral reefs emerges earliest, with this driven by the joint effects of acidification and warming. It is precisely in the regions with pronounced emergence characteristics where marine ecosystems may be expected to be pushed outside of their comfort zone determined by the degree of natural background variability to which they are adapted. The results underscore the importance of sustained multi-decadal observing systems for monitoring multiple ecosystems drivers. C1 [Rodgers, K. B.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Lin, J.] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA. [Froelicher, T. L.] Swiss Fed Inst Technol, Inst Biogeochem & Pollutant Dynam, Environm Phys, Zurich, Switzerland. RP Rodgers, KB (reprint author), Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. EM krodgers@princeton.edu RI Frolicher, Thomas/E-5137-2015 OI Frolicher, Thomas/0000-0003-2348-7854 FU NOAA Office of Climate Observations (OCO); NOAA [NA11OAR4310066]; NASA [NNX14AL85G]; SNSF [PZ00P2_142573]; Princeton Environmental Institute (PEI); [NA17RJ2612]; [NA08OAR4320752] FX First and foremost, we would like to thank the two anonymous reviewers and the editor (J.-P. Gatusso) for their constructive comments and criticisms. The contribution of K. B. Rodgers came through awards NA17RJ2612 and NA08OAR4320752, which includes support through the NOAA Office of Climate Observations (OCO), and NOAA award NA11OAR4310066. Support for K. B. Rodgers was also provided through NASA award NNX14AL85G. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of NOAA or the US Department of Commerce. T.L. Frolicher acknowledges financial support from the SNSF (Ambizione grant PZ00P2_142573). J. Lin's work in a summer internship was supported through the Princeton Environmental Institute (PEI). The authors would like to thank John Dunne at GFDL for his contributions with model development and for access to computing resources. We would also like to thank Joe Majkut, Brendan Carter, Niki Gruber, Jorge Sarmiento, Richard Slater, Paul Yi, and Sarah Schlunegger for fruitful discussions. NR 58 TC 10 Z9 10 U1 3 U2 20 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2015 VL 12 IS 11 BP 3301 EP 3320 DI 10.5194/bg-12-3301-2015 PG 20 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CK4FZ UT WOS:000356179800010 ER PT J AU Arkoosh, MR Dietrich, JP AF Arkoosh, Mary R. Dietrich, Joseph P. TI Pathogenicity of Members of the Vibrionaceae Family to Cultured Juvenile Sablefish SO JOURNAL OF AQUATIC ANIMAL HEALTH LA English DT Article ID SALMON ONCORHYNCHUS-TSHAWYTSCHA; ANOPLOPOMA-FIMBRIA; FISH PATHOGEN; RENIBACTERIUM-SALMONINARUM; ANGUILLARUM; STRAINS; ENVIRONMENT; VIBRIOSIS; DISEASES; LARVAE AB Sablefish Anoplopoma fimbria are a prized seafood species due to their high oil content and white flaky flesh. Raising these species in culture can help to provide an important source of protein for humans and relief to declining wild fish populations. Understanding the environmental factors that influence the production of Sablefish is important for successful culturing. The significance of host-pathogen interactions in Sablefish culture and the resulting environmental implications are unknown. Pathogens could potentially cause losses of cultured Sablefish stocks due to disease, while Sablefish cultured in net pens may also serve as reservoirs for pathogens and potentially transmit disease to wild fish species. In this initial study, the susceptibility of juvenile Sablefish to three bacterial pathogens from the family Vibrionaceae was examined. Listonella anguillarum, Vibrio ordalii, and V. splendidus can pose serious economic threats to cultured fish and shellfish. Groups of juvenile Sablefish were exposed to five concentrations of each of the pathogens. Sablefish were susceptible to L. anguillarum, but were resistant to V. ordalii and V. splendidus at exposure concentrations of <= 1.32 x 10(7) CFU/mL and <= 3.57 x 10(6) CFU/mL, respectively. The greatest L. anguillarum concentration examined (8.7 x 10(6) CFU/mL) resulted in 24% mortality in juvenile Sablefish. A 24% loss of Sablefish stock could significantly influence an aquaculture program. As determined by multiple logistic regression, the survival of Sablefish to L. anguillarum exposure was significantly affected by their body mass, and larger fish had a greater probability of survival. Aquaculture operations could employ various strategies to minimize the loss of juvenile Sablefish by accounting for their size and known susceptibilities to pathogens. C1 [Arkoosh, Mary R.; Dietrich, Joseph P.] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Environm & Fisheries Sci Div, Newport, OR 97365 USA. RP Arkoosh, MR (reprint author), Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Environm & Fisheries Sci Div, 2032 Southeast OSU Dr, Newport, OR 97365 USA. EM mary.arkoosh@noaa.gov FU NOAA Office of Aquaculture FX The NOAA Office of Aquaculture provided funds. We thank Rick Goetz and Bill Fairgrieve of NOAA Manchester Research Station for supplying the juvenile Sablefish and for insightful comments on the experimental design and manuscript. NR 52 TC 1 Z9 1 U1 3 U2 8 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0899-7659 EI 1548-8667 J9 J AQUAT ANIM HEALTH JI J. Aquat. Anim. Health PY 2015 VL 27 IS 2 BP 96 EP 103 DI 10.1080/08997659.2015.1019159 PG 8 WC Fisheries; Veterinary Sciences SC Fisheries; Veterinary Sciences GA CK7AP UT WOS:000356381800004 PM 25970236 ER PT J AU Bryant, R Bundy, M Zong, RW AF Bryant, Rodney Bundy, Matthew Zong, Ruowen TI Evaluating measurements of carbon dioxide emissions using a precision sourceA natural gas burner SO JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION LA English DT Article AB A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurementspredicted emissions measurements, and direct measurement of emissions quantities in the flue gasdirect emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of 4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources.Implications: Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions. C1 [Bryant, Rodney; Bundy, Matthew] NIST, Gaithersburg, MD 20899 USA. [Zong, Ruowen] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China. RP Bryant, R (reprint author), NIST, 100 Bur Dr,MS 8662, Gaithersburg, MD 20899 USA. EM rodney.bryant@nist.gov FU NIST Office of Special Programs-Greenhouse Gas and Climate Science Measure ments FX The authors gratefully acknowledge the technical and engineering support provided by Marco Fernandez, Laurean DeLauter, Doris Rinehart, and Anthony Chakalis, data acquisition support provided by Artur Chernovsky, and data analysis support provided by R. Paul Borthwick. We are also grateful for the technical guidance provided by Anthony Hamins and Jiann Yang. Research support by the NIST Office of Special Programs-Greenhouse Gas and Climate Science Measure ments, James Whetstone Program Manager-is gratefully acknowledged. NR 12 TC 1 Z9 1 U1 0 U2 4 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1096-2247 EI 2162-2906 J9 J AIR WASTE MANAGE JI J. Air Waste Manage. Assoc. PY 2015 VL 65 IS 7 BP 863 EP 870 DI 10.1080/10962247.2015.1031294 PG 8 WC Engineering, Environmental; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CK6YJ UT WOS:000356374800013 PM 26079560 ER PT J AU Druzhinin, OA Ostrovsky, LA AF Druzhinin, O. A. Ostrovsky, L. A. TI Dynamics of turbulence under the effect of stratification and internal waves SO NONLINEAR PROCESSES IN GEOPHYSICS LA English DT Article ID SMALL-SCALE TURBULENCE; GRAVITY-WAVES; FLUCTUATIONS; SURFACE; LAYER AB The objective of this paper is to study the dynamics of small-scale turbulence near a pycnocline, both in the free regime and under the action of an internal gravity wave (IW) propagating along a pycnocline, using direct numerical simulation (DNS). Turbulence is initially induced in a horizontal layer at some distance above the pycnocline. The velocity and density fields of IWs propagating in the pycnocline are also prescribed as an initial condition. The IW wavelength is considered to be larger by the order of magnitude as compared to the initial turbulence integral length scale. Stratification in the pycnocline is considered to be sufficiently strong so that the effects of turbulent mixing remain negligible. The dynamics of turbulence is studied both with and without an initially induced IW. The DNS results show that, in the absence of an IW, turbulence decays, but its decay rate is reduced in the vicinity of the pycnocline, where stratification effects are significant. In this case, at sufficiently late times, most of the turbulent energy is located in a layer close to the pycnocline center. Here, turbulent eddies are collapsed in the vertical direction and acquire the "pancake" shape. IW modifies turbulence dynamics, in that the turbulence kinetic energy (TKE) is significantly enhanced as compared to the TKE in the absence of IW. As in the case without IW, most of the turbulent energy is localized in the vicinity of the pycnocline center. Here, the TKE spectrum is considerably enhanced in the entire wave-number range as compared to the TKE spectrum in the absence of IW. C1 [Druzhinin, O. A.] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia. [Ostrovsky, L. A.] NOAA, Environm Sci Res Lab, Boulder, CO USA. RP Druzhinin, OA (reprint author), Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod, Russia. EM druzhinin@hydro.appl.sci-nnov.ru FU RFBR [14-05-00367, 15-05-02430] FX This work was supported by RFBR (Project Nos. 14-05-00367, 15-05-02430). NR 16 TC 2 Z9 2 U1 0 U2 4 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1023-5809 J9 NONLINEAR PROC GEOPH JI Nonlinear Process Geophys. PY 2015 VL 22 IS 3 BP 337 EP 348 DI 10.5194/npg-22-337-2015 PG 12 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA CL1AM UT WOS:000356674400007 ER PT J AU Dutton, GJ Robey, SW AF Dutton, Gregory J. Robey, Steven W. TI Non-fullerene acceptors: exciton dissociation with PTCDA versus C-60 SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ORGANIC SOLAR-CELLS; CHARGE-TRANSFER EXCITONS; ELECTRON-ACCEPTORS; SEMICONDUCTOR HETEROJUNCTIONS; MOLECULAR-ORIENTATION; PHOTOVOLTAIC CELLS; HIGH-PERFORMANCE; TRANSFER STATES; ENERGY; DEPENDENCE AB Extensive development of new polymer and small molecule donors has helped produce a steady increase in the efficiency of organic photovoltaic (OPV) devices. However, OPV technology would also benefit from the introduction of non-fullerene acceptors. Unfortunately, efforts to replace fullerenes have typically led to significantly reduced efficiencies. A number of possible explanations for reduced efficiencies with non-fullerene acceptors compared to fullerene acceptors have been suggested, including the formation of unfavorable morphologies in non-fullerene systems and/or favorable excitation/carrier delocalization in fullerenes. In addition, enhanced exciton dissociation associated with fundamental characteristics of the fullerene molecular electronic states has also been suggested. We used time-resolved two-photon photoemission (TR-2PPE) to directly compare exciton dissociation at interfaces between zinc phthalocyanine (ZnPc) interfaces and the non-fullerene acceptor, perylene tetracarboxylic dianhydride (PTCDA) versus dissociation measured at the analogous interface with C-60, and thus help discriminate between these potential explanations. Exciton dissociation rates are comparable for phthalocyanine interfaces with both acceptors, allowing us to suggest a hierarchy for the importance of various effects producing higher efficiencies with fullerene acceptors. C1 [Dutton, Gregory J.; Robey, Steven W.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Robey, SW (reprint author), Natl Inst Stand & Technol, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM steven.robey@nist.gov RI Dutton, Gregory/J-8870-2016 OI Dutton, Gregory/0000-0002-1483-604X NR 63 TC 5 Z9 5 U1 10 U2 70 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2015 VL 17 IS 24 BP 15953 EP 15962 DI 10.1039/c5cp02800k PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CK2QL UT WOS:000356056000054 PM 26027544 ER PT J AU Vargas-Lara, F Douglas, JF AF Vargas-Lara, Fernando Douglas, Jack F. TI Confronting the complexity of CNT materials SO SOFT MATTER LA English DT Article ID ANGLE NEUTRON-SCATTERING; MULTIWALLED CARBON NANOTUBES; SINGLE-WALLED NANOTUBES; MOLECULAR-DYNAMICS; POLYMER NANOCOMPOSITES; HYDRODYNAMIC FRICTION; TRANSPORT-PROPERTIES; CONDUCTIVITY; MORPHOLOGY; DISPERSION AB The morphology of commercially available carbon nanotube materials is often much more complex than the term "carbon nanotube'' (CNT) would imply. Commercial CNT materials are typically composed of roughly spherical CNT domains having a highly ramified internal structure and a size on the order of microns. Clearly, such structures cannot reasonably be modeled as "rods''. To address this problem, we first perform molecular dynamics simulations (MD) to generate structures similar to those measured experimentally, based on the presumptions that CNT domains are composed of worm-like cylinders having observed persistence lengths and that these CNTs are confined to spherical domains having the observed average domain size. This simple model generates structures remarkably similar to those observed experimentally. We then consider numerical path-integral computations to calculate the self-capacitance C and intrinsic conductivity [sigma](infinity) of these CNT rich domains. This information is then incorporated in a generalized effective medium theory to estimate the conductivity of bulk composite materials composed of these complex-shaped "particles''. We term these CNT structures "tumbleweeds'', given their evident morphological similarity to this naturally occurring growth form. Based on this model, we find that the conductivity percolation threshold of the tumbleweeds can be quite low, despite their quasi-spherical average shape. We also examine the structure factor S(q) of the CNT-rich domains as function of the number N of CNTs within them, to aid in the structural characterization of CNT nanocomposites. The structure factor S(q) of our model tumbleweed is found to resemble that of hyperbranched, star and dendrimer polymers, and also domain structures observed in polyelectrolytes. Commercial CNT materials at high loading should then have physical features in common with suspension of "soft'' colloidal particles by virtue of their deformability and roughly spherical shape. C1 [Vargas-Lara, Fernando; Douglas, Jack F.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. RP Vargas-Lara, F (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. EM luis.vargas@nist.gov; jdouglas@nist.gov NR 67 TC 8 Z9 8 U1 3 U2 22 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X EI 1744-6848 J9 SOFT MATTER JI Soft Matter PY 2015 VL 11 IS 24 BP 4888 EP 4898 DI 10.1039/c5sm00912j PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA CK5YQ UT WOS:000356304800015 PM 26008627 ER PT J AU Yager, KG Forrey, C Singh, G Satija, SK Page, KA Patton, DL Douglas, JF Jones, RL Karim, A AF Yager, Kevin G. Forrey, Christopher Singh, Gurpreet Satija, Sushil K. Page, Kirt A. Patton, Derek L. Douglas, Jack F. Jones, Ronald L. Karim, Alamgir TI Thermally-induced transition of lamellae orientation in block-copolymer films on 'neutral' nanoparticle-coated substrates SO SOFT MATTER LA English DT Article ID SYMMETRIC DIBLOCK COPOLYMER; MOVING TEMPERATURE-GRADIENT; ORDER-DISORDER TRANSITION; SELECTIVELY ASSOCIATING HOMOPOLYMER; THIN-FILMS; PHASE-BEHAVIOR; CYLINDRICAL DOMAINS; PERPENDICULAR ORIENTATION; PATTERN-FORMATION; ELECTRIC-FIELD AB Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such 'neutral' substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmed using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. Our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials. C1 [Yager, Kevin G.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Forrey, Christopher] US FDA, Ctr Devices & Radiol Hlth, Silver Spring, MD USA. [Singh, Gurpreet; Karim, Alamgir] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. [Satija, Sushil K.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Page, Kirt A.; Douglas, Jack F.; Jones, Ronald L.] NIST, Div Polymers, Gaithersburg, MD 20899 USA. [Patton, Derek L.] Univ So Mississippi, Sch Polymers & High Performance Mat, Hattiesburg, MS 39406 USA. RP Yager, KG (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM kyager@bnl.gov; alamgir@uakron.edu RI Yager, Kevin/F-9804-2011 OI Yager, Kevin/0000-0001-7745-2513 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Work carried out in part in the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We thank the Division of Electrical and Software Engineering (FDA) for use of the high performance computing facilities and the Division of Imaging and Applied Mathematics (FDA) for additional computational time. Acknowledgment by AK is made to the Donors of the American Chemical Society Petroleum Research Fund, New Directions (ACS-PRF ND) for partial support of this research. NR 85 TC 6 Z9 6 U1 5 U2 29 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X EI 1744-6848 J9 SOFT MATTER JI Soft Matter PY 2015 VL 11 IS 25 BP 5154 EP 5167 DI 10.1039/c5sm00896d PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA CK7EM UT WOS:000356394400020 PM 26053660 ER PT J AU Arkhipkin, AI Rodhouse, PGK Pierce, GJ Sauer, W Sakai, M Allcock, L Arguelles, J Bower, JR Castillo, G Ceriola, L Chen, CS Chen, XJ Diaz-Santana, M Downey, N Gonzalez, AF Amores, JG Green, CP Guerra, A Hendrickson, LC Ibanez, C Ito, K Jereb, P Kato, Y Katugin, ON Kawano, M Kidokoro, H Kulik, VV Laptikhovsky, VV Lipinski, MR Liu, BL Mariategui, L Marin, W Medina, A Miki, K Miyahara, K Moltschaniwskyj, N Moustahfid, H Nabhitabhata, J Nanjo, N Nigmatullin, CM Ohtani, T Pecl, G Perez, JAA Piatkowski, U Saikliang, P Salinas-Zavala, CA Steer, M Tian, YJ Ueta, Y Vijai, D Wakabayashi, T Yamaguchi, T Yamashiro, C Yamashita, N Zeidberg, LD AF Arkhipkin, Alexander I. Rodhouse, Paul G. K. Pierce, Graham J. Sauer, Warwick Sakai, Mitsuo Allcock, Louise Arguelles, Juan Bower, John R. Castillo, Gladis Ceriola, Luca Chen, Chih-Shin Chen, Xinjun Diaz-Santana, Mariana Downey, Nicola Gonzalez, Angel F. Granados Amores, Jasmin Green, Corey P. Guerra, Angel Hendrickson, Lisa C. Ibanez, Christian Ito, Kingo Jereb, Patrizia Kato, Yoshiki Katugin, Oleg N. Kawano, Mitsuhisa Kidokoro, Hideaki Kulik, Vladimir V. Laptikhovsky, Vladimir V. Lipinski, Marek R. Liu, Bilin Mariategui, Luis Marin, Wilbert Medina, Ana Miki, Katsuhiro Miyahara, Kazutaka Moltschaniwskyj, Natalie Moustahfid, Hassan Nabhitabhata, Jaruwat Nanjo, Nobuaki Nigmatullin, Chingis M. Ohtani, Tetsuya Pecl, Gretta Perez, J. Angel A. Piatkowski, Uwe Saikliang, Pirochana Salinas-Zavala, Cesar A. Steer, Michael Tian, Yongjun Ueta, Yukio Vijai, Dharmamony Wakabayashi, Toshie Yamaguchi, Tadanori Yamashiro, Carmen Yamashita, Norio Zeidberg, Louis D. TI World Squid Fisheries SO REVIEWS IN FISHERIES SCIENCE & AQUACULTURE LA English DT Article DE catch; Cephalopoda; fisheries; lifecycle; squid ID LOLIGO-VULGARIS-REYNAUDII; SHORT-FINNED-SQUID; NEON FLYING SQUID; CALAMARY SEPIOTEUTHIS-AUSTRALIS; GULF-OF-CALIFORNIA; TODAROPSIS-EBLANAE CEPHALOPODA; TODARODES-SAGITTATUS CEPHALOPODA; DOSIDICUS-GIGAS CEPHALOPODA; ILLEX-COINDETII CEPHALOPODA; NORTHWEST PACIFIC-OCEAN AB Some 290 species of squids comprise the order Teuthida that belongs to the molluscan Class Cephalopoda. Of these, about 30-40 squid species have substantial commercial importance around the world. Squid fisheries make a rather small contribution to world landings from capture fisheries relative to that of fish, but the proportion has increased steadily over the last decade, with some signs of recent leveling off. The present overview describes all substantial squid fisheries around the globe. The main ecological and biological features of exploited stocks, and key aspects of fisheries management are presented for each commercial species of squid worldwide. The history and fishing methods used in squid fisheries are also described. Special attention has been paid to interactions between squid fisheries and marine ecosystems including the effects of fishing gear, the role of squid in ecosystem change induced by overfishing on groundfish, and ecosystem-based fishery management. C1 [Arkhipkin, Alexander I.] Dept Fisheries, Stanley FIQQ 1ZZ, Falkland Island, Italy. [Rodhouse, Paul G. K.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England. [Pierce, Graham J.] Univ Aberdeen, Oceanlab, Newburgh, Aberdeen, Scotland. [Pierce, Graham J.; Lipinski, Marek R.] Univ Aveiro, CESAM, P-3800 Aveiro, Portugal. [Pierce, Graham J.; Lipinski, Marek R.] Univ Aveiro, Dept Biol, P-3800 Aveiro, Portugal. [Sauer, Warwick; Downey, Nicola] Rhodes Univ, Dept Ichthyol & Fisheries Sci, ZA-6140 Grahamstown, South Africa. [Sakai, Mitsuo; Kato, Yoshiki] Fisheries Res Agcy, Tohoku Natl Fisheries Res Inst, Hachinohe, Aomori, Japan. [Allcock, Louise] Queens Univ Belfast, Sch Biol Sci, Belfast, Antrim, North Ireland. [Arguelles, Juan; Castillo, Gladis; Mariategui, Luis; Marin, Wilbert; Medina, Ana; Yamashiro, Carmen] Inst Mar Peru IMARPE, Callao, Peru. [Bower, John R.] Hokkaido Univ, Fac Fisheries Sci, Hakodate, Hokkaido, Japan. [Ceriola, Luca] FAO MedSudMed, Rome, Italy. [Chen, Chih-Shin] Natl Taiwan Ocean Univ, Inst Marine Affairs & Resource Management, Keelung, Taiwan. [Chen, Xinjun; Liu, Bilin] Shanghai Ocean Univ, Coll Marine Sci, Shanghai, Peoples R China. [Diaz-Santana, Mariana] IPN, Ctr Interdisciplinario Ciencias Marinas, La Paz, Bcs, Mexico. [Gonzalez, Angel F.; Guerra, Angel] Inst Invest Marinas CSIC, Vigo, Spain. [Granados Amores, Jasmin; Salinas-Zavala, Cesar A.] Ctr Invest Biol Noroeste SC, La Paz, Bcs, Mexico. [Green, Corey P.] Fisheries Victoria, Dept Environm & Primary Ind, Queenscliff, Vic, Australia. [Hendrickson, Lisa C.] US Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Woods Hole, MA USA. [Ibanez, Christian] Univ Chile, Fac Ciencias, Dept Ciencias Ecol, Santiago, Chile. [Ito, Kingo] Aomori Prefectural Ind Technol Res Ctr, Fisheries Res Inst, Aomori, Japan. [Jereb, Patrizia] ISPRA, Rome, Italy. [Katugin, Oleg N.; Kulik, Vladimir V.] TINRO Ctr, Pacific Res Fisheries Ctr, Vladivostok, Russia. [Kawano, Mitsuhisa] Yamaguchi Prefectural Fisheries Res Ctr, Nagato, Yamaguchi, Japan. [Kidokoro, Hideaki; Tian, Yongjun] Fisheries Res Agcy, Japan Sea Natl Fisheries Res Inst, Niigata, Japan. [Laptikhovsky, Vladimir V.] CEFAS, Div Fisheries, Lowestoft, Suffolk, England. [Miki, Katsuhiro] Natl Res Inst Fisheries Sci, Yokohama, Kanagawa, Japan. [Miyahara, Kazutaka] Hyogo Fisheries Technol Inst, Akashi, Hyogo, Japan. [Moltschaniwskyj, Natalie] Univ Newcastle, Sch Environm & Life Sci, Ourimbah, NSW, Australia. [Moustahfid, Hassan] NOAA, US IOOS, Operat Div, Silver Spring, MD USA. [Nabhitabhata, Jaruwat] Prince Songkla Univ, Fac Sci, Excellence Ctr Biodivers Peninsular Thailand CBIP, Hat Yai, Songkhla, Thailand. [Nanjo, Nobuaki] Toyama Prefectural Agr Forestry & Fisheries Res C, Fisheries Res Inst, Toyama, Japan. [Nigmatullin, Chingis M.] Atlantic Res Inst Marine Fisheries & Oceanog Atla, Kaliningrad, Russia. [Ohtani, Tetsuya] Hyogo Prefectural Technol Ctr Agr Forestry & Fish, Tajima Fisheries Technol Inst, Mikata, Hyogo, Japan. [Pecl, Gretta] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas, Australia. [Perez, J. Angel A.] Univ Vale Itajai UNIVALI, Ctr Ciencias Tecnol Terra & Mar CTTMar, Itajai, SC, Brazil. [Piatkowski, Uwe] Leibniz Inst Marine Sci IFM GEOMAR, Kiel, Germany. [Saikliang, Pirochana] Bur Fisheries Expert, Dept Fisheries, Bangkok, Thailand. [Steer, Michael] South Australian Res & Dev Inst Aquat Sci, Henley Beach, SA, Australia. [Ueta, Yukio] Tokushima Agr Forestry & Fishery Technol & Suppor, Fisheries Res Inst, Tokushima, Japan. [Vijai, Dharmamony] Hokkaido Univ, Grad Sch Fisheries Sci, Hakodate, Hokkaido, Japan. [Wakabayashi, Toshie] Natl Fisheries Univ, Shimonoseki, Yamaguchi, Japan. [Yamaguchi, Tadanori] Saga Prefectural Genkai Fisheries Res & Dev Ctr, Karatsu, Saga, Japan. [Yamashita, Norio] Fisheries Res Agcy, Hokkaido Natl Fisheries Res Inst, Kushiro, Hokkaido, Japan. [Zeidberg, Louis D.] Calif Dept Fish & Wildlife, Monterey, CA USA. RP Arkhipkin, AI (reprint author), Dept Fisheries, Bypass Rd, Stanley FIQQ 1ZZ, Falkland Island, Italy. EM AArkhipkin@fisheries.gov.fk RI Allcock, Louise/A-7359-2012; Vijai, Dharmamony/E-8824-2016; Ibanez, Christian/B-9700-2009; CESAM, UA/M-3762-2015; Pecl, Gretta/D-7267-2011; Piatkowski, Uwe/G-4161-2011; OI Allcock, Louise/0000-0002-4806-0040; Vijai, Dharmamony/0000-0002-9120-8880; Pecl, Gretta/0000-0003-0192-4339; Piatkowski, Uwe/0000-0003-1558-5817; Pierce, Graham/0000-0002-4744-4501; Moltschaniwskyj, Natalie/0000-0001-9709-9876 FU Pharma Marine AS, Norway, processors of omega-3 oils from squid trimmings FX Gold Open Access of this paper was generously sponsored by Pharma Marine AS, Norway, processors of omega-3 oils from squid trimmings, for the Nutriceutical market. NR 1040 TC 13 Z9 13 U1 7 U2 34 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 2330-8249 EI 2330-8257 J9 REV FISH SCI AQUAC JI Rev. Fish. Sci. Aquac.. PY 2015 VL 23 IS 2 SI SI BP 92 EP 252 DI 10.1080/23308249.2015.1026226 PG 161 WC Fisheries SC Fisheries GA CK2CY UT WOS:000356018800002 ER PT J AU Gao, F Huang, XY Jacobs, NA Wang, HL AF Gao, Feng Huang, Xiang-Yu Jacobs, Neil A. Wang, Hongli TI Assimilation of wind speed and direction observations: results from real observation experiments SO TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY LA English DT Article DE WRFDA; observation operator; observation error; quality control; variational assimilation ID VARIATIONAL DATA ASSIMILATION; PART I; ERRORS; AIRCRAFT; TAMDAR; SYSTEM AB The assimilation of wind observations in the form of speed and direction (asm_sd) by the Weather Research and Forecasting Model Data Assimilation System (WRFDA) was performed using real data and employing a series of cycling assimilation experiments for a 2-week period, as a follow-up for an idealised post hoc assimilation experiment. The satellite-derived Atmospheric Motion Vectors (AMV) and surface dataset in Meteorological Assimilation Data Ingest System (MADIS) were assimilated. This new method takes into account the observation errors of both wind speed (spd) and direction (dir), and WRFDA background quality control (BKG-QC) influences the choice of wind observations, due to data conversions between (u,v) and (spd, dir). The impacts of BKG-QC, as well as the new method, on the wind analysis were analysed separately. Because the dir observational errors produced by different platforms are not known or tuned well in WRFDA, a practical method, which uses similar assimilation weights in comparative trials, was employed to estimate the spd and dir observation errors. The asm_sd produces positive impacts on analyses and short-range forecasts of spd and dir with smaller root-mean-square errors than the u, v-based system. The bias of spd analysis decreases by 54.8%. These improvements result partly from BKG-QC screening of spd and dir observations in a direct way, but mainly from the independent impact of spd (dir) data assimilation on spd (dir) analysis, which is the primary distinction from the standard WRFDA method. The potential impacts of asm_sd on precipitation forecasts were evaluated. Results demonstrate that the asm_sd is able to indirectly improve the precipitation forecasts by improving the prediction accuracies of key wind-related factors leading to precipitation (e.g. warm moist advection and frontogenesis). C1 [Gao, Feng] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Huang, Xiang-Yu] Meteorol Serv Singapore, Ctr Climate Res Singapore, Singapore, Singapore. [Jacobs, Neil A.] Panasonic Avionics Corp, Morrisville, NC USA. [Wang, Hongli] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Wang, Hongli] Natl Ocean & Atmospher Adm, Global Syst Div, Earth Syst Res Lab, Boulder, CO USA. RP Gao, F (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM fgao@ucar.edu RI Wang, Hongli/C-4579-2012 OI Wang, Hongli/0000-0003-0855-6743 FU National Natural Science Foundation [41430427]; 973 program [2013CB430102]; Panasonic Avionics Corporation FX The authors thank Jun-Mei Ban (NCAR) for the converting code of NCEP Stage IV precipitation analysis. We are also grateful for the invaluable comments and suggestions from three anonymous reviewers. The first author acknowledges the support of National Natural Science Foundation (41430427), 973 program (2013CB430102) and Panasonic Avionics Corporation. NR 21 TC 0 Z9 0 U1 0 U2 9 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6495 EI 1600-0870 J9 TELLUS A JI Tellus Ser. A-Dyn. Meteorol. Oceanol. PY 2015 VL 67 AR 27132 DI 10.3402/tellusa.v67.27132 PG 18 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA CK2EE UT WOS:000356022600001 ER PT J AU Bocquet, M Elbern, H Eskes, H Hirtl, M Zabkar, R Carmichael, GR Flemming, J Inness, A Pagowski, M Camano, JLP Saide, PE San Jose, R Sofiev, M Vira, J Baklanov, A Carnevale, C Grell, G Seigneur, C AF Bocquet, M. Elbern, H. Eskes, H. Hirtl, M. Zabkar, R. Carmichael, G. R. Flemming, J. Inness, A. Pagowski, M. Perez Camano, J. L. Saide, P. E. San Jose, R. Sofiev, M. Vira, J. Baklanov, A. Carnevale, C. Grell, G. Seigneur, C. TI Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ENSEMBLE KALMAN FILTER; VARIATIONAL DATA ASSIMILATION; AEROSOL OPTICAL DEPTH; CHEMICAL-DATA ASSIMILATION; TROPOSPHERIC OZONE SIMULATIONS; NUMERICAL WEATHER PREDICTION; UNDERGROUND RAILWAY STATION; AIR-QUALITY; TRANSPORT MODEL; PART I AB Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of three-dimensional chemical (including aerosol) concentrations and perform inverse modeling of input variables or model parameters (e.g., emissions). Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. They offer the possibility to assimilate both meteorological and chemical data; however, because CCMM are fairly recent, data assimilation in CCMM has been limited to date. We review here the current status of data assimilation in atmospheric chemistry models with a particular focus on future prospects for data assimilation in CCMM. We first review the methods available for data assimilation in atmospheric models, including variational methods, ensemble Kalman filters, and hybrid methods. Next, we review past applications that have included chemical data assimilation in chemical transport models (CTM) and in CCMM. Observational data sets available for chemical data assimilation are described, including surface data, surface-based remote sensing, airborne data, and satellite data. Several case studies of chemical data assimilation in CCMM are presented to highlight the benefits obtained by assimilating chemical data in CCMM. A case study of data assimilation to constrain emissions is also presented. There are few examples to date of joint meteorological and chemical data assimilation in CCMM and potential difficulties associated with data assimilation in CCMM are discussed. As the number of variables being assimilated increases, it is essential to characterize correctly the errors; in particular, the specification of error cross-correlations may be problematic. In some cases, offline diagnostics are necessary to ensure that data assimilation can truly improve model performance. However, the main challenge is likely to be the paucity of chemical data available for assimilation in CCMM. C1 [Bocquet, M.; Seigneur, C.] Univ Paris Est, CEREA, Joint Lab Ecole Ponts Paris Tech EDF R&D, Marne La Vallee, France. [Bocquet, M.] Paris Rocquencourt Res Ctr, INRIA, Rocquencourt, France. [Elbern, H.] Univ Cologne, Inst Phys & Meteorol, D-50931 Cologne, Germany. [Eskes, H.] KNMI, De Bilt, Netherlands. [Hirtl, M.] Cent Inst Meteorol & Geodynam, Vienna, Austria. [Zabkar, R.] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia. [Carmichael, G. R.; Saide, P. E.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA USA. [Flemming, J.; Inness, A.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Pagowski, M.; Grell, G.] NOAA, ESRL, Boulder, CO USA. [Perez Camano, J. L.; San Jose, R.] Tech Univ Madrid UPM, Madrid, Spain. [Sofiev, M.; Vira, J.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Baklanov, A.] WMO, Geneva, Switzerland. [Baklanov, A.] DMI, Copenhagen, Denmark. [Carnevale, C.] Univ Brescia, Dept Mech & Ind Engn, Brescia, Italy. RP Seigneur, C (reprint author), Univ Paris Est, CEREA, Joint Lab Ecole Ponts Paris Tech EDF R&D, Marne La Vallee, France. EM seigneur@cerea.enpc.fr RI Bocquet, Marc/E-1966-2011; pagowski, mariusz/H-4498-2013; Sofiev, Mikhail/F-7606-2016; Elbern, Hendrik/J-8672-2012 OI Bocquet, Marc/0000-0003-2675-0347; pagowski, mariusz/0000-0002-7703-0529; Sofiev, Mikhail/0000-0001-9542-5746; Elbern, Hendrik/0000-0002-5746-4506 FU COST Action [ES1004 EuMetChem] FX This work was realized within and supported by the COST Action ES1004 EuMetChem. NR 227 TC 22 Z9 23 U1 10 U2 37 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 10 BP 5325 EP 5358 DI 10.5194/acp-15-5325-2015 PG 34 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CJ2BM UT WOS:000355289200001 ER PT J AU Koss, AR de Gouw, J Warneke, C Gilman, JB Lerner, BM Graus, M Yuan, B Edwards, P Brown, SS Wild, R Roberts, JM Bates, TS Quinn, PK AF Koss, A. R. de Gouw, J. Warneke, C. Gilman, J. B. Lerner, B. M. Graus, M. Yuan, B. Edwards, P. Brown, S. S. Wild, R. Roberts, J. M. Bates, T. S. Quinn, P. K. TI Photochemical aging of volatile organic compounds associated with oil and natural gas extraction in the Uintah Basin, UT, during a wintertime ozone formation event SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BOUNDARY-LAYER; UNITED-STATES; METHANE; EMISSIONS; RADICALS; REGION; HYDROCARBONS; TROPOSPHERE; OXIDATION; INDUSTRY AB High concentrations of volatile organic compounds (VOCs) associated with oil and natural gas extraction were measured during a strong temperature inversion in the winter of 2013 at a rural site in the Uintah Basin, Utah. During this period, photochemistry enhanced by the stagnant meteorological conditions and concentrated VOCs led to high ozone mixing ratios (150 ppbv). A simple analysis of aromatic VOCs measured by proton-transfer-reaction mass-spectrometry (PTR-MS) is used to estimate (1) VOC emission ratios (the ratio of two VOCs at the time of emission) relative to benzene, (2) aromatic VOC emission rates, and (3) ambient OH radical concentrations. These quantities are determined from a best fit to VOC: benzene ratios as a function of time. The main findings are that (1) emission ratios are consistent with contributions from both oil and gas producing wells; (2) the emission rate of methane (27-57 x 10(3) kg methane h(-1)), extrapolated from the emission rate of benzene (4.1 +/- 0.4 x 10(5) molecules cm(-3) s(-1)), agrees with an independent estimate of methane emissions from aircraft measurements in 2012; and (3) calculated daily OH concentrations are low, peaking at 1 x 10(6) molecules cm(-3), and are consistent with Master Chemical Mechanism (MCM) modeling. The analysis is extended to photochemical production of oxygenated VOCs measured by PTR-MS and is able to explain daytime variability of these species. It is not able to completely reproduce nighttime behavior, possibly due to surface deposition. Using results from this analysis, the carbon mass of secondary compounds expected to have formed by the sixth day of the stagnation event was calculated, then compared to the measured mass of primary and secondary compounds. Only 17% of the expected secondary carbon mass is accounted for by gas phase, aerosol, and snow organic carbon measurements. The disparity is likely due to substantial amounts of unquantified oxygenated products. C1 [Koss, A. R.; de Gouw, J.; Warneke, C.; Gilman, J. B.; Lerner, B. M.; Graus, M.; Yuan, B.; Edwards, P.; Wild, R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Koss, A. R.; de Gouw, J.; Warneke, C.; Gilman, J. B.; Lerner, B. M.; Graus, M.; Yuan, B.; Edwards, P.; Brown, S. S.; Wild, R.; Roberts, J. M.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Bates, T. S.] Univ Washington, Joint Inst Study Atmosphere & Oceans, Seattle, WA 98195 USA. [Bates, T. S.; Quinn, P. K.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Koss, AR (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM abigail.koss@noaa.gov RI Manager, CSD Publications/B-2789-2015; Edwards, Peter/H-5236-2013; Koss, Abigail/B-5421-2015; Graus, Martin/E-7546-2010; de Gouw, Joost/A-9675-2008; Roberts, James/A-1082-2009; Bates, Timothy/L-6080-2016; Quinn, Patricia/R-1493-2016; Wild, Robert/I-1963-2013; Warneke, Carsten/E-7174-2010; Lerner, Brian/H-6556-2013; Brown, Steven/I-1762-2013; Gilman, Jessica/E-7751-2010; Yuan, Bin/A-1223-2012 OI Edwards, Peter/0000-0002-1076-6793; Graus, Martin/0000-0002-2025-9242; de Gouw, Joost/0000-0002-0385-1826; Roberts, James/0000-0002-8485-8172; Quinn, Patricia/0000-0003-0337-4895; Wild, Robert/0000-0002-4800-5172; Lerner, Brian/0000-0001-8721-8165; Gilman, Jessica/0000-0002-7899-9948; Yuan, Bin/0000-0003-3041-0329 FU Uintah Impact Mitigation Special Service District (UIMSSD); Bureau of Land Management (BLM); Environmental Protection Agency (EPA); Utah State University; Western Energy Alliance; NOAA's Atmospheric Chemistry, Climate, and Carbon Cycle Program FX The Uintah Basin Winter Ozone Studies were a joint project led and coordinated by the Utah Department of Environmental Quality (UDEQ) and supported by the Uintah Impact Mitigation Special Service District (UIMSSD), the Bureau of Land Management (BLM), the Environmental Protection Agency (EPA), and Utah State University. This work was funded in part by the Western Energy Alliance, and NOAA's Atmospheric Chemistry, Climate, and Carbon Cycle Program. We thank Questar Energy Products for site preparation and support. We thank Colm Sweeney (NOAA GMD) for the use of a Picarro methane instrument, and Shane Murphy and Jeffrey Soltis (University of Wyoming) for the use of a Picarro methane instrument. We thank NOAA Physical Sciences Division for the use of meteorology data, and NOAA Global Monitoring Division for the use of balloon sonde data. NR 37 TC 3 Z9 4 U1 4 U2 43 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 10 BP 5727 EP 5741 DI 10.5194/acp-15-5727-2015 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CJ2BM UT WOS:000355289200025 ER PT J AU Hayes, PL Carlton, AG Baker, KR Ahmadov, R Washenfelder, RA Alvarez, S Rappengluck, B Gilman, JB Kuster, WC de Gouw, JA Zotter, P Prevot, ASH Szidat, S Kleindienst, TE Offenberg, JH Ma, PK Jimenez, JL AF Hayes, P. L. Carlton, A. G. Baker, K. R. Ahmadov, R. Washenfelder, R. A. Alvarez, S. Rappenglueck, B. Gilman, J. B. Kuster, W. C. de Gouw, J. A. Zotter, P. Prevot, A. S. H. Szidat, S. Kleindienst, T. E. Offenberg, J. H. Ma, P. K. Jimenez, J. L. TI Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID VOLATILITY BASIS-SET; AIR-POLLUTION SOURCES; MASS-SPECTROMETRY; MEXICO-CITY; SOURCE APPORTIONMENT; TRACER COMPOUNDS; ELEMENTAL RATIO; UNITED-STATES; AQUEOUS-PHASE; SOA FORMATION AB Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle-and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model-measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model-measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed SOA concentrations in Pasadena. All the recent parameterizations overpredict urban SOA formation at long photochemical ages (approximate to 3 days) compared to observations from multiple sites, which can lead to problems in regional and especially global modeling. However, reducing IVOC emissions by one-half in the model to better match recent IVOC measurements improves SOA predictions at these long photochemical ages. Among the explicitly modeled VOCs, the precursor compounds that contribute the greatest SOA mass are methylbenzenes. Measured polycyclic aromatic hydrocarbons (naphthalenes) contribute 0.7% of the modeled SOA mass. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16-27, 35-61, and 19-35 %, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(+/- 3) %. The relative contribution of each source is uncertain by almost a factor of 2 depending on the parameterization used. In-basin biogenic VOCs are predicted to contribute only a few percent to SOA. A regional SOA background of approximately 2.1 mu g m(-3) is also present due to the long-distance transport of highly aged OA, likely with a substantial contribution from regional biogenic SOA. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly cycles in OA concentrations (Bahreini et al., 2012; Hayes et al., 2013). However, the modeling work presented here suggests a strong anthropogenic source of modern carbon in SOA, due to cooking emissions, which was not accounted for in those previous studies and which is higher on weekends. Lastly, this work adapts a simple two-parameter model to predict SOA concentration and O/C from urban emissions. This model successfully predicts SOA concentration, and the optimal parameter combination is very similar to that found for Mexico City. This approach provides a computationally inexpensive method for predicting urban SOA in global and climate models. We estimate pollution SOA to account for 26 Tg yr(-1) of SOA globally, or 17% of global SOA, one-third of which is likely to be non-fossil. C1 [Hayes, P. L.; Ahmadov, R.; Washenfelder, R. A.; Gilman, J. B.; de Gouw, J. A.; Jimenez, J. L.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Hayes, P. L.; Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Hayes, P. L.; Ma, P. K.] Univ Montreal, Dept Chem, Montreal, PQ H3C 3J7, Canada. [Carlton, A. G.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Baker, K. R.; Kleindienst, T. E.; Offenberg, J. H.] US EPA, Res Triangle Pk, NC 27711 USA. [Ahmadov, R.; Washenfelder, R. A.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Alvarez, S.; Rappenglueck, B.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77004 USA. [Zotter, P.; Prevot, A. S. H.] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland. [Szidat, S.] Univ Bern, Dept Chem & Biochem, Bern, Switzerland. [Szidat, S.] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland. RP Hayes, PL (reprint author), Univ Colorado, CIRES, Boulder, CO 80309 USA. EM patrick.hayes@umontreal.ca; jose.jimenez@colorado.edu RI Gilman, Jessica/E-7751-2010; Kuster, William/E-7421-2010; Manager, CSD Publications/B-2789-2015; Prevot, Andre/C-6677-2008; Ahmadov, Ravan/F-2036-2011; Carlton, Annmarie/A-7867-2011; Washenfelder, Rebecca/E-7169-2010; de Gouw, Joost/A-9675-2008; Jimenez, Jose/A-5294-2008; Szidat, Sonke/D-6706-2011; Offenberg, John/C-3787-2009 OI Gilman, Jessica/0000-0002-7899-9948; Kuster, William/0000-0002-8788-8588; Prevot, Andre/0000-0002-9243-8194; Ahmadov, Ravan/0000-0002-6996-7071; Carlton, Annmarie/0000-0002-8574-1507; Washenfelder, Rebecca/0000-0002-8106-3702; de Gouw, Joost/0000-0002-0385-1826; Jimenez, Jose/0000-0001-6203-1847; Szidat, Sonke/0000-0002-1824-6207; Offenberg, John/0000-0002-0213-4024 FU US DOE (BER, ASR program) [DE-SC0006035, DE-SC0006711, DE-SC0011105]; NSF [AGS-1243354, AGS-1360834]; NOAA [NA13OAR4310063]; CIRES Visiting Fellows Program; NSERC; Universite de Montreal; US Weather Research Program within the NOAA/OAR Office of Weather and Air Quality; [CARB 08-319]; [CARB 11-305] FX This work was partially supported by CARB 08-319 and CARB 11-305; US DOE (BER, ASR program) DE-SC0006035, DE-SC0006711, and DE-SC0011105; NSF AGS-1243354 and AGS-1360834; and NOAA NA13OAR4310063. P. L. Hayes is also grateful for a fellowship from the CIRES Visiting Fellows Program, and P. L. Hayes and P. K. Ma acknowledge support from a NSERC Discovery Grant and the Universite de Montreal. The authors thank Chris J. Hennigan (UMBC) and Allen L. Robinson (CMU) for providing the naphthalene and methylnaphthalene data. We also thank John S. Holloway (NOAA) for providing CO data, Roya Bahreini (University of California-Riverside) and Ann M. Middlebrook (NOAA) for providing OA data from the NOAA P3, and Stuart A. McKeen (NOAA) for helpful discussions. R. Ahmadov is supported by the US Weather Research Program within the NOAA/OAR Office of Weather and Air Quality. The US Environmental Protection Agency through its Office of Research and Development collaborated in the research described here. The manuscript was subjected to external peer review and has been cleared for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. NR 109 TC 19 Z9 19 U1 16 U2 89 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 10 BP 5773 EP 5801 DI 10.5194/acp-15-5773-2015 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CJ2BM UT WOS:000355289200028 ER PT J AU Lintner, BR Gentine, P Findell, KL Salvucci, GD AF Lintner, B. R. Gentine, P. Findell, K. L. Salvucci, G. D. TI The Budyko and complementary relationships in an idealized model of large-scale land-atmosphere coupling SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID ANNUAL WATER-BALANCE; TROPICAL CIRCULATION MODEL; SOIL-MOISTURE; PAN EVAPORATION; REGIONAL EVAPOTRANSPIRATION; INTERANNUAL VARIABILITY; CHANGING CLIMATE; SINGLE-COLUMN; UNITED-STATES; VEGETATION AB Two well-known relationships in hydrology and hydrometeorology, the Budyko and complementary relationships, are examined within an idealized prototype representing the physics of large-scale land-atmosphere coupling developed in prior work. These relationships are shown to hold on long (climatologic) timescales because of the tight coupling that exists between precipitation, atmospheric radiation, moisture convergence and advection. The slope of the CR is shown to be dependent on the Clausius-Clapeyron relationship between saturation-specific humidity and temperature, with important implications for the continental hydrologic cycle in a warming climate; e.g., one consequence of this dependence is that the CR may be expected to become more asymmetric with warming, as higher values of the slope imply a larger change in potential evaporation for a given change in evapotranspiration. In addition, the transparent physics of the prototype permits diagnosis of the sensitivity of the Budyko and complementary relationships to various atmospheric and land surface processes. Here, the impacts of anthropogenic influences, including large-scale irrigation and global warming, are assessed. C1 [Lintner, B. R.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Gentine, P.] Columbia Univ, Dept Earth & Environm Engn, New York, NY USA. [Gentine, P.] Columbia Univ, Earth Inst, New York, NY USA. [Findell, K. L.] Geophys Fluid Dynam Lab, Princeton, NJ USA. [Salvucci, G. D.] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA. RP Lintner, BR (reprint author), Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. EM lintner@envsci.rutgers.edu FU National Science Foundation (NSF) [AGS-1035968]; New Jersey Agricultural Experiment Station Hatch grant [NJ07102] FX This work was supported by National Science Foundation (NSF) grant AGS-1035968 and New Jersey Agricultural Experiment Station Hatch grant NJ07102. NR 81 TC 5 Z9 5 U1 3 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PY 2015 VL 19 IS 5 BP 2119 EP 2131 DI 10.5194/hess-19-2119-2015 PG 13 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA CJ2MR UT WOS:000355319500001 ER PT J AU Vaish, A Krueger, S Dimitriou, M Majkrzak, C Vanderah, DJ Chen, L Gawrisch, K AF Vaish, Amit Krueger, Susan Dimitriou, Michael Majkrzak, Charles Vanderah, David J. Chen, Lei Gawrisch, Klaus TI Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID ANGLE NEUTRON-SCATTERING; POROUS ALUMINA; GAS SEPARATION; NANOTUBES; FILMS AB Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface. (C) 2014 American Vacuum Society. C1 [Vaish, Amit; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Vanderah, David J.] NIST, Inst Biosci & Biotechnol Res, Rockville, MD 20850 USA. [Chen, Lei] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Gawrisch, Klaus] NIAAA, Lab Membrane Biochem & Biophys, NIH, Bethesda, MD 20892 USA. RP Vaish, A (reprint author), NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM anv@udel.edu; lei.chen@nist.gov FU National Institute of Standards and Technology-American Recovery and Reinvestment Act (NIST-ARRA); National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health FX A.V. acknowledges the National Institute of Standards and Technology-American Recovery and Reinvestment Act (NIST-ARRA) fellowship for supporting this work. K.G. acknowledges support from the Intramural Research Program of the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health. The authors acknowledge Andreas Heilmann and Annika Thormann of Fraunhofer IWM Halle for useful discussions. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. Research was performed in part at the NIST Center for Nanoscale Science and Technology. NR 26 TC 2 Z9 2 U1 5 U2 18 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JAN PY 2015 VL 33 IS 1 AR 01A148 DI 10.1116/1.4904398 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA CJ8FK UT WOS:000355735400048 ER PT J AU Mercaldo-Allen, R Goldberg, R Kuropat, CA Clark, P Alix, R Schreiner, W Roy, J AF Mercaldo-Allen, Renee Goldberg, Ronald Kuropat, Catherine A. Clark, Paul Alix, Robert Schreiner, Werner Roy, John TI A Field-Based Nursery for Headstarting Lobsters to Improve Postrelease Survival for Potential Stock Enhancement in Long Island Sound, Connecticut SO NORTH AMERICAN JOURNAL OF AQUACULTURE LA English DT Article ID OCEAN-BASED NURSERIES; HOMARUS-GAMMARUS L.; AMERICAN LOBSTER; EUROPEAN LOBSTER; EASTERN MAINE; GROWTH; TEMPERATURE; CAGES; COAST; SIZE AB Early benthic stage American lobsters Homarus americanus were held in a pilot nursery system in Long Island Sound (LIS), Connecticut, to test field grow out as a step toward potential stock enhancement. A larger size upon release may increase the probability of survival. Lobsters were placed individually in perforated plastic mesh cylindrical "habitats," and each habitat was housed in an outer protective sleeve with a larger mesh size. During June 2013, 24 lobsters were transferred to each of three wire mesh cages and deployed southwest of Charles Island in Milford, Connecticut (N = 3). The only source of nutrition was naturally occurring organisms. Cages were retrieved monthly, and lobsters were photographed to measure changes in carapace length (CL). After 11 months in the field, lobsters increased 92% in mean size from 6.0- to 11.6-mm CL, with 70.8% overall survival. Headstarting of early benthic stage lobsters shows promise as a tool for possible future stock enhancement in LIS. C1 [Mercaldo-Allen, Renee; Goldberg, Ronald; Kuropat, Catherine A.; Clark, Paul; Alix, Robert; Schreiner, Werner] NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Milford Lab, Milford, CT 06460 USA. [Roy, John] Sound Sch, New Haven, CT 06519 USA. RP Mercaldo-Allen, R (reprint author), NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Milford Lab, 212 Rogers Ave, Milford, CT 06460 USA. EM renee.mercaldo-allen@noaa.gov NR 19 TC 0 Z9 0 U1 2 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1522-2055 EI 1548-8454 J9 N AM J AQUACULT JI N. Am. J. Aqualcult. PY 2015 VL 77 IS 2 BP 239 EP 243 DI 10.1080/15222055.2014.996691 PG 5 WC Fisheries SC Fisheries GA CJ9SY UT WOS:000355844300015 ER PT S AU Mitchell, WF McClain, MA AF Mitchell, William F. McClain, Marjorie A. BE Simos, TE Tsitouras, C TI Performance of hp-Adaptive Strategies for Elliptic Partial Differential Equations SO PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014) SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference on Numerical Analysis and Applied Mathematics (ICNAAM) CY SEP 22-28, 2014 CL Rhodes, GREECE DE adaptive mesh refinement; hp-adaptive strategy; hp-FEM ID FINITE-ELEMENT COMPUTATIONS; P-VERSION; FEM C1 [Mitchell, William F.; McClain, Marjorie A.] NIST, Appl & Computat Math Div, Gaithersburg, MD 20899 USA. RP Mitchell, WF (reprint author), NIST, Appl & Computat Math Div, Gaithersburg, MD 20899 USA. NR 15 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1287-3 J9 AIP CONF PROC PY 2015 VL 1648 AR UNSP 700003 DI 10.1063/1.4912924 PG 3 WC Mathematics, Applied; Physics, Applied SC Mathematics; Physics GA BC7YA UT WOS:000355339704056 ER PT J AU Theis-Brohl, K Gutfreund, P Vorobiev, A Wolff, M Toperverg, BP Dura, JA Borchers, JA AF Theis-Broehl, Katharina Gutfreund, Philipp Vorobiev, Alexei Wolff, Max Toperverg, Boris P. Dura, Joseph A. Borchers, Julie A. TI Self assembly of magnetic nanoparticles at silicon surfaces SO SOFT MATTER LA English DT Article ID SUSPENSIONS; FERROFLUIDS; VISCOSITY; COLLOIDS; NEUTRON; FLOW AB Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density. C1 [Theis-Broehl, Katharina] Univ Appl Sci Bremerhaven, D-27568 Bremerhaven, Germany. [Gutfreund, Philipp] Inst Max Von Laue Paul Langevin, F-38000 Grenoble, France. [Vorobiev, Alexei; Wolff, Max] Uppsala Univ, Div Mat Phys, S-75120 Uppsala, Sweden. [Toperverg, Boris P.] Ruhr Univ Bochum, Inst Solid State Phys, Dept Phys, D-44780 Bochum, Germany. [Toperverg, Boris P.] Petersburg Nucl Phys Inst, Gatchina 188300, Russia. [Dura, Joseph A.; Borchers, Julie A.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Theis-Brohl, K (reprint author), Univ Appl Sci Bremerhaven, Karlstadt 8, D-27568 Bremerhaven, Germany. EM ktheisbroehl@hs-bremerhaven.de RI Dura, Joseph/B-8452-2008; OI Dura, Joseph/0000-0001-6877-959X; Toperverg, Boris/0000-0001-5166-7997 FU ILL Grenoble; NIST Gaithersburg; University of Applied Sciences Bremerhaven FX We gratefully acknowledge financial support by ILL Grenoble, NIST Gaithersburg and University of Applied Sciences Bremerhaven. We thank Nadine Mill, University of Bielefeld, Germany for performing TEM measurements. We also thank Avi Saini from Uppsala University, Paul Kienzle, Kathryn Krycka, Cindi Dennis from NIST for fruitful discussions and Brian Maranville, Sushil Satija, Frank Heinrich, David Hoogerheide, Paul Butler, Matthew J. Wasbrough from NIST and Hauke Carstensen, Franz Adlmann from Uppsala University for assistance with complementary measurements performed on the MAGIK and NG7 reflectometers and on the NG7 SANS instrument at the NCNR. NR 29 TC 2 Z9 2 U1 3 U2 20 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X EI 1744-6848 J9 SOFT MATTER JI Soft Matter PY 2015 VL 11 IS 23 BP 4695 EP 4704 DI 10.1039/c5sm00484e PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA CJ8FP UT WOS:000355735900017 PM 25971712 ER PT J AU Cleary, PA Fuhrman, N Schulz, L Schafer, J Fillingham, J Bootsma, H McQueen, J Tang, Y Langel, T McKeen, S Williams, EJ Brown, SS AF Cleary, P. A. Fuhrman, N. Schulz, L. Schafer, J. Fillingham, J. Bootsma, H. McQueen, J. Tang, Y. Langel, T. McKeen, S. Williams, E. J. Brown, S. S. TI Ozone distributions over southern Lake Michigan: comparisons between ferry-based observations, shoreline-based DOAS observations and model forecasts SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MARINE BOUNDARY-LAYER; GROUND-LEVEL OZONE; GREAT-LAKES; EASTERN WISCONSIN; BREEZE; REGION; EMISSIONS; TRANSPORT; METEOROLOGY; EXPOSURE AB Air quality forecast models typically predict large summertime ozone abundances over water relative to land in the Great Lakes region. While each state bordering Lake Michigan has dedicated monitoring systems, offshore measurements have been sparse, mainly executed through specific short-term campaigns. This study examines ozone abundances over Lake Michigan as measured on the Lake Express ferry, by shoreline differential optical absorption spectroscopy (DOAS) observations in southeastern Wisconsin and as predicted by the Community Multiscale Air Quality (CMAQ) model. From 2008 to 2009 measurements of O-3, SO2, NO2 and formaldehyde were made in the summertime by DOAS at a shoreline site in Kenosha, WI. From 2008 to 2010 measurements of ambient ozone were conducted on the Lake Express, a high-speed ferry that travels between Milwaukee, WI, and Muskegon, MI, up to six times daily from spring to fall. Ferry ozone observations over Lake Michigan were an average of 3.8 ppb higher than those measured at shoreline in Kenosha, with little dependence on position of the ferry or temperature and with greatest differences during evening and night. Concurrent 1-48 h forecasts from the CMAQ model in the upper Midwestern region surrounding Lake Michigan were compared to ferry ozone measurements, shoreline DOAS measurements and Environmental Protection Agency (EPA) station measurements. The bias of the model O-3 forecast was computed and evaluated with respect to ferry-based measurements. Trends in the bias with respect to location and time of day were explored showing non-uniformity in model bias over the lake. Model ozone bias was consistently high over the lake in comparison to land-based measurements, with highest biases for 25-48 h after initialization. C1 [Cleary, P. A.; Fuhrman, N.] Univ Wisconsin, Dept Chem, Eau Claire, WI 54702 USA. [Schulz, L.] Univ Wisconsin Parkside, Kenosha, WI 53144 USA. [Schafer, J.; Fillingham, J.; Bootsma, H.] Univ Wisconsin, Sch Freshwater Sci, Milwaukee, WI 53204 USA. [McQueen, J.; Tang, Y.] Natl Ctr Environm Predict, Environm Modeling Ctr, College Pk, MD 20740 USA. [Langel, T.; Williams, E. J.; Brown, S. S.] NOAA, Earth Syst Res Lab, Chem Sci Div, Boulder, CO 80305 USA. [McKeen, S.; Williams, E. J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80930 USA. RP Cleary, PA (reprint author), Univ Wisconsin, Dept Chem, 105 Garfield Ave, Eau Claire, WI 54702 USA. EM clearypa@uwec.edu RI Brown, Steven/I-1762-2013; Manager, CSD Publications/B-2789-2015 FU Lake Express ferry; University of Wisconsin-Eau Claire Office of Sponsored Programs Faculty and Student Collaboration Grant; Great Lakes Water Institute; Kenosha Water Utility; Great Lakes Observing System; NOAA Hollings Scholar Program; NOAA's Atmospheric Chemistry, Carbon Cycle and Climate Program FX The authors would like to thank Kaya Sims, Lindsey Kuettner and Renee Hanson for their assistance in this experiment; the Lake Express ferry; University of Wisconsin-Eau Claire Office of Sponsored Programs Faculty and Student Collaboration Grant; Great Lakes Water Institute; Kenosha Water Utility; and the Great Lakes Observing System for their cooperation and support of this project. The authors would like to thank Bruce E. Brown for assistance with collection and calibration of ozone data from the Lake Express ferry, and Kenneth Aikin for archiving of NAQFM images. T. Langel acknowledges the NOAA Hollings Scholar Program for fellowship support during 2010. S. S. Brown acknowledges support from NOAA's Atmospheric Chemistry, Carbon Cycle and Climate Program. NR 35 TC 2 Z9 2 U1 5 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 9 BP 5109 EP 5122 DI 10.5194/acp-15-5109-2015 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CJ2BL UT WOS:000355289100009 ER PT J AU Huang, J Liu, H Crawford, JH Chan, C Considine, DB Zhang, Y Zheng, X Zhao, C Thouret, V Oltmans, SJ Liu, SC Jones, DBA Steenrod, SD Damon, MR AF Huang, J. Liu, H. Crawford, J. H. Chan, C. Considine, D. B. Zhang, Y. Zheng, X. Zhao, C. Thouret, V. Oltmans, S. J. Liu, S. C. Jones, D. B. A. Steenrod, S. D. Damon, M. R. TI Origin of springtime ozone enhancements in the lower troposphere over Beijing: in situ measurements and model analysis SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MOZAIC AIRBORNE PROGRAM; NORTH-AMERICA; HONG-KONG; INTERANNUAL VARIABILITY; VERTICAL-DISTRIBUTION; BACKGROUND OZONE; MOIST CONVECTION; AIR-POLLUTION; SURFACE OZONE; WATER-VAPOR AB Ozone (O-3) concentrations in the lower troposphere (LT) over Beijing have significantly increased over the past 2 decades as a result of rapid industrialization in China, with important implications for regional air quality and the photochemistry of the background troposphere. We characterize the vertical distribution of lower-tropospheric (0-6 km) O-3 over Beijing using observations from 16 ozonesonde soundings during a field campaign in April-May 2005 and MOZAIC (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft) over 13 days in the same period. We focus on the origin of LT O-3 enhancements observed over Beijing, particularly in May. We use a global 3-D chemistry and transport model (GEOS-Chem CTM; GEOS - Goddard Earth Observing System) driven by assimilated meteorological fields to examine the transport pathways for O-3 pollution and to quantify the sources contributing to O-3 and its enhancements in the springtime LT over Beijing. Out-put from the Global Modeling Initiative (GMI) CTM is also used. High O-3 concentrations (up to 94.7 ppbv) were frequently observed at the altitude of similar to 1.5-2 km. The CTMs captured the timing of the occurrences but significantly underestimated their magnitude. GEOS-Chem simulations and a case study showed that O-3 produced in the Asian troposphere (especially from Asian anthropogenic pollution) made major contributions to the observed O-3 enhancements. Contributions from anthropogenic pollution in the European and North American troposphere were reduced during these events, in contrast with days without O-3 enhancements when contributions from Europe and North America were substantial. The O-3 enhancements typically occurred under southerly wind and warmer conditions. It is suggested that an earlier onset of the Asian summer monsoon would cause more O-3 enhancement events in the LT over the North China Plain in late spring and early summer. C1 [Huang, J.; Liu, H.] Natl Inst Aerosp, Hampton, VA 23681 USA. [Crawford, J. H.] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Chan, C.; Considine, D. B.] Chinese Acad Sci, Inst Earth Environm, Xian, Peoples R China. [Considine, D. B.] NASA Headquarters, Washington, DC USA. [Zhang, Y.] South China Inst Environm Sci, Guangzhou, Guangdong, Peoples R China. [Zheng, X.] Chinese Acad Meteorol Sci, Beijing, Peoples R China. [Zhao, C.] Peking Univ, Dept Atmospher Sci, Beijing 100871, Peoples R China. [Thouret, V.] Lab Aerol, UMR5560, Toulouse, France. [Oltmans, S. J.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Oltmans, S. J.] NOAA, ESRL, Boulder, CO USA. [Liu, S. C.] Acad Sinica, Res Ctr Environm Changes, Taipei 115, Taiwan. [Jones, D. B. A.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Steenrod, S. D.] Univ Space Res Assoc, Columbia, MD USA. [Steenrod, S. D.; Damon, M. R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Damon, M. R.] Sci Syst & Applicat Inc, Lanham, MD USA. RP Liu, H (reprint author), Natl Inst Aerosp, Hampton, VA 23681 USA. EM hongyu.liu-1@nasa.gov RI Zhao, Chunsheng/D-1176-2011; Chem, GEOS/C-5595-2014 OI Zhao, Chunsheng/0000-0003-1951-379X; FU NASA Atmospheric Composition Modeling and Analysis Program (ACMAP); NASA Modeling, Analysis, and Prediction Program (MAP); National Science Foundation of China; INSU-CNRS (France); Meteo-France; CNES; Universite Paul Sabatier (Toulouse, France); Research Center Julich (FZJ, Julich, Germany); EU project IAGOS-DS; EU project IAGOS-ERI; NASA ACMAP; MAP FX This work was supported by the NASA Atmospheric Composition Modeling and Analysis Program (ACMAP) and NASA Modeling, Analysis, and Prediction Program (MAP). Ozonesonde data were obtained with support from the National Science Foundation of China. We thank the personnel at the Beijing ozonesonde station for helping with the launching of ozonesondes. The authors acknowledge the strong support of the European Commission, Airbus, and the airlines (Lufthansa, Air France, Austrian, Air Namibia, China Airlines, and Cathay Pacific so far) who have carried the MOZAIC or IAGOS equipment and performed the maintenance since 1994. MOZAIC is presently funded by INSU-CNRS (France), Meteo-France, CNES, Universite Paul Sabatier (Toulouse, France), and the Research Center Julich (FZJ, Julich, Germany). IAGOS has been and is additionally funded by the EU projects IAGOS-DS and IAGOS-ERI. The MOZAIC-IAGOS data are available via the CNES/CNRS-INSU Ether web site http://www.pole-ether.fr. The NASA Center for Computational Sciences (NCCS) provided supercomputing resources. The GEOS-Chem model is managed by the Atmospheric Chemistry Modeling Group at Harvard University with support from NASA ACMAP and MAP. The GMI model is managed by Jose Rodriguez (Project Scientist) and Susan Strahan (Project Manager) at the NASA Goddard Space Flight Center with support from MAP. We thank Meiyun Lin and two anonymous reviewers for their comments and suggestions, which helped improve the manuscript. NR 75 TC 6 Z9 6 U1 7 U2 35 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 9 BP 5161 EP 5179 DI 10.5194/acp-15-5161-2015 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CJ2BL UT WOS:000355289100012 ER PT J AU Baker, KR Carlton, AG Kleindienst, TE Offenberg, JH Beaver, MR Gentner, DR Goldstein, AH Hayes, PL Jimenez, JL Gilman, JB de Gouw, JA Woody, MC Pye, HOT Kelly, JT Lewandowski, M Jaoui, M Stevens, PS Brune, WH Lin, YH Rubitschun, CL Surratt, JD AF Baker, K. R. Carlton, A. G. Kleindienst, T. E. Offenberg, J. H. Beaver, M. R. Gentner, D. R. Goldstein, A. H. Hayes, P. L. Jimenez, J. L. Gilman, J. B. de Gouw, J. A. Woody, M. C. Pye, H. O. T. Kelly, J. T. Lewandowski, M. Jaoui, M. Stevens, P. S. Brune, W. H. Lin, Y. -H. Rubitschun, C. L. Surratt, J. D. TI Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; SAN-JOAQUIN VALLEY; LOS-ANGELES BASIN; AIR-QUALITY; UNITED-STATES; SOA FORMATION; AGRICULTURAL CROPS; OXALIC-ACID; 2010 CALNEX; EMISSIONS AB Co-located measurements of fine particulate matter (PM2.5 /organic carbon (OC), elemental carbon, radiocarbon (C-14), speciated volatile organic compounds (VOCs), and OH radicals during the CalNex field campaign provide a unique opportunity to evaluate the Community Multi-scale Air Quality (CMAQ) model's representation of organic species from VOCs to particles. Episode average daily 23 h average C-14 analysis indicates PM2.5 carbon at Pasadena and Bakersfield during the CalNex field campaign was evenly split between contemporary and fossil origins. CMAQ predicts a higher contemporary carbon fraction than indicated by the C-14 analysis at both locations. The model underestimates measured PM2.5 organic carbon at both sites with very little (7% in Pasadena) of the modeled mass represented by secondary production, which contrasts with the ambient-based SOC / OC fraction of 63% at Pasadena. Measurements and predictions of gas-phase anthropogenic species, such as toluene and xylenes, are generally within a factor of 2, but the corresponding SOC tracer (2,3-dihydroxy-4-oxo-pentanoic acid) is systematically underpredicted by more than a factor of 2. Monoterpene VOCs and SOCs are underestimated at both sites. Isoprene is underestimated at Pasadena and overpredicted at Bakersfield and isoprene SOC mass is underestimated at both sites. Systematic model underestimates in SOC mass coupled with reasonable skill (typically within a factor of 2) in predicting hydroxyl radical and VOC gas-phase precursors suggest error( s) in the parameterization of semivolatile gases to form SOC. Yield values (alpha) applied to semivolatile partitioning species were increased by a factor of 4 in CMAQ for a sensitivity simulation, taking into account recent findings of underestimated yields in chamber experiments due to gas wall losses. This sensitivity resulted in improved model performance for PM2.5 organic carbon at both field study locations and at routine monitor network sites in California. Modeled percent secondary contribution (22% at Pasadena) becomes closer to ambient-based estimates but still contains a higher primary fraction than observed. C1 [Baker, K. R.; Kelly, J. T.] US EPA, Off Air Qual Planning & Stand, Res Triangle Pk, NC 27711 USA. [Carlton, A. G.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Kleindienst, T. E.; Offenberg, J. H.; Beaver, M. R.; Woody, M. C.; Pye, H. O. T.; Lewandowski, M.] US EPA, Off Res & Dev, Res Triangle Pk, NC 27711 USA. [Gentner, D. R.] Yale Univ, Dept Chem & Environm Engn, New Haven, CT USA. [Goldstein, A. H.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Hayes, P. L.] Univ Montreal, Dept Chim, Montreal, PQ H3C 3J7, Canada. [Jimenez, J. L.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Jimenez, J. L.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Gilman, J. B.; de Gouw, J. A.] Natl Ocean & Atmospher Adm, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA. [Jaoui, M.] Alion Sci & Technol Inc, Res Triangle Pk, NC USA. [Stevens, P. S.] Indiana Univ, Sch Publ & Environm Affairs, Ctr Res Environm Sci, Bloomington, IN USA. [Stevens, P. S.] Indiana Univ, Dept Chem, Bloomington, IN USA. [Brune, W. H.] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA. [Lin, Y. -H.; Rubitschun, C. L.; Surratt, J. D.] Univ N Carolina, Dept Environm Sci & Engn, Gillings Sch Global Publ Hlth, Chapel Hill, NC USA. RP Baker, KR (reprint author), US EPA, Off Air Qual Planning & Stand, Res Triangle Pk, NC 27711 USA. EM baker.kirk@epa.gov RI Kelly, James/F-8135-2010; Carlton, Annmarie/A-7867-2011; de Gouw, Joost/A-9675-2008; Jimenez, Jose/A-5294-2008; Surratt, Jason/D-3611-2009; Offenberg, John/C-3787-2009; Lin, Ying-Hsuan/J-4023-2014; Gilman, Jessica/E-7751-2010; Pye, Havala/F-5392-2012; Manager, CSD Publications/B-2789-2015 OI Kelly, James/0000-0001-6574-5714; Carlton, Annmarie/0000-0002-8574-1507; de Gouw, Joost/0000-0002-0385-1826; Jimenez, Jose/0000-0001-6203-1847; Surratt, Jason/0000-0002-6833-1450; Offenberg, John/0000-0002-0213-4024; Lin, Ying-Hsuan/0000-0001-8904-1287; Gilman, Jessica/0000-0002-7899-9948; Pye, Havala/0000-0002-2014-2140; FU EPA, through its Office of Research and Development [EP-D-10-070]; EPA's STAR program [RD83504101]; CARB [11-305] FX The authors would like to acknowledge measurements taken by Scott Scheller and the contribution from Chris Misenis, Allan Beidler, Chris Allen, James Beidler, Heather Simon, and Rich Mason. EPA, through its Office of Research and Development, funded and collaborated in the research described here under contract EP-D-10-070 to Alion Science and Technology. This work is supported in part through EPA's STAR program, grant number RD83504101. P. L. Hayes and J. L. Jimenez were supported by CARB 11-305. NR 77 TC 9 Z9 9 U1 6 U2 51 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 9 BP 5243 EP 5258 DI 10.5194/acp-15-5243-2015 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CJ2BL UT WOS:000355289100017 ER PT J AU Volkamer, R Baidar, S Campos, TL Coburn, S DiGangi, JP Dix, B Eloranta, EW Koenig, TK Morley, B Ortega, I Pierce, BR Reeves, M Sinreich, R Wang, S Zondlo, MA Romashkin, PA AF Volkamer, R. Baidar, S. Campos, T. L. Coburn, S. DiGangi, J. P. Dix, B. Eloranta, E. W. Koenig, T. K. Morley, B. Ortega, I. Pierce, B. R. Reeves, M. Sinreich, R. Wang, S. Zondlo, M. A. Romashkin, P. A. TI Aircraft measurements of BrO, IO, glyoxal, NO2, H2O, O-2-O-2 and aerosol extinction profiles in the tropics: comparison with aircraft-/ship-based in situ and lidar measurements SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID MULTIAXIS DOAS MEASUREMENTS; ABSORPTION CROSS-SECTIONS; SPECTRAL-RESOLUTION LIDAR; MARINE BOUNDARY-LAYER; TROPOSPHERIC BRO; ATMOSPHERIC AEROSOLS; ORGANIC-COMPOUNDS; TRACE GASES; INSTRUMENT CHARACTERIZATION; SATELLITE-OBSERVATIONS AB Tropospheric chemistry of halogens and organic carbon over tropical oceans modifies ozone and atmospheric aerosols, yet atmospheric models remain largely untested for lack of vertically resolved measurements of bromine monoxide (BrO), iodine monoxide (IO) and small oxygenated hydrocarbons like glyoxal (CHOCHO) in the tropical troposphere. BrO, IO, glyoxal, nitrogen dioxide (NO2), water vapor (H2O) and O-2-O-2 collision complexes (O-4) were measured by the University of Colorado Airborne Multi-AXis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument, aerosol extinction by high spectral resolution lidar (HSRL), in situ aerosol size distributions by an ultra high sensitivity aerosol spectrometer (UHSAS) and in situ H2O by vertical-cavity surface-emitting laser (VC-SEL) hygrometer. Data are presented from two research flights (RF12, RF17) aboard the National Science Foundation/National Center for Atmospheric Research Gulfstream V aircraft over the tropical Eastern Pacific Ocean (tEPO) as part of the "Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated hydrocarbons" (TORERO) project (January/February 2012). We assess the accuracy of O4 slant column density (SCD) measurements in the presence and absence of aerosols. Our O-4-inferred aerosol extinction profiles at 477 nm agree within 6% with HSRL in the boundary layer and closely resemble the renormalized profile shape of Mie calculations constrained by UHSAS at low (sub-Rayleigh) aerosol extinction in the free troposphere. CU AMAX-DOAS provides a flexible choice of geometry, which we exploit to minimize the SCD in the reference spectrum (SCDREF, maximize signal-to-noise ratio) and to test the robustness of BrO, IO and glyoxal differential SCDs. The RF12 case study was conducted in pristine marine and free tropospheric air. The RF17 case study was conducted above the NOAA RV Ka'imimoana (TORERO cruise, KA-12-01) and provides independent validation data from ship-based in situ cavity-enhanced DOAS and MAX-DOAS. Inside the marine boundary layer (MBL) no BrO was detected (smaller than 0.5 pptv), and 0.2-0.55 pptv IO and 32-36 pptv glyoxal were observed. The near-surface concentrations agree within 30% (IO) and 10% (glyoxal) between ship and air-craft. The BrO concentration strongly increased with altitude to 3.0 pptv at 14.5 km (RF12, 9.1 to 8.6 degrees N; 101.2 to 97.4 degrees W). At 14.5 km, 5-10 pptv NO2 agree with model predictions and demonstrate good control over separating tropospheric from stratospheric absorbers (NO2 and BrO). Our profile retrievals have 12-20 degrees of freedom (DoF) and up to 500m vertical resolution. The tropospheric BrO vertical column density (VCD) was 1.5 x 10(13) molec cm(-2) (RF12) and at least 0.5 x 10(13) molec cm(-2) (RF17, 0-10 km, lower limit). Tropospheric IO VCDs correspond to 2.1 x 10(12) molec cm(-2) (RF12) and 2.5 x 10(12) molec cm 2 (RF17) and glyoxal VCDs of 2.6 x 10(14) molec cm(-2) (RF12) and 2.7 x 1014 molec cm 2 (RF17). Surprisingly, essentially all BrO as well as the dominant IO and glyoxal VCD fraction was located above 2 km (IO: 58 x 5 %, 0.1-0.2 pptv; glyoxal: 52 x 5 %, 3-20 pptv). To our knowledge there are no previous vertically resolved measurements of BrO and glyoxal from aircraft in the tropical free troposphere. The atmospheric implications are briefly discussed. Future studies are necessary to better understand the sources and impacts of free tropospheric halogens and oxygenated hydrocarbons on tropospheric ozone, aerosols, mercury oxidation and the oxidation capacity of the atmosphere. C1 [Volkamer, R.; Baidar, S.; Coburn, S.; Dix, B.; Koenig, T. K.; Ortega, I.; Sinreich, R.; Wang, S.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Volkamer, R.; Baidar, S.; Coburn, S.; Koenig, T. K.; Ortega, I.; Wang, S.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Campos, T. L.] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80307 USA. [DiGangi, J. P.; Zondlo, M. A.] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Eloranta, E. W.] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA. [Morley, B.; Reeves, M.; Romashkin, P. A.] RAF EOL, NCAR, Broomfield, CO USA. [Pierce, B. R.] Natl Environm Satellite Data & Informat Serv, NOAA, Madison, WI USA. [DiGangi, J. P.] NASA, Langley Res Ctr, Hampton, VA USA. [Wang, S.] Hong Kong Univ Sci & Technol, Dept Chem, Hong Kong, Hong Kong, Peoples R China. RP Volkamer, R (reprint author), Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. EM rainer.volkamer@colorado.edu RI Pierce, Robert Bradley/F-5609-2010; Volkamer, Rainer/B-8925-2016; Zondlo, Mark/R-6173-2016 OI Pierce, Robert Bradley/0000-0002-2767-1643; Volkamer, Rainer/0000-0002-0899-1369; Zondlo, Mark/0000-0003-2302-9554 FU National Science Foundation [AGS-1104104]; NSF; Fulbright Junior Research Award; ESRL/CIRES graduate fellowship; National Science Foundation Faculty Early Career Development (CAREER) award [ATM-0847793]; Department of Energy [DE-SC0006080]; Electric Power Research Institute (EPRI) [EP-P27450/C13049, EP-P32238/C14974] FX The TORERO project is funded by the National Science Foundation under award AGS-1104104 (PI: R. Volkamer). The involvement of the NSF-sponsored Lower Atmospheric Observing Facilities, managed and operated by the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL), is acknowledged. We thank Jorgen Jensen and Mathew Hayman for helpful discussions. S. Wang is a recipient of the Fulbright Junior Research Award; S. Baidar is a recipient of ESRL/CIRES graduate fellowship. R. Volkamer acknowledges financial support from National Science Foundation Faculty Early Career Development (CAREER) award ATM-0847793, Department of Energy award DE-SC0006080 and Electric Power Research Institute (EPRI) contracts EP-P27450/C13049 and EP-P32238/C14974 that supported the development of the AMAX-DOAS instrument and software/data analysis tools used in this study. NR 122 TC 32 Z9 33 U1 10 U2 58 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2015 VL 8 IS 5 BP 2121 EP 2148 DI 10.5194/amt-8-2121-2015 PG 28 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CJ2BJ UT WOS:000355288900013 ER PT J AU Veres, PR Roberts, JM AF Veres, P. R. Roberts, J. M. TI Development of a photochemical source for the production and calibration of acyl peroxynitrate compounds SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID IONIZATION MASS-SPECTROMETRY; PEROXYACETYL NITRATE PAN; ELECTRON-CAPTURE DETECTION; GAS-CHROMATOGRAPHY; NOX; PPN; NITROGEN; AMBIENT; MPAN; ATMOSPHERE AB A dynamic system for the calibration of acyl peroxynitrate compounds (APNs) has been developed in the laboratory to reduce the difficulty, required time, and instability of laboratory-produced standards for difficult-to-synthesize APN species. In this work we present a photochemical source for the generation of APN standards: acetyl peroxynitrate (PAN), propionyl peroxynitrate (PPN), acryloyl peroxynitrate (APAN), methacryloyl peroxynitrate (MPAN), and crotonyl peroxynitrate (CPAN). APNs are generated via photolysis of a mixture of acyl chloride (RC(O)Cl) and ketone (RC(= O)R) precursor compounds in the presence of O-2 and NO2. Subsequent separation by a prep-scale gas chromatograph and detection with a total NOy instrument serve to quantify the output of the APN source. Validation of the APN products was performed using iodide ion chemical ionization mass spectroscopy (I- CIMS). This method of standard production is an efficient and accurate technique for the calibration of instrumentation used to measure PAN, PPN, APAN, MPAN, and CPAN. C1 [Veres, P. R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Veres, P. R.; Roberts, J. M.] NOAA Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Veres, P. R.; Roberts, J. M.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. RP Veres, PR (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM patrick.veres@noaa.gov RI Veres, Patrick/E-7441-2010; Roberts, James/A-1082-2009; Manager, CSD Publications/B-2789-2015 OI Veres, Patrick/0000-0001-7539-353X; Roberts, James/0000-0002-8485-8172; NR 48 TC 2 Z9 2 U1 5 U2 14 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2015 VL 8 IS 5 BP 2225 EP 2231 DI 10.5194/amt-8-2225-2015 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CJ2BJ UT WOS:000355288900020 ER PT J AU Brankart, JM Candille, G Garnier, F Calone, C Melet, A Bouttier, PA Brasseur, P Verron, J AF Brankart, J-M Candille, G. Garnier, F. Calone, C. Melet, A. Bouttier, P-A Brasseur, P. Verron, J. TI A generic approach to explicit simulation of uncertainty in the NEMO ocean model SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID ATMOSPHERIC FORCING PARAMETERS; SEQUENTIAL DATA ASSIMILATION; PREDICTION SYSTEMS; CLIMATE PREDICTION; WEATHER; ERROR AB In this paper, a generic implementation approach is presented, with the aim of transforming a deterministic ocean model (like NEMO) into a probabilistic model. With this approach, several kinds of stochastic parameterizations are implemented to simulate the non-deterministic effect of unresolved processes, unresolved scales and unresolved diversity. The method is illustrated with three applications, showing that uncertainties can produce a major effect in the circulation model, in the ecosystem model, and in the sea ice model. These examples show that uncertainties can produce an important effect in the simulations, strongly modifying the dynamical behaviour of these three components of ocean systems. C1 [Brankart, J-M; Candille, G.; Garnier, F.; Calone, C.; Bouttier, P-A; Brasseur, P.; Verron, J.] Univ Grenoble Alpes, CNRS, LGGE, UMR 5183, F-38041 Grenoble, France. [Melet, A.] Princeton Univ, Geophys Fluid Dynam Lab, Princeton, NJ 08544 USA. RP Brankart, JM (reprint author), Univ Grenoble Alpes, CNRS, LGGE, UMR 5183, F-38041 Grenoble, France. EM jean-michel.brankart@lgge.obs.ujf-grenoble.fr FU European Community [283367, 283580]; CNES; GENCI-IDRIS [2014-011279] FX This work has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreements 283367 (MyOcean2) and 283580 (SANGOMA), with additional support from CNES. The calculations were performed using HPC resources from GENCI-IDRIS (grant 2014-011279). NR 31 TC 6 Z9 6 U1 0 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2015 VL 8 IS 5 BP 1285 EP 1297 DI 10.5194/gmd-8-1285-2015 PG 13 WC Geosciences, Multidisciplinary SC Geology GA CJ2BK UT WOS:000355289000002 ER PT J AU Tilmes, S Lamarque, JF Emmons, LK Kinnison, DE Ma, PL Liu, X Ghan, S Bardeen, C Arnold, S Deeter, M Vitt, F Ryerson, T Elkins, JW Moore, F Spackman, JR Martin, MV AF Tilmes, S. Lamarque, J-F Emmons, L. K. Kinnison, D. E. Ma, P-L Liu, X. Ghan, S. Bardeen, C. Arnold, S. Deeter, M. Vitt, F. Ryerson, T. Elkins, J. W. Moore, F. Spackman, J. R. Martin, M. Val TI Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2) SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID ATMOSPHERIC CHEMISTRY; CLIMATE MODEL; GLOBAL BUDGET; OZONE; REPRESENTATION; TRANSPORT; PREINDUSTRIAL; VARIABILITY; LIFETIME; PACIFIC AB The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. The main focus of this paper is to compare the performance of configurations with internally derived "free running" (FR) meteorology and "specified dynamics" (SD) against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We focus on the representation of aerosols and chemistry. All model configurations reproduce tropospheric ozone for most regions based on in situ and satellite observations. However, shortcomings exist in the representation of ozone precursors and aerosols. Tropospheric ozone in all model configurations agrees for the most part with ozonesondes and satellite observations in the tropics and the Northern Hemisphere within the variability of the observations. Southern hemispheric tropospheric ozone is consistently underestimated by up to 25 %. Differences in convection and stratosphere to troposphere exchange processes are mostly responsible for differences in ozone in the different model configurations. Carbon monoxide (CO) and other volatile organic compounds are largely underestimated in Northern Hemisphere mid-latitudes based on satellite and aircraft observations. Nitrogen oxides (NOx) are biased low in the free tropical troposphere, whereas peroxyacetyl nitrate (PAN) is overestimated in particular in high northern latitudes. The present-day methane lifetime estimates are compared among the different model configurations. These range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem and are therefore underestimated compared to observational estimations. We find that differences in tropospheric aerosol surface area between CAM4 and CAM5 play an important role in controlling the burden of the tropical tropospheric hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of NOx from lightning explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss but also by transport and mixing. For future studies, we recommend the use of CAM5-chem configurations, due to improved aerosol description and inclusion of aerosol-cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime. C1 [Tilmes, S.; Lamarque, J-F; Emmons, L. K.; Kinnison, D. E.; Bardeen, C.; Deeter, M.; Vitt, F.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Ma, P-L; Ghan, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Liu, X.] Univ Wyoming, Laramie, WY 82071 USA. [Arnold, S.] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England. [Ryerson, T.; Elkins, J. W.; Moore, F.; Spackman, J. R.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Spackman, J. R.] Sci & Technol Corp, Boulder, CO USA. [Martin, M. Val] Univ Sheffield, Dept Chem & Biol Engn, Sheffield, S Yorkshire, England. RP Tilmes, S (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM tilmes@ucar.edu RI Liu, Xiaohong/E-9304-2011; Ma, Po-Lun/G-7129-2015; Ryerson, Tom/C-9611-2009; Lamarque, Jean-Francois/L-2313-2014; Ghan, Steven/H-4301-2011; Deeter, Merritt/O-6078-2016; Emmons, Louisa/R-8922-2016; Manager, CSD Publications/B-2789-2015; OI Liu, Xiaohong/0000-0002-3994-5955; Ma, Po-Lun/0000-0003-3109-5316; Lamarque, Jean-Francois/0000-0002-4225-5074; Ghan, Steven/0000-0001-8355-8699; Deeter, Merritt/0000-0002-3555-0518; Emmons, Louisa/0000-0003-2325-6212; Arnold, Steve/0000-0002-4881-5685 FU National Science Foundation; Office of Science (BER) of the US Department of Energy; US Department of Energy, Office of Science, Basic Energy Research; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX We thank the HIPPO team for performing reliable aircraft observations used in this study, in particular Steven Wofsy for leading the campaigns, Joshua Schwarz and Anne Perring or providing black carbon observations, and Ru-Shan Gao for providing ozone observations. We also thank Kenneth Aikin for providing airborne observations in a unified and user-friendly format. MERRA data used in this study have been provided by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center through the NASA GES DISC online archive. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the US Department of Energy. The National Center for Atmospheric Research is funded by the National Science Foundation. S. Ghan and P.-L. Ma were supported by the US Department of Energy, Office of Science, Basic Energy Research as part of the Scientific Discoveries through Advanced Computing program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 60 TC 24 Z9 24 U1 4 U2 33 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PY 2015 VL 8 IS 5 BP 1395 EP 1426 DI 10.5194/gmd-8-1395-2015 PG 32 WC Geosciences, Multidisciplinary SC Geology GA CJ2BK UT WOS:000355289000009 ER PT J AU Ford, M Pearsons, TN Murdoch, A AF Ford, Michael Pearsons, Todd N. Murdoch, Andrew TI The Spawning Success of Early Maturing Resident Hatchery Chinook Salmon in a Natural River System SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID ONCORHYNCHUS-TSHAWYTSCHA; COLUMBIA RIVER; OTOLITH MICROCHEMISTRY; MALE MATURATION; LIFE-HISTORIES; YAKIMA RIVER; WILD; POPULATIONS; ORIGIN; WASHINGTON AB Hatchery propagation of spring Chinook Salmon Oncorhynchus tshawytscha has been shown to increase the proportion of males maturing as minijacks (age 2) or microjacks (age 1) relative to those proportions in wild populations. However, little is known about the success of early maturing males when they spawn in the wild. A captive broodstock program for spring Chinook Salmon in the White River (a tributary of the Wenatchee River, Washington) has a high rate of early male maturity. We used genetic parentage analysis to evaluate the spawning success of anadromous males in comparison with inferred early maturing resident, hatchery-origin males that spawned naturally. Based on samples of juvenile offspring (n = 1,007-1,368 fish/year) and a nearly complete sample of the potential anadromous parents, we found that during 2006-2009, 26-45% of the progeny did not have a male parent in the anadromous sample. In contrast, 0-23% of the progeny did not have a female parent represented in the sample. Using grandparentage analysis, we eliminated wild resident fish as a likely source of the unsampled male parents; thus, we concluded that those male parents were most likely early maturing resident fish that had been released from the captive broodstock program. The inferred spawning success of the unsampled resident males was significantly lower than that of the anadromous males. The typical mating pattern was for an anadromous female to produce about two-thirds of her offspring with one or two anadromous males and the remaining one-third with as many as 12 or more apparently resident males. To our knowledge, this is the first study to present evidence of successful reproduction by early maturing resident, hatchery-origin Chinook Salmon in the wild. The conservation implications of this finding are complex and will depend upon the genetic basis of early maturity and its causes in hatchery settings. C1 [Ford, Michael] Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Conservat Biol Div, Seattle, WA 98112 USA. [Pearsons, Todd N.] Grant Cty Publ Util Dist, Ephrata, WA 98823 USA. [Murdoch, Andrew] Washington Dept Fish & Wildlife, Wenatchee, WA 98801 USA. RP Ford, M (reprint author), Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Conservat Biol Div, 2725 Montlake Blvd East, Seattle, WA 98112 USA. EM mike.ford@noaa.gov FU Grant County Public Utility District; Bonneville Power Administration [2003-039] FX Don Larsen, Richard Beamish, and two anonymous reviewers provided valuable comments on an earlier draft of this paper. This work was funded by the Grant County Public Utility District and the Bonneville Power Administration (Project 2003-039). NR 30 TC 2 Z9 2 U1 2 U2 11 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PY 2015 VL 144 IS 3 BP 539 EP 548 DI 10.1080/00028487.2015.1009561 PG 10 WC Fisheries SC Fisheries GA CJ4RC UT WOS:000355472800009 ER PT S AU Creuziger, A Gnaupe-Herod, T AF Creuziger, A. Gnaeupe-Herod, T. BE Skrotzki, W Oertel, CG TI Uncertainty in retained austenite measurements applied to individual crystallographic orientations SO 17TH INTERNATIONAL CONFERENCE ON TEXTURES OF MATERIALS (ICOTOM 17) SE IOP Conference Series-Materials Science and Engineering LA English DT Proceedings Paper CT 17th International Conference on Textures of Materials (ICOTOM) CY AUG 24-29, 2014 CL Dresden, GERMANY SP Dresden Univ Technol, Inst Struct Phys ID STEELS AB A technique to measure the phase volume fraction of an individual orientation and the uncertainty in the measurement is demonstrated in this paper. The technique of complete pole figure averaging using neutron diffraction was used to assess the phase fraction of retained austenite in transformation induced plasticity (TRIP) steels and quantify the uncertainty in the phase fraction. In parallel, an ensemble of orientation distribution functions was calculated to assess crystallographic volume fractions of particular orientations and the uncertainty of these volume fractions using Monte Carlo techniques. These methods were combined to measure the retained austenite phase volume fraction of an individual orientation. C1 [Creuziger, A.] NIST, Div Engn & Mat Sci, Gaithersburg, MD 20899 USA. [Gnaeupe-Herod, T.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Creuziger, A (reprint author), NIST, Div Engn & Mat Sci, Gaithersburg, MD 20899 USA. EM adam.creuziger@nist.gov; tgh@nist.gov NR 10 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1757-8981 J9 IOP CONF SER-MAT SCI PY 2015 VL 82 AR 012066 DI 10.1088/1757-899X/82/1/012066 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA BC7HG UT WOS:000354878500067 ER PT S AU Rukhin, AL Evans, DJ AF Rukhin, A. L. Evans, D. J. BE Pavese, F Bremser, W Chunovkina, A Fischer, N Forbes, AB TI QUANTIFYING UNCERTAINTY IN ACCELEROMETER SENSITIVITY STUDIES SO ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY AND TESTING X SE Series on Advances in Mathematics for Applied Sciences LA English DT Proceedings Paper CT 10th International Conference on Advanced Mathematical and Computational Tools in Metrology and Testing (AMCTM) CY SEP 09-11, 2014 CL St Petersburg, RUSSIA DE Growth curves; heterogeneeous linear models; key comparisons; restricted maximum likelihood; uncertainty evaluation ID METAANALYSIS; PARAMETERS; MODELS AB Key Comparisons of accelerometers sensitivity measurement are performed to compare the sensitivity of linear accelerometers. The key comparison reference value (KCRV) for charge sensitivity as a function of frequency and the accompanying uncertainty are the principal objectives of these studies. In a mixed effects model several methods for evaluation of the vector KCRV and its uncertainty are suggested. A practical remark is that iterated log-scaled frequencies could lead to a better data description than the frequencies themselves. C1 [Rukhin, A. L.; Evans, D. J.] NIST, Gaithersburg, MD 20899 USA. RP Rukhin, AL (reprint author), NIST, Gaithersburg, MD 20899 USA. EM andrew.rukhin@nist.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA PO BOX 128 FARRER RD, SINGAPORE 9128, SINGAPORE SN 1793-0901 BN 978-981-467-861-2 J9 SER ADV MATH APPL SC PY 2015 VL 86 BP 310 EP 319 PG 10 WC Mathematics, Applied SC Mathematics GA BC6UM UT WOS:000354490500038 ER PT S AU Zhang, NF Barnes, BM Silver, RM Zhou, H AF Zhang, Nien Fan Barnes, Bryan M. Silver, Richard M. Zhou, Hui BE Pavese, F Bremser, W Chunovkina, A Fischer, N Forbes, AB TI USE OF A BAYESIAN APPROACH TO IMPROVE UNCERTAINTY OF MODEL-BASED MEASUREMENTS BY HYBRID MULTI-TOOL METROLOGY SO ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY AND TESTING X SE Series on Advances in Mathematics for Applied Sciences LA English DT Proceedings Paper CT 10th International Conference on Advanced Mathematical and Computational Tools in Metrology and Testing (AMCTM) CY SEP 09-11, 2014 CL St Petersburg, RUSSIA DE Covariance matrix; critical dimension measurements; generalized least squares estimator; nonlinear regression; prior information; simulation AB In high resolution critical dimensional metrology, when modeling measurements, a library of curves is usually assembled through the simulation of a multi-dimensional parameter space. A nonlinear regression routine described in this paper is then used to identify an optimum set of parameters that yields the closest experiment-to-theory agreement and generates the model-based measurements for the desired parameters. To improve the model-based measurements, other measurement techniques can also be used to provide a priori information. In this paper, a Bayesian statistical approach is proposed to allow the combination of different measurement techniques that are based on different physical measurements. The effect of this hybrid metrology approach is shown to reduce the uncertainties of the parameter estimators, i.e., the model-based measurements. C1 [Zhang, Nien Fan] NIST, Stat Engn Div, Gaithersburg, MD 20899 USA. [Barnes, Bryan M.; Silver, Richard M.; Zhou, Hui] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA. RP Zhang, NF (reprint author), NIST, Stat Engn Div, Gaithersburg, MD 20899 USA. NR 9 TC 0 Z9 0 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA PO BOX 128 FARRER RD, SINGAPORE 9128, SINGAPORE SN 1793-0901 BN 978-981-467-861-2 J9 SER ADV MATH APPL SC PY 2015 VL 86 BP 409 EP 416 PG 8 WC Mathematics, Applied SC Mathematics GA BC6UM UT WOS:000354490500049 ER PT J AU Vujasinovic, M Ivezic, N Kulvatunyou, B AF Vujasinovic, Marko Ivezic, Nenad Kulvatunyou, Boonserm TI A survey and classification of principles for domain-specific ontology design patterns development SO APPLIED ONTOLOGY LA English DT Article DE Ontology design pattern design; ontology design pattern development; ontology design patterns survey; ontology development; manufacturing service ontology AB Dynamic, networked service-oriented systems, like those found in manufacturing, logistics or transportation, require efficient communication of capabilities of their services to enable on-the-fly integrations as a result of changing requirements. Previously, in a case of a manufacturing services network, we have shown the manufacturing service capability (MSC) information communication can be enhanced by introducing a reference MSC ontology - a formal, OWL DL domain-specific ontology. However, consistent and quality development of reference ontology for a large and evolving domain such as manufacturing is a challenge. Therefore, we propose to utilize the notion of OWL ontology design patterns (ODPs) to develop such reference ontology. However, despite the existence of rich design patterns for information modeling in general, there has been no documentation detailing the principles for development of domain-specific ODPs for domain-specific semantic models. This survey paper fills this void by providing a survey and systematic synthesis of applicable principles for domain-specific ODP development in an investigation of the prior works in data modeling, object-oriented software analysis and ontology modeling design patterns. The paper discusses applicability of the revealed principles in regards to requirements of MSC domain-specific ODPs. Although the paper is concerned with the MSC domain, the findings apply to any domain-specific ODP development. Further research is identified to operationalize principles towards domain-specific ODP development. C1 [Vujasinovic, Marko; Ivezic, Nenad; Kulvatunyou, Boonserm] NIST, Engn Lab, Gaithersburg, MD 20899 USA. RP Vujasinovic, M (reprint author), INNOVA SpA ICT Grp, Tecnopolo Tiburtino,Via Giacomo Peroni 386, I-00131 Rome, Italy. EM m.vujasinovic@innova-eu.net; nenad.ivezic@nist.gov; serm@nist.gov NR 52 TC 1 Z9 1 U1 1 U2 7 PU IOS PRESS PI AMSTERDAM PA NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS SN 1570-5838 EI 1875-8533 J9 APPL ONTOL JI Appl. Ontol. PY 2015 VL 10 IS 1 BP 41 EP 69 DI 10.3233/AO-150140 PG 29 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA CI6LY UT WOS:000354872000005 ER PT J AU Van Parijs, SM AF Van Parijs, Sofie M. TI Letter of Introduction to the Biologically Important Areas Issue SO AQUATIC MAMMALS LA English DT Editorial Material ID BOTTLE-NOSED DOLPHINS; WHALES MEGAPTERA-NOVAEANGLIAE; GULF-OF-MEXICO; EASTERN NORTH PACIFIC; SOUTHEASTERN BERING-SEA; ATLANTIC RIGHT WHALES; NORTHEASTERN CHUKCHI SEA; MAIN HAWAIIAN-ISLANDS; MITOCHONDRIAL-DNA VARIATION; PORPOISE PHOCOENA-PHOCOENA C1 NOAA, Northeast Fisheries Sci Ctr, Silver Spring, MD 20910 USA. RP Van Parijs, SM (reprint author), NOAA, Northeast Fisheries Sci Ctr, Silver Spring, MD 20910 USA. NR 504 TC 1 Z9 1 U1 1 U2 6 PU EUROPEAN ASSOC AQUATIC MAMMALS PI MOLINE PA C/O DR JEANETTE THOMAS, BIOLOGICAL SCIENCES, WESTERN ILLIONIS UNIV-QUAD CITIES, 3561 60TH STREET, MOLINE, IL 61265 USA SN 0167-5427 J9 AQUAT MAMM JI Aquat. Mamm. PY 2015 VL 41 IS 1 SI SI BP 1 EP + DI 10.1578/AM.41.1.2015.1 PG 24 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA CI7IG UT WOS:000354935900001 ER PT J AU Ferguson, MC Curtice, C Harrison, J Van Parijs, SM AF Ferguson, Megan C. Curtice, Corrie Harrison, Jolie Van Parijs, Sofie M. TI Biologically Important Areas for Cetaceans Within US Waters - Overview and Rationale SO AQUATIC MAMMALS LA English DT Article DE anthropogenic activity; anthropogenic sound; CetMap; BIA; distribution; behavior; conservation; management; Arctic; Aleutian Islands; Bering Sea; North Pacific Ocean; Gulf of Alaska; Washington; Oregon; California; Hawaiian Islands; Gulf of Mexico; Northwest Atlantic Ocean AB We outline the rationale and process used by the Cetacean Density and Distribution Mapping (CetMap) Working Group to identify Biologically Important Areas (BIAs) for 24 cetacean species, stocks, or populations in seven regions within U.S. waters. BIAs are reproductive areas, feeding areas, migratory corridors, and areas in which small and resident populations are concentrated. BIAs are region-, species-, and time-specific. Information provided for each BIA includes the following: (1) a written narrative describing the information, assumptions, and logic used to delineate the BIA; (2) a map of the BIA; (3) a list of references used in the assessment; and (4) a metadata table that concisely details the type and quantity of information used to define a BIA, providing transparency in how BIAs were designated in a quick reference table format. BIAs were identified through an expert elicitation process. The delineation of BIAs does not have direct or immediate regulatory consequences. Rather, the BIA assessment is intended to provide the best available science to help inform regulatory and management decisions under existing authorities about some, though not all, important cetacean areas in order to minimize the impacts of anthropogenic activities on cetaceans and to achieve conservation and protection goals. In addition, the BIAs and associated information may be used to identify information gaps and prioritize future research and modeling efforts to better understand cetaceans, their habitat, and ecosystems. C1 [Ferguson, Megan C.] NOAA Fisheries, Alaska Fisheries Sci Ctr, Natl Marine Mammal Lab, Seattle, WA 98115 USA. [Curtice, Corrie] Duke Univ, Marine Geospatial Ecol Lab, Beaufort, NC 28516 USA. [Harrison, Jolie] NOAA Fisheries, Off Protected Resources, Silver Spring, MD 20910 USA. [Van Parijs, Sofie M.] NOAA Fisheries, Northeast Fisheries Sci Ctr, Woods Hole, MA 02543 USA. RP Ferguson, MC (reprint author), NOAA Fisheries, Alaska Fisheries Sci Ctr, Natl Marine Mammal Lab, 7600 Sand Point Way NE F-AKC3, Seattle, WA 98115 USA. EM Megan.Ferguson@noaa.gov NR 0 TC 1 Z9 1 U1 2 U2 3 PU EUROPEAN ASSOC AQUATIC MAMMALS PI MOLINE PA C/O DR JEANETTE THOMAS, BIOLOGICAL SCIENCES, WESTERN ILLIONIS UNIV-QUAD CITIES, 3561 60TH STREET, MOLINE, IL 61265 USA SN 0167-5427 J9 AQUAT MAMM JI Aquat. Mamm. PY 2015 VL 41 IS 1 SI SI BP 2 EP 16 DI 10.1578/AM.41.1.2015.2 PG 15 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA CI7IG UT WOS:000354935900002 ER PT J AU LaBrecque, E Curtice, C Harrison, J Van Parijs, SM Halpin, PN AF LaBrecque, Erin Curtice, Corrie Harrison, Jolie Van Parijs, Sofie M. Halpin, Patrick N. TI Biologically Important Areas for Cetaceans Within US Waters - East Coast Region SO AQUATIC MAMMALS LA English DT Article DE feeding area; migratory corridor; reproductive area; resident population; anthropogenic sound; Northwest Atlantic Ocean; East Coast AB In this review, we merge existing published and unpublished information along with expert judgment to identify and support the delineation of 18 Biologically Important Areas (BIAs) in U.S. waters along the East Coast for minke whales, sei whales, fin whales, North Atlantic right whales, humpback whales, harbor porpoises, and bottle-nose dolphins. BIAs are delineated for feeding areas, reproductive areas, migratory corridors, and small and resident populations to enhance existing information already available to scientists, managers, policymakers, and the public. BIAs ranged in size from approximately 152 to 270,000 km(2). They are intended to provide synthesized information in a transparent format that can be readily used toward the analyses and planning under U.S. statutes that require the characterization and minimization of impacts of anthropogenic activities on marine mammals. BIAs are not intended to represent all important areas for consideration in planning processes; in particular, areas of high marine mammal density, typically identified based on a combination of systematic visual and/or acoustic detections coupled with quantitative modeling, are very important to consider, where available, in any assessment. To maintain their utility, East Coast BIAs should be re-evaluated and revised, if necessary, as new information becomes available. C1 [LaBrecque, Erin; Curtice, Corrie] Duke Univ, Marine Geospatial Ecol Lab, Beaufort, NC 28516 USA. [Harrison, Jolie] Natl Marine Fisheries Serv, Off Protected Resources, Silver Spring, MD 20910 USA. [Van Parijs, Sofie M.] Northeast Fisheries Sci Ctr, Pass Acoust Res Grp, Woods Hole, MA 02543 USA. [Halpin, Patrick N.] Duke Univ, Marine Geospatial Ecol Lab, Durham, NC 27708 USA. RP LaBrecque, E (reprint author), Duke Univ, Marine Geospatial Ecol Lab, Beaufort, NC 28516 USA. EM Erin.LaBrecque@duke.edu NR 0 TC 1 Z9 1 U1 1 U2 10 PU EUROPEAN ASSOC AQUATIC MAMMALS PI MOLINE PA C/O DR JEANETTE THOMAS, BIOLOGICAL SCIENCES, WESTERN ILLIONIS UNIV-QUAD CITIES, 3561 60TH STREET, MOLINE, IL 61265 USA SN 0167-5427 J9 AQUAT MAMM JI Aquat. Mamm. PY 2015 VL 41 IS 1 SI SI BP 17 EP 29 DI 10.1578/AM.41.1.2015.17 PG 13 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA CI7IG UT WOS:000354935900003 ER PT J AU LaBrecque, E Curtice, C Harrison, J Van Parijs, SM Halpin, PN AF LaBrecque, Erin Curtice, Corrie Harrison, Jolie Van Parijs, Sofie M. Halpin, Patrick N. TI Biologically Important Areas for Cetaceans Within US Waters - Gulf of Mexico Region SO AQUATIC MAMMALS LA English DT Article DE resident population; anthropogenic sound; species distribution; Bryde's whale; Balaenoptera edeni; bottlenose dolphin; Tursiops truncatus; Gulf of Mexico AB In this review, we merge existing published and unpublished information along with expert judgment to identify and support the delineation of 12 Biologically Important Areas (BIAs) in U.S. waters of the Gulf of Mexico for Bryde's whales and bottlenose dolphins. BIAs are delineated for small and resident populations to enhance existing information already available to scientists, managers, policymakers, and the public. BIAs ranged in size from approximately 117 to over 23,000 km(2). BIAs are intended to provide synthesized information in a transparent format that can be readily used toward the analyses and planning under U.S. statutes that require the characterization and minimization of impacts of anthropogenic activities on marine mammals. BIAs are not intended to represent all important areas for consideration in planning processes; in particular, areas of high marine mammal density, typically identified based on a combination of systematic visual and/or acoustic detections coupled with quantitative modeling, are very important to consider, where available, in any assessment. To maintain their utility, Gulf of Mexico BIAs should be re-evaluated and revised, if necessary, as new information becomes available. C1 [LaBrecque, Erin; Curtice, Corrie] Duke Univ, Marine Geospatial Ecol Lab, Beaufort, NC 28516 USA. [Harrison, Jolie] Natl Marine Fisheries Serv, Off Protected Resources, Silver Spring, MD 20910 USA. [Van Parijs, Sofie M.] Northeast Fisheries Sci Ctr, Pass Acoust Res Grp, Woods Hole, MA 02543 USA. [Halpin, Patrick N.] Duke Univ, Marine Geospatial Ecol Lab, Durham, NC 27708 USA. RP LaBrecque, E (reprint author), Duke Univ, Marine Geospatial Ecol Lab, Beaufort, NC 28516 USA. EM Erin.LaBrecque@duke.edu NR 0 TC 2 Z9 2 U1 2 U2 10 PU EUROPEAN ASSOC AQUATIC MAMMALS PI MOLINE PA C/O DR JEANETTE THOMAS, BIOLOGICAL SCIENCES, WESTERN ILLIONIS UNIV-QUAD CITIES, 3561 60TH STREET, MOLINE, IL 61265 USA SN 0167-5427 J9 AQUAT MAMM JI Aquat. Mamm. PY 2015 VL 41 IS 1 SI SI BP 30 EP 38 DI 10.1578/AM.41.1.2015.30 PG 9 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA CI7IG UT WOS:000354935900004 ER PT J AU Calambokidis, J Steiger, GH Curtice, C Harrison, J Ferguson, MC Becker, E DeAngelis, M Van Parijs, SM AF Calambokidis, John Steiger, Gretchen H. Curtice, Corrie Harrison, Jolie Ferguson, Megan C. Becker, Elizabeth DeAngelis, Monica Van Parijs, Sofie M. TI Biologically Important Areas for Selected Cetaceans Within US Waters - West Coast Region SO AQUATIC MAMMALS LA English DT Article DE feeding area; migratory corridor; resident population; anthropogenic sound; species distribution; US West Coast; North Pacific Ocean AB In this review, we combine existing published and unpublished information along with expert judgment to identify and support the delineation of 28 Biologically Important Areas (BIAs) in U.S. waters along the West Coast for blue whales, gray whales, humpback whales, and harbor porpoises. BIAs for blue whales and humpback whales are based on high concentration areas of feeding animals observed from small boat surveys, ship surveys, and opportunistic sources. These BIAs compare favorably to broader habitat-based density models. BIAs for gray whales are based on their migratory corridor as they transit between primary feeding areas located in northern latitudes and breeding areas off Mexico. Additional gray whale BIAs are defined for the primary feeding areas of a smaller resident population. Two small and resident population BIAs defined for harbor porpoises located off California encompass the populations' primary areas of use. The size of the individual BIAs ranged from approximately 171 to 138,000 km(2). The BIAs for feeding blue, gray, and humpback whales represent relatively small portions of the overall West Coast area (< 5%) but encompass a large majority (77 to 89%) of the thousands of sightings documented and evaluated for each species. We also evaluate and discuss potential feeding BIAs for fin whales, but none are delineated due to limited or conflicting information. The intent of identifying BIAs is to synthesize existing biological information in a transparent format that is easily accessible to scientists, managers, policymakers, and the public for use during the planning and design phase of anthropogenic activities for which U.S. statutes require the characterization and minimization of impacts on marine mammals. To maintain their utility, West Coast region BIAs should be re-evaluated and revised, if necessary, as new information becomes available. C1 [Calambokidis, John; Steiger, Gretchen H.] Cascadia Res, Olympia, WA 98501 USA. [Curtice, Corrie] Duke Univ, Marine Geospatial Ecol Lab, Beaufort, NC 28516 USA. [Harrison, Jolie] Natl Marine Fisheries Serv, Off Protected Resources, Silver Spring, MD 20910 USA. [Ferguson, Megan C.] NOAA, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98115 USA. [Becker, Elizabeth] SW Fisheries Sci Ctr, Marine Mammal & Turtle Div, Santa Cruz, CA 95060 USA. [DeAngelis, Monica] NOAA Fisheries West Coast Reg, Long Beach, CA 90802 USA. [Van Parijs, Sofie M.] Northeast Fisheries Sci Ctr, Pass Acoust Res Grp, Woods Hole, MA 02543 USA. RP Calambokidis, J (reprint author), Cascadia Res, Olympia, WA 98501 USA. EM Calambokidis@CascadiaResearch.org NR 0 TC 3 Z9 3 U1 1 U2 12 PU EUROPEAN ASSOC AQUATIC MAMMALS PI MOLINE PA C/O DR JEANETTE THOMAS, BIOLOGICAL SCIENCES, WESTERN ILLIONIS UNIV-QUAD CITIES, 3561 60TH STREET, MOLINE, IL 61265 USA SN 0167-5427 J9 AQUAT MAMM JI Aquat. Mamm. PY 2015 VL 41 IS 1 SI SI BP 39 EP 53 DI 10.1578/AM.41.1.2015.39 PG 15 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA CI7IG UT WOS:000354935900005 ER PT J AU Baird, RW Cholewiak, D Webster, DL Schorr, GS Mahaffy, SD Curtice, C Harrison, J Van Parijs, SM AF Baird, Robin W. Cholewiak, Danielle Webster, Daniel L. Schorr, Gregory S. Mahaffy, Sabre D. Curtice, Corrie Harrison, Jolie Van Parijs, Sofie M. TI Biologically Important Areas for Cetaceans Within US Waters - Hawai'i Region SO AQUATIC MAMMALS LA English DT Article DE Hawai'i; reproductive area; resident population; anthropogenic sound; species distribution AB Of the 18 species of odontocetes known to be present in Hawaiian waters, small resident populations of 11 species-dwarf sperm whales, Blainville's beaked whales, Cuvier's beaked whales, pygmy killer whales, short-finned pilot whales, melonheaded whales, false killer whales, pantropical spotted dolphins, spinner dolphins, rough-toothed dolphins, and common bottlenose dolphins-have been identified, based on two or more lines of evidence, including results from small-boat sightings and survey effort, photo-identification, genetic analyses, and satellite tagging. In this review, we merge existing published and unpublished information along with expert judgment for the Hawai` i region of the U.S. Exclusive Economic Zone and territorial waters in order to identify and support the delineation of 20 Biologically Important Areas (BIAs) for these small and resident populations, and one reproductive area for humpback whales. The geographic extent of the BIAs in Hawaiian waters ranged from approximately 700 to 23,500 km(2). BIA designation enhances existing information already available to scientists, managers, policymakers, and the public. They are intended to provide synthesized information in a transparent format that can be readily used toward analyses and planning under U. S. statutes that require the characterization and minimization of impacts of anthropogenic activities on marine mammals. Odontocete BIAs in Hawai'i are biased toward the main Hawaiian Islands and populations off the island of Hawai'i, reflecting a much greater level of research effort and thus certainty regarding the existence and range of small resident populations off that island. Emerging evidence of similar small resident populations off other island areas in Hawaiian waters suggest that further BIA designations may be necessary as more detailed information becomes available. C1 [Baird, Robin W.; Webster, Daniel L.; Schorr, Gregory S.; Mahaffy, Sabre D.] Cascadia Res Collect, Olympia, WA 98501 USA. [Cholewiak, Danielle; Van Parijs, Sofie M.] Northeast Fisheries Sci Ctr, Pass Acoust Res Grp, Woods Hole, MA 02543 USA. [Curtice, Corrie] Duke Univ, Marine Geospatial Ecol Lab, Beaufort, NC 28516 USA. [Harrison, Jolie] Natl Marine Fisheries Serv, Off Protected Resources, Silver Spring, MD 20910 USA. RP Baird, RW (reprint author), Cascadia Res Collect, 218 1-2 W 4th Ave, Olympia, WA 98501 USA. EM rwbaird@cascadiaresearch.org NR 0 TC 0 Z9 0 U1 8 U2 16 PU EUROPEAN ASSOC AQUATIC MAMMALS PI MOLINE PA C/O DR JEANETTE THOMAS, BIOLOGICAL SCIENCES, WESTERN ILLIONIS UNIV-QUAD CITIES, 3561 60TH STREET, MOLINE, IL 61265 USA SN 0167-5427 J9 AQUAT MAMM JI Aquat. Mamm. PY 2015 VL 41 IS 1 SI SI BP 54 EP 64 DI 10.1578/AM.41.1.2015.54 PG 11 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA CI7IG UT WOS:000354935900006 ER PT J AU Ferguson, MC Curtice, C Harrison, J AF Ferguson, Megan C. Curtice, Corrie Harrison, Jolie TI Biologically Important Areas for Cetaceans Within US Waters - Gulf of Alaska Region SO AQUATIC MAMMALS LA English DT Article DE Gulf of Alaska; Alaska; feeding area; migratory corridor; small and resident population; fin whale; Balaenoptera physalus; gray whale; Eschrichtius robustus; North Pacific right whale; Eubalaena japonica; humpback whale; Megaptera novaeangliae; beluga; Delphinapterus leucas AB We integrated existing published and unpublished information to delineate Biologically Important Areas (BIAs) for fin, gray, North Pacific right, and humpback whales, and belugas in U.S. waters of the Gulf of Alaska. BIAs are delineated for feeding, migratory corridors, and small and resident populations. Supporting evidence for these BIAs came from aerial-, land-, and vessel-based surveys; satellite-tagging data; passive acoustic monitoring; traditional ecological knowledge; photo-and genetic-identification data; whaling data, including catch and sighting locations and stomach contents; prey studies; and anecdotal information from fishermen. The geographic extent of the BIAs in this region ranged from approximately 900 to 177,000 km(2). Information gaps identified during this assessment include (1) reproductive areas for fin, gray, and North Pacific right whales; (2) detailed information on the migration routes of all species; (3) detailed information on the migratory timing of all species except humpback whales; and (4) cetacean distribution, density, and behavior in U.S. Gulf of Alaska waters off the continental shelf. To maintain their utility, these BIAs should be re-evaluated and revised, if necessary, as new information becomes available. C1 [Ferguson, Megan C.] NOAA Fisheries, Cetacean Assessment & Ecol Program, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. [Curtice, Corrie] Duke Univ, Marine Geospatial Ecol Lab, Beaufort, NC 28516 USA. [Harrison, Jolie] NOAA, Fisheries Off Protected Resources, Silver Spring, MD 20910 USA. RP Ferguson, MC (reprint author), NOAA Fisheries, Cetacean Assessment & Ecol Program, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. EM megan.ferguson@noaa.gov NR 0 TC 2 Z9 2 U1 6 U2 13 PU EUROPEAN ASSOC AQUATIC MAMMALS PI MOLINE PA C/O DR JEANETTE THOMAS, BIOLOGICAL SCIENCES, WESTERN ILLIONIS UNIV-QUAD CITIES, 3561 60TH STREET, MOLINE, IL 61265 USA SN 0167-5427 J9 AQUAT MAMM JI Aquat. Mamm. PY 2015 VL 41 IS 1 SI SI BP 65 EP 78 DI 10.1578/AM.41.1.2015.65 PG 14 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA CI7IG UT WOS:000354935900007 ER PT J AU Ferguson, MC Waite, JM Curtice, C Clarke, JT Harrison, J AF Ferguson, Megan C. Waite, Janice M. Curtice, Corrie Clarke, Janet T. Harrison, Jolie TI Biologically Important Areas for Cetaceans Within US Waters - Aleutian Islands and Bering Sea Region SO AQUATIC MAMMALS LA English DT Article DE Aleutian Islands; Bering Sea; Alaska; feeding area; migratory corridor; small and resident population; bowhead whale; Balaena mysticetus; fin whale; Balaenoptera physalus; gray whale; Eschrichtius robustus; North Pacific right whale; Eubalaena japonica; humpback whale; Megaptera novaeangliae; beluga; Delphinapterus leucas AB We integrated existing published and unpublished information to delineate Biologically Important Areas (BIAs) for bowhead, fin, gray, North Pacific right, and humpback whales and belugas in U.S. waters of the Aleutian Islands and Bering Sea. Supporting evidence for these BIAs came from aerial-, land-, and vessel-based surveys; satellite-tagging data; passive acoustic monitoring; traditional ecological knowledge; photo-and genetic-identification data; and whaling data, including catch and sighting locations and stomach contents. The geographic extent of the BIAs in this region ranged from approximately 1,200 to 373,000 km(2). Information gaps identified during this assessment include (1) reproductive areas for all species; (2) detailed information on the migration routes and timing of all species; and (3) cetacean distribution, density, and behavior in U.S. Bering Sea waters off the continental shelf. To maintain their utility, these BIAs should be re-evaluated and revised, if necessary, as new information becomes available. C1 [Ferguson, Megan C.; Waite, Janice M.] NOAA Fisheries, Cetacean Assessment & Ecol Program, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. [Curtice, Corrie] Duke Univ, Marine Geospatial Ecol Lab, Beaufort, NC 28516 USA. [Clarke, Janet T.] Leidos, Arlington, VA 22203 USA. [Harrison, Jolie] NOAA Fisheries, Off Protected Resources, Silver Spring, MD 20910 USA. RP Ferguson, MC (reprint author), NOAA Fisheries, Cetacean Assessment & Ecol Program, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. EM megan.ferguson@noaa.gov NR 0 TC 3 Z9 3 U1 4 U2 10 PU EUROPEAN ASSOC AQUATIC MAMMALS PI MOLINE PA C/O DR JEANETTE THOMAS, BIOLOGICAL SCIENCES, WESTERN ILLIONIS UNIV-QUAD CITIES, 3561 60TH STREET, MOLINE, IL 61265 USA SN 0167-5427 J9 AQUAT MAMM JI Aquat. Mamm. PY 2015 VL 41 IS 1 SI SI BP 79 EP 93 DI 10.1578/AM.41.1.2015.79 PG 15 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA CI7IG UT WOS:000354935900008 ER PT J AU Clarke, JT Ferguson, MC Curtice, C Harrison, J AF Clarke, Janet T. Ferguson, Megan C. Curtice, Corrie Harrison, Jolie TI Biologically Important Areas for Cetaceans Within US Waters - Arctic Region SO AQUATIC MAMMALS LA English DT Article DE feeding area; migratory corridor; reproductive area; bowhead whale; Balaena mysticetus; beluga; Delphinapterus leucas; gray whale; Eschrichtius robustus; Arctic; anthropogenic sound; species distribution AB In this assessment, we combined published and unpublished information to identify 16 Biologically Important Areas (BIAs) for bowhead whales, gray whales, and belugas in the U.S. Arctic. BIAs for bowhead whales and belugas were based on high-density areas used recurrently for reproduction, feeding, and migration, documented by visual surveys (aerial-, vessel-, and ice-based), bioacoustic monitoring, and satellite telemetry. BIAs for gray whales were based on high-density areas used recurrently for reproduction and feeding, documented primarily by aerial and vessel surveys. The geographic extent of the BIAs in the Arctic region ranged from approximately 1,500 to 135,000 km(2). Information gaps identified during the Arctic BIA assessment process include (1) bowhead whale use of the western Beaufort Sea in summer (e.g., feeding, migration timing, movement rates); (2) the existence or extent of a bowhead whale fall migratory corridor in the Chukchi Sea; (3) the extent and nature of beluga use of outer continental shelf and slope habitat in the Beaufort Sea; (4) the existence or location of gray whale migratory corridors in spring and fall; (5) the degree to which gray whales move between known feeding hotspots; and (6) the distribution, density, and activities of fin, humpback, minke, and killer whales and harbor porpoises in this region. To maintain their utility, the Arctic BIAs should be re-evaluated and revised, if necessary, as new information becomes available. C1 [Clarke, Janet T.] Leidos, Arlington, VA 22203 USA. [Ferguson, Megan C.] NOAA, Cetacean Assessment & Ecol Program, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. [Curtice, Corrie] Duke Univ, Marine Geospatial Ecol Lab, Beaufort, NC 28516 USA. [Harrison, Jolie] NOAA Fisheries, Off Protected Resources, Silver Spring, MD 20910 USA. RP Clarke, JT (reprint author), Leidos, 4001 N Fairfax Dr, Arlington, VA 22203 USA. EM janet.clarke@leidos.com NR 0 TC 3 Z9 3 U1 4 U2 22 PU EUROPEAN ASSOC AQUATIC MAMMALS PI MOLINE PA C/O DR JEANETTE THOMAS, BIOLOGICAL SCIENCES, WESTERN ILLIONIS UNIV-QUAD CITIES, 3561 60TH STREET, MOLINE, IL 61265 USA SN 0167-5427 J9 AQUAT MAMM JI Aquat. Mamm. PY 2015 VL 41 IS 1 SI SI BP 94 EP 103 DI 10.1578/AM.41.1.2015.94 PG 10 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA CI7IG UT WOS:000354935900009 ER PT J AU Song, CL Ling, YJ Feng, YL Zhou, W Yildirim, T He, YB AF Song, Chengling Ling, Yajing Feng, Yunlong Zhou, Wei Yildirim, Taner He, Yabing TI A NbO-type metal-organic framework exhibiting high deliverable capacity for methane storage SO CHEMICAL COMMUNICATIONS LA English DT Article ID ROOM-TEMPERATURE; WORKING CAPACITY; CH4 STORAGE; SITES; CAGES AB A copper-based NbO-type metal-organic framework ZJNU-50 constructed from a tetracarboxylate incorporating phenylethyne as a spacer exhibited an exceptionally high methane working capacity of 184 cm(3) (STP) cm(-3) for methane storage. The value is among the highest reported for MOF materials. C1 [Song, Chengling; Ling, Yajing; Feng, Yunlong; He, Yabing] Zhejiang Normal Univ, Coll Chem & Life Sci, Jinhua 321004, Peoples R China. [Zhou, Wei; Yildirim, Taner] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Zhou, Wei] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Yildirim, Taner] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RP He, YB (reprint author), Zhejiang Normal Univ, Coll Chem & Life Sci, Jinhua 321004, Peoples R China. EM heyabing@zjnu.cn RI Zhou, Wei/C-6504-2008; He, Yabing/H-3314-2012; yildirim, taner/A-1290-2009 OI Zhou, Wei/0000-0002-5461-3617; FU National Natural Science Foundation of China [21301156]; Open Research Fund of Top Key Discipline of Chemistry in Zhejiang Provincial Colleges; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials [ZJHX201313] FX This work was supported by the National Natural Science Foundation of China (No. 21301156), and Open Research Fund of Top Key Discipline of Chemistry in Zhejiang Provincial Colleges and Key Laboratory of the Ministry of Education for Advanced Catalysis Materials (ZJHX201313). NR 23 TC 23 Z9 23 U1 12 U2 46 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2015 VL 51 IS 40 BP 8508 EP 8511 DI 10.1039/c5cc01055a PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CH4ZL UT WOS:000354043200028 PM 25892102 ER PT J AU Salameh, T Sauvage, S Afif, C Borbon, A Leonardis, T Brioude, J Waked, A Locoge, N AF Salameh, Therese Sauvage, Stephane Afif, Charbel Borbon, Agnes Leonardis, Thierry Brioude, Jerome Waked, Antoine Locoge, Nadine TI Exploring the seasonal NMHC distribution in an urban area of the Middle East during ECOCEM campaigns: very high loadings dominated by local emissions and dynamics SO ENVIRONMENTAL CHEMISTRY LA English DT Article DE C-2-C-16 NMHCs; gasoline evaporation; vehicle exhaust; VOC urban emissions ID VOLATILE ORGANIC-COMPOUNDS; AIR-POLLUTION SOURCES; HYDROCARBONS; ATMOSPHERE; VARIABILITY; LEBANON; OZONE; PARIS AB Environmental context Non-methane hydrocarbons play an important role in the formation of photochemical oxidants such as ozone. We investigate factors controlling the distribution of non-methane hydrocarbons in an urban area of the Middle East. The study highlights the importance of local emissions and atmospheric dynamics, and the limited effect of photochemistry at the measurement site. Abstract Measurements of over 70 C-2-C-16 non-methane hydrocarbons (NMHCs) were conducted in suburban Beirut (1.3 million inhabitants) in summer 2011 and winter 2012 during the Emission and Chemistry of Organic Carbon in the East Mediterranean (ECOCEM) field campaign. The levels of NMHCs observed exceeded by a factor of two in total volume the levels found in northern mid-latitude megacities (Paris and Los Angeles), especially for the unburned fossil fuel fraction. Regardless of the season, the major compounds, explaining 50% of the concentrations, were toluene, isopentane, butane, m,p-xylenes, propane and ethylene, emitted by mobile traffic and gasoline evaporation sources. Most NMHCs show a distinct seasonal cycle, with a summer maximum and a winter minimum, unlike seasonal cycles usually observed in the northern mid-latitude urban areas. We show that NMHC distribution is mainly driven by strong local emissions and local atmospheric dynamics, with no clear evidence of photochemical removal in summer or influence from long-range transport. C1 [Salameh, Therese; Sauvage, Stephane; Leonardis, Thierry; Locoge, Nadine] SAGE, Mines Douai, F-59508 Douai, France. [Salameh, Therese; Afif, Charbel; Waked, Antoine] St Joseph Univ, Fac Sci, Ctr Anal & Rech, Unit Environm Genom Fonct & Etud Math, Beirut, Lebanon. [Borbon, Agnes] Univ Paris Est Creteil UPEC, LISA, IPSL, CNRS,UMR, F-94000 Creteil, France. [Borbon, Agnes] Paris Diderot UPD, F-94000 Creteil, France. [Brioude, Jerome] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Brioude, Jerome] NOAA, Earth Syst Res Lab ESRL, Boulder, CO 80305 USA. RP Salameh, T (reprint author), UPEC, LISA, IPSL, CNRS,UMR 7583, 61 Ave Gen Gaulle, F-94000 Creteil, France. EM therese.salameh@lisa.u-pec.fr RI Brioude, Jerome/E-4629-2011; Manager, CSD Publications/B-2789-2015 FU Mines Douai Institution; Lebanese National Council for Scientific Research; Saint Joseph University (Faculty of Sciences and the Research Council); CEDRE (Cooperation pour l'Evaluation et le Developpement de la Recherche); PICS (Programme Interorganismes de Cooperation Scientifique du CNRS) [5630] FX Funding for this study was obtained from Mines Douai Institution, the Lebanese National Council for Scientific Research, Saint Joseph University (Faculty of Sciences and the Research Council), CEDRE (Cooperation pour l'Evaluation et le Developpement de la Recherche) and PICS project number 5630 (Programme Interorganismes de Cooperation Scientifique du CNRS). The authors acknowledge AIRPARIF for the use of NMHC data in Paris. J. Gilman, J. A. de Gouw and B. Kuster are kindly acknowledged for providing the NMHC data for Los Angeles. NR 38 TC 2 Z9 2 U1 2 U2 13 PU CSIRO PUBLISHING PI CLAYTON PA UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA SN 1448-2517 EI 1449-8979 J9 ENVIRON CHEM JI Environ. Chem. PY 2015 VL 12 IS 3 BP 316 EP 328 DI 10.1071/EN14154 PG 13 WC Chemistry, Analytical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA CI7SC UT WOS:000354963800008 ER PT S AU Inoue, S Shiobara, E Sasami, T Isamu Takagi Kikuchi, Y Fujimori, T Minegishi, S Berg, R Lucatorto, T Hill, S Tarrio, C Pollentier, I Lin, YC Fan, YJ Ashworth, D AF Inoue, Soichi Shiobara, Eishi Sasami, Takeshi Isamu Takagi Kikuchi, Yukiko Fujimori, Toru Minegishi, Shinya Berg, Robert Lucatorto, Thomas Hill, Shanonn Tarrio, Charles Pollentier, Ivan Lin, Yen-Chih Fan, Yu-Jen Ashworth, Dominic BE Wood, OR Panning, EM TI Collaborative Work on Reducing the Intersite Gaps in Outgassing Qualification SO EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Extreme Ultraviolet (EUV) Lithography VI CY FEB 23-26, 2015 CL San Jose, CA SP SPIE, DNS Elect LLC DE EUV; lithography; resist; outgas; contamination AB This paper reports on an all-out effort to reduce the intersite gap of the resist outgassing contamination growth in the results obtained under the round-robin scheme. All test sites collaborated to determine the causes of such gaps. First, it was determined that wafer temperature during exposure could impact the amount of contamination growth. We discovered a huge intersite gap of wafer temperatures among the sites by using a wafer-shaped remote thermometer with wireless transmitting capability. Second, whether the contamination-limited regime was attained during testing could have been another primary root cause for such a difference. We found that for one of the model resists whose protecting unit had lower activation energy and molecular weight the contamination-limited regime was insufficient at one test site. Third, the ratio of the exposed area to pumping speed is necessary to equalize contamination growth. We validated the effect of matching the ratio of exposure area to pumping speed on reducing the intersite gap. This study and the protocols put in place should reduce the intersite gap dramatically. C1 [Inoue, Soichi; Shiobara, Eishi; Sasami, Takeshi; Isamu; Takagi; Kikuchi, Yukiko; Fujimori, Toru; Minegishi, Shinya] EUVL Infrastruct Dev Ctr Inc, EIDEC, Tsukuba, Ibaraki 3058569, Japan. [Berg, Robert; Lucatorto, Thomas; Hill, Shanonn; Tarrio, Charles] NIST, Gaithersburg, MD 20899 USA. [Pollentier, Ivan; Lin, Yen-Chih] Imec, B-3001 Leuven, Belgium. [Fan, Yu-Jen; Ashworth, Dominic] SEMATECH, Albany, NY 12203 USA. RP Inoue, S (reprint author), EUVL Infrastruct Dev Ctr Inc, EIDEC, 16-1 Onogawa, Tsukuba, Ibaraki 3058569, Japan. NR 9 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-524-7 J9 PROC SPIE PY 2015 VL 9422 AR 942212 DI 10.1117/12.2085700 PG 10 WC Optics; Physics, Applied SC Optics; Physics GA BC6YJ UT WOS:000354599900035 ER PT S AU Kriese, M Platonov, Y Rodriguez, J Fournier, G Grantham, S Tarrio, C Curry, J Hill, S Lucatorto, T AF Kriese, Michael Platonov, Yuriy Rodriguez, Jim Fournier, Gary Grantham, Steven Tarrio, Charles Curry, John Hill, Shannon Lucatorto, Thomas BE Wood, OR Panning, EM TI Development and evaluation of interface-stabilized and reactive-sputtered oxide-capped multilayers for EUV lithography SO EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY VI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Extreme Ultraviolet (EUV) Lithography VI CY FEB 23-26, 2015 CL San Jose, CA SP SPIE, DNS Elect LLC DE magnetron sputtering; reactive oxide cap layer; interface; barrier layer; reflectivity; exposure testing ID MO/SI MULTILAYERS; BARRIER LAYERS AB A critical component of high-performance EUV lithography source optics is the reflecting multilayer coating. The ideal multilayer will have both high reflectance and high stability to thermal load. Additionally the capping layers must provide resistance to degradations from exposure to an EUV source, and also be compatible with, or enhance, the systems used for cleaning an exposed multilayer coating. We will report on the results of development of C and B4C stabilized Mo/Si multilayers used to increase the as-deposited peak reflectivity (Rp) as well as decreasing the loss of peak reflectivity (Rp) as a function of annealing temperature. Previous results demonstrate that these layers prevent loss of Rp for temperatures up to 600 degrees C. Results on the use of reactively-sputtered oxide capping layers such as SiO2 and ZrO2 will be presented as well, along with results of exposure testing. The deposition is performed in a dual process-chamber inline magnetron system, using reactive sputtering for the production of capping layers. The reflectometer and exposure apparatus at the NIST Physics Laboratory is used for evaluation of the performance. Exposure results on the resistance to oxidation in the presence of water vapor will be presented and discussed. C1 [Kriese, Michael; Platonov, Yuriy; Rodriguez, Jim; Fournier, Gary] Rigaku Innovat Technol, Auburn Hills, MI 48326 USA. [Grantham, Steven; Tarrio, Charles; Curry, John; Hill, Shannon; Lucatorto, Thomas] NIST, Gaithersburg, MD 20899 USA. RP Kriese, M (reprint author), Rigaku Innovat Technol, 1900 Taylor Rd, Auburn Hills, MI 48326 USA. NR 11 TC 2 Z9 2 U1 2 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-524-7 J9 PROC SPIE PY 2015 VL 9422 AR 94220K DI 10.1117/12.2085934 PG 11 WC Optics; Physics, Applied SC Optics; Physics GA BC6YJ UT WOS:000354599900017 ER PT J AU Zhang, JY Yang, LL Hanzo, L Gharavi, H AF Zhang, Jiayi Yang, Lie-Liang Hanzo, Lajos Gharavi, Hamid TI Advances in Cooperative Single-Carrier FDMA Communications: Beyond LTE-Advanced SO IEEE COMMUNICATIONS SURVEYS AND TUTORIALS LA English DT Article DE Cooperative communications; diversity; dynamic resource allocation; frequency-domain equalization; LTE-Advanced; MIMO; opportunistic relaying; SC-FDMA ID FREQUENCY-DOMAIN EQUALIZATION; DIVISION MULTIPLE-ACCESS; AMPLIFY-AND-FORWARD; ITERATIVE MULTIUSER DETECTION; BAND WIRELESS SYSTEMS; AVERAGE-POWER RATIO; CROSS-LAYER OPTIMIZATION; TIME BLOCK-CODES; SELECTIVE FADING CHANNELS; RADIO RESOURCE-MANAGEMENT AB In this paper, we focus our attention on the cooperative uplink transmissions of systems beyond the LTE-Advanced initiative. We commence a unified treatment of the principle of single-carrier frequency-division multiple-access (FDMA) and the similarities and dissimilarities, advantages, and weakness of the localized FDMA, the interleaved FDMA, and the orthogonal FDMA systems are compared. Furthermore, the philosophy of both user cooperation and cooperative single-carrier FDMA is reviewed. They are investigated in the context of diverse topologies, transmission modes, resource allocation, and signal processing techniques applied at the relays. Benefits of relaying in LTE-Advanced are also reviewed. Our discussions demonstrate that these advanced techniques optimally exploit the resources in the context of cooperative single-carrier FDMA system, which is a promising enabler for various uplink transmission scenarios. C1 [Zhang, Jiayi; Yang, Lie-Liang; Hanzo, Lajos] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England. [Zhang, Jiayi; Gharavi, Hamid] NIST, Informat Technol Lab, Gaithersburg, MD 20899 USA. RP Zhang, JY (reprint author), NIST, Informat Technol Lab, Gaithersburg, MD 20899 USA. EM jiayi.zhang@nist.gov; lly@ecs.soton.ac.uk; lh@ecs.soton.ac.uk; hamid.gharavi@nist.gov RI Hanzo, Lajos/S-4875-2016 OI Hanzo, Lajos/0000-0002-2636-5214 FU Engineering and Physical Sciences Research Council under the India-U.K. Advanced Technology Centre; EU under the Concert Project; ERC FX This work was supported in part by the Engineering and Physical Sciences Research Council under the India-U.K. Advanced Technology Centre, by the EU under the Concert Project, and by the ERC's Advanced Fellow Grant. NR 275 TC 7 Z9 8 U1 6 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1553-877X J9 IEEE COMMUN SURV TUT JI IEEE Commun. Surv. Tutor. PY 2015 VL 17 IS 2 BP 730 EP 756 DI 10.1109/COMST.2014.2364184 PG 27 WC Computer Science, Information Systems; Telecommunications SC Computer Science; Telecommunications GA CI6HR UT WOS:000354860000010 ER PT S AU Ballachey, BE Bodkin, JL Esler, D Rice, SD AF Ballachey, Brenda E. Bodkin, James L. Esler, Daniel Rice, Stanley D. BE Alford, JB Peterson, MS Green, CC TI Lessons from the 1989 Exxon Valdez Oil Spill: A Biological Perspective SO IMPACTS OF OIL SPILL DISASTERS ON MARINE HABITATS AND FISHERIES IN NORTH AMERICA SE CRC Marine Biology Series LA English DT Article; Book Chapter ID PRINCE-WILLIAM-SOUND; SALMON ONCORHYNCHUS-GORBUSCHA; WHALES ORCINUS-ORCA; LONG-TERM PERSISTENCE; PINK SALMON; SEA OTTERS; CRUDE-OIL; HARLEQUIN DUCKS; JUVENILE PINK; CYTOCHROME-P4501A INDUCTION C1 [Ballachey, Brenda E.; Bodkin, James L.; Esler, Daniel] US Geol Survey, Alaska Sci Ctr, Anchorage, AK 99508 USA. [Rice, Stanley D.] Natl Marine Fisheries Serv, Auke Bay Lab, Juneau, AK USA. RP Ballachey, BE (reprint author), US Geol Survey, Alaska Sci Ctr, Anchorage, AK 99508 USA. NR 105 TC 3 Z9 3 U1 4 U2 18 PU CRC PRESS-TAYLOR & FRANCIS GROUP PI BOCA RATON PA 6000 BROKEN SOUND PARKWAY NW, STE 300, BOCA RATON, FL 33487-2742 USA SN 2154-7769 BN 978-1-4665-5721-5; 978-1-4665-5720-8 J9 CRC MAR BIOL SER JI CRC Mar. Biol. Ser. PY 2015 BP 181 EP 197 PG 17 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA BC7CH UT WOS:000354736900010 ER PT S AU Henn, MA Silver, RM Villarrubia, JS Zhang, NF Zhou, H Barnes, BM Ming, B Vladar, AE AF Henn, Mark-Alexander Silver, Richard M. Villarrubia, John S. Zhang, Nien Fan Zhou, Hui Barnes, Bryan M. Ming, Bin Vladar, Andras E. BE Cain, JP Sanchez, MI TI Optimizing Hybrid Metrology: Rigorous Implementation of Bayesian and Combined Regression SO METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXIX SE Proceedings of SPIE LA English DT Proceedings Paper CT 29th Conference on Metrology, Inspection, and Process Control for Microlithography CY FEB 23-26, 2015 CL San Jose, CA SP SPIE, NOVA Ltd DE hybrid metrology; electromagnetic simulation; sensitivity and uncertainty evaluation; Bayesian data analysis AB Hybrid metrology, e.g. the combination of several measurement techniques to determine critical dimensions, is an important approach to meet the needs of semiconductor industry. A proper use of hybrid metrology may not only yield more reliable estimates for the quantitative characterization of 3-D structures but also a more realistic estimation of the corresponding uncertainties. Recent developments at the National Institute of Standards and Technology (NIST) feature the combination of optical critical dimension (OCD) measurements and scanning electron microscope (SEM) results. The hybrid methodology offers the potential to make measurements of essential 3-D attributes that may not be otherwise feasible. However, combining techniques gives rise to essential challenges in error analysis and comparing results from different instrument models, especially the effect of systematic and highly correlated errors in the measurement on the chi(2) function that is minimized. Both hypothetical examples and measurement data are used to illustrate solutions to these challenges. C1 [Henn, Mark-Alexander; Silver, Richard M.; Villarrubia, John S.; Zhou, Hui; Barnes, Bryan M.; Ming, Bin; Vladar, Andras E.] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA. [Zhang, Nien Fan] NIST, Stat Engn Div, Gaithersburg, MD 20899 USA. RP Henn, MA (reprint author), NIST, Semicond & Dimens Metrol Div, 100 Bur Dr MS 8212, Gaithersburg, MD 20899 USA. EM mark.henn@nist.gov NR 14 TC 2 Z9 2 U1 0 U2 4 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-526-1 J9 PROC SPIE PY 2015 VL 9424 AR 94241J DI 10.1117/12.2175653 PG 10 WC Optics; Physics, Applied; Imaging Science & Photographic Technology SC Optics; Physics; Imaging Science & Photographic Technology GA BC6OK UT WOS:000354250200052 ER PT S AU Hoogeboom-Pot, K Hernandez-Charpak, J Frazer, T Gu, XK Turgut, E Anderson, E Chao, WL Shaw, J Yang, RG Murnane, M Kapteyn, H Nardi, D AF Hoogeboom-Pot, Kathleen Hernandez-Charpak, Jorge Frazer, Travis Gu, Xiaokun Turgut, Emrah Anderson, Erik Chao, Weilun Shaw, Justin Yang, Ronggui Murnane, Margaret Kapteyn, Henry Nardi, Damiano BE Cain, JP Sanchez, MI TI Mechanical and thermal properties of nanomaterials at sub-50nm dimensions characterized using coherent EUV beams SO METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXIX SE Proceedings of SPIE LA English DT Proceedings Paper CT 29th Conference on Metrology, Inspection, and Process Control for Microlithography CY FEB 23-26, 2015 CL San Jose, CA SP SPIE, NOVA Ltd DE Ultrafast X-Rays; nanometrology; nano-mechanical properties; ultrathin films; nondiffusive thermal transport; mean free path spectroscopy; photoacoustic; photothermal ID FILMS; SCATTERING AB Coherent extreme ultraviolet beams from tabletop high harmonic generation offer several revolutionary capabilities for observing nanoscale systems on their intrinsic length and time scales. By launching and monitoring hypersonic acoustic waves in such systems, we characterize the mechanical properties of sub-10nm layers and find that the material densities remain close to their bulk values while their elastic properties are significantly modified. Moreover, within the same measurement, by following the heat dissipation dynamics from 30-750nm-wide nanowires, we uncover a new thermal transport regime in which closely-spaced nanoscale heat sources can surprisingly cool more efficiently than widely-spaced heat sources of the same size. C1 [Hoogeboom-Pot, Kathleen; Hernandez-Charpak, Jorge; Frazer, Travis; Turgut, Emrah; Murnane, Margaret; Kapteyn, Henry; Nardi, Damiano] Univ Colorado, JILA, Boulder, CO 80309 USA. [Hoogeboom-Pot, Kathleen; Hernandez-Charpak, Jorge; Frazer, Travis; Turgut, Emrah; Murnane, Margaret; Kapteyn, Henry; Nardi, Damiano] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hoogeboom-Pot, Kathleen; Hernandez-Charpak, Jorge; Frazer, Travis; Turgut, Emrah; Murnane, Margaret; Kapteyn, Henry; Nardi, Damiano] NIST, Boulder, CO 80309 USA. [Gu, Xiaokun; Yang, Ronggui] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Anderson, Erik; Chao, Weilun] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Shaw, Justin] NIST, Electromagnet Div, Boulder, CO 80305 USA. RP Hoogeboom-Pot, K (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. EM hoogeboo@jila.colorado.edu RI Yang, Ronggui/H-1278-2011; Gu, Xiaokun/H-4069-2011; Shaw, Justin/C-1845-2008 OI Gu, Xiaokun/0000-0003-3803-3951; Shaw, Justin/0000-0003-2027-1521 NR 28 TC 2 Z9 2 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-526-1 J9 PROC SPIE PY 2015 VL 9424 AR 942417 DI 10.1117/12.2085615 PG 8 WC Optics; Physics, Applied; Imaging Science & Photographic Technology SC Optics; Physics; Imaging Science & Photographic Technology GA BC6OK UT WOS:000354250200040 ER PT S AU Hung, PY O'Loughlin, TE Lewis, A Dechter, R Samayoa, M Banerjee, S Wood, EL Walker, ARH AF Hung, P. Y. O'Loughlin, Thomas E. Lewis, Aaron Dechter, Rimma Samayoa, Martin Banerjee, Sarbajit Wood, Erin L. Walker, Angela R. Hight BE Cain, JP Sanchez, MI TI Potential Application of Tip-Enhanced Raman Spectroscopy (TERS) in Semiconductor Manufacturing SO METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXIX SE Proceedings of SPIE LA English DT Proceedings Paper CT 29th Conference on Metrology, Inspection, and Process Control for Microlithography CY FEB 23-26, 2015 CL San Jose, CA SP SPIE, NOVA Ltd DE Tip enhanced Raman spectroscopy; TERS; defect metrology; strained Si AB Tip-enhanced Raman spectroscopy (TERS), with nanometer spatial resolution, has the capability to monitor chemical composition, strain, and activated dopants and is a promising metrology tool to aid the semiconductor R&D processes. This paper addresses the major challenges which limit the application of TERS from routine measurement: the lack of comparability, reproducibility, calibration, and standardization. To address these issues, we have developed a robust test structure and the ability to generate high-quality tips using a high volume manufacturing (HVM) approach. The qualifying data will be presented. C1 [Hung, P. Y.; Samayoa, Martin] SEMATECH, Albany, NY 12203 USA. [O'Loughlin, Thomas E.; Banerjee, Sarbajit] Texas A&M Univ, College Stn, TX 77842 USA. [Wood, Erin L.; Walker, Angela R. Hight] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA. [Lewis, Aaron; Dechter, Rimma] Nanon Imaging Ltd, Jerusalem, Israel. RP Hung, PY (reprint author), SEMATECH, Albany, NY 12203 USA. RI Hight Walker, Angela/C-3373-2009 OI Hight Walker, Angela/0000-0003-1385-0672 NR 10 TC 0 Z9 0 U1 1 U2 10 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-526-1 J9 PROC SPIE PY 2015 VL 9424 AR 94241S DI 10.1117/12.2175623 PG 13 WC Optics; Physics, Applied; Imaging Science & Photographic Technology SC Optics; Physics; Imaging Science & Photographic Technology GA BC6OK UT WOS:000354250200059 ER PT S AU Segal-Peretz, T Winterstein, J Ren, JX Biswas, M Liddle, JA Elam, JW Ocola, LE Divan, RNS Zaluzec, N Nealey, PF AF Segal-Peretz, Tamar Winterstein, Jonathan Ren, Jiaxing Biswas, Mahua Liddle, J. Alexander Elam, Jeffrey W. Ocola, Leonidas E. Divan, Ralu N. S. Zaluzec, Nestor Nealey, Paul F. BE Cain, JP Sanchez, MI TI Metrology of DSA process using TEM tomography SO METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXIX SE Proceedings of SPIE LA English DT Proceedings Paper CT 29th Conference on Metrology, Inspection, and Process Control for Microlithography CY FEB 23-26, 2015 CL San Jose, CA SP SPIE, NOVA Ltd DE Block copolymers; self-assembly; DSA; TEM; STEM; tomography; 3D characterization; SIS ID BLOCK-COPOLYMERS AB Directed self-assembly (DSA) of block copolymers (BCPs) is a rising technique for sub-20 nm patterning. To fully harness DSA capabilities for patterning, a detailed understanding of the three dimensional (3D) structure of BCPs is needed. By combining sequential infiltration synthesis (SIS) and scanning transmission electron microscopy (STEM) tomography, we have characterized the 3D structure of self-assembled and DSA BCPs films with high precision and resolution. SIS is an emerging technique for enhancing pattern transfer in BCPs through the selective growth of inorganic material in polar BCP domains. Here, Al2O3 SIS was used to enhance the imaging contrast and enable tomographic characterization of BCPs with high fidelity. Moreover, by utilizing SIS for both 3D characterization and hard mask fabrication, we were able to characterize the BCP morphology as well as the alumina nanostructures that would be used for pattern transfer. C1 [Segal-Peretz, Tamar; Ren, Jiaxing; Nealey, Paul F.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Segal-Peretz, Tamar; Nealey, Paul F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Winterstein, Jonathan; Liddle, J. Alexander] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Biswas, Mahua; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Ocola, Leonidas E.; Divan, Ralu N. S.; Zaluzec, Nestor] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Nealey, PF (reprint author), Univ Chicago, Inst Mol Engn, 5747 South Ellis Ave, Chicago, IL 60637 USA. EM nealey@uchicago.edu RI Liddle, James/A-4867-2013 OI Liddle, James/0000-0002-2508-7910 NR 9 TC 4 Z9 4 U1 2 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-526-1 J9 PROC SPIE PY 2015 VL 9424 AR 94240U DI 10.1117/12.2085577 PG 6 WC Optics; Physics, Applied; Imaging Science & Photographic Technology SC Optics; Physics; Imaging Science & Photographic Technology GA BC6OK UT WOS:000354250200029 ER PT S AU Safronova, MS Mitroy, J Clark, CW Kozlov, MG AF Safronova, M. S. Mitroy, J. Clark, Charles W. Kozlov, M. G. BE Simos, TE Maroulis, G TI Atomic Polarizabilities SO PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2010 (ICCMSE-2010) SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference of Computational Methods in Sciences and Engineering (ICCMSE) CY OCT 03-08, 2010 CL Kos, GREECE SP European Soc Computat Methods Sci, Engn & Technol DE Polarizabilities; coupled-cluster method; quantum information; atomic clocks; magic wavelengths; blackbody radiation shifts ID STATIC DIPOLE POLARIZABILITIES; ALKALI-METAL ATOMS; BODY-PERTURBATION-THEORY; RARE-GAS ATOMS; ELECTRIC-DIPOLE; DISPERSION COEFFICIENTS; BLACKBODY RADIATION; REFRACTIVE INDICES; SHIELDING FACTORS; CONSTANTS AB The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed. C1 [Safronova, M. S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Mitroy, J.] Charles Darwin Univ, Sch Engn, Darwin, NT 0909, Australia. [Clark, Charles W.] Natl Inst Stand & Technol, Joint Quantum Inst, Gaithersburg, MD 20899 USA. [Clark, Charles W.] Univ Maryland, Gaithersburg, MD 20899 USA. [Kozlov, M. G.] Petersburg Nucl Phys Inst, Gatchina 188300, Russia. RP Safronova, MS (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. RI Kozlov, Mikhail/D-8963-2011 OI Kozlov, Mikhail/0000-0002-7751-6553 NR 79 TC 1 Z9 1 U1 0 U2 24 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1282-8 J9 AIP CONF PROC PY 2015 VL 1642 BP 81 EP 89 DI 10.1063/1.4906633 PG 9 WC Physics, Applied SC Physics GA BC7GK UT WOS:000354845400009 ER PT S AU Savage, C Dong, F Nesbitt, DJ AF Savage, C. Dong, F. Nesbitt, D. J. BE Simos, TE Maroulis, G TI High-Resolution Spectroscopy of Jet-Cooled CH5+: Progress SO PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2010 (ICCMSE-2010) SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference of Computational Methods in Sciences and Engineering (ICCMSE) CY OCT 03-08, 2010 CL Kos, GREECE SP European Soc Computat Methods Sci, Engn & Technol ID UPDATED EDLEN EQUATION; MAGIC ACID SOLUTION; REFRACTIVE-INDEX; INFRARED-SPECTRUM; HYDROGEN EXCHANGE; SUPER ACIDS; METHANE; AIR; POLYCONDENSATION; INTERMEDIACY AB Protonated methane (CH5+) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright. wave-mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH5+ in the 2900-3100 cm(-1) region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed. C1 [Savage, C.] Univ Colorado, JILA, Boulder, CO 80309 USA. Univ Colorado, NIST, Boulder, CO 80309 USA. Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. RP Savage, C (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1282-8 J9 AIP CONF PROC PY 2015 VL 1642 BP 332 EP 335 DI 10.1063/1.4906686 PG 4 WC Physics, Applied SC Physics GA BC7GK UT WOS:000354845400059 ER PT S AU Jacox, ME AF Jacox, Marilyn E. BE Simos, TE Maroulis, G TI Infrared Spectra of Small Molecular Ions Trapped in Solid Neon SO PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2010 (ICCMSE-2010) SE AIP Conference Proceedings LA English DT Proceedings Paper CT International Conference of Computational Methods in Sciences and Engineering (ICCMSE) CY OCT 03-08, 2010 CL Kos, GREECE SP European Soc Computat Methods Sci, Engn & Technol ID VIBRATIONAL-SPECTRA; GROUND-STATE; O-4+; SPECTROSCOPY; IONIZATION; HOCO+; C2H4+; BF3+ AB The infrared spectrum of a molecular ion provides a unique signature for that species, gives information on its structure, and is amenable to remote sensing. It also serves as a comparison standard for refining ab initio calculations. Experiments in this laboratory trap molecular ions in dilute solid solution in neon at 4.2 K in sufficient concentration for observation of their infrared spectra between 450 and 4000 cm(!1). Discharge-excited neon atoms produce cations by photoionization and/or Penning ionization of the parent molecule. The resulting electrons are captured by other molecules, yielding anions which provide for overall charge neutrality of the deposit. Recent observations of ions produced from C2H4 and BF3 will be discussed. Because of their relatively large possibility of having low-lying excited electronic states, small, symmetric molecular cations are especially vulnerable to breakdown of the Born-Oppenheimer approximation. Some phenomena which can result from this breakdown will be discussed. Ion-molecule reaction rates are sufficiently high that in some systems absorptions of dimer cations and anions are also observed. When H-2 is introduced into the system, the initially-formed ion may react with it. Among the species resulting from such ion-molecule reactions that have recently been studied are O-4(+), NH4+, HOCO+, and HCO2!. C1 NIST, Opt Technol Div, Gaithersburg, MD 20899 USA. RP Jacox, ME (reprint author), NIST, Opt Technol Div, Gaithersburg, MD 20899 USA. NR 19 TC 0 Z9 0 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1282-8 J9 AIP CONF PROC PY 2015 VL 1642 BP 400 EP 403 DI 10.1063/1.4906704 PG 4 WC Physics, Applied SC Physics GA BC7GK UT WOS:000354845400077 ER PT J AU Rindone, RR Kellison, GT Bortone, SA AF Rindone, R. Ryan Kellison, G. Todd Bortone, Stephen A. TI Data Availability for Red Snapper in Gulf of Mexico and Southeastern US Atlantic Ocean Waters SO NORTH AMERICAN JOURNAL OF FISHERIES MANAGEMENT LA English DT Editorial Material ID DENSITY-DEPENDENT MORTALITY; ALABAMA ARTIFICIAL REEFS; LUTJANUS-CAMPECHANUS; POPULATION-STRUCTURE; SITE FIDELITY; MITOCHONDRIAL-DNA; UNITED-STATES; CATASTROPHIC DECOMPRESSION; ULTRASONIC TELEMETRY; PETROLEUM PLATFORMS AB Red Snapper Lutjanus campechanus populations support (or have supported) important commercial and recreational fisheries in Gulf of Mexico and southeastern U.S. Atlantic Ocean waters. Stock assessment results and related regulatory actions are contentious in both regions. We assessed the relative availability of information to support Red Snapper assessment and management between the two regions by performing a literature review and comparing the number of region-specific, Red Snapper-focused peer-reviewed publications. One hundred and ten publications (over the period 1982-2013) were identified in this search, with 94% focused on Gulf of Mexico waters. We then assessed the available information on juvenile (<= 150 mm total length) Red Snapper. Twenty-eight peer-reviewed publications focused entirely or partially on juvenile Red Snapper in Gulf of Mexico waters. None documented the occurrence of juvenile Red Snapper in southeastern U.S. Atlantic Ocean waters. For the Gulf of Mexico, more than 50,000 records of juvenile Red Snapper were identified in a single trawl survey database. For southeastern U.S. Atlantic Ocean waters, a comprehensive search of fishery-independent survey databases (totaling > 75,000 individual gear deployments and occurring across the range of habitats, depths, and seasons in which juvenile Red Snapper were collected in the Gulf of Mexico trawl survey) and institutional collections identified only 132 records of juvenile Red Snapper. These results highlight the need for additional information on Red Snapper in southeastern U.S. Atlantic Ocean waters and on the connectivity between Gulf of Mexico and southeastern U.S. Atlantic Ocean Red Snapper populations to support Red Snapper population assessment and fishery management. C1 [Rindone, R. Ryan] Gulf Mexico Fishery Management Council, Tampa, FL 33607 USA. [Kellison, G. Todd] Natl Marine Fisheries Serv, Beaufort, NC 28516 USA. [Bortone, Stephen A.] Osprey Aquat Sci Inc, Windham, NH 03087 USA. RP Rindone, RR (reprint author), Gulf Mexico Fishery Management Council, 2203 North Lois Ave,Suite 1100, Tampa, FL 33607 USA. EM ryan.rindone@gulfcouncil.org NR 136 TC 2 Z9 2 U1 1 U2 12 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0275-5947 EI 1548-8675 J9 N AM J FISH MANAGE JI North Am. J. Fish Manage. PY 2015 VL 35 IS 2 BP 191 EP 204 DI 10.1080/02755947.2014.992559 PG 14 WC Fisheries SC Fisheries GA CI2KJ UT WOS:000354576000002 ER PT J AU Huang, P Woodward, RT Wilberg, MJ Tomberlin, D AF Huang, Pei Woodward, Richard T. Wilberg, Michael J. Tomberlin, David TI Management Evaluation for the Chesapeake Bay Blue Crab Fishery: An Integrated Bioeconomic Approach SO NORTH AMERICAN JOURNAL OF FISHERIES MANAGEMENT LA English DT Article ID IDEAL DEMAND SYSTEM; STRATEGY EVALUATION; CALLINECTES-SAPIDUS; INVERSE; ECOSYSTEMS; ECONOMICS; MODELS; STOCK; SEA AB We integrated two existing biological models and a newly developed economic demand model to evaluate the biological and economic performance of alternative policies in the Chesapeake Bay blue crab Callinectes sapidus fishery subject to the requirement that yield and revenue be sustainable. The resulting model was able to compare outcomes of alternative management scenarios considered by policy makers. In order to provide insights into the impacts of relevant policy components in a management scenario, we regressed the sustainable outcomes, sustainable yield, and sustainable revenues on a set of policy components. A short fishing season for female crabs combined with a long fishing season for males appeared to increase sustainable yield and revenue. Among size limit policies, lower minimum limits for males, females, peelers, and soft-shell crabs appeared to reduce sustainable outcomes, while a restrictive maximum size limit for mature females seemed to improve fishery performance with respect to both sustainable revenue and sustainable yield. C1 [Huang, Pei; Woodward, Richard T.] Texas A&M Univ, Dept Agr Econ, College Stn, TX 77843 USA. [Wilberg, Michael J.] Univ Maryland, Ctr Environm Sci, Chesapeake Biol Lab, Solomons, MD 20688 USA. [Tomberlin, David] Natl Ocean & Atmospher Adm Fisheries, Silver Spring, MD 20910 USA. RP Huang, P (reprint author), Texas A&M Univ, Dept Agr Econ, 2124 TAMU, College Stn, TX 77843 USA. EM petephuang@gmail.com RI Wilberg, Michael/D-6289-2013 OI Wilberg, Michael/0000-0001-8982-5946 FU Maryland Sea Grant from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce [R/FISH/EC-103]; Texas AgriLife Research; Cooperative State Research, Education and Extension Service, Hatch Project [TEX8604] FX This research was conducted with support from Maryland Sea Grant under award R/FISH/EC-103 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce. We thank Bo Bunnell, Tom Miller, and Douglas Lipton for sharing their individual-based model for blue crabs and Douglas Lipton for providing the blue crab market data. The participation of R.T.W. was funded in part through Texas AgriLife Research with support from the Cooperative State Research, Education and Extension Service, Hatch Project TEX8604. This is contribution 4970 of the University of Maryland Center for Environmental Science. NR 39 TC 0 Z9 0 U1 2 U2 9 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0275-5947 EI 1548-8675 J9 N AM J FISH MANAGE JI North Am. J. Fish Manage. PY 2015 VL 35 IS 2 BP 216 EP 228 DI 10.1080/02755947.2014.986342 PG 13 WC Fisheries SC Fisheries GA CI2KJ UT WOS:000354576000006 ER PT J AU Zhao, Y Zhang, R Lu, JW Zhang, WF AF Zhao, Yi Zhang, Rui Lu, Jiwu Zhang, Wenfeng TI Si- and Ge-Based Electronic Devices SO ADVANCES IN CONDENSED MATTER PHYSICS LA English DT Editorial Material C1 [Zhao, Yi] Zhejiang Univ, Hangzhou 310027, Zhejiang, Peoples R China. [Zhang, Rui; Zhang, Wenfeng] Univ Tokyo, Tokyo 1138656, Japan. [Lu, Jiwu] Natl Inst Stand & Technol, Washington, DC 20599 USA. RP Zhao, Y (reprint author), Zhejiang Univ, Hangzhou 310027, Zhejiang, Peoples R China. EM yizhao@zju.edu.cn RI zhang, wenfeng/C-5730-2011 OI zhang, wenfeng/0000-0001-9487-9375 NR 0 TC 0 Z9 0 U1 0 U2 6 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-8108 EI 1687-8124 J9 ADV COND MATTER PHYS JI Adv. Condens. Matter Phys. PY 2015 AR UNSP 864972 DI 10.1155/2015/864972 PG 1 WC Physics, Condensed Matter SC Physics GA CH8QR UT WOS:000354301600001 ER PT J AU Henderson, JM Eluszkiewicz, J Mountain, ME Nehrkorn, T Chang, RYW Karion, A Miller, JB Sweeney, C Steiner, N Wofsy, SC Miller, CE AF Henderson, J. M. Eluszkiewicz, J. Mountain, M. E. Nehrkorn, T. Chang, R. Y. -W. Karion, A. Miller, J. B. Sweeney, C. Steiner, N. Wofsy, S. C. Miller, C. E. TI Atmospheric transport simulations in support of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID OZONE DEPOSITION; WEATHER RESEARCH; MODELING SYSTEM; STILT MODEL; SEA-ICE; DISPERSION; SUMMER; SENSITIVITY; EMISSIONS; LAND AB This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May-October 2012 and March-November 2013 - the first 2 years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s(-1) in 2012 and 0.3 ms(-1) in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1 degrees grid show increased spatial detail compared with those on the more common 0.5 degrees grid, better allowing for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that WRF-STILT footprints are of high quality and will support accurate estimates of CO2 and CH4 surface-atmosphere fluxes using CARVE observations. C1 [Henderson, J. M.; Eluszkiewicz, J.; Mountain, M. E.; Nehrkorn, T.] Atmospher & Environm Res, Lexington, MA 02421 USA. [Chang, R. Y. -W.; Wofsy, S. C.] Harvard Univ, Cambridge, MA 02138 USA. [Karion, A.; Miller, J. B.; Sweeney, C.] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA. [Steiner, N.] CUNY City Coll, New York, NY 10031 USA. [Miller, C. E.] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Henderson, JM (reprint author), Atmospher & Environm Res, Lexington, MA 02421 USA. EM jhenders@aer.com OI Nehrkorn, Thomas/0000-0003-0637-3468 NR 75 TC 8 Z9 8 U1 1 U2 15 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 8 BP 4093 EP 4116 DI 10.5194/acp-15-4093-2015 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CH2EH UT WOS:000353838000008 ER PT S AU Chon, B Tokumasu, F Lee, JY Allen, DW Rice, JP Hwang, J AF Chon, Bonghwan Tokumasu, Fuyuki Lee, Ji Youn Allen, David W. Rice, Joseph P. Hwang, Jeeseong BE Allen, DW Bouchard, JP TI Making Digital Phantoms with Spectral and Spatial Light Modulators for Quantitative Applications of Hyperspectral Optical Medical Imaging Devices SO DESIGN AND PERFORMANCE VALIDATION OF PHANTOMS USED IN CONJUNCTION WITH OPTICAL MEASUREMENT OF TISSUE VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue VII CY FEB 07, 2015 CL San Francisco, CA SP SPIE DE hyperspectral imaging; optical imaging standard; digital phantom; molecular imaging; single cell imaging; scatter imaging; spatial light modulator ID PLASMODIUM-FALCIPARUM; SYSTEM AB We present a procedure to generate digital phantoms with a hyperspectral image projector (HIP) consisting of two liquid crystal on silicon (LCoS) spatial light modulators (SLMs). The digital phantoms are 3D image data cubes of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxy-hemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standards to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and inter-laboratory comparisons for quantitative biomedical imaging applications. C1 [Chon, Bonghwan; Lee, Ji Youn; Hwang, Jeeseong] NIST, Quantum Elect & Photon Div, Boulder, CO 80305 USA. [Tokumasu, Fuyuki] NIH, Lab Malaria & Vector Res, Bethesda, MD 20892 USA. [Allen, David W.; Rice, Joseph P.] NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA. RP Chon, B (reprint author), NIST, Quantum Elect & Photon Div, Boulder, CO 80305 USA. OI Tokumasu, Fuyuki/0000-0003-2790-1071 NR 21 TC 0 Z9 0 U1 1 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-415-8 J9 PROC SPIE PY 2015 VL 9325 AR 93250C DI 10.1117/12.2085237 PG 7 WC Cell & Tissue Engineering; Biophysics; Optics SC Cell Biology; Biophysics; Optics GA BC6EX UT WOS:000353883600008 ER PT S AU Lemaillet, P Allen, DW Hwang, J AF Lemaillet, Paul Allen, David W. Hwang, Jeeseong BE Allen, DW Bouchard, JP TI Measurement of the optical properties of solid biomedical phantoms at the National Institute of Standards and Technology SO DESIGN AND PERFORMANCE VALIDATION OF PHANTOMS USED IN CONJUNCTION WITH OPTICAL MEASUREMENT OF TISSUE VII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Design and Performance Validation of Phantoms Used in Conjunction with Optical Measurement of Tissue VII CY FEB 07, 2015 CL San Francisco, CA SP SPIE DE solid biomedical phantoms; double-integrating spheres; adding doubling; uncertainty budget ID LIQUID DIFFUSIVE MEDIUM; ABSORPTION PROPERTIES; NIR WAVELENGTHS; SCATTERING; CALIBRATION; MEDIA AB Solid phantoms that serve as a proxy for human tissue provide a convenient test subject for optical medical imaging devices. In order to determine the quantitative performance of a given system, the absolute optical properties of the test subject must be known. Currently there is no national scale applicable to the scattering and absorption properties of solid diffuse tissue phantoms that would provide traceability and estimated measurement uncertainties for optical imaging applications. This paper describes progress in the development of a facility dedicated to the determination of the optical properties of solid biomedical phantoms. A brief description of the system, data analysis, Graphical User Interface (GUI), and measurement uncertainties is presented. The design is based on a double-integrating sphere, steady-state domain approach. The initial evaluation of the system includes the measurement of solid phantoms and a comparison to the manufacturer's values that were determined by a time resolved approach. The initial results indicate that measurement agreement is within the estimated uncertainties with the coverage factor k=2. C1 [Lemaillet, Paul; Allen, David W.] NIST, Gaithersburg, MD 20899 USA. [Hwang, Jeeseong] NIST, Boulder, CO 80305 USA. RP Lemaillet, P (reprint author), NIST, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM paul.lemaillet@nist.gov NR 13 TC 0 Z9 0 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-415-8 J9 PROC SPIE PY 2015 VL 9325 AR 932504 DI 10.1117/12.2085110 PG 6 WC Cell & Tissue Engineering; Biophysics; Optics SC Cell Biology; Biophysics; Optics GA BC6EX UT WOS:000353883600001 ER PT J AU Waples, RS Adams, PB Bohnsack, JA Taylor, BL AF Waples, Robin S. Adams, Peter B. Bohnsack, James A. Taylor, Barbara L. TI When is a species at risk in 'all or a significant portion of its range'? SO ENDANGERED SPECIES RESEARCH LA English DT Article ID SOCIETAL VALUES; LEGAL VIABILITY; ACT; NORMATIVITY AB The US Endangered Species Act (ESA) allows protection of any species that is at risk in all or 'a significant portion of its range' (SPOIR). Because this provision is open to many possible interpretations, the agencies responsible for implementing the ESA recently published a SPOIR policy. The policy is based on a framework we developed that asks a simple question: 'If the portions of the range that are currently at risk were lost, would the entire species, at that point, be threatened or endangered?' If so, the portion of the range is significant. Some commentators have argued that the policy departs from goals the ESA was originally intended to accomplish. We disagree; biologists and managers struggling to implement provisions of the ESA in complex, realworld situations need practical guidance, and we believe our framework provides that. In particular, it avoids as much as possible normative considerations in evaluating 'significance' in terms of human values; instead, we focus on significance to the species, which is consistent with the ESA focus on preventing extinctions, as well as with the mandate that listing determinations be based 'solely' on scientific information. However, we agree with some critics that a crucial factor in implementation of the policy will be how historical versus current concepts of range are reconciled. We believe that historical distribution and abundance are important, not as specific restoration goals, but as reference points that characterize conditions under which we are confident the species was viable. C1 [Waples, Robin S.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. [Adams, Peter B.] SW Fisheries Sci Ctr, Santa Cruz, CA 95060 USA. [Bohnsack, James A.] SW Fisheries Sci Ctr, Miami, FL 33149 USA. [Taylor, Barbara L.] SW Fisheries Sci Ctr, La Jolla, CA 92037 USA. RP Waples, RS (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, 2725 Montlake Blvd East, Seattle, WA 98112 USA. EM robin.waples@noaa.gov RI Waples, Robin/K-1126-2016 NR 16 TC 4 Z9 4 U1 1 U2 11 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 1863-5407 EI 1613-4796 J9 ENDANGER SPECIES RES JI Endanger. Species Res. PY 2015 VL 27 IS 2 BP 189 EP 192 DI 10.3354/esr00669 PG 4 WC Biodiversity Conservation SC Biodiversity & Conservation GA CH3GG UT WOS:000353916400009 ER PT J AU He, T Wu, H Wu, GT Li, Z Zhou, W Ju, XH Xie, D Chen, P AF He, Teng Wu, Hui Wu, Guotao Li, Zhao Zhou, Wei Ju, Xiaohua Xie, Dong Chen, Ping TI Lithium amidoborane hydrazinates: synthesis, structure and hydrogen storage properties SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID AMMONIA-BORANE DEHYDROGENATION; CRYSTAL-STRUCTURE; THERMAL-DECOMPOSITION; NEUTRON-DIFFRACTION; METAL AMIDOBORANES; RELEASE; ALKALI; AMIDOTRIHYDROBORATE; HYDRAZINIDOBORANE; CATALYSIS AB The first metal amidoborane hydrazinate with a composition of LiNH2BH3 center dot NH2NH2 was successfully synthesized and characterized in the present study. LiNH2BH3 center dot NH2NH2 exhibits a monoclinic P2(1)/n space group with lattice parameters of a = 10.0650 angstrom, b = 6.3105 angstrom, c = 7.4850 angstrom, and beta = 107.497 degrees. Meanwhile, lithium amidoborane hydrazinates with different molar ratios of LiNH2BH3 (LiAB) and NH2NH2 were synthesized and characterized. It was found that 4LiAB-NH2NH2 can release 1.6 equiv. and 2.5 equiv. of H-2/LiAB at 75 degrees C and 170 degrees C, respectively. Therefore, around 7.1 wt% and 11.1 wt% of hydrogen can be released from 4LiAB-NH2NH2 at 75 degrees C and 170 degrees C, respectively, which are higher values than those for pristine LiAB. A dehydrogenation mechanism, which may be initiated by the "homogeneous dissociation" of N-N in hydrazine, is also proposed and discussed in this study. C1 [He, Teng; Wu, Guotao; Li, Zhao; Ju, Xiaohua; Xie, Dong; Chen, Ping] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China. [Wu, Hui; Zhou, Wei] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Wu, Hui; Zhou, Wei] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Chen, Ping] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China. RP Wu, GT (reprint author), Chinese Acad Sci, Dalian Inst Chem Phys, 457 Zhongshan Rd, Dalian 116023, Peoples R China. EM wgt@dicp.ac.cn RI Wu, Hui/C-6505-2008; Zhou, Wei/C-6504-2008; Xie, Dong/I-6761-2013 OI Wu, Hui/0000-0003-0296-5204; Zhou, Wei/0000-0002-5461-3617; Xie, Dong/0000-0001-7394-8896 FU National Natural Science Funds for Distinguished Young Scholar [51225206]; National Natural Science Foundation of China [U1232120, 51301161, 21473181, 51472237]; Natural Science Fund of Liaoning Province; Shanghai Synchrotron Radiation Facility (SSRF) FX The authors would like to acknowledge financial support from the project of National Natural Science Funds for Distinguished Young Scholar (51225206), projects of National Natural Science Foundation of China (Grant nos U1232120, 51301161, 21473181 and 51472237) and project from Natural Science Fund of Liaoning Province, and Shanghai Synchrotron Radiation Facility (SSRF) for providing the beam time. NR 56 TC 4 Z9 4 U1 7 U2 24 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2015 VL 3 IS 18 BP 10100 EP 10106 DI 10.1039/c5ta00985e PG 7 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA CH3JR UT WOS:000353927500094 ER PT J AU Natanson, LJ Skomal, GB AF Natanson, Lisa J. Skomal, Gregory B. TI Age and growth of the white shark, Carcharodon carcharias, in the western North Atlantic Ocean SO MARINE AND FRESHWATER RESEARCH LA English DT Article DE carbon-14; lamnid; vertebral column ID ISURUS-OXYRINCHUS; BOMB RADIOCARBON; SHORTFIN MAKO; CARCHARHINUS-PLUMBEUS; VALIDATED AGE; LAMNA-NASUS; VERTEBRAE; SYMMETRY; TABLES; RAYS AB Age and growth estimates for the white shark (Carcharodon carcharias) in the western North Atlantic Ocean (WNA) were derived from band pair counts on the vertebral centra of 81 specimens collected between 1963 and 2010. We used two previously published criteria to interpret band pairs and assessed the validity of each method using C-14 levels from a recent bomb radiocarbon validation study and existing C-14 reference chronologies in the WNA. Although both criteria produced age estimates consistent, to varying degrees, with different reference chronologies, only one was considered valid when life history information was used to select the appropriate reference chronology and minimum/maximum ages based on bomb carbon values were taken into consideration. These age estimates, validated up to 44 years, were used to develop a growth curve for the species, which was best described using the Schnute general model (sexes combined). These results indicate that white sharks grow more slowly and live longer than previously thought. C1 [Natanson, Lisa J.] NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Narragansett, RI 02882 USA. [Skomal, Gregory B.] Massachusetts Div Marine Fisheries, New Bedford, MA 02740 USA. RP Natanson, LJ (reprint author), NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, 28 Tarzwell Dr, Narragansett, RI 02882 USA. EM lisa.natanson@noaa.gov FU Federal Aid in Sportfish Restoration Act FX We thank the fishermen who allowed us to sample their catches and all the tournament officials who gave us the opportunity to sample at their events. We thank Allen Andrews, Simon Thorrold and Michelle Passerotti for help in interpreting the bomb carbon data and literature. Russell Hilliard helped in locating samples. Tobey Curtis provided information on verified lengths in the WNA. We cannot express the gratitude we owe Megan Winton for her help calculating growth curves in R, she is infinitely patient. We also express our appreciation to Kelsey James who served as second reader for Criterion B and spent many days listening to theories of band counts. We acknowledge the support of the Apex Predators Program staff and particularly Wes Pratt and Jack Casey for laying the groundwork for this study. This study was supported in part with funds from the Federal Aid in Sportfish Restoration Act. This is Massachusetts Division of Marine Fisheries Contribution number 51. NR 54 TC 6 Z9 6 U1 6 U2 32 PU CSIRO PUBLISHING PI CLAYTON PA UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA SN 1323-1650 EI 1448-6059 J9 MAR FRESHWATER RES JI Mar. Freshw. Res. PY 2015 VL 66 IS 5 BP 387 EP 398 DI 10.1071/MF14127 PG 12 WC Fisheries; Limnology; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CH3AT UT WOS:000353898600001 ER PT J AU Chittaro, PM Zabel, RW Beckman, B Larsen, DA Tillotson, A AF Chittaro, Paul M. Zabel, Richard W. Beckman, Brian Larsen, Donald A. Tillotson, Abby TI Validation of Daily Increment Formation in Otoliths from Spring Chinook Salmon SO NORTHWEST SCIENCE LA English DT Article DE otolith; age; daily increments; salmon ID DAILY GROWTH INCREMENTS; ONCORHYNCHUS-TSHAWYTSCHA; SELECTIVE MORTALITY; LIFE-HISTORY; MICROSTRUCTURE; FISHES; SIZE; TEMPERATURE; POPULATIONS; SURVIVAL AB Increments of a fish otolith are commonly used to estimate age and somatic growth; yet the accuracy of such estimates first requires an understanding of the periodicity with which increments are formed. We conducted a rearing experiment to evaluate daily formation of increments in otoliths from spring Chinook salmon (Oncorhynchus tshawytscha), an anadromous fish from the Yakima River, Washington. Specifically, we compared the known number of post-emergence days that fish were alive to the number of otolith increments formed after an emergence check. Our results indicated daily formation of otolith increments, thus corroborating previous studies and supporting the use of otolith increments to estimate age and somatic growth of individual Chinook salmon. Given the positive relationship between body size and survival to adulthood, continued use of otolith microstructure to quantify age and growth will help identify factors critical for the recovery of listed Chinook salmon populations. C1 [Chittaro, Paul M.; Zabel, Richard W.; Beckman, Brian; Larsen, Donald A.; Tillotson, Abby] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. RP Chittaro, PM (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, 2725 Montlake Blvd E, Seattle, WA 98112 USA. EM paul.chittaro@noaa.gov NR 25 TC 1 Z9 1 U1 3 U2 12 PU NORTHWEST SCIENTIFIC ASSOC PI SEATTLE PA JEFFREY DUDA, USGS, WESTERN FISHERIES RES CTR, 6505 NE 65 ST, SEATTLE, WA 98115 USA SN 0029-344X EI 2161-9859 J9 NORTHWEST SCI JI Northwest Sci. PD JAN PY 2015 VL 89 IS 1 BP 93 EP 98 PG 6 WC Ecology SC Environmental Sciences & Ecology GA CH9BQ UT WOS:000354331400007 ER PT S AU Clark, JB Glasser, RT Glorieux, Q Vogl, U Li, T Jones, KM Lett, PD AF Clark, Jeremy B. Glasser, Ryan T. Glorieux, Quentin Vogl, Ulrich Li, Tian Jones, Kevin M. Lett, Paul D. BE Shahriar, SM Scheuer, J TI Measuring the Propagation of Information and Entanglement in Dispersive Media SO SLOW LIGHT, FAST LIGHT, AND OPTO-ATOMIC PRECISION METROLOGY VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Slow Light, Fast Light, and Opto-Atomic Precision Metrology VIII CY FEB 08-12, 2015 CL San Francisco, CA SP SPIE DE Continuous-variable entanglement; quantum information; four-wave mixing; dispersion ID QUANTUM INFORMATION; FAST-LIGHT; IMAGES; SPEED; NOISE; SLOW AB Although it is widely accepted that information cannot travel faster than the speed of light in vacuum, the behavior of quantum correlations and entanglement propagating through actively pumped dispersive media has not been thoroughly studied. Here we investigate the behavior of quantum correlations and information in the presence of a nonlinear dispersive gaseous medium. We show that the quantum correlations can be advanced by a small fraction of the correlation time while the entanglement is preserved even in the presence of noise added by phase insensitive gain. Additionally, although we observe an advance of the peak of the quantum mutual information between the modes, we find that the degradation of the mutual information due to the added noise appears to prevent an advancement of the mutual information's leading tail. In contrast, we show that both the leading and trailing tails of the mutual information in a slow light system can be significantly delayed in the presence of four-wave mixing (4WM) and electromagnetically induced transparency. C1 [Clark, Jeremy B.] Natl Inst Stand & Technol, Quantum Elect & Photon Div, Boulder, CO 80305 USA. [Glasser, Ryan T.] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA. [Glorieux, Quentin] Univ Paris 06, Lab Kastler Brossel, Ecole Normale Super, F-75252 Paris 05, France. [Glorieux, Quentin] UPMC, CNRS, F-75252 Paris 05, France. [Vogl, Ulrich] Max Planck Inst Sci Light, D-91058 Erlangen, Germany. [Li, Tian; Lett, Paul D.] Natl Inst Stand & Technol, Quantum Measurement Div, Gaithersburg, MD 20899 USA. [Li, Tian; Lett, Paul D.] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA. [Li, Tian; Lett, Paul D.] Univ Maryland, Gaithersburg, MD 20899 USA. [Jones, Kevin M.] Williams Coll, Dept Phys, Williamstown, MA 01267 USA. RP Lett, PD (reprint author), Natl Inst Stand & Technol, Quantum Elect & Photon Div, Boulder, CO 80305 USA. EM paul.lett@nist.gov RI Vogl, Ulrich/G-4624-2014; Glorieux, Quentin/K-4875-2012 OI Vogl, Ulrich/0000-0003-2399-2797; Glorieux, Quentin/0000-0003-0903-0233 NR 29 TC 0 Z9 0 U1 1 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-468-4 J9 PROC SPIE PY 2015 VL 9378 AR 93780T DI 10.1117/12.2086776 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA BC6OQ UT WOS:000354263300010 ER PT J AU White, C Tan, KT Hunston, D Steffens, K Stanley, DL Satija, SK Akgun, B Vogt, BD AF White, Christopher Tan, Kar Tean Hunston, Donald Steffens, Kristen Stanley, Deborah L. Satija, Sushil K. Akgun, Bulent Vogt, Bryan D. TI Mechanisms of criticality in environmental adhesion loss SO SOFT MATTER LA English DT Article ID DIFFERENTIAL SCANNING CALORIMETRY; CRITICAL RELATIVE-HUMIDITY; THIN-FILM; THERMAL CHARACTERIZATION; WATER; JOINTS; MOISTURE; METHACRYLATE); TEMPERATURE; DURABILITY AB Moisture attack on adhesive joints is a long-standing scientific and engineering problem. A particularly interesting observation is that when the moisture level in certain systems exceeds a critical concentration, the bonded joint shows a dramatic loss of strength. The joint interface plays a dominant role in this phenomenon; however, why a critical concentration of moisture exists and what role is played by the properties of the bulk adhesive have not been adequately addressed. Moreover if the interface is crucial, the local water content near the interface will help elucidate the mechanisms of criticality more than the more commonly examined bulk water concentration in the adhesive. To gain a detailed picture of this criticality, we have combined a fracture mechanics approach to determine joint strength with neutron reflectivity, which provides the moisture distribution near the interface. A well-defined model system, silica glass substrates bonded to a series of polymers based on poly(n-alkyl methacrylate), was utilized to probe the role of the adhesive in a systematic manner. By altering the alkyl chain length, the molecular structure of the polymer can be systematically changed to vary the chemical and physical properties of the adhesive over a relatively wide range. Our findings suggest that the loss of adhesion is dependent on a combination of the build-up of the local water concentration near the interface, interfacial swelling stresses resulting from water absorption, and water-induced weakening of the interfacial bonds. This complexity explains the source of criticality in environmental adhesion failure and could enable design of adhesives to minimize environmental failure. C1 [White, Christopher; Tan, Kar Tean; Hunston, Donald; Steffens, Kristen; Stanley, Deborah L.] NIST, Mat & Struct Syst Div, Gaithersburg, MD 20899 USA. [Satija, Sushil K.; Akgun, Bulent] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Vogt, Bryan D.] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. [Akgun, Bulent] Bogazici Univ, Dept Chem, TR-34342 Istanbul, Turkey. RP White, C (reprint author), NIST, Mat & Struct Syst Div, Gaithersburg, MD 20899 USA. EM christopher.white@nist.gov; vogt@uakron.edu RI Vogt, Bryan/H-1986-2012; Akgun, Bulent/H-3798-2011 OI Vogt, Bryan/0000-0003-1916-7145; NR 30 TC 6 Z9 6 U1 1 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X EI 1744-6848 J9 SOFT MATTER JI Soft Matter PY 2015 VL 11 IS 20 BP 3994 EP 4001 DI 10.1039/c4sm02725f PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA CI0SU UT WOS:000354449100006 PM 25893710 ER PT S AU Mootz, M Kira, M Koch, SW Almand-Hunter, AE Wang, K Cundiff, ST AF Mootz, M. Kira, M. Koch, S. W. Almand-Hunter, A. E. Wang, K. Cundiff, S. T. BE Betz, M Elezzabi, AY Tsen, KT TI Quantum-optical spectroscopy on dropletons SO ULTRAFAST PHENOMENA AND NANOPHOTONICS XIX SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Ultrafast Phenomena and Nanophotonics XIX CY FEB 08-11, 2015 CL San Francisco, CA SP SPIE, FEMTOLASERS Produkt GmbH DE Quantum optical spectroscopy; dropletons; biexcitons; quantum spectroscopy; quasiparticles ID PAIR CORRELATION-FUNCTION; LIQUID WATER; STATES; BIEXCITONS; COHERENT; LIGHT; WELL AB Dropletons are new highly correlated quasiparticles recently discovered in GaAs quantum wells. The dropleton discovery is verified with a new measurement set and the full identification cycle is presented. The analysis confirms that a dropleton contains four or more electron-hole pairs within a tiny correlation bubble and that dropleton's electron-hole pairs are in a liquid-like state that is quantized due to quantum confinement. C1 [Mootz, M.; Kira, M.; Koch, S. W.] Univ Marburg, Dept Phys, D-35032 Marburg, Germany. [Almand-Hunter, A. E.; Wang, K.; Cundiff, S. T.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Almand-Hunter, A. E.; Wang, K.; Cundiff, S. T.] NIST, Boulder, CO 80309 USA. [Almand-Hunter, A. E.; Cundiff, S. T.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Cundiff, S. T.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Mootz, M (reprint author), Univ Marburg, Dept Phys, Renthof 5, D-35032 Marburg, Germany. EM martin.mootz@physik.uni-marburg.de NR 27 TC 1 Z9 1 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-451-6 J9 PROC SPIE PY 2015 VL 9361 AR 936115 DI 10.1117/12.2079028 PG 12 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BC6OW UT WOS:000354276800017 ER PT S AU Cai, T Bose, R Choudhury, KR Solomon, GS Waks, E AF Cai, Tao Bose, Ranojoy Choudhury, Kaushik Roy Solomon, Glenn S. Waks, Edo BE Hasan, ZU Hemmer, PR Lee, H Migdall, AL TI Coherent control of energy transfer in a quantum dot strongly coupled to a photonic crystal molecule SO ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Photonics of Quantum Computing, Memory, and Communication VIII CY FEB 10-12, 2015 CL San Francisco, CA SP SPIE DE Vacuum Rabi oscillation; coherent control; photonic crystal cavity; photonic crystal molecule; quantum dot; AC stark shift; light matter interaction ID SEMICONDUCTORS; NANOCAVITY; CIRCUIT; SYSTEM; STATES AB Vacuum Rabi oscillation is a damped oscillation in which energy can transfer between an atomic excitation and a photon when an atom is strongly coupled to a photonic cavity. This process is challenging to be coherently controlled due to the fact that interaction between the atom and the electromagnetic resonator needs to be modulated in a quick manner compared to vacuum Rabi frequency. This control has been achieved at microwave frequencies, but has remained challenging to be implemented in the optical domain. Here we demonstrated coherent control of energy transfer in a semiconductor quantum dot strongly coupled to a photonic crystal molecule by manipulating the vacuum Rabi oscillation of the system. Instead of using a single photonic crystal cavity, we utilized a photonic crystal molecule consisting two coupled photonic crystal defect cavities to obtain both strong quantum dot-cavity coupling and cavityenhanced AC stark shift. In our system the AC stark shift modulates the coupling interaction between the quantum dot and the cavity by shifting the quantum dot resonance, on timescales (picosecond) shorter than the vacuum Rabi period. We demonstrated the ability to transfer excitation between a quantum dot and cavity, and performed coherent control of light-matter states. Our results provides an ultra-fast approach for probing and controlling light-matter interactions in an integrated nanophotonic device, and could pave the way for gigahertz rate synthesis of arbitrary quantum states of light at optical frequencies. C1 [Cai, Tao; Bose, Ranojoy; Choudhury, Kaushik Roy; Waks, Edo] Univ Maryland, Dept Elect Engn, College Pk, MD 20742 USA. [Cai, Tao; Bose, Ranojoy; Choudhury, Kaushik Roy; Waks, Edo] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Solomon, Glenn S.; Waks, Edo] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA. [Solomon, Glenn S.] NIST, Gaithersburg, MD 20899 USA. RP Cai, T (reprint author), Univ Maryland, Dept Elect Engn, College Pk, MD 20742 USA. EM tcai@umd.edu NR 29 TC 0 Z9 0 U1 1 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-467-7 J9 PROC SPIE PY 2015 VL 9377 AR 93770A DI 10.1117/12.2078199 PG 7 WC Computer Science, Hardware & Architecture; Optics; Telecommunications SC Computer Science; Optics; Telecommunications GA BC6FI UT WOS:000353892600004 ER PT S AU Sun, S Kim, H Solomon, GS Waks, E AF Sun, Shuo Kim, Hyochul Solomon, Glenn S. Waks, Edo BE Hasan, ZU Hemmer, PR Lee, H Migdall, AL TI Control of the cavity reflectivity using a single quantum dot spin SO ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Advances in Photonics of Quantum Computing, Memory, and Communication VIII CY FEB 10-12, 2015 CL San Francisco, CA SP SPIE DE Cavity quantum electrodynamics; quantum dot spin; photonic crystal cavity ID PHOTONIC-CRYSTAL NANOCAVITY; NETWORK; SYSTEM AB We experimentally realize a solid-state spin-photon transistor using a quantum dot strongly coupled to a photonic crystal cavity. We are able to control the light polarization through manipulation of the quantum dot spin states. The spinphoton transistor is crucial for realizing a quantum logic gate or generating hybrid entanglement between a quantum dot spin and a photon. Our results represent an important step towards semiconductor based quantum logic devices and onchip quantum networks. C1 [Sun, Shuo; Kim, Hyochul; Waks, Edo] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Solomon, Glenn S.] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA. [Solomon, Glenn S.] Univ Maryland, Gaithersburg, MD 20899 USA. RP Sun, S (reprint author), Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. OI Sun, Shuo/0000-0003-4171-0466 NR 35 TC 0 Z9 0 U1 1 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-467-7 J9 PROC SPIE PY 2015 VL 9377 AR 937707 DI 10.1117/12.2079733 PG 6 WC Computer Science, Hardware & Architecture; Optics; Telecommunications SC Computer Science; Optics; Telecommunications GA BC6FI UT WOS:000353892600001 ER PT J AU Sandholt, PE Farrugia, CJ Denig, WF AF Sandholt, P. E. Farrugia, C. J. Denig, W. F. TI Transitions between states of magnetotail-ionosphere coupling and the role of solar wind dynamic pressure: the 25 July 2004 interplanetary CME case SO ANNALES GEOPHYSICAE LA English DT Article DE Magnetospheric Physics (Storms and substorms) ID SUBSTORM CURRENT WEDGE; PLASMA SHEET; MAGNETOSPHERE; FLOWS; MODEL AB In a case study, we investigate transitions between fundamental magnetosphere-ionosphere (M-I) coupling modes during storm-time conditions (SYM-H between 100 and 160 nT) driven by an interplanetary coronal mass ejection (ICME). We combine observations from the near tail, at geostationary altitude (GOES-10), and electrojet activities across the auroral oval at postnoon-to-dusk and midnight. After an interval of strong westward electrojet (WEJ) activity, a 3 h long state of attenuated/quenched WEJ activity was initiated by abrupt drops in the solar wind density and dynamic pressure. The attenuated substorm activity consisted of brief phases of magnetic field perturbation and electron flux decrease at GOES-10 near midnight and moderately strong conjugate events of WEJ enhancements at the southern boundary of the oval, as well as a series of very strong eastward electrojet (EEJ) events at dusk, during a phase of enhanced ring current evolution, i.e., enhanced SYM-H deflection within 120 to 150 nT. Each of these M-I coupling events was preceded by poleward boundary intensifications and auroral streamers at higher oval latitudes. We identify this mode of attenuated substorm activity as being due to a magnetotail state characterized by bursty reconnection and bursty bulk flows/dipolarization fronts (multiple current wedgelets) with associated injection dynamo in the near tail, in their braking phase. The latter process is associated with activations of the Bostrom type II (meridional) current system. A transition to the next state of M-I coupling, when a full substorm expansion took place, was triggered by an abrupt increase of the ICME dynamic pressure from 1 to 5 nPa. The brief field deflection events at GOES-10 were then replaced by a 20 min long interval of extreme field stretching (B-z approaching 5 nT and B-x approximate to 100 nT) followed by a major dipolarization (Delta B-z approximate to 100 nT). In the ionosphere the latter stage appeared as a "full-size" stepwise poleward expansion of the WEJ. It thus appears that the ICME passage led to fundamentally different M-I coupling states corresponding to different levels of dynamic pressure (P-dyn) under otherwise very similar ICME conditions. Full WEJ activity, covering a wide latitude range across the auroral oval in the midnight sector, was attenuated by the abrupt dynamic pressure decrease and resumed after the subsequent abrupt increase. C1 [Sandholt, P. E.] Univ Oslo, Dept Phys, Oslo, Norway. [Farrugia, C. J.] Univ New Hampshire, Space Sci Ctr, Durham, NH 03824 USA. [Denig, W. F.] NOAA, NGDC, Boulder, CO USA. RP Sandholt, PE (reprint author), Univ Oslo, Dept Phys, Oslo, Norway. EM p.e.sandholt@fys.uio.no FU NASA [NNX10AQ29G, NNX13AP39G] FX This work was supported in part by NASA Grants NNX10AQ29G and NNX13AP39G. We thank the institutions for operating the IMAGE (FMI, Finland and Tromso Geophysical Observatory, Norway) and Alaska chain (University of Alaska, Fairbanks) ground magnetometers used in this study. Magnetic indices AL and SYM-H were obtained from omni-web.gsfc.nasa.gov. NR 29 TC 0 Z9 0 U1 0 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 0992-7689 EI 1432-0576 J9 ANN GEOPHYS-GERMANY JI Ann. Geophys. PY 2015 VL 33 IS 4 BP 427 EP 436 DI 10.5194/angeo-33-427-2015 PG 10 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CH2FB UT WOS:000353840000001 ER PT J AU Nikolaev, AV Sergeev, VA Tsyganenko, NA Kubyshkina, MV Opgenoorth, H Singer, H Angelopoulos, V AF Nikolaev, A. V. Sergeev, V. A. Tsyganenko, N. A. Kubyshkina, M. V. Opgenoorth, H. Singer, H. Angelopoulos, V. TI A quantitative study of magnetospheric magnetic field line deformation by a two-loop substorm current wedge SO ANNALES GEOPHYSICAE LA English DT Article DE Magnetospheric physics (auroral phenomena; current systems; storms and substorms) ID WESTWARD TRAVELING SURGE; ALIGNED CURRENTS; PLASMA SHEET; AURORAL SUBSTORMS; MHD SIMULATIONS; LARGE-SCALE; MODEL; FLOWS; MANIFESTATION; ACTIVATIONS AB Substorm current wedge (SCW) formation is associated with global magnetic field reconfiguration during substorm expansion. We combine a two-loop model SCW (SCW2L) with a background magnetic field model to investigate distortion of the ionospheric footpoint pattern in response to changes of different SCW2L parameters. The SCW-related plasma sheet footprint shift results in formation of a pattern resembling an auroral bulge, the poleward expansion of which is controlled primarily by the total current in the region 1 sense current loop (I-1). The magnitude of the footprint latitudinal shift may reach similar to 10 degrees corrected geomagnetic latitude (CGLat) during strong sub-storms (I-1 = 2 MA). A strong helical magnetic field around the field-aligned current generates a surge-like region with embedded spiral structures, associated with a westward traveling surge (WTS) at the western end of the SCW. The helical field may also contribute to rotation of the ionospheric projection of narrow plasma streams (auroral streamers). Other parameters, including the total current in the second (region 2 sense) loop, were found to be of secondary importance. Analyzing two consecutive dipolarizations on 17 March 2010, we used magnetic variation data obtained from a dense midlatitude ground network and several magnetospheric spacecraft, as well as the adaptive AM03 model, to specify SCW2L parameters, which allowed us to predict the magnitude of poleward auroral expansion. Auroral observations made during the two substorm activations demonstrate that the SCW2L combined with the AM03 model nicely describes the azimuthal progression and the observed magnitude of the auroral expansion. This finding indicates that the SCW-related distortions are responsible for much of the observed global development of bright auroras. C1 [Nikolaev, A. V.; Sergeev, V. A.; Tsyganenko, N. A.; Kubyshkina, M. V.] St Petersburg State Univ, Dept Earth Phys, Petrodvorets, Russia. [Opgenoorth, H.] Swedish Inst Space Phys, Uppsala Div, Uppsala, Sweden. [Singer, H.] NOAA, Space Weather Predict Ctr, Boulder, CO USA. [Angelopoulos, V.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Space Phys, Los Angeles, CA USA. RP Nikolaev, AV (reprint author), St Petersburg State Univ, Dept Earth Phys, Petrodvorets, Russia. EM demosfen.spb@gmail.com RI Kubyshkina, Marina/G-9436-2013; Tsyganenko, Nikolai/J-7377-2012; Nikolaev, Alexander/M-8355-2016; Sergeev, Victor/H-1173-2013 OI Kubyshkina, Marina/0000-0001-5897-9547; Tsyganenko, Nikolai/0000-0002-5938-1579; Nikolaev, Alexander/0000-0001-5558-9615; Sergeev, Victor/0000-0002-4569-9631 FU EU [263325]; RFBR [14-05-31472] FX This study was supported by the EU FP7 grant 263325 (ECLAT) and RFBR grant no. 14-05-31472. We thank J. Hohl (Department of Earth, Planetary, and Space Sciences, UCLA) for help with editing of the manuscript. We also thank INTERMAGNET project (http://intermagnet.org) for providing ground magnetometer data and CDAWeb (http://cdaweb.gsfc.nasa.gov) data base for providing spacecraft and auroral observations. NR 38 TC 0 Z9 0 U1 0 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 0992-7689 EI 1432-0576 J9 ANN GEOPHYS-GERMANY JI Ann. Geophys. PY 2015 VL 33 IS 4 BP 505 EP 517 DI 10.5194/angeo-33-505-2015 PG 13 WC Astronomy & Astrophysics; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geology; Meteorology & Atmospheric Sciences GA CH2FB UT WOS:000353840000008 ER PT J AU Strutton, PG Coles, VJ Hood, RR Matear, RJ McPhaden, MJ Phillips, HE AF Strutton, P. G. Coles, V. J. Hood, R. R. Matear, R. J. McPhaden, M. J. Phillips, H. E. TI Biogeochemical variability in the central equatorial Indian Ocean during the monsoon transition SO BIOGEOSCIENCES LA English DT Article ID RESEARCH MOORED ARRAY; SEA-SURFACE SALINITY; SEASONAL VARIABILITY; TROPICAL PACIFIC; MIXED-LAYER; MODEL; DIPOLE; CIRCULATION; OSCILLATION; PREDICTION AB In this paper we examine time-series measurements of near-surface chlorophyll concentration from a mooring that was deployed at 80.5 degrees E on the equator in the Indian Ocean in 2010. These data reveal at least six striking spikes in chlorophyll from October through December, at approximately 2-week intervals, that coincide with the development of the fall Wyrtki jets during the transition between the summer and winter monsoons. Concurrent meteorological and in situ physical measurements from the mooring reveal that the chlorophyll pulses are associated with the intensification of eastward winds at the surface and eastward currents in the mixed layer. These observations are inconsistent with upwelling dynamics as they occur in the Atlantic and Pacific oceans, since eastward winds that force Wyrtki jet intensification should drive downwelling. The chlorophyll spikes could be explained by two alternative mechanisms: (1) turbulent entrainment of nutrients and/or chlorophyll from across the base of the mixed layer by wind stirring or Wyrtki jet-induced shear instability or (2) enhanced southward advection of high chlorophyll concentrations into the equatorial zone. The first mechanism is supported by the phasing and amplitude of the relationship between wind stress and chlorophyll, which suggests that the chlorophyll spikes are the result of turbulent entrainment driven by synoptic zonal wind events. The second mechanism is supported by the observation of eastward flows over the Chagos-Laccadive Ridge, generating high chlorophyll to the north of the equator. Occasional southward advection can then produce the chlorophyll spikes that are observed in the mooring record. Wind-forced biweekly mixed Rossby gravity waves are a ubiquitous feature of the ocean circulation in this region, and we examine the possibility that they may play a role in chlorophyll variability. Statistical analyses and results from the OFAM3 (Ocean Forecasting Australia Model, version 3) eddy-resolving model provide support for both mechanisms. However, the model does not reproduce the observed spikes in chlorophyll. Climatological satellite chlorophyll data show that the elevated chlorophyll concentrations in this region are consistently observed year after year and so are reflective of recurring large-scale wind-and circulation-induced productivity enhancement in the central equatorial Indian Ocean. C1 [Strutton, P. G.; Phillips, H. E.] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas, Australia. [Strutton, P. G.; Phillips, H. E.] Australian Res Council, Ctr Excellence Climate Syst Sci, Hobart, Tas, Australia. [Coles, V. J.; Hood, R. R.] Univ Maryland, Ctr Environm Sci, Horn Point Lab, Cambridge, MD USA. [Matear, R. J.] Commonwealth Sci & Ind Res Org, Marine & Atmospher Res, Hobart, Tas, Australia. [McPhaden, M. J.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Strutton, PG (reprint author), Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas, Australia. EM peter.strutton@utas.edu.au RI matear, richard/C-5133-2011; McPhaden, Michael/D-9799-2016; Phillips, Helen/I-3761-2013; OI Phillips, Helen/0000-0002-2941-7577; Strutton, Peter/0000-0002-2395-9471 FU Australian Research Council's Future Fellow scheme; Australian Research Council's Centre of Excellence for Climate System Science; Australian Research Council; CSIRO; CSIRO Wealth from Oceans National Flagship; NOAA FX P. G. Strutton is supported by the Australian Research Council's Future Fellow scheme and the Centre of Excellence for Climate System Science. H. E. Phillips is supported by the Australian Research Council's Discovery Project scheme and the Centre of Excellence for Climate System Science. R. Hood was supported by a CSIRO Frohlich fellowship. R. J. Matear is supported by the CSIRO Wealth from Oceans National Flagship. M. J. McPhaden is supported by NOAA. This is NOAA/PMEL contribution number 4113 and UMCES contribution number 4963. NR 43 TC 2 Z9 2 U1 0 U2 10 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2015 VL 12 IS 8 BP 2367 EP 2382 DI 10.5194/bg-12-2367-2015 PG 16 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CH2FG UT WOS:000353840500007 ER PT J AU Ballantyne, AP Andres, R Houghton, R Stocker, BD Wanninkhof, R Anderegg, W Cooper, LA DeGrandpre, M Tans, PP Miller, JB Alden, C White, JWC AF Ballantyne, A. P. Andres, R. Houghton, R. Stocker, B. D. Wanninkhof, R. Anderegg, W. Cooper, L. A. DeGrandpre, M. Tans, P. P. Miller, J. B. Alden, C. White, J. W. C. TI Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty SO BIOGEOSCIENCES LA English DT Article ID LAND-COVER CHANGE; NET PRIMARY PRODUCTION; ATMOSPHERIC CO2; INTERANNUAL VARIABILITY; SAMPLING-NETWORK; SOUTHERN-OCEAN; DIOXIDE; EMISSIONS; CYCLE; CLIMATE AB Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2 sigma uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr(-1) in the 1960s to 0.3 Pg C yr(-1) in the 2000s due to an expansion of the atmospheric observation network. The 2 sigma uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr(-1) in the 1960s to almost 1.0 Pg C yr(-1) during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a similar to 20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere, although there are certain environmental costs associated with this service, such as the acidification of ocean waters. C1 [Ballantyne, A. P.; Cooper, L. A.; DeGrandpre, M.] Univ Montana, Missoula, MT 59812 USA. [Andres, R.] Oak Ridge Natl Lab, Carbon Dioxide Informat Anal Ctr, Oak Ridge, TN USA. [Houghton, R.] Woods Hole Res Ctr, Falmouth, MA USA. [Stocker, B. D.] Univ London Imperial Coll Sci Technol & Med, London, England. [Wanninkhof, R.] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. [Anderegg, W.] Princeton Univ, Princeton Environm Inst, Princeton, NJ 08544 USA. [Tans, P. P.; Miller, J. B.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Alden, C.] Stanford Univ, Palo Alto, CA 94304 USA. [White, J. W. C.] Univ Colorado, Boulder, CO 80309 USA. RP Ballantyne, AP (reprint author), Univ Montana, Missoula, MT 59812 USA. EM ashley.ballantyne@umontana.edu RI White, James/A-7845-2009; Stocker, Benjamin/K-3194-2015; OI White, James/0000-0001-6041-4684; Stocker, Benjamin/0000-0003-2697-9096; ALDEN, CAROLINE/0000-0002-5249-7800; ANDRES, ROBERT/0000-0001-8781-4979 FU NSF; NRC FX This research was supported by grants from NSF and NRC to A. P. Ballantyne. This work would not have been possible without the continuous atmospheric sampling efforts of dozens of volunteer scientists from around the world and careful measurements by researchers at NOAA ESRL. We would also like to thank Gregg Marland, Glen Peters, and one anonymous reviewer, as well as students in the Emerging Topics in Ecosystem Science seminar at the University of Montana for helpful feedback. NR 69 TC 12 Z9 12 U1 7 U2 37 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2015 VL 12 IS 8 BP 2565 EP 2584 DI 10.5194/bg-12-2565-2015 PG 20 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CH2FG UT WOS:000353840500019 ER PT J AU Wu, H Tang, WS Zhou, W Stavila, V Rush, JJ Udovic, TJ AF Wu, Hui Tang, Wan Si Zhou, Wei Stavila, Vitalie Rush, John J. Udovic, Terrence J. TI The structure of monoclinic Na2B10H10: a combined diffraction, spectroscopy, and theoretical approach SO CRYSTENGCOMM LA English DT Article ID SODIUM; NA; SCATTERING; NA2B12H12; BATTERIES; CRYSTAL; NUCLEAR; RB AB Neutron powder diffraction measurements of a specially synthesized (Na2B10D10)-B-11 compound, buttressed by comparative measurements and calculations of vibrational dynamics, have led to an improved, Rietveld-refined, structural model for its low-temperature monoclinic phase. The detailed atomic arrangements and phases for this compound are important for an understanding of its potential roles for fast-ion-battery and hydrogen-storage applications. A comparison of the calculated phonon densities of states (PDOSs) based on density functional theory for both the previously published structure and our new modified structure show that the PDOS of the latter is in noticeably better agreement with that experimentally observed by neutron vibrational spectroscopy. Moreover, this improved structure is predicted to have a higher stability and exhibits more reasonable separations between all neighboring sodium cations and decahydro-closo-decaborate anions. These results demonstrate the effectiveness of combining first-principles computational methods and neutron-based structural and spectroscopic techniques for determining crystal structures for such complex hydrogenous materials. C1 [Wu, Hui; Tang, Wan Si; Zhou, Wei; Rush, John J.; Udovic, Terrence J.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Wu, Hui; Tang, Wan Si; Zhou, Wei; Rush, John J.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Stavila, Vitalie] Sandia Natl Labs, Energy Nanomat, Livermore, CA 94551 USA. RP Wu, H (reprint author), Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM hui.wu@nist.gov; udovic@nist.gov RI Wu, Hui/C-6505-2008; Zhou, Wei/C-6504-2008 OI Wu, Hui/0000-0003-0296-5204; Zhou, Wei/0000-0002-5461-3617 FU US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy [DE-EE0002978]; US DOE [DE-AC02-06CH11357] FX This work was partially supported by the US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy under grant no. DE-EE0002978. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357. The authors thank Drs. M. R. Hudson and C. M. Brown for their assistance in providing the synchrotron XRPD measurements. NR 20 TC 8 Z9 8 U1 3 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1466-8033 J9 CRYSTENGCOMM JI Crystengcomm PY 2015 VL 17 IS 18 BP 3533 EP 3540 DI 10.1039/c5ce00369e PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA CG9MW UT WOS:000353640900018 ER PT J AU McKenna, MF Calambokidis, J Oleson, EM Laist, DW Goldbogen, JA AF McKenna, Megan F. Calambokidis, John Oleson, Erin M. Laist, David W. Goldbogen, Jeremy A. TI Simultaneous tracking of blue whales and large ships demonstrates limited behavioral responses for avoiding collision SO ENDANGERED SPECIES RESEARCH LA English DT Article ID ATLANTIC RIGHT WHALES; EASTERN NORTH PACIFIC; HUMPBACK WHALES; VESSEL SPEED; CALIFORNIA; IDENTIFICATION; PROBABILITY; ABUNDANCE; INSIGHTS; STRIKES AB Collisions between ships and whales are reported throughout the world's oceans. For some endangered whale populations, ship strikes are a major threat to survival and recovery. Factors known to affect the incidence and severity of collisions include spatial co-occurrence of ships and whales, hydrodynamic forces around ships, and ship speed. Less understood and likely key to understanding differences in interactions between whales and ships is whale behavior in the presence of ships. In commercial shipping lanes off southern California, we simultaneously recorded blue whale behavior and commercial ship movement. A total of 20 ship passages with 9 individual whales were observed at distances ranging from 60 to 3600 m. We documented a dive response (i.e. shallow dive during surface period) of blue whales in the path of oncoming ships in 55% of the ship passages, but found no evidence for lateral avoidance. Descent rate, duration, and maximum depth of the observed response dives were similar to whale behavior immediately after suction-cup tag deployments. These behavioral data were combined with ship hydrodynamic forces to evaluate the maximum ship speed that would allow a whale time to avoid an oncoming ship. Our analysis suggests that the ability of blue whales to avoid ships is limited to relatively slow descents, with no horizontal movements away from a ship. We posit that this constrained response repertoire would limit their ability to adjust their response behavior to different ship speeds. This is likely a factor in making blue whales, and perhaps other large whales, more vulnerable to ship strikes. C1 [McKenna, Megan F.; Laist, David W.] Marine Mammal Commiss, Bethesda, MD 20814 USA. [McKenna, Megan F.; Calambokidis, John] Cascadia Res Collect, Olympia, WA 98501 USA. [Oleson, Erin M.] NOAA, NMFS, Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96814 USA. [Goldbogen, Jeremy A.] Stanford Univ, Dept Biol, Hopkins Marine Stn, Pacific Grove, CA 93950 USA. RP McKenna, MF (reprint author), Natl Pk Serv, 1201 Oakridge Dr, Ft Collins, CO 80525 USA. EM megan_f_mckenna@nps.gov OI Goldbogen, Jeremy/0000-0002-4170-7294 FU ONR [N000140811221]; NMFS Marine Mammal Conservation Division; National Academy of Science; postdoctoral fellowship; Channel Islands National Marine Sanctuary FX Tag data were collected under NOAA-NMFS Permit 540-1811 issued to J. Calambokidis. The authors gratefully acknowledge the efforts of all involved in collecting these data, especially: S. Katz, K. Stingle, S. Kerosky, A. Friedlaender, B. Southall, E. Falcone, G. Schorr, C. Garsha and numerous field volunteers. We thank Steve Katz of the Channel Islands National Marine Sanctuary for continued support of the project, securing time onboard the RV 'Shearwater', his assistance with field logistics, and his insight on data analysis. The Channel Islands National Marine Sanctuary provided assistance in field operations, and T. Shinn, M. Davis, and C. Lara are thanked for their help. This work was supported by ONR, Award Number N000140811221 to E. Oleson and J. Hildebrand. Additional funds were provided by a NMFS Marine Mammal Conservation Division, National Academy of Science, postdoctoral fellowship awarded to the senior author and Channel Islands National Marine Sanctuary. NR 39 TC 4 Z9 5 U1 5 U2 28 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 1863-5407 EI 1613-4796 J9 ENDANGER SPECIES RES JI Endanger. Species Res. PY 2015 VL 27 IS 3 BP 219 EP 232 DI 10.3354/esr00666 PG 14 WC Biodiversity Conservation SC Biodiversity & Conservation GA CH3GK UT WOS:000353916900003 ER PT J AU Prat, OP Nelson, BR AF Prat, O. P. Nelson, B. R. TI Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002-2012) SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID SOUTHEASTERN UNITED-STATES; GLOBAL PRECIPITATION; TROPICAL RAINFALL; ERROR VARIANCE; NEXRAD DATA; RESOLUTION; VERIFICATION; VARIABILITY; VALIDATION; MODEL AB We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, and surface observations to derive precipitation characteristics over the contiguous United States (CONUS) for the period 2002-2012. This comparison effort includes satellite multi-sensor data sets (bias-adjusted TMPA 3B42, near-real-time 3B42RT), radar estimates (NCEP Stage IV), and rain gauge observations. Remotely sensed precipitation data sets are compared with surface observations from the Global Historical Climatology Network-Daily (GHCN-D) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model). The comparisons are performed at the annual, seasonal, and daily scales over the River Forecast Centers (RFCs) for CONUS. Annual average rain rates present a satisfying agreement with GHCN-D for all products over CONUS (+/- 6 %). However, differences at the RFC are more important in particular for near-real-time 3B42RT precipitation estimates (-33 to +49 %). At annual and seasonal scales, the bias-adjusted 3B42 presented important improvement when compared to its near-real-time counterpart 3B42RT. However, large biases remained for 3B42 over the western USA for higher average accumulation (>= 5 mm day(-1)) with respect to GHCN-D surface observations. At the daily scale, 3B42RT performed poorly in capturing extreme daily precipitation (> 4 in. day(-1)) over the Pacific Northwest. Furthermore, the conditional analysis and a contingency analysis conducted illustrated the challenge in retrieving extreme precipitation from remote sensing estimates. C1 [Prat, O. P.] N Carolina State Univ, CICS NC, Asheville, NC 28804 USA. [Prat, O. P.] NOAA, Natl Ctr Environm Informat, Asheville, NC USA. [Nelson, B. R.] NOAA, Ctr Weather & Climate, Natl Ctr Environm Informat, Asheville, NC USA. RP Prat, OP (reprint author), N Carolina State Univ, CICS NC, Asheville, NC 28804 USA. EM olivier.prat@noaa.gov RI Prat, Olivier/B-7016-2009; Nelson, Brian/D-6432-2014 OI Prat, Olivier/0000-0002-9289-5723; FU NOAA/NCDC Climate Data Records and Science Stewardship Program through the Cooperative Institute for Climate and Satellites - North Carolina [NA09NES4400006] FX This research was supported by the NOAA/NCDC Climate Data Records and Science Stewardship Program through the Cooperative Institute for Climate and Satellites - North Carolina under the agreement NA09NES4400006. NR 50 TC 9 Z9 10 U1 2 U2 20 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PY 2015 VL 19 IS 4 BP 2037 EP 2056 DI 10.5194/hess-19-2037-2015 PG 20 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA CH2TH UT WOS:000353877000026 ER PT J AU Reyes, DR AF Reyes, Darwin R. TI The art in science of MicroTAS: the 2014 issue SO LAB ON A CHIP LA English DT Editorial Material C1 NIST, Gaithersburg, MD 20899 USA. RP Reyes, DR (reprint author), NIST, Gaithersburg, MD 20899 USA. EM darwin.reyes@nist.gov FU MicroTAS; Chemical and Biological Microsystems Society (CBMS); Lab on a Chip journal; NIST FX The Art in Science award is sponsored and supported by MicroTAS, the Chemical and Biological Microsystems Society (CBMS), the Lab on a Chip journal, and NIST. The award consists of a monetary prize ($2,500), an award certificate, and the coveted front cover of the Lab on a Chip journal. Please check the MicroTAS 2015 conference website for further details regarding the submission of images for the next MicroTAS Conference in Gyeongju, Korea. NR 1 TC 0 Z9 0 U1 1 U2 9 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1473-0197 EI 1473-0189 J9 LAB CHIP JI Lab Chip PY 2015 VL 15 IS 9 BP 1981 EP 1983 DI 10.1039/c5lc90049b PG 3 WC Biochemical Research Methods; Chemistry, Multidisciplinary; Nanoscience & Nanotechnology SC Biochemistry & Molecular Biology; Chemistry; Science & Technology - Other Topics GA CG3ZR UT WOS:000353219800001 PM 25868983 ER PT S AU Andrews, RW Peterson, RW Purdy, TP Cicak, K Simmonds, RW Regal, CA Lehnert, KW AF Andrews, R. W. Peterson, R. W. Purdy, T. P. Cicak, K. Simmonds, R. W. Regal, C. A. Lehnert, K. W. BE Kudryashov, AV Paxton, AH Ilchenko, VS Aschke, L Washio, K TI Connecting microwave and optical frequencies with a vibrational degree of freedom SO LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XVII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Laser Resonators, Microresonators, and Beam Control XVII CY FEB 09-12, 2015 CL San Francisco, CA SP SPIE DE optomechanics; electromechanics; silicon nitride; frequency conversion ID RADIATION; CONVERSION; MEMBRANE; RECEIVER; WINDOWS; CAVITY AB We describe the construction of a device that converts electromagnetic signals from microwave (7 GHz) to optical (282 THz) frequencies, and vice-versa. The frequency converter relies on a flexible silicon nitride membrane that is coupled via radiation pressure to both a microwave circuit and a Fabry-Perot cavity. The frequency converter achieves conversion efficiencies of 10%, and is potentially capable of frequency conversion of quantum signals. C1 [Andrews, R. W.; Peterson, R. W.; Purdy, T. P.; Regal, C. A.; Lehnert, K. W.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Andrews, R. W.; Peterson, R. W.; Purdy, T. P.; Cicak, K.; Simmonds, R. W.; Regal, C. A.; Lehnert, K. W.] NIST, Boulder, CO 80309 USA. [Andrews, R. W.; Peterson, R. W.; Purdy, T. P.; Regal, C. A.; Lehnert, K. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Andrews, RW (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. EM reed.andrews@colorado.edu RI Lehnert, Konrad/B-7577-2009 OI Lehnert, Konrad/0000-0002-0750-9649 NR 29 TC 1 Z9 1 U1 1 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-433-2 J9 PROC SPIE PY 2015 VL 9343 AR 934309 DI 10.1117/12.2082941 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BC6AK UT WOS:000353695900003 ER PT J AU Meyer, M Mulholland, GW Bryg, V Urban, DL Yuan, ZG Ruff, GA Cleary, T Yang, JA AF Meyer, Marit Mulholland, George W. Bryg, Victoria Urban, David L. Yuan, Zeng-guang Ruff, Gary A. Cleary, Thomas Yang, Jiann TI Smoke Characterization and Feasibility of the Moment Method for Spacecraft Fire Detection SO AEROSOL SCIENCE AND TECHNOLOGY LA English DT Article ID SIZE DISTRIBUTIONS; EMISSIONS; INSTRUMENTS; COMBUSTION; PARTICLES AB The Smoke Aerosol Measurement Experiment (SAME) has been conducted twice by the National Aeronautics and Space Administration and provided real-time aerosol data in a spacecraft micro-gravity environment. Flight experiment results have been recently analyzed with respect to comparable ground-based experiments. The ground tests included an electrical mobility analyzer as a reference instrument for measuring particle size distributions of the smoke produced from overheating five common spacecraft materials. Repeatable sample surface temperatures were obtained with the SAME ground-based hardware, and measurements were taken with the aerosol instruments returned from the International Space Station comprising two commercial smoke detectors, three aerosol instruments, which measure moments of the particle size distribution, and a thermal precipitator for collecting smoke particles for transmission electron microscopy (TEM). Moment averages from the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment) allowed calculation of the count mean diameter and the diameter of average mass of smoke particles. Additional size distribution information, including geometric mean diameter and geometric standard deviations, can be calculated if the particle size distribution is assumed to be lognormal. Both unaged and aged smoke particle size distributions from ground experiments were analyzed to determine the validity of lognormal assumption. Comparisons are made between flight experiment particle size distribution statistics generated by moment calculations and microscopy particle size distributions (using projected area equivalent diameter) from TEM grids, which have been returned to the Earth. C1 [Meyer, Marit; Urban, David L.; Ruff, Gary A.] NASA, Glenn Res Ctr, Combust Phys & Reacting Proc Branch, Cleveland, OH 44135 USA. [Mulholland, George W.] Univ Maryland, College Pk, MD 20742 USA. [Mulholland, George W.; Cleary, Thomas; Yang, Jiann] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Bryg, Victoria; Yuan, Zeng-guang] Natl Ctr Space Explorat Res, Cleveland, OH USA. RP Meyer, M (reprint author), NASA, Glenn Res Ctr, Combust Phys & Reacting Proc Branch, 21000 Brookpk Rd, Cleveland, OH 44135 USA. EM marit.meyer@nasa.gov NR 20 TC 1 Z9 1 U1 4 U2 8 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0278-6826 EI 1521-7388 J9 AEROSOL SCI TECH JI Aerosol Sci. Technol. PY 2015 VL 49 IS 5 BP 299 EP 309 DI 10.1080/02786826.2015.1025124 PG 11 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CG3GE UT WOS:000353165900003 ER PT J AU Mulholland, GW Meyer, M Urban, DL Ruff, GA Yuan, ZG Bryg, V Cleary, T Yang, JA AF Mulholland, George W. Meyer, Marit Urban, David L. Ruff, Gary A. Yuan, Zeng-guang Bryg, Victoria Cleary, Thomas Yang, Jiann TI Pyrolysis Smoke Generated Under Low-Gravity Conditions SO AEROSOL SCIENCE AND TECHNOLOGY LA English DT Article ID THERMAL-DEGRADATION; ORGANIC-COMPOUNDS; MECHANISM; PARTICLES AB A series of smoke experiments were carried out in the Microgravity Science Glovebox on the International Space Station (ISS) Facility to assess the impact of low-gravity conditions on the properties of the smoke aerosol. The smokes were generated by heating five different materials commonly used in space vehicles. This study focuses on the effects of flow and heating temperature for low-gravity conditions on the pyrolysis rate, the smoke plume structure, the smoke yield, the average particle size, and particle structure. Low-gravity conditions allowed a unique opportunity to study the smoke plume for zero external flow without the complication of buoyancy. The diameter of average mass increased on average by a factor of 1.9 and the morphology of the smoke changed from agglomerate with flow to spherical at no flow for one material. The no flow case is an important scenario in spacecraft where smoke could be generated by the overheating of electronic components in confined spaces. From electron microcopy of samples returned to earth, it was found that the smoke can form an agglomerate shape as well as a spherical shape, which had previously been the assumed shape. A possible explanation for the shape of the smoke generated by each material is presented. C1 [Mulholland, George W.] Univ Maryland, College Pk, MD 20742 USA. [Mulholland, George W.; Cleary, Thomas; Yang, Jiann] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Meyer, Marit; Urban, David L.; Ruff, Gary A.] NASA, Glenn Res Ctr, Cleveland, OH USA. [Yuan, Zeng-guang; Bryg, Victoria] Natl Ctr Space Explorat Res, Cleveland, OH USA. RP Mulholland, GW (reprint author), Univ Maryland, Dept Mech Engn, 2181 Glenn L Martin Hall, College Pk, MD 20742 USA. EM georgewm@umd.edu NR 24 TC 1 Z9 1 U1 1 U2 2 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0278-6826 EI 1521-7388 J9 AEROSOL SCI TECH JI Aerosol Sci. Technol. PY 2015 VL 49 IS 5 BP 310 EP 321 DI 10.1080/02786826.2015.1025125 PG 12 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CG3GE UT WOS:000353165900004 ER PT J AU Forbes, TP Sisco, E AF Forbes, Thomas P. Sisco, Edward TI Trace detection and competitive ionization of erythritol tetranitrate in mixtures using direct analysis in real time mass spectrometry SO ANALYTICAL METHODS LA English DT Article ID DESORPTION ELECTROSPRAY-IONIZATION; ION MOBILITY SPECTROMETRY; FLOW FOCUSING IONIZATION; ATMOSPHERIC-PRESSURE; EXPLOSIVES DETECTION; AMBIENT CONDITIONS; SENSITIVITY AB Direct analysis in real time (DART) mass spectrometry (MS) was used for trace detection of the nitrate ester explosive erythritol tetranitrate (ETN) and its sugar alcohol precursor erythritol. The present investigation revealed the impact of competitive ionization between ETN, erythritol, and nitric acid for the detection of sugar alcohol-based homemade explosives. DART-MS facilitated the direct investigation of matrix effects related to the desorption process and compound volatility, as well as the ionization process, neutralization, and affinity for nitrate adduct formation. ETN and erythritol were directly detected at nanogram to sub-nanogram levels by DART-MS. C1 [Forbes, Thomas P.; Sisco, Edward] NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. RP Forbes, TP (reprint author), NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. EM thomas.forbes@nist.gov RI Forbes, Thomas/M-3091-2014 OI Forbes, Thomas/0000-0002-7594-5514 FU U.S. Department of Homeland Security Science and Technology Directorate [IAA HSHQDC-12-X-00024]; National Institute of Standards and Technology FX The U.S. Department of Homeland Security Science and Technology Directorate sponsored a portion of the production of this material under Interagency Agreement IAA HSHQDC-12-X-00024 with the National Institute of Standards and Technology. The authors thank Dr Chris Szakal and Dr Shin Muramoto at the National Institute of Standards and Technology (NIST) for stimulating discussion. NR 24 TC 2 Z9 2 U1 1 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1759-9660 EI 1759-9679 J9 ANAL METHODS-UK JI Anal. Methods PY 2015 VL 7 IS 8 BP 3632 EP 3636 DI 10.1039/c4ay02694b PG 5 WC Chemistry, Analytical; Food Science & Technology; Spectroscopy SC Chemistry; Food Science & Technology; Spectroscopy GA CF9PM UT WOS:000352897500044 ER PT J AU Butler, BW Wagenbrenner, NS Forthofer, JM Lamb, BK Shannon, KS Finn, D Eckman, RM Clawson, K Bradshaw, L Sopko, P Beard, S Jimenez, D Wold, C Vosburgh, M AF Butler, B. W. Wagenbrenner, N. S. Forthofer, J. M. Lamb, B. K. Shannon, K. S. Finn, D. Eckman, R. M. Clawson, K. Bradshaw, L. Sopko, P. Beard, S. Jimenez, D. Wold, C. Vosburgh, M. TI High-resolution observations of the near-surface wind field over an isolated mountain and in a steep river canyon SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID COMPLEX TERRAIN; MODEL; CAMPAIGN; VALLEY; FLOW AB A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., similar to 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The wind data are presented in terms of four flow regimes: upslope, afternoon, downslope, and a synoptically driven regime. There were notable differences in the data collected from the two terrain types. For example, wind speeds on the isolated mountain increased with distance upslope during upslope flow, but generally decreased with distance upslope at the river canyon site during upslope flow. In a downslope flow, wind speed did not have a consistent trend with position on the isolated mountain, but generally increased with distance upslope at the river canyon site. The highest measured speeds occurred during the passage of frontal systems on the isolated mountain. Mountain-top winds were often twice as high as wind speeds measured on the surrounding plain. The highest speeds measured in the river canyon occurred during late morning hours and were from easterly down-canyon flows, presumably associated with surface pressure gradients induced by formation of a regional thermal trough to the west and high pressure to the east. Under periods of weak synoptic forcing, surface winds tended to be decoupled from large-scale flows, and under periods of strong synoptic forcing, variability in surface winds was sufficiently large due to terrain-induced mechanical effects (speed-up over ridges and decreased speeds on leeward sides of terrain obstacles) that a large-scale mean flow would not be representative of surface winds at most locations on or within the terrain feature. These findings suggest that traditional operational weather model (i.e., with numerical grid resolutions of around 4 km or larger) wind predictions are not likely to be good predictors of local nearsurface winds on sub-grid scales in complex terrain. Measurement data can be found at http://www.firemodels.org/index.php/windninja-introduction/windninja-publications. C1 [Butler, B. W.; Wagenbrenner, N. S.; Forthofer, J. M.; Shannon, K. S.; Bradshaw, L.; Sopko, P.; Jimenez, D.; Wold, C.; Vosburgh, M.] US Forest Serv, Rocky Mt Res Stn, Missoula Fire Sci Lab, Missoula, MT 59808 USA. [Wagenbrenner, N. S.; Lamb, B. K.] Washington State Univ, Lab Atmospher Res, Pullman, WA 99164 USA. [Finn, D.; Eckman, R. M.; Clawson, K.; Beard, S.] NOAA, Air Resources Lab, Field Res Div, Idaho Falls, ID 83402 USA. RP Butler, BW (reprint author), US Forest Serv, Rocky Mt Res Stn, Missoula Fire Sci Lab, 5775 Hwy 10, Missoula, MT 59808 USA. EM bwbutler@fs.fed.us RI Clawson, Kirk/C-5910-2016; Eckman, Richard/D-1476-2016; Finn, Dennis/C-3204-2016 OI Clawson, Kirk/0000-0002-8789-9607; FU Joint Fire Science Program; US Forest Service; Washington State University; National Oceanic and Atmospheric Administration Field Research Division FX The Department of Interior Bureau of Land Management Idaho Falls, ID field office, facilitated the field campaign, and Barry Sorenson provided critical advice on local conditions, access roads, and weather as well as permission to store equipment on site during the deployment at Big Southern Butte. Thanks to Nicole Van Dyk, Olga Martyusheva, Jack Kautz, Peter Robichaud, and Ben Kopyscianski of the Rocky Mountain Research Station for help with the field installation and maintenance at the Salmon River site. Funding was provided by the Joint Fire Science Program, the US Forest Service, Washington State University, and the National Oceanic and Atmospheric Administration Field Research Division. NR 33 TC 4 Z9 4 U1 0 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 7 BP 3785 EP 3801 DI 10.5194/acp-15-3785-2015 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG0LF UT WOS:000352957400010 ER PT S AU Oswald, KJ Leitner, JK Rankin, D Barwick, DH Freeman, BJ Greig, T Bangs, M Quattro, JM AF Oswald, Kenneth J. Leitner, Jean K. Rankin, Daniel Barwick, D. Hugh Freeman, Byron J. Greig, Thomas Bangs, Max Quattro, Joseph M. BE Tringali, MD Long, JM Birdsong, TW Allen, MS TI Evolutionary Genetic Diversification, Demography, and Conservation of Bartram's Bass SO BLACK BASS DIVERSITY: MULTIDISCIPLINARY SCIENCE FOR CONSERVATION SE American Fisheries Society Symposium LA English DT Proceedings Paper CT American-Fisheries-Society-Southern-Division Symposium on Black Bass Diversity: Multidisciplinary Science for Conservation CY FEB 08-10, 2013 CL Nashville, TN SP Amer Fisheries Soc, So Div, BASS, Amer Fisheries Soc, Fisheries Management Sect, Amer Fisheries Soc, Florida Chapter, Florida Fish & Wildlife Conservat Commiss, Amer Fisheries Soc, Georgia Chapter, Georgia Power, Int Game Fish Assoc, Amer Fisheries Soc, Minnesota Chapter, Natl Fish & Wildlife Fdn, N Amer Black Bass Coalit, Amer Fisheries Soc, Oklahoma Chapter, Oklahoma Cooperat Fish & Wildlife Res Unit, SE Aquat Resources Partnership, Amer Fisheries Soc, Tennessee Chapter, Tennessee Wildlife Resources Agcy, Amer Fisheries Soc, Texas Chapter, Texas Pk & Wildlife Dept, Univ Florida, Amer Fisheries Soc, Virginia Chapter ID FRESH-WATER FISHES; ATLANTIC COASTAL-PLAIN; UNITED-STATES; BLACK BASS; DNA POLYMORPHISM; SOUTHEASTERN USA; SOUTH-CAROLINA; SAVANNA RIVER; REDEYE BASS; MICROPTERUS AB The highly diverse freshwater ichthyofauna of the southeastern United States' Atlantic slope is imperiled due to numerous anthropogenic insults to the region's lotic environments. Damming, pollution, riparian destruction, and introductions of nonnative species have all contributed significantly to reductions in freshwater biodiversity. Bartram's Bass (an as yet unnamed species similar to Redeye Bass Micropterus coosae), endemic to the Savannah River, is threatened with extirpation from multiple basin provinces via hybridization with introduced nonnative Alabama Bass M. henshalli and Smallmouth Bass M. dolomieu. Estimation of evolutionary and demographic parameters is critical to formulation of management plans designed to conserve this rare Atlantic slope endemic. Here we utilize analyses of DNA sequences from mitochondrial and nuclear loci to examine evolutionary patterns displayed by Bartram's Bass. Phylogenetic reconstructions and genetic variance partitioning revealed appreciable levels of population structure throughout the Savannah River basin, and exact tests of population differentiation identified several management units. Coalescent analyses returned mean effective population sizes (N-e) for extant populations ranging from 415 to 3,228 individuals (median range 388-2,531 individuals), rather recent times since population separation within the drainage (mean range 999-73,282 years before present; median range 493-65,417 years before present), and high population migration rates (2N(e)m > 1) among higher-latitude provinces, particularly the upper Savannah and Seneca rivers. Estimates of phylogenetic and demographic parameters, taken in conjunction with introgression of nonnative alleles resulting from micropterid introductions into the Savannah River, present the need for a comprehensive, basinwide conservation strategy to ensure the long-term in situ preservation of Bartram's Bass. C1 [Oswald, Kenneth J.; Bangs, Max; Quattro, Joseph M.] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA. [Leitner, Jean K.] South Carolina Dept Nat Resources, Eastover, SC 29044 USA. [Rankin, Daniel] South Carolina Dept Nat Resources, Clemson, SC 29631 USA. [Barwick, D. Hugh] Duke Energy, Charlotte, NC 28201 USA. [Freeman, Byron J.] Georgia Museum Nat Hist, Athens, GA 30602 USA. [Greig, Thomas] Natl Ocean & Atmospher Adm, Charleston, SC 29412 USA. [Quattro, Joseph M.] Univ S Carolina, Marine Sci Program, Columbia, SC 29208 USA. RP Oswald, KJ (reprint author), Miami Univ, Dept Biol, 501 East High St, Oxford, OH 45056 USA. EM oswaldkj@miamioh.edu NR 71 TC 3 Z9 3 U1 2 U2 2 PU AMER FISHERIES SOC PI BETHESDA PA 5410 GROSVENOR LANE, STE 110, BETHESDA, MD 20814-2199 USA SN 0892-2284 BN 978-1-934874-40-0 J9 AM FISH S S JI Am. Fish. Soc. Symp. PY 2015 VL 82 BP 601 EP 613 PG 13 WC Biodiversity Conservation; Fisheries SC Biodiversity & Conservation; Fisheries GA BC4QG UT WOS:000352823400044 ER PT S AU Lawall, J AF Lawall, John BE ChangHasnain, CJ Fattal, D Koyama, F Zhou, W TI Membrane-in-the-middle optomechanics with high-contrast gratings SO HIGH CONTRAST METASTRUCTURES IV SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on High Contrast Metastructures IV CY FEB 11-12, 2015 CL San Francisco, CA SP SPIE DE optomechanics; HCG; Fabry-Perot; sub-wavelength; polarizability; SASER ID CAVITY; INDEX AB Sub-wavelength high contrast gratings offer the exciting possibility of "membrane-in-the-middle" optomechanics with a low-mass, highly reflective membrane. Theoretical treatments of this system have, to date, employed the model of a zero-thickness polarizable slab. The validity of this model is, however, limited, since in general highly reflective subwavelength gratings do not have an optical thickness that is much smaller than the wavelength of the light employed. In this work, we show that this model in fact makes incorrect predictions concerning the field modes in an optical cavity with a subwavelength grating at the exact center. It predicts that the modes can be classified in doublets, one member of which has an antisymmetric spatial profile and no absorption, the other of which has a symmetric spatial profile and absorptive losses. The situation for a subwavelength grating, however, is quite different: Both modes have absorptive loss, but the mode with the antisymmetric spatial profile has greater loss. In addition, the frequencies of the modes are interchanged: In the case of the zero-thickness slab, the antisymmetric mode has the lower frequency, while in the case of the subwavelength grating, it is the symmetric mode that is the low-frequency member of the doublet. These considerations will be important for a correct interpretation of experimental data as the performance of such sytems continues to improve. C1 Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Lawall, J (reprint author), Natl Inst Stand & Technol, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM john.lawall@nist.gov NR 27 TC 0 Z9 0 U1 2 U2 7 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-462-2 J9 PROC SPIE PY 2015 VL 9372 AR 937209 DI 10.1117/12.2086170 PG 9 WC Optics SC Optics GA BC5JG UT WOS:000353321800005 ER PT S AU Litorja, M Urbas, A Zong, Y AF Litorja, M. Urbas, A. Zong, Y. BE Pogue, BW Gioux, S TI Radiometric calibration to consider in quantitative clinical fluorescence imaging measurements SO MOLECULAR-GUIDED SURGERY: MOLECULES, DEVICES, AND APPLICATIONS SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Molecular-Guided Surgery - Molecules, Devices, and Applications CY FEB 07-08, 2015 CL San Francisco, CA SP SPIE, Intuit Surg Inc, LI COR Inc, Novadaq Technologies Inc DE calibration; fluorescence imaging; fluorescence guided intervention; fluorescence radiometry; standardization ID STANDARDS; FLUOROMETRY AB The fluorescent light detected by a clinical imager is assumed to be proportional only to the amount of fluorescent substance present in the sample and the level of excitation. Unfortunately, there are many factors that can add or subtract to the light signal directly attributable to the desired fluorescence emission, especially with fluorescence from inside the body imaged remotely. The quantification of fluorescence emission is feasible by calibrating the imager using international system of units (SI)-traceable physical and material calibration artifacts such that the detector's digital numbers (DN) can be converted to radiometric units. Here we discuss three calibration methods for quantitative clinical fluorescence imaging systems. C1 [Litorja, M.; Urbas, A.; Zong, Y.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Litorja, M (reprint author), Natl Inst Stand & Technol, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM litorja@nist.gov NR 12 TC 1 Z9 1 U1 0 U2 1 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-401-1 J9 PROC SPIE PY 2015 VL 9311 AR 931114 DI 10.1117/12.2086838 PG 4 WC Optics; Surgery SC Optics; Surgery GA BC5SW UT WOS:000353556000005 ER PT S AU Lim, K Shapiro, B Taylor, J Waks, E AF Lim, Kangmook Shapiro, Benjamin Taylor, Jacob Waks, Edo BE Cartwright, AN Nicolau, DV TI Scanning localized magnetic fields in microfluidic system using single spin in diamond nanocrystal SO NANOSCALE IMAGING, SENSING, AND ACTUATION FOR BIOMEDICAL APPLICATIONS XII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XII CY FEB 09-12, 2015 CL San Francisco, CA SP SPIE DE Nitrogen vacancy (NV) center; microfluidic devices; local magnetic field; electron spin resonance ID NITROGEN-VACANCY CENTERS; OPTICAL MICROSCOPY; RESONANCE; NANODIAMONDS; FLUORESCENCE; THERMOMETRY; RESOLUTION; COHERENCE; CELLS AB We demonstrate localized magnetometry using a single nitrogen vacancy (NV) center in the microfluidic devices. Our approach enables three dimensional manipulation of a magnetic object in solution with nanoscale spatial accuracy, and also enables us to orient its dipole moment. A diamond nanocrystal is integrated into the microfluidic device and serves as a local magnetic field probe. We vary the position of a magnetic object in liquid and map out its magnetic field distribution by perform continuous electron spin resonance (ESR) measurement on the NV center. These results open up the possibility for using NV centers as nanosized magnetometers with high sensitivity in microfluidic device for applications in chemical sensing, biological sensing and microscopy. C1 [Lim, Kangmook; Waks, Edo] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA. [Lim, Kangmook; Waks, Edo] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. [Shapiro, Benjamin] Univ Maryland, Dept Bioengn, College Pk, MD 20742 USA. [Shapiro, Benjamin] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA. [Taylor, Jacob; Waks, Edo] Univ Maryland, Natl Inst Stand & Technol, Joint Quantum Inst, College Pk, MD 20742 USA. RP Lim, K (reprint author), Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA. EM kmlim@umd.edu RI Taylor, Jacob/B-7826-2011 OI Taylor, Jacob/0000-0003-0493-5594 NR 38 TC 0 Z9 0 U1 2 U2 5 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-427-1 J9 PROC SPIE PY 2015 VL 9337 AR 933703 DI 10.1117/12.2076635 PG 5 WC Engineering, Biomedical; Nanoscience & Nanotechnology; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Science & Technology - Other Topics; Optics; Radiology, Nuclear Medicine & Medical Imaging GA BC5OD UT WOS:000353409800002 ER PT J AU McDermid, KJ Lefebvre, JA Balazs, GH AF McDermid, Karla J. Lefebvre, James A. Balazs, George H. TI Nonnative Seashore Paspalum, Paspalum vaginatum (Poaceae), Consumed by Hawaiian Green Sea Turtles (Chelonia mydas): Evidence for Nutritional Benefits SO PACIFIC SCIENCE LA English DT Article ID SODIC DRAINAGE WATER; ISLANDS; DIET; QUALITY; PLANTS; FOOD; BAY AB The Hawaiian green turtle, Chelonia mydas Linnaeus, is a marine herbivore known to feed on sea grasses and seaweeds. On the east side of the island of Hawai'i, at high tide, green turtles have been observed feeding on a terrestrial, salt-tolerant turfgrass: seashore paspalum, Paspalum vaginatum Swartz, first introduced to the Hawaiian Islands in the 1930s. The role of this grass in green turtle nutrition is unknown. Paspalum vaginatum samples were collected at Keaukaha Beach Park, Hilo, and analyzed for nutritional composition (percentage water, percentage ash, caloric value, C : N ratio, percentage protein, and percentage lignin). In addition, two red seaweeds, Pterocladiella capillacea (Gmelin) Santelices & Hommersand, a common food source for green turtles, and Ahnfeltiopsis concinna (J. Agardh) Silva & DeCew, an abundant high-intertidal species sometimes consumed by turtles, were analyzed for comparison. In contrast to the two seaweed species, Paspalum vaginatum contained approximately half the ash; 300-1,500 more calories/g ash-free dry weight; three to four times greater total protein; and 3-19 times higher lignin content. Green turtles in Hawai` i may opportunistically consume P. vaginatum because of its local abundance and /or its high protein and caloric content. In foraging areas where native macroalgal species have declined and/or turtle carrying capacity has been reached, green turtles may exploit new foods, such as seashore paspalum, and perhaps mitigate decline in somatic growth rates and body condition. C1 [McDermid, Karla J.; Lefebvre, James A.] Univ Hawaii, Dept Marine Sci, Hilo, HI 96720 USA. [Balazs, George H.] NOAA, Natl Marine Fisheries Serv, Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96818 USA. RP McDermid, KJ (reprint author), Univ Hawaii, Dept Marine Sci, 200 West Kawili St, Hilo, HI 96720 USA. EM mcdermid@hawaii.edu FU National Science Foundation [EPS-0903833] FX We thank University of Hawai'i at Hilo professors Jason Adolf, Steven Colbert, Marta deMaintenon, and Grant Gerrish for their input. Mahalo to Lucas Mead and Tara Holitzki for use of the UH Hilo Analytical Laboratory, and Clyde Imada of Bernice P. Bishop Museum for help tracking down herbarium specimens. Thank you to Kathryn Podorsek and Megan Santos for assisting with collections. We are grateful to those who kindly reviewed drafts and helped to improve this article: Karen Bjorndal, Audrey Rivero, Jeff Seminoff, Hannah Vander Zanden, and Rick Warshauer. Analytical analyses conducted by the UH Hilo Analytical Laboratory for this project were supported in part by National Science Foundation award no. EPS-0903833. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 43 TC 1 Z9 2 U1 5 U2 17 PU UNIV HAWAII PRESS PI HONOLULU PA 2840 KOLOWALU ST, HONOLULU, HI 96822 USA SN 0030-8870 EI 1534-6188 J9 PAC SCI JI Pac. Sci. PD JAN PY 2015 VL 69 IS 1 BP 49 EP 57 DI 10.2984/69.1.3 PG 9 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA CG3HR UT WOS:000353171100003 ER PT J AU DeCaluwe, SC Dhar, BM Huang, L He, Y Yang, K Owejan, JP Zhao, Y Talin, AA Dura, JA Wang, H AF DeCaluwe, S. C. Dhar, B. M. Huang, L. He, Y. Yang, K. Owejan, J. P. Zhao, Y. Talin, A. A. Dura, J. A. Wang, H. TI Pore collapse and regrowth in silicon electrodes for rechargeable batteries SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID LITHIUM-ION BATTERIES; SOLID-STATE AMORPHIZATION; ATOMIC LAYER DEPOSITION; IN-SITU OBSERVATION; AMORPHOUS-SILICON; NEUTRON REFLECTOMETRY; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; STRUCTURAL-CHANGES; VOLUME EXPANSION AB Structure and composition of an 11 nm thick amorphous silicon (a-Si) thin film anode, capped with 4 nm of alumina are measured, in operando, by neutron reflectivity (NR) and electrochemical impedance spectroscopy in a lithium half-cell. NR data are analyzed to quantify the a-Si thickness and composition at various states of charge over six cycles. The a-Si anode expands and contracts upon lithiation and delithiation, respectively, while maintaining its integrity and low interfacial roughness (<= 1.6 nm) throughout the cycling. The apparently non-linear expansion of the a-Si layer volume versus lithium content agrees with previous thin-film a-Si anode studies. However, a proposed pore collapse and regrowth (PCRG) mechanism establishes that the solid domains in the porous LixSi film expand linearly with Li content at 8.48 cm(3) mol(-1) Li, similar to crystalline Si. In the PCRG model, porosity is first consumed by expansion of solid domains upon lithiation, after which the film as a whole expands. Porosity is reestablished at 5-28% upon delithiation. Data show that the alumina protective layer on the a-Si film functions as an effective artificial solid electrolyte interphase (SEI), maintaining its structural integrity, low interfacial roughness, and relatively small transport resistance. No additional spontaneously-formed SEI is observed in this study. C1 [DeCaluwe, S. C.] Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA. [DeCaluwe, S. C.; Dura, J. A.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [DeCaluwe, S. C.; Wang, H.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Dhar, B. M.; Huang, L.; He, Y.; Yang, K.; Wang, H.] SUNY Binghamton, Inst Mat Res, Binghamton, NY USA. [Dhar, B. M.; Huang, L.; He, Y.; Yang, K.; Wang, H.] SUNY Binghamton, Dept Mech Engn, Binghamton, NY USA. [Dhar, B. M.; Wang, H.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [He, Y.; Zhao, Y.] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Owejan, J. P.] SUNY Alfred, Dept Mech & Elect Engn Technol, Alfred, NY 14802 USA. [Talin, A. A.] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Talin, A. A.] Sandia Natl Labs, Livermore, CA USA. RP Dura, JA (reprint author), NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM jdura@nist.gov; wangh@umd.edu RI Dura, Joseph/B-8452-2008; Zhao, Yiping/A-4968-2008 OI Dura, Joseph/0000-0001-6877-959X; FU NIST; General Motors; National Research Council; US Army Research Laboratory [W911NF-10-2-0107]; San Corporation, a Lockheed Martin Company, for the U.S. DOE National Nuclear Security Administration [DE-AC04-94AL85000]; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DESC0001160] FX HW acknowledges NIST and General Motors for their generous financial support. SCD thanks the National Research Council for funding via the Research Associates Program. YPH and YPZ were supported by US Army Research Laboratory with the contract number of W911NF-10-2-0107. Sandia is a multi-program laboratory operated by San Corporation, a Lockheed Martin Company, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000. AAT acknowledges partial support for data analysis and writing of the manuscript by Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under DESC0001160. NR 62 TC 4 Z9 4 U1 8 U2 65 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PY 2015 VL 17 IS 17 BP 11301 EP 11312 DI 10.1039/c4cp06017b PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA CG5NN UT WOS:000353338800023 PM 25839065 ER PT J AU Guemas, V Garcia-Serrano, J Mariotti, A Doblas-Reyes, F Caron, LP AF Guemas, Virginie Garcia-Serrano, Javier Mariotti, Annarita Doblas-Reyes, Francisco Caron, Louis-Philippe TI Prospects for decadal climate prediction in the Mediterranean region SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE climate prediction; initialization; Atlantic multidecadal oscillation; Mediterranean climate ID GENERAL-CIRCULATION MODEL; NORTH-ATLANTIC; MULTIMODEL-ENSEMBLE; SAHEL RAINFALL; COUPLED MODEL; TIME SCALES; VARIABILITY; OCEAN; PREDICTABILITY; INITIALIZATION AB The Mediterranean region stands as one of the most sensitive to climate change, both in terms of warming and drying. On shorter time-scales, internal variability has substantially affected the observed climate and in the next decade might enhance or compensate long-term trends. Here we compare the multi-model climate predictions produced within the framework of the CMIP5 (Coupled Model Intercomparison Project Phase 5) project with historical simulations to assess the level of multi-year climate prediction skill in the Mediterranean region beyond that originating from the model accumulated response to the external radiative forcings. We obtain a high and significant skill in predicting 4-year averaged annual and summer mean temperature over most of the study domain and in predicting precipitation for the same seasons over northern Europe and sub-Saharan Africa. A lower skill is found during the winter season but still positive for temperature. Although most of this high skill originates from the model response to the external radiative forcings, the initialization contributes to the temperature skill over the Mediterranean Sea and surrounding land areas. The high and significant correlations between the observed Mediterranean temperatures and the observed Atlantic multidecadal oscillation (AMO) in the summer and annual means are captured by the CMIP5 ensemble which suggests that the added skill is related to the ability of the CMIP5 ensemble to predict the AMO. Such a link to the AMO seems restricted to western Africa and summer means only for the precipitation case. C1 [Guemas, Virginie; Garcia-Serrano, Javier; Doblas-Reyes, Francisco; Caron, Louis-Philippe] Inst Catala Ciencies Clima, Climate Forecasting Unit, Barcelona 08005, Spain. [Guemas, Virginie] Ctr Natl Rech Meteorol, Grp Meteorol Grande Echelle & Climat, Grp Etude Atmosphere Meteorol, Toulouse, France. [Garcia-Serrano, Javier] Univ Paris 06, VARCLIM TG, LOCEAN IPSL, Paris, France. [Mariotti, Annarita] NOAA, Climate Program Off, Silver Spring, MD USA. [Doblas-Reyes, Francisco] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Caron, Louis-Philippe] Swedish Meteorol & Hydrol Inst, Rossby Ctr, S-60176 Norrkoping, Sweden. RP Guemas, V (reprint author), Inst Catala Ciencies Clima, Carrer Trueta 203, Barcelona 08005, Spain. EM virginie.guemas@ic3.cat RI Garcia-Serrano, Javier/I-5058-2015; Guemas, Virginie/B-9090-2016; Doblas-Reyes, Francisco/C-1228-2016; OI Garcia-Serrano, Javier/0000-0003-3913-0876; Guemas, Virginie/0000-0002-6340-3558; Doblas-Reyes, Francisco/0000-0002-6622-4280; Caron, Louis-Philippe/0000-0001-5221-0147 FU EU [FP7-ENV-2012-308378, FP7-ENV-2012-308299, FP7-ENV-2009-1-243964, FP7-ENV-2010-1-265192]; MICINN [CGL2010-20657]; Catalan Government; NOAA [NA10OAR4310208] FX This work was supported by the EU-funded SPECS (FP7-ENV-2012-308378), NACLIM(FP7-ENV-2012-308299), QWeCI (FP7-ENV-2009-1-243964), CLIM-RUN (FP7-ENV-2010-1-265192) projects, the MICINN-funded RUCSS (CGL2010-20657) project, the Catalan Government and the NOAA grant NA10OAR4310208. Oriol Mula-Valls and Domingo Manubens-Gil are thoroughly acknowledged for their invaluable technical support. NR 67 TC 5 Z9 5 U1 2 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JAN PY 2015 VL 141 IS 687 BP 580 EP 597 DI 10.1002/qj.2379 PN B PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LV UT WOS:000353413500020 ER PT J AU Jansen, M Ferrari, R AF Jansen, Malte Ferrari, Raffaele TI Diagnosing the vertical structure of the eddy diffusivity in real and idealized atmospheres SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE eddy diffusivity; criticality; turbulence; extratropics ID BAROCLINIC INSTABILITY; GEOSTROPHIC TURBULENCE; POTENTIAL VORTICITY; CIRCULATION; SENSITIVITY; TRANSPORT; FLUXES; SCALE; EQUILIBRATION; TROPOSPHERE AB The Earth's extratropical troposphere is equilibrated by turbulent eddy fluxes of potential temperature and momentum. The equilibrated state has the remarkable characteristic that isentropic slopes leaving the surface in the subtropics reach the tropopause near the Poles. It has been speculated that turbulent eddy fluxes maintain this state for a wide range of radiative forcing and planetary parameters. In a previous study, the authors showed that this state needs to be associated with an eddy diffusivity of Ertel potential vorticity that is largest at the surface and decays through the troposphere to approximately zero at the tropopause. This result is confirmed in this study using atmospheric reanalysis and idealized numerical simulations. However, it is also shown that the vertical profile of the eddy diffusivity can change, resulting in different isentropic slopes and climates. This is illustrated with a series of idealized numerical simulations with varying planetary scales and rotation rates. C1 [Jansen, Malte] Geophys Fluid Dynam Lab, Princeton, NJ 08544 USA. [Ferrari, Raffaele] MIT, Cambridge, MA 02139 USA. RP Jansen, M (reprint author), Geophys Fluid Dynam Lab, 201 Forrestal Rd,303B, Princeton, NJ 08544 USA. EM mjansen@princeton.edu RI Ferrari, Raffaele/C-9337-2013 OI Ferrari, Raffaele/0000-0002-3736-1956 FU National Science Foundation; NSF [OCE-0849233] FX We thank Chris Walker for providing us with a script to calculate isentropic diagnostics from ERA-40 reanalysis data. We also thank Alan Plumb, Paul O'Gorman, and Noboru Nakamura for helpful comments on the manuscript. The ERA-40 global atmospheric reanalysis data were produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) and distributed by the Computational Information and Systems Laboratory (CISL) at the National Center for Atmospheric Research. NCAR is supported by grants from the National Science Foundation. This work was supported through NSF award OCE-0849233. NR 31 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD JAN PY 2015 VL 141 IS 687 BP 631 EP 641 DI 10.1002/qj.2387 PN B PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CG6LV UT WOS:000353413500024 ER PT J AU Zhang, XH Douglas, JF Satija, S Karim, A AF Zhang, Xiaohua Douglas, Jack F. Satija, Sushil Karim, Alamgir TI Enhanced vertical ordering of block copolymer films by tuning molecular mass SO RSC ADVANCES LA English DT Article ID SYMMETRIC DIBLOCK COPOLYMER; SELECTIVELY ASSOCIATING HOMOPOLYMER; DISORDER TRANSITION-TEMPERATURE; PS-B-PMMA; THIN-FILMS; PHASE-BEHAVIOR; POLYMER BLEND; PERPENDICULAR ORIENTATION; INTERFACIAL INTERACTIONS; PATTERN-FORMATION AB We demonstrate that an increase in the molecular mass (chain length N) of a cylinder-forming PS-PMMA block copolymer (BCP), and thus the Flory-Huggins interaction strength cN, allows us to form well-organized surface patterns having the technologically interesting perpendicular cylinder BCP orientation with respect to the substrate. Tuning the polymer mass also allows for a precise control of the in-plane BCP cylinder pattern wavelength lambda and gives rise to a local height variation of the BCP film in which the average film roughness varies in direct proportion to lambda. At a fixed ordering temperature (T = 182 degrees C), we observe an orientation transition with increasing BCP molecular mass from a parallel to a perpendicular orientation. Based on the findings of the present work, and accumulated results from our former studies of BCP ordering, we propose as a general principle that increasing the BCP segregation strength by either lowering temperature or increasing the BCP mass, enhances the extent of vertical ordering in BCP thin films. We suggest that this effect arises because the segregation strength chi N controls the shear rigidity of self-assembled BCP structures. C1 [Zhang, Xiaohua] Soochow Univ, Ctr Soft Condensed Matter Phys & Interdisciplinar, Suzhou 215006, Peoples R China. [Douglas, Jack F.] NIST, Div Engn & Mat Sci, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Satija, Sushil] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Karim, Alamgir] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. RP Zhang, XH (reprint author), Soochow Univ, Ctr Soft Condensed Matter Phys & Interdisciplinar, Suzhou 215006, Peoples R China. EM zhangxiaohua@suda.edu.cn; jack.douglas@nist.gov FU National Basic Research Program of China (973 Program) [2012CB821505]; National Natural Science Foundation of China [21274103, 21104054]; ACS-PRF; U.S. Department of Energy, Division of Basic Energy Sciences [DE-FG02-10ER4779] FX The authors acknowledge financial support of National Basic Research Program of China (973 Program) (no. 2012CB821505), and National Natural Science Foundation of China (no. 21274103, and no. 21104054). We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. We also thank David Uhrig at Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory for help with the synthesis of the deuterated block copolymers and Ronald Jones at NIST and Kevin Yager at Brookhaven National Laboratory for help with RSANS measurements. AK would like to thank the ACS-PRF for funding in support of the work. AK also acknowledges support by the U.S. Department of Energy, Division of Basic Energy Sciences under contract no. DE-FG02-10ER4779 for the research. NR 66 TC 6 Z9 6 U1 2 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2015 VL 5 IS 41 BP 32307 EP 32318 DI 10.1039/c5ra02047f PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA CG3GH UT WOS:000353166300033 ER PT J AU Audus, DJ Hassan, AM Garboczic, EJ Douglas, JF AF Audus, Debra J. Hassan, Ahmed M. Garboczic, Edward J. Douglas, Jack F. TI Interplay of particle shape and suspension properties: a study of cube-like particles SO Soft Matter LA English DT Article ID HYDRODYNAMIC FRICTION; METAL NANOPARTICLES; COMPLEX STRUCTURES; BUILDING-BLOCKS; NANOCRYSTALS; SUPERBALLS; DIFFUSION AB With advances in anisotropic particle synthesis, particle shape is now a feasible parameter for tuning suspension properties. However, there is a need to determine how these newly synthesized particles affect suspension properties and a need to solve the inverse problem of inferring the particle shape from property measurements. Either way, accurate suspension property predictions are required. Towards this end, we calculated a set of dilute suspension properties for a family of cube-like particles that smoothly interpolate between spheres and cubes. Using three conceptually different methods, we numerically computed the electrical properties of particle suspensions, including the intrinsic conductivity of perfect conductors and insulators. We also considered hydrodynamic properties relevant to particle solutions including the hydrodynamic radius, the intrinsic viscosity and the intrinsic solvent diffusivity. Additionally, we determined the second osmotic virial coefficient using analytic expressions along with numerical integration. As the particles became more cube-like, we found that all of the properties investigated become more sensitive to particle shape. C1 [Audus, Debra J.; Douglas, Jack F.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Hassan, Ahmed M.] NIST, Mat & Struct Syst Div, Gaithersburg, MD 20899 USA. [Garboczic, Edward J.] NIST, Appl Chem & Mat Div, Gaithersburg, MD 20899 USA. RP Audus, DJ (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. EM debra.audus@nist.gov; jack.douglas@nist.gov OI Hassan, Ahmed/0000-0001-8842-1798 FU NRC postdoctoral fellowship program FX We thank Steve Hudson and John Royer for insightful discussions and for sharing measurement data. Additionally, D.J.A. acknowledges support from the NRC postdoctoral fellowship program. NR 58 TC 7 Z9 7 U1 2 U2 11 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X EI 1744-6848 J9 SOFT MATTER JI Soft Matter PY 2015 VL 11 IS 17 BP 3360 EP 3366 DI 10.1039/c4sm02869d PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA CG6NK UT WOS:000353418500009 PM 25797369 ER PT S AU Burd, S Leibfried, D Wilson, AC Wineland, DJ AF Burd, S. Leibfried, D. Wilson, A. C. Wineland, D. J. BE Guina, M TI Optically pumped semiconductor lasers for atomic and molecular physics SO VERTICAL EXTERNAL CAVITY SURFACE EMITTING LASERS (VECSELS) V SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Vertical External Cavity Surface Emitting Lasers (VECSELs) V CY FEB 09-10, 2015 CL San Francisco, CA SP SPIE, Coherent Inc DE semiconductor laser; atomic and molecular physics; tunability; intensity stability ID TRAPPED IONS; SPECTROSCOPY; CAVITY AB Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. We are developing a source for laser cooling and spectroscopy of Mg+ ions at 280 nm, based on a frequency quadrupled OPSL with the gain chip fabricated at the ORC at Tampere Univ. of Technology, Finland. This OPSL system could serve as a prototype for many other sources used in atomic and molecular physics. C1 [Burd, S.; Leibfried, D.; Wilson, A. C.; Wineland, D. J.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. [Burd, S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Leibfried, D (reprint author), Natl Inst Stand & Technol, 325 Broadway, Boulder, CO 80305 USA. EM dil@boulder.nist.gov NR 22 TC 3 Z9 3 U1 1 U2 3 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-1-62841-439-4 J9 PROC SPIE PY 2015 VL 9349 AR 93490P DI 10.1117/12.2077027 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BC5AN UT WOS:000353134900020 ER PT J AU Vaish, A Vanderah, DJ Richter, LJ Dimitriou, M Steffens, KL Walker, ML AF Vaish, Amit Vanderah, David J. Richter, Lee J. Dimitriou, Michael Steffens, Kristen L. Walker, Marlon L. TI Dithiol-based modification of poly(dopamine): enabling protein resistance via short-chain ethylene oxide oligomers SO CHEMICAL COMMUNICATIONS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; POLYDOPAMINE; SURFACES; SPECTROSCOPY; ADSORPTION; INTERFACES; COATINGS AB We present a facile strategy to modify poly(dopamine) (PDA)-coated substrates. Using thiol-terminated short chain ethylene oxide oligomers (OEG) under aqueous conditions, we explore the creation of a model surface exhibiting resistance to nonspecific protein absorption (RPA) by engineering the surface properties of a PDA adlayer. Surprisingly, dithiol-terminated OEG molecules demonstrated significantly greater coverage on PDA surfaces than analogous monothiol molecules. Successful RPA is only achieved with dithiol-terminated OEGs. C1 [Vaish, Amit; Dimitriou, Michael] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Vaish, Amit] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA. [Vanderah, David J.; Richter, Lee J.; Steffens, Kristen L.; Walker, Marlon L.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Vanderah, David J.] NIST, Inst Biosci & Biotechnol Res, Rockville, MD 20850 USA. RP Vaish, A (reprint author), NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM anv@udel.edu; marlon.walker@nist.gov RI Richter, Lee/N-7730-2016 OI Richter, Lee/0000-0002-9433-3724 FU National Institute of Standards and Technology-American Recovery and Reinvestment Act (NIST-ARRA) FX A.V. acknowledges a National Institute of Standards and Technology-American Recovery and Reinvestment Act (NIST-ARRA) fellowship to support this work. NR 31 TC 4 Z9 4 U1 6 U2 38 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1359-7345 EI 1364-548X J9 CHEM COMMUN JI Chem. Commun. PY 2015 VL 51 IS 30 BP 6591 EP 6594 DI 10.1039/c5cc00299k PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA CF0XX UT WOS:000352269000030 PM 25774882 ER PT J AU Lu, E Zhao, W Gong, LQ Chen, HX Wang, H Li, X Song, JB Tu, JQ Higgins, RW Halpert, MS AF Lu, Er Zhao, Wei Gong, Liqing Chen, Hongxing Wang, Huan Li, Xin Song, Jinbo Tu, Juqing Higgins, R. Wayne Halpert, Mike S. TI Determining starting time and duration of extreme precipitation events based on intensity SO CLIMATE RESEARCH LA English DT Article DE Climate extremes; Identifying extremes; Monitoring and detections; EID constraints; Mathematical modeling ID CLIMATE EVENTS; UNITED-STATES; TRENDS; FREQUENCY; INDEXES; CHINA; RAINFALL AB For daily precipitation, previous studies have mainly identified extremes over fixed durations. The goal of our study was to identify over which multiday period a rainfall event can best be described as an extreme. Specifically, we extrapolated the starting time and duration within a rainfall episode to best describe an event with that starting time and duration as an extreme, compared to events with other starting times and durations. The principle is that the precipitation intensity averaged over this period is comparably (relative to duration) the strongest among all the events that have different starting times and durations. For this purpose, the 'extreme' intensity-duration (EID) relation is established through mathematical modeling based upon our understanding of the issue of identifying the extremes. The constraints in the model between 'extreme' intensity and duration require that the single parameter contained in the EID relation be between, but not too close to, 0 and 1. Tests show that extremes can be well identified with the EID approach by simply assigning a moderate value to the parameter, and the identification of extremes is not sensitive to which value is chosen for this parameter. The estimation with multiyear data and a regression indicates that the parameter is truly moderate between 0 and 1, but the value relies on the threshold used for determining the initial extreme intensities. It is therefore suggested that a fixed moderate value be given to the parameter in the operational identification of the extremes. As a real application of the method, we determined the starting time and duration of the extreme in a recent heavy rainfall that occurred over Beijing. C1 [Lu, Er; Zhao, Wei; Gong, Liqing; Chen, Hongxing; Wang, Huan; Li, Xin; Song, Jinbo; Tu, Juqing] Nanjing Univ Informat Sci & Technol, Key Lab Meteorol Disaster, Minist Educ, Nanjing, Jiangsu, Peoples R China. [Lu, Er; Higgins, R. Wayne; Halpert, Mike S.] NOAA, Climate Predict Ctr, College Pk, MD 20740 USA. [Chen, Hongxing] Chengdu Univ Informat Technol, Chengdu, Sichuan, Peoples R China. RP Lu, E (reprint author), Nanjing Univ Informat Sci & Technol, Key Lab Meteorol Disaster, Minist Educ, Nanjing, Jiangsu, Peoples R China. EM elu@nuist.edu.cn FU National Natural Science Foundation of China [41275092, 41230422, 41230528]; National Basic Research (973) Program of China [2013CB430203, 2012CB955301]; NOAA Climate Prediction Center (CPC); Sino-US Center for Weather & Climate Extremes (CWCE) at Nanjing University of Information Science and Technology; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) FX This study was supported by the National Natural Science Foundation of China (grants 41275092, 41230422, and 41230528), National Basic Research (973) Program of China (grants 2013CB430203 and 2012CB955301), NOAA Climate Prediction Center (CPC), the Sino-US Center for Weather & Climate Extremes (CWCE) at Nanjing University of Information Science and Technology, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We thank the 2 anonymous reviewers and Dr. Iizumi, the editor, for their constructive suggestions that helped improve the quality of the manuscript. The precipitation data used were provided by the National Meteorological Center (NMC) of China. NR 21 TC 0 Z9 1 U1 2 U2 8 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0936-577X EI 1616-1572 J9 CLIM RES JI Clim. Res. PY 2015 VL 63 IS 1 BP 31 EP 41 DI 10.3354/cr01280 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA CF4MY UT WOS:000352524500003 ER PT J AU Engmann, S Bokel, FA Herzing, AA Ro, HW Girotto, C Caputo, B Hoven, CV Schaible, E Hexemer, A DeLongchamp, DM Richter, LJ AF Engmann, Sebastian Bokel, Felicia A. Herzing, Andrew A. Ro, Hyun Wook Girotto, Claudio Caputo, Bruno Hoven, Corey V. Schaible, Eric Hexemer, Alexander DeLongchamp, Dean M. Richter, Lee J. TI Real-time X-ray scattering studies of film evolution in high performing small-molecule-fullerene organic solar cells SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Article ID MORPHOLOGY CONTROL; BLEND FILMS; EFFICIENCY; ADDITIVES; DESIGN AB We have studied the influence of the formulation additive 1,8-diiodooctane (DIO) on the structural evolution of bulk heterojunction (BHJ) films based the small molecule donor 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-5-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole) (p-DTS(FBTTh2)(2)) and phenyl-C-71-butyric-acid-methyl ester ([70]PCBM). Real-time, in situ, grazing-incidence X-ray scattering experiments allow us to characterize the development of crystalline order via diffraction and phase separation via small angle scattering. The performance of p-DTS(FBTTh2)(2) based solar cells exhibits a distinct optimum with respect to volume fraction of DIO in the coating solution, unlike many polymer-fullerene systems that exhibit plateaus in performance above a certain additive volume fraction. Increasing the DIO volume fraction increases the crystallinity of p-DTS(FBTTh2)(2) and dramatically increases the phase separation length scale even at small DIO amounts. These results suggest that the existence of an optimal DIO amount is a consequence of the phase separation length scale and its relationship to the optimal length for exciton dissociation. The effects of DIO on the time evolution of the drying films indicates that it acts as both a solvent and a plasticizer for p-DTS(FBTTh2)(2), controlling its nucleation density and promoting its crystal growth. C1 [Engmann, Sebastian; Bokel, Felicia A.; Herzing, Andrew A.; Ro, Hyun Wook; DeLongchamp, Dean M.; Richter, Lee J.] NIST, Mat Sci Engn Div, Gaithersburg, MD 20899 USA. [Girotto, Claudio; Caputo, Bruno; Hoven, Corey V.] NEXT Energy Technol Inc, Santa Barbara, CA USA. [Schaible, Eric; Hexemer, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP DeLongchamp, DM (reprint author), NIST, Mat Sci Engn Div, Gaithersburg, MD 20899 USA. EM dean.delongchamp@nist.gov; lee.richter@nist.gov RI Richter, Lee/N-7730-2016 OI Richter, Lee/0000-0002-9433-3724 FU ARRA; NIST/National Research Council (NRC); Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Materials preparation and ellipsometric studies were performed in the NIST Organic Photovoltaic Integrated Measurement Facility funded through ARRA. FB acknowledges support of a NIST/National Research Council (NRC) postdoctoral fellowship. Beamline 7.3.3 of the Advanced Light Source is supported by the Director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 34 TC 16 Z9 16 U1 6 U2 30 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PY 2015 VL 3 IS 16 BP 8764 EP 8771 DI 10.1039/c5ta00935a PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA CF3ZZ UT WOS:000352489200044 ER PT J AU Dizdaroglu, M AF Dizdaroglu, Miral TI Oxidatively induced DNA damage and its repair in cancer SO MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH LA English DT Review DE Cancer therapy; DNA damage; DNA repair; DNA glycosylases; Inhibitors ID BASE-EXCISION-REPAIR; TANDEM MASS-SPECTROMETRY; COLI ENDONUCLEASE-III; C4'-OXIDIZED ABASIC SITE; PROTEIN CROSS-LINKS; CELL LUNG-CANCER; HOGG1 SER326CYS POLYMORPHISM; ONE-ELECTRON OXIDATION; HUMAN BREAST-CANCER; ACID SUBSTITUTION VARIANTS AB Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer. Published by Elsevier B.V. C1 NIST, Biomol Measurement Div, Gaithersburg, MD 20899 USA. RP Dizdaroglu, M (reprint author), NIST, Biomol Measurement Div, 100 Bur Dr,MS 8311, Gaithersburg, MD 20899 USA. EM miral@nist.gov NR 749 TC 27 Z9 27 U1 8 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1383-5742 EI 1388-2139 J9 MUTAT RES-REV MUTAT JI Mutat. Res.-Rev. Mutat. Res. PD JAN-MAR PY 2015 VL 763 BP 212 EP 245 DI 10.1016/j.mrrev.2014.11.002 PG 34 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA CE9MW UT WOS:000352169100012 PM 25795122 ER PT J AU Tomita, H Kawai, Y Cronin, MF Hihara, T Kubota, M AF Tomita, Hiroyuki Kawai, Yoshimi Cronin, Meghan F. Hihara, Tsutomu Kubota, Masahisa TI Validation of AlVISR2 Sea Surface Wind and Temperature over the Kuroshio Extension Region SO SOLA LA English DT Article ID SATELLITE-OBSERVATIONS; OCEAN; ATMOSPHERE; FLUXES; DIFFERENCE; ALGORITHM; FEATURES; BUOYS; AMSR AB The Global Change Observation Mission-Water "Shizuku" (GCOM-W) satellite, with a newly developed microwave radiometer: Advanced Microwave Scanning Radiometer-2 (AMSR2) developed by Japan Aerospace Exploration Agency, was launched successfully in May 2012. The standard geophysical products of AMSR2/GCOM-W were released a year after launch date. Here, we use data from three buoys moored in the Kuroshio Extension region to test the accuracy of AMSR2 sea surface temperature (SST) and near surface wind speed (SSW). The Kuroshio Extension region is subject to large multi-scale variability and intense air-sea interaction and thus provides a challenging test for the satellite sensor. From the year-long comparison, we confirm that the root mean square difference (RMSD) of AMSR2 SST observations was 0.75 degrees C and meets the criterion for release accuracy (0.8 degrees C). On the other hand, the RMSD of SSW was 1.6 in s(-1), slightly worse than the criterion (1.5 in s(-1)), suggesting that the algorithm for SSW needs to be further improved. The analysis also showed that seasonal variations and characteristics of the relationship between SST and SSW are similar to those observed by previous satellite sensor (AMSR-E). Overall, the results give confidence that AMSR2 products can be used for many air-sea interaction, climate, and water cycle studies. C1 [Tomita, Hiroyuki] Nagoya Univ, Hydrospher Atmospher Res Ctr, Nagoya, Aichi, Japan. [Kawai, Yoshimi] Japan Agcy Marine Earth Sci & Thchnol, Yokosuka, Japan. [Cronin, Meghan F.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Hihara, Tsutomu; Kubota, Masahisa] Tokai Univ, Sch Marine Sci & Technol, Shizuoka, Japan. RP Tomita, H (reprint author), Nagoya Univ, Hydrospher Atmospher Res Ctr, Chikusa Ku, Furo Cho, Nagoya, Aichi, Japan. EM tomita@hyarc.nagoya-u.ac.jp FU JAXA, Institute of Oceanic Research and Development, Tokai University; Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [22106007] FX AMSR2 data were downloaded from a data website (https:// goom-wl.jaxa..jp/) in JAXA. This research was partly supported by JAXA, Institute of Oceanic Research and Development, Tokai University, and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, Grants-in-Aid for Scientific Research on Innovative Areas (22106007). The authors thank Ms. Kyoko Taniguchi who supported data analysis of JAMSTEC buoys. NR 29 TC 1 Z9 1 U1 0 U2 6 PU METEOROLOGICAL SOC JAPAN PI TOKYO PA C/O JAPAN METEOROLOGICAL AGENCY 1-3-4 OTE-MACHI, CHIYODA-KU, TOKYO, 100-0004, JAPAN SN 1349-6476 J9 SOLA JI SOLA PY 2015 VL 11 BP 43 EP 47 DI 10.2151/sola.2015-010 PG 5 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CF8XB UT WOS:000352844200001 ER PT J AU Boughton, DA Harrison, LR Pike, AS Arriaza, JL Mangel, M AF Boughton, David A. Harrison, Lee R. Pike, Andrew S. Arriaza, Juan L. Mangel, Marc TI Thermal Potential for Steelhead Life History Expression in a Southern California Alluvial River SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID TROUT ONCORHYNCHUS-MYKISS; BASS MICROPTERUS-SALMOIDES; RAINBOW-TROUT; FRESH-WATER; STREAM TEMPERATURE; JUVENILE STEELHEAD; CENTRAL VALLEY; REDBAND TROUT; ANADROMOUS SALMONIDS; INDIVIDUAL CONDITION AB Steelhead Oncorhynchus mykiss (anadromous Rainbow Trout) near the southern limit of the species' range commonly use shallow alluvial rivers for migration, spawning, and rearing. These rivers have been widely modified for water management, and an enduring question is whether their rehabilitation would create summer nursery habitat for steelhead. We used process-based models to evaluate the thermal potential for steelhead nursery habitat in the Santa Ynez River, California, a regulated alluvial river that currently supports few steelhead. We assessed (1) how well a calibrated model of river heat fluxes predicted summer temperature patterns for a warm year and an average year; (2) whether those patterns created thermal potential for the rapid growth that is characteristic of steelhead nursery habitat; and (3) whether manipulation of flows from an upstream dam significantly altered thermal potential. In the heat flux model, the root mean square error for 15-min temperatures was 1.51 degrees C, about three times greater than that of the larger, deeper Sacramento River in northern California. Generally, the Santa Ynez River was thermally suitable but stressful for juvenile steelhead. Flow augmentation reduced the number of thermally stressful days only near the dam, but it reduced the intensity of thermal stress throughout the river. Daytime movement of steelhead into natural, thermally stratified pools would reduce stress intensity by similar levels. In this region, O. mykiss commonly pursue an anadromous (steelhead) life history by entering nursery habitat early in their first or second summer and rapidly growing to attain a threshold size for anadromy by fall. In the average year, the river was thermally suitable for the first-summer pathway under high food availability and for the second-summer pathway under medium food availability. The warm year also supported the second-summer pathway under high food availability. Currently, the Santa Ynez River's capacity to support these pathways does not appear to be limited by summer temperature, thus indicating a need to identify other limiting factors. C1 [Boughton, David A.; Harrison, Lee R.] NOAA, Natl Marine Fisheries Serv, SW Fisheries Sci Ctr, Fisheries Ecol Div, Santa Cruz, CA 95060 USA. [Pike, Andrew S.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA. [Arriaza, Juan L.; Mangel, Marc] Univ Calif Santa Cruz, Dept Appl Math & Stat, Ctr Stock Assessment Res, Santa Cruz, CA 95064 USA. RP Boughton, DA (reprint author), NOAA, Natl Marine Fisheries Serv, SW Fisheries Sci Ctr, Fisheries Ecol Div, 110 Shaffer Rd, Santa Cruz, CA 95060 USA. EM david.boughton@noaa.gov OI Harrison, Lee/0000-0002-5219-9280 FU National Science Foundation FX We thank A. Spina and E. Danner for support. J. L. Arriaza was supported by the National Science Foundation. T. Robinson, S. Engblom, and S. Volan introduced us to the river and kindly shared data. H. Fish, S. Seferyn, and A. Halston assisted with fieldwork, and S. Paddock assisted with RAFT code. E. Danner, W. Satterthwaite, and S. Hayes provided helpful comments. We are grateful to the many friendly landowners of the Santa Ynez Valley, especially G. Cargasacchi, D. Gainey, R. Sanford, T. Sanford, V. Gallegos, M. Henn, and B. Steele, for providing access to remote sections of the lower Santa Ynez River. NR 77 TC 0 Z9 0 U1 3 U2 14 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PY 2015 VL 144 IS 2 BP 258 EP 273 DI 10.1080/00028487.2014.986338 PG 16 WC Fisheries SC Fisheries GA CF7HE UT WOS:000352726200003 ER PT J AU Lefebvre, LS Field, JC AF Lefebvre, Lyndsey S. Field, John C. TI Reproductive Complexity in a Long-Lived Deepwater Fish, the Blackgill Rockfish SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID PACIFIC-OCEAN PERCH; COD GADUS-MORHUA; HALIBUT REINHARDTIUS-HIPPOGLOSSOIDES; HERRING CLUPEA-HARENGUS; US WEST-COAST; STOCK ASSESSMENTS; FECUNDITY REGULATION; YELLOWTAIL ROCKFISH; OVARIAN DEVELOPMENT; RELATIVE FECUNDITY AB Fish populations are regulated by complex biological processes and ecosystem interactions. To inform stock assessments and management models, a clear understanding of a species' reproductive biology is necessary, particularly in long-lived species, for which estimates of sustainable yield are sensitive to such parameters. Deviations from traditional views of iteroparity in marine fishes (e.g., prolonged adolescent periods and skipped spawning) complicate estimates of maturity and, in turn, spawning output. The Blackgill Rockfish Sebastes melanostomus, an important component of California's commercial rockfish fishery, is a slow-growing deepwater species whose population is currently thought to be increasing after being fished to below conservation target levels. The objectives of this study were to describe the annual reproductive cycle, update maturity estimates, and detect unusual patterns of ovarian development by using both macroscopic and histological methods. Females were collected between 2010 and 2013 at locations off central and southern California. The annual reproductive cycle was protracted: vitellogenesis was initiated 7 months prior to the first appearance of fertilized eggs, and parturition occurred in December-May. A prolonged adolescent period, potentially lasting up to 12 years, was characterized by the presence of previtellogenic secondary-growth oocytes year-round and abortive maturation events. The cold temperatures and low oxygen levels characteristic of the species' habitat are hypothesized to be the main drivers behind this slow development. Macroscopic staging was found to be sufficient for maturity estimates when samples were temporally restricted. Estimates of length and age at 50% maturity were 33.6 cm and 25.7 years based on histological staging. Estimates of regional maturity based on commercial samples collected between 2001 and 2009 showed a trend of decreasing size at maturity with decreasing latitude. This study highlights the importance of histological examination in accurately assessing ovarian development and consequent baseline maturity information for managed fish populations. C1 [Lefebvre, Lyndsey S.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95060 USA. [Lefebvre, Lyndsey S.; Field, John C.] Natl Marine Fisheries Serv, SW Fisheries Sci Ctr, Fisheries Ecol Div, Santa Cruz, CA 95060 USA. RP Lefebvre, LS (reprint author), Univ Calif Santa Cruz, Inst Marine Sci, 100 Shaffer Rd, Santa Cruz, CA 95060 USA. EM lyndsey.lefebvre@noaa.gov FU Enhance Annual Stock Assessments funds (NMFS) FX Blackgill Rockfish collections were made possible thanks to S. Rienecke (The Nature Conservancy) and Morro Bay commercial fishermen; the Fishery Resource Analysis and Monitoring Division at the NMFS Northwest Fisheries Science Center; and S. Sogard, S. Beyer, and D. Stafford (NMFS Southwest Fisheries Science Center). We are grateful for the technical support provided by S. Beyer, N. Kashef, R. Miller, N. Parker, A. Payne, D. Stafford, and others in collecting biological data; D. Pearson in providing age estimates; W. Roumillat, J. F. Morado, and V. Lowe in preparing histological slides; and C. Conrath in providing second reads on histological slides. We thank C. Conrath, C. Grimes, S. Sogard, W. Roumillat, and two anonymous reviewers for providing valuable comments on earlier drafts of this manuscript. Support for the lead author was provided by Enhance Annual Stock Assessments funds (NMFS). Reference to trade names does not imply endorsement by the U.S. Government. NR 88 TC 1 Z9 1 U1 6 U2 21 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PY 2015 VL 144 IS 2 BP 383 EP 399 DI 10.1080/00028487.2014.1001039 PG 17 WC Fisheries SC Fisheries GA CF7HE UT WOS:000352726200015 ER PT S AU Linsky, J Redfield, S AF Linsky, Jeffrey Redfield, Seth BE Zank, GP TI What fills the space between the partially ionized clouds in the local interstellar medium SO 13TH ANNUAL INTERNATIONAL ASTROPHYSICS CONFERENCE: VOYAGER, IBEX, AND THE INTERSTELLAR MEDIUM SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 13th Annual International Astrophysics Conference on Voyager, IBEX, and the Interstellar Medium CY MAR 10-14, 2014 CL Myrtle Beach, SC ID X-RAY-EMISSION; GAS; BUBBLE; IONIZATION; WIND; HELIOSPHERE AB The interstellar matter located between the warm clouds in the LISM and in the Local Cavity is now thought to be photoionized gas with temperatures in the range 10,000-20,000 K. While the hot stars epsilon CMa and beta CMa are the primary photoionizing sources in the LISM, hot white dwarfs also contribute. We consider whether the Stromgren sphere gas produced by very local hot white dwarfs like Sirius B can be important in explaining the local intercloud gas. We find that the Stromgren sphere of Sirius can at least partially explain the intercloud gas in the lines of sight to several nearby stars. We also suggest that the partially ionized warm clouds like the Local Interstellar Cloud in which the Sun is located may be in part Stromgren sphere shells. C1 [Linsky, Jeffrey] Univ Colorado, JILA, Boulder, CO 80309 USA. [Linsky, Jeffrey] NIST, Boulder, CO 80309 USA. [Redfield, Seth] Wesleyan Univ, Middletown, CT 06459 USA. RP Linsky, J (reprint author), Univ Colorado, JILA, Boulder, CO 80309 USA. EM jlinsky@jila.colorado.edu; sredfield@wesleyan.edu OI Redfield, Seth/0000-0003-3786-3486 NR 29 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2015 VL 577 AR 012017 DI 10.1088/1742-6596/577/1/012017 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA BC3YZ UT WOS:000352101600017 ER PT S AU Deng, L Hagley, EW Li, RB Zhu, CJ AF Deng, L. Hagley, E. W. Li, Runbing Zhu, Chengjie GP IOP TI High-Fidelity, Weak-Light Polarization Gate Using Room-Temperature Atomic Vapor SO 23RD INTERNATIONAL LASER PHYSICS WORKSHOP (LPHYS'14) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 23rd International Laser Physics Workshop (LPHYS) CY JUL 14-18, 2014 CL Bulgarian Acad Sci, Inst Elect, Sofia, BULGARIA HO Bulgarian Acad Sci, Inst Elect ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY AB Using a polarization-selective-Kerr-phase-shift technique we demonstrate a fast, all-optical, high-fidelity polarization gate in a room-temperature atomic medium. By writing a pi-phase shift to one selected circularly-polarized component of a linearly-polarized input signal field and by equalizing the gain of both circularly-polarized components we can maintain the original strength of the signal field and yet achieve a perfect 900 rotation of its linear polarization., demonstrating a fast, high-fidelity, dynamically-controlled polarization gate operation. The orthogonal linear polarization switching field intensity can be as low as 2 mW/cm(2) using a warm rubidium vapor, which is equivalent to a 100-nanosecond pulse containing about 200 photons and confined in a typical commercial photonic hollow-core fiber with a 5-mu m mode diameter. C1 [Deng, L.; Hagley, E. W.] NIST, Gaithersburg, MD 20899 USA. [Li, Runbing] Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China. [Li, Runbing] Chinese Acad Sci, Ctr Cold Atom Phys, Wuhan 430071, Peoples R China. [Zhu, Chengjie] Tongji Univ, Sch Phys & Engn, Shanghai 200092, Peoples R China. RP Deng, L (reprint author), NIST, Gaithersburg, MD 20899 USA. EM lu.deng@nist.gov NR 8 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2015 VL 594 AR 012046 DI 10.1088/1742-6596/594/1/012046 PG 4 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BC3YJ UT WOS:000352084500045 ER PT S AU Deng, L Hagley, EW Zhu, CJ AF Deng, L. Hagley, E. W. Zhu, C. J. GP IOP TI Light-wave mixing and scattering with quantum gases SO 23RD INTERNATIONAL LASER PHYSICS WORKSHOP (LPHYS'14) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 23rd International Laser Physics Workshop (LPHYS) CY JUL 14-18, 2014 CL Bulgarian Acad Sci, Inst Elect, Sofia, BULGARIA HO Bulgarian Acad Sci, Inst Elect ID BOSE-EINSTEIN CONDENSATION; 3-PHOTON RESONANCE; IONIZATION AB We show that optical processes originating from elementary excitations with dominant collective atomic recoil motion in a quantum gas can profoundly change many nonlinear optical processes routinely observed in a normal gas. Not only multi-photon wave mixing processes all become stimulated Raman or hyper-Raman in nature but the usual forward wave-mixing process, which is the most efficient process in normal gases, is strongly reduced by the condensate structure factor. On the other hand, in the backward direction the Bogoliubov dispersion automatically compensates the optical-wave phase mismatch, resulting in efficient backward light field generation that usually is not supported in normal gases. C1 [Deng, L.; Hagley, E. W.] NIST, Gaithersburg, MD 20899 USA. [Zhu, C. J.] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China. RP Deng, L (reprint author), NIST, Gaithersburg, MD 20899 USA. EM lu.deng@nist.gov NR 10 TC 0 Z9 0 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2015 VL 594 AR 012011 DI 10.1088/1742-6596/594/1/012011 PG 5 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA BC3YJ UT WOS:000352084500010 ER PT J AU Sisco, E Forbes, TP AF Sisco, Edward Forbes, Thomas P. TI Rapid detection of sugar alcohol precursors and corresponding nitrate ester explosives using direct analysis in real time mass spectrometry SO ANALYST LA English DT Article ID ION MOBILITY SPECTROMETRY; DESORPTION ELECTROSPRAY-IONIZATION; FLOW FOCUSING IONIZATION; PRESSURE CHEMICAL-IONIZATION; ATMOSPHERIC-PRESSURE; TRIACETONE TRIPEROXIDE; TRACE DETECTION; MS; RESIDUES; DART AB This work highlights the rapid detection of nitrate ester explosives and their sugar alcohol precursors by direct analysis in real time mass spectrometry (DART-MS) using an off-axis geometry. Demonstration of the effect of various parameters, such as ion polarity and in-source collision induced dissociation (CID) on the detection of these compounds is presented. Sensitivity of sugar alcohols and nitrate ester explosives was found to be greatest in negative ion mode with sensitivities ranging from hundreds of picograms to hundreds of nanograms, depending on the characteristics of the particular molecule. Altering the in-source CID potential allowed for acquisition of characteristic molecular ion spectra as well as fragmentation spectra. Additional studies were completed to identify the role of different experimental parameters on the sensitivity for these compounds. Variables that were examined included the DART gas stream temperature, the presence of a related compound (i.e., the effect of a precursor on the detection of a nitrate ester explosive), incorporation of dopant species and the role of the analysis surface. It was determined that each variable affected the response and detection of both sugar alcohols and the corresponding nitrate ester explosives. From this work, a rapid and sensitive method for the detection of individual sugar alcohols and corresponding nitrate ester explosives, or mixtures of the two, has been developed, providing a useful tool in the real-world identification of homemade explosives. C1 [Sisco, Edward; Forbes, Thomas P.] Natl Inst Stand & Technol, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. RP Sisco, E (reprint author), Natl Inst Stand & Technol, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. EM edward.sisco@nist.gov RI Forbes, Thomas/M-3091-2014 OI Forbes, Thomas/0000-0002-7594-5514 FU U.S. Department of Homeland Security Science and Technology Directorate [IAA HSHQDC-12-X-00024]; National Institute of Standards and Technology (NIST) FX The U.S. Department of Homeland Security Science and Technology Directorate sponsored a portion of the production of this material under Interagency Agreement IAA HSHQDC-12-X-00024 with the National Institute of Standards and Technology (NIST). NR 53 TC 8 Z9 8 U1 1 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 0003-2654 EI 1364-5528 J9 ANALYST JI Analyst PY 2015 VL 140 IS 8 BP 2785 EP 2796 DI 10.1039/c4an02347a PG 12 WC Chemistry, Analytical SC Chemistry GA CE9CS UT WOS:000352141800032 PM 25717497 ER PT J AU Tummon, F Hassler, B Harris, NRP Staehelin, J Steinbrecht, W Anderson, J Bodeker, GE Bourassa, A Davis, SM Degenstein, D Frith, SM Froidevaux, L Kyrola, E Laine, M Long, C Penckwitt, AA Sioris, CE Rosenlof, KH Roth, C Wang, HJ Wild, J AF Tummon, F. Hassler, B. Harris, N. R. P. Staehelin, J. Steinbrecht, W. Anderson, J. Bodeker, G. E. Bourassa, A. Davis, S. M. Degenstein, D. Frith, S. M. Froidevaux, L. Kyrola, E. Laine, M. Long, C. Penckwitt, A. A. Sioris, C. E. Rosenlof, K. H. Roth, C. Wang, H. -J. Wild, J. TI Intercomparison of vertically resolved merged satellite ozone data sets: interannual variability and long-term trends SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID STRATOSPHERIC OZONE; SAGE-II; TEMPERATURE TRENDS; HALOE MEASUREMENTS; DIURNAL-VARIATIONS; TECHNICAL NOTE; CLIMATE MODEL; COLUMN OZONE; PROFILES; OSIRIS AB In the framework of the SI2N (SPARC (Stratosphere-troposphere Processes And their Role in Climate)/IO3C (International Ozone Commission)/IGACO-O3 (Integrated Global Atmospheric Chemistry Observations - Ozone)/NDACC (Network for the Detection of Atmospheric Composition Change)) initiative, several long-term vertically resolved merged ozone data sets produced from satellite measurements have been analysed and compared. This paper presents an overview of the methods, assumptions, and challenges involved in constructing such merged data sets, as well as the first thorough intercomparison of seven new long-term satellite data sets. The analysis focuses on the representation of the annual cycle, interannual variability, and long-term trends for the period 1984-2011, which is common to all data sets. Overall, the best agreement amongst data sets is seen in the mid-latitude lower and middle stratosphere, with larger differences in the equatorial lower stratosphere and the upper stratosphere globally. In most cases, differences in the choice of underlying instrument records that were merged produced larger differences between data sets than the use of different merging techniques. Long-term ozone trends were calculated for the period 1984-2011 using a piecewise linear regression with a change in trend prescribed at the end of 1997. For the 1984-1997 period, trends tend to be most similar between data sets (with largest negative trends ranging from -4 to -8% decade(-1) in the mid-latitude upper stratosphere), in large part due to the fact that most data sets are predominantly (or only) based on the SAGE-II record. Trends in the middle and lower stratosphere are much smaller, and, particularly for the lower stratosphere, large uncertainties remain. For the later period (1998-2011), trends vary to a greater extent, ranging from approximately -1 to +5% decade(-1) in the upper stratosphere. Again, middle and lower stratospheric trends are smaller and for most data sets not significantly different from zero. Overall, however, there is a clear shift from mostly negative to mostly positive trends between the two periods over much of the profile. C1 [Tummon, F.; Staehelin, J.] Swiss Fed Inst Technol, Zurich, Switzerland. [Hassler, B.; Davis, S. M.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Hassler, B.; Davis, S. M.; Rosenlof, K. H.] NOAA, Earth Syst Res Lab, Chem Sci Div, Boulder, CO USA. [Harris, N. R. P.] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England. [Steinbrecht, W.] Deutsch Wetterdienst, Hohenpeissenberg, Germany. [Anderson, J.] Hampton Univ, Dept Atmospher & Planetary Sci, Hampton, VA 23668 USA. [Bodeker, G. E.; Penckwitt, A. A.] Bodeker Sci, Alexandra, New Zealand. [Bourassa, A.; Degenstein, D.; Sioris, C. E.; Roth, C.] Univ Saskatchewan, Inst Space & Atmospher Studies, Saskatoon, SK S7N 0W0, Canada. [Frith, S. M.] Sci Syst & Applicat Inc, Lanham, MD USA. [Froidevaux, L.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Kyrola, E.; Laine, M.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Long, C.; Wild, J.] NOAA, NWS, NCEP, Climate Predict Ctr, College Pk, MD USA. [Wang, H. -J.] Georgia Inst Technol, Atlanta, GA 30332 USA. [Wild, J.] Innovim, Greenbelt, MD USA. RP Tummon, F (reprint author), Swiss Fed Inst Technol, Zurich, Switzerland. EM fiona.tummon@env.ethz.ch RI Rosenlof, Karen/B-5652-2008; Hassler, Birgit/E-8987-2010; Steinbrecht, Wolfgang/G-6113-2010; Davis, Sean/C-9570-2011; Manager, CSD Publications/B-2789-2015; OI Harris, Neil/0000-0003-1256-3006; Rosenlof, Karen/0000-0002-0903-8270; Hassler, Birgit/0000-0003-2724-709X; Steinbrecht, Wolfgang/0000-0003-0680-6729; Davis, Sean/0000-0001-9276-6158; Sioris, Christopher/0000-0003-1168-8755 FU Swiss National Science Foundation; UK Natural Environment Research Council FX The authors thank all those involved in the SI2N initiative whose research underlies the results presented here. Fiona Tummon thanks the Swiss National Science Foundation for funding. Neil Harris thanks the UK Natural Environment Research Council for an Advanced Research Fellowship. Work at the Jet Propulsion Laboratory, California Institute of Technology, was performed under contract with the National Aeronautics and Space Administration. The use of MERRA data from GMAO is also acknowledged. We thank the two reviewers for helpful comments and suggestions. NR 74 TC 14 Z9 14 U1 2 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 6 BP 3021 EP 3043 DI 10.5194/acp-15-3021-2015 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE9IN UT WOS:000352157600003 ER PT J AU Monks, SA Arnold, SR Emmons, LK Law, KS Turquety, S Duncan, BN Flemming, J Huijnen, V Tilmes, S Langner, J Mao, J Long, Y Thomas, JL Steenrod, SD Raut, JC Wilson, C Chipperfield, MP Diskin, GS Weinheimer, A Schlager, H Ancellet, G AF Monks, S. A. Arnold, S. R. Emmons, L. K. Law, K. S. Turquety, S. Duncan, B. N. Flemming, J. Huijnen, V. Tilmes, S. Langner, J. Mao, J. Long, Y. Thomas, J. L. Steenrod, S. D. Raut, J. C. Wilson, C. Chipperfield, M. P. Diskin, G. S. Weinheimer, A. Schlager, H. Ancellet, G. TI Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ATMOSPHERIC CARBON-MONOXIDE; LOWERMOST STRATOSPHERE; TROPOSPHERIC CHEMISTRY; SATELLITE-OBSERVATIONS; AIRCRAFT OBSERVATIONS; STATISTICAL-ANALYSIS; OZONE MEASUREMENTS; SOURCE ATTRIBUTION; HIGH-RESOLUTION; BOUNDARY-LAYER AB Using observations from aircraft, surface stations and a satellite instrument, we comprehensively evaluate multi-model simulations of carbon monoxide (CO) and ozone (O-3) in the Arctic and over lower latitude emission regions, as part of the POLARCAT Model Inter-comparison Project (POLMIP). Evaluation of 11- atmospheric models with chemistry shows that they generally underestimate CO throughout the Arctic troposphere, with the largest biases found during winter and spring. Negative CO biases are also found throughout the Northern Hemisphere, with multi-model mean gross errors (9-12%) suggesting models perform similarly over Asia, North America and Europe. A multi-model annual mean tropospheric OH (10.8 +/- 0.6 x 10(5) molec cm(-3)) is found to be slightly higher than previous estimates of OH constrained by methyl chloroform, suggesting negative CO biases in models may be improved through better constraints on OH. Models that have lower Arctic OH do not always show a substantial improvement in their negative CO biases, suggesting that Arctic OH is not the dominant factor controlling the Arctic CO burden in these models. In addition to these general biases, models do not capture the magnitude of CO enhancements observed in the Arctic free troposphere in summer, suggesting model errors in the simulation of plumes that are transported from anthropogenic and biomass burning sources at lower latitudes. O-3 in the Arctic is also generally underestimated, particularly at the surface and in the upper troposphere. Summer O-3 comparisons over lower latitudes show several models overestimate upper tropospheric concentrations. Simulated CO, O-3 and OH all demonstrate a substantial degree of inter-model variability. Idealised CO-like tracers are used to quantitatively compare the impact of inter-model differences in transport and OH on CO in the Arctic troposphere. The tracers show that model differences in transport from Europe in winter and from Asia throughout the year are important sources of model variability at Barrow. Unlike transport, inter-model variability in OH similarly affects all regional tracers at Barrow. Comparisons of fixed-lifetime and OH-loss idealised CO-like tracers throughout the Arctic troposphere show that OH differences are a much larger source of inter-model variability than transport differences. Model OH concentrations are correlated with H2O concentrations, suggesting water vapour concentrations are linked to differences in simulated concentrations of CO and OH at high latitudes in these simulations. Despite inter-model differences in transport and OH, the relative contributions from the different source regions (North America, Europe and Asia) and different source types (anthropogenic and biomass burning) are comparable across the models. Fire emissions from the boreal regions in 2008 contribute 33, 43 and 19% to the total Arctic CO-like tracer in spring, summer and autumn, respectively, highlighting the importance of boreal fire emissions in controlling pollutant burdens in the Arctic. C1 [Monks, S. A.; Arnold, S. R.; Wilson, C.; Chipperfield, M. P.] Univ Leeds, Sch Earth & Environm, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England. [Emmons, L. K.; Tilmes, S.; Weinheimer, A.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Law, K. S.; Thomas, J. L.; Raut, J. C.; Ancellet, G.] Univ Versailles St Quentin, Univ Paris 06, Sorbonne Univ, CNRS,INSU,LATMOS,IPSL, Paris, France. [Turquety, S.; Long, Y.] Ecole Polytech, CNRS, UMR8539, Lab Meteorol Dynam,IPSL, F-91128 Palaiseau, France. [Duncan, B. N.; Steenrod, S. D.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Flemming, J.] European Ctr Medium Range Weather Forecasting, Reading, Berks, England. [Huijnen, V.] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands. [Langner, J.] Swedish Meteorol & Hydrol Inst, S-60176 Norrkoping, Sweden. [Mao, J.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Mao, J.] Natl Ocean & Atmospher Adm, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Diskin, G. S.] NASA, Langley Res Ctr, Chem & Dynam Branch, Hampton, VA 23665 USA. [Schlager, H.] Deutsches Zentrum Luft & Raumfahrt DLR, Inst Atmospher Phys, Oberpfaffenhofen, Germany. RP Monks, SA (reprint author), Univ Colorado, Inst Res Environm Sci, Boulder, CO 80309 USA. EM s.a.monks@leeds.ac.uk RI Mao, Jingqiu/F-2511-2010; Chipperfield, Martyn/H-6359-2013; Raut, Jean-Christophe/G-3946-2016; Duncan, Bryan/A-5962-2011; Emmons, Louisa/R-8922-2016; OI Mao, Jingqiu/0000-0002-4774-9751; MONKS, SARAH/0000-0003-3474-027X; Huijnen, Vincent/0000-0002-2814-8475; Chipperfield, Martyn/0000-0002-6803-4149; Emmons, Louisa/0000-0003-2325-6212; Wilson, Chris/0000-0001-8494-0697; Raut, Jean-Christophe/0000-0002-3552-2437; Arnold, Steve/0000-0002-4881-5685 FU EurEX project - UK Natural Environmental Research Council [NE/H020241/1]; European Commission via the FP7 EUFAR Integrating Activity; US National Science Foundation; National Aeronautics and Space Administration [NNX08AD22G]; Agence National de Recherche (ANR) Climate Impact of Short-lived Climate Forcers and Methane in the Arctic (CLIMSLIP) Blanc SIMI [5-6 021 01]; CLIMSLIP-LEFE (CNRS-INSU); NOAA Climate Program Office [NA13OAR4310071]; Swedish Environmental Protection Agency [NV-09414-12]; Swedish Climate and Clean Air research program, SCAC; French Agence Nationale de la Recherche (ANR); CNES; CNRS-INSU-LEFE; IPEV; EUFAR FX This work was supported by the EurEX project, funded by the UK Natural Environmental Research Council (ref: NE/H020241/1). S. A. Monks and S. R. Arnold acknowledge support from the European Commission via the FP7 EUFAR Integrating Activity. The National Center for Atmospheric Research is funded by the US National Science Foundation and operated by the University Corporation of Atmospheric Research. Author L. K. Emmons acknowledges support from the National Aeronautics and Space Administration under award no. NNX08AD22G issued through the Science Mission Directorate, Tropospheric Composition Program. Authors K. S. Law, G. Ancellet, J. L. Thomas, J.-C. Raut, S. Turquety and Y. Long acknowledge support from projects Agence National de Recherche (ANR) Climate Impact of Short-lived Climate Forcers and Methane in the Arctic (CLIMSLIP) Blanc SIMI 5-6 021 01 and CLIMSLIP-LEFE (CNRS-INSU). Valuable help with WRF-Chem simulations from T. Onishi (LATMOS/IPSL) and G. Pfister (NCAR) and with TOMCAT maintenance from W. Feng (Leeds). J. Mao acknowledges the NOAA Climate Program Office grant NA13OAR4310071. Contributions by SMHI were funded by the Swedish Environmental Protection Agency under contract NV-09414-12 and through the Swedish Climate and Clean Air research program, SCAC. We thank the POLARCAT aircraft teams, especially the NASA ARCTAS, DLR-GRACE, and French ATR-42 teams. French ATR-42 campaigns and data analysis were part of POLARCAT-France, funded by French Agence Nationale de la Recherche (ANR), CNES, CNRS-INSU-LEFE, IPEV and EUFAR. Thanks is given to all those involved in the collection and provision of data, specifically NOAA/ESRL/WDCGG for the surface data, the MOZAIC-IAGOS project for aircraft data and the MOPITT team for satellite data. NR 112 TC 17 Z9 18 U1 7 U2 29 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 6 BP 3575 EP 3603 DI 10.5194/acp-15-3575-2015 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE9IN UT WOS:000352157600037 ER PT J AU Kindel, BC Pilewskie, P Schmidt, KS Thornberry, T Rollins, A Bui, T AF Kindel, B. C. Pilewskie, P. Schmidt, K. S. Thornberry, T. Rollins, A. Bui, T. TI Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID OCCULTATION EXPERIMENT HALOE; TROPICAL TROPOPAUSE; AEROSOL; VALIDATION; TRENDS; CIRCULATION; BOULDER; IMPACT; OZONE AB Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near-infrared spectra acquired with the Solar Spectral Flux Radiometer (SSFR) during the first science phase of the NASA Airborne Tropical TRopopause EXperiment (ATTREX). From the 1400 and 1900 nm absorption bands we infer water vapor amounts in the tropical tropopause layer and adjacent regions between altitudes of 14 and 18 km. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004). Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 x 10(-4) to 4.59 x 10(-4) g cm(-2). A 0.002 difference in absorptance at 1367 nm results in a 3.35 x 10(-5) g cm(-2) change of integrated water vapor amounts; 0.004 absorptance change at 1870 nm results in 5.50 x 10(-5) g cm(-2) of water vapor. These are 27% (1367 nm) and 44% (1870 nm) differences at the lowest measured value of water vapor (1.26 x 10(-4) g cm(-2)) and 7% (1367 nm) and 12% (1870 nm) differences at the highest measured value of water vapor (4.59 x 10(-4) g cm(-2)). A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere is discussed. C1 [Kindel, B. C.; Pilewskie, P.; Schmidt, K. S.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA. [Pilewskie, P.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Thornberry, T.; Rollins, A.] NOAA Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Thornberry, T.; Rollins, A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Bui, T.] NASA Ames Res Ctr, Moffett Field, CA USA. RP Kindel, BC (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. EM kindel@lasp.colorado.edu RI Rollins, Andrew/G-7214-2012; Richards, Amber/K-8203-2015; Manager, CSD Publications/B-2789-2015; OI THORNBERRY, TROY/0000-0001-7478-1944 FU NASA [NNX10AO84A] FX The authors wish to acknowledge the support of the SSFR instrument during ATTREX by Warren Gore and Tony Trias of NASA Ames Research Center. We also thank David Fahey of NOAA for his encouragement in investigating atmospheric water vapor with solar spectral irradiance during ATTREX and Gail Anderson for advice on the role of water vapor continuum absorption in the shortwave. The authors also gratefully acknowledge the expert review by two anonymous referees. This work was supported by NASA award NNX10AO84A. NR 34 TC 3 Z9 3 U1 2 U2 9 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2015 VL 8 IS 3 BP 1147 EP 1156 DI 10.5194/amt-8-1147-2015 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE9IT UT WOS:000352158300010 ER PT J AU Norouzi, H Temimi, M Prigent, C Turk, J Khanbilvardi, R Tian, Y Furuzawa, FA Masunaga, H AF Norouzi, H. Temimi, M. Prigent, C. Turk, J. Khanbilvardi, R. Tian, Y. Furuzawa, F. A. Masunaga, H. TI Assessment of the consistency among global microwave land surface emissivity products SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID SOIL-MOISTURE; AMSR-E; TEMPERATURE; ASSIMILATION; SENSITIVITY; RETRIEVALS; VEGETATION AB The goal of this work is to intercompare four global land surface emissivity products over various land-cover conditions to assess their consistency. The intercompared land emissivity products were generated over a 5-year period (2003-2007) using observations from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and WindSat. First, all products were reprocessed in the same projection and spatial resolution as they were generated from sensors with various configurations. Then, the mean value and standard deviations of monthly emissivity values were calculated for each product to assess the spatial distribution of the consistencies/inconsistencies among the products across the globe. The emissivity products were also compared to soil moisture estimates and a satellite-based vegetation index to assess their sensitivities to changes in land surface conditions. Results show the existence of systematic differences among the products. Also, it was noticed that emissivity values in each product have similar frequency dependency over different land-cover types. Monthly means of emissivity values from AMSR-E in the vertical and horizontal polarizations seem to be systematically lower than the rest of the products across various land-cover conditions which may be attributed to the 01:30/13:30 LT overpass time of the sensor and possibly a residual skin temperature effect in the product. The standard deviation of the analyzed products was lowest (less than 0.01) in rain forest regions for all products and highest at northern latitudes, above 0.04 for AMSR-E and SSM/I and around 0.03 for WindSat. Despite differences in absolute emissivity estimates, all products were similarly sensitive to changes in soil moisture and vegetation. The correlation between the emissivity polarization differences and normalized difference vegetation index (NDVI) values showed similar spatial distribution across the products, with values close to the unit except over densely vegetated and desert areas. C1 [Norouzi, H.] New York City Coll Technol, Dept Construct Management & Civil Engn Technol, Brooklyn, NY 11201 USA. [Temimi, M.; Khanbilvardi, R.] CUNY City Coll, Dept Civil Engn, NOAA CREST, New York, NY 10031 USA. [Temimi, M.] Inst Ctr Water & Environm iWater, Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates. [Prigent, C.] CNRS, Lab Etud Rayonnement & Matiere Astrophys & Atmosp, Paris, France. [Turk, J.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Tian, Y.] Univ Maryland, College Pk, MD 20742 USA. [Tian, Y.] NASAs Goddard Space Flight Ctr, Greenbelt, MD USA. [Furuzawa, F. A.; Masunaga, H.] Nagoya Univ, Hydrospher Atmospher Res Ctr, Nagoya, Aichi 4648601, Japan. RP Norouzi, H (reprint author), New York City Coll Technol, Dept Construct Management & Civil Engn Technol, Brooklyn, NY 11201 USA. EM hnorouzi@citytech.cuny.edu RI Masunaga, Hirohiko/C-2488-2008; Measurement, Global/C-4698-2015; PMM, JAXA/K-8537-2016; OI Masunaga, Hirohiko/0000-0002-6336-5002; Norouzi, Hamid/0000-0003-0405-5108 FU NOAA, Office of Education Educational Partnership Program [NA11SEC4810004] FX This publication was made possible by NOAA, Office of Education Educational Partnership Program award NA11SEC4810004. Its contents are solely the responsibility of the award recipient and do not necessarily represent the official views of the US Department of Commerce, NOAA. NR 28 TC 6 Z9 6 U1 1 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2015 VL 8 IS 3 BP 1197 EP 1205 DI 10.5194/amt-8-1197-2015 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE9IT UT WOS:000352158300014 ER PT J AU Cucurull, L AF Cucurull, L. TI Implementation of a quality control for radio occultation observations in the presence of large gradients of atmospheric refractivity SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID GLOBAL POSITIONING SYSTEM; BOUNDARY-LAYER; SUPERREFRACTION; FIELDS; MODEL AB In preparation for the launch of the first six satellites of the COSMIC-2 mission in equatorial orbit, and the larger number of observations that such a mission will provide in the lower tropical troposphere, work is underway at the National Oceanic and Atmospheric Administration (NOAA) to improve the assimilation of radio occultation (RO) observations, particularly in the lower tropical troposphere. As part of the improvement of the bending angle forward operator at the National Centers for Environmental Prediction (NCEP), additional quality controls aimed to detect and reject observations that might have been affected by super-refraction conditions have been implemented and tested. The updated quality control procedures also address the situation where the model detects atmospheric super-refraction conditions. This paper describes the limitations of the current standard quality controls and discusses the implementation of additional quality control procedures to address the limitations of assimilating observations likely affected by the super-refraction conditions, either in the model simulation or in the retrieval process. C1 [Cucurull, L.] NOAA ESRL Global Syst Div, Boulder, CO 80305 USA. [Cucurull, L.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. RP Cucurull, L (reprint author), NOAA ESRL Global Syst Div, Boulder, CO 80305 USA. EM lidia.cucurull@noaa.gov RI Cucurull, Lidia/E-8900-2015 FU ESRL Global Systems Division FX The author thanks Scott Hausman (former ESRL/Global Systems Division acting director) and Kevin Kelleher (current/ESRL Global Systems Division director) for funding this work. She also acknowledges Sergey Sokolovskiy for providing the five super-refraction profiles used in this study. NR 18 TC 0 Z9 0 U1 0 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2015 VL 8 IS 3 BP 1275 EP 1285 DI 10.5194/amt-8-1275-2015 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE9IT UT WOS:000352158300020 ER PT J AU Van Damme, M Clarisse, L Dammers, E Liu, X Nowak, JB Clerbaux, C Flechard, CR Galy-Lacaux, C Xu, W Neuman, JA Tang, YS Sutton, MA Erisman, JW Coheur, PF AF Van Damme, M. Clarisse, L. Dammers, E. Liu, X. Nowak, J. B. Clerbaux, C. Flechard, C. R. Galy-Lacaux, C. Xu, W. Neuman, J. A. Tang, Y. S. Sutton, M. A. Erisman, J. W. Coheur, P. F. TI Towards validation of ammonia (NH3) measurements from the IASI satellite SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID ATMOSPHERIC AMMONIA; REACTIVE NITROGEN; DRY DEPOSITION; UNITED-STATES; EXCHANGE; EMISSIONS; MODEL; ENVIRONMENT; VARIABILITY; RETRIEVALS AB Limited availability of ammonia (NH3) observations is currently a barrier for effective monitoring of the nitrogen cycle. It prevents a full understanding of the atmospheric processes in which this trace gas is involved and therefore impedes determining its related budgets. Since the end of 2007, the Infrared Atmospheric Sounding Interferometer (IASI) satellite has been observing NH3 from space at a high spatio-temporal resolution. This valuable data set, already used by models, still needs validation. We present here a first attempt to validate IASI-NH3 measurements using existing independent ground-based and airborne data sets. The yearly distributions reveal similar patterns between ground-based and space-borne observations and highlight the scarcity of local NH3 measurements as well as their spatial heterogeneity and lack of representativity. By comparison with monthly resolved data sets in Europe, China and Africa, we show that IASI-NH3 observations are in fair agreement, but they are characterized by a smaller variation in concentrations. The use of hourly and airborne data sets to compare with IASI individual observations allows investigations of the impact of averaging as well as the representativity of independent observations for the satellite footprint. The importance of considering the latter and the added value of densely located airborne measurements at various altitudes to validate IASI-NH3 columns are discussed. Perspectives and guidelines for future validation work on NH3 satellite observations are presented. C1 [Van Damme, M.; Clarisse, L.; Clerbaux, C.; Coheur, P. F.] Univ Libre Bruxelles, Spect Atmosphere Chim Quant & Photophys, Brussels, Belgium. [Van Damme, M.; Dammers, E.; Erisman, J. W.] Vrije Univ Amsterdam, Dept Earth Sci, Cluster Earth & Climate, Amsterdam, Netherlands. [Liu, X.; Xu, W.] China Agr Univ, Coll Resources & Environm Sci, Beijing 100193, Peoples R China. [Nowak, J. B.; Neuman, J. A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Nowak, J. B.; Neuman, J. A.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Clerbaux, C.] UPMC, Paris, France. [Clerbaux, C.] Univ Versailles St Quentin, Paris, France. [Clerbaux, C.] CNRS INSU, LATMOS IPSL, Paris, France. [Flechard, C. R.] INRA, UMR SAS 1069, Agrocampus Ouest, F-35042 Rennes, France. [Galy-Lacaux, C.] Univ Toulouse 3, Lab Aerol, UMR 5560, F-31062 Toulouse, France. [Galy-Lacaux, C.] CNRS, Toulouse, France. [Tang, Y. S.; Sutton, M. A.] Edinburgh Res Stn, Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland. [Erisman, J. W.] Louis Bolk Inst, Driebergen, Netherlands. RP Van Damme, M (reprint author), Univ Libre Bruxelles, Spect Atmosphere Chim Quant & Photophys, Brussels, Belgium. EM martin.van.damme@ulb.ac.be RI Manager, CSD Publications/B-2789-2015; UMR SAS, INRA/L-1751-2013; UMR SAS, Agrohydrologie/D-3726-2012; Neuman, Andy/A-1393-2009; Nowak, John/B-1085-2008; Flechard, Chris/E-6567-2010; clerbaux, cathy/I-5478-2013 OI Neuman, Andy/0000-0002-3986-1727; Nowak, John/0000-0002-5697-9807; FU F.R.S.-FNRS; Belgian State Federal Office for Scientific, Technical and Cultural Affairs (Prodex) [4000111403 IASI.FLOW]; "Fonds pour la formation a la recherche dans l'industrie et dans l'agriculture" of Belgium; CNES; project "Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems" (ECLAIRE) under the EC 7th Framework Programme [282910]; EC under the 7th Framework Programme FX IASI has been developed and built under the responsibility of the "Centre national d'etudes spatiales" (CNES, France). It is flown on-board the Metop satellites as part of the EUMETSAT Polar System. The IASI L1 data are received through the EUMETCast near real-time data distribution service. The research in Belgium was funded by the F.R.S.-FNRS, the Belgian State Federal Office for Scientific, Technical and Cultural Affairs (Prodex arrangement 4000111403 IASI.FLOW). M. Van Damme is grateful to the "Fonds pour la formation a la recherche dans l'industrie et dans l'agriculture" of Belgium for a PhD grant (Boursier FRIA). L. Clarisse and P.-F. Coheur are, respectively, research associate (chercheur qualifie) and senior research associate (maitre de recherches) with F.R.S.-FNRS. C. Clerbaux is grateful to CNES for scientific collaboration and financial support. We gratefully acknowledge support from the project "Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems" (ECLAIRE), funded under the EC 7th Framework Programme (grant agreement no. 282910). Part of this research was supported by the EC under the 7th Framework Programme, for the project "Partnership with China on Space Data (PANDA)". We also would like to thanks S. Bauduin, J. Hadji-Lazaro and J.-L. Lacour as well as R. van Oss, H. Volten and D. Swart for their helpful advice. NR 75 TC 9 Z9 9 U1 4 U2 30 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2015 VL 8 IS 3 BP 1575 EP 1591 DI 10.5194/amt-8-1575-2015 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE9IT UT WOS:000352158300037 ER PT J AU Powell, AM Xu, J AF Powell, A. M., Jr. Xu, J. TI Decadal regime shift linkage between global marine fish landings and atmospheric planetary wave forcing SO EARTH SYSTEM DYNAMICS LA English DT Article ID NORTH PACIFIC; EASTERN ATLANTIC; CATCH; OSCILLATION; FISHERIES; WINTER; OCEAN; TEMPERATURE; MODULATION; HEMISPHERE AB This investigation focuses on a global forcing mechanism for decadal regime shifts and their subsequent impacts. The proposed global forcing mechanism is that the global atmospheric planetary waves can lead to changes in the global surface air-sea conditions and subsequently fishery changes. In this study, the five decadal regime shifts (1956-1957, 1964-1965, 1977-1978, 1988-1989, and 1998-1999) in the most recent 59year period (1950-2008) have been identified based on Student t tests and their association with global marine ecosystem change has been discussed. Changes in the three major oceanic (Pacific, Atlantic, and Indian) ecosystems will be explored with the goal of demonstrating the linkage between stratospheric planetary waves and the ocean surface forcing that leads to fisheries impacts. The global forcing mechanism is described with a top-down approach to help the multidisciplinary audience follow the analysis. Following previous work, this analysis addresses how changes in the atmospheric planetary waves may influence the vertical wind structure, surface wind stress, and their connection with the global ocean ecosystems based on a coupling of the atmospheric regime shifts with the decadal regime shifts determined from marine life changes. The multiple decadal regime shifts related to changes in marine life are discussed using the United Nations Food and Agriculture Organization's (FAO) global fish capture data (catch/stock). Analyses are performed to demonstrate that examining the interactions between the atmosphere, ocean, and fisheries is a plausible approach to explaining decadal climate change in the global marine ecosystems and its impacts. The results show a consistent mechanism, ocean wind stress, responsible for marine shifts in the three major ocean basins. Changes in the planetary wave pattern affect the ocean wind stress patterns. A change in the ocean surface wind pattern from longwave (relatively smooth and less complex) to shorter-wave (more convoluted and more complex) ocean surface wind stress creates changes in global marine fisheries. C1 [Powell, A. M., Jr.] NOAA, Ctr Satellite Applicat & Res STAR, NESDIS, College Pk, MD 20740 USA. [Xu, J.] George Mason Univ, Coll Sci, Environm Sci & Technol Ctr, Fairfax, VA 22030 USA. RP Powell, AM (reprint author), NOAA, Ctr Satellite Applicat & Res STAR, NESDIS, College Pk, MD 20740 USA. EM al.powell@noaa.gov RI Powell, Alfred/G-4059-2010; Xu, Jianjun/E-7941-2011 OI Powell, Alfred/0000-0002-9289-8369; FU National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data, and Information Service (NESDIS), Center for Satellite Applications and Research (STAR) FX This work was supported by the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data, and Information Service (NESDIS), Center for Satellite Applications and Research (STAR). NR 30 TC 0 Z9 0 U1 1 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 2190-4979 EI 2190-4987 J9 EARTH SYST DYNAM JI Earth Syst. Dynam. PY 2015 VL 6 IS 1 BP 125 EP 146 DI 10.5194/esd-6-125-2015 PG 22 WC Geosciences, Multidisciplinary SC Geology GA CF0NA UT WOS:000352239700007 ER PT J AU DeCarlo, TM Cohen, AL Barkley, HC Cobban, Q Young, C Shamberger, KE Brainard, RE Golbuu, Y AF DeCarlo, Thomas M. Cohen, Anne L. Barkley, Hannah C. Cobban, Quinn Young, Charles Shamberger, Kathryn E. Brainard, Russell E. Golbuu, Yimnang TI Coral macrobioerosion is accelerated by ocean acidification and nutrients SO GEOLOGY LA English DT Article ID GREAT-BARRIER-REEF; CALCIUM-CARBONATE; CONTINENTAL-SHELF; BIOEROSION; PACIFIC; PORITES; CALCIFICATION; METAANALYSIS; COMMUNITIES; ACROPORA AB Coral reefs exist in a delicate balance between calcium carbonate (CaCO3) production and CaCO3 loss. Ocean acidification (OA), the CO2-driven decline in seawater pH and CaCO3 saturation state (Omega), threatens to tip this balance by decreasing calcification and increasing erosion and dissolution. While multiple CO2 manipulation experiments show coral calcification declines under OA, the sensitivity of bioerosion to OA is less well understood. Previous work suggests that coral and coral-reef bioerosion increase with decreasing seawater Omega. However, in the surface ocean, Omega and nutrient concentrations often covary, making their relative influence difficult to resolve. Here, we exploit unique natural gradients in Omega and nutrients across the Pacific basin to quantify the impact of these factors, together and independently, on macrobioerosion rates of coral skeletons. Using an automated program to quantify macrobioerosion in three-dimensional computerized tomography (CT) scans of coral cores, we show that macrobioerosion rates of live Porites colonies in both low-nutrient (oligotrophic) and high-nutrient (> 1 mu M nitrate) waters increase significantly as Omega decreases. However, the sensitivity of macrobioerosion to Omega is ten times greater under high-nutrient conditions. Our results demonstrate that OA (decreased Omega) alone can increase coral macrobioerosion rates, but the interaction of OA with local stressors exacerbates its impact, accelerating a shift toward net CaCO3 removal from coral reefs. C1 [DeCarlo, Thomas M.; Barkley, Hannah C.] Woods Hole Oceanog Inst, MIT, Inst Joint Program Oceanog Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [DeCarlo, Thomas M.; Barkley, Hannah C.] Woods Hole Oceanog Inst, Dept Geol & Geophys, Woods Hole, MA 02543 USA. [Cohen, Anne L.; Shamberger, Kathryn E.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Cobban, Quinn] Falmouth Acad, Falmouth, MA 02540 USA. [Young, Charles; Brainard, Russell E.] Natl Ocean & Atmospher Adm, Pacific Isl Fisheries Sci Ctr, Coral Reef Ecosyst Div NOAA CRED, Honolulu, HI 96814 USA. [Golbuu, Yimnang] Palau Int Coral Reef Ctr, Koror 96940, Palau. RP DeCarlo, TM (reprint author), Woods Hole Oceanog Inst, MIT, Inst Joint Program Oceanog Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. EM tdecarlo@whoi.edu; acohen@whoi.edu OI /0000-0002-5284-6521 FU National Science Foundation (NSF) [OCE 1041106, OCE 1220529]; Nature Conservancy award [PNA/WHOI061810]; NSF; WHOI-Ocean Life Institute post-doctoral fellowship FX We are grateful to G.P. Lohmann (Woods Hole Oceanographic Institution, WHOI), Kathryn Rose (WHOI), Jay Andrew (Palau International Coral Reef Center), Danny Merritt (National Oceanic and Atmospheric Administration, NOAA), and Edguardo Ocho (Smithsonian Institution, SI) for field assistance, and Julie Arruda (WHOI) and Darlene Ketten (WHOI) for CT scanning. Juan Mate (SI), Oris Sanjur (SI) Amanda Meyer (U.S. Fish and Wildlife Service, USFWS), Susan White (USFWS), the staff of the Palau International Coral Reef Center, and Camilo Ponton (WHOI) assisted with permitting, access to the PRIA sites, and translation of permit applications. Elizabeth Drenkard (WHOI) collected and analyzed Fall 2012 seawater samples from Jarvis Island. We thank Aline Tribollet for insightful discussion, and three anonymous reviewers whose suggestions significantly improved the manuscript. This work was supported by National Science Foundation (NSF) grant OCE 1041106 to Cohen and Shamberger, NSF grant OCE 1220529 to Cohen, The Nature Conservancy award PNA/WHOI061810 to Cohen, NSF Graduate Research Fellowships to De Carlo and Barkley, and a WHOI-Ocean Life Institute post-doctoral fellowship to Shamberger. The NOAA Coral Reef Conservation Program provided field and logistical support for Pacific Reef Assessment and Monitoring Program research cruises. NOAA's Ocean Acidification Program provided scientific support to Brainard and Young. This paper is dedicated to the memory of Jay Andrew. NR 33 TC 12 Z9 12 U1 8 U2 33 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 EI 1943-2682 J9 GEOLOGY JI Geology PD JAN PY 2015 VL 43 IS 1 BP 7 EP 10 DI 10.1130/G36147.1 PG 4 WC Geology SC Geology GA CE7KO UT WOS:000352018600004 ER PT S AU Jeffries, JR Butch, NP Vohra, YK Weir, ST AF Jeffries, J. R. Butch, N. P. Vohra, Y. K. Weir, S. T. BE Zhitomirsky, M DeReotier, PD TI Pressure evolution of electrical transport in the 3D topological insulator (Bi,Sb)(2)(Se,Te)(3) SO INTERNATIONAL CONFERENCE ON STRONGLY CORRELATED ELECTRON SYSTEMS 2014 (SCES2014) SE Journal of Physics Conference Series LA English DT Proceedings Paper CT International Conference on Strongly Correlated Electron Systems (SCES) CY JUL 07-14, 2014 CL Univ Grenoble, Grenoble, FRANCE HO Univ Grenoble ID SB2TE3 AB The group V-VI compounds-like Bi2Se3, Sb2Te3, or Bi2Te3-have been widely studied in recent years for their bulk topological properties. The high-Z members of this series form with the same crystal structure, and are therefore amenable to isostructural substitution studies. It is possible to tune the Bi-Sb and Te-Se ratios such that the material exhibits insulating behavior, thus providing an excellent platform for understanding how a topological insulator evolves with applied pressure. We report our observations of the pressure-dependent electrical transport and crystal structure of a pseudobinary (Bi, Sb)(2)(Te, Se)(3) compound. Similar to some of its sister compounds, the (Bi, Sb)(2)(Te, Se)(3) pseudobinary compound undergoes multiple, pressure-induced phase transformations that result in metallization, the onset of a close-packed crystal structure, and the development of distinct superconducting phases. C1 [Jeffries, J. R.; Butch, N. P.; Weir, S. T.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Butch, N. P.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Vohra, Y. K.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. RP Jeffries, JR (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. EM jeffries4@llnl.gov NR 16 TC 0 Z9 0 U1 4 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2015 VL 592 AR 012124 DI 10.1088/1742-6596/592/1/012124 PG 5 WC Physics, Atomic, Molecular & Chemical; Physics, Multidisciplinary SC Physics GA BC4BG UT WOS:000352239200124 ER PT J AU Smolyanitsky, A AF Smolyanitsky, A. TI Effects of thermal rippling on the frictional properties of free-standing graphene SO RSC ADVANCES LA English DT Article ID ATOMICALLY THIN SHEETS; SLIDING STEEL SURFACES; NANOSCALE; WEAR; ADHESION; CONTACT; LAYER AB With the use of simulated friction force microscopy, we present the first study of the effect of varying temperature on the frictional properties of suspended graphene. In contrast with the theory of thermally activated friction on the dry surfaces of three-dimensional materials, kinetic friction is demonstrated to both locally increase and decrease with increasing temperature, depending on sample size, scanning tip diameter, scanning rate, and the externally applied normal load. We attribute the observed effects to the thermally excited flexural ripples intrinsically present in graphene, demonstrating a unique case of temperature-dependent dynamic roughness in atomically thin layers. Consequently, our results suggest strain-induced control of friction in nanoelectromechanical systems involving free-standing regions of atomically thin membranes. C1 NIST, Appl Chem & Mat Div, Boulder, CO 80305 USA. RP Smolyanitsky, A (reprint author), NIST, Appl Chem & Mat Div, Boulder, CO 80305 USA. EM alex.smolyanitsky@nist.gov NR 45 TC 3 Z9 3 U1 6 U2 24 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2015 VL 5 IS 37 BP 29179 EP 29184 DI 10.1039/c5ra01581b PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA CE8KQ UT WOS:000352091600045 ER PT S AU Snow, WM Arif, M Heacock, B Huber, M Li, K Pushin, D Skavysh, V Young, AR AF Snow, W. M. Arif, M. Heacock, B. Huber, M. Li, K. Pushin, D. Skavysh, V. Young, A. R. BE Bijker, R Lerma, S Lizcano, D TI A sensitive search for dark energy through chameleon scalar fields using neutron interferometry SO XXXVII SYMPOSIUM ON NUCLEAR PHYSICS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT 37th Symposium on Nuclear Physics CY JAN 06-09, 2014 CL Cocoyoc, MEXICO ID PERFECT CRYSTALS; STORAGE; SUPERNOVAE; SPACE AB The physical origin of the dark energy, which is postulated to cause the accelerated expansion rate of the universe, is one of the major open questions of cosmology. A large subset of theories postulate the existence of a scalar field with a nonlinear coupling to matter chosen so that the effective range and/or strength of the field is greatly suppressed unless the source is placed in vacuum. We describe a measurement using neutron interferometry which can place a stringent upper bound on chameleon fields proposed as a solution to the problem of the origin of dark energy of the universe in the regime with a strongly-nolinear coupling term. In combination with other experiments searching for exotic short-range forces and laser-based measurements, slow neutron experiments are capable of eliminating this and many similar types of scalar-field-based dark energy models by laboratory experiments. C1 [Snow, W. M.; Li, K.; Skavysh, V.] Indiana Univ, Bloomington, IN 47408 USA. [Snow, W. M.; Li, K.; Skavysh, V.] Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA. [Arif, M.; Huber, M.] NIST, Gaithersburg, MD 20899 USA. [Heacock, B.; Young, A. R.] N Carolina State Univ, Raleigh, NC 27695 USA. [Pushin, D.] Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada. [Pushin, D.] Univ Waterloo, Waterloo, ON N2L 3G1, Canada. RP Snow, WM (reprint author), Indiana Univ, Bloomington, IN 47408 USA. EM wsnow@indiana.edu OI Pushin, Dmitry/0000-0002-4594-3403 NR 44 TC 0 Z9 0 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2015 VL 578 AR 012009 DI 10.1088/1742-6596/578/1/012009 PG 7 WC Physics, Nuclear SC Physics GA BC3YM UT WOS:000352087300009 ER PT J AU Stambaugh, C Xu, HT Kemiktarak, U Taylor, J Lawall, J AF Stambaugh, Corey Xu, Haitan Kemiktarak, Utku Taylor, Jacob Lawall, John TI From membrane-in-the-middle to mirror-in-the-middle with a high-reflectivity sub-wavelength grating SO ANNALEN DER PHYSIK LA English DT Article DE HCG; high contrast grating; sub-wavelength; membrane-in-the-middle; silicon nitride; optomechanics ID CAVITY OPTOMECHANICS; REFLECTORS; RESONATOR; INDEX; NOISE; LIGHT AB A "membrane-in-the-middle" optomechanical system is demonstrated using a silicon nitride membrane patterned as a subwavelength grating. The grating has a reflectivity of over 99.8%, effectively creating two sub-cavities, with free spectral ranges of 6 GHz, optically coupled via photon tunneling. Measurements of the transmission and reflection spectra show an avoided crossing where the two subcavities simultaneously come into resonance, with a frequency splitting of 54 MHz. Expressions for the lineshapes of the symmetric and antisymmetric modes at the avoided crossing are derived, and the grating reflection, transmission, absorption, and scattering are inferred through comparison with the experimental data. C1 [Stambaugh, Corey; Xu, Haitan; Kemiktarak, Utku; Taylor, Jacob; Lawall, John] NIST, Gaithersburg, MD 20899 USA. [Xu, Haitan; Kemiktarak, Utku; Taylor, Jacob] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA. RP Lawall, J (reprint author), NIST, Gaithersburg, MD 20899 USA. EM lawall@nist.gov RI Taylor, Jacob/B-7826-2011; Xu, Haitan/K-4137-2012 OI Taylor, Jacob/0000-0003-0493-5594; NR 43 TC 7 Z9 7 U1 2 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0003-3804 EI 1521-3889 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD JAN PY 2015 VL 527 IS 1-2 SI SI BP 81 EP 88 DI 10.1002/andp.201400142 PG 8 WC Physics, Multidisciplinary SC Physics GA CE2HC UT WOS:000351634800008 ER PT J AU Birkett, K Lozano, SJ Rudstam, LG AF Birkett, K. Lozano, S. J. Rudstam, L. G. TI Long-term trends in Lake Ontario's benthic macroinvertebrate community from 1994-2008 SO AQUATIC ECOSYSTEM HEALTH & MANAGEMENT LA English DT Article DE Diporeia; Dreissena; Quagga Mussels; Oligochaetes; Chironomids; Sphaeriids ID AMPHIPOD DIPOREIA SPP.; MUSSELS DREISSENA-POLYMORPHA; NORTH-AMERICAN LAKES; QUAGGA MUSSELS; GREAT-LAKES; ZEBRA MUSSELS; BUGENSIS; ERIE; DISAPPEARANCE; REPLACEMENT AB The benthic macroinvertebrate community of Lake Ontario was assessed through a lakewide survey in 2008. Diporeia was very rare throughout the lake at all depths in 2008, and only four of 52 locations had densities > 100 m(-2), all of them at depths > 90 m. The maximum density of Diporeia found at any location was at 257 m-(2) in 2008, which can be compared to maximum densities of 13,280 m(-2) observed in 1994. Lakewide Diporeia abundance declined with an additional order of magnitude from an average of 342 m(-2) in 2003 to 21 m(-2) in 2008. The Quagga Mussel (D. rostriformis bugensis) dominated the benthic macroinvertebrate community in 2008, comprising over 70% of the density and 98% of the biomass. No Zebra Mussels were identified in the 2008 samples. Quagga Mussels, Oligochaetes and Chironomids were most abundant between 31 and 90 m. Sphaeriids were rare at all depths, but were more abundant at sites deeper than 90 m. Between 2003 and 2008, lakewide Dreissena abundance declined by 43% primarily due to significant declines in the 10-30 m depth region (from 6500 m(-2) to 900 m(-2)). Dreissena did not decline significantly in the 30-90 m or over 90 m depth regions. The 2008 survey revealed a continued decline in Diporeia and Sphaeriid Clams, a replacement of Zebra Mussels by Quagga Mussels, and a decline in Quagga Mussels at depths shallower than 30 m. Oligochaetes and chironomids showed no significant changes since the 1990s. C1 [Birkett, K.] Univ Michigan, Cooperat Inst Limnol & Ecosyst Res, Ann Arbor, MI 48109 USA. [Lozano, S. J.] Natl Ocean & Atmospher Adm, Great Lakes Environm Res Lab, Ann Arbor, MI USA. [Rudstam, L. G.] Cornell Univ, Dept Nat Resources, Ithaca, NY 14853 USA. [Rudstam, L. G.] Cornell Univ, Cornell Biol Field Stn, Ithaca, NY USA. RP Birkett, K (reprint author), Univ Michigan, Cooperat Inst Limnol & Ecosyst Res, Ann Arbor, MI 48109 USA. EM kmbirkett@gmail.com FU US EPA [DW13942146-01]; DOC/NOAA [DW13942146-01] FX Financial assistance was provided by an Interagency Agreement between the US EPA and DOC/NOAA (DW13942146-01). This project is part of a larger program that is investigating the lower trophic level of Lake Ontario (LOLA) in support of the US-Canada Lake Ontario Lakewide Management Plan LaMP. LaMP partners include federal, state, and provincial government agencies charged with environmental quality and natural resource management responsibilities for the lake. NR 48 TC 8 Z9 8 U1 3 U2 17 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1463-4988 EI 1539-4077 J9 AQUAT ECOSYST HEALTH JI Aquat. Ecosyst. Health Manag. PY 2015 VL 18 IS 1 BP 76 EP 88 DI 10.1080/14634988.2014.965122 PG 13 WC Ecology; Environmental Sciences; Marine & Freshwater Biology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA CE3AI UT WOS:000351695400008 ER PT J AU Morrow, BH Lazo, JK Rhome, J Feyen, J AF Morrow, Betty H. Lazo, Jeffrey K. Rhome, Jamie Feyen, Jesse TI IMPROVING STORM SURGE RISK COMMUNICATION Stakeholder Perspectives SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID VISUALIZING UNCERTAINTY; PERCEPTIONS; HURRICANES; COASTAL; INFORMATION; FRAMEWORK; FORECASTS; RESPONSES; MODEL; RITA AB Storm surge associated with tropical and extratropical cyclones has a long history of causing death and destruction along our coastlines. With more than 123 million people living in coastal shoreline areas and much of the densely populated Atlantic and Gulf coastal areas less than 10 ft (similar to 3 m) above mean sea level, the threat has never been greater. In this article, we summarize and integrate the most intensive series of studies completed to date on communication of storm surge risk. These were primarily geographically focused stakeholder surveys for evaluating the storm surge communication perceptions and preferences of forecasters, broadcast meteorologists, public officials, and members of the public each a primary user group for storm surge forecasts. According to findings from seven surveys, each group strongly supports the National Weather Service (NWS) issuing watches and warnings for storm surge, whether associated with tropical cyclones (TC) or extratropical (ET) cyclones. We discuss results on public understanding of storm surge vulnerability, respondents' preferences for separate storm surge information products, and initial assessments of potential storm surge warning text and graphics. Findings from the research reported here are being used to support relevant NWS decisions, including a storm surge watch and warning product that has been approved for use on an experimental basis in 2015 and the National Hurricane Center (NHC) issuance of local surge inundations maps on an experimental basis in 2014. C1 [Morrow, Betty H.] SocRes Miami, Miami, FL USA. [Lazo, Jeffrey K.] Natl Ctr Atmospher Res, Societal Impacts Program, Boulder, CO 80307 USA. [Rhome, Jamie] NOAA, Natl Weather Serv, Natl Hurricane Ctr, Miami, FL USA. [Feyen, Jesse] NOAA, Natl Ocean Serv, Off Coast Survey, Silver Spring, MD USA. RP Lazo, JK (reprint author), Natl Ctr Atmospher Res, Societal Impacts Program, POB 3000, Boulder, CO 80307 USA. EM lazo@ucar.edu FU NOAA [NA06OAR4310119, NA06NWS4670013]; U.S. Department of Commerce; National Ocean Service; NOAA Coastal Services Center [EA133C-09-CQ-0034] FX We acknowledge Jennifer Sprague, Bill Read, Richard Knabb, Ed Rappaport, Robert Berg, Dennis Feltgen, Keelin Kuipers, Mary Erikson, and Christopher Landsea from NOAA; Crystal Burghardt, Jennifer Boehnert, Julie Demuth, Rebecca Morss, Taylor Trogdon, Christina Thomas, and Sady Wootten from NCAR; and Linda Girardi, Lou Nadeau, and Evan Fago from Eastern Research Group, Inc. In addition we thank three anonymous referees and the BAMS editors for extremely useful input on this article. This work was carried out in part with funding under Awards NA06OAR4310119 and NA06NWS4670013 from NOAA, U.S. Department of Commerce, National Ocean Service, and conducted through the National Center for Atmospheric Research, as well as EA133C-09-CQ-0034 funded by NOAA Coastal Services Center and conducted through Eastern Research Group, Inc. NR 64 TC 9 Z9 9 U1 5 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JAN PY 2015 VL 96 IS 1 BP 35 EP 48 DI 10.1175/BAMS-D-13-00197.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE0FA UT WOS:000351478700010 ER PT J AU Ashouri, H Hsu, KL Sorooshian, S Braithwaite, DK Knapp, KR Cecil, LD Nelson, BR Prat, OP AF Ashouri, Hamed Hsu, Kuo-Lin Sorooshian, Soroosh Braithwaite, Dan K. Knapp, Kenneth R. Cecil, L. Dewayne Nelson, Brian R. Prat, Olivier P. TI PERSIANN-CDR Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID MEASURING MISSION TRMM; GLOBAL PRECIPITATION; TROPICAL RAINFALL; UNITED-STATES; SATELLITE-OBSERVATIONS; GAUGE OBSERVATIONS; VARIABILITY; RESOLUTION; SYSTEM; ISCCP AB A new retrospective satellite-based precipitation dataset is constructed as a climate data record for hydrological and climate studies. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) provides daily and 0.25 degrees rainfall estimates for the latitude band 60 degrees S-60 degrees N for the period of 1 January 1983 to 31 December 2012 (delayed present). PERSIANN-CDR is aimed at addressing the need for a consistent, long-term, high-resolution, and global precipitation dataset for studying the changes and trends in daily precipitation, especially extreme precipitation events, due to climate change and natural variability. PERSIANN-CDR is generated from the PERSIANN algorithm using GridSat-B1 infrared data. It is adjusted using the Global Precipitation Climatology Project (GPCP) monthly product to maintain consistency of the two datasets at 2.5 degrees monthly scale throughout the entire record. Three case studies for testing the efficacy of the dataset against available observations and satellite products are reported. The verification study over Hurricane Katrina (2005) shows that PERSIANN-CDR has good agreement with the stage IV radar data, noting that PERSIANN-CDR has more complete spatial coverage than the radar data. In addition, the comparison of PERSIANN-CDR against gauge observations during the 1986 Sydney flood in Australia reaffirms the capability of PERSIANN-CDR to provide reasonably accurate rainfall estimates. Moreover, the probability density function (PDF) of PERSIANN-CDR over the contiguous United States exhibits good agreement with the PDFs of the Climate Prediction Center (CPC) gridded gauge data and the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) product. The results indicate high potential for using PERSIANN-CDR for long-term hydroclimate studies in regional and global scales. C1 [Ashouri, Hamed; Hsu, Kuo-Lin; Sorooshian, Soroosh; Braithwaite, Dan K.] Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Henry Samueli Sch Engn, Irvine, CA USA. [Knapp, Kenneth R.; Nelson, Brian R.; Prat, Olivier P.] NOAA, Natl Climate Data Ctr, Asheville, NC USA. [Cecil, L. Dewayne] Global Sci & Technol Inc, Asheville, NC USA. [Prat, Olivier P.] N Carolina State Univ, Cooperat Inst Climate & Satellites, Asheville, NC USA. RP Ashouri, H (reprint author), Univ Calif Irvine, Dept Civil & Environm Engn, Ctr Hydrometeorol & Remote Sensing, Irvine, CA 92697 USA. EM h.ashouri@uci.edu RI Prat, Olivier/B-7016-2009; sorooshian, soroosh/B-3753-2008; Knapp, Kenneth/E-9817-2011; Nelson, Brian/D-6432-2014; Ashouri, Hamed/I-3040-2016 OI Prat, Olivier/0000-0002-9289-5723; sorooshian, soroosh/0000-0001-7774-5113; FU NOAA/Cooperative Institute for Climate and Satellites (CICS); NOAA NCDC/Climate Data Record program [NA09NES440006]; NOAA NCDC/Climate Data Record program (NCSU CICS) [2009-1380-01]; NOAA Climate Change Data and Detection (CCDD) [NA10DAR4310122]; NASA Energy and Water Cycle Study (NEWS) program [NNX06AF93G]; NASA Earth and Space Science Fellowship (NESSF) Award [NNX12AO11H]; NASA Decision Support System [NNX09A067G] FX The authors thank the anonymous reviewers for their valuable comments. In addition, we would like to express our appreciations to the editor of our paper, Mr. Jeffrey Hawkins, for his thoughtful comments and efforts in handling our paper. Partial financial support was provided by the NOAA/Cooperative Institute for Climate and Satellites (CICS) and the NOAA NCDC/Climate Data Record program (Prime Award NA09NES440006 and NCSU CICS Sub-Award 2009-1380-01), the NOAA Climate Change Data and Detection (CCDD) (NA10DAR4310122), the NASA Energy and Water Cycle Study (NEWS) program (NNX06AF93G), the NASA Earth and Space Science Fellowship (NESSF) Award (NNX12AO11H), and the NASA Decision Support System (NNX09A067G). NR 56 TC 47 Z9 49 U1 8 U2 24 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD JAN PY 2015 VL 96 IS 1 BP 69 EP + DI 10.1175/BAMS-D-13-00068.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CE0FA UT WOS:000351478700013 ER PT J AU Waples, RS AF Waples, Robin S. TI Testing for Hardy-Weinberg Proportions: Have We Lost the Plot? SO JOURNAL OF HEREDITY LA English DT Article DE genotypic ratios; Hardy-Weinberg equilibrium; heterozygotes; linkage disequilibrium; multiple testing; statistical tests ID EFFECTIVE POPULATION-SIZE; MICROSATELLITE NULL ALLELES; FALSE DISCOVERY RATE; LINKAGE-DISEQUILIBRIUM; GENOTYPING ERRORS; MATING POPULATIONS; MULTIPLE ALLELES; GENETIC DIFFERENTIATION; CONSERVATION GENETICS; HETEROZYGOTE-EXCESS AB Testing for Hardy-Weinberg proportions (HWP) is routine in almost all genetic studies of natural populations, but many researchers do not demonstrate a full understanding of the purposes of these tests or how to interpret the results. Common problems include a lack of understanding of statistical power and the difference between statistical significance and biological significance, how to interpret results of multiple tests, and how to distinguish between various factors that can cause statistically significant departures. In this perspective, which focuses on analysis of genetic data for nonmodel species, I 1) review factors that can cause departures from HWP at individual loci and linkage disequilibrium (LD) at pairs of loci; 2) discuss commonly used tests for HWP and LD, with an emphasis on multiple-testing issues; 3) show how to distinguish among possible causes of departures from HWP; and 4) outline some simple steps to follow when significant test results are found. Finally, I 5) identify some issues that merit particular attention as we move into an era in which analysis of genomics-scale datasets for nonmodel species is commonplace. C1 NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA. RP Waples, RS (reprint author), NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd East, Seattle, WA 98112 USA. EM robin.waples@noaa.gov RI Waples, Robin/K-1126-2016 FU National Marine Fisheries Service, National Oceanic and Atmospheric Association FX R.S.W. was supported by funds from the National Marine Fisheries Service, National Oceanic and Atmospheric Association. NR 92 TC 37 Z9 39 U1 6 U2 67 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0022-1503 EI 1465-7333 J9 J HERED JI J. Hered. PD JAN-FEB PY 2015 VL 106 IS 1 BP 1 EP 19 DI 10.1093/jhered/esu062 PG 19 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA CE7FQ UT WOS:000352003800001 PM 25425676 ER PT S AU Reader, J Kramida, A Ralchenko, Y Wiese, WG Fuhr, J AF Reader, Joseph Kramida, Alexander Ralchenko, Yuri Wiese, Wolfgang Fuhr, Jeffrey GP IOP TI NIST program of spectroscopic data for light elements of fusion interest SO LIGHT ELEMENT ATOM, MOLECULE AND RADICAL BEHAVIOUR IN THE DIVERTOR AND EDGE PLASMA REGIONS SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Conference on Light Element Atom, Molecule and Radical Behaviour in the Divertor and Edge Plasma Regions CY NOV 18-MAR 22, 2009-2013 CL Vienna, AUSTRIA ID LITHIUM-LIKE IONS; BEAM-FOIL SPECTROSCOPY; TRANSITION-PROBABILITIES; ENERGY-LEVELS; OSCILLATOR-STRENGTHS; SPECTRAL-LINES; LIFETIME MEASUREMENTS; ATOMIC DATA; NE-VIII; ISOELECTRONIC SEQUENCE AB This paper summarizes work at the National Institute of Standards and Technology (NIST) in support of the International Atomic Energy Agency (IAEA) Coordinated Research Project on "Light Element Atom, Molecule and Radical Behaviour in the Divertor and Edge Plasma Regions." It includes numerical data on radiative transition rates for ions of fluorine and neon critically compiled at NIST. C1 [Reader, Joseph; Kramida, Alexander; Ralchenko, Yuri; Wiese, Wolfgang; Fuhr, Jeffrey] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Reader, J (reprint author), Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. EM joseph.reader@nist.gov RI Ralchenko, Yuri/E-9297-2016 OI Ralchenko, Yuri/0000-0003-0083-9554 NR 76 TC 1 Z9 1 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2015 VL 576 AR 012007 DI 10.1088/1742-6596/576/1/012007 PG 114 WC Physics, Fluids & Plasmas; Physics, Multidisciplinary SC Physics GA BC3YP UT WOS:000352094600007 ER PT S AU Jalarvo, N Tyagi, M Crawford, MK AF Jalarvo, Niina Tyagi, Madhusudan Crawford, Michael K. BE Frick, B Koza, MM Boehm, M Mutka, H TI Quasielastic neutron scattering study of POSS ligand dynamics SO QENS/WINS 2014 - 11TH INTERNATIONAL CONFERENCE ON QUASIELASTIC NEUTRON SCATTERING AND 6TH INTERNATIONAL WORKSHOP ON INELASTIC NEUTRON SPECTROMETERS SE EPJ Web of Conferences LA English DT Proceedings Paper CT 11th International Conference on Quasielastic Neutron Scattering / 6th International Workshop on Inelastic Neutron Spectrometers (QENS/WINS) CY MAY 11-16, 2014 CL Autrans, FRANCE SP Inst LaueLangevin, ESS, FRMII, HZB, ILL, ISIS, JCNS, LLB, PSI AB Polyoligosilsesquioxanes are molecules having cage-like structures composed of silicon and oxygen. These molecules can have a wide variety of functional ligands attached to them. Depending on the nature of the ligand, interesting properties and applications are found. In this work we present results from quasielastic neutron scattering measurements of four different POSS molecules that illustrate the presence of strong coupling between the ligand dynamics and the POSS crystal structures. C1 [Jalarvo, Niina] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52428 Julich, Germany. [Jalarvo, Niina] Oak Ridge Natl Lab, Spallat Neutron Source, Chem & Engn Mat Div, Oak Ridge, TN 37861 USA. [Tyagi, Madhusudan] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Tyagi, Madhusudan] Univ Maryland, Dept Mat Sci, College Pk, MD 20742 USA. [Crawford, Michael K.] DuPont Cent Res & Dev, Wilmington, DE 19880 USA. RP Jalarvo, N (reprint author), Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52428 Julich, Germany. EM n.jalarvo@fz-juelich.de RI Jalarvo, Niina/Q-1320-2015 OI Jalarvo, Niina/0000-0003-0644-6866 NR 8 TC 0 Z9 0 U1 1 U2 4 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2015 VL 83 AR 02007 DI 10.1051/epjconf/20158302007 PG 4 WC Physics, Multidisciplinary SC Physics GA BC3PN UT WOS:000351844900009 ER PT J AU Bazilevskaya, E Rother, G Mildner, DFR Pavich, M Cole, D Bhatt, MP Jin, LX Steefel, CI Brantley, SL AF Bazilevskaya, Ekaterina Rother, Gernot Mildner, David F. R. Pavich, Milan Cole, David Bhatt, Maya P. Jin, Lixin Steefel, Carl I. Brantley, Susan L. TI How Oxidation and Dissolution in Diabase and Granite Control Porosity during Weathering SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID SMALL-ANGLE SCATTERING; NEUTRON-SCATTERING; VIRGINIA PIEDMONT; FRACTAL GEOMETRY; SAPONITE SERIES; PUERTO-RICO; ROCKS; REPLACEMENT; EVOLUTION; REGOLITH AB Weathering extends to shallower depths on diabase than granite ridgetops despite similar climate and geomorphological regimes of denudation in the Virginia (United States) Piedmont. Deeper weathering has been attributed to advective transport of solutes in granitic rock compared to diffusive transport in diabase. We use neutron scattering (NS) techniques to quantify the total and connected submillimeter porosity (nominal diameters between 1 nm and 10 mm) and specific surface area (SSA) during weathering. The internal surface of each unweathered rock is characterized as both a mass fractal and a surface fractal. The mass fractal describes the distribution of pores (similar to 300 nm to similar to 5 mu m) along grain boundaries and triple junctions. The surface fractal is interpreted as the distribution of smaller features (1-300 nm), that is, the bumps (or irregularities) at the grain-pore interface. The earliest porosity development in the granite is driven by microfracturing of biotite, which leads to the introduction of fluids that initiate dissolution of other silicates. Once plagioclase weathering begins, porosity increases significantly and the mass + surface fractal typical for unweathered granite transforms to a surface fractal as infiltration of fluids continues. In contrast, the mass + surface fractal does not transform to a surface fractal during weathering of the diabase, perhaps consistent with the interpretation that solute transport is dominated by diffusion in that rock. The difference in regolith thickness between granite and diabase is likely due to the different mechanisms of solute transport across the primary silicate reaction front. C1 [Bazilevskaya, Ekaterina; Brantley, Susan L.] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. [Rother, Gernot] Oak Ridge Natl Lab, Div Chem Sci, Geochem & Interfacial Sci Grp, Oak Ridge, TN 37831 USA. [Mildner, David F. R.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Pavich, Milan] US Geol Survey, Eastern Geol & Paleoclimate Sci Ctr, Reston, VA 20192 USA. [Cole, David] Ohio State Univ, Sch Earth Sci, Columbus, OH 43219 USA. [Bhatt, Maya P.] Tribhuvan Univ, Cent Dep Environm Sci, Kathmandu, Nepal. [Jin, Lixin] Univ Texas El Paso, Dept Geol Sci, El Paso, TX 79968 USA. [Steefel, Carl I.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Bazilevskaya, E (reprint author), Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA. EM eab204@psu.edu RI Steefel, Carl/B-7758-2010; Rother, Gernot/B-7281-2008 OI Rother, Gernot/0000-0003-4921-6294 FU DOE [DE-FG02-05ER15675]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Department of Energy Office of Basic Energy Sciences, Energy Frontier Research Center, "Nanoscale Control of Geologic CO2"; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMR-0944772] FX This project was funded by DOE Grant DE-FG02-05ER15675. The research of GR was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. DRC was supported by the Department of Energy Office of Basic Energy Sciences as part of an Energy Frontier Research Center, "Nanoscale Control of Geologic CO2" led by Lawrence Berkeley National Laboratory. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. We specifically acknowledge Duluth Parkinson for the help with tomography imaging at beamline 8.3.2 at the Advanced Light Source at Lawrence Berkeley National Laboratory. The small-angle neutron scattering at the National Institute of Standards and Technology, U.S. Department of Commerce, was supported in part by the National Science Foundation under Agreement DMR-0944772. Transmission electron microscopy and SEM work was done at Materials Research Institute, Penn State. The identification of commercial instruments in this paper does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment used are necessarily the best available for the purpose. NR 64 TC 9 Z9 9 U1 3 U2 18 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 EI 1435-0661 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD JAN-FEB PY 2015 VL 79 IS 1 BP 55 EP 73 DI 10.2136/sssaj2014.04.0135 PG 19 WC Soil Science SC Agriculture GA CE2JB UT WOS:000351640800007 ER PT J AU Pushin, DA Huber, MG Arif, M Shahi, CB Nsofini, J Wood, CJ Sarenac, D Cory, DG AF Pushin, D. A. Huber, M. G. Arif, M. Shahi, C. B. Nsofini, J. Wood, C. J. Sarenac, D. Cory, D. G. TI Neutron Interferometry at the National Institute of Standards and Technology SO ADVANCES IN HIGH ENERGY PHYSICS LA English DT Article ID INDUCED QUANTUM INTERFERENCE; GRAVITY AB Neutron interferometry has proved to be a very precise technique for measuring the quantum mechanical phase of a neutron caused by a potential energy difference between two spatially separated neutron paths inside interferometer. The path length inside the interferometer can be many centimeters (and many centimeters apart) making it very practical to study a variety of samples, fields, potentials, and other macroscopic medium and quantum effects. The precision of neutron interferometry comes at a cost; neutron interferometers are very susceptible to environmental noise that is typically mitigated with large, active isolated enclosures. With recent advances in quantum information processing especially quantum error correction (QEC) codes we were able to demonstrate a neutron interferometer that is insensitive to vibrational noise. A facility at NIST's Center for Neutron Research (NCNR) has just been commissioned with higher neutron flux than the NCNR's older interferometer setup. This new facility is based on QEC neutron interferometer, thus improving the accessibility of neutron interferometry to the greater scientific community and expanding its applications to quantum computing, gravity, and material research. C1 [Pushin, D. A.; Nsofini, J.; Wood, C. J.; Sarenac, D.; Cory, D. G.] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada. [Pushin, D. A.; Nsofini, J.; Wood, C. J.; Sarenac, D.] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada. [Huber, M. G.; Arif, M.] NIST, Gaithersburg, MD 20899 USA. [Shahi, C. B.] Tulane Univ, Phys & Engn Phys Dept, New Orleans, LA 70118 USA. [Cory, D. G.] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada. [Cory, D. G.] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada. RP Pushin, DA (reprint author), Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada. EM dmitry.pushin@uwaterloo.ca OI Pushin, Dmitry/0000-0002-4594-3403; Nsofini, Joachim/0000-0003-0861-478X FU CREATE, Discovery, NSERC, Industry Canada; CERC, CIFAR, and Ministry of Research and Innovation, Province of Ontario, Canada FX This work was supported in part by CREATE, Discovery, NSERC, Industry Canada, CERC, CIFAR, and Ministry of Research and Innovation, Province of Ontario, Canada. Support provided by NIST is also gratefully acknowledged. The authors are grateful to Sam Potts and University of Missouri-Columbia Physics Machine Shop for a wonderful job machining the interferometer and for discussions with D. L. Jacobson, T. Borneman, R. A. Barankov, P. Cappellaro, E. R. Sparks, and G. L. Greene. NR 23 TC 0 Z9 0 U1 0 U2 10 PU HINDAWI PUBLISHING CORP PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-7357 EI 1687-7365 J9 ADV HIGH ENERGY PHYS JI Adv. High. Energy Phys. PY 2015 AR 687480 DI 10.1155/2015/687480 PG 7 WC Physics, Particles & Fields SC Physics GA CE1ZD UT WOS:000351610800001 ER PT J AU Darroch, LJ Lavoie, M Levasseur, M Laurion, I Sunda, WG Michaud, S Scarratt, M Gosselin, M Caron, G AF Darroch, Louise J. Lavoie, Michel Levasseur, Maurice Laurion, Isabelle Sunda, William G. Michaud, Sonia Scarratt, Michael Gosselin, Michel Caron, Gitane TI Effect of short-term light- and UV-stress on DMSP, DMS, and DMSP lyase activity in Emiliania huxleyi SO AQUATIC MICROBIAL ECOLOGY LA English DT Article DE DMSP; DMS; DMSP lyase; Light stress; Ultraviolet radiation; Phytoplankton ID DIMETHYLSULFONIOPROPIONATE DMSP; DIMETHYL SULFIDE; MARINE-PHYTOPLANKTON; ULTRAVIOLET-RADIATION; OCEANIC PHYTOPLANKTON; CHEMICAL DEFENSE; INCREASED PCO(2); ATLANTIC-OCEAN; TEMPERATURE; CLIMATE AB The ecological conditions and cellular mechanisms which affect the production of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) in marine ecosystems are still enigmatic. This information is crucial for deriving accurate oceanic ecosystem models for the dynamics of these major players in the Earth's sulfur cycle and climate. In the present study, we examined the effect of short-term increases in photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) on the production of DMSP and DMS and on DMSP lyase potential activity (DLPA) in an axenic culture of the coccolithophore Emiliania huxleyi (CCMP 1742). Algal cells were subjected to a rapid shift from a low intensity of PAR (50 mu E m(-2) S-1; low light, LL) to a high intensity of PAR (198 mu E m(-2) s(-1)) and elevated UVR conditions (high light, HL), simulating what may occur during upward mixing in the surface mixed layer or during changes in cloud cover. During the 4.5 h exposure to HL, the intracellular DMSP normalized to cell volume increased by ca. 30%, and dissolved DMSP doubled relative to control values. However, the DLPA per unit of cell volume decreased by similar to 45 % compared to the control value. The up-regulation of cellular DMSP concentration is consistent with an antioxidant and/or energy dissipation role for DMSP. The decrease in DLPA may indicate that the DMSP lyase enzyme plays no role in antioxidant protection in this algal species, but rather serves some other cellular function, such as grazing protection. C1 [Darroch, Louise J.; Lavoie, Michel; Levasseur, Maurice; Caron, Gitane] Univ Laval, Quebec Ocean, Quebec City, PQ G1V 0A6, Canada. [Darroch, Louise J.; Lavoie, Michel; Levasseur, Maurice; Caron, Gitane] Univ Laval, Unite Mixte Int Takuvik Univ Laval, CNRS, Dept Biol, Quebec City, PQ G1V 0A6, Canada. [Laurion, Isabelle] Ctr Eau Terre & Environm, Inst Natl Rech Sci, Quebec City, PQ G1K 9A9, Canada. [Sunda, William G.] NOAA, Beaufort Lab, Beaufort, NC 28516 USA. [Michaud, Sonia; Scarratt, Michael] Fisheries & Oceans Canada, Maurice Lamontagne Inst, Mont Joli, PQ G5H 3Z4, Canada. [Gosselin, Michel] Univ Quebec, Inst Sci Mer, Rimouski, PQ G5L 3A1, Canada. RP Levasseur, M (reprint author), Univ Laval, Quebec Ocean, Quebec City, PQ G1V 0A6, Canada. EM maurice.levasseur@bio.ulaval.ca RI Gosselin, Michel/B-4477-2014; OI Gosselin, Michel/0000-0002-1044-0793; Lavoie, Michel/0000-0002-3613-2932 FU Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Foundation for Climate and Atmospheric Sciences (CFCAS); Department of Fisheries and Oceans Canada; Department of Environment Canada; Fonds de recherche du Quebec - Nature et technologies; Canada Research Chair in Plankton-Climate Interactions; Canada Excellence Research Chair in Remote Sensing of Canada's New Arctic Frontier FX This work is a contribution of the Canadian-SOLAS Network (Surface Ocean-Lower Atmosphere Study) funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), the Department of Fisheries and Oceans Canada, the Department of Environment Canada, the Fonds de recherche du Quebec - Nature et technologies, the Canada Research Chair in Plankton-Climate Interactions, and the Canada Excellence Research Chair in Remote Sensing of Canada's New Arctic Frontier. We thank W.F. Vincent (Canada Research Chair in Aquatic Ecosystems Studies, Universite Laval, Quebec, Quebec, Canada) for his time and excellent advice on working with UVR, C. Fichot (Marine Sciences Department, University of Georgia, Athens, Georgia, USA) for providing light data, J. Breton (INRS-ETE, Quebec, Quebec, Canada), M.J. Martineau and M. Luce (Departement de biologie, Universite Laval, Quebec, Quebec, Canada) for assistance in the analysis of samples, and J.-C. Auclair (INRS-ETE, Quebec, Quebec, Canada) for support in statistical analyses. We also thank 4 anonymous reviewers for their valuable comments. NR 65 TC 5 Z9 5 U1 0 U2 20 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0948-3055 EI 1616-1564 J9 AQUAT MICROB ECOL JI Aquat. Microb. Ecol. PY 2015 VL 74 IS 2 BP 173 EP 185 DI 10.3354/ame01735 PG 13 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA CE0GG UT WOS:000351481900006 ER PT J AU Stockwell, CE Veres, PR Williams, J Yokelson, RJ AF Stockwell, C. E. Veres, P. R. Williams, J. Yokelson, R. J. TI Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SECONDARY ORGANIC AEROSOL; TRACE GAS EMISSIONS; COMPREHENSIVE LABORATORY MEASUREMENTS; LIGNIN PYROLYSIS PRODUCTS; CLOUD-CONDENSATION-NUCLEI; ATMOSPHERIC CHEMISTRY; NITRATED PHENOLS; PHASE REACTIONS; PHOTOCHEMICAL OXIDATION; AROMATIC-HYDROCARBONS AB We deployed a high-resolution proton-transferreaction time-of-flight mass spectrometer (PTR-TOF-MS) to measure biomass-burning emissions from peat, crop residue, cooking fires, and many other fire types during the fourth Fire Lab at Missoula Experiment (FLAME-4) laboratory campaign. A combination of gas standard calibrations and composition sensitive, mass-dependent calibration curves was applied to quantify gas-phase non-methane organic compounds (NMOCs) observed in the complex mixture of fire emissions. We used several approaches to assign the best identities to most major "exact masses", including many high molecular mass species. Using these methods, approximately 80-96% of the total NMOC mass detected by the PTR-TOFMS and Fourier transform infrared (FTIR) spectroscopy was positively or tentatively identified for major fuel types. We report data for many rarely measured or previously unmeasured emissions in several compound classes including aromatic hydrocarbons, phenolic compounds, and furans; many of these are suspected secondary organic aerosol precursors. A large set of new emission factors (EFs) for a range of globally significant biomass fuels is presented. Measurements show that oxygenated NMOCs accounted for the largest fraction of emissions of all compound classes. In a brief study of various traditional and advanced cooking methods, the EFs for these emissions groups were greatest for open three-stone cooking in comparison to their more advanced counterparts. Several little-studied nitrogen-containing organic com-pounds were detected from many fuel types, that together accounted for 0.1-8.7% of the fuel nitrogen, and some may play a role in new particle formation. C1 [Stockwell, C. E.; Yokelson, R. J.] Univ Montana, Dept Chem, Missoula, MT 59812 USA. [Veres, P. R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Veres, P. R.] Natl Ocean & Atmospher Adm, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA. [Williams, J.] Max Planck Inst Chem, Atmospher Chem Dept, D-55128 Mainz, Germany. RP Yokelson, RJ (reprint author), Univ Montana, Dept Chem, Missoula, MT 59812 USA. EM bob.yokelson@umontana.edu RI Yokelson, Robert/C-9971-2011; Veres, Patrick/E-7441-2010; Manager, CSD Publications/B-2789-2015 OI Yokelson, Robert/0000-0002-8415-6808; Veres, Patrick/0000-0001-7539-353X; FU NSF [ATM-0936321]; NASA Earth Science Division Award [NNX12AH17G, NNX13AP46G] FX FLAME-4, rental of PTR-TOF-MS, and C. S. and R. Y. were supported primarily by NSF grant ATM-0936321. FSL operational costs were supported by NASA Earth Science Division Award NNX12AH17G; thanks to S. Kreidenweis, P. DeMott, and G. McMeeking, whose collaboration in organizing and executing FLAME-4 is gratefully acknowledged. The collaboration of A. Robinson in organizing FLAME-4 and the cooking fires is also gratefully acknowledged. We thank C. Geron for providing a sample of NC peat. The research was supported by NASA Earth Science Division Award NNX13AP46G. NR 119 TC 28 Z9 28 U1 10 U2 72 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 2 BP 845 EP 865 DI 10.5194/acp-15-845-2015 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD6AI UT WOS:000351170000008 ER PT J AU Katata, G Chino, M Kobayashi, T Terada, H Ota, M Nagai, H Kajino, M Draxler, R Hort, MC Malo, A Torii, T Sanada, Y AF Katata, G. Chino, M. Kobayashi, T. Terada, H. Ota, M. Nagai, H. Kajino, M. Draxler, R. Hort, M. C. Malo, A. Torii, T. Sanada, Y. TI Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID WET SCAVENGING COEFFICIENT; GASEOUS DRY DEPOSITION; CLOUD-WATER DEPOSITION; PLANT ACCIDENT; AEROSOL-PARTICLES; FIELD-MEASUREMENTS; NORTH PACIFIC; AIRBORNE RADIONUCLIDES; UNCERTAINTY ASSESSMENT; NUMERICAL-SIMULATION AB Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I-2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of cumulative surface deposition of total I-131 and Cs-137 and air dose rate obtained by airborne surveys. The new source term was also tested using three atmospheric dispersion models (Modele Lagrangien de Dispersion de Particules d'ordre zero: MLDP0, Hybrid Single Particle Lagrangian Integrated Trajectory Model: HYSPLIT, and Met Office's Numerical Atmospheric-dispersion Modelling Environment: NAME) for regional and global calculations, and the calculated results showed good agreement with observed air concentration and surface deposition of Cs-137 in eastern Japan. C1 [Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.] Japan Atom Energy Agcy, Naka, Ibaraki 3191195, Japan. [Kajino, M.] Japan Meteorol Agcy JMA, Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Draxler, R.] Univ Res Court, Air Resources Lab, NOAA, College Pk, MD 20740 USA. [Hort, M. C.] Met Off, Exeter EX1 3PB, Devon, England. [Malo, A.] CMC, Dorval, PQ H9P 1J3, Canada. [Torii, T.] JAEA, Chiyoda Ku, Tokyo 1008577, Japan. [Sanada, Y.] JAEA, Fukushima Ku, Fukushima 9601296, Japan. RP Katata, G (reprint author), Karlsruhe Inst Technol KIT IMK IFU, Inst Meteorol & Climate Res, Atmospher Environm Res, Karlsruhe, Germany. EM katata.genki@jaea.go.jp OI Malo, Alain/0000-0003-2441-3216 FU Japan Society for the Promotion of Science (JSPS) [21120512] FX The authors express their gratitude to Shinichiro Kado, Kyoto University in Japan, Fumiya Tanabe, Sociotechnical Systems Safety Research Institute in Japan, and Yu Maruyama, Japan Atomic Energy Agency (JAEA) in Japan, for their helpful comments and suggestions. Kevin Foster, Lawrence Livermore National Laboratory, Livermore (LLNL) of the USA, provided the digital data of air dose rate from US-DOE airborne monitoring. The source terms of Hirao et al. (2013) and Winiarek et al. (2014) were provided by Shigekazu Hirao, Nagoya University in Japan and Victor Winiarek, Centre d'Enseignement et de Recherche en Environnement Atmospherique (CEREA) in France, respectively. This study was partly supported by a Grant-in-Aid for Scientific Research, no. 21120512, provided by the Japan Society for the Promotion of Science (JSPS). NR 140 TC 30 Z9 30 U1 20 U2 56 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 2 BP 1029 EP 1070 DI 10.5194/acp-15-1029-2015 PG 42 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD6AI UT WOS:000351170000018 ER PT J AU Miller, SM Hayek, MN Andrews, AE Fung, I Liu, J AF Miller, S. M. Hayek, M. N. Andrews, A. E. Fung, I. Liu, J. TI Biases in atmospheric CO2 estimates from correlated meteorology modeling errors SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID TRANSPORT MODELS; CARBON-DIOXIDE; FLUX INVERSIONS; KALMAN FILTER; SIMULATIONS; EXCHANGE AB Estimates of CO2 fluxes that are based on atmospheric measurements rely upon a meteorology model to simulate atmospheric transport. These models provide a quantitative link between the surface fluxes and CO2 measurements taken downwind. Errors in the meteorology can therefore cause errors in the estimated CO2 fluxes. Meteorology errors that correlate or covary across time and/or space are particularly worrisome; they can cause biases in modeled atmospheric CO2 that are easily confused with the CO2 signal from surface fluxes, and they are difficult to characterize. In this paper, we leverage an ensemble of global meteorology model outputs combined with a data assimilation system to estimate these biases in modeled atmospheric CO2. In one case study, we estimate the magnitude of month-long CO2 biases relative to CO2 boundary layer enhancements and quantify how that answer changes if we either include or remove error correlations or covariances. In a second case study, we investigate which meteorological conditions are associated with these CO2 biases. In the first case study, we estimate uncertainties of 0.57 ppm in monthly-averaged CO2 concentrations, depending upon location (95% confidence interval). These uncertainties correspond to 13-150% of the mean afternoon CO2 boundary layer enhancement at individual observation sites. When we remove error covariances, however, this range drops to 222 %. Top-down studies that ignore these covariances could therefore underestimate the uncertainties and/or propagate transport errors into the flux estimate. In the second case study, we find that these month-long errors in atmospheric transport are anti-correlated with temperature and planetary boundary layer (PBL) height over terrestrial regions. In marine environments, by contrast, these errors are more strongly associated with weak zonal winds. Many errors, however, are not correlated with a single meteorological parameter, suggesting that a single meteorological proxy is not sufficient to characterize uncertainties in atmospheric CO2. Together, these two case studies provide information to improve the setup of future top-down inverse modeling studies, preventing unforeseen biases in estimated CO2 fluxes. C1 [Miller, S. M.; Hayek, M. N.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Andrews, A. E.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO USA. [Fung, I.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Liu, J.] NASA, Earth Sci Div, Jet Prop Lab, Pasadena, CA USA. RP Miller, SM (reprint author), Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. EM scot.m.miller@gmail.com FU DOE's Office of Science [DE-AC02-05CH11231] FX This work was conducted at the Department of Energy's (DOE) Lawrence Berkeley National Laboratory as part of a DOE Computational Science Graduate Fellowship. The research used resources of the National Energy Research Scientific Computing Center, which is supported by the DOE's Office of Science under contract no. DE-AC02-05CH11231. CarbonTracker CT2011_oi results are provided by NOAA ESRL, Boulder, Colorado, USA, from the website at http://carbontracker.noaa.gov. We thank Steven Wofsy for his feedback on the manuscript and thank Ed Dlugokencky of NOAA. NR 35 TC 1 Z9 1 U1 1 U2 10 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 5 BP 2903 EP 2914 DI 10.5194/acp-15-2903-2015 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD6KL UT WOS:000351197900014 ER PT J AU Meschersky, IG Kuleshova, MA Litovka, DI Burkanov, VN Andrews, RD Tsidulko, GA Rozhnov, VV Ilyashenko, VY AF Meschersky, I. G. Kuleshova, M. A. Litovka, D. I. Burkanov, V. N. Andrews, R. D. Tsidulko, G. A. Rozhnov, V. V. Ilyashenko, V. Yu. TI Occurrence and Distribution of Mitochondrial Lineages of Gray Whales (Eschrichtius robustus) in Russian Far Eastern Seas SO BIOLOGY BULLETIN LA English DT Article ID DNA VARIATION; POPULATION AB This article presents data on frequencies of mitotypes (control region and cytochrome b and ND2 genes) in groups of Gray Whales found off the Chukotka Peninsula, Koryak coast, eastern Kamchatka and Sakhalin Island. From north to south the number of mitotypes decreased dramatically, but mitotypes which were predominant in the south were the same as ones also abundant in northern samples. For the control region sequences only, our data and data presented in the literature suggest that breeding areas in Baja California may include diversity of both distant groups of mitochondrial lineages known for the species. On the other hand, the same control region sequences may be found in different mitochondrial genomes, and so conclusions based on this mtDNA fragment only may be incorrect. C1 [Meschersky, I. G.; Tsidulko, G. A.; Rozhnov, V. V.; Ilyashenko, V. Yu.] Russian Acad Sci, Severtsov Inst Ecol & Evolut, Moscow 119071, Russia. [Kuleshova, M. A.] Moscow State Pedag Univ, Dept Zool & Ecol, Moscow 129164, Russia. [Litovka, D. I.] Pacific Reseach Fisheries Ctr, Chukotka Branch, Anadyr 689000, Russia. [Burkanov, V. N.] Russian Acad Sci, Far East Branch, Kamchatka Branch, Pacific Geog Inst, Petropavlovsk Kamchatski 683000, Russia. [Burkanov, V. N.] NOAA, Natl Marine Mammal Lab, AFSC, NMFS, Seattle, WA USA. [Andrews, R. D.] Univ Alaska Fairbanks, Fairbanks, AK 99775 USA. [Andrews, R. D.] Alaska SeaLife Ctr, Seward, AK 99664 USA. RP Meschersky, IG (reprint author), Russian Acad Sci, Severtsov Inst Ecol & Evolut, Leninskii Pr 33, Moscow 119071, Russia. EM molecoldna@gmail.com FU International Whaling Commission; Russian Geographical Society FX The sampling was supported by the National Marine Fisheries Service (United States) and a grant from the International Whaling Commission. The molecular-genetic analyses were performed within the framework of the Permanent expedition of the Russian Academy of Sciences studying Red Book animals and other focus species of Russia (The Beluga White Whale Program) and have been supported financially by the Russian Geographical Society. NR 21 TC 0 Z9 1 U1 2 U2 9 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1062-3590 EI 1026-3470 J9 BIOL BULL+ JI Biol. Bull PD JAN PY 2015 VL 42 IS 1 BP 34 EP 42 DI 10.1134/S1062359014060077 PG 9 WC Biology SC Life Sciences & Biomedicine - Other Topics GA CE1VO UT WOS:000351601000005 ER PT S AU Kinney, PL Matte, T Knowlton, K Madrigano, J Petkova, E Weinberger, K Quinn, A Arend, M Pullen, J AF Kinney, Patrick L. Matte, Thomas Knowlton, Kim Madrigano, Jaime Petkova, Elisaveta Weinberger, Kate Quinn, Ashlinn Arend, Mark Pullen, Julie BE Rosenzweig, C Solecki, W TI New York City Panel on Climate Change 2015 Report Chapter 5: Public Health Impacts and Resiliency SO BUILDING THE KNOWLEDGE BASE FOR CLIMATE RESILIENCY: NEW YORK CITY PANEL ON CLIMATE CHANGE 2015 REPORT SE Annals of the New York Academy of Sciences LA English DT Article; Book Chapter ID RAGWEED AMBROSIA-ARTEMISIIFOLIA; EMERGENCY-DEPARTMENT VISITS; GROUND-LEVEL OZONE; 1995 HEAT-WAVE; AIR-POLLUTION; UNITED-STATES; COMMON RAGWEED; BIRCH-POLLEN; TEMPERATURE EXTREMES; AMBIENT-TEMPERATURE C1 [Kinney, Patrick L.; Knowlton, Kim; Petkova, Elisaveta; Weinberger, Kate; Quinn, Ashlinn] Columbia Univ, Mailman Sch Publ Hlth, New York, NY 10032 USA. [Matte, Thomas] New York City Dept Hlth & Mental Hyg, New York, NY USA. [Knowlton, Kim] Nat Resources Def Council, New York, NY USA. [Madrigano, Jaime] Rutgers State Univ, Sch Publ Hlth, New Brunswick, NJ 08903 USA. [Arend, Mark] CUNY, NOAA CREST, City Coll New York, New York, NY 10021 USA. [Pullen, Julie] Stevens Inst Technol, DHS Natl Ctr Excellence Maritime Secur, Hoboken, NJ 07030 USA. RP Kinney, PL (reprint author), Columbia Univ, Mailman Sch Publ Hlth, 722 West 168th St, New York, NY 10032 USA. FU NIEHS NIH HHS [P30 ES009089, T32 ES023770] NR 119 TC 2 Z9 2 U1 4 U2 19 PU BLACKWELL SCIENCE PUBL PI OXFORD PA OSNEY MEAD, OXFORD OX2 0EL, ENGLAND SN 0077-8923 J9 ANN NY ACAD SCI JI Ann.NY Acad.Sci. PY 2015 VL 1336 BP 67 EP 88 DI 10.1111/nyas.12588 PG 22 WC Environmental Sciences SC Environmental Sciences & Ecology GA BC3EX UT WOS:000351586900009 PM 25688947 ER PT S AU Solecki, W Rosenzweig, C Blake, R de Sherbinin, A Matte, T Moshary, F Rosenzweig, B Arend, M Gaffin, S Bou-Zeid, E Rule, K Sweeny, G Dessy, W AF Solecki, William Rosenzweig, Cynthia Blake, Reginald de Sherbinin, Alex Matte, Tom Moshary, Fred Rosenzweig, Bernice Arend, Mark Gaffin, Stuart Bou-Zeid, Elie Rule, Keith Sweeny, Geraldine Dessy, Wendy BE Rosenzweig, C Solecki, W TI New York City Panel on Climate Change 2015 Report Chapter 6: Indicators and Monitoring SO BUILDING THE KNOWLEDGE BASE FOR CLIMATE RESILIENCY: NEW YORK CITY PANEL ON CLIMATE CHANGE 2015 REPORT SE Annals of the New York Academy of Sciences LA English DT Article; Book Chapter ID MANAGEMENT; SHIFTS C1 [Solecki, William] CUNY, Inst Sustainable Cities, New York, NY 10021 USA. [Rosenzweig, Cynthia] Columbia Univ, Climate Impacts Grp, NASA Goddard Inst Space Studies, Ctr Climate Syst Res,Earth Inst, New York, NY USA. [Blake, Reginald] CUNY, Dept Phys, New York City Coll Technol, Brooklyn, NY 11210 USA. [Blake, Reginald] NASA, Goddard Inst Space Studies, Climate Impacts Grp, Washington, DC 20546 USA. [de Sherbinin, Alex] Columbia Univ, CIESIN, Palisades, NY USA. [Matte, Tom] New York City Dept Hlth & Mental Hyg, New York, NY USA. [Moshary, Fred; Arend, Mark] CUNY, City Coll New York, NOAA CREST, New York, NY 10021 USA. [Rosenzweig, Bernice] CUNY, CUNY Environm Crossrd, City Coll New York, New York, NY 10021 USA. [Gaffin, Stuart] Columbia Univ, Earth Inst, Ctr Climate Syst Res, New York, NY USA. [Bou-Zeid, Elie] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Rule, Keith] Princeton Univ, Plasma Phys Lab, Princeton, NJ USA. [Sweeny, Geraldine; Dessy, Wendy] New York City Mayors Off Operat, New York, NY USA. RP Solecki, W (reprint author), CUNY Hunter Coll, Dept Geog, New York, NY 10021 USA. OI de Sherbinin, Alex/0000-0002-8875-4864 NR 49 TC 2 Z9 2 U1 0 U2 5 PU BLACKWELL SCIENCE PUBL PI OXFORD PA OSNEY MEAD, OXFORD OX2 0EL, ENGLAND SN 0077-8923 J9 ANN NY ACAD SCI JI Ann.NY Acad.Sci. PY 2015 VL 1336 BP 89 EP 106 DI 10.1111/nyas.12587 PG 18 WC Environmental Sciences SC Environmental Sciences & Ecology GA BC3EX UT WOS:000351586900010 PM 25688948 ER PT J AU Barnes, BM Goasmat, F Sohn, MY Zhou, H Vladar, AE Silver, RM AF Barnes, Bryan M. Goasmat, Francois Sohn, Martin Y. Zhou, Hui Vladar, Andras E. Silver, Richard M. TI Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection SO JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS LA English DT Article DE wafer noise; defect inspection; volumetric processing; defect metrology; three-dimensional image processing ID MICROSCOPY; DYNAMICS AB Patterning imperfections in semiconductor device fabrication may either be noncritical [e.g., line edge roughness (LER)] or critical, such as defects that impact manufacturing yield. As the sizes of the pitches and linewidths decrease in lithography, detection of the optical scattering from killer defects may be obscured by the scattering from other variations, called wafer noise. Understanding and separating these optical signals are critical to reduce false positives and overlooked defects. The effects of wafer noise on defect detection are assessed using volumetric processing on both measurements and simulations with the SEMATECH 9-nm gate intentional defect array. Increases in LER in simulation lead to decreases in signal-to-noise ratios due to wafer noise. Measurement procedures illustrate the potential uses in manufacturing while illustrating challenges to be overcome for full implementation. Highly geometry-dependent, the ratio of wafer noise to defect signal should continue to be evaluated for new process architectures and production nodes. (C) The Authors. C1 [Barnes, Bryan M.; Goasmat, Francois; Sohn, Martin Y.; Zhou, Hui; Vladar, Andras E.; Silver, Richard M.] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA. RP Barnes, BM (reprint author), NIST, Semicond & Dimens Metrol Div, 100 Bur Dr MS 8212, Gaithersburg, MD 20899 USA. EM bmbarnes@nist.gov NR 14 TC 1 Z9 1 U1 0 U2 3 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1932-5150 EI 1932-5134 J9 J MICRO-NANOLITH MEM JI J. Micro-Nanolithogr. MEMS MOEMS PD JAN PY 2015 VL 14 IS 1 AR 014001 DI 10.1117/1.JMM.14.1.014001 PG 9 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics SC Engineering; Science & Technology - Other Topics; Materials Science; Optics GA CE2IZ UT WOS:000351640600017 ER PT J AU Andrews, AH Choat, JH Hamilton, RJ DeMartini, EE AF Andrews, Allen H. Choat, John H. Hamilton, Richard J. DeMartini, Edward E. TI Refined bomb radiocarbon dating of two iconic fishes of the Great Barrier Reef SO MARINE AND FRESHWATER RESEARCH LA English DT Article DE Australia; Bolbometopon muricatum; bumphead parrotfish; carbon-14; Cheilinus undulatus; humphead wrasse; Labridae; micromilling; otolith ID WESTERN NORTH-ATLANTIC; GULF-OF-MEXICO; CHEILINUS-UNDULATUS; FAMILY SCARIDAE; SOLOMON-ISLANDS; HUMPHEAD WRASSE; SURFACE OCEAN; CORAL-REEF; LIFE-SPAN; STABLE C AB Refinements to the methodology of bomb radiocarbon dating made it possible to validate age estimates of the humphead wrasse (Cheilinus undulatus) and bumphead parrotfish (Bolbometopon muricatum). Age for these species has been estimated from presumed annual growth zones in otoliths at similar to 30 and similar to 40 years respectively. The validity of these estimates was tested using bomb radiocarbon dating on the small and fragile otoliths of these species, and provided an opportunity to refine the method using advanced technologies. A regional C-14 reference record from hermatypic coral cores from the Great Barrier Reef was assembled and C-14 measurements from extracted otolith cores of adult otoliths were successful. Validated ages supported the accuracy of growth zone derived ages using sectioned sagittal otoliths. C1 [Andrews, Allen H.; DeMartini, Edward E.] NOAA Fisheries Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96818 USA. [Choat, John H.] James Cook Univ, Sch Marine & Trop Biol, Townsville, Qld 4811, Australia. [Andrews, Allen H.] Nat Conservancy Asia Pacific Div, West End, Qld 4101, Australia. RP Andrews, AH (reprint author), NOAA Fisheries Pacific Isl Fisheries Sci Ctr, 1845 Wasp Blvd, Honolulu, HI 96818 USA. EM allen.andrews@noaa.gov RI CSTFA, ResearcherID/P-1067-2014; Andrews, Allen/G-3686-2016 OI Andrews, Allen/0000-0002-9001-8305 FU National Geographic Grants; Australian Research Council; James Cook University (JCU); Lizard Island Research Station; Species of Concern Program of NOAA Fisheries Office of Protected Resources FX With regard to collection of fish specimens, W. Robbins, J. Ackerman and D. R. Robertson assisted with the field sampling and laboratory work. National Geographic Grants, the Australian Research Council and James Cook University (JCU) internal grants provided funding to J. H. Choat, with further support provided by the Lizard Island Research Station. This research was carried out under Great Barrier Reef Marine Park Authority permits G99/177, G00/398, G01/386, G01/606, G03/7181.1 and JCU ethics approvals A503 and A504 to J. H. Choat. Thanks to Beverly Barnett of Panama City Laboratory (NOAAFisheries - SEFSC) for assistance with constructing the regional map (ArcView). Thanks to two anonymous reviewers for constructive comments on the manuscript. The Species of Concern Program of NOAA Fisheries Office of Protected Resources provided the primary funding for this project. NR 57 TC 8 Z9 8 U1 3 U2 14 PU CSIRO PUBLISHING PI CLAYTON PA UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA SN 1323-1650 EI 1448-6059 J9 MAR FRESHWATER RES JI Mar. Freshw. Res. PY 2015 VL 66 IS 4 BP 305 EP 316 DI 10.1071/MF14086 PG 12 WC Fisheries; Limnology; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CE2CT UT WOS:000351621600003 ER PT J AU Lew, DK Himes-Cornell, A Lee, J AF Lew, Daniel K. Himes-Cornell, Amber Lee, Jean TI Weighting and Imputation for Missing Data in a Cost and Earnings Fishery Survey SO MARINE RESOURCE ECONOMICS LA English DT Article DE Alaska; charter boat fishing; data imputation; missing data; non-response bias; sample weighting; survey methods ID NONRESPONSE BIAS; RATES; MANAGEMENT; ANGLERS AB Surveys of fishery participants are often voluntary and, as a result, commonly have missing data associated with them. The two primary causes of missing data that generate concern are unit non-response and item non-response. Unit non-response occurs when a potential respondent does not complete and return a survey, resulting in a missing respondent. Item non-response occurs in returned surveys when an individual question is unanswered. Both may lead to issues with extrapolating results to the population. We explain how to adjust data to estimate population parameters from surveys using two of the principal approaches available for addressing missing data, weighting and data imputation, and illustrate the effects they have on estimates of costs and earnings in the Alaska charter boat sector using data from a recent survey. The results suggest that ignoring missing data will lead to markedly different results than those estimated when controlling for the missing data. C1 [Lew, Daniel K.; Himes-Cornell, Amber] Natl Marine Fisheries Serv, Resource Ecol & Fisheries Management Div, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. [Lee, Jean] Pacific States Marine Fisheries Commiss, Seattle, WA USA. RP Lew, DK (reprint author), Natl Marine Fisheries Serv, Resource Ecol & Fisheries Management Div, Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM Dan.Lew@noaa.gov; Amber.Himes@noaa.gov; Jean.Lee@noaa.gov OI Lew, Daniel/0000-0002-3394-138X; Himes-Cornell, Amber/0000-0003-3695-2241 NR 32 TC 0 Z9 0 U1 1 U2 8 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0738-1360 EI 2334-5985 J9 MAR RESOUR ECON JI Mar. Resour. Econ. PY 2015 VL 30 IS 2 BP 219 EP 230 DI 10.1086/679975 PG 12 WC Economics; Environmental Studies; Fisheries SC Business & Economics; Environmental Sciences & Ecology; Fisheries GA CD5GQ UT WOS:000351116400006 ER PT J AU Luo, JH Yuan, GC Zhao, CZ Han, CC Chen, J Liu, Y AF Luo, Junhua Yuan, Guangcui Zhao, Chuanzhuang Han, Charles C. Chen, Jie Liu, Yun TI Gelation of large hard particles with short-range attraction induced by bridging of small soft microgels SO SOFT MATTER LA English DT Article ID DIFFUSION-LIMITED AGGREGATION; COLLOID-POLYMER MIXTURES; SPINODAL DECOMPOSITION; SPHERICAL-PARTICLES; PHASE-SEPARATION; FLOCCULATION; MODEL; DISPERSIONS; BEHAVIOR; SPHERES AB In this study, mixed suspensions of large hard polystyrene microspheres and small soft poly(N-isopropylacrylamide) microgels are used as model systems to investigate the static and viscoelastic properties of suspensions which go through liquid to gel transitions. The microgels cause short-range attraction between microspheres through the bridging and depletion mechanism whose strength can be tuned by the microgel concentration. Rheological measurements are performed on suspensions with the volume fraction (Phi) of microspheres ranging from 0.02 to 0.15, and the transitions from liquid-like to solid-like behaviors triggered by the concentration of microgels are carefully identified. Two gel lines due to bridging attraction under unsaturated conditions are obtained. Ultrasmall angle neutron scattering is used to probe the thermodynamic properties of suspensions approaching the liquid-solid transition boundaries. Baxter's sticky hard-sphere model is used to extract the effective inter-microsphere interaction introduced by the small soft microgels. It is found that the strength of attraction (characterized by a single stickiness parameter tau) on two gel lines formed by bridging is very close to the theoretical value for the spinodal line in the tau-Phi phase diagram predicted by Baxter's model. This indicates that the nature of the gel state may have the same thermodynamic origins, independent of the detailed mechanism of the short-range attraction. The relationship between the rheological criterion for the liquid-solid transition and the thermodynamic criterion for the equilibrium-nonequilibrium transition is also discussed. C1 [Luo, Junhua; Yuan, Guangcui; Han, Charles C.] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Joint Lab Polymer Sci & Mat,State Key Lab Polymer, Beijing 100190, Peoples R China. [Luo, Junhua] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Zhao, Chuanzhuang] Ningbo Univ, Fac Mat Sci & Chem Engn, Dept Polymer Sci & Engn, Ningbo 315211, Zhejiang, Peoples R China. [Chen, Jie; Liu, Yun] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Liu, Yun] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA. RP Yuan, GC (reprint author), Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Joint Lab Polymer Sci & Mat,State Key Lab Polymer, Beijing 100190, Peoples R China. EM gcyuan@iccas.ac.cn; c.c.han@iccas.ac.cn RI Liu, Yun/F-6516-2012 OI Liu, Yun/0000-0002-0944-3153 FU National Basic Research Program of China (973 Program) [2012CB821503]; NIST, U.S. Department of Commerce [70NAB10H256] FX This work is supported by the National Basic Research Program of China (973 Program, 2012CB821503). Y. Liu acknowledges the support of cooperative agreement 70NAB10H256 from NIST, U.S. Department of Commerce. This work utilized facilities provided in part by the U.S. National Science Foundation under Agreement no. DMR-0944772. Certain commercial equipment, instruments, or materials (or suppliers, or software, ...) are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the U.S. National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. NR 61 TC 9 Z9 10 U1 4 U2 40 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1744-683X EI 1744-6848 J9 SOFT MATTER JI Soft Matter PY 2015 VL 11 IS 12 BP 2494 EP 2503 DI 10.1039/c4sm02165g PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Multidisciplinary; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA CD9DC UT WOS:000351396500019 PM 25679297 ER PT J AU Xu, Q Wei, L Nai, K Liu, S Rabin, RM Zhao, QY AF Xu, Qin Wei, Li Nai, Kang Liu, Shun Rabin, Robert M. Zhao, Qingyun TI A Radar Wind Analysis System for Nowcast Applications SO ADVANCES IN METEOROLOGY LA English DT Article ID WSR-88D; ERROR AB A radar wind analysis system (RWAS) has been developed for nowcast applications. By ingesting real-time wind observations from operational WSR-88D radars and surface mesonet, this system can produce and display real-time vector winds at each selected vertical level or on each conical surface of radar scans superimposed on radar reflectivity or radial-velocity images. An early version of the system has been evaluated and used to provide real-time winds to drive high-resolution emergency response dispersion models. This paper presents the detailed formulations of background error correlation functions used in each of the three steps of vectorwind analysis performed in the RWAS and the method of solution used in each step of vectorwind analysis. The performances of the RWAS are demonstrated by illustrative examples. C1 [Xu, Qin; Nai, Kang; Rabin, Robert M.] Natl Severe Storms Lab, Norman, OK 73072 USA. [Wei, Li; Nai, Kang] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Oklahoma City, OK 73072 USA. [Liu, Shun] Natl Ctr Environm Predict, College Pk, MD 20740 USA. [Liu, Shun] IM Syst Grp Inc, College Pk, MD 20740 USA. [Zhao, Qingyun] Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. RP Xu, Q (reprint author), Natl Severe Storms Lab, Norman, OK 73072 USA. EM qin.xu@noaa.gov FU ONR [N000141410281]; DOC/NOAA/OAR under NOAA-OU Cooperative Agreement [NA17RJ1227] FX The authors are thankful to Dr. Jidong Gao of NSSL and the anonymous reviewer for their comments and suggestions that improved the presentation of the results. This research was supported by the ONR Grant N000141410281 to the University of Oklahoma (OU). Funding was also provided by DOC/NOAA/OAR under NOAA-OU Cooperative Agreement no. NA17RJ1227. NR 28 TC 1 Z9 1 U1 0 U2 2 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-9309 EI 1687-9317 J9 ADV METEOROL JI Adv. Meteorol. PY 2015 AR 264515 DI 10.1155/2015/264515 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CD4PS UT WOS:000351066500001 ER PT J AU de Foy, B Cui, YY Schauer, JJ Janssen, M Turner, JR Wiedinmyer, C AF de Foy, B. Cui, Y. Y. Schauer, J. J. Janssen, M. Turner, J. R. Wiedinmyer, C. TI Estimating sources of elemental and organic carbon and their temporal emission patterns using a least squares inverse model and hourly measurements from the St. Louis-Midwest supersite SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID PARTICLE DISPERSION MODEL; POSITIVE MATRIX FACTORIZATION; TRACE GAS EMISSIONS; BLACK CARBON; PARTICULATE MATTER; URBAN ATMOSPHERE; AIR-POLLUTION; UNITED-STATES; AEROSOLS; PM2.5 AB Emission inventories of elemental carbon (EC) and organic carbon (OC) contain large uncertainties both in their spatial and temporal distributions for different source types. An inverse model was used to evaluate EC and OC emissions based on 1 year of hourly measurements from the St. Louis-Midwest supersite. The input to the model consisted of continuous measurements of EC and OC obtained for 2002 using two semicontinuous analyzers. High resolution meteorological simulations were performed for the entire time period using the Weather Research and Forecasting Model (WRF). These were used to simulate hourly back trajectories at the measurement site using a Lagrangian model (FLEXPART-WRF). In combination, an Eulerian model (CAMx: The Comprehensive Air Quality Model with Extensions) was used to simulate the impacts at the measurement site using known emissions inventories for point and area sources from the Lake Michigan Directors Consortium (LADCO) as well as for open burning from the Fire Inventory from NCAR (FINN). By considering only passive transport of pollutants, the Bayesian inversion simplifies to a single least squares inversion. The inverse model combines forward Eulerian simulations with backward Lagrangian simulations to yield estimates of emissions from sources in current inventories as well as from emissions that might be missing in the inventories. The CAMx impacts were disaggregated into separate time chunks in order to determine improved diurnal, weekday and monthly temporal patterns of emissions. Because EC is a primary species, the inverse model estimates can be interpreted directly as emissions. In contrast, OC is both a primary and a secondary species. As the inverse model does not differentiate between direct emissions and formation in the plume of those direct emissions, the estimates need to be interpreted as contributions to measured concentrations. Emissions of EC and OC in the St. Louis region from on-road, non-road, marine/aircraft/railroad (MAR), "other" and point sources were revised slightly downwards on average. In particular, both MAR and point sources had a more pronounced diurnal variation than in the inventory. The winter peak in "other" emissions was not corroborated by the inverse model. On-road emissions have a larger difference between weekday and weekends in the inverse estimates than in the inventory, and appear to be poorly simulated or characterized in the winter months. The model suggests that open burning emissions are significantly underestimated in the inventory. Finally, contributions of unknown sources seems to be from areas to the south of St. Louis and from afternoon and nighttime emissions. C1 [de Foy, B.; Cui, Y. Y.] St Louis Univ, Dept Earth & Atmospher Sci, St Louis, MO 63103 USA. [Cui, Y. Y.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Cui, Y. Y.] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA. [Schauer, J. J.] Univ Wisconsin, Civil & Environm Engn, Madison, WI USA. [Janssen, M.] Lake Michigan Air Directors Consortium LADCO, Rosemont, IL USA. [Turner, J. R.] Washington Univ, Energy Environm & Chem Engn Dept, St Louis, MO USA. [Wiedinmyer, C.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP de Foy, B (reprint author), St Louis Univ, Dept Earth & Atmospher Sci, St Louis, MO 63103 USA. EM bdefoy@slu.edu RI de Foy, Benjamin/A-9902-2010; Manager, CSD Publications/B-2789-2015 OI de Foy, Benjamin/0000-0003-4150-9922; FU United States Environmental Protection Agency (EPA) [R-82805901-0, RD-83455701] FX The United States Environmental Protection Agency (EPA) funded the EC and OC measurements used in this analysis through cooperative agreement R-82805901-0, and the analysis through grant number RD-83455701. Its contents are solely the responsibility of the grantee and do not necessarily represent the official views of the EPA. Further, the EPA does not endorse the purchase of any commercial products or services mentioned in the publication. We thank the staff of the St. Louis-Midwest fine-particle supersite for their assistance in data collection. We are also grateful to the US EPA for making the National Emissions Inventory available, and to the US National Climatic Data Center for the meteorological data. We wish to thank the three anonymous reviewers for their thoughtful and careful reviews which helped improve the paper. NR 68 TC 4 Z9 4 U1 7 U2 44 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 5 BP 2405 EP 2427 DI 10.5194/acp-15-2405-2015 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CC7PE UT WOS:000350559700010 ER PT J AU Sessions, WR Reid, JS Benedetti, A Colarco, PR da Silva, A Lu, S Sekiyama, T Tanaka, TY Baldasano, JM Basart, S Brooks, ME Eck, TF Iredell, M Hansen, JA Jorba, OC Juang, HMH Lynch, P Morcrette, JJ Moorthi, S Mulcahy, J Pradhan, Y Razinger, M Sampson, CB Wang, J Westphal, DL AF Sessions, W. R. Reid, J. S. Benedetti, A. Colarco, P. R. da Silva, A. Lu, S. Sekiyama, T. Tanaka, T. Y. Baldasano, J. M. Basart, S. Brooks, M. E. Eck, T. F. Iredell, M. Hansen, J. A. Jorba, O. C. Juang, H. -M. H. Lynch, P. Morcrette, J. -J. Moorthi, S. Mulcahy, J. Pradhan, Y. Razinger, M. Sampson, C. B. Wang, J. Westphal, D. L. TI Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME) (vol 15, pg 335, 2015) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Correction C1 [Sessions, W. R.; Lynch, P.] CSC Inc, Monterey, CA USA. [Reid, J. S.; Hansen, J. A.; Sampson, C. B.; Westphal, D. L.] Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [Benedetti, A.; Morcrette, J. -J.; Razinger, M.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Colarco, P. R.; da Silva, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lu, S.; Iredell, M.; Juang, H. -M. H.; Moorthi, S.; Wang, J.] NOAA, NCEP, College Pk, MD USA. [Sekiyama, T.; Tanaka, T. Y.] Japan Meteorol Agcy, Meteorol Res Inst, Atmospher Environm & Appl Meteorol Res Dept, Tsukuba, Ibaraki, Japan. [Baldasano, J. M.; Basart, S.; Jorba, O. C.] Ctr Nacl Supercomputac, Barcelona Supercomp Ctr, Earth Sci Dept, Barcelona, Spain. [Brooks, M. E.; Mulcahy, J.; Pradhan, Y.] Met Off, Exeter, Devon, England. [Eck, T. F.] NASA, Goddard Space Flight Ctr, USRA, Greenbelt, MD 20771 USA. [Wang, J.] IM Syst Grp Inc, Rockville, MD USA. RP Reid, JS (reprint author), Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. EM jeffrey.reid@nrlmry.navy.mil RI Reid, Jeffrey/B-7633-2014; Colarco, Peter/D-8637-2012 OI Reid, Jeffrey/0000-0002-5147-7955; Colarco, Peter/0000-0003-3525-1662 NR 1 TC 0 Z9 0 U1 0 U2 10 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 5 BP 2533 EP 2534 DI 10.5194/acp-15-2533-2015 PG 2 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CC7PE UT WOS:000350559700019 ER PT J AU Ghosh, A Patra, PK Ishijima, K Umezawa, T Ito, A Etheridge, DM Sugawara, S Kawamura, K Miller, JB Dlugokencky, EJ Krummel, PB Fraser, PJ Steele, LP Langenfelds, RL Trudinger, CM White, JWC Vaughn, B Saeki, T Aoki, S Nakazawa, T AF Ghosh, A. Patra, P. K. Ishijima, K. Umezawa, T. Ito, A. Etheridge, D. M. Sugawara, S. Kawamura, K. Miller, J. B. Dlugokencky, E. J. Krummel, P. B. Fraser, P. J. Steele, L. P. Langenfelds, R. L. Trudinger, C. M. White, J. W. C. Vaughn, B. Saeki, T. Aoki, S. Nakazawa, T. TI Variations in global methane sources and sinks during 1910-2010 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ATMOSPHERIC METHANE; ISOTOPIC COMPOSITION; STRATOSPHERIC METHANE; TROPOSPHERIC OH; NORTHERN-HEMISPHERE; DRAMATIC DECREASE; GROWTH-RATE; FIRN AIR; CH4; CARBON AB Atmospheric methane (CH4) increased from similar to 900 ppb (parts per billion, or nanomoles per mole of dry air) in 1900 to similar to 1800 ppb in 2010 at a rate unprecedented in any observational records. However, the contributions of the various methane sources and sinks to the CH4 increase are poorly understood. Here we use initial emissions from bottom-up inventories for anthropogenic sources, emissions from wetlands and rice paddies simulated by a terrestrial biogeochemical model, and an atmospheric general circulation model (AGCM)-based chemistry-transport model (i.e. ACTM) to simulate atmospheric CH4 concentrations for 1910-2010. The ACTM simulations are compared with the CH4 concentration records reconstructed from Antarctic and Arctic ice cores and firn air samples, and from direct measurements since the 1980s at multiple sites around the globe. The differences between ACTM simulations and observed CH4 concentrations are minimized to optimize the global total emissions using a mass balance calculation. During 1910-2010, the global total CH4 emission doubled from similar to 290 to similar to 580 Tg yr(-1). Compared to optimized emission, the bottom-up emission data set underestimates the rate of change of global total CH4 emissions by similar to 30% during the high growth period of 1940-1990, while it overestimates by similar to 380% during the low growth period of 1990-2010. Further, using the CH4 stable carbon isotopic data (delta C-13), we attribute the emission increase during 1940-1990 primarily to enhancement of biomass burning. The total lifetime of CH4 shortened from 9.4 yr during 1910-1919 to 9 yr during 2000-2009 by the combined effect of the increasing abundance of atomic chlorine radicals (Cl) and increases in average air temperature. We show that changes of CH4 loss rate due to increased tropospheric air temperature and CH4 loss due to Cl in the stratosphere are important sources of uncertainty to more accurately estimate the global CH4 budget from delta C-13 observations. C1 [Ghosh, A.; Kawamura, K.] Natl Inst Polar Res, Tokyo, Japan. [Ghosh, A.; Patra, P. K.; Ishijima, K.; Ito, A.; Saeki, T.] JAMSTEC, Dept Environm Geochem Cycle Res, Yokohama, Kanagawa, Japan. [Patra, P. K.; Umezawa, T.; Aoki, S.; Nakazawa, T.] Tohoku Univ, Ctr Atmospher & Ocean Studies, Sendai, Miyagi 980, Japan. [Umezawa, T.] Max Planck Inst Chem, D-55128 Mainz, Germany. [Ito, A.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Etheridge, D. M.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Langenfelds, R. L.; Trudinger, C. M.] CSIRO Oceans & Atmosphere Flagship, Aspendale, Vic, Australia. [Sugawara, S.] Miyagi Univ Educ, Sendai, Miyagi, Japan. [Kawamura, K.] JAMSTEC, Dept Biogeochem, Yokosuka, Kanagawa, Japan. [Miller, J. B.; Dlugokencky, E. J.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Miller, J. B.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [White, J. W. C.; Vaughn, B.] Univ Colorado, INSTAAR, Boulder, CO 80309 USA. RP Ghosh, A (reprint author), Natl Inst Polar Res, Tokyo, Japan. EM arindamgr@gmail.com; prabir@jamstec.go.jp RI Trudinger, Cathy/A-2532-2008; Krummel, Paul/A-4293-2013; Steele, Paul/B-3185-2009; White, James/A-7845-2009; Etheridge, David/B-7334-2013; Langenfelds, Raymond/B-5381-2012; Patra, Prabir/B-5206-2009; OI Trudinger, Cathy/0000-0002-4844-2153; Krummel, Paul/0000-0002-4884-3678; Steele, Paul/0000-0002-8234-3730; White, James/0000-0001-6041-4684; Patra, Prabir/0000-0001-5700-9389; Kawamura, Kenji/0000-0003-1163-700X; Umezawa, Taku/0000-0003-1217-7439 FU Green Network of Excellence (GRENE) Project by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Australian Climate Change Science Program, an Australian Government Initiative FX This research is financially supported by the Green Network of Excellence (GRENE) Project by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We also acknowledge data centres/contributors Tohoku University, Japan; NOAA/ESRL air sampling network; GAGE/AGAGE network; NOAA's National Climate Data Center (NCDC); World Data Centre for Greenhouse Gases (WDCGG); Carbon Dioxide Information Analysis Center (CDIAC), US Department of Energy; the Australian Bureau of Meteorology/Cape Grim Baseline Air Pollution Station; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia for the data set used in the present study. CSIRO's contribution was supported in part by the Australian Climate Change Science Program, an Australian Government Initiative. NR 89 TC 10 Z9 10 U1 11 U2 74 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 5 BP 2595 EP 2612 DI 10.5194/acp-15-2595-2015 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CC7PE UT WOS:000350559700024 ER PT J AU Hedrick, A Marshall, HP Winstral, A Elder, K Yueh, S Cline, D AF Hedrick, A. Marshall, H. -P. Winstral, A. Elder, K. Yueh, S. Cline, D. TI Independent evaluation of the SNODAS snow depth product using regional-scale lidar-derived measurements SO CRYOSPHERE LA English DT Article ID WATER EQUIVALENT; SPATIAL VARIABILITY; AIRBORNE LIDAR; UPPER TREELINE; ARCTIC ALASKA; MODEL; COVER; WIND; USA; REDISTRIBUTION AB Repeated light detection and ranging (lidar) surveys are quickly becoming the de facto method for measuring spatial variability of montane snowpacks at high resolution. This study examines the potential of a 750 km(2) lidar-derived data set of snow depths, collected during the 2007 northern Colorado Cold Lands Processes Experiment (CLPX-2), as a validation source for an operational hydrologic snow model. The SNOw Data Assimilation System (SNODAS) model framework, operated by the US National Weather Service, combines a physically based energy-and-mass-balance snow model with satellite, airborne and automated ground-based observations to provide daily estimates of snowpack properties at nominally 1 km resolution over the conterminous United States. Independent validation data are scarce due to the assimilating nature of SNODAS, compelling the need for an independent validation data set with substantial geographic coverage. Within 12 distinctive 500 x 500m study areas located throughout the survey swath, ground crews performed approximately 600 manual snow depth measurements during each of the CLPX-2 lidar acquisitions. This supplied a data set for constraining the uncertainty of upscaled lidar estimates of snow depth at the 1 km SNODAS resolution, resulting in a root-mean-square difference of 13 cm. Upscaled lidar snow depths were then compared to the SNODAS estimates over the entire study area for the dates of the lidar flights. The remotely sensed snow depths provided a more spatially continuous comparison data set and agreed more closely to the model estimates than that of the in situ measurements alone. Finally, the results revealed three distinct areas where the differences between lidar observations and SNODAS estimates were most drastic, providing insight into the causal influences of natural processes on model uncertainty. C1 [Hedrick, A.; Marshall, H. -P.] Boise State Univ, Ctr Geophys Invest Shallow Subsurface, Boise, ID 83725 USA. [Hedrick, A.; Winstral, A.] ARS, USDA, Northwest Watershed Res Ctr, Boise, ID 83712 USA. [Elder, K.] US Forest Serv, USDA, Rocky Mt Res Stn, Ft Collins, CO 80526 USA. [Yueh, S.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Cline, D.] NWS, NOAA, Hydrol Lab, Off Hydrol Dev, Silver Spring, MD 20910 USA. RP Hedrick, A (reprint author), Boise State Univ, Ctr Geophys Invest Shallow Subsurface, Boise, ID 83725 USA. EM hedrick.ars@gmail.com OI Hedrick, Andrew/0000-0001-9511-1341 FU NASA [NNX10AO02G, NNX10AN30A]; USDA-ARS CRIS [5362-13610-008-00D] FX The authors would like to express their gratitude to all the researchers involved in the intensive ground-based measurement campaign during CLPX-2. The CLPX-2 lidar data sets were archived and maintained by Fugro Horizons, Inc. Daily SNODAS model runs from 2003 to the present day are archived at the National Snow and Ice Data Center in Boulder, Colorado. This research was funded in part by NASA grant #NNX10AO02G (NASA New Investigator Program), NASA grant #NNX10AN30A (NASA EPSCoR Program), and the USDA-ARS CRIS Project 5362-13610-008-00D: "Understanding Snow and Hydrologic Processes in Mountainous Terrain with a Changing Climate". NR 43 TC 6 Z9 6 U1 4 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PY 2015 VL 9 IS 1 BP 13 EP 23 DI 10.5194/tc-9-13-2015 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA CC7NR UT WOS:000350555400002 ER PT J AU Schmitt, CG All, JD Schwarz, JP Arnott, WP Cole, RJ Lapham, E Celestian, A AF Schmitt, C. G. All, J. D. Schwarz, J. P. Arnott, W. P. Cole, R. J. Lapham, E. Celestian, A. TI Measurements of light-absorbing particles on the glaciers in the Cordillera Blanca, Peru SO CRYOSPHERE LA English DT Article ID BIOMASS BURNING EMISSIONS; BLACK CARBON; TROPICAL ANDES; CLIMATE-CHANGE; SNOW; AEROSOLS AB Glaciers in the tropical Andes have been rapidly losing mass since the 1970s. In addition to the documented increase in temperature, increases in light-absorbing particles deposited on glaciers could be contributing to the observed glacier loss. Here we report on measurements of light-absorbing particles sampled from glaciers during three surveys in the Cordillera Blanca Mountains in Peru. During three research expeditions in the dry seasons (May-August) of 2011, 2012 and 2013, 240 snow samples were collected from 15 mountain peaks over altitudes ranging from 4800 to nearly 6800 m. Several mountains were sampled each of the 3 years and some mountains were sampled multiple times during the same year. Collected snow samples were melted and filtered in the field then later analyzed using the Light Absorption Heating Method (LAHM), a new technique that measures the ability of particles on filters to absorb visible light. LAHM results have been calibrated using filters with known amounts of fullerene soot, a common industrial surrogate for black carbon (BC). As sample filters often contain dust in addition to BC, results are presented in terms of effective black carbon (eBC). During the 2013 survey, snow samples were collected and kept frozen for analysis with a Single Particle Soot Photometer (SP2). Calculated eBC mass from the LAHM analysis and the SP2 refractory black carbon (rBC) results were well correlated (r(2) = 0.92). These results indicate that a substantial portion of the light-absorbing particles in the more polluted regions were likely BC. The 3 years of data show that glaciers in the Cordillera Blanca Mountains close to human population centers have substantially higher levels of eBC (as high as 70 ng g(-1)) than remote glaciers (as low as 2.0 ng g(-1) eBC), indicating that population centers can influence local glaciers by sourcing BC. C1 [Schmitt, C. G.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Schmitt, C. G.; All, J. D.; Cole, R. J.; Lapham, E.] Amer Climber Sci Program, Eldora, CO USA. [All, J. D.; Celestian, A.] Western Kentucky Univ, Dept Geog & Geol, Bowling Green, KY 42101 USA. [Schwarz, J. P.] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA. [Schwarz, J. P.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Arnott, W. P.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Cole, R. J.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. RP Schmitt, CG (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM schmittc@ucar.edu RI schwarz, joshua/G-4556-2013; Manager, CSD Publications/B-2789-2015; OI schwarz, joshua/0000-0002-9123-2223; Schmitt, Carl/0000-0003-3829-6970 NR 27 TC 4 Z9 5 U1 3 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PY 2015 VL 9 IS 1 BP 331 EP 340 DI 10.5194/tc-9-331-2015 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA CC7NR UT WOS:000350555400023 ER PT J AU Asadieh, B Krakauer, NY AF Asadieh, B. Krakauer, N. Y. TI Global trends in extreme precipitation: climate models versus observations SO HYDROLOGY AND EARTH SYSTEM SCIENCES LA English DT Article ID HYDROLOGICAL CYCLE; CARIBBEAN REGION; TEMPERATURE; INDEXES; CMIP5; VARIABILITY; ENSEMBLE; EVENTS; 20TH-CENTURY; SIMULATIONS AB Precipitation events are expected to become substantially more intense under global warming, but few global comparisons of observations and climate model simulations are available to constrain predictions of future changes in precipitation extremes. We present a systematic global-scale comparison of changes in historical (1901-2010) annual-maximum daily precipitation between station observations (compiled in HadEX2) and the suite of global climate models contributing to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). We use both parametric and non-parametric methods to quantify the strength of trends in extreme precipitation in observations and models, taking care to sample them spatially and temporally in comparable ways. We find that both observations and models show generally increasing trends in extreme precipitation since 1901, with the largest changes in the deep tropics. Annual-maximum daily precipitation (Rx1day) has increased faster in the observations than in most of the CMIP5 models. On a global scale, the observational annual-maximum daily precipitation has increased by an average of 5.73mm over the last 110 years, or 8.5% in relative terms. This corresponds to an increase of 10% K-1 in global warming since 1901, which is larger than the average of climate models, with 8.3% K-1. The average rate of increase in extreme precipitation per K of warming in both models and observations is higher than the rate of increase in atmospheric water vapor content per K of warming expected from the Clausius-Clapeyron equation. We expect our findings to help inform assessments of precipitation-related hazards such as flooding, droughts and storms. C1 [Asadieh, B.] CUNY, City Coll New York, Dept Civil Engn, New York, NY 10021 USA. CUNY, City Coll New York, NOAA CREST, New York, NY 10021 USA. RP Asadieh, B (reprint author), CUNY, City Coll New York, Dept Civil Engn, New York, NY 10021 USA. EM basadie00@citymail.cuny.edu RI Asadieh, Behzad/M-5731-2015 OI Asadieh, Behzad/0000-0002-3606-2575 FU NOAA [NA11SEC4810004, NA12OAR4310084] FX The authors gratefully acknowledge support from NOAA under grants NA11SEC4810004 and NA12OAR4310084. All statements made are the views of the authors and not the opinions of the funding agency or the US government. NR 46 TC 13 Z9 14 U1 5 U2 30 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1027-5606 EI 1607-7938 J9 HYDROL EARTH SYST SC JI Hydrol. Earth Syst. Sci. PY 2015 VL 19 IS 2 BP 877 EP 891 DI 10.5194/hess-19-877-2015 PG 15 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA CC7OI UT WOS:000350557400015 ER PT J AU Price, C Black, KD Hargrave, BT Morris, JA AF Price, Carol Black, Kenneth D. Hargrave, Barry T. Morris, James A., Jr. TI Marine cage culture and the environment: effects on water quality and primary production SO AQUACULTURE ENVIRONMENT INTERACTIONS LA English DT Review DE Marine aquaculture; Environmental impacts; Dissolved nutrients; Oxygen; Nitrate; Phosphorus; Harmful algal blooms; Mitigation strategies ID MULTI-TROPHIC AQUACULTURE; SALMON SALMO-SALAR; MUSSELS MYTILUS-EDULIS; HARMFUL ALGAL BLOOMS; SOUTHWESTERN NEW-BRUNSWICK; BUBBLE GENERATING-SYSTEM; BLUEFIN TUNA AQUACULTURE; FISH FARM; ATLANTIC SALMON; COASTAL WATERS AB Increasing human population and reliance on aquaculture for seafood will lead to expansion of the industry in the open ocean. To guide environmentally sustainable expansion, coastal stakeholders require tools to evaluate the risks that marine aquaculture poses and to craft science-based policies and practices which safeguard marine ecosystems. We summarized current knowledge regarding dissolved nutrient loading from marine fish farms around the world, direct impacts on water quality and secondary impacts on primary production, including formation of harmful algal blooms. We found that modern operating conditions have minimized impacts of individual fish farms on marine water quality. Effects on dissolved oxygen and turbidity are largely eliminated through better management. Nutrient enrichment of the near-field water column is not detectable beyond 100 m of a farm when formulated feeds are used, and feed waste is minimized. We highlight the role of siting fish farms in deep waters with sufficient current to disperse nutrients and prevent water quality impacts. We extensively discuss the potential for advances in integrated multi-trophic aquaculture (IMTA) to assimilate waste nutrients. Although modern farm management practices have decreased environmental effects of marine fish farms, we conclude that questions remain about the additive impacts of discharge from multiple farms potentially leading to increased primary production and eutrophication. Research results on secondary effects upon primary production are highly variable. In some locations, nutrient loading has little or no trophic impact, while at others there is evidence that nutrients are assimilated by primary producers. Research on far-field and regional processes, especially in intensively farmed areas and over longer time scales, will refine understanding of the full ecological role of fish farms in marine environments. C1 [Price, Carol; Morris, James A., Jr.] NOAA, Ctr Coastal Fisheries & Habitat Res, Natl Ctr Coastal Ocean Sci, Natl Ocean Serv, Beaufort, NC 28516 USA. [Black, Kenneth D.] SAMS, Scottish Marine Inst, Oban PA37 1QA, Argyll, Scotland. RP Price, C (reprint author), NOAA, Ctr Coastal Fisheries & Habitat Res, Natl Ctr Coastal Ocean Sci, Natl Ocean Serv, 101 Pivers Isl Rd, Beaufort, NC 28516 USA. EM carol.price@noaa.gov RI Black, Kenneth/A-7089-2010 OI Black, Kenneth/0000-0002-7626-2926 FU NOAA Fisheries Office of Aquaculture; NOAA National Centers for Coastal Ocean Science FX This work was financially supported by the NOAA Fisheries Office of Aquaculture and the NOAA National Centers for Coastal Ocean Science. We thank our expert colleagues and the anonymous reviewers whose valuable contributions improved the manuscript. NR 179 TC 6 Z9 6 U1 14 U2 101 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 1869-215X EI 1869-7534 J9 AQUACULT ENV INTERAC JI Aquac. Environ. Interact. PY 2015 VL 6 IS 2 BP 151 EP 174 DI 10.3354/aei00122 PG 24 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA CC7MW UT WOS:000350553000003 ER PT J AU Lang, BE Cole, KD AF Lang, Brian E. Cole, Kenneth D. TI Unfolding Properties of Recombinant Human Serum Albumin Products Are Due To Bioprocessing Steps SO BIOTECHNOLOGY PROGRESS LA English DT Article DE human serum albumin; differential scanning calorimetry (DSC); recombinant proteins; biopharmaceutical; thermal unfolding; and thermodynamics ID DIFFERENTIAL SCANNING CALORIMETRY; THERMAL-STABILITY; FATTY-ACIDS; CRYSTAL-STRUCTURE; BINDING-SITES; ACETYLTRYPTOPHANATE; STABILIZATION; CAPRYLATE; CHAIN; DSC AB We have used differential scanning calorimetry (DSC) to determine the unfolding properties of commercial products of human serum albumin (HSA) prepared from pooled human blood, transgenic yeast, and transgenic rice. The initial melting temperatures (T-m1) for the unfolding transitions of the HSA products varied from 62 degrees C to 75 degrees C. We characterized the samples for purity, fatty acid content, and molecular weight. The effects of adding fatty acids, heat pasteurization, and a low pH defatting technique on the transition temperatures were measured. Defatted HSA has a structure with the lowest stability (T-m of approximate to 62 degrees C). When fatty acids are bound to HSA, the structure is stabilized (T-m of approximate to 64-72 degrees C), and prolonged heating (pasteurization at 60 degrees C) results in a heat-stabilized structural form containing fatty acids (T-m of approximate to 75-80 degrees C). This process was shown to be reversible by a low pH defatting step. This study shows that the fatty acid composition and bioprocessing history of the HSA commercial products results in the large differences in the thermal stability. (c) 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:62-69, 2015 C1 [Lang, Brian E.; Cole, Kenneth D.] NIST, Biosyst & Biomat Div, Gaithersburg, MD 20899 USA. RP Cole, KD (reprint author), NIST, Biosyst & Biomat Div, Gaithersburg, MD 20899 USA. EM cole@nist.gov NR 32 TC 0 Z9 0 U1 4 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 8756-7938 EI 1520-6033 J9 BIOTECHNOL PROGR JI Biotechnol. Prog. PD JAN-FEB PY 2015 VL 31 IS 1 BP 62 EP 69 DI 10.1002/btpr.1996 PG 8 WC Biotechnology & Applied Microbiology; Food Science & Technology SC Biotechnology & Applied Microbiology; Food Science & Technology GA CC3KR UT WOS:000350247900009 PM 25270911 ER PT J AU Battista, T O'Brien, K AF Battista, Tim O'Brien, Kevin TI Spatially Prioritizing Seafloor Mapping for Coastal and Marine Planning SO COASTAL MANAGEMENT LA English DT Article DE Long Island Sound; mapping; prioritization; seafloor; spatial AB Coastal and marine areas provide vital services to support the economic, cultural, recreational, and ecological needs of human communities, but sustaining these benefits necessitates a balance between growing and often competing uses and activities. Minimizing coastal zone conflict and reducing human-induced impacts to ecological resources requires access to consistent spatial information on the distribution and condition of marine resources. Seafloor mapping provides a detailed and reliable spatial template on the structure of the seafloor that has become a core data need for many resource management strategies. The absence of detailed maps of the seafloor hinders the effectiveness of priority setting in marine policy, regulatory processes, and marine stewardship. For large management areas, the relatively high cost of seafloor mapping and limited management budgets requires careful spatial prioritization. In order to address this problem, a consensus based approach, aided by decision-support tools, and participatory geographic information systems (GIS), was implemented in Long Island Sound to spatially prioritize locations, define additional data collection efforts needed, and identify products needed to inform decision-making. The methodology developed has utility for other states and regions in need of spatially prioritizing activities for coastal planning, and organizations charged with providing geospatial services to communities with broad informational needs. C1 [Battista, Tim] NOAA, Natl Ctr Coastal Ocean Sci, Silver Spring, MD 20910 USA. [O'Brien, Kevin] Connecticut Dept Energy & Environm Protect, Hartford, CT USA. RP Battista, T (reprint author), NOAA, 1305 East West Hwy,SSMC4,N SCI 1,Stn 9311, Silver Spring, MD 20910 USA. EM Tim.Battista@noaa.gov NR 9 TC 1 Z9 1 U1 4 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0892-0753 EI 1521-0421 J9 COAST MANAGE JI Coast. Manage. PY 2015 VL 43 IS 1 BP 35 EP 51 DI 10.1080/08920753.2014.985177 PG 17 WC Environmental Sciences; Environmental Studies SC Environmental Sciences & Ecology GA CC0TP UT WOS:000350050000002 ER PT J AU van der Hoop, JM Vanderlaan, ASM Cole, TVN Henry, AG Hall, L Mase-Guthrie, B Wimmer, T Moore, MJ AF van der Hoop, Julie M. Vanderlaan, Angelia S. M. Cole, Timothy V. N. Henry, Allison G. Hall, Lanni Mase-Guthrie, Blair Wimmer, Tonya Moore, Michael J. TI Vessel Strikes to Large Whales Before and After the 2008 Ship Strike Rule SO CONSERVATION LETTERS LA English DT Article DE Whale; right whale; ship strike; speed limit; ocean management; ocean zoning; mortality ID ATLANTIC RIGHT WHALES; SCOTIAN SHELF; PROBABILITY; COLLISIONS; SPEED; RISK; ENCOUNTERS AB To determine effectiveness of Seasonal Management Areas (SMAs), introduced in 2008 on the U.S. East Coast to reduce lethal vessel strikes to North Atlantic right whales, we analyzed observed large whale mortality events from 1990-2012 in the geographic region of the Ship Strike Rule to identify changes in frequency, spatial distribution, and spatiotemporal interaction since implementation. Though not directly coincident with SMA implementation, right whale vessel-strike mortalities significantly declined from 2.0 (2000-2006) to 0.33 per year (2007-2012). Large whale vessel-strike mortalities have decreased inside active SMAs, and increased outside inactive SMAs. We detected no significant spatiotemporal interaction in the 4-year pre- or post-Rule periods, although a longer time series is needed to detect these changes. As designed, SMAs encompass only 36% of historical right whale vessel-strike mortalities, and 32% are outside managed space but within managed timeframes. We suggest increasing spatial coverage to improve the Rule's effectiveness. C1 [van der Hoop, Julie M.; Moore, Michael J.] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. [Vanderlaan, Angelia S. M.] Univ Massachusetts Amherst, Large Pelag Res Ctr, Gloucester, MA 01931 USA. [Cole, Timothy V. N.; Henry, Allison G.] NOAA, Natl Marine Fisheries Serv, NEFSC, Woods Hole, MA 02543 USA. [Hall, Lanni] NOAA, Fisheries Greater Atlantic Reg Fisheries Off, Gloucester, MA 01930 USA. [Mase-Guthrie, Blair] NOAA, Fisheries Southeast Reg Off, Miami, FL 33701 USA. [Wimmer, Tonya] Nova Scotia Museum, Marine Anim Response Soc, Maritime Marine Anim Response Network, Halifax, NS B3H 4J1, Canada. RP van der Hoop, JM (reprint author), Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. EM jvanderhoop@whoi.edu RI Moore, Michael/E-1707-2015; OI Moore, Michael/0000-0003-3074-6631; van der Hoop, Julie/0000-0003-2327-9000 FU North Pond Foundation; M. S. Worthington Foundation; Natural Sciences and Engineering Research Council of Canada (NSERC) FX We are grateful for all the efforts of primary data generation and collection by the members of various stranding networks, the agencies therein, and their volunteers and donors. We thank M. Scott at ESRI for technical support, and anonymous reviewers for having greatly improved the manuscript. This project was funded by the North Pond Foundation and the M. S. Worthington Foundation. JvdH was supported by a Post-Graduate Fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC). NR 32 TC 8 Z9 9 U1 5 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1755-263X J9 CONSERV LETT JI Conserv. Lett. PD JAN-FEB PY 2015 VL 8 IS 1 BP 24 EP 32 DI 10.1111/conl.12105 PG 9 WC Biodiversity Conservation SC Biodiversity & Conservation GA CC7JT UT WOS:000350544200003 ER PT J AU Comes, RB Siebein, K Lu, J Wolf, SA AF Comes, R. B. Siebein, K. Lu, J. Wolf, S. A. TI Microstructural effects of chemical island templating in patterned matrix-pillar oxide nanocomposites SO CRYSTENGCOMM LA English DT Article ID WEBER THIN-FILMS; MAGNETIC-ANISOTROPY; NANOSTRUCTURES; MAGNETOSTRICTION; GROWTH AB The ability to pattern the location of pillars in epitaxial matrix-pillar nanocomposites is a key challenge to develop future technologies using these intriguing materials. One such model system employs a ferrimagnetic CoFe2O4 (CFO) pillar embedded in a ferroelectric BiFeO3 (BFO) matrix, which has been proposed as a possible memory or logic system. These composites self-assemble spontaneously with pillars forming through nucleation at a random location when grown via physical vapor deposition. Recent results have shown that if an island of the pillar material is pre-patterned on the substrate, it is possible to control the nucleation process and determine the locations where pillars form. In this work, we employ electron microscopy and X-ray diffraction to examine the chemical composition and microstructure of patterned CFO-BFO nanocomposites. Cross-sectional transmission electron microscopy is used to examine the nucleation effects at the interface between the template island and resulting pillar. Evidence of grain boundaries and lattice tilting in the templated pillars is also presented and attributed to the microstructure of the seed island. C1 [Comes, R. B.; Lu, J.; Wolf, S. A.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Siebein, K.] Natl Inst Stand & Technol, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Wolf, S. A.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. RP Comes, RB (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. EM rcomes@virginia.edu RI Comes, Ryan/A-1957-2013 OI Comes, Ryan/0000-0002-5304-6921 FU Nanoelectronics Research Initiative, NSF [DMR-08-19762]; DARPA [HR-0011-10-1-0072]; Virginia Innovation Partnership (VIP); U.S. Department of Commerce's i6 Challenge; National Defense Science and Engineering Graduate Fellowship FX Research performed in part at the National Institute of Standards and Technology (NIST) Center for Nanoscale Science and Technology. The authors would also like to thank Richard Kasica of NIST for assistance with electron-beam lithography for the patterned nanocomposite and Dr. Craig Johnson and Dr. Steven Spurgeon for helpful discussions of the results. The authors gratefully acknowledge funding from the Nanoelectronics Research Initiative, NSF (DMR-08-19762) and DARPA (HR-0011-10-1-0072). SAW and JL also thank Virginia Innovation Partnership (VIP) funding as part of the U.S. Department of Commerce's i6 Challenge. RC also wishes to acknowledge funding from the National Defense Science and Engineering Graduate Fellowship. NR 32 TC 1 Z9 1 U1 4 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1466-8033 J9 CRYSTENGCOMM JI Crystengcomm PY 2015 VL 17 IS 9 BP 2041 EP 2049 DI 10.1039/c5ce00025d PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA CC6AU UT WOS:000350447700020 ER PT J AU Lynch, PD Nye, JA Hare, JA Stock, CA Alexander, MA Scott, JD Curti, KL Drew, K AF Lynch, Patrick D. Nye, Janet A. Hare, Jonathan A. Stock, Charles A. Alexander, Michael A. Scott, James D. Curti, Kiersten L. Drew, Katherine TI Projected ocean warming creates a conservation challenge for river herring populations SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE alewife; Alosa; bioclimatic envelope; blueback herring; climate change; diadromous; ecological niche; endangered species; fish; habitat suitability ID ENDANGERED SPECIES ACT; CLIMATE-CHANGE; ALOSA-PSEUDOHARENGUS; MARINE FISH; ATLANTIC COAST; HABITAT MODELS; A-AESTIVALIS; ALEWIFE; ECOLOGY; CONNECTIVITY AB The term river herring collectively refers to alewife (Alosa pseudoharengus) and blueback herring (A. aestivalis), two anadromous fishes distributed along the east coast of North America. Historically, river herring spawning migrations supported important fisheries, and their spawning runs continue to be of cultural significance to many coastal communities. Recently, substantial declines in spawning run size prompted a petition to consider river herring for listing under the Endangered Species Act (ESA). The ESA status review process requires an evaluation of a species' response to multiple stressors, including climate change. For anadromous species that utilize a range of habitats throughout their life cycle, the response to a changing global climate is inherently complex and likely varies regionally. River herring occupy marine habitat for most of their lives, and we demonstrate that their relative abundance in the ocean has been increasing in recent years. We project potential effects of ocean warming along the US Atlantic coast on river herring in two seasons (spring and fall), and two future periods (2020-2060 and 2060-2100) by linking species distribution models to projected temperature changes from global climate models. Our analyses indicate that climate change will likely result in reductions in total suitable habitat across the study region, which will alter the marine distribution of river herring. We also project that density will likely decrease for both species in fall, but may increase in spring. Finally, we demonstrate that river herring may have increased sensitivity to climate change under a low abundance scenario. This result could be an important consideration for resource managers when planning for climate change because establishing effective conservation efforts in the near term may improve population resiliency and provide lasting benefits to river herring populations. C1 [Lynch, Patrick D.; Hare, Jonathan A.] NOAA, NMFS, Northeast Fisheries Sci Ctr, Narragansett, RI 02882 USA. [Nye, Janet A.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Stock, Charles A.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Alexander, Michael A.; Scott, James D.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Curti, Kiersten L.] NOAA, NMFS, Northeast Fisheries Sci Ctr, Woods Hole, MA 02543 USA. [Drew, Katherine] Atlantic States Marine Fisheries Commiss, Arlington, VA 22201 USA. RP Lynch, PD (reprint author), NOAA, NMFS, Off Sci & Technol, Silver Spring, MD 20910 USA. EM patrick.lynch@noaa.gov RI Alexander, Michael/A-7097-2013; OI Alexander, Michael/0000-0001-9646-6427; Stock, Charles/0000-0001-9549-8013 FU NOAA Fisheries' FATE (Fisheries and the Environment) Program FX This study utilized a large quantity of data from many sources. For biological data, we are thankful to all those currently or previously affiliated with NOAA Fisheries' bottom trawl survey conducted at the Northeast Fisheries Science Center, and for temperature data, we thank the hard-working scientists in NOAA Fisheries Oceanography Branch. We sincerely appreciate comments from J. Manderson, K. Greene, J. Kocik, F. Serchuk, N. Shackell, and two anonymous reviewers on an earlier version, and we also thank A. Buchheister, R. Bell, D. Richardson, and J. Cournane. This work was funded by NOAA Fisheries' FATE (Fisheries and the Environment) Program. Acknowledgement of the above individuals does not imply their endorsement of this work; we have sole responsibility for this contribution. The views expressed herein are the authors and do not necessarily reflect the views of NOAA or any of its sub-agencies. NR 68 TC 6 Z9 6 U1 3 U2 28 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN-FEB PY 2015 VL 72 IS 2 BP 374 EP 387 DI 10.1093/icesjms/fsu134 PG 14 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2DC UT WOS:000350154300007 ER PT J AU Thorson, JT Jensen, OP Hilborn, R AF Thorson, James T. Jensen, Olaf P. Hilborn, Ray TI Probability of stochastic depletion: an easily interpreted diagnostic for stock assessment modelling and fisheries management SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE autocorrelated recruitment; fishery collapse; management strategy evaluation; multiannual plan; rebuilding plan; recruitment variability; stationary distribution of abundance; stochastic depletion ID LIFE-HISTORY; GLOBAL FISHERIES; MARINE FISHES; REGIME SHIFTS; RECRUITMENT; DYNAMICS; COLLAPSE; CLIMATE; GROWTH; POPULATIONS AB Marine fish populations have high variation in cohort strength, and the production of juveniles (recruitment) may have persistent positive or negative residuals (autocorrelation) after accounting for spawning biomass. Autocorrelated recruitment will occur whenever average recruitment levels change between oceanographic regimes or due to predator release, but mayalso indicate persistent environmental and biological effects on shorter time-scales. Here, we use estimates of recruitment variability and autocorrelation to simulate the stationary distribution of spawning biomass for 100 real-world stocks when unfished, fished at F-MSY, or fished following a harvest control rule where fishing mortality decreases as a function of spawning biomass. Results show that unfished stocks have spawning biomass (SB) below its deterministic equilibrium value (SB0) 58% of the time, and below 0.5SB(0) 5% of the time on average across all stocks. Similarly, stocks fished at the level producing deterministic maximum sustainable yield (F-MSY) are below its deterministic prediction of spawning biomass (SBMSY) 60% of the time and below 0.5SB(MSY) 8% of the time. These probabilities are greater for stocks with high recruitment variability, positive autocorrelation, and high natural mortality-traits that are particularly associated with clupeids and scombrids. An elevated probability of stochastic depletion, i.e. biomass below the deterministic equilibrium expectation, implies that management actions required when biomass drops below a threshold may be triggered more frequently than expected. Therefore, we conclude by suggesting that fisheries scientists routinely calculate these probabilities during stock assessments as a decision support tool for fisheries managers. C1 [Thorson, James T.] NOAA, Fisheries Resource Assessment & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA. [Jensen, Olaf P.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA. [Hilborn, Ray] Univ Washington, Sch Aquat & Fisheries Sci, Seattle, WA 98105 USA. RP Thorson, JT (reprint author), NOAA, Fisheries Resource Assessment & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd East, Seattle, WA 98112 USA. EM james.thorson@noaa.gov NR 46 TC 2 Z9 2 U1 5 U2 30 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN-FEB PY 2015 VL 72 IS 2 BP 428 EP 435 DI 10.1093/icesjms/fsu127 PG 8 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2DC UT WOS:000350154300011 ER PT J AU Hurst, TP Cooper, DW Duffy-Anderson, JT Farley, EV AF Hurst, Thomas P. Cooper, Daniel W. Duffy-Anderson, Janet T. Farley, Edward V. TI Contrasting coastal and shelf nursery habitats of Pacific cod in the southeastern Bering Sea SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article DE Bering Sea; habitat; juvenile; nursery; pacific cod Gadus macrocephalus ID NORTHERN ROCK SOLE; STAFF BEAM TRAWL; GADUS-MACROCEPHALUS; LEPIDOPSETTA-POLYXYSTRA; WALLEYE POLLOCK; LIFE-HISTORY; JUVENILE COD; ALASKA; FISH; PATTERNS AB Shallow, subtidal waters of coastal embayments are the primary nursery habitats of juvenile Pacific cod through much of their range. However, the importance of these habitats to the Bering Sea population is poorly understood as the Bering Sea offers relatively little of this habitat. In this study, we examined the use of demersal and pelagic habitats in the southeast Bering Sea by age-0 Pacific cod. In 4 years of demersal beam trawling on the shelf at depths of 20-146 m, fish were most abundant along the Alaska Peninsula (AKP) at depths to 50 m. In addition, 1 year of spatially intensive beam trawl sampling was conducted at depths of 5-30 m in a nearshore focal area along the central AKP. In this survey, age-0 cod were more abundant along the open coastline than they were in two coastal embayments, counter to patterns observed in the Gulf of Alaska. Demersal sampling in 2012 was conducted synoptically with surveys of surface and subsurface waters over the continental shelf. Age-0 cod were captured in pelagic waters over the middle and outer shelf, with maximum catches occurring over depths of 60-80 m. The similar size distributions of fish in coastal-demersal and shelf-surface habitats and the proximity of concentrations in the two habitat types suggests that habitat use in the Bering Sea occurs along a gradient from coastal to pelagic. While capture efficiencies may differ among trawl types, trawl-based estimates of age-0 cod density in demersal waters along the AKP was 10 times that observed in the highest density pelagic-shelf habitats, demonstrating the importance of coastal nursery habitats in this population. Despite representing a much smaller habitat area, the coastal waters along the AKP appear an important nursery area and support a significant fraction of the age-0 Pacific cod in the Bering Sea. C1 [Hurst, Thomas P.] NOAA, Fisheries Behav Ecol Program, Resource Assessment & Conservat Engn Div,Hatfield, Alaska Fisheries Sci Ctr,Natl Marine Fisheries Se, Newport, OR 97365 USA. [Cooper, Daniel W.; Duffy-Anderson, Janet T.] NOAA, Recruitment Proc Program, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr,Natl Marine Fisheries Se, Seattle, WA 98115 USA. [Farley, Edward V.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA. RP Hurst, TP (reprint author), NOAA, Fisheries Behav Ecol Program, Resource Assessment & Conservat Engn Div,Hatfield, Alaska Fisheries Sci Ctr,Natl Marine Fisheries Se, Newport, OR 97365 USA. EM thomas.hurst@noaa.gov FU NMFS Alaska Regional Office; NOAA's North Pacific Climate Regimes and Ecosystems Productivity Program FX We thank A. Stoner and the crews of the FV Bountiful and NOAA Oscar Dyson and Miller Freeman for sampling assistance. M. Briski, and the staff of Peter Pan Seafoods, and R. Murphy of the Alaska Department of Fish and Game provided logistical assistance with sampling in the nearshore focal area. C. Hines and M. Ottmar provided laboratory assistance and M. Spencer prepared maps. This project was supported by a grant for Essential Fish Habitat Research from the NMFS Alaska Regional Office and by NOAA's North Pacific Climate Regimes and Ecosystems Productivity Program. B. Laurel, C. Ryer, J. Miller, and two anonymous reviewers provided valuable comments on this manuscript. This is contribution EcoFOCI-N810 to NOAA's North Pacific Climate Regimes and Ecosystem Productivity research program. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. NR 55 TC 3 Z9 3 U1 5 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN-FEB PY 2015 VL 72 IS 2 BP 515 EP 527 DI 10.1093/icesjms/fsu141 PG 13 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2DC UT WOS:000350154300019 ER PT J AU Pritchett, JS Phinney, KW AF Pritchett, Jeanita S. Phinney, Karen W. TI Influence of Chemical Straightening on the Stability of Drugs of Abuse in Hair SO JOURNAL OF ANALYTICAL TOXICOLOGY LA English DT Article ID AMPHETAMINE; METHAMPHETAMINE; ISSUES AB Chemical straightening, also known as a relaxer, is ubiquitously used among African American women to obtain straighter hair compared with their natural tresses. This study focused on the stability of drugs of abuse in hair after a single application of the relaxer. Commercially available 'Lye' or 'No-Lye' chemical straightening products (Silk Elements (TM)) were applied in vitro to drug-fortified hair (standard reference materials (SRM) 2379 and 2380) and hairs clipped from established drug users. Target analytes (cocaine (COC), benzoylecgonine (BZE), cocaethylene (CE), phencyclidine and tetrahydrocannabinol) were isolated using solid-phase extraction and then analyzed with isotope dilution gas chromatography-mass spectrometry with selective ion monitoring. After either treatment, drug concentrations were significantly (P < 0.05) decreased in both the SRM sample and the hair from authentic abusers. In the SRM groups, 6-67% of the original concentration remained after a single chemical treatment. Similarly, only 5-30% of the original concentration remained in authentic drug hairs that had formerly tested positive for COC, BZE and CE. C1 [Pritchett, Jeanita S.] NIST, Div Chem Sci, Gaithersburg, MD 20899 USA. [Phinney, Karen W.] NIST, Biomol Measurement Div, Gaithersburg, MD 20899 USA. RP Pritchett, JS (reprint author), NIST, Div Chem Sci, 100 Bur Dr,Stop 8392, Gaithersburg, MD 20899 USA. EM jeanita.pritchett@nist.gov NR 10 TC 0 Z9 0 U1 1 U2 5 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0146-4760 EI 1945-2403 J9 J ANAL TOXICOL JI J. Anal. Toxicol. PD JAN-FEB PY 2015 VL 39 IS 1 BP 13 EP 16 DI 10.1093/jat/bku106 PG 4 WC Chemistry, Analytical; Toxicology SC Chemistry; Toxicology GA CC3BD UT WOS:000350218200002 PM 25298521 ER PT J AU Sung, L Stanley, D Gorham, JM Rabb, S Gu, XH Yu, LL Nguyen, T AF Sung, Lipiin Stanley, Deborah Gorham, Justin M. Rabb, Savelas Gu, Xiaohong Yu, Lee L. Tinh Nguyen TI A quantitative study of nanoparticle release from nanocoatings exposed to UV radiation SO JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH LA English DT Article DE AFM; Degradation; ICP-OES; Nanocoatings; Nanocomposites; Nanoparticle release; Surface morphology; UV ID CARBON NANOTUBES; POTENTIAL RELEASE; NANOCOMPOSITES; MECHANISMS; SCENARIOS; TOXICITY; DEGRADATION; IRRADIATION; COMPOSITES; RISKS AB Nanoparticles are increasingly used in polymer coatings (i. e., nanocoatings) to improve multiple properties including the mechanical, electrical, gas barrier, and ultraviolet (UV) resistance of traditional coatings. These high performance nanocoatings are often used in outdoor environments. However, because polymers are susceptible to degradation by weathering elements, nanoparticles in a nanocoating may be released into the environment during its life cycle, which potentially poses an environmental health and safety concern and may hinder application of these advanced coatings. This study presents protocols and experimental technique to quantify the release of nanosilica from epoxy nanocoating as a function of UV exposure. Specimens of an epoxy coating containing 5% untreated nanosilica in specially designed holders were exposed to UV radiation (295-400 nm) in a well-controlled high-intensity UV chamber. Exposed specimens were removed at specified UV dose intervals for measurements of coating chemical degradation, mass loss, nanosilica accumulation on specimen surface, and nanosilica release as a function of UV dose. Measurement of nanosilica release was accomplished by (a) periodically spraying UV-exposed specimens with water, (b) collecting runoff water/released particles, and (c) analyzing collected solutions by inductively coupled plasma-optical emission spectrometry using a National Institute of Standards and Technology (NIST)-developed protocol. Results demonstrated that the amount of nanosilica release was substantial and increased rapidly with UV dose. Mass loss, chemical degradation, and silica accumulation on specimen surface also increased with UV dose. C1 [Sung, Lipiin; Stanley, Deborah; Gorham, Justin M.; Rabb, Savelas; Gu, Xiaohong; Yu, Lee L.; Tinh Nguyen] NIST, Gaithersburg, MD 20899 USA. RP Sung, L (reprint author), NIST, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM lipiin@nist.gov RI Yu, Lee/N-7263-2015; OI Yu, Lee/0000-0002-8043-6853; Gorham, Justin/0000-0002-0569-297X NR 51 TC 4 Z9 4 U1 4 U2 26 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1945-9645 EI 1935-3804 J9 J COAT TECHNOL RES JI J. Coat. Technol. Res. PD JAN PY 2015 VL 12 IS 1 BP 121 EP 135 DI 10.1007/s11998-014-9620-9 PG 15 WC Chemistry, Applied; Materials Science, Coatings & Films SC Chemistry; Materials Science GA CC3JA UT WOS:000350242100009 ER PT J AU Cohl, HS Palmer, RM AF Cohl, Howard S. Palmer, Rebekah M. TI Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry SO SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS LA English DT Article DE fundamental solution; hypersphere; Fourier expansion; Gegenbauer expansion ID 3-DIMENSIONAL SPHERE; CONSTANT CURVATURE; CONTRACTIONS; SEPARATION; SPACE AB For a fundamental solution of Laplace's equation on the R-radius d-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hyperspherical geometry in geodesic polar coordinates. From this expansion in three-dimensions, we derive an addition theorem for the azimuthal Fourier coefficients of a fundamental solution of Laplace's equation on the 3-sphere. Applications of our expansions are given, namely closed-form solutions to Poisson's equation with uniform density source distributions. The Newtonian potential is obtained for the 2-disc on the 2-sphere and 3-ball and circular curve segment on the 3-sphere. Applications are also given to the superintegrable Kepler-Coulomb and isotropic oscillator potentials. C1 [Cohl, Howard S.] NIST, Appl & Computat Math Div, Gaithersburg, MD 20899 USA. [Palmer, Rebekah M.] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA. RP Cohl, HS (reprint author), NIST, Appl & Computat Math Div, Gaithersburg, MD 20899 USA. EM howard.cohl@nist.gov; rmaepalmer4@gmail.com NR 28 TC 1 Z9 1 U1 0 U2 1 PU NATL ACAD SCI UKRAINE, INST MATH PI KYIV 4 PA 3 TERESCHCHENKIV SKA ST, KYIV 4, 01601, UKRAINE SN 1815-0659 J9 SYMMETRY INTEGR GEOM JI Symmetry Integr. Geom. PY 2015 VL 11 AR 015 DI 10.3842/SIGMA.2015.015 PG 23 WC Physics, Mathematical SC Physics GA CC7PU UT WOS:000350561300001 ER PT J AU Yamaguchi, T Feingold, G AF Yamaguchi, T. Feingold, G. TI On the relationship between open cellular convective cloud patterns and the spatial distribution of precipitation SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SOUTHEAST PACIFIC STRATOCUMULUS; LARGE-EDDY SIMULATIONS; MARINE BOUNDARY-LAYER; OPEN CELLS; VOCALS-REX; AEROSOL; DRIZZLE; MODEL; MICROPHYSICS; ENTRAINMENT AB Precipitation is thought to be a necessary but insufficient condition for the transformation of stratocumulus-topped closed cellular convection to open cellular cumuliform convection. Here we test the hypothesis that the spatial distribution of precipitation is a key element of the closed-to-open cell transition. A series of idealized 3-D simulations are conducted to evaluate the dependency of the transformation on the areal coverage of rain, and to explore the role of interactions between multiple rainy areas in the formation of the open cells. When rain is restricted to a small area, even substantial rain (order few mm day(-1)) does not result in a transition. With increasing areal coverage of the rain, the transition becomes possible provided that the rain rate is sufficiently large. When multiple small rain regions interact with each other, the transition occurs and spreads over a wider area, provided that the distance between the rain regions is short. When the distance between the rain areas is large, the transition eventually occurs, albeit slowly. For much longer distances between rain regions the system is anticipated to remain in a closed-cell state. These results suggest a connection to the recently hypothesized remote control of open-cell formation. Finally it is shown that this transition occurs along a consistent path in the phase space of the mean vs. coefficient of variation of the liquid water path, droplet number and optical depth. This could be used as a diagnostic tool for global analyses of the statistics of closed-and open-cell occurrence and transitions between them. C1 [Yamaguchi, T.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Yamaguchi, T.; Feingold, G.] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA. RP Yamaguchi, T (reprint author), Univ Colorado, CIRES, Boulder, CO 80309 USA. EM tak.yamaguchi@noaa.gov RI Yamaguchi, Takanobu/H-9169-2013; Feingold, Graham/B-6152-2009; Manager, CSD Publications/B-2789-2015 OI Yamaguchi, Takanobu/0000-0001-8059-0757; FU NOAA Climate Program Office; NOAA; NSF FX This study is supported by the NOAA Climate Program Office. Thanks are due to C. Fairall for the W-band data and S. Yuter for the C-band data. The authors thank Jan Kazil for insightful discussions. T. Yamaguchi was supported by a NOAA and NSF funded Climate Process Team grant (V. Larson, PI). NR 45 TC 2 Z9 2 U1 1 U2 19 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 3 BP 1237 EP 1251 DI 10.5194/acp-15-1237-2015 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CB7IF UT WOS:000349799500007 ER PT J AU Petropavlovskikh, I Evans, R McConville, G Manney, GL Rieder, HE AF Petropavlovskikh, I. Evans, R. McConville, G. Manney, G. L. Rieder, H. E. TI The influence of the North Atlantic Oscillation and El Nino-Southern Oscillation on mean and extreme values of column ozone over the United States SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID LONG-TERM CHANGES; ATMOSPHERIC DYNAMICS; STRATOSPHERIC OZONE; VOLCANIC-ERUPTIONS; WATER-VAPOR; PART 2; CLIMATE; TRENDS; CHEMISTRY; CIRCULATION AB Continuous measurements of total ozone (by Dobson spectrophotometers) across the contiguous United States began in the early 1960s. Here, we analyze temporal and spatial variability and trends in total ozone from the five US sites with long-term records. While similar long-term ozone changes are detected at all five sites, we find differences in the patterns of ozone variability on shorter timescales. In addition to standard evaluation techniques, STL-decomposition methods (Seasonal Trend decomposition of time series based on LOESS (LOcally wEighted Scatterplot Smoothing)) are used to address temporal variability and "fingerprints" of dynamical features in the Dobson data. Methods from statistical extreme value theory (EVT) are used to characterize days with high and low total ozone (termed EHOs and ELOs, respectively) at each station and to analyze temporal changes in the frequency of ozone extremes and their relationship to dynamical features such as the North Atlantic Oscillation (NAO) and El Nino-Southern Oscillation. A comparison of the fingerprints detected in the frequency distribution of the extremes with those for standard metrics (i.e., the mean) shows that more fingerprints are found for the extremes, particularly for the positive phase of the NAO, at all five US monitoring sites. Results from the STL decomposition support the findings of the EVT analysis. Finally, we analyze the relative influence of low-and high-ozone events on seasonal mean column ozone at each station. The results show that the influence of ELOs and EHOs on seasonal mean column ozone can be as much as +/- 5 %, about as large as the overall long-term decadal ozone trends. C1 [Petropavlovskikh, I.; McConville, G.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Evans, R.] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. [Manney, G. L.] NorthWest Res Associates, Socorro, NM 87801 USA. [Manney, G. L.] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA. [Rieder, H. E.] Graz Univ, Wegener Ctr Climate & Global Change, A-8010 Graz, Austria. [Rieder, H. E.] Graz Univ, IGAM, Inst Phys, A-8010 Graz, Austria. [Rieder, H. E.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. RP Petropavlovskikh, I (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM irina.petro@noaa.gov RI Evans, Robert/D-4731-2016; OI Evans, Robert/0000-0002-8693-9769; Rieder, Harald/0000-0003-2705-0801 FU World Meteorological Organization FX The total ozone data were obtained from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) operated by Environment Canada, Toronto, Ontario, Canada, under the auspices of the World Meteorological Organization. Data files can be found on the WOUDC ftp server, ftp://ftp.tor.ec.gc.ca/pub/woudc/Archive-NewFormat/TotalOzone_1.0_1/. NR 51 TC 4 Z9 5 U1 3 U2 13 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 3 BP 1585 EP 1598 DI 10.5194/acp-15-1585-2015 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CB7IF UT WOS:000349799500029 ER PT J AU Jonsson, BF Doney, S Dunne, J Bender, ML AF Jonsson, B. F. Doney, S. Dunne, J. Bender, M. L. TI Evaluating Southern Ocean biological production in two ocean biogeochemical models on daily to seasonal timescales using satellite chlorophyll and O-2/Ar observations SO BIOGEOSCIENCES LA English DT Article ID CLIMATE SIMULATIONS; GAS-EXCHANGE; PARAMETERIZATION; LAYER; VARIABILITY; RATES AB We assess the ability of ocean biogeochemical models to represent seasonal structures in biomass and net community production (NCP) in the Southern Ocean. Two models are compared to observations on daily to seasonal timescales in four different sections of the region. We use daily satellite fields of chlorophyll (Chl) as a proxy for biomass and in situ observations of O-2 and Ar supersaturation (Delta O-2/Ar) to estimate NCP. Delta O-2/Ar is converted to the flux of biologically generated O-2 from sea to air (O-2 bioflux). All data are aggregated to a climatological year with a daily resolution. To account for potential regional differences within the Southern Ocean, we conduct separate analyses of sections south of South Africa, around the Drake Passage, south of Australia, and south of New Zealand. We find that the models simulate the upper range of Chl concentrations well, underestimate spring levels significantly, and show differences in skill between early and late parts of the growing season. While there is a great deal of scatter in the bioflux observations in general, the four sectors each have distinct patterns that the models pick up. Neither model exhibits a significant distinction between the Australian and New Zealand sectors and between the Drake Passage and African sectors. South of 60 degrees S, the models fail to predict the observed extent of biological O-2 undersaturation. We suggest that this shortcoming may be due either to problems with the ecosystem dynamics or problems with the vertical transport of oxygen. C1 [Jonsson, B. F.; Bender, M. L.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Dunne, J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Doney, S.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. RP Jonsson, BF (reprint author), Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. EM bjonsson@princeton.edu RI Doney, Scott/F-9247-2010 OI Doney, Scott/0000-0002-3683-2437 FU National Aeronautic and Space Administration [NASA NNX08AF12G]; National Science Foundation [NSF OPP-0823101] FX This work was supported in part by funding from the National Aeronautic and Space Administration (NASA NNX08AF12G) and the National Science Foundation (NSF OPP-0823101). NR 27 TC 0 Z9 0 U1 1 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2015 VL 12 IS 3 BP 681 EP 695 DI 10.5194/bg-12-681-2015 PG 15 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA CB7FU UT WOS:000349793100003 ER PT J AU Forney, KA Becker, EA Foley, DG Barlow, J Oleson, EM AF Forney, Karin A. Becker, Elizabeth A. Foley, Dave G. Barlow, Jay Oleson, Erin M. TI Habitat-based models of cetacean density and distribution in the central North Pacific SO ENDANGERED SPECIES RESEARCH LA English DT Article ID SEA-SURFACE TEMPERATURE; SITE FIDELITY; SPATIAL AUTOCORRELATION; ASSOCIATION PATTERNS; BEAKED-WHALE; MOVEMENTS; OCEAN; UNCERTAINTY; POPULATION; ABUNDANCE AB The central North Pacific Ocean includes diverse temperate and tropical pelagic habitats. Studies of the abundance and distribution of cetaceans within these dynamic marine ecosystems have generally been patchy or conducted at coarse spatial and temporal scales, limiting their utility for pelagic conservation planning. Habitat-based density models provide a tool for identifying pelagic areas of importance to cetaceans, because model predictions are spatially explicit. In this study, we present habitat-based models of cetacean density that were developed and validated for the central North Pacific. Spatial predictions of cetacean densities and measures of uncertainty were derived based on data collected during 15 large-scale shipboard cetacean and ecosystem assessment surveys conducted from 1997 to 2012. We developed generalized additive models using static and remotely sensed dynamic habitat variables, including distance to land, sea-surface temperature (SST), standard deviation of SST, surface chlorophyll concentration, seasurface height (SSH), and SSH root-mean-square variation. The resulting models, developed using new grid-based prediction methods, provide finer scale information on the distribution and density of cetaceans than previously available. Habitat-based abundance estimates around Hawaii are similar to those derived from standard line-transect analyses of the same data and provide enhanced spatial resolution to inform management and conservation of pelagic cetacean species. C1 [Forney, Karin A.; Becker, Elizabeth A.] NOAA, Marine Mammal & Turtle Div, SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Santa Cruz, CA 95060 USA. [Becker, Elizabeth A.] ManTech Int Corp, Solana Beach, CA 92075 USA. [Barlow, Jay] NOAA, Marine Mammal & Turtle Div, SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, La Jolla, CA 92037 USA. [Oleson, Erin M.] NOAA, Protected Resources Div, Pacific Isl Fisheries Sci Ctr, Natl Marine Fisheries Serv, Honolulu, HI 96814 USA. RP Forney, KA (reprint author), NOAA, Marine Mammal & Turtle Div, SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 110 Shaffer Rd, Santa Cruz, CA 95060 USA. EM karin.forney@noaa.gov FU NOAA's Southwest Fisheries Science Center and Pacific Islands Fisheries Science Center FX This study would not have been possible without the dedication of the marine mammal observers, cruise leaders, and vessel crew who worked hard on surveys conducted over the 15 yr period collecting the data that we used here. Chief Scientists for the survey cruises included Tim Gerrodette, Lisa Ballance, and 2 of the co-authors (J. B. and E. M.O.). We thank Chip Johnson, Julie Rivers (US Pacific Fleet, US Navy) and Sean Hanser (Naval Facilities Engineering Command, Pacific, US Navy), for providing us with the opportunity and funding to conduct this analysis. We also thank Jim Carretta and Scott Benson and 3 anonymous reviewers for their helpful reviews of an earlier draft of this manuscript. Additional funding for this study was provided by NOAA's Southwest Fisheries Science Center and Pacific Islands Fisheries Science Center. Surveys were conducted in accordance with institutional, national and international guidelines concerning the use of animals in research and/or the sampling of endangered species, and under the following permits: National Marine Fisheries Service, Nos. 774-1437, 14097, and 15240; State of Hawaii, No. SH2002-11, and Papa h. hanaumokuakea Marine National Monument, No. PMNM2010- 053 NR 46 TC 9 Z9 10 U1 8 U2 34 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 1863-5407 EI 1613-4796 J9 ENDANGER SPECIES RES JI Endanger. Species Res. PY 2015 VL 27 IS 1 BP 1 EP 20 DI 10.3354/esr00632 PG 20 WC Biodiversity Conservation SC Biodiversity & Conservation GA CC0AK UT WOS:000349996800001 ER PT J AU Maunder, MN Piner, KR AF Maunder, Mark N. Piner, Kevin R. TI Contemporary fisheries stock assessment: many issues still remain SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article; Proceedings Paper CT World Conference on Stock Assessment Methods for Sustainable Fisheries CY JUL, 2013 CL Boston, MA DE abundance; catchability; diagnostics; fisheries stock assessment; growth; natural mortality; recruitment; selectivity ID MANAGEMENT REFERENCE POINTS; IMPORTANCE RESAMPLING ALGORITHM; LIFE-HISTORY INVARIANTS; MARINE FOOD WEBS; AT-AGE MODEL; NATURAL MORTALITY; RECRUITMENT RELATIONSHIP; ASSESSMENT SCIENTISTS; FISH STOCKS; INTEGRATED ASSESSMENT AB Interpretation of data used in fisheries assessment and management requires knowledge of population (e.g. growth, natural mortality, and recruitment), fisheries (e.g. selectivity), and sampling processes. Without this knowledge, assumptions need to be made, either implicitly or explicitly based on the methods used. Incorrect assumptions can have a substantial impact on stock assessment results and management advice. Unfortunately, there is a lack of understanding of these processes for most, if not all, stocks and even for processes that have traditionally been assumed to be well understood (e.g. growth and selectivity). We use information content of typical fisheries data that is informative about absolute abundance to illustrate some of the main issues in fisheries stock assessment. We concentrate on information about absolute abundance from indices of relative abundance combined with catch, and age and length-composition data and how the information depends on knowledge of population, fishing, and sampling processes. We also illustrate two recently developed diagnostic methods that can be used to evaluate the absolute abundance information content of the data. Finally, we discuss some of the reasons for the slowness of progress in fisheries stock assessment. C1 [Maunder, Mark N.] Interamer Trop Tuna Commiss, La Jolla, CA 92037 USA. [Maunder, Mark N.] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Adv Populat Assessment Methodol, La Jolla, CA 92093 USA. [Piner, Kevin R.] NOAA Fisheries, Southwest Fisheries Sci Ctr, La Jolla, CA 92037 USA. RP Maunder, MN (reprint author), Interamer Trop Tuna Commiss, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA. EM mmaunder@iattc.org NR 106 TC 20 Z9 20 U1 6 U2 32 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN PY 2015 VL 72 IS 1 BP 7 EP 18 DI 10.1093/icesjms/fsu015 PG 12 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2CT UT WOS:000350153200002 ER PT J AU Deroba, JJ Butterworth, DS Methot, RD De Oliveira, JAA Fernandez, C Nielsen, A Cadrin, SX Dickey-Collas, M Legault, CM Ianelli, J Valero, JL Needle, CL O'Malley, JM Chang, YJ Thompson, GG Canales, C Swain, DP Miller, DCM Hintzen, NT Bertignac, M Ibaibarriaga, L Silva, A Murta, A Kell, LT de Moor, CL Parma, AM Dichmont, CM Restrepo, VR Ye, Y Jardim, E Spencer, PD Hanselman, DH Blaylock, J Mood, M Hulson, PJF AF Deroba, J. J. Butterworth, D. S. Methot, R. D., Jr. De Oliveira, J. A. A. Fernandez, C. Nielsen, A. Cadrin, S. X. Dickey-Collas, M. Legault, C. M. Ianelli, J. Valero, J. L. Needle, C. L. O'Malley, J. M. Chang, Y-J. Thompson, G. G. Canales, C. Swain, D. P. Miller, D. C. M. Hintzen, N. T. Bertignac, M. Ibaibarriaga, L. Silva, A. Murta, A. Kell, L. T. de Moor, C. L. Parma, A. M. Dichmont, C. M. Restrepo, V. R. Ye, Y. Jardim, E. Spencer, P. D. Hanselman, D. H. Blaylock, J. Mood, M. Hulson, P. -J. F. TI Simulation testing the robustness of stock assessment models to error: some results from the ICES strategic initiative on stock assessment methods SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article; Proceedings Paper CT World Conference on Stock Assessment Methods for Sustainable Fisheries CY JUL, 2013 CL Boston, MA DE cross-test; model comparison; pseudo data; self-test; time-series analysis; vpa ID AT-AGE ANALYSIS; MANAGEMENT PROCEDURES; NATURAL MORTALITY; PERFORMANCE; UNCERTAINTY; FISHERY AB The World Conference on Stock Assessment Methods (July 2013) included a workshop on testing assessment methods through simulations. The exercise was made up of two steps applied to datasets from 14 representative fish stocks from around the world. Step 1 involved applying stock assessments to datasets with varying degrees of effort dedicated to optimizing fit. Step 2 was applied to a subset of the stocks and involved characteristics of given model fits being used to generate pseudo-data with error. These pseudo-data were then provided to assessment modellers and fits to the pseudo-data provided consistency checks within (self-tests) and among (cross-tests) assessment models. Although trends in biomass were often similar across models, the scaling of absolute biomass was not consistent across models. Similar types of models tended to perform similarly (e.g. age based or production models). Self-testing and cross-testing of models are a useful diagnostic approach, and suggested that estimates in the most recent years of time-series were the least robust. Results from the simulation exercise provide a basis for guidance on future large-scale simulation experiments and demonstrate the need for strategic investments in the evaluation and development of stock assessment methods. C1 [Deroba, J. J.; Legault, C. M.] NOAA NMFS, Woods Hole, MA 02543 USA. [Butterworth, D. S.; de Moor, C. L.] Univ Cape Town, Dept Math & Appl Math, Marine Resource Assessment & Management Grp MARAM, ZA-7701 Rondebosch, South Africa. [Methot, R. D., Jr.; Ianelli, J.; Thompson, G. G.; Spencer, P. D.] NOAA NMFS, Seattle, WA USA. [De Oliveira, J. A. A.] Lowestoft Lab, Cefas, Lowestoft NR33 OHT, Suffolk, England. [Fernandez, C.; Dickey-Collas, M.] ICES, Copenhagen V, Denmark. [Nielsen, A.] Tech Univ Denmark, Natl Inst Aquat Resources, DK-2920 Charlottenlund, Denmark. [Cadrin, S. X.] Univ Massachusetts, Sch Marine Sci & Technol, Fairhaven, MA USA. [Dickey-Collas, M.; Miller, D. C. M.] Wageningen Inst Marine Resources & Ecosyst Studie, NL-1976 Ijmuiden, Netherlands. [Valero, J. L.] CAPAM, La Jolla, CA USA. [Needle, C. L.] Marine Scotland Sci, Marine Lab, Aberdeen AB11 9DB, Scotland. [O'Malley, J. M.] NOAA NMFS, Honolulu, HI USA. [Chang, Y-J.] Univ Hawaii, Pacific Isl Fisheries Sci Ctr, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. [Canales, C.] Inst Fomento Pesquero IFOP, Valparaiso, Chile. [Swain, D. P.] Fisheries & Oceans Canada, Gulf Fisheries Ctr, Moncton, NB E1C 9B6, Canada. [Hintzen, N. T.] Wageningen UR, Inst Marine Resources & Ecosyst Studies IMARES, NL-1970 AB Ijmuiden, Netherlands. [Bertignac, M.] IFREMER, Unite Sci & Technol Halieut, F-29280 Plouzane, France. [Ibaibarriaga, L.] AZTI Tecnalia, Marine Res Div, E-48395 Sukarrieta, Bizkaia, Spain. [Silva, A.; Murta, A.] IPMA Inst Portugues Mar & Atmosfera, P-1449006 Lisbon, Portugal. [Kell, L. T.] ICCAT Secretariat, Madrid 28002, Spain. [Parma, A. M.] Ctr Nacl Patagon, RA-9120 Puerto Madryn, Chugut, Argentina. [Dichmont, C. M.] CSIRO Wealth Oceans Flagship, Queensland Biosci Precinct, St Lucia, Qld 4067, Australia. [Restrepo, V. R.] Int Seafood Sustainabil Fdn, Washington, DC 20005 USA. [Ye, Y.] Food & Agr Org United Nations, I-00153 Rome, Italy. [Jardim, E.] European Commiss Joint Res Ctr, I-21027 Ispra, VA, Italy. [Hanselman, D. H.; Hulson, P. -J. F.] NOAA NMFS, Juneau, AK USA. [Blaylock, J.; Mood, M.] Integrated Stat, Falmouth, MA USA. RP Deroba, JJ (reprint author), NOAA NMFS, 166 Water St, Woods Hole, MA 02543 USA. EM jonathan.deroba@noaa.gov RI Dickey-Collas, Mark/A-8036-2008; OI Chang, Yi-Jay/0000-0002-7472-4672 NR 26 TC 26 Z9 27 U1 2 U2 19 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN PY 2015 VL 72 IS 1 BP 19 EP 30 DI 10.1093/icesjms/fst237 PG 12 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2CT UT WOS:000350153200003 ER PT J AU Ono, K Licandeo, R Muradian, ML Cunningham, CJ Anderson, SC Hurtado-Ferro, F Johnson, KF McGilliard, CR Monnahan, CC Szuwalski, CS Valero, JL Vert-Pre, KA Whitten, AR Punt, AE AF Ono, Kotaro Licandeo, Roberto Muradian, Melissa L. Cunningham, Curry J. Anderson, Sean C. Hurtado-Ferro, Felipe Johnson, Kelli F. McGilliard, Carey R. Monnahan, Cole C. Szuwalski, Cody S. Valero, Juan L. Vert-Pre, Katyana A. Whitten, Athol R. Punt, Andre E. TI The importance of length and age composition data in statistical age-structured models for marine species SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article; Proceedings Paper CT World Conference on Stock Assessment Methods for Sustainable Fisheries CY JUL, 2013 CL Boston, MA DE age and length composition data; cod; fisheries modelling; flatfish; sardine; simulation testing; stock assessment; Stock Synthesis; survey information ID FISHERIES STOCK ASSESSMENT; MORTALITY-RATES; CATCH; MANAGEMENT; FISH; AUSTRALIA; SELECTION; DYNAMICS; POINTS; SAMPLE AB Management of marine resources depends on the assessment of stock status in relation to established reference points. However, many factors contribute to uncertainty in stock assessment outcomes, including data type and availability, life history, and exploitation history. A simulation-estimation framework was used to examine the level of bias and accuracy in assessment model estimates related to the quality and quantity of length and age composition data across three life-history types (cod-, flatfish-, and sardine-like species) and three fishing scenarios. All models were implemented in Stock Synthesis, a statistical age-structured stock assessment framework. In general, the value of age composition data in informing estimates of virgin recruitment (R-0), relative spawning-stock biomass (SSB100/SSB0), and terminal year fishing mortality rate (F-100), decreased as the coefficient of variation of the relationship between length and age became greater. For this reason, length data were more informative than age data for the cod and sardine life histories in this study, whereas both sources of information were important for the flatfish life history. Historical composition data were more important for short-lived, fast-growing species such as sardine. Infrequent survey sampling covering a longer period was more informative than frequent surveys covering a shorter period. C1 [Ono, Kotaro; Cunningham, Curry J.; Hurtado-Ferro, Felipe; Johnson, Kelli F.; McGilliard, Carey R.; Szuwalski, Cody S.; Valero, Juan L.; Vert-Pre, Katyana A.; Whitten, Athol R.; Punt, Andre E.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Licandeo, Roberto] Univ British Columbia, Fisheries Ctr, AERL, Vancouver, BC V6T IZ4, Canada. [Muradian, Melissa L.; Monnahan, Cole C.] Univ Washington, Seattle, WA 98195 USA. [Anderson, Sean C.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada. [McGilliard, Carey R.] Univ Washington, Joint Inst, Alaska Fisheries Sci Ctr, NOAA,Study Atmosphere & Ocean,Natl Marine Fisheri, Seattle, WA 98195 USA. [Valero, Juan L.] CAPAM, La Jolla, CA USA. [Vert-Pre, Katyana A.] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA. RP Ono, K (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. EM kotarono@uw.edu FU Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative agreement [NA10OAR4320148]; Conicyt; Exxon Valdez Oil Spill Trustee Council [13120111-Q]; Fulbright Canada; NSERC FX This work was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative agreement No. NA10OAR4320148, Contribution No. 2193 and 2195. RL was supported by Conicyt. MLM was funded by Exxon Valdez Oil Spill Trustee Council, grant 13120111-Q. SCA was supported by Fulbright Canada and NSERC. We thank two anonymous reviewers and Shijie Zhou for their comments on earlier versions of the manuscript and Richard Methot, Jim Ianelli, and Ian Taylor (NOAA Fisheries) for discussions and advice. This research addresses the good practices in stock assessment modelling program of the Center for the Advancement of Population Assessment Methodology (CAPAM). NR 43 TC 11 Z9 11 U1 1 U2 20 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN PY 2015 VL 72 IS 1 BP 31 EP 43 DI 10.1093/icesjms/fsu007 PG 13 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2CT UT WOS:000350153200004 ER PT J AU Hamel, OS AF Hamel, Owen S. TI A method for calculating a meta-analytical prior for the natural mortality rate using multiple life history correlates SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article; Proceedings Paper CT World Conference on Stock Assessment Methods for Sustainable Fisheries CY JUL, 2013 CL Boston, MA DE fish; Gunderson; Hoenig; Jensen; McCoy and Gillooly; meta-analysis; natural mortality rate; Pauly; prediction interval; prior distribution; stock assessment ID FISH STOCKS; REPRODUCTIVE EFFORT; AGE VALIDATION; METABOLIC-RATE; WEST-COAST; TRADE-OFF; TEMPERATURE; PARAMETERS; SURVIVAL; SIZE AB The natural mortality rate M is an important parameter for understanding population dynamics, and is extraordinarily difficult to estimate for many fish species. The uncertainty associated with M translates into increased uncertainty in fishery stock assessments. Estimation of M within a stock assessment model is complicated by its confounding with other life history and fishery parameters which are also uncertain, some of which are typically estimated within the model. Ageing error and variation in growth, which may not be fully modelled, can also affect estimation of M, as can various assumptions, including the form of the stock-recruitment function (e.g. Beverton-Holt, Ricker) and the level of compensation (or steepness), which may be fixed (or limited by a prior) in the model. To avoid these difficulties, stock assessors often assume point estimates for M derived from meta-analytical relationships between M and more easily measured life history characteristics, such as growth rate or longevity. However, these relationships depend on estimates of M for a great number of species, and those estimates are also subject to errors and biases (as are, to a lesser extent, the other life history parameters). Therefore, at the very least, some measure of uncertainty in M should be calculated and used for evaluating uncertainty in stock assessments and management strategy evaluations. Given error-free data on M and the covariate(s) for a meta-analysis, prediction intervals would provide the appropriate measure of uncertainty in M. In contrast, if the relationship between the covariate(s) and M is exact and the only error is in the estimates of M used for the meta-analysis, confidence intervals would appropriate. Using multiple published meta-analyses of M's relationship with various life history correlates, and beginning with the uncertainty interval calculations, I develop a method for creating combined priors for M for use in stock assessment. C1 NOAA, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. RP Hamel, OS (reprint author), NOAA, NW Fisheries Sci Ctr, 2725 Montlake Blvd East, Seattle, WA 98112 USA. EM owen.hamel@noaa.gov NR 46 TC 5 Z9 5 U1 1 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN PY 2015 VL 72 IS 1 BP 62 EP 69 DI 10.1093/icesjms/fsu131 PG 8 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2CT UT WOS:000350153200007 ER PT J AU Hurtado-Ferro, F Szuwalski, CS Valero, JL Anderson, SC Cunningham, CJ Johnson, KF Licandeo, R McGilliard, CR Monnahan, CC Muradian, ML Ono, K Vert-Pre, KA Whitten, AR Punt, AE AF Hurtado-Ferro, Felipe Szuwalski, Cody S. Valero, Juan L. Anderson, Sean C. Cunningham, Curry J. Johnson, Kelli F. Licandeo, Roberto McGilliard, Carey R. Monnahan, Cole C. Muradian, Melissa L. Ono, Kotaro Vert-Pre, Katyana A. Whitten, Athol R. Punt, Andre E. TI Looking in the rear-view mirror: bias and retrospective patterns in integrated, age-structured stock assessment models SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article; Proceedings Paper CT World Conference on Stock Assessment Methods for Sustainable Fisheries CY JUL, 2013 CL Boston, MA DE bias; fisheries stock assessment; integrated analysis; retrospective patterns; simulation; statistical age-structured models ID SEQUENTIAL POPULATION ANALYSIS; FISH; MANAGEMENT AB Retrospective patterns are systematic changes in estimates of population size, or other assessment model-derived quantities, that occur as additional years of data are added to, or removed from, a stock assessment. These patterns are an insidious problem, and can lead to severe errors when providing management advice. Here, we use a simulation framework to show that temporal changes in selectivity, natural mortality, and growth can induce retrospective patterns in integrated, age-structured models. We explore the potential effects on retrospective patterns of catch history patterns, as well as model misspecification due to not accounting for time-varying biological parameters and selectivity. We show that non-zero values for Mohn's rho(a common measure for retrospective patterns) can be generated even where there is no model misspecification, but the magnitude of Mohn's rho tends to be lower when the model is not misspecified. The magnitude and sign of Mohn's rho differed among life histories, with different life histories reacting differently from each type of temporal change. The value of Mohn's rho is not related to either the sign or magnitude of bias in the estimate of terminal year biomass. We propose a rule of thumb for values of Mohn's rho which can be used to determine whether a stock assessment shows a retrospective pattern. C1 [Hurtado-Ferro, Felipe; Szuwalski, Cody S.; Cunningham, Curry J.; Johnson, Kelli F.; Ono, Kotaro; Whitten, Athol R.; Punt, Andre E.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Szuwalski, Cody S.] Univ Calif Santa Barbara, Bren Sch Environm Sci & Management, Santa Barbara, CA 93106 USA. [Valero, Juan L.] Ctr Adv Populat Assessment Methodol, La Jolla, CA 92037 USA. [Anderson, Sean C.] Simon Fraser Univ, Dept Biol Sci, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada. [Licandeo, Roberto] Univ British Columbia, Fisheries Ctr, Aquat Ecosyst Res Lab, Vancouver, BC V6T 1Z4, Canada. [McGilliard, Carey R.] Univ Washington, Joint Inst, Study Atmosphere & Ocean, NOAA,Alaska Fisheries Sci Ctr,Natl Marine Fisheri, Seattle, WA 98195 USA. [Monnahan, Cole C.; Muradian, Melissa L.] Univ Washington, Quantitat Ecol & Resource Management, Seattle, WA 98195 USA. [Vert-Pre, Katyana A.] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA. RP Hurtado-Ferro, F (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. EM fhurtado@uw.edu FU Washington SeaGrant fellowship; Conicyt; Exxon Valdez Oil Spill Trustee Council [13120111-Q]; Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreements [NA10OAR4320148]; World Conference on Stock Assessment Methods travel bursary; Fulbright Canada; NSERC; Eunice Kennedy Shriver National Institute of Child Health and Human Development research infrastructure grant [R24 HD042828] FX The authors thank Chris Legault and one anonymous reviewer for their invaluable comments and suggestions. CSS was supported by a Washington SeaGrant fellowship. RRL was supported by Conicyt. MLM was funded by Exxon Valdez Oil Spill Trustee Council, grant 13120111-Q. AEP, KFJ, KO, CCM, and CRM were partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreements NA10OAR4320148, Contribution No. 2194, respectively. KFJ was partially supported for this work under a World Conference on Stock Assessment Methods travel bursary. SCA was supported by Fulbright Canada and NSERC. Partial support for this research came from a Eunice Kennedy Shriver National Institute of Child Health and Human Development research infrastructure grant, R24 HD042828, to the Center for Studies in Demography and Ecology at the University of Washington. This research addresses the good practices in stock assessment modelling program of the Center for the Advancement of Population Assessment Methodology (CAPAM). NR 31 TC 13 Z9 13 U1 1 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN PY 2015 VL 72 IS 1 BP 99 EP 110 DI 10.1093/icesjms/fsu198 PG 12 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2CT UT WOS:000350153200011 ER PT J AU Johnson, KF Monnahan, CC McGilliard, CR Vert-pre, KA Anderson, SC Cunningham, CJ Hurtado-Ferro, F Licandeo, RR Muradian, ML Ono, K Szuwalski, CS Valero, JL Whitten, AR Punt, AE AF Johnson, Kelli F. Monnahan, Cole C. McGilliard, Carey R. Vert-pre, Katyana A. Anderson, Sean C. Cunningham, Curry J. Hurtado-Ferro, Felipe Licandeo, Roberto R. Muradian, Melissa L. Ono, Kotaro Szuwalski, Cody S. Valero, Juan L. Whitten, Athol R. Punt, A. E. TI Time-varying natural mortality in fisheries stock assessment models: identifying a default approach SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article; Proceedings Paper CT World Conference on Stock Assessment Methods for Sustainable Fisheries CY JUL, 2013 CL Boston, MA DE model misspecification; natural mortality; population models; reference points; simulation; Stock Synthesis; time-varying ID EFFECTIVE SAMPLE-SIZE; VIRTUAL POPULATION ANALYSIS; RECENT CLIMATE-CHANGE; COD GADUS-MORHUA; AT-AGE ANALYSIS; FISH STOCKS; JASUS-EDWARDSII; NORTHERN COD; MARINE FISH; CATCH AB Atypical assumption used inmost fishery stock assessments is that natural mortality (M) is constant across time and age. However, M is rarely constant in reality as a result of the combined impacts of exploitation history, predation, environmental factors, and physiological trade-offs. Misspecification or poor estimation of M can lead to bias in quantities estimated using stock assessment methods, potentially resulting in biased estimates of fishery reference points and catch limits, with the magnitude of bias being influenced by life history and trends in fishing mortality. Monte Carlo simulations were used to evaluate the ability of statistical age-structured population models to estimate spawning-stock biomass, fishing mortality, and total allowable catch when the true M was age-invariant, but time-varying. Configurations of the stock assessment method, implemented in Stock Synthesis, included a single age-and time-invariant M parameter, specified at one of the three levels (high, medium, and low) or an estimated M. The min-max (i.e. most robust) approach to specifying M when it is thought to vary across time was to estimate M. The least robust approach for most scenarios examined was to fix M at a high value, suggesting that the consequences of misspecifying M are asymmetric. C1 [Johnson, Kelli F.; Vert-pre, Katyana A.; Cunningham, Curry J.; Hurtado-Ferro, Felipe; Ono, Kotaro; Szuwalski, Cody S.; Valero, Juan L.; Whitten, Athol R.; Punt, A. E.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Monnahan, Cole C.; Muradian, Melissa L.] Univ Washington, Quantitat Ecol & Resource Management, Seattle, WA 98195 USA. [McGilliard, Carey R.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. [McGilliard, Carey R.] Univ Washington, Joint Inst, Study Atmosphere & Ocean, Seattle, WA 98195 USA. [Vert-pre, Katyana A.] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA. [Anderson, Sean C.] Simon Fraser Univ, Dept Biol Sci, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada. [Licandeo, Roberto R.] Univ British Columbia, Fisheries Ctr, Aquat Ecosyst Res Lab, Vancouver, BC V6T 1Z4, Canada. [Valero, Juan L.] Ctr Adv Populat Assessment Methodol, La Jolla, CA 92037 USA. RP Johnson, KF (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. EM kfjohns@uw.edu FU Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement [NA10OAR4320148]; World Conference on Stock Assessment Methods travel bursary; Fullbright Canada; NSERC; Washington Sea Grant; Exxon Valdez Oil Spill Trustee Council [13120111-Q]; CONICYT; Eunice Kennedy Schriver National Institute of Child Health and Human Development [R24 HD042828] FX This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement No. NA10OAR4320148, Contribution No. 2194. KFJ was partially supported for this work under a World Conference on Stock Assessment Methods travel bursary. SCA was supported by Fullbright Canada and NSERC. CSS was partially supported for this work by Washington Sea Grant. MLM was funded by Exxon Valdez Oil Spill Trustee Council, grant 13120111-Q. RRL was supported for this work by CONICYT. Partial support for this research came from a Eunice Kennedy Schriver National Institute of Child Health and Human Development research infrastructure grant, R24 HD042828, to the Center for Studies in Demography and Ecology at the University of Washington. NR 75 TC 16 Z9 16 U1 7 U2 32 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN PY 2015 VL 72 IS 1 BP 137 EP 150 DI 10.1093/icesjms/fsu055 PG 14 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2CT UT WOS:000350153200015 ER PT J AU Goethel, DR Legault, CM Cadrin, SX AF Goethel, Daniel R. Legault, Christopher M. Cadrin, Steven X. TI Demonstration of a spatially explicit, tag-integrated stock assessment model with application to three interconnected stocks of yellowtail flounder off of New England SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article; Proceedings Paper CT World Conference on Stock Assessment Methods for Sustainable Fisheries CY JUL, 2013 CL Boston, MA DE AD model builder; movement; New England groundfish; population dynamics; spatial modelling; stock assessment; tagging; yellowtail flounder ID AGE-STRUCTURED MODEL; CATCH-AT-AGE; POPULATION-DYNAMICS; FISH POPULATION; FISHERIES MANAGEMENT; LIMANDA-FERRUGINEA; TAGGING DATA; CONSEQUENCES; MOVEMENT; SEA AB Ignoring population structure and connectivity in stock assessment models can introduce bias into important management metrics. Tag-integrated assessment models can account for spatially explicit population dynamics by modelling multiple population components, each with unique demographics, and estimating movement among them. A tagging submodel is included to calculate predicted tag recaptures, and observed tagging data are incorporated in the objective function to inform estimates of movement and mortality. We describe the tag-integrated assessment framework and demonstrate its use through an application to three stocks of yellowtail flounder (Limanda ferruginea) off New England. Movement among the three yellowtail flounder stocks has been proposed as a potential source of uncertainty in the closed population assessments of each. A tagging study was conducted during 2003-2006 with over 45 000 tagged fish released in the region, and the tagging data were included in the tag-integrated model. Results indicated that movement among stocks was low, estimates of stock size and fishing mortality were similar to those from conventional stock assessments, and incorporating stock connectivity did not resolve residual patterns. Despite low movement estimates, new interpretations of regional stock dynamics may have important implications for regional fisheries management given the source-sink nature of movement estimates. C1 [Goethel, Daniel R.; Cadrin, Steven X.] Univ Massachusetts, Sch Marine Sci & Technol, Fairhaven, MA 02719 USA. [Legault, Christopher M.] Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Woods Hole, MA 02543 USA. RP Goethel, DR (reprint author), Univ Massachusetts, Sch Marine Sci & Technol, 200 Mill Rd, Fairhaven, MA 02719 USA. EM dgoethel@umassd.edu OI Goethel, Daniel/0000-0003-0066-431X FU Massachusetts Marine Fisheries Institute; NOAA/Sea Grant Population Dynamics fellowship FX We would like to thank Fred Serchuk and four anonymous reviewers for their comments on the manuscript. The findings of this manuscript were presented at the ICES "World Conference on Stock Assessment Methods". We would like to thank the conveners for organizing the meeting and putting together the special journal volume, which we are proud to have our work be a part. Funding for this research was provided by the Massachusetts Marine Fisheries Institute and a NOAA/Sea Grant Population Dynamics fellowship. DRG would also like to acknowledge his other committee members, Brian Rothschild and Geoff Cowles, for their insight and comments. Development of the tag-integrated framework was strongly influenced by Terry Quinn during his sabbatical at UMASS-Dartmouth. Many others have provided insight into model development and coding: Mark Maunder, Jim Ianelli, Rick Methot, Larry Alade, Lisa Kerr, Larry Jacobsen, Liz Brooks, Cate O'Keefe, and Saang-Yoon Hyun. NR 58 TC 7 Z9 7 U1 1 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN PY 2015 VL 72 IS 1 BP 164 EP 177 DI 10.1093/icesjms/fsu014 PG 14 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2CT UT WOS:000350153200017 ER PT J AU Thorson, JT Hicks, AC Methot, RD AF Thorson, James T. Hicks, Allan C. Methot, Richard D. TI Random effect estimation of time-varying factors in Stock Synthesis SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article; Proceedings Paper CT World Conference on Stock Assessment Methods for Sustainable Fisheries CY JUL, 2013 CL Boston, MA DE Bayesian; hierarchical model; Laplace approximation; maximum likelihood; mixed effect; penalized likelihood; random effect; recruitment; stock assessment; time-varying parameter ID STATE-SPACE LIKELIHOODS; AD MODEL BUILDER; AT-AGE MODELS; BAYESIAN METHODS; SERIES; UNCERTAINTY; RECRUITMENT; ASSESSMENTS; FRAMEWORK; BUGS AB Biological processes such as fishery selectivity, natural mortality, and somatic growth can vary over time, but it is challenging to estimate the magnitude of time-variation of demographic parameters in population dynamics models, particularly when using penalized-likelihood estimation approaches. Random-effect approaches can estimate the variance, but are computationally infeasible or not implemented for many models and software packages. We show that existing models and software based on penalized-likelihood can be used to calculate the Laplace approximation to the marginal likelihood of parameters representing variability over time, and specifically demonstrate this approach via application to Stock Synthesis. Using North Sea cod and Pacific hake models as case studies, we show that this method has little bias in estimating variances for simulated data. It also provides a similar estimate of variability in hake recruitment (log-SD = 1.43) to that obtained from Markov chain Monte Carlo (MCMC) methods (log-SD = 1.68), and the method estimates a non-trivial magnitude (log-SD = 0.07) of variation in growth for North Sea cod. We conclude by discussing the generality of the proposed method and by recommending future research regarding its performance relative to MCMC, particularly when estimating multiple variances simultaneously. C1 [Thorson, James T.; Hicks, Allan C.; Methot, Richard D.] NOAA, Fisheries Resource Assessment & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA. RP Thorson, JT (reprint author), NOAA, Fisheries Resource Assessment & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd East, Seattle, WA 98112 USA. EM james.thorson@noaa.gov OI Thorson, James/0000-0001-7415-1010 NR 37 TC 11 Z9 12 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN PY 2015 VL 72 IS 1 BP 178 EP 185 DI 10.1093/icesjms/fst211 PG 8 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2CT UT WOS:000350153200018 ER PT J AU Berkson, J Thorson, JT AF Berkson, Jim Thorson, James T. TI The determination of data-poor catch limits in the United States: is there a better way? SO ICES JOURNAL OF MARINE SCIENCE LA English DT Article; Proceedings Paper CT World Conference on Stock Assessment Methods for Sustainable Fisheries CY JUL, 2013 CL Boston, MA DE annual catch limits; catch-only data; data-poor stocks; management procedures; stock assessment; United States ID LENGTH-BASED ASSESSMENT; MANAGEMENT PROCEDURES; CONTROL-RULE; FISH STOCKS; FISHERIES; SITUATIONS; MORTALITY AB Methods for determining appropriate management actions for data-poor stocks, including annual catch limits (ACLs), have seen an explosion of research interest in the past decade. We perform an inventory of methods for determining ACLs for stocks in the United States, and find that ACLs are assigned to 371 stocks and/or stock complexes with 193 (52%) determined using methods involving catch data only. The proportion of ACLs involving these methods varies widely among fisheries management regions, with all the 67 ACLs in the Caribbean determined using recent catch when compared with 1 of 33 ACLs in the New England region (US Northeast). Given this prevalence of data-poor ACLs, we recommend additional research regarding the potential effectiveness of simple management procedures for data-poor stocks that are currently managed using ACLs. In particular, simple management procedures may allow a broader range of data types and management instruments that better suit the particulars of individual regions and stocks. C1 [Berkson, Jim] Univ Florida, RTR Program, Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv,NOAA, Gainesville, FL 32611 USA. [Thorson, James T.] NOAA, Fisheries Resource Assessment & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA. RP Berkson, J (reprint author), Univ Florida, RTR Program, Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv,NOAA, POB 110240, Gainesville, FL 32611 USA. EM jim.berkson@noaa.gov OI Thorson, James/0000-0001-7415-1010 NR 31 TC 6 Z9 6 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1054-3139 EI 1095-9289 J9 ICES J MAR SCI JI ICES J. Mar. Sci. PD JAN PY 2015 VL 72 IS 1 BP 237 EP 242 DI 10.1093/icesjms/fsu085 PG 6 WC Fisheries; Marine & Freshwater Biology; Oceanography SC Fisheries; Marine & Freshwater Biology; Oceanography GA CC2CT UT WOS:000350153200024 ER PT J AU Zhang, R Qu, JJ Liu, YQ Hao, XJ Huang, CQ Zhan, XW AF Zhang, Rui Qu, John J. Liu, Yongqiang Hao, Xianjun Huang, Chengquan Zhan, Xiwu TI Detection of burned areas from mega-fires using daily and historical MODIS surface reflectance SO INTERNATIONAL JOURNAL OF REMOTE SENSING LA English DT Article ID SUPPORT VECTOR MACHINES; TIME-SERIES; ALGORITHM; TRANSPORT; INDEXES; IMAGERY; TRENDS AB The detection and mapping of burned areas from wildland fires is one of the most important approaches for evaluating the impacts of fire events. In this study, a novel burned area detection algorithm for rapid response applications using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m surface reflectance data was developed. Spectra from bands 5 and 6, the composite indices of the Normalized Burn Ratio, and the Normalized Difference Vegetation Index were employed as indicators to discover burned pixels. Historical statistical data were used to provide pre-fire baseline information. Differences in the current (post-fire) and historical (pre-fire) data were input into a support vector machine classifier, and the fire-affected pixels were detected and mapped by the support vector machine classification process. Compared with the existing MODIS level 3 monthly burned area product MCD45, the new algorithm is able to generate burned area maps on a daily basis when new data become available, which is more applicable to rapid response scenarios when major fire incidents occur. The algorithm was tested in three mega-fire cases that occurred in the continental USA. The experimental results were validated against the fire perimeter database generated by the Geospatial Multi-Agency Coordination Group and were compared with the MCD45 product. The validation results indicated that the algorithm was effective in detecting burned areas caused by mega-fires. C1 [Zhang, Rui; Huang, Chengquan] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Qu, John J.; Hao, Xianjun] George Mason Univ, Coll Sci, Global Environm & Nat Resources Inst, Fairfax, VA 22030 USA. [Liu, Yongqiang] USDA Forest Serv, Ctr Forest Disturbance Sci, Athens, GA 30602 USA. [Zhan, Xiwu] NESDIS NOAA, Ctr Satellite Applicat & Res STAR, College Pk, MD 20740 USA. RP Zhang, R (reprint author), Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. EM zhangrui@umd.edu RI Zhan, Xiwu/F-5487-2010; Hao, Xianjun/F-7253-2016; Hao, Xianjun/C-9543-2011 OI Hao, Xianjun/0000-0002-8186-6839; Hao, Xianjun/0000-0002-8186-6839 FU USA Joint Fire Science Program [JFSP 11172] FX This study was supported by the USA Joint Fire Science Program [Agreement No. JFSP 11172]. NR 36 TC 2 Z9 2 U1 1 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0143-1161 EI 1366-5901 J9 INT J REMOTE SENS JI Int. J. Remote Sens. PY 2015 VL 36 IS 4 BP 1167 EP 1187 DI 10.1080/01431161.2015.1007256 PG 21 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA CB9XN UT WOS:000349987700012 ER PT J AU Goes, M Goni, G Dong, SF AF Goes, Marlos Goni, Gustavo Dong, Shenfu TI An optimal XBT-based monitoring system for the South Atlantic meridional overturning circulation at 34 degrees S SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE meridional overturning circulation; South Atlantic; XBT transect; optimal design ID OCEAN DATA ASSIMILATION; HEAT-TRANSPORT; THERMOHALINE CIRCULATION; NORTH-ATLANTIC; GEOSTROPHIC VELOCITY; ALTIMETER DATA; VARIABILITY; WATER; MODEL; EXCHANGE AB The South Atlantic is an important pathway for the interbasin exchanges of heat and freshwater with strong influence on the global meridional overturning stability and variability. Along the 34 degrees S parallel, a quarterly, high-resolution XBT transect (AX18) samples the temperature structure in the upper ocean. The AX18 transect has been shown to be a useful component of a meridional overturning monitoring system of the region. However, a feasible, cost-effective design for an XBT-based system has not yet been developed. Here we use a high-resolution ocean assimilation product to simulate an XBT-based observational system across the South Atlantic. The sensitivity of the meridional heat transport, meridional overturning circulation, and geostrophic velocities to key observational and methodological assumptions is studied. Key assumptions taken into account are horizontal and temporal sampling of the transect, salinity, and deep temperature inference, as well as the level of reference for geostrophic velocities. With the current sampling strategy, the largest errors in the meridional overturning and heat transport estimations are the reference (barotropic) velocity and the western boundary resolution. We show how altimetry can be used along with hydrography to resolve the barotropic component of the flow. We use the results obtained by the state estimation under observational assumptions to make recommendations for potential improvements in the AX18 transect implementation. C1 [Goes, Marlos; Dong, Shenfu] Univ Miami, CIMAS, Miami, FL 33132 USA. [Goes, Marlos; Goni, Gustavo; Dong, Shenfu] NOAA, Atlantic Oceanog & Meteorol Lab, PHOD, Miami, FL 33149 USA. RP Goes, M (reprint author), Univ Miami, CIMAS, Miami, FL 33132 USA. EM marlos.goes@noaa.gov RI Goes, Marlos/B-4273-2011; Dong, Shenfu/I-4435-2013; Goni, Gustavo/D-2017-2012 OI Goes, Marlos/0000-0001-5874-8079; Dong, Shenfu/0000-0001-8247-8072; Goni, Gustavo/0000-0001-7093-3170 FU Cooperative Institute for Marine and Atmospheric Studies (CIMAS), a cooperative institute of the University of Miami; National Oceanic and Atmospheric Administration [NA17RJ1226]; NOAA Climate Program Office FX The data used in this study are available in the following websites: the model assimilation runs at www.hycom.org, WOA05 temperature data at www.nodc.noaa. gov/OC5/WOA05/woa05data.html, AX18 transect data at www.aoml.noaa.gov/phod/hdenxbt/ax_home.php?ax=18, and SLA data at www.aviso.com. The authors want to thank Joe Metzger for providing the GLBa0.08/74.2 simulation output, Molly Baringer for scientific discussions, Johanna Baher for help with the AMOC reconstruction calculations, and the ship companies for carrying out the AX18 cruises as part of the Ships of Opportunity project. This research was accomplished under the auspices of the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), a cooperative institute of the University of Miami and the National Oceanic and Atmospheric Administration, cooperative agreement NA17RJ1226, and was partly funded by the NOAA Climate Program Office. NR 73 TC 3 Z9 3 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD JAN PY 2015 VL 120 IS 1 BP 161 EP 181 DI 10.1002/2014JC010202 PG 21 WC Oceanography SC Oceanography GA CB8OP UT WOS:000349890000011 ER PT J AU Hogg, AM Meredith, MP Chambers, DP Abrahamsen, EP Hughes, CW Morrison, AK AF Hogg, Andrew McC. Meredith, Michael P. Chambers, Don P. Abrahamsen, E. Povl Hughes, Chris W. Morrison, Adele K. TI Recent trends in the Southern Ocean eddy field SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE Antarctic Circumpolar Current; Southern Ocean Eddies ID ANTARCTIC CIRCUMPOLAR CURRENT; OVERTURNING CIRCULATION; DRAKE PASSAGE; ANNULAR MODE; CLIMATE-CHANGE; WIND STRESS; TRANSPORT; EDDIES; SENSITIVITY; VARIABILITY AB Eddies in the Southern Ocean act to moderate the response of the Antarctic Circumpolar Current (ACC) to changes in forcing. An updated analysis of the Southern Ocean satellite altimetry record indicates an increase in eddy kinetic energy (EKE) in recent decades, contemporaneous with a probable decrease in ACC transport. The EKE trend is largest in the Pacific (14.94.1 cm(2) s(-2) per decade) and Indian (18.35.1 cm(2) s(-2) per decade) sectors of the Southern Ocean. We test the hypothesis that variations in wind stress can account for the observed EKE trends using perturbation experiments conducted with idealized high-resolution ocean models. The decadal increase in EKE is most likely due to continuing increases in the wind stress over the Southern Ocean, albeit with considerable interannual variability superposed. ACC transport correlates well with wind stress on these interannual time scales, but is weakly affected by wind forcing at longer periods. The increasing intensity of the Southern Ocean eddy field has implications for overturning circulation, carbon cycling, and climate. C1 [Hogg, Andrew McC.; Morrison, Adele K.] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT, Australia. [Hogg, Andrew McC.; Morrison, Adele K.] Australian Natl Univ, ARC Ctr Excellence Climate Syst Sci, Canberra, ACT, Australia. [Meredith, Michael P.; Abrahamsen, E. Povl] British Antarctic Survey, Cambridge CB3 0ET, England. [Chambers, Don P.] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. [Hughes, Chris W.] Univ Liverpool, Sch Environm Sci, Liverpool L69 3BX, Merseyside, England. [Hughes, Chris W.] Natl Oceanog Ctr, Liverpool, Merseyside, England. [Morrison, Adele K.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. RP Hogg, AM (reprint author), Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT, Australia. EM Andy.Hogg@anu.edu.au RI Abrahamsen, Povl/B-2140-2008; Hogg, Andy/A-7553-2011; OI Abrahamsen, Povl/0000-0001-5924-5350; Hogg, Andy/0000-0001-5898-7635; Chambers, Don/0000-0002-5439-0257 FU Australian Research Council Future Fellowship [FT120100842]; NERC via the BAS Polar Oceans strategic research programme; NASA [NNX13AG98G]; NERC National Capability funding via NOC; Carbon Mitigation Initiative - BP; Australian Commonwealth Government FX We thank Gareth Marshall for providing the observed SAM data for this paper (see http://www.nerc-bas.ac.uk/public/icd/gjma/sam.html). The altimeter products were produced by Ssalto/Duacs and distributed by AVISO, with support from CNES (http://www.aviso.oceanobs.com/duacs/). Andy Thompson, Stephanie Downes, and two anonymous reviewers provided constructive criticism of the first draft of this manuscript. A.M.H. was supported by an Australian Research Council Future Fellowship (FT120100842). M.M. and E.P.A. were supported by NERC funding via the BAS Polar Oceans strategic research programme. D.P.C. was supported by NASA grant NNX13AG98G for the Ocean Surface Topography Science Team. C.W.H. was supported by NERC National Capability funding via NOC. A.K.M. was supported by the Carbon Mitigation Initiative, sponsored by BP. This research was undertaken on the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government. NR 42 TC 18 Z9 18 U1 1 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD JAN PY 2015 VL 120 IS 1 BP 257 EP 267 DI 10.1002/2014JC010470 PG 11 WC Oceanography SC Oceanography GA CB8OP UT WOS:000349890000016 ER PT J AU Wenegrat, JO McPhaden, MJ AF Wenegrat, Jacob O. McPhaden, Michael J. TI Dynamics of the surface layer diurnal cycle in the equatorial Atlantic Ocean (0 degrees, 23 degrees W) SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article DE diurnal cycle; marginal instability; equatorial Atlantic; deep-cycle turbulence ID TROPICAL INSTABILITY WAVES; RESEARCH MOORED ARRAY; PACIFIC WARM POOL; MIXED-LAYER; COLD-TONGUE; HEAT-BUDGET; SHEAR-FLOW; DEEP-CYCLE; MARGINAL INSTABILITY; WIND STRESS AB A 15 year time series (1999-2014) from the 0 degrees, 23 degrees W Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) mooring, which includes an 8 month record (October 2008 to June 2009) of high-resolution near-surface velocity data, is used to analyze the diurnal variability of sea surface temperature, shear, and stratification in the central equatorial Atlantic. The ocean diurnal cycle exhibits pronounced seasonality that is linked to seasonal variations in the surface wind field. In boreal summer and fall, steady trade winds and clear skies dominate, with limited diurnal variability in sea surface temperature. Diurnal shear layers, with reduced Richardson numbers, are regularly observed descending into the marginally unstable equatorial undercurrent below the mixed layer, conditions favorable for the generation of deep-cycle turbulence. In contrast, in boreal winter and spring, winds are lighter and more variable, mixed layers are shallow, and diurnal variability of sea surface temperature is large. During these conditions, diurnal shear layers are less prominent, and the stability of the undercurrent increases, suggesting seasonal covariance between diurnal near-surface shear and deep-cycle turbulence. Modulation of the ocean diurnal cycle by tropical instability waves is also identified. This work provides the first observational assessment of the diurnal cycle of near-surface shear, stratification, and marginal instability in the equatorial Atlantic, confirming previous modeling results and offering a complementary perspective on similar work in the equatorial Pacific. C1 [Wenegrat, Jacob O.; McPhaden, Michael J.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [McPhaden, Michael J.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Wenegrat, JO (reprint author), Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. EM wenegrat@uw.edu RI McPhaden, Michael/D-9799-2016 FU Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA [NA10OAR4320148]; JISAO [2402]; PMEL [4244] FX The authors would like to thank Eric Kunze and Ren-Chieh Lien for helpful discussions of this work, as well as Bill Smyth and an anonymous reviewer for their comments. We also thank Paul Freitag and the TAO project office of PMEL for their ongoing work on the PIRATA array. Patricia Plimpton completed the initial processing of the near-surface ADCP data. This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148, JISAO contribution 2402, and PMEL contribution 4244. PIRATA mooring data are available at http://www.pmel.noaa.gov/tao/. PIRATA ADCP data are available from paul.freitag@noaa.gov. OLR and SST data are available from http://www.esrl.noaa.gov/psd/data/, Scatterometer Climatology of Ocean Winds from http://cioss.coas.oregonstate.edu/scow/, and World Ocean Database CTD data from http://www.nodc.noaa.gov/OC5/WOD/pr_wod.html. NR 79 TC 3 Z9 3 U1 0 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD JAN PY 2015 VL 120 IS 1 BP 563 EP 581 DI 10.1002/2014JC010504 PG 19 WC Oceanography SC Oceanography GA CB8OP UT WOS:000349890000033 ER PT J AU Perez, JD Goldstein, J McComas, DJ Valek, P Buzulukova, N Fok, MC Singer, HJ AF Perez, J. D. Goldstein, J. McComas, D. J. Valek, P. Buzulukova, N. Fok, M. -C. Singer, H. J. TI TWINS stereoscopic imaging of multiple peaks in the ring current SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE magnetosphere; ring current; ENA imaging ID PITCH-ANGLE DISTRIBUTIONS; NEUTRAL-ATOM; PLASMA SHEET; INNER MAGNETOSPHERE; ENA OBSERVATIONS; FLUX TUBES; MISSION; STORM; SUBSTORM; FLOWS AB Global, ion equatorial flux distributions and energy spectra are presented from stereoscopic Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) 1 and TWINS 2 energetic neutral atom (ENA) images for two time periods, 29 May 2010, 1330-1430 UT and 26 May 2011, 1645-1715 UT. The first is just after the main phase of a weak (minimum SYM/H approximate to-70 to -80 nT) corotating interaction region-driven geomagnetic storm. The second is during a relatively quiet period. The global ion distributions show multiple spatial peaks that are coincident with peaks in the AE index. The energy spectra have a primary maximum in the 15-20keV range. Below the energy maximum, the flux is Maxwellian. Above the main maximum, the flux is either significantly below that of a Maxwellian or has a second component with a maximum in the 40-50keV range. For the 29 May 2010, 1330-1430 UT time period, the flux from the TWINS stereoscopic images is compared to the results from TWINS 1 and TWINS 2 alone illustrating the advantage of stereoscopic viewing. The flux deconvolved from the TWINS images also shows spatial and temporal correlations with Time History of Events and Macroscale Interactions during Substorms (THEMIS) in situ measurements. Magnetic field dipolarizations observed by GOES support the existence of a peak in the ion flux in the midnight/dawn sector. In summary, increased spatial resolution from TWINS stereoscopic ENA images is demonstrated. Multiple peaks in the ion flux of trapped particles in the ring current are observed. THEMIS electrostatic analyzer in situ ion flux measurements and GOES geosynchronous magnetic field measurements are consistent with the spatial and temporal structure obtained. C1 [Perez, J. D.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Goldstein, J.; McComas, D. J.; Valek, P.] SW Res Inst, San Antonio, TX USA. [Goldstein, J.; McComas, D. J.; Valek, P.] Univ Texas San Antonio, Dept Phys, San Antonio, TX USA. [Buzulukova, N.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Buzulukova, N.; Fok, M. -C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Singer, H. J.] NOAA, Natl Weather Serv, Natl Ctr Environm Predict, Space Weather Predict Ctr, Boulder, CO USA. RP Perez, JD (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. EM perez@physics.auburn.edu OI Valek, Philip/0000-0002-2318-8750 FU TWINS mission part of NASA's Explorer Program FX The authors would like to acknowledge Natalia Papitashvili at the Space Physics Data Facility at NASA Goddard Spaceflight Center for use of the OMNI data set, the instrument teams from ACE, Wind, and other missions that contribute the data used by OMNI, and the THEMIS ESA team for the use of the THEMIS data and software. This work was carried out as a part of and with support from the TWINS mission as a part of NASA's Explorer Program. Data used in this paper are available from http://twins.swri.edu/, http://themis.ssl.berkeley.edu/index.shtml, and http://spdf.gsfc.nasa.gov/data_orbits.html. NR 52 TC 5 Z9 5 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN PY 2015 VL 120 IS 1 BP 368 EP 383 DI 10.1002/2014JA020662 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8OX UT WOS:000349891300024 ER PT J AU Verkhoglyadova, OP Mannucci, AJ Tsurutani, BT Mlynczak, MG Hunt, LA Redmon, RJ Green, JC AF Verkhoglyadova, O. P. Mannucci, A. J. Tsurutani, B. T. Mlynczak, M. G. Hunt, L. A. Redmon, R. J. Green, J. C. TI Localized thermosphere ionization events during the high-speed stream interval of 29 April to 5 May 2011 SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE thermosphere; ionosphere; aurora; HSS; particle precipitation ID SOLAR-WIND STREAMS; GEOMAGNETIC-ACTIVITY; UPPER-ATMOSPHERE; RADIATION BELT; ATOMIC OXYGEN; NITRIC-OXIDE; STORMS; DENSITY; ENERGY; IONOSPHERE AB We analyze localized ionospheric-thermospheric (IT) events in response to external driving by a high-speed stream (HSS) during the ascending phase of the Solar Cycle 24. The HSS event occurred from 29 April to 5 May, 2011. The HSS itself (and not the associated corotating interaction region) caused a moderate geomagnetic storm with peak SYM-H=-55 nT and prolonged auroral activity. We analyze TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics)/SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) measurements of nitric oxide (NO) cooling emission during the interval as a measure of thermospheric response to auroral heating. We identify several local cooling emission (LCE) events in high to subauroral latitudes. Individual cooling emission profiles during these LCE events are enhanced at ionospheric E layer altitudes. For the first time, we present electron density profiles in the vicinity of the LCE events using collocated COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) radio occultation (RO) measurements. Measurements at local nighttime show the formation of an enhanced E layer (about 2.5 times increase over the undisturbed value) at 100km altitude. Daytime electron density profiles show relatively smaller enhancements in the E layer. We suggest that the IT response is due to additional ionization caused by medium energy electron (>10keV) precipitation into the subauroral to high-latitude atmosphere associated with geomagnetic activity during the HSS event. C1 [Verkhoglyadova, O. P.; Mannucci, A. J.; Tsurutani, B. T.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. [Verkhoglyadova, O. P.] Ctr Space & Aeron Res, Huntsville, AL USA. [Mlynczak, M. G.] NASA Langley Res Ctr, Hampton, VA USA. [Hunt, L. A.] Sci Syst & Applicat Inc, Hampton, VA USA. [Redmon, R. J.] NOAA, Boulder, CO USA. [Green, J. C.] Space Hazards Applicat, Golden, CO USA. RP Verkhoglyadova, OP (reprint author), CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. EM Olga.Verkhoglyadova@jpl.nasa.gov OI Verkhoglyadova, Olga/0000-0002-9295-9539; Hunt, Linda/0000-0002-5330-541X FU NASA TIMED project office; NASA FX Portions of this work were done at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. M.G.M. would like to acknowledge support from the NASA TIMED project office. SABER data are available at http://saber.gats-inc.com/. The authors acknowledge use of COSMIC data provided by CDAAC (available through COSMIC Public Data Access from http://cdaac- www.cosmic.ucar.edu/cdaac/products.html). Solar wind parameters and activity indices are taken from the OMNI database (http://omniweb.gsfc.nasa.gov/form/omni_min.html). Electron count data were provided through NOAA NGDC (http://satdat.ngdc.noaa.gov/sem/poes/data/avg/). Hemispheric Power data were provided by the National Oceanic and Atmospheric Administration (NOAA), Boulder CO, USA. The authors would like to thank the referees for the helpful comments. NR 69 TC 5 Z9 5 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JAN PY 2015 VL 120 IS 1 BP 675 EP 696 DI 10.1002/2014JA020535 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA CB8OX UT WOS:000349891300044 ER PT J AU Josell, D Moffat, TP AF Josell, D. Moffat, T. P. TI Bottom-Up Electrodeposition of Zinc in Through Silicon Vias SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID SELECTIVE ACCELERATOR DEACTIVATION; COPPER INTERCONNECT METALLIZATION; MICROVIA-FILL PROCESS; SUPERCONFORMAL ELECTRODEPOSITION; THROUGH-SILICON; SUBMICROMETER TRENCHES; DAMASCENE TRENCHES; SUPPORTING ELECTROLYTE; SULFITE ELECTROLYTE; CU AB This paper describes superconformal feature filling during zinc electrodeposition in a sulfate electrolyte. Localized bottom-up filling of Through Silicon Vias (TSVs) with no deposition on the sidewalls or the field around them is demonstrated in electrolytes containing a deposition rate suppressing additive. This behavior is seen when feature filling proceeds at potentials in proximity to where suppression breakdown and localized zinc deposition are noted in electroanalytical measurements with planar rotating disk electrodes. The favorable comparison with previous results for bottom-up feature filling of Cu, Au and Ni further demonstrates the central role of additive-derived negative differential resistance (NDR) in extreme bottom-up feature filling. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved. C1 [Josell, D.; Moffat, T. P.] NIST, Mat Sci & Engn Div, Mat Measurement Lab, Gaithersburg, MD 20899 USA. RP Josell, D (reprint author), NIST, Mat Sci & Engn Div, Mat Measurement Lab, Gaithersburg, MD 20899 USA. EM daniel.josell@nist.gov NR 44 TC 3 Z9 3 U1 1 U2 17 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2015 VL 162 IS 3 BP D129 EP D135 DI 10.1149/2.0031504jes PG 7 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA CB7QZ UT WOS:000349823700051 ER PT J AU Schneck, NA Lowenthal, M Phinney, K Lee, SB AF Schneck, Nicole A. Lowenthal, Mark Phinney, Karen Lee, Sang Bok TI Current trends in magnetic particle enrichment for mass spectrometry-based analysis of cardiovascular protein biomarkers SO NANOMEDICINE LA English DT Article DE bioseparation; cardiac protein biomarkers; cardiovascular disease; enrichment; immunoassay; LC-MS; MS; magnetic (micro) beads; magnetic nanoparticles; mass spectrometry ID CARDIAC TROPONIN-I; PEPTIDE IMMUNOAFFINITY ENRICHMENT; HUMAN PLASMA PROTEOME; HEART-FAILURE; NATRIURETIC PEPTIDE; LC-MS/MS; QUANTITATIVE PROTEOMICS; MULTIPLEXED ASSAYS; CHEMICAL-SYNTHESIS; SERUM BIOMARKERS AB Magnetic particles have traditionally been utilized to isolate and enrich various cardiovascular protein biomarkers for mass spectrometry-based proteomic analysis. The application of functionalized magnetic particles for immunocapture is attractive due to their easy manipulation, large surface area-to-volume ratios for maximal antibody binding, good recovery and high magnetic saturation. Magnetic particle enrichment coupled with mass spectrometry can act as a complementary tool for clinical sandwich-immunoassay development since it can provide improved target specificity and true metrological traceability. The purpose of this review is to summarize current separation methods and technologies that use magnetic particles to enrich protein biomarkers from complex matrices, specifically focusing on cardiovascular disease-related proteins and the advantages of magnetic particles over existing techniques. C1 [Schneck, Nicole A.; Lee, Sang Bok] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Schneck, Nicole A.; Lowenthal, Mark; Phinney, Karen] NIST, Biomol Measurement Div, Gaithersburg, MD 20899 USA. RP Lee, SB (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. EM slee@umd.edu RI Lee, Sang Bok/B-4421-2009 NR 86 TC 4 Z9 5 U1 2 U2 28 PU FUTURE MEDICINE LTD PI LONDON PA UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND SN 1743-5889 EI 1748-6963 J9 NANOMEDICINE-UK JI Nanomedicine PY 2015 VL 10 IS 3 BP 433 EP 446 DI 10.2217/nnm.14.188 PG 14 WC Biotechnology & Applied Microbiology; Nanoscience & Nanotechnology SC Biotechnology & Applied Microbiology; Science & Technology - Other Topics GA CC3KI UT WOS:000350246600009 PM 25707977 ER PT J AU Campbell, LA Bottom, DL Volk, EC Fleming, IA AF Campbell, Lance A. Bottom, Daniel L. Volk, Eric C. Fleming, Ian A. TI Correspondence between Scale Morphometrics and Scale and Otolith Chemistry for Interpreting Juvenile Salmon Life Histories SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID CHINOOK SALMON; FRESH-WATER; FISH OTOLITHS; ONCORHYNCHUS-TSHAWYTSCHA; ANADROMOUS SALMONIDS; ELECTRON-MICROPROBE; MASS-SPECTROMETRY; STRONTIUM; RIVER; MICROCHEMISTRY AB Fish scales have long been used to reconstruct fine-scale habitat transitions such as the movement of juvenile fish from freshwater, estuary, and ocean environments. Despite the importance of life history information to fisheries management and conservation, few studies have validated that scale morphology accurately describes fish movement between these habitats. Therefore, we tested the accuracy of using scale morphometric criteria to identify the movement of juvenile Chinook Salmon Oncorhynchus tshawytscha from freshwater to marine portions of the Columbia River estuary by comparing scale morphometric classification, scale chemistry, and otolith chemistry. Nearly one-half of all fish collected in the saline portion of the estuary and approximately one-quarter in the freshwater portion exhibited morphometric patterns (i.e., scale checks and intermediate growth) often associated with periods of estuary rearing. Depending upon the criteria used to define scale checks, otolith chemical results indicated that 33-53% of fish would have been misclassified as estuary residents based solely on their scale patterns. Moreover, many individuals who had resided in strontium-rich estuary water did not form a visible check (37%) on their scales to coincide with estuary entry. We estimated from otolith chemistry that these fish had either entered at or near the size at which scale formation occurs (35-42 mm) or had recently migrated to the saline portion of the estuary (<30 d) before new scale material could be formed and calcified. Scale chemistry alone was a good indicator of entrance into the saline portion of the estuary. Scale chemistry responded to the strontium-enriched salt water, and explained 86% of the variation found in otolith chemistry. Scale morphometric classification did not provide the fine-scale resolution that scale and, even more so, otolith chemistry provided for describing the proportion of juvenile Chinook salmon using the saline portion of the Columbia River estuary. C1 [Campbell, Lance A.; Fleming, Ian A.] Oregon State Univ, Hatfield Marine Sci Ctr, Coastal Oregon Marine Expt Stn, Newport, OR 97365 USA. [Campbell, Lance A.; Fleming, Ian A.] Oregon State Univ, Hatfield Marine Sci Ctr, Dept Fisheries & Wildlife, Newport, OR 97365 USA. [Bottom, Daniel L.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Div Ecol, Newport, OR 97365 USA. [Volk, Eric C.] Alaska Dept Fish & Game, Commercial Fisheries Div, Anchorage, AK 99518 USA. RP Campbell, LA (reprint author), Washington Dept Fish & Wildlife, Div Sci, 1111 Washington St Southeast, Olympia, WA 98501 USA. EM campblac@dfw.wa.gov RI Fleming, Ian/I-7217-2012 FU U.S. Army Corps of Engineers, Portland District; Bonneville Power Administration; National Oceanic and Atmospheric Administration (NOAA) Fisheries, Northwest Fisheries Science Center; Washington Department of Fish and Wildlife FX This research was supported by the U.S. Army Corps of Engineers, Portland District; the Bonneville Power Administration; National Oceanic and Atmospheric Administration (NOAA) Fisheries, Northwest Fisheries Science Center; and the Washington Department of Fish and Wildlife. Special thanks to Steven Schroder for advice on most aspects of this manuscript. Additionally, we thank Gordon Reeves and the U.S. Forest Service, Forest Science Laboratory, for laboratory space. We thank the many people who collected and necropsied juvenile Chinook Salmon for scales and otoliths, especially Curtis Roegner, Susan Hinton, Jen Zamon, Paul Bentley, Regan McNatt, George McCabe, and Tom Campbell. We also thank Lang Nguyen and Dana Anderson of the Washington Department of fish and Wildlife Otolith Laboratory, for assistance in otolith sample preparation. We thank Adam Kent and Andy Ungerer at the Keck Collaboratory for Mass Spectrometry, Oregon State University, for assistance in microchemistry analysis. Lastly we thank Andrew Claiborne, Paul Chittaro, John Sneva, Brian Wells, and one anonymous reviewer for their thoughtful critiques that have improved this manuscript. NR 51 TC 4 Z9 4 U1 2 U2 19 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PY 2015 VL 144 IS 1 BP 55 EP 67 DI 10.1080/00028487.2014.963253 PG 13 WC Fisheries SC Fisheries GA CC0KX UT WOS:000350025600006 ER PT J AU Tucker, S Thiess, ME Morris, JFT Mackas, D Peterson, WT Candy, JR Beacham, TD Iwamoto, EM Teel, DJ Peterson, M Trudel, M AF Tucker, S. Thiess, M. E. Morris, J. F. T. Mackas, D. Peterson, W. T. Candy, J. R. Beacham, T. D. Iwamoto, E. M. Teel, D. J. Peterson, M. Trudel, M. TI Coastal Distribution and Consequent Factors Influencing Production of Endangered Snake River Sockeye Salmon SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID NORTHERN CALIFORNIA CURRENT; WIRE TAG RECOVERIES; EASTERN BERING-SEA; CHINOOK SALMON; ONCORHYNCHUS-NERKA; PACIFIC SALMON; WEST-COAST; SEAWARD MIGRATION; BRITISH-COLUMBIA; JUVENILE SALMON AB Snake River Sockeye Salmon Oncorhynchus nerka were declared endangered in 1991 after several years of decreasing abundance. Several factors, including poor marine survival, likely contributed to the decline of Snake River Sockeye Salmon. Little is known about their migration and ocean distribution and the factors influencing their production. We sampled (1) coastal waters from southern British Columbia (BC) to southeast Alaska during June-July, October-November, and February-March 1998-2011; and (2) Oregon and Washington coastal waters during May-June and September 2007-2010. In total, 8,227 juvenile Sockeye Salmon were captured. Despite their extremely low abundance relative to other stocks, 15 coded-wire-tagged juveniles from Redfish Lake were recovered since 2007, primarily in spring and summer surveys off the BC coast. Genetic analyses revealed that an additional eight Redfish Lake juveniles were also present in this area during summer. Snake River smolts undertook a rapid northward migration that brought them well beyond the Columbia River estuary and plume, exposing them to ocean conditions prevailing off BC. Through a multimodel inference approach, we characterized associations between the number of returning adults and a suite of ocean and river variables. Seven ocean variables and five river variables were chosen for the model selection analysis (e.g., copepod biomass anomalies, coastal upwelling indices, date of the spring transition, river discharge, river temperature, and the proportion of smolts transported through the hydropower system). Although adult returns were highly correlated with smolt abundance, our analyses suggest that ocean conditions encountered during the first growing season (as indexed by copepod anomalies) contribute to the variability in total adult returns. There was also evidence for a negative effect of transporting smolts through the hydropower system, with the caveat that we used transportation data for steelhead O. mykiss as a proxy. C1 [Tucker, S.; Thiess, M. E.; Morris, J. F. T.; Candy, J. R.; Beacham, T. D.; Trudel, M.] Fisheries & Oceans Canada, Pacific Biol Stn, Nanaimo, BC V9T 6N7, Canada. [Mackas, D.] Fisheries & Oceans Canada, Inst Ocean Sci, Sidney, BC V8L 5T5, Canada. [Peterson, W. T.] Natl Ocean & Atmospher Adm Fisheries, NW Fisheries Sci Ctr, Hatfield Marine Sci Ctr, Newport, OR 97365 USA. [Iwamoto, E. M.; Teel, D. J.] Natl Ocean & Atmospher Adm Fisheries, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. [Peterson, M.] Idaho Dept Fish & Game, Nampa, ID 83686 USA. [Trudel, M.] Univ Victoria, Dept Biol, Victoria, BC V8W 2Y2, Canada. RP Tucker, S (reprint author), Fisheries & Oceans Canada, Pacific Biol Stn, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada. EM strahan.tucker@dfo-mpo.gc.ca RI Trudel, Marc/H-1955-2012 FU DFO; National Marine Fisheries Service; Bonneville Power Administration; Canadian Space Agency; World Wildlife Fund FX We thank the crews of the CCGS W.E. Ricker, F/V Viking Storm, F/V Ocean Selector, and F/V Frosti and the numerous scientists and technicians for their assistance with the field work and laboratory analysis. We acknowledge M. Bradford, B. Burke, C. Kozfkay, D. Schill, and three anonymous reviewers who provided helpful comments on previous drafts of the manuscript. We are grateful to C. Petrosky for generously providing river and hydropower system variables. We also thank DFO, the National Marine Fisheries Service, the Bonneville Power Administration, the Canadian Space Agency, and the World Wildlife Fund for their financial support. NR 75 TC 3 Z9 3 U1 2 U2 22 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PY 2015 VL 144 IS 1 BP 107 EP 123 DI 10.1080/00028487.2014.968292 PG 17 WC Fisheries SC Fisheries GA CC0KX UT WOS:000350025600011 ER PT J AU Trippel, NA Allen, MS McBride, RS AF Trippel, Nicholas A. Allen, Micheal S. McBride, Richard S. TI Importance of Resident and Seasonally Transient Prey to Largemouth Bass in the St. Johns River, Florida SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID HICKORY SHAD; AMERICAN SHAD; GIZZARD SHAD; GROWTH; FISHES; DIET; FOOD; TEMPERATURE; ABUNDANCE; ECOLOGY AB We examined seasonal dynamics of prey availability and diets of Largemouth Bass Micropterus salmoides in the St. Johns River, Florida. The four most common prey species were Threadfin Shad Dorosoma petenense, Bay Anchovy Anchoa mitchilli, Atlantic Croaker Micropogonias undulatus, and Atlantic Menhaden Brevoortia tyrannus. The number of prey found in Largemouth Bass varied significantly by month (year-round) and predator size ("small," <356 mm TL, n D 267; "medium," 356-432 mm TL, n D 205; "large," >432 mm TL, n D 114). Atlantic Menhaden were most energetically beneficial to predators when available. Of the four most common prey species collected in trawls, only men-haden trawl catch was positively correlated with its appearance in bass diets. Menhaden were eaten by bass of all sizes, but were found only from September through November. Largemouth Bass did not feed heavily on juvenile anadromous shads Alosa spp. during their autumn migration, but this likely reflected low abundance of these clupeid species. The seasonal diversity of prey available in the St. Johns River may contribute to its being one of the most productive Largemouth Bass fisheries in Florida. C1 [Trippel, Nicholas A.] Florida Fish & Wildlife Conservat Commiss, Eustis, FL 32726 USA. [Allen, Micheal S.] Univ Florida, Dept Fisheries & Aquat Sci, Gainesville, FL 32653 USA. [McBride, Richard S.] NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Woods Hole, MA 02543 USA. RP Trippel, NA (reprint author), Florida Fish & Wildlife Conservat Commiss, 601 West Woodward Ave, Eustis, FL 32726 USA. EM nick.trippel@myfwc.com RI McBride, Richard/C-2818-2012 FU U.S. Fish and Wildlife Service Sport Fish Restoration Program [F-106]; St. Johns River Water Management District [SG346AA] FX We thank the many individuals who helped with sampling including Travis Tuten, Eric Nagid, Mark Rogers, Drew Dutterer, Patrick Cooney, Jason Bennett, Jason Dotson, Melissa Woods-Jackson, Galen Kaufman, Adam Richardson, Kristin Maki, Ginny Chandler, Greg Binion, Matt Catalano, Christian Barrientos, and Will Strong. We also thank Laura West for assistance with editing. This project was funded by the U.S. Fish and Wildlife Service Sport Fish Restoration Program Grant F-106 and the St. Johns River Water Management District (Contract SG346AA). NR 39 TC 2 Z9 2 U1 1 U2 8 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PY 2015 VL 144 IS 1 BP 140 EP 149 DI 10.1080/00028487.2014.982177 PG 10 WC Fisheries SC Fisheries GA CC0KX UT WOS:000350025600013 ER PT J AU Van Doornik, DM Hess, MA Johnson, MA Teel, DJ Friesen, TA Myers, JM AF Van Doornik, Donald M. Hess, Maureen A. Johnson, Marc A. Teel, David J. Friesen, Thomas A. Myers, James M. TI Genetic Population Structure of Willamette River Steelhead and the Influence of Introduced Stocks SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID TROUT ONCORHYNCHUS-MYKISS; CROSS-SPECIES AMPLIFICATION; RESIDENT RAINBOW-TROUT; FALL CHINOOK SALMON; COLUMBIA RIVER; MICROSATELLITE LOCI; ATLANTIC SALMON; PACIFIC SALMON; FRESH-WATER; REPRODUCTIVE ISOLATION AB Conservation genetics studies are frequently conducted on Pacific salmon Oncorhynchus spp. to delineate their population structure and to quantify their genetic diversity, especially for populations that have experienced declines in abundance and are subject to anthropogenic activities. One such group of salmonids is steelhead O. mykiss (anadromous Rainbow Trout) from the Willamette River, a tributary of the Columbia River. Within the Willamette River there are multiple steelhead life history and run-timing types, some of which originated from nonnative populations. Late winter-run steelhead and Rainbow Trout are native to the Willamette River, whereas early winter-run and summer-run steelhead have been introduced into the system via releases from artificial propagation efforts. We conducted genetic analyses of Willamette River steelhead to determine the effect that nonnative steelhead released into the Willamette River basin have had on the genetic population structure of native steelhead. We found genetic differentiation among the samples that separated steelhead into four population groups that corresponded to run type. Possibly due to local adaptation, the native run type has retained its genetic distinctiveness from the introduced types, despite there being opportunities for gene flow among all types. Introduced early winter-run steelhead appear to be the origin of steelhead inhabiting certain Willamette River tributaries where native steelhead did not historically spawn. C1 [Van Doornik, Donald M.; Teel, David J.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Manchester Res Stn, Port Orchard, WA 98366 USA. [Hess, Maureen A.] Columbia River Intertribal Fish Commiss, Hagerman Fish Culture Expt Stn, Hagerman, ID 83332 USA. [Johnson, Marc A.; Friesen, Thomas A.] Oregon Dept Fish & Wildlife, Corvallis Res Lab, Corvallis, OR 97333 USA. [Myers, James M.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. RP Van Doornik, DM (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Manchester Res Stn, 7305 Beach Dr East, Port Orchard, WA 98366 USA. EM don.vandoornik@noaa.gov FU U.S. Army Corps of Engineers; ODFW; National Oceanic and Atmospheric Administration FX We appreciate the efforts of ODFW staff, including Mike Hogansen, Kirk Schroeder, Bart DeBow, Brett Boyd, Greg Grenbemer, Lisa Borgerson, and Kanani Bowden, who collected recent and archived O. mykiss samples. Funding sources for this project included the U.S. Army Corps of Engineers (administration provided by David Leonhardt), the ODFW, and the National Oceanic and Atmospheric Administration. NR 79 TC 1 Z9 1 U1 1 U2 11 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PY 2015 VL 144 IS 1 BP 150 EP 162 DI 10.1080/00028487.2014.982178 PG 13 WC Fisheries SC Fisheries GA CC0KX UT WOS:000350025600014 ER PT S AU Silva, TJ Turgut, E Mathias, S La-o-vorakiat, C Grychtol, P Adam, R Rudolf, D Nembach, HT Aeschlimann, M Schneider, CM Kapteyn, HC Murnane, MM Shaw, JM AF Silva, T. J. Turgut, E. Mathias, S. La-o-vorakiat, C. Grychtol, P. Adam, R. Rudolf, D. Nembach, H. T. Aeschlimann, M. Schneider, C. M. Kapteyn, H. C. Murnane, M. M. Shaw, J. M. BE Bigot, JY Hubner, W Rasing, T Chantrell, R TI Ultrafast, element-specific magnetization dynamics of multi-constituent magnetic materials by use of high-harmonic generation SO ULTRAFAST MAGNETISM I SE Springer Proceedings in Physics LA English DT Proceedings Paper CT Ultrafast Magnetization Conference CY OCT 28-NOV 01, 2013 CL Strasbourg, FRANCE SP European Res Agcy, French Minist Educ & Research, Natl Sci Res Ctr, Univ Strasbourg, Univ Kaiserslautern AB We have studied femtosecond magnetization dynamics probed by extreme ultraviolet pulses from high-harmonic generation, with element-selectivity and ultrafast time resolution. By use of this technique, we identify the microscopic processes that drive magnetization dynamics on femtosecond timescales. Here, we concentrate on controlling superdiffusive spin-currents in magnetic multilayers. C1 [Silva, T. J.; Nembach, H. T.; Shaw, J. M.] NIST, Electromagnet Div, Boulder, CO 80305 USA. [Turgut, E.; Mathias, S.; La-o-vorakiat, C.; Grychtol, P.; Kapteyn, H. C.; Murnane, M. M.] Univ Colorado, Dept Phys, JILA, Boulder, CO 80309 USA. [Turgut, E.; Mathias, S.; La-o-vorakiat, C.; Grychtol, P.; Kapteyn, H. C.; Murnane, M. M.] NIST, Boulder, CO 80309 USA. [Mathias, S.; Aeschlimann, M.] Univ Kaiserslautern, Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany. [Grychtol, P.; Adam, R.; Rudolf, D.; Schneider, C. M.] Res Ctr Julich, PGI 6, D-52425 Julich, Germany. [Grychtol, P.; Adam, R.; Rudolf, D.; Schneider, C. M.] Res Ctr Julich, JARA FIT, D-52425 Julich, Germany. RP Silva, TJ (reprint author), NIST, Electromagnet Div, Boulder, CO 80305 USA. EM silva@boulder.nist.gov RI Shaw, Justin/C-1845-2008; Silva, Thomas/C-7605-2013; Schneider, Claus/H-7453-2012; Aeschlimann, Martin/D-7141-2011; OI Shaw, Justin/0000-0003-2027-1521; Silva, Thomas/0000-0001-8164-9642; Schneider, Claus/0000-0002-3920-6255; Aeschlimann, Martin/0000-0003-3413-5029; Grychtol, Patrik/0000-0002-7042-9334 FU U. S. Department of Energy Office of Basic Energy Sciences [DE-FG02-09ER46652]; Deutsche Forschungsgemeinschaft [Schn-353/17, AE-19/20, GR 4234/1-1] FX The authors gratefully acknowledge funding from the U. S. Department of Energy Office of Basic Energy Sciences, Award #DE-FG02-09ER46652 and from the Deutsche Forschungsgemeinschaft, #Schn-353/17, #AE-19/20 and #GR 4234/1-1. NR 6 TC 1 Z9 1 U1 3 U2 10 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0930-8989 BN 978-3-319-07743-7; 978-3-319-07742-0 J9 SPRINGER PROC PHYS PY 2015 VL 159 BP 300 EP + DI 10.1007/978-3-319-07743-7_93 PG 2 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA BC0WT UT WOS:000349745400093 ER PT S AU Rudolf, D La-O-Vorakiat, C Battiato, M Adam, R Grychtol, P Shaw, JM Turgut, E Maldonado, P Mathias, S Nembach, HT Silva, TJ Aeschlimann, M Kapteyn, HC Murnane, MM Oppeneer, PM Schneider, CM AF Rudolf, Dennis La-O-Vorakiat, Chan Battiato, Marco Adam, Roman Grychtol, Patrik Shaw, Justin M. Turgut, Emrah Maldonado, Pablo Mathias, Stefan Nembach, Hans T. Silva, Thomas J. Aeschlimann, Martin Kapteyn, Henry C. Murnane, Margaret M. Oppeneer, Peter M. Schneider, Claus M. BE Bigot, JY Hubner, W Rasing, T Chantrell, R TI Element Selective Investigation of Spin Dynamics in Magnetic Multilayers SO ULTRAFAST MAGNETISM I SE Springer Proceedings in Physics LA English DT Proceedings Paper CT Ultrafast Magnetization Conference CY OCT 28-NOV 01, 2013 CL Strasbourg, FRANCE SP European Res Agcy, French Minist Educ & Research, Natl Sci Res Ctr, Univ Strasbourg, Univ Kaiserslautern AB Our understanding of ultrafast switching processes in novel spin-based electronics depends on our detailed knowledge of interactions between spin, charge and phonons in magnetic structures. We present element-selective studies, using extreme ultraviolet (XUV) light, to gain insight into spin dynamics in exchange coupled magnetic multilayers on the femtosecond time scale. C1 [Rudolf, Dennis; Adam, Roman; Schneider, Claus M.] Res Ctr Julich, Peter Grnberg Inst PGI 6, D-52425 Julich, Germany. [La-O-Vorakiat, Chan; Grychtol, Patrik; Turgut, Emrah; Kapteyn, Henry C.; Murnane, Margaret M.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [La-O-Vorakiat, Chan; Grychtol, Patrik; Turgut, Emrah; Kapteyn, Henry C.; Murnane, Margaret M.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Battiato, Marco; Maldonado, Pablo; Oppeneer, Peter M.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Shaw, Justin M.; Nembach, Hans T.; Silva, Thomas J.] NIST, Electromagnet Div, Boulder, CO 80305 USA. [Mathias, Stefan; Aeschlimann, Martin] Univ Kaiserslautern, D-67663 Kaiserslautern, Germany. [Mathias, Stefan; Aeschlimann, Martin] Res Ctr OPTIMAS, D-67663 Kaiserslautern, Germany. RP Rudolf, D (reprint author), Res Ctr Julich, Peter Grnberg Inst PGI 6, D-52425 Julich, Germany. EM r.adam@fz-juelich.de RI Shaw, Justin/C-1845-2008; Silva, Thomas/C-7605-2013; Schneider, Claus/H-7453-2012; Battiato, Marco/A-6278-2012; Aeschlimann, Martin/D-7141-2011; OI Shaw, Justin/0000-0003-2027-1521; Silva, Thomas/0000-0001-8164-9642; Schneider, Claus/0000-0002-3920-6255; Battiato, Marco/0000-0002-1902-2272; Aeschlimann, Martin/0000-0003-3413-5029; Grychtol, Patrik/0000-0002-7042-9334; Maldonado, Pablo/0000-0002-8524-819X FU BMBF [05KS7UK1]; DFG (SFB 491); EU [281043] FX The authors gratefully acknowledge financial support from BMBF (Project 05KS7UK1), from the DFG (SFB 491) and from the EU (grant No. 281043, " FemtoSpin"). NR 9 TC 0 Z9 0 U1 3 U2 9 PU SPRINGER INT PUBLISHING AG PI CHAM PA GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND SN 0930-8989 BN 978-3-319-07743-7; 978-3-319-07742-0 J9 SPRINGER PROC PHYS PY 2015 VL 159 BP 307 EP + DI 10.1007/978-3-319-07743-7_95 PG 2 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA BC0WT UT WOS:000349745400095 ER PT J AU Chuang, MC Hwang, JN Williams, K Towler, R AF Chuang, Meng-Che Hwang, Jenq-Neng Williams, Kresimir Towler, Richard TI Tracking Live Fish From Low-Contrast and Low-Frame-Rate Stereo Videos SO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY LA English DT Article DE Fish abundance estimation; low-frame-rate (LFR) video; multiple target tracking; stereo imaging; underwater video ID CAMERA SYSTEM; ALGORITHM AB Nonextractive fish abundance estimation with the aid of visual analysis has drawn increasing attention. Unstable illumination, ubiquitous noise, and low-frame-rate (LFR) video capturing in the underwater environment, however, make conventional tracking methods unreliable. In this paper, we present a multiple fish-tracking system for low-contrast and LFR stereo videos with the use of a trawl-based underwater camera system. An automatic fish segmentation algorithm overcomes the low-contrast issues by adopting a histogram backprojection approach on double local-thresholded images to ensure an accurate segmentation on the fish shape boundaries. Built upon a reliable feature-based object matching method, a multiple-target tracking algorithm via a modified Viterbi data association is proposed to overcome the poor motion continuity and frequent entrance/exit of fish targets under LFR scenarios. In addition, a computationally efficient block-matching approach performs successful stereo matching that enables an automatic fish-body tail compensation to greatly reduce segmentation error and allows for an accurate fish length measurement. Experimental results show that an effective and reliable tracking performance for multiple live fish with underwater stereo cameras is achieved. C1 [Chuang, Meng-Che; Hwang, Jenq-Neng] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Williams, Kresimir; Towler, Richard] NOAA, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. RP Chuang, MC (reprint author), Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. EM mengche@uw.edu; hwang@uw.edu; kresimir.williams@noaa.gov; rick.towler@noaa.gov FU National Marine Fisheries Service's Advanced Sampling Technology Working Group, National Oceanic and Atmospheric Administration, Seattle, WA, USA FX This work was supported by the National Marine Fisheries Service's Advanced Sampling Technology Working Group, National Oceanic and Atmospheric Administration, Seattle, WA, USA. This paper was recommended by Associate Editor P. Yin. NR 30 TC 7 Z9 7 U1 4 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8215 EI 1558-2205 J9 IEEE T CIRC SYST VID JI IEEE Trans. Circuits Syst. Video Technol. PD JAN PY 2015 VL 25 IS 1 BP 167 EP 179 DI 10.1109/TCSVT.2014.2357093 PG 13 WC Engineering, Electrical & Electronic SC Engineering GA CB4UM UT WOS:000349623700014 ER PT J AU Zuo, Y Liu, M Zhang, T Hong, LW Guo, XW Song, CS Chen, YS Zhu, PY Jaye, C Fischer, D AF Zuo, Yi Liu, Min Zhang, Ting Hong, Luwei Guo, Xinwen Song, Chunshan Chen, Yongsheng Zhu, Pengyu Jaye, Cherno Fischer, Daniel TI Role of pentahedrally coordinated titanium in titanium silicalite-1 in propene epoxidation SO RSC ADVANCES LA English DT Article ID X-RAY-ABSORPTION; HYDROGEN-PEROXIDE; CATALYTIC-PROPERTIES; CYCLOHEXANONE AMMOXIMATION; FRAMEWORK TI(IV); TS-1 ZEOLITE; OXIDATION; XANES; EXAFS; SPECTROSCOPY AB Two titanium silicalite-1 samples with different crystal sizes were synthesized in the tetrapropylammonium bromide (TPABr) and tetrapropylammonium hydroxide (TPAOH) hydrothermal systems. The small-crystal TS-1 with a size of 600 nm was then treated with different organic bases. These TS-1 samples were evaluated in the epoxidation of propene, and characterized by ultraviolet-visible diffuse reflectance (UV-vis), X-ray absorption near edge structure (XANES) and Raman spectroscopies. The Ti L-edge absorption spectra show that a new Ti species, pentahedrally coordinated Ti, appears in some of the samples. This pentahedrally coordinated Ti species is correlated with the catalytic oxidation activity of TS-1, closely. Tetrahedrally coordinated Ti in TS-1 is the primary active center for selective oxidation reactions, but the existence of a small amount of pentahedrally coordinated Ti can further improve the catalytic activity. A high molar ratio of Si/Ti (n(Si/Ti)) in the synthesis process (n(Si/Ti) = 92.78) was beneficial for the generation of pentahedrally coordinated Ti. The improved catalytic activity of the TPAOH treated TS-1 is mainly due to the increasing amount of pentahedrally coordinated Ti, besides the elimination of diffusion limitation. Slowing down the crystallization rate can also increase the content of pentahedrally coordinated Ti. C1 [Zuo, Yi; Liu, Min; Zhang, Ting; Hong, Luwei; Guo, Xinwen] Dalian Univ Technol, State Key Lab Fine Chem, PSU DUT Joint Ctr Energy Res, Sch Chem Engn, Dalian 116024, Peoples R China. [Song, Chunshan; Chen, Yongsheng; Zhu, Pengyu] Penn State Univ, EMS Energy Inst, PSU DUT Joint Ctr Energy Res, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Jaye, Cherno; Fischer, Daniel] NIST, Gaithersburg, MD 20899 USA. RP Guo, XW (reprint author), Dalian Univ Technol, State Key Lab Fine Chem, PSU DUT Joint Ctr Energy Res, Sch Chem Engn, Dalian 116024, Peoples R China. EM guoxw@dlut.edu.cn; yzc2@psu.edu RI 左, 轶/F-9409-2012; Song, Chunshan/B-3524-2008 OI Song, Chunshan/0000-0003-2344-9911 FU Fundamental Research Funds for the Central Universities [2342013DUT13RC(3)704]; China Postdoctoral Science Foundation [2014M551094]; program for the New Century Excellent Talent in University [NCET-04-0268]; Plan 111 Project of the Ministry of Education of China FX This work was partly financialized by the Fundamental Research Funds for the Central Universities (2342013DUT13RC(3)704), China Postdoctoral Science Foundation (2014M551094), the program for the New Century Excellent Talent in University (Grant NCET-04-0268) and the Plan 111 Project of the Ministry of Education of China. NR 48 TC 7 Z9 7 U1 5 U2 39 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2015 VL 5 IS 23 BP 17897 EP 17904 DI 10.1039/c5ra00194c PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA CB3VN UT WOS:000349557400067 ER PT J AU Choi, W Gu, JE Park, SH Kim, S Bang, J Baek, KY Park, B Lee, JS Chan, EP Lee, JH AF Choi, Wansuk Gu, Joung-Eun Park, Sang-Hee Kim, Seyong Bang, Joona Baek, Kyung-Youl Park, Byoungnam Lee, Jong Suk Chan, Edwin P. Lee, Jung-Hyun TI Tailor-Made Polyamide Membranes for Water Desalination SO ACS NANO LA English DT Article ID FILM COMPOSITE MEMBRANES; REVERSE-OSMOSIS MEMBRANES; INTERFACIAL POLYMERIZATION; MOLECULAR-STRUCTURE; TETRAACYL CHLORIDE; THIN-FILMS; PERFORMANCE; LAYER; RO; NANOFILTRATION AB Independent control of the extrinsic and intrinsic properties of the polyamide (PA) selective layer is essential for designing thin-film composite (TFC) membranes with performance characteristics required for water purification applications besides seawater desalination. Current commercial TFC membranes fabricated via the well-established interfacial polymerization (IP) approach yield materials that are far from ideal because their layer thickness, surface roughness, polymer chemistry, and network structure cannot be separately tailored. In this work, tailor-made PA-based desalination membranes based on molecular layer-by-layer (mLbL) assembly are presented. The mLbL technique enables the construction of an ultrathin and highly cross-linked PA seletive layer in a precisely and independently controlled manner. The mLbL-assembled TFC membranes exhibit significant enhancements in performance compared to their IP-assembled counterparts. A maximum sodium chloride rejection of 98.2% is achieved along with over 2.5 times higher water flux than the IP-assembled counterpart. More importantly, this work demonstrates the broad applicability of mLbL in fabricating a variety of PA-based TFC membranes with nanoscale control of the selective layer thickness and roughness independent of the specific polyamide chemistry. C1 [Choi, Wansuk; Park, Sang-Hee; Kim, Seyong; Bang, Joona; Lee, Jung-Hyun] Korea Univ, Dept Chem & Biol Engn, Seoul 136713, South Korea. [Gu, Joung-Eun; Lee, Jong Suk] Korea Inst Sci & Technol, Ctr Environm Hlth & Welf Res, Seoul 136791, South Korea. [Park, Sang-Hee; Baek, Kyung-Youl] Korea Inst Sci & Technol, Ctr Mat Architecturing, Seoul 136791, South Korea. [Gu, Joung-Eun] Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, Ulsan 689798, South Korea. [Park, Byoungnam] Hongik Univ, Dept Mat Sci & Engn, Seoul 121791, South Korea. [Chan, Edwin P.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. RP Lee, JS (reprint author), Korea Inst Sci & Technol, Ctr Environm Hlth & Welf Res, 39-1 Hawolgok Dong, Seoul 136791, South Korea. EM jong.lee@kist.re.kr; edwin.chan@nist.gov; leejhyyy@korea.ac.kr RI Bang, Joona/F-6589-2013; Lee, Jung-Hyun/H-1096-2011 FU National Research Foundation of Korea grant - Korea government (MSIP) [2014R1A1A1003197]; Korea CCS R&D Center (KCRC), Republic of Korea [2014M1A8A1049315] FX This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIP) (No. 2014R1A1A1003197). J.S.L. acknowledges financial support from the Korea CCS R&D Center (KCRC) (No. 2014M1A8A1049315), Republic of Korea. Official contribution of the National Institute of Standards and Technology. NR 32 TC 14 Z9 14 U1 14 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JAN PY 2015 VL 9 IS 1 BP 345 EP 355 DI 10.1021/nn505318v PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA CA0PJ UT WOS:000348619000036 PM 25548959 ER PT J AU Scott, P Grevesse, N Asplund, M Sauval, AJ Lind, K Takeda, Y Collet, R Trampedach, R Hayek, W AF Scott, Pat Grevesse, Nicolas Asplund, Martin Sauval, A. Jacques Lind, Karin Takeda, Yoichi Collet, Remo Trampedach, Regner Hayek, Wolfgang TI The elemental composition of the Sun I. The intermediate mass elements Na to CaThe elemental composition of the Sun I. The intermediate mass elements Na to Ca SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: abundances; Sun: photosphere; Sun: granulation; line: formation; line: profiles; convection ID METAL-POOR STARS; NON-LTE APPLICATIONS; HYPERFINE-STRUCTURE MEASUREMENTS; ATOMIC TRANSITION-PROBABILITIES; LASER-INDUCED FLUORESCENCE; SOLAR FLUORINE ABUNDANCE; 3D MODEL ATMOSPHERES; H COLLISION DATA; OSCILLATOR-STRENGTHS; LINE-FORMATION AB The chemical composition of the Sun is an essential piece of reference data for astronomy, cosmology, astroparticle, space and geo-physics: elemental abundances of essentially all astronomical objects are referenced to the solar composition, and basically every process involving the Sun depends on its composition. This article, dealing with the intermediate-mass elements Na to Ca, is the first in a series describing the comprehensive re-determination of the solar composition. In this series we severely scrutinise all ingredients of the analysis across all elements, to obtain the most accurate, homogeneous and reliable results possible. We employ a highly realistic 3D hydrodynamic model of the solar photosphere, which has successfully passed an arsenal of observational diagnostics. For comparison, and to quantify remaining systematic errors, we repeat the analysis using three different 1D hydrostatic model atmospheres (MARCS, MISS and Holweger & Muller 1974, Sol. Phys., 39, 19) and a horizontally and temporally-averaged version of the 3D model (? 3D ?). We account for departures from local thermodynamic equilibrium (LTE) wherever possible. We have scoured the literature for the best possible input data, carefully assessing transition probabilities, hyperfine splitting, partition functions and other data for inclusion in the analysis. We have put the lines we use through a very stringent quality check in terms of their observed profiles and atomic data, and discarded all that we suspect to be blended. Our final recommended 3D+NLTE abundances are: log epsilon(Na) = 6.21 +/- 0.04, log epsilon(Mg) = 7.59 +/- 0.04, log epsilon(Al) = 6.43 +/- 0.04, log epsilon(Si) = 7.51 +/- 0.03, log epsilon(P) = 5.41 +/- 0.03, log epsilon(S) = 7.13 +/- 0.03, log epsilon(K) = 5.04 +/- 0.05 and log epsilon(Ca) = 6.32 +/- 0.03. The uncertainties include both statistical and systematic errors. Our results are systematically smaller than most previous ones with the 1D semi-empirical Holweger & Muller model, whereas the < 3D > model returns abundances very similar to the full 3D calculations. This analysis provides a complete description and a slight update of the results presented in Asplund et al. (2009, ARA&A, 47, 481) for Na to Ca, and includes full details of all lines and input data used. C1 [Scott, Pat] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England. [Grevesse, Nicolas] Univ Liege, Ctr Spatial Liege, B-4031 Angleur Liege, Belgium. [Grevesse, Nicolas] Univ Liege, Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Asplund, Martin; Collet, Remo; Hayek, Wolfgang] Australian Natl Univ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. [Sauval, A. Jacques] Observ Royal Belgique, B-1180 Brussels, Belgium. [Lind, Karin] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Takeda, Yoichi] Natl Astron Observ Japan, Tokyo 1818588, Japan. [Trampedach, Regner] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Trampedach, Regner] Univ Colorado, JILA, Boulder, CO 80309 USA. [Trampedach, Regner] NIST, Boulder, CO 80309 USA. RP Scott, P (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. EM p.scott@imperial.ac.uk; icolas.grevesse@ulg.ac.be; martin.asplund@anu.edu.au; jacques.sauval@oma.be; karin.lind@physics.uu.se; takeda.yoichi@nao.ac.jp; remo.collet@anu.edu.au; trampeda@lcd.colorado.edu FU Max Planck Institut fur Astrophysik, Garching; Centre Spatial de Liege; Department of Astrophysics, Geophysics and Oceanography, University of Liege; Mount Stromlo Observatory; IAU Commission 46; Lorne Trottier Chair in Astrophysics; (Canadian) Institute for Particle Physics; Banting Fellowship scheme; UK Science & Technology Facilities Council; Royal Belgian Observatory; Australian Research Council; Australian Research Council's DECRA [DE120102940] FX We thank Katia Cunha, Enrico Maiorca and Nils Ryde for helpful discussions concerning the transition probabilities and partition functions of HF, Thomas Gehren for providing unpublished NLTE abundance corrections, Charlotte Froese-Fischer for other helpful discussions on transition probabilities, and the referee for constructive feedback. P.S., N.G. and M.A. variously thank the Max Planck Institut fur Astrophysik, Garching, the Centre Spatial de Liege, the Department of Astrophysics, Geophysics and Oceanography, University of Liege and Mount Stromlo Observatory for support and hospitality during the production of this paper. We acknowledge further support from IAU Commission 46, the Lorne Trottier Chair in Astrophysics, the (Canadian) Institute for Particle Physics, the Banting Fellowship scheme as administered by the Natural Science and Engineering Research Council of Canada, the UK Science & Technology Facilities Council (PS), the Royal Belgian Observatory (NG), the Australian Research Council (MA) and the Australian Research Council's DECRA scheme (project number DE120102940; RC). NR 119 TC 38 Z9 38 U1 2 U2 8 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JAN PY 2015 VL 573 AR A25 DI 10.1051/0004-6361/201424109 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AX4KJ UT WOS:000346901300028 ER PT J AU Elvidge, ECL Oram, DE Laube, JC Baker, AK Montzka, SA Humphrey, S O'Sullivan, DA Brenninkmeijer, CAM AF Elvidge, E. C. Leedham Oram, D. E. Laube, J. C. Baker, A. K. Montzka, S. A. Humphrey, S. O'Sullivan, D. A. Brenninkmeijer, C. A. M. TI Increasing concentrations of dichloromethane, CH2Cl2, inferred from CARIBIC air samples collected 1998-2012 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SUMMER MONSOON OUTFLOW; PASSENGER AIRCRAFT; METHYL-CHLORIDE; NONMETHANE HYDROCARBONS; INTERANNUAL VARIABILITY; HALOCARBON EMISSIONS; ORGANIC-COMPOUNDS; UPPER TROPOSPHERE; SOUTHEAST-ASIA; FIRE EMISSIONS AB Atmospheric concentrations of dichloromethane, CH2Cl2, a regulated toxic air pollutant and minor contributor to stratospheric ozone depletion, were reported to have peaked around 1990 and to be declining in the early part of the 21st century. Recent observations suggest this trend has reversed and that CH2Cl2 is once again increasing in the atmosphere. Despite the importance of ongoing monitoring and reporting of atmospheric CH2Cl2, no time series has been discussed in detail since 2006. The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) has analysed the halocarbon content of whole-air samples collected at altitudes of between similar to 10-12 km via a custom-built container installed on commercial passenger aircraft since 1998, providing a long-term record of CH2Cl2 observations. In this paper we present this unique CH2Cl2 time series, discussing key flight routes which have been used at various times over the past 15 years. Between 1998 and 2012 increases were seen in all northern hemispheric regions and at different altitudes, ranging from similar to 7-10 ppt in background air to similar to 13-15 ppt in regions with stronger emissions (equating to a 38-69% increase). Of particular interest is the rising importance of India as a source of atmospheric CH2Cl2: based on CARIBIC data we provide regional emission estimates for the Indian subcontinent and show that regional emissions have increased from 3-14 Gg yr(-1) (1998-2000) to 16-25 Gg yr(-1) (2008). Potential causes of the increasing atmo-spheric burden of CH2Cl2 are discussed. One possible source is the increased use of CH2Cl2 as a feedstock for the production of HFC-32, a chemical used predominantly as a replacement for ozone-depleting substances in a variety of applications including air conditioners and refrigeration. C1 [Elvidge, E. C. Leedham; Baker, A. K.; Brenninkmeijer, C. A. M.] Max Planck Inst Chem, CARIBIC, D-55128 Mainz, Germany. [Oram, D. E.; Laube, J. C.; Humphrey, S.; O'Sullivan, D. A.] Univ E Anglia, Sch Environm Sci, Ctr Ocean & Atmospher Sci, Norwich NR4 7TJ, Norfolk, England. [Oram, D. E.] Univ E Anglia, Natl Ctr Atmospher Sci, Norwich NR4 7TJ, Norfolk, England. [Montzka, S. A.] Natl Ocean & Atmospher Adm, Boulder, CO 80304 USA. RP Elvidge, ECL (reprint author), Max Planck Inst Chem, CARIBIC, Hahn Meitner Weg 1, D-55128 Mainz, Germany. EM emma.leedham@mpic.de RI Baker, Angela /A-1666-2011; OI Montzka, Stephen/0000-0002-9396-0400 FU NERC fellowship [NE/I021918/1]; CSIRO; Bureau of Meteorology; NOAA Climate Program Office's AC4 Program FX The authors would like to thank the CARIBIC team and associated partner institutions, Lufthansa Airlines, Lufthansa Technik and Fraport for their work and support that has led to the success of CARIBIC over many years. In particular we thank Andreas Zahn and colleagues for the O3 data, Dieter Scharffe for the CO data and Peter van Velthoven for the back-trajectory information. Thanks to Claus Koeppel, Dieter Scharffe, Stefan Weber and Martin Korner for facilitating the operations of the container and TRAC samplers before, during and after flights. Early CARIBIC samples were partly analysed at UEA by Georgina Sturrock. J. Laube acknowledges the support of a NERC fellowship (no. NE/I021918/1). The data available in the Supplementary Information would not be possible without the staff at the Cape Grim station and at CSIRO GASLAB Aspendale collecting and maintaining the Cape Grim air archive and preparing the UEA flask and sub-samples. S. Montzka acknowledges the technical assistance of C. Siso, B. Hall, and B. Miller in making NOAA flask measurements at MHD and other sites, and support, in part, by NOAA Climate Program Office's AC4 Program. We also acknowledge CSIRO and the Bureau of Meteorology for funding these activities. NR 64 TC 6 Z9 6 U1 3 U2 12 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 4 BP 1939 EP 1958 DI 10.5194/acp-15-1939-2015 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CB7IP UT WOS:000349800500021 ER PT J AU Yuan, B Veres, PR Warneke, C Roberts, JM Gilman, JB Koss, A Edwards, PM Graus, M Kuster, WC Li, SM Wild, RJ Brown, SS Dube, WP Lerner, BM Williams, EJ Johnson, JE Quinn, PK Bates, TS Lefer, B Hayes, PL Jimenez, JL Weber, RJ Zamora, R Ervens, B Millet, DB Rappengluck, B de Gouw, JA AF Yuan, B. Veres, P. R. Warneke, C. Roberts, J. M. Gilman, J. B. Koss, A. Edwards, P. M. Graus, M. Kuster, W. C. Li, S. -M. Wild, R. J. Brown, S. S. Dube, W. P. Lerner, B. M. Williams, E. J. Johnson, J. E. Quinn, P. K. Bates, T. S. Lefer, B. Hayes, P. L. Jimenez, J. L. Weber, R. J. Zamora, R. Ervens, B. Millet, D. B. Rappenglueck, B. de Gouw, J. A. TI Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID VOLATILE ORGANIC-COMPOUNDS; IONIZATION MASS-SPECTROMETER; RING-DOWN SPECTROSCOPY; OH-INITIATED OXIDATION; ATMOSPHERIC CHEMISTRY; VINYL ALCOHOL; ACETIC-ACIDS; UINTAH BASIN; LOS-ANGELES; AQUEOUS PHOTOOXIDATION AB Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 +/- 1.3 in UBWOS 2013 and 2.0 +/- 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99 %). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH / acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that air-snow exchange processes and morning fog events may also contribute to ambient formic acid concentrations during UBWOS 2013 (similar to 20% in total). In total, 53-59 in UBWOS 2013 and 50-55% in CalNex of secondary formation of formic acid remains unexplained. More work on formic acid formation pathways is needed to reduce the uncertainties in the sources and budget of formic acid and to narrow the gaps between measurements and model results. C1 [Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Wild, R. J.; Brown, S. S.; Dube, W. P.; Lerner, B. M.; Williams, E. J.; Zamora, R.; Ervens, B.; de Gouw, J. A.] NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. [Yuan, B.; Veres, P. R.; Warneke, C.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Wild, R. J.; Dube, W. P.; Lerner, B. M.; Hayes, P. L.; Jimenez, J. L.; Ervens, B.; de Gouw, J. A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Li, S. -M.] Environm Canada, Sci & Technol Branch, Toronto, ON, Canada. [Johnson, J. E.; Bates, T. S.] Univ Washington, Joint Inst Study Atmosphere & Oceans, Seattle, WA 98195 USA. [Johnson, J. E.; Quinn, P. K.; Bates, T. S.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Lefer, B.; Rappenglueck, B.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX USA. [Hayes, P. L.; Jimenez, J. L.; de Gouw, J. A.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Weber, R. J.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Millet, D. B.] Univ Minnesota, Dept Soil Water & Climate, St Paul, MN 55108 USA. RP Yuan, B (reprint author), NOAA, Div Chem Sci, Earth Syst Res Lab, Boulder, CO 80305 USA. EM bin.yuan@noaa.gov RI Yuan, Bin/A-1223-2012; Bates, Timothy/L-6080-2016; Quinn, Patricia/R-1493-2016; Wild, Robert/I-1963-2013; Manager, CSD Publications/B-2789-2015; Kuster, William/E-7421-2010; Millet, Dylan/G-5832-2012; Roberts, James/A-1082-2009; Veres, Patrick/E-7441-2010; Graus, Martin/E-7546-2010; Lerner, Brian/H-6556-2013; Koss, Abigail/B-5421-2015; Edwards, Peter/H-5236-2013; de Gouw, Joost/A-9675-2008; Jimenez, Jose/A-5294-2008; Warneke, Carsten/E-7174-2010; Brown, Steven/I-1762-2013; Gilman, Jessica/E-7751-2010 OI Yuan, Bin/0000-0003-3041-0329; Quinn, Patricia/0000-0003-0337-4895; Wild, Robert/0000-0002-4800-5172; Kuster, William/0000-0002-8788-8588; Roberts, James/0000-0002-8485-8172; Veres, Patrick/0000-0001-7539-353X; Graus, Martin/0000-0002-2025-9242; Lerner, Brian/0000-0001-8721-8165; Edwards, Peter/0000-0002-1076-6793; de Gouw, Joost/0000-0002-0385-1826; Jimenez, Jose/0000-0001-6203-1847; Gilman, Jessica/0000-0002-7899-9948 FU Western Energy Alliance; NOAA Health of the Atmosphere Program; NOAA Climate Program Office - Atmospheric Composition and Climate Program; National Research Council (NRC) Research Associateship Programs (RAP); CIRES Visiting Fellowship; CARB [11-305]; NOAA [NA13OAR4310063]; NSF [AGS-1148951] FX This work was supported in part by the Western Energy Alliance. This work was also supported by the NOAA Health of the Atmosphere Program and by the NOAA Climate Program Office - Atmospheric Composition and Climate Program. We thank the contribution from Colm Sweeney (NOAA ESRL GMD) to methane data in UBWOS 2013. Bin Yuan acknowledges support from the National Research Council (NRC) Research Associateship Programs (RAP). Patrick Hayes and Jose-Luis Jimenez thank a CIRES Visiting Fellowship and funding from CARB (11-305) and NOAA NA13OAR4310063. Dylan Millet acknowledges support from NSF grant no. AGS-1148951. NR 104 TC 9 Z9 9 U1 11 U2 75 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 4 BP 1975 EP 1993 DI 10.5194/acp-15-1975-2015 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CB7IP UT WOS:000349800500023 ER PT J AU Lin, CY Matsuo, T Liu, JY Lin, CH Tsai, HF Araujo-Pradere, EA AF Lin, C. Y. Matsuo, T. Liu, J. Y. Lin, C. H. Tsai, H. F. Araujo-Pradere, E. A. TI Ionospheric assimilation of radio occultation and ground-based GPS data using non-stationary background model error covariance SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID GLOBAL POSITIONING SYSTEM; TOTAL ELECTRON-CONTENT; ATMOSPHERE AB Ionospheric data assimilation is a powerful approach to reconstruct the 3-D distribution of the ionospheric electron density from various types of observations. We present a data assimilation model for the ionosphere, based on the Gauss-Markov Kalman filter with the International Reference Ionosphere (IRI) as the background model, to assimilate two different types of slant total electron content (TEC) observations from ground-based GPS and space-based FORMOSAT-3/COSMIC (F3/C) radio occultation. Covariance models for the background model error and observational error play important roles in data assimilation. The objective of this study is to investigate impacts of stationary (location-independent) and non-stationary (location-dependent) classes of the background model error covariance on the quality of assimilation analyses. Location-dependent correlations are modeled using empirical orthogonal functions computed from an ensemble of the IRI outputs, while location-independent correlations are modeled using a Gaussian function. Observing system simulation experiments suggest that assimilation of slant TEC data facilitated by the location-dependent background model error covariance yields considerably higher quality assimilation analyses. Results from assimilation of real ground-based GPS and F3/C radio occultation observations over the continental United States are presented as TEC and electron density profiles. Validation with the Millstone Hill incoherent scatter radar data and comparison with the Abel inversion results are also presented. Our new ionospheric data assimilation model that employs the location-dependent background model error covariance outperforms the earlier assimilation model with the location-independent background model error covariance, and can reconstruct the 3-D ionospheric electron density distribution satisfactorily from both ground-and space-based GPS observations. C1 [Lin, C. Y.; Liu, J. Y.] Natl Cent Univ, Inst Space Sci, Chungli 32054, Taiwan. [Matsuo, T.; Araujo-Pradere, E. A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Matsuo, T.] NOAA, Space Weather Predict Ctr, Boulder, CO USA. [Liu, J. Y.] Natl Space Org, Hsinchu, Taiwan. [Lin, C. H.; Tsai, H. F.] Natl Cheng Kung Univ, Dept Earth Sci, Tainan 70101, Taiwan. RP Liu, JY (reprint author), Natl Cent Univ, Inst Space Sci, Chungli 32054, Taiwan. EM jyliu@jupiter.ss.ncu.edu.tw RI Liu, Jann-Yenq/Q-1668-2015; OI Lin, Charles C. H./0000-0001-8955-8753 FU NASA [NNX09AJ83G]; Taiwan National Science Council (NSC) [NSC 102-2628-M-008-001] FX Chi-Yen Lin sincerely thanks Karen Fay O'Loughlin for her helpful assistance with the paper. Support for this study is provided through NASA award NNX09AJ83G to the University of Colorado at Boulder, and the Taiwan National Science Council (NSC) grant NSC 102-2628-M-008-001. The authors gratefully acknowledge the International GNSS Service (IGS) for providing GPS data and COSMIC Data Analysis and Archival Center (CDAAC) and the Taiwan Analysis Center for COSMIC (TACC) for the FORMOSAT-3/COSMIC data. Radar observations at Millstone Hill are supported by a cooperative NR 34 TC 5 Z9 5 U1 0 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2015 VL 8 IS 1 BP 171 EP 182 DI 10.5194/amt-8-171-2015 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CA5WD UT WOS:000348977600012 ER PT J AU Thornberry, TD Rollins, AW Gao, RS Watts, LA Ciciora, SJ McLaughlin, RJ Fahey, DW AF Thornberry, T. D. Rollins, A. W. Gao, R. S. Watts, L. A. Ciciora, S. J. McLaughlin, R. J. Fahey, D. W. TI A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID TROPICAL TROPOPAUSE; SAMPLING CHARACTERISTICS; ATMOSPHERIC HUMIDITY; OPEN-PATH; AIRBORNE; CLIMATE; INLET; SPECTROMETER; DEHYDRATION; CALIBRATION AB The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of upper troposphere/lower stratosphere water vapor and enhanced total water (vapor + inertially enhanced condensed phase) from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure, and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An onboard calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cloud water content sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February-March 2013 on the NASA Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1 sigma) of better than 0.17 parts per million (ppm, 10(-6) mol mol(-1)), with an overall H2O vapor measurement uncertainty of 5% +/- 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33 to 48 for ice particles larger than 8 mu m in diameter, depending primarily on aircraft altitude. The resulting ice water content detection limit (2 sigma) was 0.023-0.013 ppm, corresponding to approximately 2 mu g m(-3), with an estimated overall uncertainty of 20 %. C1 [Thornberry, T. D.; Rollins, A. W.; Gao, R. S.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.] NOAA ESRL Chem Sci Div, Boulder, CO 80305 USA. [Thornberry, T. D.; Rollins, A. W.; Watts, L. A.; McLaughlin, R. J.; Fahey, D. W.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. RP Thornberry, TD (reprint author), NOAA ESRL Chem Sci Div, Boulder, CO 80305 USA. EM troy.thornberry@noaa.gov RI Rollins, Andrew/G-7214-2012; Gao, Ru-Shan/H-7455-2013; Fahey, David/G-4499-2013; McLaughlin, Richard/I-4386-2013; Manager, CSD Publications/B-2789-2015; OI Fahey, David/0000-0003-1720-0634; THORNBERRY, TROY/0000-0001-7478-1944 FU NASA Upper Atmosphere Research Program; NASA Radiation Sciences Program; NASA Airborne Tropical TRopopause EXperiment; NOAA Climate Program Office FX The authors thank Randy May of Port City Instruments for contributing his experience and expertise to the development of the NOAA Water instrument, and the ground and flight crews of the NASA Global Hawk UAS for their support during the ATTREX mission. This work was supported with funding from the NASA Upper Atmosphere Research Program, the NASA Radiation Sciences Program, the NASA Airborne Tropical TRopopause EXperiment, and the NOAA Climate Program Office. NR 48 TC 5 Z9 5 U1 1 U2 7 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2015 VL 8 IS 1 BP 211 EP 224 DI 10.5194/amt-8-211-2015 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CA5WD UT WOS:000348977600015 ER PT J AU Warneke, C Veres, P Murphy, SM Soltis, J Field, RA Graus, MG Koss, A Li, SM Li, R Yuan, B Roberts, JM de Gouw, JA AF Warneke, C. Veres, P. Murphy, S. M. Soltis, J. Field, R. A. Graus, M. G. Koss, A. Li, S. -M. Li, R. Yuan, B. Roberts, J. M. de Gouw, J. A. TI PTR-QMS versus PTR-TOF comparison in a region with oil and natural gas extraction industry in the Uintah Basin in 2013 SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID PROTON-TRANSFER-REACTION; VOLATILE ORGANIC-COMPOUNDS; REACTION-MASS-SPECTROMETRY; ENGLAND AIR-QUALITY; TIME-OF-FLIGHT; HUMIDITY DEPENDENCE; FORMALDEHYDE MEASUREMENTS; FLUX MEASUREMENTS; MS CALIBRATION; PPTV LEVELS AB Here we compare volatile organic compound (VOC) measurements using a standard proton-transfer-reaction quadrupole mass spectrometer (PTR-QMS) with a new proton-transfer-reaction time of flight mass spectrometer (PTR-TOF) during the Uintah Basin Winter Ozone Study 2013 (UBWOS2013) field experiment in an oil and gas field in the Uintah Basin, Utah. The PTR-QMS uses a quadrupole, which is a mass filter that lets one mass to charge ratio pass at a time, whereas the PTR-TOF uses a time of flight mass spectrometer, which takes full mass spectra with typical 0.1 s-1 min integrated acquisition times. The sensitivity of the PTR-QMS in units of counts per ppbv (parts per billion by volume) is about a factor of 10-35 times larger than the PTR-TOF, when only one VOC is measured. The sensitivity of the PTR-TOF is mass dependent because of the mass discrimination caused by the sampling duty cycle in the orthogonal-acceleration region of the TOF. For example, the PTR-QMS on mass 33 (methanol) is 35 times more sensitive than the PTR-TOF and for masses above 120 amu less than 10 times more. If more than 10-35 compounds are measured with PTR-QMS, the sampling time per ion decreases and the PTR-TOF has higher signals per unit measuring time for most masses. For UBWOS2013 the PTR-QMS measured 34 masses in 37 s and on that timescale the PTR-TOF is more sensitive for all masses. The high mass resolution of the TOF allows for the measurements of compounds that cannot be separately detected with the PTR-QMS, such as oxidation products from alkanes and cycloalkanes emitted by oil and gas extraction. PTR-TOF masses do not have to be preselected, allowing for identification of unanticipated compounds. The measured mixing ratios of the two instruments agreed very well (R-2 >= 0.92 and within 20 %) for all compounds and masses monitored with the PTR-QMS. C1 [Warneke, C.; Veres, P.; Graus, M. G.; Koss, A.; Li, R.; Yuan, B.; de Gouw, J. A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Warneke, C.; Veres, P.; Graus, M. G.; Koss, A.; Li, R.; Yuan, B.; Roberts, J. M.; de Gouw, J. A.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Murphy, S. M.; Soltis, J.; Field, R. A.] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Li, S. -M.] Environm Canada, Air Qual Proc Res Div, Toronto, ON, Canada. RP Warneke, C (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM carsten.warneke@noaa.gov RI Yuan, Bin/A-1223-2012; Manager, CSD Publications/B-2789-2015; Roberts, James/A-1082-2009; Veres, Patrick/E-7441-2010; Graus, Martin/E-7546-2010; Koss, Abigail/B-5421-2015; de Gouw, Joost/A-9675-2008; Warneke, Carsten/E-7174-2010 OI Yuan, Bin/0000-0003-3041-0329; Roberts, James/0000-0002-8485-8172; Veres, Patrick/0000-0001-7539-353X; FIELD, ROBERT/0000-0003-0228-1419; Graus, Martin/0000-0002-2025-9242; de Gouw, Joost/0000-0002-0385-1826; FU Western Energy Alliance; NOAA Health of the Atmosphere Program; NOAA Climate Program Office - Atmospheric Composition and Climate Program; NSF [1215926]; Environment Canada's Clean Air Regulatory Agenda FX We thank Questar Energy Products, in particular Stephanie Tomkinson, for the Horse Pool site preparation and logistical support. This work was supported in part by the Western Energy Alliance. This work was also supported by the NOAA Health of the Atmosphere Program and by the NOAA Climate Program Office - Atmospheric Composition and Climate Program. Shane Murphy was supported by the NSF grant 1215926. S.-M. Li was supported in part by Environment Canada's Clean Air Regulatory Agenda. NR 45 TC 8 Z9 8 U1 4 U2 41 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PY 2015 VL 8 IS 1 BP 411 EP 420 DI 10.5194/amt-8-411-2015 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA CA5WD UT WOS:000348977600030 ER PT J AU You, L Okoro, CA Ahn, JJ Kopanski, J Franklin, RR Obeng, YS AF You, Lin Okoro, Chukwudi A. Ahn, Jung-Joon Kopanski, Joseph Franklin, Rhonda R. Obeng, Yaw S. TI Broadband Microwave-Based Metrology Platform Development: Demonstration of In-Situ Failure Mode Diagnostic Capabilities for Integrated Circuit Reliability Analyses SO ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY LA English DT Article AB In this paper, we discuss the use of broadband high frequency electromagnetic waves (RF) to non-destructively identify, classify and characterize performance-limiting defects in emerging nanoelectronic devices. As an illustration, the impact of thermal cycling on the RF signal characteristics (insertion loss (S-21) and return loss (S-11)) is used to infer thermo-mechanical stress-induced defects in metal interconnects. The inferred defects are supported with physical analytical data where possible. (C) The Author(s) 2014. Published by ECS. All rights reserved. C1 [You, Lin; Okoro, Chukwudi A.; Ahn, Jung-Joon; Kopanski, Joseph; Obeng, Yaw S.] NIST, Semicond & Dimens Metrol Div, Phys Measurement Lab, Gaithersburg, MD 20899 USA. [Franklin, Rhonda R.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. RP You, L (reprint author), NIST, Semicond & Dimens Metrol Div, Phys Measurement Lab, Gaithersburg, MD 20899 USA. EM yaw.obeng@nist.gov NR 11 TC 4 Z9 4 U1 0 U2 4 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 2162-8769 J9 ECS J SOLID STATE SC JI ECS J. Solid State Sci. Technol. PY 2015 VL 4 IS 1 SI SI BP N3113 EP N3117 DI 10.1149/2.0151501jss PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA CB3SE UT WOS:000349547900015 ER PT J AU Dean, KM Lubbeck, JL Davis, LM Regmi, CK Chapagain, PP Gerstman, BS Jimenez, R Palmer, AE AF Dean, Kevin M. Lubbeck, Jennifer L. Davis, Lloyd M. Regmi, Chola K. Chapagain, Prem P. Gerstman, Bernard S. Jimenez, Ralph Palmer, Amy E. TI Microfluidics-based selection of red-fluorescent proteins with decreased rates of photobleaching SO INTEGRATIVE BIOLOGY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; MONOMERIC RED; SINGLE MOLECULES; STOKES SHIFT; RHODAMINE 6G; LIVE CELLS; CHROMOPHORE; MICROSCOPY; EVOLUTION; SPECTROSCOPY AB Fluorescent proteins offer exceptional labeling specificity in living cells and organisms. Unfortunately, their photophysical properties remain far from ideal for long-term imaging of low-abundance cellular constituents, in large part because of their poor photostability. Despite widespread engineering efforts, improving the photostability of fluorescent proteins remains challenging due to lack of appropriate high-throughput selection methods. Here, we use molecular dynamics guided mutagenesis in conjunction with a recently developed microfluidic-based platform, which sorts cells based on their fluorescence photostability, to identify red fluorescent proteins with decreased photobleaching from a HeLa cell-based library. The identified mutant, named Kriek, has 2.5- and 4-fold higher photostability than its progenitor, mCherry, under widefield and confocal illumination, respectively. Furthermore, the results provide insight into mechanisms for enhancing photostability and their connections with other photophysical processes, thereby providing direction for ongoing development of fluorescent proteins with improved single-molecule and low-copy imaging capabilities. C1 [Dean, Kevin M.; Palmer, Amy E.] Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA. [Dean, Kevin M.; Lubbeck, Jennifer L.; Jimenez, Ralph; Palmer, Amy E.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Lubbeck, Jennifer L.; Jimenez, Ralph] Univ Colorado, NIST, Joint Inst Lab Astrophys, Boulder, CO 80309 USA. [Lubbeck, Jennifer L.; Jimenez, Ralph] Univ Colorado, Boulder, CO 80309 USA. [Davis, Lloyd M.] Univ Tennessee, Inst Space, Ctr Laser Applicat, Tullahoma, TN 37388 USA. [Davis, Lloyd M.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Regmi, Chola K.; Chapagain, Prem P.; Gerstman, Bernard S.] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. RP Palmer, AE (reprint author), Univ Colorado, BioFrontiers Inst, Boulder, CO 80309 USA. EM rjimenez@jila.colorado.edu; amy.palmer@colorado.edu RI Davis, Lloyd/D-7648-2013 OI Davis, Lloyd/0000-0002-3169-3044 FU National Institutes of Health [GM083849, GM096903]; National Science Foundation (NSF) Physics Frontier Center at JILA; University of Colorado Molecular Biophysics Training Grant [T32 G-065103]; NSF Computational Optical Sensing and Imaging Integrative Graduate Education and Research Traineeship [0801680] FX The work presented here received generous funding from the National Institutes of Health (GM083849, A.E.P. and R.J., and GM096903 to P.C.) and the National Science Foundation (NSF) Physics Frontier Center at JILA. K.M.D. and J.L.L. were individually supported by the University of Colorado Molecular Biophysics Training Grant (T32 G-065103) and K.M.D. received additional support through the NSF Computational Optical Sensing and Imaging Integrative Graduate Education and Research Traineeship (0801680). R.J. is a staff member in the Quantum Physics Division of the National Institute of Standards and Technology (NIST). We would like to thank Dr Roger Tsien for kindly providing us with the DNA for mCherry. Furthermore, we would like to thank Patrick Konold and Dr Erik Holmstrom for their assistance with the fluorescence emission and lifetime measurements, respectively. Experimental equipment and reagents identified within this paper are provided so that this work may be replicated elsewhere and are not recommended or endorsed by NIST. Renditions of the protein structures were created using PyMOL. NR 54 TC 3 Z9 3 U1 4 U2 18 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1757-9694 EI 1757-9708 J9 INTEGR BIOL-UK JI Integr. Biol. PY 2015 VL 7 IS 2 BP 263 EP 273 DI 10.1039/c4ib00251b PG 11 WC Cell Biology SC Cell Biology GA CB5LM UT WOS:000349668600011 PM 25477249 ER PT J AU Chang, M Kuhn, R Weil, T AF Chang, Morris Kuhn, Rick Weil, Tim TI IT Security SO IT PROFESSIONAL LA English DT Editorial Material C1 [Chang, Morris] Iowa State Univ, Ames, IA 50011 USA. [Kuhn, Rick] US Natl Inst Stand & Technol, Gaithersburg, MD USA. [Weil, Tim] US Dept Interior, Washington, DC USA. RP Chang, M (reprint author), Iowa State Univ, Ames, IA 50011 USA. EM morrisjchang@gmail.com; kuhn@nist.gov; trweil@ieee.org NR 0 TC 0 Z9 0 U1 1 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1520-9202 EI 1941-045X J9 IT PROF JI IT Prof. PD JAN-FEB PY 2015 VL 17 IS 1 BP 14 EP 15 PG 2 WC Computer Science, Information Systems; Computer Science, Software Engineering; Telecommunications SC Computer Science; Telecommunications GA CB4WG UT WOS:000349628400004 ER PT J AU Strelcov, E Cothren, J Leonard, D Borisevich, AY Kolmakov, A AF Strelcov, Evgheni Cothren, Joshua Leonard, Donovan Borisevich, Albina Y. Kolmakov, Andrei TI In situ SEM study of lithium intercalation in individual V2O5 nanowires SO NANOSCALE LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; ELECTROCHEMICAL LITHIATION; LI INTERCALATION; LIXV2O5 SYSTEM; SNO2 NANOWIRE; THIN-FILMS; BATTERIES; CHALLENGES; CATHODE; SILICON AB Progress in rational engineering of Li-ion batteries requires better understanding of the electrochemical processes and accompanying transformations in the electrode materials on multiple length scales. In spite of recent progress in utilizing transmission electron microscopy (TEM) to analyze these materials, in situ scanning electron microscopy (SEM) was mostly overlooked as a powerful tool that allows probing these phenomena on the nano and mesoscale. Here we report on in situ SEM study of lithiation in a V2O5-based single-nanobelt battery with ionic liquid electrolyte. Coupled with cyclic voltammetry measurements, in situ SEM revealed the peculiarities of subsurface intercalation, formation of a solid-electrolyte interface (SEI) and electromigration of liquid. We observed that single-crystalline vanadia nanobelts do not undergo large-scale amorphization or fracture during electrochemical cycling, but rather transform topochemically with only a slight shape distortion. The SEI layer seems to have significant influence on the lithium ion diffusion and overall capacity of the single-nanobelt battery. C1 [Strelcov, Evgheni] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Strelcov, Evgheni; Cothren, Joshua] So Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. [Leonard, Donovan; Borisevich, Albina Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kolmakov, Andrei] Natl Inst Stand & Technol, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. RP Strelcov, E (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM strelcove@ornl.gov RI Borisevich, Albina/B-1624-2009; Strelcov, Evgheni/H-1654-2013; Kolmakov, Andrei/B-1460-2017 OI Borisevich, Albina/0000-0002-3953-8460; Kolmakov, Andrei/0000-0001-5299-4121 FU Materials Science and Engineering Division of the U.S. Department of Energy; ORNL's Center for Nanophase Materials Sciences (CNMS) - Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; NSF [ECCS-0925837] FX Research was supported by the Materials Science and Engineering Division of the U.S. Department of Energy and through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. SIUC part of the research was supported through NSF ECCS-0925837 grant. Authors are thankful to Dr Yigal Lilah for his help with LabView programming. ES and AK would like to thank Dr Sergei V. Kalinin for fruitful discussions of the present work. AK thanks Dr. Douglas Meier (NIST) for support with experiment. NR 36 TC 7 Z9 7 U1 11 U2 125 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2015 VL 7 IS 7 BP 3022 EP 3027 DI 10.1039/c4nr06767c PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB2QQ UT WOS:000349473200025 PM 25600354 ER PT J AU Aksyuk, V Lahiri, B Holland, G Centrone, A AF Aksyuk, Vladimir Lahiri, Basudev Holland, Glenn Centrone, Andrea TI Near-field asymmetries in plasmonic resonators SO NANOSCALE LA English DT Article ID ATOMIC-FORCE MICROSCOPY; INFRARED-SPECTROSCOPY; PTIR TECHNIQUE; OPTICAL MICROSCOPY; NANOSCALE; METAMATERIALS; NANOSTRUCTURES; RESONANCE; MODES; AFM AB Surface-enhanced infrared absorption (SEIRA) spectroscopy exploits the locally enhanced field surrounding plasmonic metamaterials to increase the sensitivity of infrared spectroscopy. The light polarization and incidence angle are important factors for exciting plasmonic nanostructures; however, such angle dependence is often ignored in SEIRA experiments, typically carried out with Cassegrain objectives. Here, the photothermal induced resonance technique and numerical simulations are used to map the distribution and intensity of SEIRA hot-spots surrounding gold asymmetric split ring resonators (ASRRs) as a function of light polarization and incidence angle. The results show asymmetric near-field SEIRA enhancements as a function of the incident illumination direction which, in analogy with the symmetry-breaking occurring in asymmetric transmission, we refer to as symmetry-breaking absorption. Numerical calculations reveal that the symmetry-breaking absorption in ASRRs originates in the angle-dependent interference between the electric and magnetic excitation channels of the resonators' dark-mode. Consequently, to maximize the SEIRA intensity, ASRRs should be illuminated from the dielectric side at an angle that maximizes the constructive interference of the two excitation channels, (35 degrees for the structures studied here), in place of the Cassegrain objectives. These results can be generalized to all structures characterized by plasmonic excitations that give rise to a surface-normal magnetic moment and that possess an electric dipole. C1 [Aksyuk, Vladimir; Lahiri, Basudev; Holland, Glenn; Centrone, Andrea] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Lahiri, Basudev] Univ Maryland, IREAP, College Pk, MD 20742 USA. RP Centrone, A (reprint author), NIST, Ctr Nanoscale Sci & Technol, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM andrea.centrone@nist.gov RI Lahiri, Basudev/I-5554-2016 FU University of Maryland; National Institute of Standards and Technology Center for Nanoscale Science and Technology through the University of Maryland [70NANB10H193] FX B. L. acknowledges support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, Award 70NANB10H193, through the University of Maryland. NR 64 TC 4 Z9 4 U1 2 U2 47 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PY 2015 VL 7 IS 8 BP 3634 EP 3644 DI 10.1039/c4nr06755j PG 11 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA CB2QY UT WOS:000349474200037 PM 25636125 ER PT J AU Debnath, R Xie, T Wen, BM Li, W Ha, JY Sullivan, NF Nguyen, NV Motayed, A AF Debnath, Ratan Xie, Ting Wen, Baomei Li, Wei Ha, Jong Y. Sullivan, Nichole F. Nguyen, Nhan V. Motayed, Abhishek TI A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector SO RSC ADVANCES LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SOLAR-CELLS; ULTRAVIOLET PHOTODETECTORS; OXIDE HETEROSTRUCTURES; OPTICAL-PROPERTIES; HIGH-PERFORMANCE; FABRICATION; TEMPERATURE; SEMICONDUCTORS; TRANSISTOR AB This paper presents a high efficiency heterojunction p-NiO/n-ZnO thin film ultraviolet (UV) photodetector (PD) fabricated on conductive glass substrates. The devices are fabricated by using a simple spin-coating layer-by-layer method from precursor solutions. Photodiodes show good photoresponse and quantum efficiency under UV illumination. With an applied reverse bias of 1 V, the devices show maximum responsivity and detectivity of 0.28 A W-1 and 6.3 x 10(11) Jones, respectively, as well as high gain with external quantum efficiency (EQE) of over 90%. By employing ultrathin Ti/Au as top UV transparent metal contacts, this architecture allows the PDs to be illuminated either through glass or metal side. Laser beam induced current is used to examine the local variation of EQE providing information on the photoresponse behavior within the device. Optical properties of NiO and ZnO deposits have also been explored. C1 [Debnath, Ratan; Xie, Ting; Wen, Baomei; Ha, Jong Y.; Motayed, Abhishek] NIST, Mat Sci & Engn Lab, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Xie, Ting] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA. [Wen, Baomei; Sullivan, Nichole F.] N5 Sensors Inc, Rockville, MD 20852 USA. [Li, Wei; Nguyen, Nhan V.] NIST, Semicond & Dimens Metrol Div, Phys Measurement Lab, Gaithersburg, MD 20899 USA. [Li, Wei] Peking Univ, Key Lab Phys & Chem Nano Devices, Beijing 100871, Peoples R China. [Ha, Jong Y.; Motayed, Abhishek] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA. RP Debnath, R (reprint author), NIST, Mat Sci & Engn Lab, Mat Measurement Lab, Gaithersburg, MD 20899 USA. EM ratan.debnath@nist.gov RI Debnath, Ratan/B-4678-2016; Debnath, Ratan/D-3629-2012; OI Debnath, Ratan/0000-0003-1343-7888; Xie, Ting/0000-0003-2722-7822 FU NIST [SB1341-13-SE-0216] FX RD and JYH acknowledge the financial support of NIST contract SB1341-13-SE-0216. The substrates for the PD devices were fabricated in the Nanofab of the NIST Center for Nanoscale Science and Technology. NR 48 TC 15 Z9 15 U1 6 U2 46 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2046-2069 J9 RSC ADV JI RSC Adv. PY 2015 VL 5 IS 19 BP 14646 EP 14652 DI 10.1039/c4ra14567d PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA CB2CP UT WOS:000349434600070 ER PT J AU Pattanaik, DR Kumar, A AF Pattanaik, D. R. Kumar, Arun TI A hybrid model based on latest version of NCEP CFS coupled model for Indian monsoon rainfall forecast SO ATMOSPHERIC SCIENCE LETTERS LA English DT Article DE all India summer monsoon rainfall; NCEP CFSv2; seasonal forecast skill; hybrid model ID SEASONAL PRECIPITATION FORECASTS; NORTHWEST PACIFIC; PREDICTION; SYSTEM; SST; VARIABILITY; PROJECT AB The forecast skill of all India summer monsoon rainfall (AISMR) during June to September (JJAS) in the new version of the National Centers for Environmental Prediction (NCEP)'s Climate Forecast System version 2 (CFSv2) is analyzed by considering 28 years (1982-2009) retrospective forecasts. The spatial patterns of JJAS mean rainfall and its interannual variability is more realistic over the Indian monsoon region in CFSv2 as compared to previous version of NCEP's CFS. A hybrid (dynamical-empirical) model based on the forecast variables of CFSv2 is developed for AISMR, which shows correlation that is highly significant with observed AISMR. The hybrid model correctly predicted the observed AISMR departure of 2013. C1 [Pattanaik, D. R.] Indian Meteorol Dept, Pune, Maharashtra, India. [Kumar, Arun] NOAA NWS NCEP, Climate Predict Ctr, College Pk, MD USA. RP Pattanaik, DR (reprint author), Indian Meteorol Dept, Pune, Maharashtra, India. EM pattanaik_dr@yahoo.co.in NR 45 TC 3 Z9 3 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1530-261X J9 ATMOS SCI LETT JI Atmos. Sci. Lett. PD JAN-MAR PY 2015 VL 16 IS 1 BP 10 EP 21 DI 10.1002/asl2.513 PG 12 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA CA3ZZ UT WOS:000348845300002 ER PT J AU Liu, HL Wang, CZ Lee, SK Enfield, D AF Liu, Hailong Wang, Chunzai Lee, Sang-Ki Enfield, David TI Inhomogeneous influence of the Atlantic warm pool on United States precipitation SO ATMOSPHERIC SCIENCE LETTERS LA English DT Article DE climate variability; US precipitation; midlatitude air-sea interaction ID SEA-SURFACE TEMPERATURE; MULTIDECADAL OSCILLATION; WESTERN-HEMISPHERE; NORTH-AMERICAN; CLIMATE RESPONSE; SUMMER CLIMATE; SST ANOMALIES; GREAT-PLAINS; DROUGHT; OCEAN AB On interannual time scales, the warming of the Atlantic warm pool (AWP) is associated with a tripole sea surface temperature (SST) pattern in the North Atlantic and leads to more rainfall in the central and eastern US. On decadal-to-multidecadal time scales, the AWP warming corresponds to a basin-wide warming pattern and results in less precipitation in the central and eastern US. The inhomogeneous relationship between the AWP warming and US rainfall on different time scales is largely due to the sign of mid-latitude SST anomaly. The negative mid-latitude SST anomaly associated with the tripole pattern may enhance the low sea level pressure over the northeastern North American continent and also enhance the barotropic response there of the AWP-induced barotropic Rossby wave. This strengthened low pressure system, which is not exhibited when the warming is basin-wide, results in a different moisture transport variation and thus the rainfall pattern over the United States. C1 [Liu, Hailong; Lee, Sang-Ki; Enfield, David] Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33149 USA. [Liu, Hailong; Wang, Chunzai; Lee, Sang-Ki; Enfield, David] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. RP Liu, HL (reprint author), Univ Miami, Cooperat Inst Marine & Atmospher Studies, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM hliu@rsmas.miami.edu RI Enfield, David/I-2112-2013; Wang, Chunzai /C-9712-2009; Lee, Sang-Ki/A-5703-2011 OI Enfield, David/0000-0001-8107-5079; Wang, Chunzai /0000-0002-7611-0308; Lee, Sang-Ki/0000-0002-4047-3545 FU National Oceanic and Atmospheric Administration (NOAA) Climate Program Office; NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) FX We thank two reviewers for their comments on the manuscript. This work was supported by grants from National Oceanic and Atmospheric Administration (NOAA) Climate Program Office and the base funding of NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML). The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the funding agency. NR 41 TC 1 Z9 1 U1 0 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1530-261X J9 ATMOS SCI LETT JI Atmos. Sci. Lett. PD JAN-MAR PY 2015 VL 16 IS 1 BP 63 EP 69 DI 10.1002/asl2.521 PG 7 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA CA3ZZ UT WOS:000348845300010 ER PT J AU Rosslein, M Elliott, JT Salit, M Petersen, EJ Hirsch, C Krug, HF Wick, P AF Roesslein, Matthias Elliott, John T. Salit, Marc Petersen, Elijah J. Hirsch, Cordula Krug, Harald F. Wick, Peter TI Use of Cause-and-Effect Analysis to Design a High-Quality Nanocytotoxicology Assay SO CHEMICAL RESEARCH IN TOXICOLOGY LA English DT Article ID TITANIUM-DIOXIDE NANOPARTICLES; CARBON NANOTUBES; POTENTIAL ARTIFACTS; CELL-LINES; NANOMATERIALS; OXIDE; SIZE; AUTHENTICATION; CYTOTOXICITY; FIBROBLASTS AB An important consideration in developing standards and regulations that govern the production and use of commercial nanoscale materials is the development of robust and reliable measurements to monitor the potential adverse biological effects of such products. These measurements typically require cell-based and other biological assays that provide an assessment of the risks associated with the nanomaterial of interest. In this perspective, we describe the use of cause-and-effect (C&E) analysis to design robust, high quality cell-based assays to test nanoparticle-related cytotoxicity. C&E analysis of an assay system identifies the sources of variability that influence the test result. These sources can then be used to design control experiments that aid in establishing the validity of a test result. We demonstrate the application of C&E analysis to the commonly used 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell-viability assay. This is the first time to our knowledge that C&E analysis has been used to characterize a cell-based toxicity assay. We propose the use of a 96-well plate layout which incorporates a range of control experiments to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance, and demonstrate the performance of the assay using the plate layout in a case study. While the plate layout was formulated specifically for the MTS assay, it is applicable to other cytotoxicity, ecotoxicity (i.e., bacteria toxicity), and nanotoxicity assays after assay-specific modifications. C1 [Roesslein, Matthias; Hirsch, Cordula; Wick, Peter] Swiss Fed Labs Mat Testing & Res Empa, Mat Biol Interact Lab, CH-9014 St Gallen, Switzerland. [Krug, Harald F.] Swiss Fed Labs Mat Testing & Res Empa, CH-9014 St Gallen, Switzerland. [Elliott, John T.; Petersen, Elijah J.] NIST, Cell Syst Sci Grp, Gaithersburg, MD 20899 USA. [Salit, Marc] NIST, Genome Scale Measurements Grp, Gaithersburg, MD 20899 USA. RP Elliott, JT (reprint author), NIST, Cell Syst Sci Grp, Gaithersburg, MD 20899 USA. EM jelliott@nist.gov RI Petersen, Elijah/E-3034-2013 FU Competence Centre for Materials Science and Technology (CCMX) Project Nano-Screen FX This work was funded partly by the Competence Centre for Materials Science and Technology (CCMX) Project Nano-Screen. NR 46 TC 14 Z9 15 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0893-228X EI 1520-5010 J9 CHEM RES TOXICOL JI Chem. Res. Toxicol. PD JAN PY 2015 VL 28 IS 1 BP 21 EP 30 DI 10.1021/tx500327y PG 10 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology SC Pharmacology & Pharmacy; Chemistry; Toxicology GA AZ6LW UT WOS:000348332200003 PM 25473822 ER PT J AU Miller, BS Barlow, J Calderan, S Collins, K Leaper, R Olson, P Ensor, P Peel, D Donnelly, D Andrews-Goff, V Olavarria, C Owen, K Rekdahl, M Schmitt, N Wadley, V Gedamke, J Gales, N Double, MC AF Miller, Brian S. Barlow, Jay Calderan, Susannah Collins, Kym Leaper, Russell Olson, Paula Ensor, Paul Peel, David Donnelly, David Andrews-Goff, Virginia Olavarria, Carlos Owen, Kylie Rekdahl, Melinda Schmitt, Natalie Wadley, Victoria Gedamke, Jason Gales, Nick Double, Michael C. TI Validating the reliability of passive acoustic localisation: a novel method for encountering rare and remote Antarctic blue whales SO ENDANGERED SPECIES RESEARCH LA English DT Article ID PACIFIC RIGHT WHALES; BALAENOPTERA-MUSCULUS; SOUTHERN-OCEAN; BALEEN WHALES; VISUAL SURVEY; INDIAN-OCEAN; NEW-ZEALAND; VOCALIZATIONS; EASTERN; RANGE AB Since its near extirpation during the period of industrial whaling in the early and mid 20th century, the once common Antarctic blue whale Balaenoptera musculus intermedia re mains extremely rare. While annual systematic surveys around Antarctica from 1978 to 2009 re corded only 216 visual encounters of this species, their loud and distinctive calls were detected frequently throughout the Southern Ocean. We describe and assess a new method for locating these whales by acoustically detecting their vocalisations, tracking the location of their calls, and finally locating the whales visually. This methodology was employed during an Antarctic research voyage from 140 degrees E to 170 degrees W, between January and March 2013. The loudest song unit (a 26 Hz tone) was detected at all 298 recording sites south of 52 degrees S. Acoustically derived bearings from these whales enabled visual observers to eventually sight the whales, often hundreds of kilometres from initial acoustic detections. Received sound pressure levels of detections increased with decreasing range to several hotspots where both song and non-song calls were detected. Within hotspots, short-range acoustic localisation yielded 33 visual encounters of Antarctic blue whales (group size: 1 to 5 whales) over a 31 d period south of 60 degrees S. These results demonstrate that acoustic tracking provides the capacity to locate Antarctic blue whales widely dispersed over many hundreds of kilometres, as well as the capacity to acoustically track individual whales for days at a time irrespective of most weather conditions. Thus, passive acoustic localisation is a reliable and efficient method to track Antarctic blue whales, and this technique should be considered for future studies of these iconic animals. C1 [Miller, Brian S.; Calderan, Susannah; Collins, Kym; Ensor, Paul; Andrews-Goff, Virginia; Olavarria, Carlos; Rekdahl, Melinda; Schmitt, Natalie; Wadley, Victoria; Gales, Nick; Double, Michael C.] Australian Marine Mammal Ctr, Australian Antarctic Div, Hobart, Tas 7050, Australia. [Barlow, Jay; Olson, Paula] Southwest Fisheries Sci Ctr NMFS NOAA, La Jolla, CA 92037 USA. [Leaper, Russell] Univ Aberdeen, Sch Biol Sci, Aberdeen AB24 2TZ, Scotland. [Peel, David] Wealth Oceans Natl Res Flagship, Hobart, Tas 7000, Australia. [Donnelly, David] Australian Orca Database, Melbourne, Vic 3128, Australia. [Owen, Kylie] Univ Queensland, Cetacean Ecol & Acoust Lab, Sch Vet Sci, Gatton, QLD 4343, Australia. [Gedamke, Jason] Natl Ocean & Atmospher Adm, NOAA Fisheries Off Sci & Technol, Ocean Acoust Program, Silver Spring, MD 20910 USA. RP Miller, BS (reprint author), Australian Marine Mammal Ctr, Australian Antarctic Div, Hobart, Tas 7050, Australia. EM brian.miller@aad.gov.au RI Owen, Kylie/K-9400-2015 OI Owen, Kylie/0000-0002-8986-482X NR 64 TC 6 Z9 7 U1 3 U2 24 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 1863-5407 EI 1613-4796 J9 ENDANGER SPECIES RES JI Endanger. Species Res. PY 2015 VL 26 IS 3 BP 257 EP 269 DI 10.3354/esr00642 PG 13 WC Biodiversity Conservation SC Biodiversity & Conservation GA CA8GA UT WOS:000349154400007 ER PT J AU Bort, J Van Parijs, SM Stevick, PT Summers, E Todd, S AF Bort, Jacqueline Van Parijs, Sofie M. Stevick, Peter T. Summers, Erin Todd, Sean TI North Atlantic right whale Eubalaena glacialis vocalization patterns in the central Gulf of Maine from October 2009 through October 2010 SO ENDANGERED SPECIES RESEARCH LA English DT Article ID SURFACE-ACTIVE GROUPS; SOUTHERN RIGHT WHALES; SOUND PRODUCTION; MANAGEMENT; MORTALITY; OCEAN; BAY AB The central Gulf of Maine was recently identified as a persistent wintering ground and potential mating ground for non-calving North Atlantic right whales Eubalaena glacialis based on aerial survey data. However, these surveys were limited by bad weather and light. Here, we use passive acoustic monitoring to examine the long-term persistence of right whales in this area throughout a nearly continuous period from October 2009 through October 2010. Three archival marine acoustic recording units were deployed in the Outer Fall/central Gulf of Maine. The data were manually reviewed for right whale up-calls and gunshots to investigate seasonal and diel patterns. Up-calls and gunshots occurred seasonally, with the most calls recorded from October through January and fewer calls detected from February through July, increasing again in August through October. Up-calls were most frequent in November, and gunshots in December. There was a clear bimodal diel pattern in up-calls, with the majority of calls occurring between 04:00 through 08:00 h and 13:00 through 22:00 h. There was a clear peak in diel distribution of gunshots, with the majority of calls occurring between 16: 00 and 22:00 h. Our data demonstrate the continuous presence of right whales in the central Gulf of Maine during the winter months. The rate of gunshots during winter months in Outer Fall supports the hypothesis that male advertisement and/or right whale mating behavior may be taking place in this region at that time. C1 [Bort, Jacqueline; Stevick, Peter T.; Todd, Sean] Coll Atlant, Bar Harbor, ME 04609 USA. [Van Parijs, Sofie M.] NOAA, NE Fisheries Sci Ctr, Woods Hole, MA 02543 USA. [Summers, Erin] Maine Dept Marine Resources, Boothbay Harbor, ME 04575 USA. [Bort, Jacqueline] Sci Applicat Int Corp, Virginia Beach, VA 23452 USA. RP Bort, J (reprint author), Coll Atlant, 105 Eden St, Bar Harbor, ME 04609 USA. EM jacquelinebort@gmail.com FU Maine Department of Marine Resources, NOAA [NA09NMF4520418, NA10NMF4520291]; Maine Space Grant program FX We gratefully acknowledge the College of the Atlantic Acoustics Program volunteers (N. Ramirez, J. McCordic, M. Klein, S. Golaski, C. Spagnoli, L. Nielson, A. Brett, Y. Takemon, A. Pierik, R. Sullivan-Lord, P. Onens, Y. Bowen, and B. Beblowski) for their help with analysis. We thank Sarah Mussoline and Denise Risch for their assistance during the course of this project. Tim Cole, Christin Kahn, and Allison Henry from NOAA Northeast Fisheries Science Center provided valuable insight from their aerial surveys of the study area. We also thank Dave Sinclair, Trent Quinby, Dan DenDanto and Toby Stephenson of Allied Whale, and Jason Michalec of Cornell Bioacoustics Research Program for their assistance with MARU deployment logistics. Helpful comments were provided by Susan Barco, Cara Hotchkin, Anne Kozak, Ron Filipowicz, and Steven Thornton. Funding for this project was provided by the Maine Department of Marine Resources, NOAA grants NA09NMF4520418 and NA10NMF4520291, and the Maine Space Grant program. NR 39 TC 5 Z9 5 U1 2 U2 22 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 1863-5407 EI 1613-4796 J9 ENDANGER SPECIES RES JI Endanger. Species Res. PY 2015 VL 26 IS 3 BP 271 EP 280 DI 10.3354/esr00650 PG 10 WC Biodiversity Conservation SC Biodiversity & Conservation GA CA8GA UT WOS:000349154400008 ER PT J AU Howell, EA Hoover, A Benson, SR Bailey, H Polovina, JJ Seminoff, JA Dutton, PH AF Howell, Evan A. Hoover, Aimee Benson, Scott R. Bailey, Helen Polovina, Jeffrey J. Seminoff, Jeffrey A. Dutton, Peter H. TI Enhancing the TurtleWatch product for leatherback sea turtles, a dynamic habitat model for ecosystem-based management SO FISHERIES OCEANOGRAPHY LA English DT Article DE Central North Pacific; dynamic management; fisheries; leatherback sea turtles; sea surface temperature; swordfish ID CENTRAL NORTH PACIFIC; ZONE CHLOROPHYLL FRONT; CARETTA-CARETTA; LONGLINE FISHERY; BYCATCH; OCEAN; MOVEMENTS; MIGRATION; FORAGE; AREAS AB Fishery management measures to reduce interactions between fisheries and endangered or threatened species have typically relied on static time-area closures. While these efforts have reduced interactions, they can be costly and inefficient for managing highly migratory species such as sea turtles. The NOAA TurtleWatch product was created in 2006 as a tool to reduce the rates of interactions of loggerhead sea turtles with shallow-set longline gear deployed by the Hawaii-based pelagic longline fishery targeting swordfish. TurtleWatch provides information on loggerhead habitat and can be used by managers and industry to make dynamic management decisions to potentially reduce incidentally capturing turtles during fishing operations. TurtleWatch is expanded here to include information on endangered leatherback turtles to help reduce incidental capture rates in the central North Pacific. Fishery-dependent data were combined with fishing effort, bycatch and satellite tracking data of leatherbacks to characterize sea surface temperature (SST) relationships that identify habitat or interaction hotspots'. Analysis of SST identified two zones, centered at 17.2 degrees and 22.9 degrees C, occupied by leatherbacks on fishing grounds of the Hawaii-based swordfish fishery. This new information was used to expand the TurtleWatch product to provide managers and industry near real-time habitat information for both loggerheads and leatherbacks. The updated TurtleWatch product provides a tool for dynamic management of the Hawaii-based shallow-set fishery to aid in the bycatch reduction of both species. Updating the management strategy to dynamically adapt to shifts in multi-species habitat use through time is a step towards an ecosystem-based approach to fisheries management in pelagic ecosystems. C1 [Howell, Evan A.; Polovina, Jeffrey J.] NOAA, Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96818 USA. [Hoover, Aimee] Univ Hawaii, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. [Benson, Scott R.] NOAA, Southwest Fisheries Sci Ctr, Moss Landing, CA 95039 USA. [Hoover, Aimee; Bailey, Helen] Univ Maryland, Ctr Environm Sci, Chesapeake Biol Lab, Solomons, MD 20688 USA. [Seminoff, Jeffrey A.; Dutton, Peter H.] NOAA, Southwest Fisheries Sci Ctr, La Jolla, CA 92037 USA. RP Howell, EA (reprint author), NOAA, Pacific Isl Fisheries Sci Ctr, 1845 Wasp Blvd,Bldg 176, Honolulu, HI 96818 USA. EM Evan.Howell@noaa.gov RI Bailey, Helen/E-6813-2012; OI Bailey, Helen/0000-0001-7445-4687; Howell, Evan/0000-0001-9904-4633 FU National Marine Fisheries Service (Southwest Fisheries Science Center); National Marine Fisheries Service (Southwest Region); National Marine Fisheries Service (Pacific Islands Region); National Marine Fisheries Service (Office of Protected Resources) FX The authors acknowledge R. Tapilatu (The State University of Papua-Marine Science Department), C. Hitipeuw (World Wildlife Fund for Nature-Indonesia), B. Samber (Papua Barat-Indonesia Forestry Department), and the communities of Saubeba and Wau for providing access to the nesting beaches and assistance with the telemetry deployments. The Indonesian Institute of Sciences (LIPI) provided research permits for telemetry deployments at the nesting beaches. We thank J. Douglas, J. Harvey, S. Hansen and T. Eguchi for providing assistance with in-water capture work off California. T. T. Jones, Y. Swimmer, S. Pooley, K. Frutchey and J. Wetherall provided valuable comments to improve the manuscript. The lead author also recognizes M. Seki, D. Kobayashi, S. Saitoh and members of the Center for Ocean Solutions' Dynamic Ocean Management workshop in December 2013 for discussion and advice in support of this research. Financial support and personnel for telemetry deployments were provided by the National Marine Fisheries Service (Southwest Fisheries Science Center, Southwest Region, Pacific Islands Region and Office of Protected Resources). We also thank B. Block, Tagging of Pacific Predators program of the Census of Marine Life, for providing some of the transmitters used in this study. Telemetry deployments were conducted under Endangered Species Act permit nos. 1159, 1227 and 1596 using approved animal handling protocols and in conformance with all applicable laws. NR 38 TC 10 Z9 11 U1 4 U2 47 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1054-6006 EI 1365-2419 J9 FISH OCEANOGR JI Fish Oceanogr. PD JAN PY 2015 VL 24 IS 1 BP 57 EP 68 DI 10.1111/fog.12092 PG 12 WC Fisheries; Oceanography SC Fisheries; Oceanography GA CA8ZZ UT WOS:000349211300005 ER PT J AU Hare, JA Brooks, EN Palmer, MC Churchill, JH AF Hare, Jonathan A. Brooks, Elizabeth N. Palmer, Michael C. Churchill, James H. TI Re-evaluating the effect of wind on recruitment in Gulf of Maine Atlantic Cod (Gadus morhua) using an environmentally-explicit stock recruitment model SO FISHERIES OCEANOGRAPHY LA English DT Article DE fisheries oceanography; recruitment; stock assessment ID SARDINE SARDINOPS-SAGAX; MEASUREMENT ERRORS; WESTERN GULF; FISH; MANAGEMENT; UNCERTAINTY; FISHERIES; CLIMATE; COAST AB A previous study documented a correlation between Atlantic Cod (Gadus morhua) recruitment in the Gulf of Maine and an annual index of the north component of May winds. This correlation was supported by modeling studies that indicated strong recruitment of Gulf of Maine Atlantic Cod results from high retention of spring-spawned larvae in years when winds were predominately out of the north, which favor downwelling. We re-evaluated this relationship using updated recruitment estimates and found that the correlation decreased between recruitment and wind. The original relationship was largely driven by two recruitment estimates, one of which (2005year-class) was highly uncertain because it was near the terminal year of the assessment. With additional data, the updated assessment estimated lower recruitment for the 2005year-class, which consequently lowered the correlation between recruitment and wind. We then investigated whether an environmentally-explicit stock recruit function that incorporated an annual wind index was supported by either the original or updated assessment output. Although incorporation of the annual wind index produced a better fitting model, the uncertainty in the estimated parameters and the implied unexploited conditions were not appropriate for providing management advice. These results suggest the need for caution in the development of environmentally-explicit stock recruitment relationships, in particular when basing relationships and hypotheses on recruitment estimates from the terminal years of stock assessment models. More broadly, this study highlights a number of sources of uncertainty that should be considered when analyzes are performed on the output of stock assessment models. C1 [Hare, Jonathan A.] NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Narragansett Lab, Narragansett, RI 02882 USA. [Brooks, Elizabeth N.; Palmer, Michael C.] NOAA, NMFS, Northeast Fisheries Sci Ctr, Woods Hole Lab, Woods Hole, MA 02543 USA. [Churchill, James H.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. RP Hare, JA (reprint author), NOAA, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Narragansett Lab, 28 Tarzwell Dr, Narragansett, RI 02882 USA. EM jon.hare@noaa.gov FU NMFS Fisheries and the Environment program [08-02, 10-08] FX We wish to thank the participants of the 2011 Gulf of Maine Atlantic Cod stock assessment working group for their comments and input during the development of this work. We also thank the NMFS Fisheries and the Environment program which funded the initial work of Churchill et al. (2011) (FATE Project 08-02) and funded Hare (FATE Project 10-08) to examine environmentally-explicit stock recruitment models. We also thank Richard Langton and three anonymous reviewers for comments on an earlier draft of this manuscript. We thank Rich Bell for advice regarding the fitting of environmentally-explicit stock recruitment relationships in R. We also acknowledge the contributions of James Ianelli (NMFS AFSC) who reviewed the manuscript and provided code for the environmentally explicit stock recruitment models in ADMB; our initial efforts were with MatLab and R. Acknowledgment of the above individuals does not imply their endorsement of this work; the authors have sole responsibility for the content of this contribution. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its sub-agencies. NR 41 TC 0 Z9 1 U1 5 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1054-6006 EI 1365-2419 J9 FISH OCEANOGR JI Fish Oceanogr. PD JAN PY 2015 VL 24 IS 1 BP 90 EP 105 DI 10.1111/fog.12095 PG 16 WC Fisheries; Oceanography SC Fisheries; Oceanography GA CA8ZZ UT WOS:000349211300007 ER PT J AU Bacheler, NM Shertzer, KW AF Bacheler, Nathan M. Shertzer, Kyle W. TI Estimating relative abundance and species richness from video surveys of reef fishes SO FISHERY BULLETIN LA English DT Article ID BAITED UNDERWATER VIDEO; SAMPLING SUFFICIENCY; ASSEMBLAGE SURVEYS; ESTUARINE FISH; BIODIVERSITY; SIZE; DENSITY; COUNTS; MODELS; ASSESSMENTS AB Underwater video sampling has become a common approach to index fish abundance and diversity, but little has been published on determining how much video to read. We used video data collected over a period of 6 years in the Gulf of Mexico to examine how the number of video frames read affects accuracy and precision of fish counts and estimates of species richness. To examine fish counts, we focused on case studies of red snapper (Lutjanus campechanus), vermilion snapper (Rhomboplites aurorubens), and scamp (Mycteroperca phenax). Using a bootstrap framework, we found that fish counts were unbiased when at least 5 of 1201 video frames within a 20-min video were read. The relative patterns of coefficients of variation (CVs) were nearly identical among species and declined as an inverse power function. Initial decreases in CVs were rapid as the number of frames read increased from 1 to 50. However, subsequent declines were modest, decreasing only by similar to 50% when the number of frames read increased by 300%. Estimated species richness increased asymptotically as the number of frames read increased from 25 to 200 frames, and reading 50 frames documented 86% of the species observed across all 1201 frames. Lastly, we used a generalized additive model to show that the most likely species to be missed were fast-swimming fishes that are solitary or form relatively small schools. Our results indicate that the most efficient use of resources (i.e., maximum information gained at the lowest cost) would be to read similar to 50 frames from each video. C1 [Bacheler, Nathan M.; Shertzer, Kyle W.] NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Beaufort Lab, Beaufort, NC 28516 USA. RP Bacheler, NM (reprint author), NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Beaufort Lab, 101 Pivers Isl Rd, Beaufort, NC 28516 USA. EM nate.bacheler@noaa.gov FU Southeast Area Monitoring and Assessment Program FX We thank M. Campbell, C. Gledhill, A. Pollack, and the Pascagoula laboratory of the NOAA Southeast Fisheries Science Center for providing access to the Gulf of Mexico reef fish video data, the staff and crew members who participated in data collection, and the Southeast Area Monitoring and Assessment Program for funding. We also thank M. Campbell, A. Chester, P. Conn, A. Hohn, T. Kellison, P. Marraro, Z. Schobernd, and 3 anonymous reviewers for comments on previous versions of this manuscript. NR 51 TC 3 Z9 3 U1 2 U2 20 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 EI 1937-4518 J9 FISH B-NOAA JI Fish. Bull. PD JAN PY 2015 VL 113 IS 1 BP 15 EP 26 DI 10.7755/FB.113.1.2 PG 12 WC Fisheries SC Fisheries GA CA5RZ UT WOS:000348966800002 ER PT J AU Burton, ML Potts, JC Carr, DR Cooper, M Lewis, J AF Burton, Michael L. Potts, Jennifer C. Carr, Daniel R. Cooper, Michael Lewis, Jessica TI Age, growth, and mortality of gray triggerfish (Balistes capriscus) from the southeastern United States SO FISHERY BULLETIN LA English DT Article ID GULF-OF-MEXICO; NATURAL MORTALITY; ROCK HIND; FISH; LONGEVITY; HABITAT; SIZE AB Gray triggerfish (Balistes capriscus) sampled from recreational and commercial vessels along the southeastern coast of the United States in 1990-2012 (n=6419) were aged by counting translucent bands on sectioned first dorsal spines. Analysis of type of spine edge (opaque or translucent) revealed that annuli formed during March-June, with a peak in April and May. Gray triggerfish were aged up to 15 years, and the largest fish measured 567 ram in fork length (FL). Weight-length relationships from a different set of sampled fish were ln(W)=2.98xln(FL)-17.5 (n=20,431; coefficient of determination [r(2)]=0.86), in-transform fit; W=3.1 x 10(-5) TL2.88 (n=7618), direct nonlinear fit; and FL=30.33+0.79xTL (n=8065; r(2)=0.84), where W=whole weight in grams, FL=fork length in millimeters, and TL=total length in millimeters. Mean observed sizes at ages 1, 3, 5, 10, and 15 years were 305, 353, 391, 464, and 467 mm FL, respectively. The von Bertalanffy growth equation for gray triggerfish was L-t=457 (1-e((-0.33(t+1-58)))). Natural mortality (M) estimated by Hewitt and Hoenig's longevity-based method that integrates all ages was 0.28. Age-specific M values, estimated with the method of Charnov and others, were 0.65, 0.45, 0.38, 0.34, and 0.33 for ages 1, 3, 5, 10, and 15, respectively. Gray triggerfish recruited fully to recreational fisheries by age 4 and to the commercial fishery by age 5. Estimates of total mortality averaged 0.95 across all fisheries for the years 1986-2011. C1 [Burton, Michael L.; Potts, Jennifer C.; Carr, Daniel R.; Cooper, Michael; Lewis, Jessica] NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Beaufort Lab, Beaufort, NC 28516 USA. RP Burton, ML (reprint author), NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Beaufort Lab, 101 Fivers Isl Rd, Beaufort, NC 28516 USA. EM michael.burton@noaa.gov NR 36 TC 1 Z9 3 U1 1 U2 14 PU NATL MARINE FISHERIES SERVICE SCIENTIFIC PUBL OFFICE PI SEATTLE PA 7600 SAND POINT WAY NE BIN C15700, SEATTLE, WA 98115 USA SN 0090-0656 EI 1937-4518 J9 FISH B-NOAA JI Fish. Bull. PD JAN PY 2015 VL 113 IS 1 BP 27 EP 39 DI 10.7755/FB.113.1.3 PG 13 WC Fisheries SC Fisheries GA CA5RZ UT WOS:000348966800003 ER PT J AU Temesgen, H Hoef, JMV AF Temesgen, Hailemariam Hoef, Jay M. Ver TI Evaluation of the spatial linear model, random forest and gradient nearest-neighbour methods for imputing potential productivity and biomass of the Pacific Northwest forests SO FORESTRY LA English DT Article ID COVARIANCE FUNCTION; AERIAL ATTRIBUTES; SATELLITE IMAGERY; INVENTORY DATA; K-MSN; PREDICTION; IMPUTATION; VARIABLES; CLASSIFICATION; MANAGEMENT AB Increasingly, forest management and conservation plans require spatially explicit information within a management or conservation unit. Forest biomass and potential productivity are critical variables for forest planning and assessment in the Pacific Northwest. Their values are often estimated from ground-measured sample data. For unsampled locations, forest analysts and planners lack forest productivity and biomass values, so values must be predicted. Using simulated data and forest inventory and analysis data collected in Oregon and Washington, we examined the performance of the spatial linear model (SLM), random forest (RF) and gradient nearest neighbour (GNN) for mapping and estimating biomass and potential productivity of Pacific Northwest forests. Simulations of artificial populations and subsamplings of forest biomass and productivity data showed that the SLM had smaller empirical root-mean-squared prediction errors (RMSPE) fora wide variety of data types, with generally less bias and better interval coverage than RF and GNN. These patterns held for both point predictions and for population averages, with the SLM reducing RMSPE by 30.0 and 52.6 per cent over two GNN methods in predicting point estimates for forest biomass and potential productivity. C1 [Temesgen, Hailemariam] Oregon State Univ, Dept Forest Engn Resources & Management, Corvallis, OR 97331 USA. [Hoef, Jay M. Ver] NOAA, Natl Marine Mammal Lab, NMFS Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. RP Temesgen, H (reprint author), Oregon State Univ, Dept Forest Engn Resources & Management, Corvallis, OR 97331 USA. EM hailemariam.temesgen@oregonstate.edu FU National Marine Mammal Laboratory, NOAA-NMFS Alaska Fisheries Science Center FX This project received financial support from the National Marine Mammal Laboratory, NOAA-NMFS Alaska Fisheries Science Center. Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA-NMFS. NR 60 TC 3 Z9 3 U1 2 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0015-752X EI 1464-3626 J9 FORESTRY JI Forestry PD JAN PY 2015 VL 88 IS 1 BP 131 EP 142 DI 10.1093/forestry/cpu036 PG 12 WC Forestry SC Forestry GA AZ6PB UT WOS:000348340200012 ER PT J AU Frolicher, TL Sarmiento, JL Paynter, DJ Dunne, JP Krasting, JP Winton, M AF Frolicher, Thomas L. Sarmiento, Jorge L. Paynter, David J. Dunne, John P. Krasting, John P. Winton, Michael TI Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models SO JOURNAL OF CLIMATE LA English DT Article ID LINE SIMULATION CHARACTERISTICS; COUPLED CLIMATE MODEL; SEA-LEVEL RISE; GLOBAL OCEAN; FORCING RESPONSE; HISTORICAL BIAS; OVERTURNING CIRCULATION; ATMOSPHERIC CO2; SYSTEM MODEL; WATER MASSES AB The authors assess the uptake, transport, and storage of oceanic anthropogenic carbon and heat over the period 1861-2005 in a new set of coupled carbon-climate Earth system models conducted for the fifth phase of the Coupled Model Intercomparison Project (CMIP5), with a particular focus on the Southern Ocean. Simulations show that the Southern Ocean south of 30 degrees S, occupying 30% of global surface ocean area, accounts for 43% 63% (42 + 5 PgC) of anthropogenic CO2 and 75% 622% (23 + 9 x 10(22) J) of heat uptake by the ocean over the historical period. Northward transport out of the Southern Ocean is vigorous, reducing the storage to 33 +/- 6 Pg anthropogenic carbon and 12 +/- 7 x 10(22) J heat in the region. The CMIP5 models, as a class, tend to underestimate the observation-based global anthropogenic carbon storage but simulate trends in global ocean heat storage over the last 50 years within uncertainties of observation-based estimates. CMIP5 models suggest global and Southern Ocean CO2 uptake have been largely unaffected by recent climate variability and change. Anthropogenic carbon and heat storage show a common broad-scale pattern of change, but ocean heat storage is more structured than ocean carbon storage. The results highlight the significance of the Southern Ocean for the global climate and as the region where models differ the most in representation of anthropogenic CO2 and, in particular, heat uptake. C1 [Frolicher, Thomas L.; Sarmiento, Jorge L.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Paynter, David J.; Dunne, John P.; Krasting, John P.; Winton, Michael] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Frolicher, TL (reprint author), ETH, Inst Biogeochem & Pollutant Dynam, Univ Str 16, CH-8092 Zurich, Switzerland. EM thomas.froelicher@usys.ethz.ch RI Frolicher, Thomas/E-5137-2015 OI Frolicher, Thomas/0000-0003-2348-7854 FU SNSF [PZ00PZ-14573]; Carbon Mitigation Initiative; BP FX We thank N. Gruber, K. Rodgers, S. Mikaloff Fletcher, and S. Griffies for discussions, and K. Olivo, M. Harrison, and U. Beyerle, who helped postprocessing the CMIP5 data. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. TLF acknowledges support by the SNSF (Ambizione Grant PZ00PZ-14573) and the Carbon Mitigation Initiative with support from BP. NR 94 TC 42 Z9 42 U1 4 U2 31 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JAN PY 2015 VL 28 IS 2 BP 862 EP 886 DI 10.1175/JCLI-D-14-00117.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ4WB UT WOS:000348220100027 ER PT J AU Senft-Batoh, CD Dam, HG Shumway, SE Wikfors, GH Schlichting, CD AF Senft-Batoh, Christina D. Dam, Hans G. Shumway, Sandra E. Wikfors, Gary H. Schlichting, Carl D. TI Influence of predator-prey evolutionary history, chemical alarm-cues, and feeding selection on induction of toxin production in a marine dinoflagellate SO LIMNOLOGY AND OCEANOGRAPHY LA English DT Article ID ALEXANDRIUM-TAMARENSE; INDUCED RESPONSES; ACARTIA-TONSA; COPEPODS; POPULATIONS; ECOLOGY; ZOOPLANKTON; ECOSYSTEMS; DEFENSE; PROSPECTUS AB The dinoflagellate, Alexandrium fundyense, produces paralytic shellfish toxins and co-occurs with populations of the copepod, Acartia hudsonica, from Maine, but not New Jersey. The hypothesis that history of co-occurrence between predator and prey effects the ability of prey to recognize and respond to predators with increased toxin production was tested for this copepod-alga interaction. When A. fundyense was exposed to waterborne cues released by copepods from Maine (indirect exposure) that were either starved or fed toxic cells, cell toxin quota increased by 35% compared to unexposed controls. The induced response was significantly less for cells exposed to waterborne cues of copepods from New Jersey, and induction (20%) was only elicited by this population when fed toxic cells. These results suggest that A. fundyense responded to a kairomone from copepods from Maine, but required a feeding cue from copepods from New Jersey. An increase of approximately 300% in cell toxin quota, however, occurred when cells were directly exposed to grazing, and was independent of copepod population. Evolutionary history, therefore, had no apparent effect when induction was underlain by feeding cues. In assays with a mixture of toxic and nontoxic cells, selection for the latter was evident, and also independent of copepod population. Selectivity for nontoxic cells, however, could not account for changes in cell toxin content in the mixture experiments. When A. fundyense was exposed to extracts of toxic or nontoxic Alexandrium, toxin production increased significantly (23%), suggesting modest induction by an alga-to-alga alarm signal. C1 [Senft-Batoh, Christina D.; Dam, Hans G.; Shumway, Sandra E.] Univ Connecticut, Dept Marine Sci, Groton, CT 06340 USA. [Wikfors, Gary H.] Milford Lab, Natl Ocean & Atmospher Adm, Northeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Milford, CT USA. [Schlichting, Carl D.] Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT USA. RP Dam, HG (reprint author), Univ Connecticut, Dept Marine Sci, Groton, CT 06340 USA. EM hans.dam@uconn.edu FU National Oceanographic and Atmospheric Administration's Ecology and Oceanography of Harmful Algal Blooms program [NA06NOS4780249]; National Science Foundation's Division of Ocean Sciences [0648126, 1130284]; Connecticut Sea Grant [R/LR-21]; Department of Marine Sciences; Center for Environmental Sciences and Engineering at the University of Connecticut; Lerner-Grey Fund of the American Museum of Natural History; Quebec-Labrador Fund, Sounds Conservancy Program FX Research was supported by grants from the National Oceanographic and Atmospheric Administration's Ecology and Oceanography of Harmful Algal Blooms program, grant NA06NOS4780249, National Science Foundation's Division of Ocean Sciences grants 0648126 and 1130284, and Connecticut Sea Grant R/LR-21. Additional support came from the Department of Marine Sciences and the Center for Environmental Sciences and Engineering at the University of Connecticut, and from award from the Lerner-Grey Fund of the American Museum of Natural History and the Quebec-Labrador Fund, Sounds Conservancy Program. NR 48 TC 4 Z9 4 U1 3 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0024-3590 EI 1939-5590 J9 LIMNOL OCEANOGR JI Limnol. Oceanogr. PD JAN PY 2015 VL 60 IS 1 BP 318 EP 328 DI 10.1002/lno.10027 PG 11 WC Limnology; Oceanography SC Marine & Freshwater Biology; Oceanography GA CA7FH UT WOS:000349082600026 ER PT J AU Miguel, Y Kaltenegger, L Linsky, JL Rugheimer, S AF Miguel, Yamila Kaltenegger, Lisa Linsky, Jeffrey L. Rugheimer, Sarah TI The effect of Lyman alpha radiation on mini-Neptune atmospheres around M stars: application to GJ 436b SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE planets and satellites: atmospheres; planets and satellites: general; planets and satellites: individual: GJ 436b ID ABSORPTION CROSS-SECTIONS; TRANSITING HOT NEPTUNE; M-DWARF GJ-436; HD 189733B; TRANSMISSION SPECTRUM; CARBON-MONOXIDE; GIANT PLANETS; MASS PLANET; SUPER-EARTH; EXOPLANET AB Mini-Neptunes orbiting M stars are a growing population of known exoplanets. Some of them are located very close to their host star, receiving large amounts of UV radiation. Many M stars emit strong chromospheric emission in the H I Lyman alpha line (Ly alpha) at 1215.67 angstrom, the brightest far-UV emission line. We show that the effect of incoming Lya flux can significantly change the photochemistry of mini-Neptunes' atmospheres. We use GJ 436b as an example, considering different metallicities for its atmospheric composition. For solar composition, H2O-mixing ratios show the largest change because of Lya radiation. H2O absorbs most of this radiation, thereby shielding CH4, whose dissociation is driven mainly by radiation at other far-UV wavelengths (similar to 1300 angstrom). H2O photolysis also affects other species in the atmosphere, including H, H-2, CO2, CO, OH and O. For an atmosphere with high metallicity, H2O- and CO2-mixing ratios show the biggest change, thereby shielding CH4. Direct measurements of the UV flux of the host stars are important for understanding the photochemistry in exoplanets' atmospheres. This is crucial, especially in the region between 1 and 10(-6) bars, which is the part of the atmosphere that generates most of the observable spectral features. C1 [Miguel, Yamila; Kaltenegger, Lisa] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Kaltenegger, Lisa; Rugheimer, Sarah] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Linsky, Jeffrey L.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Linsky, Jeffrey L.] NIST, Boulder, CO 80309 USA. RP Miguel, Y (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM miguel@mpia.de FU DFG [ENP Ka 3142/1-1]; Space Telescope Science Institute FX We would like to thank Ravi Kopparapu, James Kasting, Dimitar Sasselov, Kevin France and Yan Betremieux for useful discussions. Special thanks to Julianne Moses, for fruitful discussions and providing the thermal structure of high-metallicity GJ 436b atmosphere. YM and LK acknowledge DFG funding ENP Ka 3142/1-1 and the Simons Foundation. JLL acknowledges support from the Space Telescope Science Institute. This work has made use of the MUSCLES M dwarf UV radiation field data base. NR 62 TC 14 Z9 14 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JAN PY 2015 VL 446 IS 1 BP 345 EP 353 DI 10.1093/mnras/stu2107 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AY3ZP UT WOS:000347518300024 ER PT J AU Zhou, ZY Trassin, M Gao, Y Gao, Y Qiu, DN Ashraf, K Nan, TX Yang, X Bowden, SR Pierce, DT Stiles, MD Unguris, J Liu, M Howe, BM Brown, GJ Salahuddin, S Ramesh, R Sun, NX AF Zhou, Ziyao Trassin, Morgan Gao, Ya Gao, Yuan Qiu, Diana Ashraf, Khalid Nan, Tianxiang Yang, Xi Bowden, S. R. Pierce, D. T. Stiles, M. D. Unguris, J. Liu, Ming Howe, Brandon M. Brown, Gail J. Salahuddin, S. Ramesh, R. Sun, Nian X. TI Probing electric field control of magnetism using ferromagnetic resonances SO NATURE COMMUNICATIONS LA English DT Article ID THIN-FILM HETEROSTRUCTURES; ROOM-TEMPERATURE; EXCHANGE BIAS; MULTIFERROICS AB Exchange coupled CoFe/BiFeO3 thin-film heterostructures show great promise for power-efficient electric field-induced 180 degrees magnetization switching. However, the coupling mechanism and precise qualification of the exchange coupling in CoFe/BiFeO3 heterostructures have been elusive. Here we show direct evidence for electric field control of the magnetic state in exchange coupled CoFe/BiFeO3 through electric field-dependent ferromagnetic resonance spectroscopy and nanoscale spatially resolved magnetic imaging. Scanning electron microscopy with polarization analysis images reveal the coupling of the magnetization in the CoFe layer to the canted moment in the BiFeO3 layer. Electric field-dependent ferromagnetic resonance measurements quantify the exchange coupling strength and reveal that the CoFe magnetization is directly and reversibly modulated by the applied electric field through a similar to 180 degrees switching of the canted moment in BiFeO3. This constitutes an important step towards robust repeatable and non-volatile voltage-induced 180 degrees magnetization switching in thin-film multiferroic heterostructures and tunable RF/microwave devices. C1 [Zhou, Ziyao; Gao, Yuan; Nan, Tianxiang; Yang, Xi; Sun, Nian X.] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. [Trassin, Morgan; Gao, Ya; Ashraf, Khalid; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Qiu, Diana; Salahuddin, S.] Univ Calif Berkeley, Dept Elect & Comp Engn, Berkeley, CA 94720 USA. [Bowden, S. R.; Pierce, D. T.; Stiles, M. D.; Unguris, J.] Natl Inst Stand & Technol, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Liu, Ming] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China. [Liu, Ming] Xi An Jiao Tong Univ, Int Ctr Dielectr Res, Xian 710049, Peoples R China. [Howe, Brandon M.; Brown, Gail J.] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. RP Sun, NX (reprint author), Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. EM n.sun@neu.edu RI Stiles, Mark/K-2426-2012; Zhou, Ziyao/N-8398-2015; Nan, Tianxiang/O-3820-2015; Nan, Tianxiang/A-8020-2016; Gao, Yuan/E-4277-2016; Yang, Xi/E-6042-2016; Sun, Nian Xiang/F-9590-2010; Liu, Ming/B-4143-2009 OI Stiles, Mark/0000-0001-8238-4156; Zhou, Ziyao/0000-0002-2389-1673; Gao, Yuan/0000-0002-2444-1180; Sun, Nian Xiang/0000-0002-3120-0094; Liu, Ming/0000-0002-6310-948X FU AFRL through UES [S-875-060-018]; Semiconductor Research Corporation; National Natural Science Foundation of China (NSFC) [51328203]; National Science Foundation [EEC-1160504]; DARPA FAME programme FX We are grateful for helpful discussions with R. D. McMichael. The work at Northeastern University is financially supported by AFRL through UES Subcontract No. S-875-060-018, Semiconductor Research Corporation and National Natural Science Foundation of China (NSFC) 51328203. The work at UC Berkeley was partially supported by the National Science Foundation (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems) under grant number EEC-1160504 and the DARPA FAME programme. We would like to thank Ms. Liangchuan Sun for her schematic in Figure 2. NR 40 TC 22 Z9 22 U1 17 U2 150 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN PY 2015 VL 6 AR 6082 DI 10.1038/ncomms7082 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA3UC UT WOS:000348831300009 PM 25631924 ER PT J AU Carlson, AD Pronyaev, VG Capote, R Hale, GM Hambsch, FJ Kawano, T Kunieda, S Mannhart, W Nelson, RO Neudecker, D Schillebeeckx, P Simakov, S Smith, DL Talou, P Tao, X Wallner, A Wang, W AF Carlson, A. D. Pronyaev, V. G. Capote, R. Hale, G. M. Hambsch, F. -J. Kawano, T. Kunieda, S. Mannhart, W. Nelson, R. O. Neudecker, D. Schillebeeckx, P. Simakov, S. Smith, D. L. Talou, P. Tao, X. Wallner, A. Wang, W. TI Recent Work Leading Towards a New Evaluation of the Neutron Standards SO NUCLEAR DATA SHEETS LA English DT Article; Proceedings Paper CT International Workshop on Nuclear Data Covariances CY APR 28-MAY 01, 2014 CL Santa Fe, NM ID CAPTURE CROSS-SECTION; UNCERTAINTY QUANTIFICATION; FISSION; SPECTRA; URANIUM; MODEL AB A new version of the ENDF/B library has been planned. The first step in producing this new library is evaluating the neutron standards. An evaluation is now underway with support from a Data Development Project of the IAEA. In addition to the neutron cross section standards, new evaluations are being done for prompt fission neutron spectra and a number of reference data. Efforts have been made to handle uncertainties in a proper way in these evaluations. C1 [Carlson, A. D.] NIST, Gaithersburg, MD 20899 USA. [Pronyaev, V. G.] Inst Phys & Power Engn, Obninsk 249033, Kaluga Region, Russia. [Capote, R.; Simakov, S.] IAEA, NAPC Nucl Data Sect, A-1400 Vienna, Austria. [Hale, G. M.; Kawano, T.; Nelson, R. O.; Neudecker, D.; Talou, P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hambsch, F. -J.; Schillebeeckx, P.] EC JRC IRMM, B-2440 Geel, Belgium. [Kunieda, S.] Japan Atom Energy Agcy, Nucl Data Ctr, Tokai, Ibaraki 3191195, Japan. [Mannhart, W.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Smith, D. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Tao, X.; Wang, W.] China Inst Atom Energy, China Nucl Data Ctr, Beijing 102413, Peoples R China. [Wallner, A.] Univ Vienna, Vera Lab, Fac Phys, A-1090 Vienna, Austria. [Wallner, A.] Australian Natl Univ, Dept Nucl Phys, Canberra, ACT 0200, Australia. RP Carlson, AD (reprint author), NIST, 100 Bur Dr STOP 8463, Gaithersburg, MD 20899 USA. EM carlson@nist.gov RI Capote Noy, Roberto/M-1245-2014; Wallner, Anton/G-1480-2011 OI Capote Noy, Roberto/0000-0002-1799-3438; Wallner, Anton/0000-0003-2804-3670 FU IAEA Nuclear Data Section; United States Department of Energy FX The support of the IAEA Nuclear Data Section and the United States Department of Energy in carrying out this work is appreciated. NR 44 TC 3 Z9 4 U1 4 U2 11 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JAN PY 2015 VL 123 SI SI BP 27 EP 35 DI 10.1016/j.nds.2014.12.006 PG 9 WC Physics, Nuclear SC Physics GA AZ8UU UT WOS:000348490700008 ER PT J AU Marcogliese, DJ Jacobson, KC AF Marcogliese, David J. Jacobson, Kym C. TI Parasites as biological tags of marine, freshwater and anadromous fishes in North America from the tropics to the Arctic SO PARASITOLOGY LA English DT Article DE biological tags; marine; freshwater; anadromous; fish; Atlantic; Pacific ID COD GADUS-MORHUA; HERRING CLUPEA-HARENGUS; HALIBUT REINHARDTIUS-HIPPOGLOSSOIDES; ST-LAWRENCE-RIVER; FLOUNDER PSEUDOPLEURONECTES-AMERICANUS; HADDOCK MELANOGRAMMUS-AEGLEFINUS; SALVELINUS-ALPINUS LINNAEUS; SARDINES SARDINOPS-SAGAX; CAPE-BRETON SHELF; SCOTIAN SHELF AB Parasites have been considered as natural biological tags of marine fish populations in North America for almost 75 years. In the Northwest Atlantic, the most studied species include Atlantic cod (Gadus morhua), Atlantic herring (Clupea harengus) and the redfishes (Sebastes spp.). In the North Pacific, research has centred primarily on salmonids (Oncorhynchus spp.). However, parasites have been applied as tags for numerous other pelagic and demersal species on both the Atlantic and Pacific coasts. Relatively few studies have been undertaken in the Arctic, and these were designed to discriminate anadromous and resident salmonids (Salvelinus spp.). Although rarely applied in fresh waters, parasites have been used to delineate certain fish stocks within the Great Lakes-St Lawrence River basin. Anisakid nematodes and the copepod Sphyrion lumpi frequently prove useful indicators in the Northwest Atlantic, while myxozoan parasites prove very effective on the coast and open seas of the Pacific Ocean. Relative differences in the ability of parasites to discriminate between fish stocks on the Pacific and Atlantic coasts may be due to oceanographic and bathymetric differences between regions. Molecular techniques used to differentiate populations and species of parasites show promise in future applications in the field. C1 [Marcogliese, David J.] Environm Canada, Watershed Hydrol & Ecol Res Div, Water Sci & Technol Directorate, Aquat Biodivers Sect,Sci & Technol Branch,St Lawr, Montreal, PQ H2Y 2E7, Canada. [Jacobson, Kym C.] NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA. RP Marcogliese, DJ (reprint author), Environm Canada, Watershed Hydrol & Ecol Res Div, Water Sci & Technol Directorate, Aquat Biodivers Sect,Sci & Technol Branch,St Lawr, 105 McGill,7th Floor, Montreal, PQ H2Y 2E7, Canada. EM david.marcogliese@ec.gc.ca NR 157 TC 3 Z9 3 U1 8 U2 16 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0031-1820 EI 1469-8161 J9 PARASITOLOGY JI Parasitology PD JAN PY 2015 VL 142 IS 1 SI SI BP 68 EP 89 DI 10.1017/S0031182014000110 PG 22 WC Parasitology SC Parasitology GA CA8EJ UT WOS:000349149200006 PM 24612602 ER PT J AU Cheung, WWL Brodeur, RD Okey, TA Pauly, D AF Cheung, William W. L. Brodeur, Richard D. Okey, Thomas A. Pauly, Daniel TI Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas SO PROGRESS IN OCEANOGRAPHY LA English DT Review ID CLIMATE-CHANGE IMPACTS; MARINE ECOSYSTEMS; CALIFORNIA CURRENT; FISHERIES CATCH; REGIME SHIFTS; BERING-SEA; COMMUNITY REORGANIZATION; UPWELLING ECOSYSTEMS; GLOBAL OCEAN; ABUNDANCE AB Marine life is being affected by changes in ocean conditions resulting from changes in climate and chemistry triggered by combustion of fossil fuels. Shifting spatial distributions of fish species is a major observed and predicted impact of these oceanographic changes, and such shifts may modify fish community structure considerably in particular locations and regions. We projected future range shifts of pelagic marine fishes of the Northeast Pacific shelf seas by 2050 relative to the present. We combined published data, expert knowledge, and pelagic fish survey data to predict current species distribution ranges of 28 fish species of the Northeast Pacific shelf seas that occur in the epipelagic zone and are well-represented in pelagic fish surveys. These represent a wide spectrum of sub-tropical to sub-polar species, with a wide range of life history characteristics. Using projected ocean condition changes from three different Earth System Models, we simulated changes in the spatial distribution of each species. We show that Northeast Pacific shelf seas may undergo considerable changes in the structure of its pelagic marine communities by mid-21st century. Ensembles of model projections suggest that the distribution centroids of the studied species are expected to shift poleward at an average rate of 30.1 +/- 2.34 (S.E.) km decade(-1) under the SRES A2 scenario from 2000 to 2050. The projected species range shifts result in a high rate of range expansion of this group of species into the Gulf of Alaska and the Bering Sea. Rate of range contraction of these species is highest at the Aleutian Islands, and in the California Current Large Marine Ecosystem. We also predict increasing dominance of warmer water species in all regions. The projected changes in species assemblages may have large ecological and socio-economic implications through mismatches of co-evolved species, unexpected trophic effects, and shifts of fishing grounds. These results provide hypotheses of climate change impacts that can be tested using data collected by monitoring programmes in the region. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Cheung, William W. L.] Univ British Columbia, Fisheries Ctr, Nereus Program, Vancouver, BC V6T 1Z4, Canada. [Cheung, William W. L.] Univ British Columbia, Fisheries Ctr, Changing Ocean Res Unit, Vancouver, BC V6T 1Z4, Canada. [Brodeur, Richard D.] NOAA, Fisheries Hatfield Marine Sci Ctr, Northwest Fisheries Sci Ctr, Newport, OR 97365 USA. [Okey, Thomas A.] Univ Victoria, Sch Environm Studies, Victoria, BC V8W 2Y2, Canada. [Okey, Thomas A.] Ocean Integr Res, Victoria, BC V8V 2A4, Canada. [Pauly, Daniel] Univ British Columbia, Fisheries Ctr, Sea Around Us, Vancouver, BC V6T 1Z4, Canada. RP Cheung, WWL (reprint author), Univ British Columbia, Fisheries Ctr, Aquat Ecosyst Res Lab, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM w.cheung@fisheries.ubc.ca RI , William/F-5104-2013 OI , William/0000-0003-3626-1045 FU National Geographic Society; Nippon Foundation-Nereus Program and Natural Sciences; Engineering Research Council of Canada; Bonneville Power Administration; NOAA's Fisheries and the Environment Program; Pew Fellowship in Marine Conservation, a programme of the Pew Charitable Trusts; University of British Columbia; Pew Charitable Trusts FX We sincerely thank J. Orsi, J. Harding, L. Haldorson, J. Moss, D. Beamish, M. Trudel, and B. Emmett for contributing the Pelagic Nekton Survey data. We thank N. Mantua for providing comments on an earlier version of the manuscript. We also express our gratitude to NOAA's GFDL, IPSL and NCAR for providing us with outputs from their Earth System Models. WWLC acknowledges funding support from the National Geographic Society, Nippon Foundation-Nereus Program and Natural Sciences and Engineering Research Council of Canada. RDB's support comes from the Bonneville Power Administration and NOAA's Fisheries and the Environment Program. TAO's contributions were supported by a Pew Fellowship in Marine Conservation, a programme of the Pew Charitable Trusts. TAO also thanks PICES. DP acknowledges support from the Sea Around Us, a scientific collaboration between University of British Columbia and the Pew Charitable Trusts. NR 74 TC 11 Z9 12 U1 11 U2 62 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6611 J9 PROG OCEANOGR JI Prog. Oceanogr. PD JAN PY 2015 VL 130 BP 19 EP 31 DI 10.1016/j.pocean.2014.09.003 PG 13 WC Oceanography SC Oceanography GA CA6XD UT WOS:000349059800002 ER PT J AU Halliwell, GR Kourafalou, V Le Henaff, M Shay, LK Atlas, R AF Halliwell, George R., Jr. Kourafalou, Vassiliki Le Henaff, Matthieu Shay, Lynn K. Atlas, Robert TI OSSE impact analysis of airborne ocean surveys for improving upper-ocean dynamical and thermodynamical forecasts in the Gulf of Mexico SO PROGRESS IN OCEANOGRAPHY LA English DT Review ID LAYER ENERGY RESPONSE; HEAT-CONTENT; VERTICAL COORDINATE; DATA ASSIMILATION; MODEL HYCOM; SIMULATIONS; TEMPERATURE; LILI; HURRICANES; PREDICTION AB A prototype, rigorously validated ocean Observing System Simulation Experiment (OSSE) system is used to evaluate the impact of different sampling strategies for rapid-response airborne ocean profile surveys in the eastern interior Gulf of Mexico. Impacts are assessed with respect to improving ocean analyses, and forecasts initialized from those analyses, for two applications: improving oil spill forecasts and improving the ocean model response to tropical cyclone (TC) forcing. Rapid model error growth in this region requires that repeat surveys be conducted frequently in time, with separation of less than 4 days required to approach maximum error reduction in model analyses. Substantial additional error reduction in model dynamical fields is achieved by deploying deep (1000 m) AXCTDs instead of shallow (400 m) AXBTs. Shallow AXBTs constrain the ocean thermal field over the upper 400 m nearly as well as deep AXCTDs. However, in addition to constraining ocean fields over a greater depth range, AXCTDs also measure salinity profiles and more accurately constrain upper-ocean density than AXBTs, leading to a more accurate representation of upper ocean pressure and velocity fields. Sampling AXCTD profiles over a one-half degree array compared to one degree leads to substantial additional error reduction by constraining variability with horizontal scales too small to be corrected by satellite altimetry assimilation. A 2-day lag in availability of airborne profiles does not increase errors in dynamical ocean fields, but it does increase errors in upper-ocean thermal field including Tropical Cyclone Heat Potential (TCHP), demonstrating that these profiles must be rapidly made available for assimilation to improve TC forecasts. The additional error reduction in ocean analyses achieved by assimilation of airborne surveys translates into significantly improved forecasts persisting over time intervals ranging between 1 and 2 weeks for most model variables but several weeks for TCHP. In particular, upper-ocean temperature forecasts can be significantly improved for an extended interval of time by conducting airborne profile surveys. Published by Elsevier Ltd. C1 [Halliwell, George R., Jr.] NOAA AOML PhOD, Miami, FL 33149 USA. [Kourafalou, Vassiliki; Shay, Lynn K.] Univ Miami, MPO RSMAS, Miami, FL 33149 USA. [Le Henaff, Matthieu] Univ Miami, CIMAS, Miami, FL 33149 USA. [Atlas, Robert] NOAA, AOML, Miami, FL 33149 USA. RP Halliwell, GR (reprint author), NOAA AOML PhOD, 4301 Rickenbacker Causeway, Miami, FL 33149 USA. EM george.halliwell@noaa.gov RI Halliwell, George/B-3046-2011; Atlas, Robert/A-5963-2011 OI Halliwell, George/0000-0003-4216-070X; Atlas, Robert/0000-0002-0706-3560 FU USWRP Hurricane Forecast Improvement Project; NOAA Office of Weather and Air Quality through the OSSE testbed; NOAA Science Box Grant; Physical Oceanography Division of NOAA/AOML; NOAA [NA10OAR4320143, NA13OAR4830224]; [OAR-M8R2WHSP01] FX Support is acknowledged from the USWRP Hurricane Forecast Improvement Project, from the NOAA Office of Weather and Air Quality through the OSSE testbed, and from a NOAA Science Box Grant. GRH acknowledges support from Grant OAR-M8R2WHSP01 and from the Physical Oceanography Division of NOAA/AOML. VHK and MLH acknowledge support from NOAA NA10OAR4320143 and NA13OAR4830224. LKS acknowledges support from NOAA and BOEM in the acquisition and analysis of the oceanic profiles during DWH. LKS also acknowledges the pilots, technicians and engineers at the NOAA Aircraft Operations Center who made it possible to acquire oceanographic profiles from the research aircraft during DWH. NR 34 TC 7 Z9 7 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6611 J9 PROG OCEANOGR JI Prog. Oceanogr. PD JAN PY 2015 VL 130 BP 32 EP 46 DI 10.1016/j.pocean.2014.09.004 PG 15 WC Oceanography SC Oceanography GA CA6XD UT WOS:000349059800003 ER PT J AU McCarthy, GD Smeed, DA Johns, WE Frajka-Williams, E Moat, BI Rayner, D Baringer, MO Meinen, CS Collins, J Bryden, HL AF McCarthy, G. D. Smeed, D. A. Johns, W. E. Frajka-Williams, E. Moat, B. I. Rayner, D. Baringer, M. O. Meinen, C. S. Collins, J. Bryden, H. L. TI Measuring the Atlantic Meridional Overturning Circulation at 26 degrees N SO PROGRESS IN OCEANOGRAPHY LA English DT Review ID WESTERN BOUNDARY CURRENT; POLEWARD HEAT-TRANSPORT; TROPICAL NORTH-ATLANTIC; EDDY-FILLED OCEAN; FLORIDA CURRENT; GULF-STREAM; RAPID ARRAY; VARIABILITY; 26.5-DEGREES-N; CURRENTS AB The Atlantic Meridional Overturning Circulation (AMOC) plays a key role in the global climate system through its redistribution of heat. Changes in the AMOC have been associated with large fluctuations in the earth's climate in the past and projections of AMOC decline in the future due to climate change motivate the continuous monitoring of the circulation. Since 2004, the RAPID monitoring array has been providing continuous estimates of the AMOC and associated heat transport at 26 degrees N in the North Atlantic. We describe how these measurements are made including the sampling strategy, the accuracies of parameters measured and the calculation of the AMOC. The strength of the AMOC and meridional heat transport are estimated as 17.2 Sv and 1.25 PW respectively from April 2004 to October 2012. The accuracy of ten day (annual) transports is 1.5 Sv (0.9 Sv). Improvements to the estimation of the transport above the shallowest instruments and deepest transports (including Antarctic Bottom Water), and the use of the new equation of state for seawater have reduced the estimated strength of the AMOC by 0.6 Sv relative to previous publications. As new basinwide AMOC monitoring projects begin in the South Atlantic and sub-polar North Atlantic, we present this thorough review of the methods and measurements of the original AMOC monitoring array. Crown Copyright (C) 2014 Published by Elsevier Ltd. All rights reserved. C1 [McCarthy, G. D.; Smeed, D. A.; Moat, B. I.; Rayner, D.] Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England. [Johns, W. E.] Univ Miami, Rosentiel Sch Marine & Atmospher Sci, Miami, FL USA. [Frajka-Williams, E.; Bryden, H. L.] Univ Southampton, Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England. [Baringer, M. O.; Meinen, C. S.] PHOD, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. [Collins, J.] Natl Oceanog Ctr, British Oceanog Data Ctr, Southampton SO14 3ZH, Hants, England. RP McCarthy, GD (reprint author), Natl Oceanog Ctr, European Way, Southampton SO14 3ZH, Hants, England. EM gerard.mccarthy@noc.ac.uk RI Frajka-Williams, Eleanor/H-2415-2011; Baringer, Molly/D-2277-2012; Meinen, Christopher/G-1902-2012; OI Frajka-Williams, Eleanor/0000-0001-8773-7838; Baringer, Molly/0000-0002-8503-5194; Meinen, Christopher/0000-0002-8846-6002; Smeed, David/0000-0003-1740-1778 FU UK Natural Environment Research Council (NERC) RAPID-WATCH program; US National Science Foundation (NSF) Meridional Overturning Circulation Heat-flux Array project; US National Oceanographic and Atmospheric Administration (NOAA) Western Boundary Time Series project FX The RAPID/MOCHA/WBTS array is a collaborative effort supported through the UK Natural Environment Research Council (NERC) RAPID-WATCH program, the US National Science Foundation (NSF) Meridional Overturning Circulation Heat-flux Array project, and the US National Oceanographic and Atmospheric Administration (NOAA) Western Boundary Time Series project. AMOC transport estimates including error estimates are freely available from www.rapid.ac.uk/rapidmoc. Florida Current transports estimates are available from www.aoml.noaa.gov/phod/floridacurrent. MHT estimates can be found online at http:// www.rsmas.miami.edu/users/mocha. NR 76 TC 43 Z9 43 U1 8 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6611 J9 PROG OCEANOGR JI Prog. Oceanogr. PD JAN PY 2015 VL 130 BP 91 EP 111 DI 10.1016/j.pocean.2014.10.006 PG 21 WC Oceanography SC Oceanography GA CA6XD UT WOS:000349059800007 ER PT J AU Beechie, TJ Pess, GR Imaki, H Martin, A Alvarez, J Goodman, DH AF Beechie, Timothy J. Pess, George R. Imaki, Hiroo Martin, Aaron Alvarez, Justin Goodman, Damon H. TI Comparison of potential increases in juvenile salmonid rearing habitat capacity among alternative restoration scenarios, Trinity River, California SO RESTORATION ECOLOGY LA English DT Article DE alternatives analysis; habitat capacity; restoration potential; restoration targets; river restoration ID ONCORHYNCHUS-TSHAWYTSCHA; POPULATIONS; PATTERNS; FRAGMENTATION; UNCERTAINTY; LIMITATIONS; ECOSYSTEMS; DYNAMICS; RECOVERY; SYSTEMS AB River restoration plans often propose multiple rehabilitation actions to address key habitat impairments, but they rarely attempt to quantify the potential benefits of alternative sets of actions for targeted biota. We use geomorphic and biological analyses to estimate restoration potential under three alternative scenarios for a 64-km section of the Trinity River, California, between the North Fork Trinity River and Lewiston Dam, which is the focus of habitat rehabilitation efforts under the Trinity River Restoration Program. The three scenarios are (1) increasing habitat quality by wood additions and alcove construction, (2) increasing habitat quantity by increasing sinuosity and side-channel length, and (3) increasing both habitat quality and quantity. For each scenario, we used existing stream habitat and juvenile salmonid data from previous studies to estimate potential improvements in fry or pre-smolt production. The potential increase in Oncorhynchus tshawytscha (Chinook salmon) and O. mykiss (steelhead) fry rearing capacity was 62 and 67%, respectively, for Scenario 1 (increasing habitat quality), and 36 and 44% for Scenario 2 (increasing habitat quantity). Only the most optimistic Scenario 3 (increasing both habitat quality and quantity) more than doubles potential juvenile salmonid production (112% increase in Chinook fry capacity and 107% increase in steelhead fry capacity). These quantitative predictions are useful in developing realistic restoration targets and evaluating whether proposed restoration actions can achieve the aims of a restoration program. C1 [Beechie, Timothy J.; Pess, George R.; Imaki, Hiroo] NOAA, Fish Ecol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA. [Martin, Aaron] Hoopa Valley Tribe, Dept Fisheries, Hoopa, CA 95546 USA. [Alvarez, Justin] Yurok Tribe, Dept Fisheries, Willow Creek, CA 95573 USA. [Goodman, Damon H.] US Fish & Wildlife Serv, Arcata Field Off, Arcata, CA 95521 USA. RP Beechie, TJ (reprint author), NOAA, Fish Ecol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA. EM tim.beechie@noaa.gov FU U.S. Fish and Wildlife Service FX We thank the U.S. Fish and Wildlife Service for supporting this project, and C. Chamberlain and the TRRP for providing data and guidance for the analysis. NR 39 TC 5 Z9 5 U1 5 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1061-2971 EI 1526-100X J9 RESTOR ECOL JI Restor. Ecol. PD JAN PY 2015 VL 23 IS 1 BP 75 EP 84 DI 10.1111/rec.12131 PG 10 WC Ecology SC Environmental Sciences & Ecology GA CA2AJ UT WOS:000348711100012 ER PT S AU Iadicola, MA Creuziger, AA AF Iadicola, Mark A. Creuziger, Adam A. BE Jin, H Sciammarella, C Yoshida, S Lamberti, L TI Uncertainties of Digital Image Correlation Near Strain Localizations SO ADVANCEMENT OF OPTICAL METHODS IN EXPERIMENTAL MECHANICS, VOL 3 SE Conference Proceedings of the Society for Experimental Mechanics Series LA English DT Proceedings Paper CT SEM Annual Conference and Exposition on Experimental and Applied Mechanics CY JUN 02-05, 2014 CL Greenville, SC SP Soc Expt Mech DE Digital image correlation; DIC; Measurement uncertainty; Monte Carlo method; Strain localization AB Estimates of the strain errors resulting from digital image correlation (DIC) measurements are desired for many uses. One application is the measurement of the strain localization near failure in forming limit testing of sheet metals. This work measures and statistically characterizes the displacement measurement uncertainties for a typical DIC system. These uncertainties are found to have nearly Normal probability distributions and were used as inputs into a Monte Carlo analysis to determine the resulting strain uncertainty. A limited parameter study was made using the Monte Carlo analysis. The results demonstrate that the strain measurement uncertainty is quantifiable, and reducing the virtual gauge length (over which the strain is determined) tends to increase the strain measurement uncertainty. Based on the results, curves relating the strain uncertainty to the DIC analysis parameters can be developed. These curves suggest a balance must be chosen between the optimum processing parameters to minimize the strain error or the parameters to minimize the virtual gauge length. For some engineering applications (e.g. forming limit testing), a smaller virtual gauge length might be preferred even if it results in a higher strain uncertainty, as long as that uncertainty is quantifiable. C1 [Iadicola, Mark A.; Creuziger, Adam A.] NIST, Gaithersburg, MD 20899 USA. RP Iadicola, MA (reprint author), NIST, 100 Bur Dr,STOP 8553, Gaithersburg, MD 20899 USA. EM mark.iadicola@nist.gov NR 11 TC 0 Z9 0 U1 2 U2 5 PU SPRINGER-VERLAG BERLIN PI BERLIN PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY SN 2191-5644 BN 978-3-319-06985-2 J9 C PROC SOC EXP MECH PY 2015 BP 277 EP 285 DI 10.1007/978-3-319-06986-9_31 PG 9 WC Optics; Physics, Applied SC Optics; Physics GA BB8XF UT WOS:000347773500031 ER PT J AU Ciesielski, PN Crowley, MF Nimlos, MR Sanders, AW Wiggins, GM Robichaud, D Donohoe, BS Foust, TD AF Ciesielski, Peter N. Crowley, Michael F. Nimlos, Mark R. Sanders, Aric W. Wiggins, Gavin M. Robichaud, Dave Donohoe, Bryon S. Foust, Thomas D. TI Biomass Particle Models with Realistic Morphology and Resolved Microstructure for Simulations of Intraparticle Transport Phenomena SO ENERGY & FUELS LA English DT Article ID DILUTE-ACID PRETREATMENT; BUBBLING FLUIDIZED-BEDS; FAST PYROLYSIS; HEAT-TRANSFER; LIGNOCELLULOSIC BIOMASS; WOOD PARTICLES; MASS-TRANSPORT; CORN STOVER; KINETICS; MOMENTUM AB Biomass exhibits a complex microstructure of directional pores that impact how heat and mass are transferred within biomass particles during conversion processes. However, models of biomass particles used in simulations of conversion processes typically employ oversimplified geometries such as spheres and cylinders and neglect intraparticle microstructure. Here we develop 3D models of biomass particles with size, morphology, and microstructure based on parameters obtained from quantitative image analysis. We obtain measurements of particle size and morphology by analyzing large ensembles of particles that result from typical size reduction methods, and we delineate several representative size classes. Microstructural parameters, including cell wall thickness and cell lumen dimensions, are measured directly from micrographs of sectioned biomass. A general constructive solid geometry algorithm is presented that produces models of biomass particles based on these measurements. Next, we employ the parameters obtained from image analysis to construct models of three different particle size classes from two different feedstocks representing a hardwood poplar species (Populus tremuloides, quaking aspen) and a softwood pine (Pinus taeda, loblolly pine). Finally, we demonstrate the utility of the models and the effects explicit microstructure by performing finite-element simulations of intraparticle heat and mass transfer, and the results are compared to similar simulations using traditional simplified geometries. We show how the behavior of particle models with more realistic morphology and explicit microstructure departs from that of spherical models in simulations of transport phenomena and that species-dependent differences in microstructure impact simulation results in some cases. C1 [Ciesielski, Peter N.; Crowley, Michael F.; Donohoe, Bryon S.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Ciesielski, Peter N.; Nimlos, Mark R.; Robichaud, Dave; Foust, Thomas D.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Sanders, Aric W.] NIST, Quantum Elect & Photon Div, Boulder, CO 80305 USA. [Wiggins, Gavin M.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. RP Ciesielski, PN (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM peter.ciesielski@nrel.gov FU Computational Pyrolysis Consortium - U.S. Department of Energy, BioEnergy Technologies Office (BETO); DOE Office of Energy Efficiency and Renewable Energy [DE-AC36-08G028308]; Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997] FX The constructive solid geometry algorithm, model visualization methods, and finite-element simulation portions of this work were supported by the Computational Pyrolysis Consortium funded by the U.S. Department of Energy, BioEnergy Technologies Office (BETO). Computational resources were provided by the National Renewable Energy Sciences Center supported by the DOE Office of Energy Efficiency and Renewable Energy under Contract DE-AC36-08G028308. The imaging and image analysis part of this work was supported by the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0000997. NR 40 TC 9 Z9 9 U1 3 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD JAN PY 2015 VL 29 IS 1 BP 242 EP 254 DI 10.1021/ef502204v PG 13 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA AZ2YB UT WOS:000348094100030 ER PT J AU Gencaga, D Knuth, KH Rossow, WB AF Gencaga, Deniz Knuth, Kevin H. Rossow, William B. TI A Recipe for the Estimation of Information Flow in a Dynamical System SO ENTROPY LA English DT Article DE transfer entropy; information flow; statistical dependency; mutual information; Shannon entropy; information-theoretical quantities; Lorenz equations ID TIME-SERIES ANALYSIS; MUTUAL INFORMATION; STRANGE ATTRACTORS; ENTROPY; DISTRIBUTIONS AB Information-theoretic quantities, such as entropy and mutual information (MI), can be used to quantify the amount of information needed to describe a dataset or the information shared between two datasets. In the case of a dynamical system, the behavior of the relevant variables can be tightly coupled, such that information about one variable at a given instance in time may provide information about other variables at later instances in time. This is often viewed as a flow of information, and tracking such a flow can reveal relationships among the system variables. Since the MI is a symmetric quantity; an asymmetric quantity, called Transfer Entropy (TE), has been proposed to estimate the directionality of the coupling. However, accurate estimation of entropy-based measures is notoriously difficult. Every method has its own free tuning parameter(s) and there is no consensus on an optimal way of estimating the TE from a dataset. We propose a new methodology to estimate TE and apply a set of methods together as an accuracy cross-check to provide a reliable mathematical tool for any given data set. We demonstrate both the variability in TE estimation across techniques as well as the benefits of the proposed methodology to reliably estimate the directionality of coupling among variables. C1 [Gencaga, Deniz; Rossow, William B.] CUNY City Coll, NOAA CREST, New York, NY 10031 USA. [Knuth, Kevin H.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Knuth, Kevin H.] SUNY Albany, Dept Informat, Albany, NY 12222 USA. RP Gencaga, D (reprint author), CUNY City Coll, NOAA CREST, New York, NY 10031 USA. EM d.gencaga@ieee.org; kknuth@albany.edu; wbrossow@ccny.cuny.edu RI Rossow, William/F-3138-2015 FU NASA Cloud Modeling Analysis Initiative NASA GRANT [NNX07AN04G] FX The first author would like to thank Joseph Lizier for various discussions on TE during the beginning of this research. We also would like to thank three anonymous reviewers for their invaluable comments and suggestions. The first author would like to thank Petr Tichavsky for his code for the estimation of MI given at his web page. Also, we would like to thank NASA Cloud Modeling Analysis Initiative NASA GRANT NNX07AN04G for the support of this research. NR 56 TC 1 Z9 1 U1 2 U2 10 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1099-4300 J9 ENTROPY-SWITZ JI Entropy PD JAN PY 2015 VL 17 IS 1 BP 438 EP 470 DI 10.3390/e17010438 PG 33 WC Physics, Multidisciplinary SC Physics GA AZ7MS UT WOS:000348403600023 ER PT J AU Sunda, WG Shertzer, KW AF Sunda, William G. Shertzer, Kyle W. TI Positive feedbacks between bottom-up and top-down controls promote the formation and toxicity of ecosystem disruptive algal blooms: A modeling study (vol 39, pg 342, 2014) SO HARMFUL ALGAE LA English DT Correction C1 [Sunda, William G.] NOAA, Beaufort Lab, Natl Ctr Coastal Ocean Sci, NOS, Beaufort, NC 28516 USA. [Shertzer, Kyle W.] NMFS, Beaufort Lab, Southeast Fisheries Sci Ctr, Beaufort, NC 28516 USA. RP Sunda, WG (reprint author), NOAA, Beaufort Lab, Natl Ctr Coastal Ocean Sci, NOS, 101 Pivers Isl Rd, Beaufort, NC 28516 USA. EM williamg.sunda@gmail.com NR 1 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1568-9883 EI 1878-1470 J9 HARMFUL ALGAE JI Harmful Algae PD JAN PY 2015 VL 41 BP 46 EP 46 DI 10.1016/j.hal.2014.11.004 PG 1 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA AZ2TZ UT WOS:000348086400004 ER PT J AU De Szoeke, SP Edson, JB Marion, JR Fairall, CW Bariteau, L AF De Szoeke, Simon P. Edson, James B. Marion, June R. Fairall, Christopher W. Bariteau, Ludovic TI The MJO and Air-Sea Interaction in TOGA COARE and DYNAMO SO JOURNAL OF CLIMATE LA English DT Article ID MADDEN-JULIAN OSCILLATION; ATMOSPHERE RESPONSE EXPERIMENT; PACIFIC WARM POOL; TROPICAL INTRASEASONAL OSCILLATIONS; TEMPERATURE-GRADIENT APPROXIMATION; STATIC ENERGY BUDGET; SURFACE TEMPERATURE; WESTERN PACIFIC; SUPERPARAMETERIZED CAM; BULK PARAMETERIZATION AB Dynamics of the Madden-Julian Oscillation (DYNAMO) and Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) observations and reanalysis-based surface flux products are used to test theories of atmosphere-ocean interaction that explain the Madden-Julian oscillation (MJO). Negative intraseasonal outgoing longwave radiation, indicating deep convective clouds, is in phase with increased surface wind stress, decreased solar heating, and increased surface turbulent heat flux-mostly evaporation-from the ocean to the atmosphere. Net heat flux cools the upper ocean in the convective phase. Sea surface temperature (SST) warms during the suppressed phase, reaching a maximum before the onset of MJO convection. The timing of convection, surface flux, and SST is consistent from the central Indian Ocean (70 degrees E) to the western Pacific Ocean (160 degrees E). Mean surface evaporation observed in TOGA COARE and DYNAMO (110 W m(-2)) accounts for about half of the moisture supply for the mean precipitation (210 W m(-2) for DYNAMO). Precipitation maxima are an order of magnitude larger than evaporation anomalies, requiring moisture convergence in the mean, and on intraseasonal and daily time scales. Column-integrated moisture increases 2 cm before the convectively active phase over the Research Vessel (R/V) Roger Revelle in DYNAMO, in accordance with MJO moisture recharge theory. Local surface evaporation does not significantly recharge the column water budget before convection. As suggested in moisture mode theories, evaporation increases the moist static energy of the column during convection. Rather than simply discharging moisture from the column, the strongest daily precipitation anomalies in the convectively active phase accompany the increasing column moisture. C1 [De Szoeke, Simon P.; Marion, June R.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Edson, James B.] Univ Connecticut, Groton, CT USA. [Fairall, Christopher W.; Bariteau, Ludovic] NOAA, Earth Syst Res Lab, Div Phys Sci, Boulder, CO USA. RP De Szoeke, SP (reprint author), Oregon State Univ, Coll Earth Ocean & Atmospher Sci, 104 CEOAS Adm Bldg, Corvallis, OR 97331 USA. EM sdeszoek@coas.oregonstate.edu FU NOAA OAR [NA11OAR4310076, NA13OAR4310160]; ONR [N00014-10-1-0299, N00014-10-1-0546, N00014-14-1-0140] FX We thank the three anonymous reviewers. Their helpful and timely reviews significantly improved this work. We thank Sergio Pezoa, Kenneth Moran, Daniel Wolfe, Raymond Kreth, Sasha Perlin, and the crew of the R/V Roger Revelle, without whom collecting these observations would not have been possible. TOGA COARE air-sea fluxes and sea surface data are provided by the Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory (http://rda.ucar.edu/datasets/ds606.1/). Interpolated OLR data are provided by the NOAA/OAR/ESRL/PSD, Boulder, Colorado (http://www.esrl.noaa.gov/psd/). OAFlux data are graciously provided by Woods Hole Oceanographic Institution (http://oaflux.whoi.edu/). The TropFlux data are produced under a collaboration between Laboratoire d'Oceanographie: Experimentation et Approches Numeriques (LOCEAN) from Institute Pierre-Simon Laplace (IPSL, Paris, France) and National Institute of Oceanography/CSIR (NIO, Goa, India), and supported by Institut de Recherche pour le Developpement (IRD, France). ISCCP FD data are available at http://isccp.giss.nasa.gov/projects/flux.html. We gratefully acknowledge support from NOAA OAR Grants NA11OAR4310076 and NA13OAR4310160, and ONR Grants N00014-10-1-0299, N00014-10-1-0546, and N00014-14-1-0140. NR 88 TC 11 Z9 11 U1 3 U2 22 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JAN PY 2015 VL 28 IS 2 BP 597 EP 622 DI 10.1175/JCLI-D-14-00477.1 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ4WB UT WOS:000348220100011 ER PT J AU Yeh, SW Wang, X Wang, CZ Dewitte, B AF Yeh, Sang-Wook Wang, Xin Wang, Chunzai Dewitte, Boris TI On the Relationship between the North Pacific Climate Variability and the Central Pacific El Nino SO JOURNAL OF CLIMATE LA English DT Article ID SEA-SURFACE TEMPERATURE; DIFFERENT IMPACTS; EASTERN-PACIFIC; ENSO; EVENTS; CIRCULATION; OCEAN; OSCILLATION; ANOMALIES; MODOKI AB This study examined connections between the North Pacific climate variability and occurrence of the central Pacific (CP) El Nino for the period from 1950 to 2012. A composite analysis indicated that the relationship between the North Pacific sea surface temperature (SST), along with its overlying atmospheric circulation, and the CP El Nino during the developing and mature phases was changed when the occurrence frequency of the CP El Nino significantly increased after 1990. Empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses of variability in the tropical Pacific and its relationship to the North Pacific show that the North Pacific anomalous SST and the atmospheric variability are more closely associated with the occurrence of the CP El Nino after 1990 than before 1990. There were noticeable differences in terms of the atmospheric variability conditions over the North Pacific, such as the North Pacific Oscillation (NPO)-like atmospheric variability during the spring and its associated SST anomalies during the following winter before 1990 and after 1990. In addition, combined EOF analysis also indicated that the NPO-like atmospheric circulation becomes more effective at playing a role in initiating El Nino after 1990. Consequently, such a change might have been associated with the frequent occurrence of the CP El Nino after 1990. C1 [Yeh, Sang-Wook] Hanyang Univ, Dept Marine Sci & Convergent Technol, Ansan 426791, South Korea. [Wang, Xin] Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Guangzhou, Guangdong, Peoples R China. [Wang, Chunzai] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. [Dewitte, Boris] Lab Etudes Geophys & Oceanog Spatiales, Toulouse, France. RP Yeh, SW (reprint author), Hanyang Univ, Coll Sci & Technol, Dept Marine Sci & Convergent Technol, 1271 Sa 3 Dong, Ansan 426791, South Korea. EM swyeh@hanyang.ac.kr RI Wang, Xin/B-4624-2012; Wang, Chunzai /C-9712-2009 OI Wang, Chunzai /0000-0002-7611-0308 FU Korea Meteorological Administration Research and Development Program [CATER 2012-3041]; National Research Foundation of Korea by Korean Government (MEST) [NRF-2009-C1AAA001-2009-0093042]; National Basic Research Program of China [2013CB430301]; National Natural Science Foundation of China [41422601, 41376025]; CAS/SAFEA International Partnership Program; CNES (Centre National d'Etudes Spatiales) FX This work was funded by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3041, a National Research Foundation of Korea grant funded by the Korean Government (MEST) (NRF-2009-C1AAA001-2009-0093042), the National Basic Research Program of China (2013CB430301), the National Natural Science Foundation of China (Grants 41422601 and 41376025), and the CAS/SAFEA International Partnership Program for Creative Research Teams. The CNES (Centre National d'Etudes Spatiales) is also acknowledged for its support (Modokalt project). NR 59 TC 9 Z9 12 U1 3 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JAN PY 2015 VL 28 IS 2 BP 663 EP 677 DI 10.1175/JCLI-D-14-00137.1 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ4WB UT WOS:000348220100015 ER PT J AU Chiodi, AM Harrison, DE AF Chiodi, Andrew M. Harrison, D. E. TI Equatorial Pacific Easterly Wind Surges and the Onset of La Nina Events SO JOURNAL OF CLIMATE LA English DT Article ID SEA-SURFACE TEMPERATURE; MADDEN-JULIAN OSCILLATION; EL-NINO; TROPICAL PACIFIC; OCEAN RESPONSE; SOUTHERN-OSCILLATION; ATMOSPHERIC RESPONSE; ENSO; BURSTS; MODEL AB The processes responsible for the onset of La Nina events have not received the same attention as those responsible for the onset of El Nino events, for which westerly wind events (WWEs) in the tropical Pacific have been identified as important contributors. Results here show that synoptic-scale surface easterly wind surges (EWSs) play an important role in the onset of La Nina events, akin to the role ofWWEsin the onset of El Nino events. It is found that EWSs are a substantial component of zonal wind stress variance along the equatorial Pacific. Using reanalysis wind stress fields, validated against buoy measurements, 340 EWS events are identified between 1986 and 2012. Their distributions in space, time, and El Nino-Southern Oscillation (ENSO) state are described. About 150 EWSs occur during ENSO-neutral conditions, during the months associated with La Nina initiation and growth (April-December). Composites of changes in sea surface temperature anomaly (SSTA) following these similar to 150 events show statistically significant cooling (0.1 degrees-0.4 degrees C) along the oceanic waveguide that persists for 2-3 months following the EWSs. Experiments with EWS forcing of an ocean general circulation model show SSTA patterns like those in the observations. It is suggested that EWSs play an important role in the onset of La Nina waveguide surface cooling and deserve additional study. C1 Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA. [Chiodi, Andrew M.] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. RP Chiodi, AM (reprint author), NOAA, Pacific Marine Environm Lab, Box 354925,7600 Sand Point Way Ne, Seattle, WA 98115 USA. EM andy.chiodi@noaa.gov RI Harrison, Don/D-9582-2013; Chiodi, Andrew/Q-7818-2016 FU Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA [NA10OAR4320148]; Climate Observations and Monitoring Program, National Oceanic and Atmospheric Administration, U.S. Department of Commerce; NOAA/Pacific Marine Environmental Laboratory (PMEL) FX This manuscript benefitted from the considerable proof reading skills of S. Bigley. The authors thank M. Lengaigne and an anonymous reviewer for their thoughtful reviews and helpful comments, as well as M. Cronin for help obtaining (and efforts to compute make publicly available) the wind stress anomalies based on the TAO/TRITON buoys. This publication is (partially) funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148 and funded by the Climate Observations and Monitoring Program, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Support was also provided by the NOAA/Pacific Marine Environmental Laboratory (PMEL). NR 60 TC 8 Z9 8 U1 3 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JAN PY 2015 VL 28 IS 2 BP 776 EP 792 DI 10.1175/JCLI-D-14-00227.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ4WB UT WOS:000348220100021 ER PT J AU Fournet, ME Szabo, A Mellinger, DK AF Fournet, Michelle E. Szabo, Andy Mellinger, David K. TI Repertoire and classification of non-song calls in Southeast Alaskan humpback whales (Megaptera novaeangliae) SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID BOWHEAD WHALE; ACOUSTIC REPERTOIRE; BALAENA-MYSTICETUS; SOUND PRODUCTION; VOCALIZATIONS; BEHAVIOR; POPULATION AB On low-latitude breeding grounds, humpback whales produce complex and highly stereotyped songs as well as a range of non-song sounds associated with breeding behaviors. While on their Southeast Alaskan foraging grounds, humpback whales produce a range of previously unclassified non-song vocalizations. This study investigates the vocal repertoire of Southeast Alaskan humpback whales from a sample of 299 non-song vocalizations collected over a 3-month period on foraging grounds in Frederick Sound, Southeast Alaska. Three classification systems were used, including aural spectrogram analysis, statistical cluster analysis, and discriminant function analysis, to describe and classify vocalizations. A hierarchical acoustic structure was identified; vocalizations were classified into 16 individual call types nested within four vocal classes. The combined classification method shows promise for identifying variability in call stereotypy between vocal groupings and is recommended for future classification of broad vocal repertoires. (C) 2015 Acoustical Society of America. C1 [Fournet, Michelle E.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97333 USA. [Szabo, Andy] Alaska Whale Fdn, Petersburg, AK 99833 USA. [Mellinger, David K.] Oregon State Univ, Cooperat Inst Marine Resources Studies, Newport, OR 97365 USA. [Mellinger, David K.] NOAA, Pacific Marine Environm Lab, Newport, OR 97365 USA. RP Fournet, ME (reprint author), Oregon State Univ, Coll Earth Ocean & Atmospher Sci, 104 CEOAS Adm Bldg, Corvallis, OR 97333 USA. EM michelle.fournet@gmail.com OI Fournet, Michelle/0000-0001-7875-1857 FU Alaska Whale Foundation; Hatfield Marine Science Center; Office of Naval Research [N00014-11-IP20086]; Naval Postgraduate School [N00244-11-1-0026] FX This work was supported by the Alaska Whale Foundation, by the Hatfield Marine Science Center, by Office of Naval Research Grant N00014-11-IP20086 and Naval Postgraduate School Grant N00244-11-1-0026. This is PMEL contribution 4160. We extend special thanks to the Juneau Lighthouse Association for use of the facilities, and to the numerous interns who donated their time and energy to this research. Additional thanks go to Christine Gabriele for comments on earlier drafts of this manuscript. NR 37 TC 2 Z9 2 U1 3 U2 23 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD JAN PY 2015 VL 137 IS 1 BP 1 EP 10 DI 10.1121/1.4904504 PG 10 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA AZ6ZX UT WOS:000348369000021 PM 25618033 ER PT J AU Al Rashidi, MJ Davis, AC Sarathy, SM AF Al Rashidi, Mariam J. Davis, Alexander C. Sarathy, S. Mani TI Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Dibutyl ether; Combustion; Computational kinetics; Transition state theory ID DENSITY-FUNCTIONAL THEORY; DIMETHYL ETHER OXIDATION; FLOW REACTORS; SHOCK-TUBE; AB-INITIO; PYROLYSIS; RADICALS; FUELS; ISOMERIZATION; DECOMPOSITION AB This paper investigates the high-temperature combustion kinetics of n-dibutyl ether (n-DBE), including unimolecular decomposition, H-abstraction by H, H-migration, and C-C/C-O beta-scission reactions of the DBE radicals. The energetics of H-abstraction by OH radicals is also studied. All rates are determined computationally using the CBS-QB3 and G4 composite methods in conjunction with conventional transition state theory. The B3LYP/6-311++ G(2df,2pd) method is used to optimize the geometries and calculate the frequencies of all reactive species and transition states for use in ChemRate. Some of the rates calculated in this study vary markedly from those obtained for similar reactions of alcohols or alkanes, particularly those pertaining to unimolecular decomposition and beta-scission at the alpha-beta C-C bond. These variations show that analogies to alkanes and alcohols are, in some cases, inappropriate means of estimating the reaction rates of ethers. This emphasizes the need to establish valid rates through computation or experimentation. Such studies are especially important given that ethers exhibit promising biofuel and fuel additive characteristics. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Al Rashidi, Mariam J.; Sarathy, S. Mani] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal, Saudi Arabia. [Davis, Alexander C.] NIST, Gaithersburg, MD 20899 USA. RP Al Rashidi, MJ (reprint author), King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Al Kindi Bldg Level 4,Room 4326-WS11, Jeddah 239556900, Saudi Arabia. EM mariam.elrachidi@kaust.edu.sa RI Sarathy, S. Mani/M-5639-2015; OI Sarathy, S. Mani/0000-0002-3975-6206; El Rachidi, Mariam/0000-0001-7392-6777 NR 35 TC 3 Z9 3 U1 6 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 EI 1873-2704 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2015 VL 35 BP 385 EP 392 DI 10.1016/j.proci.2014.05.109 PN 1 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA AZ2EN UT WOS:000348047500034 ER PT J AU Newale, AS Rankin, BA Lalit, HU Gore, JP McDermott, RJ AF Newale, Ashish S. Rankin, Brent A. Lalit, Harshad U. Gore, Jay P. McDermott, Randall J. TI Quantitative infrared imaging of impinging turbulent buoyant diffusion flames SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Turbulent buoyant flames; Impinging flames; Flame radiation; Fire Dynamics Simulator; Infrared imaging ID CONVECTIVE HEAT-TRANSFER; FIRE-PLUME IMPINGEMENT; JET; SIMULATION; MODEL AB A buoyant fire impinging on a horizontal ceiling at a certain distance from the fuel source occurs in many practical fire scenarios. Motivated by this application, infrared radiation from buoyant diffusion flames with and without impingement on a flat plate is studied using a quantitative comparison of measured and simulated images. The measured quantitative images of the radiation intensity are acquired using a calibrated high speed camera. Simulated radiation intensities are rendered in the form of images and compared quantitatively with the measured images. The simulated radiation intensities are obtained using the radiative transfer equation with local absorption coefficients evaluated using a narrowband radiation model. The instantaneous local species concentrations, soot volume fractions, and temperatures necessary for these simulations are calculated using the Fire Dynamics Simulator (FDS) version 6. The measured images reveal that the characteristic necking and bulging (7 Hz +/- 1 Hz) of the free buoyant flame is suppressed to a large extent by impingement on the plate. The roll-up vortices in the impinging flame are much smaller than those in the free flame. The stagnation point boundary layer inferred from the computed images is thicker at some instances than that inferred from the measurements. Qualitative and quantitative comparisons between the measured and computed infrared images for both the free and the impinging fires reveal many similarities as well as differences useful for model evaluation. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Newale, Ashish S.; Rankin, Brent A.; Gore, Jay P.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. [Lalit, Harshad U.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. [Newale, Ashish S.] CD Adapco, Houston, TX 77042 USA. [Rankin, Brent A.] Innovat Sci Solut Inc, Dayton, OH 45459 USA. [McDermott, Randall J.] NIST, Fire Res Div, Gaithersburg, MD 20899 USA. RP Newale, AS (reprint author), CD Adapco, 11000 Richmond Ave,Suite 110, Houston, TX 77042 USA. EM ashish.newale@gmail.com RI Rankin, Brent/A-1598-2017 OI Rankin, Brent/0000-0002-5967-9527 NR 21 TC 1 Z9 1 U1 3 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 EI 1873-2704 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2015 VL 35 BP 2647 EP 2655 DI 10.1016/j.proci.2014.05.115 PN 3 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA AZ2FH UT WOS:000348049500019 ER PT J AU Takahashi, F Katta, VR Linteris, GT Babushok, VI AF Takahashi, Fumiaki Katta, Viswanath R. Linteris, Gregory T. Babushok, Valeri I. TI Combustion inhibition and enhancement of cup-burner flames by CF3Br, C2HF5, C2HF3Cl2, and C3H2F3Br SO PROCEEDINGS OF THE COMBUSTION INSTITUTE LA English DT Article DE Aircraft cargo-bay fire suppression; Halon 1301 replacement; HFC-125; Diffusion flame stabilization; Reaction kernel ID ENRICHED MICROGRAVITY ENVIRONMENTS; METHANE DIFFUSION FLAMES; FLUORINATED HYDROCARBONS; CARBON-DIOXIDE; COFLOW AIR; EXTINGUISHMENT; SUPPRESSION; MIXTURES; REACTOR AB Numerical simulations of cup-burner flames in normal Earth gravity have been performed to study the combustion inhibition and unwanted enhancement by fire-extinguishing agents CF3Br (Halon 1301) and some potential replacements (C2HF5, C2HF3Cl2, and C3H2F3Br). A propane-ethanol-water mixture, prescribed for a Federal Aviation Administration (FAA) aerosol can explosion simulator test, was used as the fuel. The time-dependent, two-dimensional numerical code, which includes a detailed kinetic model (up to 241 species and 3918 reactions), diffusive transport, and a gray-gas radiation model, revealed unique two-zone flame structure and predicted the minimum extinguishing concentration of agent when added to the air stream. Despite striking differences in the flame shape, the agent effects were similar to, but stronger than, those in microgravity flames studied previously (for two of the agents). The peak reactivity spot (i.e., reaction kernel) at the flame base stabilized a trailing flame, which was inclined inwardly by a buoyancy-induced entrainment flow. As the volume fraction of agent in the coflow (X-a) increased gradually: (1) the premixed-like reaction kernel weakened; (2) the flame base detached from the burner rim, oscillated (particularly for CF3Br), until finally, blowoff-type extinguishment occurred; (3) the calculated maximum flame temperature remained nearly constant (approximate to 1800 K) or mildly increased; and (4) the total heat release of the entire flame decreased (inhibited) for CF3Br but increased (enhanced) for the halon replacements. In the trailing flame with C2HF5, a two-zone flame structure (with two heat-release-rate peaks) developed: in the inner zone, H2O (a product of hydrocarbon-O-2 combustion and a fuel component) was converted further to HF and CF2O through exothermic reactions occurring in the outer zone, where exothermic reactions of the inhibitor also released heat; CO2 was formed in-between. Thus, addition of C-2/HF5 resulted in unusual (non-chain branching) reactions and increased total heat release (combustion enhancement) primarily in the trailing diffusion flame. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Takahashi, Fumiaki] Case Western Reserve Univ, Cleveland, OH 44135 USA. [Katta, Viswanath R.] Innovat Sci Solut Inc, Dayton, OH 45440 USA. [Linteris, Gregory T.; Babushok, Valeri I.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. RP Takahashi, F (reprint author), Case Western Reserve Univ, NASA, Glenn Res Ctr, MS 110-3,21000 Brookpark Rd, Cleveland, OH 44135 USA. EM fxt13@case.edu FU Boeing Company FX This work was supported by The Boeing Company. NR 44 TC 5 Z9 5 U1 3 U2 18 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1540-7489 EI 1873-2704 J9 P COMBUST INST JI Proc. Combust. Inst. PY 2015 VL 35 BP 2741 EP 2748 DI 10.1016/j.proci.2014.05.114 PN 3 PG 8 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA AZ2FH UT WOS:000348049500030 ER PT J AU Yong, B Chen, B Hong, Y Gourley, JJ Li, Z AF Yong, Bin Chen, Bo Hong, Yang Gourley, Jonathan J. Li, Zhe TI Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm SO REMOTE SENSING LA English DT Article DE satellite precipitation; TRMM; GPM; IMERG; TMPA; hydrological application ID REAL-TIME; LOW LATITUDES; PRODUCTS; RAINFALL; BASINS; TRMM; VALIDATION; LAND AB The impact of one or two missing passive microwave (PMW) input sensors on the end product of multi-satellite precipitation products is an interesting but obscure issue for both algorithm developers and data users. On 28 January 2013, the Version-7 TRMM Multi-satellite Precipitation Analysis (TMPA) products were reproduced and re-released by National Aeronautics and Space Administration (NASA) Goddard Space Flight Center because the Advanced Microwave Sounding Unit-B (AMSU-B) and the Special Sensor Microwave Imager-Sounder-F16 (SSMIS-F16) input data were unintentionally disregarded in the prior retrieval. Thus, this study investigates the sensitivity of TMPA algorithm results to missing PMW sensors by intercomparing the "early" and "late" Version-7 TMPA real-time (TMPA-RT) precipitation estimates (i.e., without and with AMSU-B, SSMIS-F16 sensors) with an independent high-density gauge network of 200 tipping-bucket rain gauges over the Chinese Jinghe river basin (45,421 km(2)). The retrieval counts and retrieval frequency of various PMW and Infrared (IR) sensors incorporated into the TMPA system were also analyzed to identify and diagnose the impacts of sensor availability on the TMPA-RT retrieval accuracy. Results show that the incorporation of AMSU-B and SSMIS-F16 has substantially reduced systematic errors. The improvement exhibits rather strong seasonal and topographic dependencies. Our analyses suggest that one or two single PMW sensors might play a key role in affecting the end product of current combined microwave-infrared precipitation estimates. This finding supports algorithm developers' current endeavor in spatiotemporally incorporating as many PMW sensors as possible in the multi-satellite precipitation retrieval system called Integrated Multi-satellitE Retrievals for Global Precipitation Measurement mission (IMERG). This study also recommends users of satellite precipitation products to switch to the newest Version-7 TMPA datasets and the forthcoming IMERG products whenever they become available. C1 [Yong, Bin; Chen, Bo] Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China. [Yong, Bin] SOA, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Zhejiang, Peoples R China. [Hong, Yang] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA. [Gourley, Jonathan J.] NOAA, Natl Severe Storms Lab, Norman, OK 73072 USA. [Li, Zhe] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China. RP Yong, B (reprint author), Hohai Univ, State Key Lab Hydrol Water Resources & Hydraul En, Nanjing 210098, Jiangsu, Peoples R China. EM yongbin_hhu@126.com; chenbo_hhu@126.com; yanghong@ou.edu; jj.gourley@noaa.gov; lizhe.tu@gmail.com RI Gourley, Jonathan/C-7929-2016; Hong, Yang/D-5132-2009 OI Gourley, Jonathan/0000-0001-7363-3755; Hong, Yang/0000-0001-8720-242X FU National Natural Science Foundation of China [51379056, 51190090, 91437214]; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography [SOED1414]; 111 Project [B08048]; Key Laboratory of Water Science and Engineering; Nanjing Hydraulic Research Institute [Yk9414010]; State Key Laboratory of Remote Sensing Science [OFSLRSS201317] FX This work was financially supported by National Natural Science Foundation of China (51379056, 51190090, 91437214) and Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography (SOED1414). Also this work is partially sponsored by the 111 Project (B08048), Key Laboratory of Water Science and Engineering, Nanjing Hydraulic Research Institute (Yk9414010), and State Key Laboratory of Remote Sensing Science (OFSLRSS201317). The authors wish to thank George Huffman for his helpful discussions and four anonymous reviewers for their constructive comments on the earlier version, which greatly improved the quality of this paper. NR 20 TC 1 Z9 1 U1 3 U2 17 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD JAN PY 2015 VL 7 IS 1 BP 668 EP 683 DI 10.3390/rs70100668 PG 16 WC Remote Sensing SC Remote Sensing GA AZ7MB UT WOS:000348401900032 ER PT J AU Alexe, M Bergamaschi, P Segers, A Detmers, R Butz, A Hasekamp, O Guerlet, S Parker, R Boesch, H Frankenberg, C Scheepmaker, RA Dlugokencky, E Sweeney, C Wofsy, SC Kort, EA AF Alexe, M. Bergamaschi, P. Segers, A. Detmers, R. Butz, A. Hasekamp, O. Guerlet, S. Parker, R. Boesch, H. Frankenberg, C. Scheepmaker, R. A. Dlugokencky, E. Sweeney, C. Wofsy, S. C. Kort, E. A. TI Inverse modelling of CH4 emissions for 2010-2011 using different satellite retrieval products from GOSAT and SCIAMACHY SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID ATMOSPHERIC METHANE; SURFACE MEASUREMENTS; DATA ASSIMILATION; CARBON-DIOXIDE; TRANSPORT; CHEMISTRY; SYSTEM; GASES; NORTH; SCALE AB At the beginning of 2009 new space-borne observations of dry-air column-averaged mole fractions of atmospheric methane (XCH4) became available from the Thermal And Near infrared Sensor for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS) instrument on board the Greenhouse Gases Observing SATellite (GOSAT). Until April 2012 concurrent methane (CH4) retrievals were provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument on board the ENVironmental SATellite (ENVISAT). The GOSAT and SCIAMACHY XCH4 retrievals can be compared during the period of overlap. We estimate monthly average CH4 emissions between January 2010 and December 2011, using the TM5-4DVAR inverse modelling system. In addition to satellite data, high-accuracy measurements from the Cooperative Air Sampling Network of the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) are used, providing strong constraints on the remote surface atmosphere. We discuss five inversion scenarios that make use of different GOSAT and SCIAMACHY XCH4 retrieval products, including two sets of GOSAT proxy retrievals processed independently by the Netherlands Institute for Space Research (SRON)/Karlsruhe Institute of Technology (KIT), and the University of Leicester (UL), and the RemoTeC "Full-Physics" (FP) XCH4 retrievals available from SRON/KIT. The GOSAT-based inversions show significant reductions in the root mean square (rms) difference between retrieved and modelled XCH4, and require much smaller bias corrections compared to the inversion using SCIAMACHY retrievals, reflecting the higher precision and relative accuracy of the GOSAT XCH4. Despite the large differences between the GOSAT and SCIAMACHY retrievals, 2-year average emission maps show overall good agreement among all satellite-based inversions, with consistent flux adjustment patterns, particularly across equatorial Africa and North America. Over North America, the satellite inversions result in a significant redistribution of CH4 emissions from North-East to South-Central United States. This result is consistent with recent independent studies suggesting a systematic underestimation of CH4 emissions from North American fossil fuel sources in bottom-up inventories, likely related to natural gas production facilities. Furthermore, all four satellite inversions yield lower CH4 fluxes across the Congo basin compared to the NOAA-only scenario, but higher emissions across tropical East Africa. The GOSAT and SCIAMACHY inversions show similar performance when validated against independent shipboard and aircraft observations, and XCH4 retrievals available from the Total Carbon Column Observing Network (TCCON). C1 [Alexe, M.; Bergamaschi, P.] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, Air & Climate Unit, I-21020 Ispra, Italy. [Segers, A.] Netherlands Org Appl Sci Res TNO, Utrecht, Netherlands. [Detmers, R.; Hasekamp, O.; Guerlet, S.; Scheepmaker, R. A.] Netherlands Inst Space Res SRON, Utrecht, Netherlands. [Parker, R.; Boesch, H.] Univ Leicester, Space Res Ctr, Earth Observat Sci Grp, Leicester, Leics, England. [Frankenberg, C.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Dlugokencky, E.; Sweeney, C.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO USA. [Sweeney, C.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Wofsy, S. C.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Wofsy, S. C.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Butz, A.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Kort, E. A.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Alexe, M (reprint author), Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, Air & Climate Unit, I-21020 Ispra, Italy. EM mihai.alexe@jrc.ec.europa.eu RI Kort, Eric/F-9942-2012; Butz, Andre/A-7024-2013; Boesch, Hartmut/G-6021-2012; Frankenberg, Christian/A-2944-2013 OI Kort, Eric/0000-0003-4940-7541; Butz, Andre/0000-0003-0593-1608; Frankenberg, Christian/0000-0002-0546-5857 FU NASA's Carbon Cycle Program [NNX11AG01G]; Orbiting Carbon Observatory Program; DOE/ARM Program; EU; Senate of Bremen; National Institute for Environmental Studies (NIES), Japan; European Commission [218793, 283576]; NERC National Centre for Earth Observation; ESA Climate Change Initiative; Emmy-Noether programme of the Deutsche Forschungsgemeinschaft (DFG) [BU2599/1-1] FX The authors thank the TCCON principle investigators for making their measurement data available. The TCCON XCH4 data (GGG2012) were obtained from the TCCON Data Archive, operated by the California Institute of Technology, and hosted at the website http://tccon.ipac.caltech.edu/. US funding for TCCON comes from NASA's Carbon Cycle Program, grant number NNX11AG01G, the Orbiting Carbon Observatory Program, and the DOE/ARM Program. The European TCCON groups involved in this study acknowledge financial support by the EU infrastructure project InGOS. The University of Bremen acknowledges financial support of the Bialystok and Orleans TCCON sites from the Senate of Bremen and EU projects IMECC, GEOmon and InGOS, as well as maintenance and logistical work provided by AeroMeteo Service (Bialystok) and the RAMCES team at LSCE (Gif-sur-Yvette, France), and additional operational funding from the National Institute for Environmental Studies (NIES), Japan. The authors acknowledge Nicholas Deutscher for his kind assistance with the TCCON data processing. CarbonTracker CT2013 results were provided by NOAA ESRL, Boulder, Colorado, USA from the website at http://carbontracker.noaa.gov. This work has been supported by the European Commission Seventh Framework Programme (FP7/2007-2013) projects MACC under grant agreement 218793 and MACC-II under grant agreement 283576. The ECMWF meteorological data has been preprocessed by Philippe Le Sager into the TM5 input format. We thank Greet Janssens-Maenhout for providing the EDGARv4.2 emission inventory, and Christoph Bruhl for providing the stratospheric CH4 sinks from the ECHAM5/MESSy1 model. ECMWF has kindly provided the necessary computing resources, under the special project "Global and Regional Inverse Modelling of Atmospheric CH4 and N2O" (2012-2014). H. Boesch and R. Parker acknowledge funding by the NERC National Centre for Earth Observation and the ESA Climate Change Initiative. Andre Butz acknowledges support by the Emmy-Noether programme of the Deutsche Forschungsgemeinschaft (DFG) through grant number BU2599/1-1 (RemoteC). Finally, we thank Peter Rayner and the anonymous reviewers for their insightful comments on the manuscript. NR 66 TC 22 Z9 22 U1 3 U2 55 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 1 BP 113 EP 133 DI 10.5194/acp-15-113-2015 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ0TQ UT WOS:000347958200008 ER PT J AU Wyant, MC Bretherton, CS Wood, R Carmichael, GR Clarke, A Fast, J George, R Gustafson, WI Hannay, C Lauer, A Lin, Y Morcrette, JJ Mulcahy, J Saide, PE Spak, SN Yang, Q AF Wyant, M. C. Bretherton, C. S. Wood, R. Carmichael, G. R. Clarke, A. Fast, J. George, R. Gustafson, W. I., Jr. Hannay, C. Lauer, A. Lin, Y. Morcrette, J-J Mulcahy, J. Saide, P. E. Spak, S. N. Yang, Q. TI Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; SOUTHEAST PACIFIC STRATOCUMULUS; GENERAL-CIRCULATION MODELS; WRF-CHEM; CARBONACEOUS AEROSOL; RADIATIVE PROPERTIES; MICROPHYSICS SCHEME; SINGLE-COLUMN; CLIMATE MODEL; FOSSIL-FUEL AB A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October-November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20 degrees S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol-cloud interactions in the MBL, though quantitative estimation of aerosol-cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain. C1 [Wyant, M. C.; Bretherton, C. S.; Wood, R.; George, R.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Carmichael, G. R.; Saide, P. E.; Spak, S. N.] Univ Iowa, CGRER, Iowa City, IA USA. [Clarke, A.] Univ Hawaii Manoa, SOEST, Honolulu, HI 96822 USA. [Fast, J.; Gustafson, W. I., Jr.; Yang, Q.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hannay, C.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Lauer, A.] Univ Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USA. [Lin, Y.] Geophys Fluid Dynam Lab, Princeton, NJ USA. [Morcrette, J-J] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Mulcahy, J.] Met Off, Exeter, Devon, England. RP Wyant, MC (reprint author), Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. EM mwyant@atmos.washington.edu RI Gustafson, William/A-7732-2008; Spak, Scott/B-7331-2008; Yang, Qing/H-3275-2011; Wood, Robert/A-2989-2008; lin, yanluan/A-6333-2015 OI Gustafson, William/0000-0001-9927-1393; Spak, Scott/0000-0002-8545-1411; Yang, Qing/0000-0003-2067-5999; Wood, Robert/0000-0002-1401-3828; FU NASA [NNX08AL05G, NNX11AI52G]; EPA [83503701]; National Center for Research Resources (NCRR), a part of the National Institutes of Health (NIH) [UL1RR024979]; Fulbright-CONICYT [15093810]; US National Oceanic and Atmospheric Administration (NOAA) Atmospheric Composition and Climate Program [NA10AANRG0083/56091]; DOE [DE-AC05-76RL01830] FX The authors wish to thank Grant Allen for his providing of aircraft data for many of the figures. Thanks also to Romain Blot for providing sea-salt measurements. Thanks to Matt Lebsock for providing CloudSat precipitation data and Dan Grosvenor for his assistance. The comments of two anonymous reviewers helped improve this paper. The portion of this work conducted at the University of Iowa was carried out with the aid of NASA grants NNX08AL05G and NNX11AI52G, EPA grant 83503701, grant number UL1RR024979 from the National Center for Research Resources (NCRR), a part of the National Institutes of Health (NIH), and Fulbright-CONICYT scholarship number 15093810. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the founding institutions. Funding for Pacific Northwest National Laboratory (PNNL) contributions to this research has been provided by the US National Oceanic and Atmospheric Administration (NOAA) Atmospheric Composition and Climate Program (NA10AANRG0083/56091). PNNL is operated for the DOE by Battelle Memorial Institute under contract no. DE-AC05-76RL01830. NR 96 TC 8 Z9 8 U1 3 U2 32 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 1 BP 153 EP 172 DI 10.5194/acp-15-153-2015 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ0TQ UT WOS:000347958200010 ER PT J AU Sessions, WR Reid, JS Benedetti, A Colarco, PR da Silva, A Lu, S Sekiyama, T Tanaka, TY Baldasano, JM Basart, S Brooks, ME Eck, TF Iredell, M Hansen, JA Jorba, OC Juang, HMH Lynch, P Morcrette, JJ Moorthi, S Mulcahy, J Pradhan, Y Razinger, M Sampson, CB Wang, J Westphal, DL AF Sessions, W. R. Reid, J. S. Benedetti, A. Colarco, P. R. da Silva, A. Lu, S. Sekiyama, T. Tanaka, T. Y. Baldasano, J. M. Basart, S. Brooks, M. E. Eck, T. F. Iredell, M. Hansen, J. A. Jorba, O. C. Juang, H-M H. Lynch, P. Morcrette, J-J Moorthi, S. Mulcahy, J. Pradhan, Y. Razinger, M. Sampson, C. B. Wang, J. Westphal, D. L. TI Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME) SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID SEA-SALT AEROSOL; BIOMASS BURNING EMISSIONS; TROPICAL CYCLONE WINDS; ATMOSPHERIC DUST CYCLE; INDO-GANGETIC PLAINS; FOREST-FIRE SMOKE; SAHARAN AIR LAYER; OPTICAL DEPTH; DATA ASSIMILATION; TROPOSPHERIC AEROSOL AB Here we present the first steps in developing a global multi-model aerosol forecasting ensemble intended for eventual operational and basic research use. Drawing from members of the International Cooperative for Aerosol Prediction (ICAP) latest generation of quasi-operational aerosol models, 5-day aerosol optical thickness (AOT) forecasts are analyzed for December 2011 through November 2012 from four institutions: European Centre for Medium-Range Weather Forecasts (ECMWF), Japan Meteorological Agency (JMA), NASA Goddard Space Flight Center (GSFC), and Naval Research Lab/Fleet Numerical Meteorology and Oceanography Center (NRL/FNMOC). For dust, we also include the National Oceanic and Atmospheric Administration-National Geospatial Advisory Committee (NOAA NGAC) product in our analysis. The Barcelona Supercomputing Centre and UK Met Office dust products have also recently become members of ICAP, but have insufficient data to be included in this analysis period. A simple consensus ensemble of member and mean AOT fields for modal species (e.g., fine and coarse mode, and a separate dust ensemble) is used to create the ICAP Multi-Model Ensemble (ICAP-MME). The ICAP-MME is run daily at 00:00 UTC for 6-hourly forecasts out to 120 h. Basing metrics on comparisons to 21 regionally representative Aerosol Robotic Network (AERONET) sites, all models generally captured the basic aerosol features of the globe. However, there is an overall AOT low bias among models, particularly for high AOT events. Biomass burning regions have the most diversity in seasonal average AOT. The Southern Ocean, though low in AOT, nevertheless also has high diversity. With regard to root mean square error (RMSE), as expected the ICAP-MME placed first over all models worldwide, and was typically first or second in ranking against all models at individual sites. These results are encouraging; furthermore, as more global operational aerosol models come online, we expect their inclusion in a robust operational multi-model ensemble will provide valuable aerosol forecasting guidance. C1 [Sessions, W. R.; Lynch, P.] CSC Inc, Monterey, CA USA. [Reid, J. S.; Hansen, J. A.; Sampson, C. B.; Westphal, D. L.] Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [Benedetti, A.; Morcrette, J-J; Razinger, M.] European Ctr Medium Range Weather Forecasts Readi, Reading, Berks, England. [Colarco, P. R.; da Silva, A.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Lu, S.; Iredell, M.; Juang, H-M H.; Moorthi, S.; Wang, J.] NOAA NCEP, College Pk, MD USA. [Sekiyama, T.; Tanaka, T. Y.] Japan Meteorol Agcy, Meteorol Res Inst, Atmospher Environm & Appl Meteorol Res Dept, Tsukuba, Ibaraki, Japan. [Baldasano, J. M.; Basart, S.; Jorba, O. C.] Barcelona Supercomp Ctr, Ctr Nacl Supercomp, Earth Sci Dept, Barcelona, Spain. [Brooks, M. E.; Mulcahy, J.; Pradhan, Y.] Met Off, Exeter, Devon, England. [Eck, T. F.] NASA, Goddard Space Flight Ctr, USRA, Greenbelt, MD 20771 USA. [Wang, J.] IM Syst Grp Inc, Rockville, MD USA. RP Reid, JS (reprint author), Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. EM jeffrey.reid@nrlmry.navy.mil RI Reid, Jeffrey/B-7633-2014; Brooks, Malcolm/E-7466-2011; Colarco, Peter/D-8637-2012; OI Reid, Jeffrey/0000-0002-5147-7955; Brooks, Malcolm/0000-0002-4773-8630; Colarco, Peter/0000-0003-3525-1662; Jorba, Oriol/0000-0001-5872-0244; Basart, Sara/0000-0002-9821-8504; Pradhan, Yaswant/0000-0002-3680-4751 FU Office of Naval Research [code 322]; MACC-II project - European Commission under the EU [283576]; Environmental Research and Technology Development Fund of the Ministry of the Environment (MOE) of Japan [B-1202]; Spanish Government [CGL2010/19652, CSD2007-0050]; Severo Ochoa Program [SEV-2011-00067] FX The authors are greatly indebted to their individual programs for supporting ICAP and the development of the multi-model ensemble. We recognize and appreciate the countless researchers and computer engineers whose work supports the development and distribution of aerosol forecasts. As data assimilation is key to model performance, we are grateful to NASA LANCE-MODIS for providing MODIS near-real-time data used in nearly all of the models here. We also acknowledge the effort of the AERONET team (project leader Brent Holben) and the various site principal investigators and site managers of the numerous AERONET sites utilized in this study. Funding for the development of the construction of ICAP-MME was provided by the Office of Naval Research, code 322. Angela Benedetti, Jean-Jacques Morcrette and Miha Razinger were supported through the MACC-II project, which is funded by the European Commission under the EU Seventh Research Framework Programme, contract number 283576. MASINGAR is developed in the Meteorological Research Institute of Japan Meteorological Agency, and a part of the development was funded by the Environmental Research and Technology Development Fund (B-1202) of the Ministry of the Environment (MOE) of Japan. NAAPS development is supported by the Office of Naval Research code 322, and PMW-120. NGAC development has been supported by Joint Center for Satellite Data Assimilation, NASA Applied Science Program, and NOAA National Weather Service. NMMB/BSC-CTM development is supported by the Spanish Government under grants CGL2010/19652, CSD2007-0050 and the grant SEV-2011-00067 of Severo Ochoa Program. NR 147 TC 15 Z9 15 U1 1 U2 14 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 1 BP 335 EP 362 DI 10.5194/acp-15-335-2015 PG 28 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ0TQ UT WOS:000347958200020 ER PT J AU Ahmadov, R McKeen, S Trainer, M Banta, R Brewer, A Brown, S Edwards, PM de Gouw, JA Frost, GJ Gilman, J Helmig, D Johnson, B Karion, A Koss, A Langford, A Lerner, B Olson, J Oltmans, S Peischl, J Petron, G Pichugina, Y Roberts, JM Ryerson, T Schnell, R Senff, C Sweeney, C Thompson, C Veres, PR Warneke, C Wild, R Williams, EJ Yuan, B Zamora, R AF Ahmadov, R. McKeen, S. Trainer, M. Banta, R. Brewer, A. Brown, S. Edwards, P. M. de Gouw, J. A. Frost, G. J. Gilman, J. Helmig, D. Johnson, B. Karion, A. Koss, A. Langford, A. Lerner, B. Olson, J. Oltmans, S. Peischl, J. Petron, G. Pichugina, Y. Roberts, J. M. Ryerson, T. Schnell, R. Senff, C. Sweeney, C. Thompson, C. Veres, P. R. Warneke, C. Wild, R. Williams, E. J. Yuan, B. Zamora, R. TI Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID COLD-AIR-POOL; VOLATILE ORGANIC-COMPOUNDS; GREEN RIVER-BASIN; UNITED-STATES; ANTHROPOGENIC EMISSIONS; TROPOSPHERIC OZONE; MOUNTAIN BASIN; UINTAH BASIN; METHANE; EVOLUTION AB Recent increases in oil and natural gas (NG) production throughout the western US have come with scientific and public interest in emission rates, air quality and climate impacts related to this industry. This study uses a regional-scale air quality model (WRF-Chem) to simulate high ozone (O-3) episodes during the winter of 2013 over the Uinta Basin (UB) in northeastern Utah, which is densely populated by thousands of oil and NG wells. The high-resolution meteorological simulations are able qualitatively to reproduce the wintertime cold pool conditions that occurred in 2013, allowing the model to reproduce the observed multi-day buildup of atmospheric pollutants and the accompanying rapid photochemical ozone formation in the UB. Two different emission scenarios for the oil and NG sector were employed in this study. The first emission scenario (bottom-up) was based on the US Environmental Protection Agency (EPA) National Emission Inventory (NEI) (2011, version 1) for the oil and NG sector for the UB. The second emission scenario (top-down) was based on estimates of methane (CH4) emissions derived from in situ aircraft measurements and a regression analysis for multiple species relative to CH4 concentration measurements in the UB. Evaluation of the model results shows greater underestimates of CH4 and other volatile organic compounds (VOCs) in the simulation with the NEI-2011 inventory than in the case when the top-down emission scenario was used. Unlike VOCs, the NEI-2011 inventory significantly overestimates the emissions of nitrogen oxides (NOx), while the top-down emission scenario results in a moderate negative bias. The model simulation using the top-down emission case captures the buildup and afternoon peaks observed during high O-3 episodes. In contrast, the simulation using the bottom-up inventory is not able to reproduce any of the observed high O-3 concentrations in the UB. Simple emission reduction scenarios show that O-3 production is VOC sensitive and NOx insensitive within the UB. The model results show a disproportionate contribution of aromatic VOCs to O-3 formation relative to all other VOC emissions. The model analysis reveals that the major factors driving high wintertime O-3 in the UB are shallow boundary layers with light winds, high emissions of VOCs from oil and NG operations compared to NOx emissions, enhancement of photolysis fluxes and reduction of O-3 loss from deposition due to snow cover. C1 [Ahmadov, R.; McKeen, S.; Edwards, P. M.; de Gouw, J. A.; Frost, G. J.; Gilman, J.; Karion, A.; Koss, A.; Lerner, B.; Olson, J.; Oltmans, S.; Peischl, J.; Petron, G.; Pichugina, Y.; Senff, C.; Sweeney, C.; Veres, P. R.; Warneke, C.; Wild, R.; Yuan, B.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Ahmadov, R.; McKeen, S.; Trainer, M.; Banta, R.; Brewer, A.; Brown, S.; Edwards, P. M.; de Gouw, J. A.; Frost, G. J.; Gilman, J.; Johnson, B.; Karion, A.; Koss, A.; Langford, A.; Lerner, B.; Olson, J.; Oltmans, S.; Peischl, J.; Petron, G.; Pichugina, Y.; Roberts, J. M.; Ryerson, T.; Schnell, R.; Senff, C.; Sweeney, C.; Veres, P. R.; Warneke, C.; Wild, R.; Williams, E. J.; Yuan, B.; Zamora, R.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Helmig, D.; Thompson, C.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. RP Ahmadov, R (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM ravan.ahmadov@noaa.gov RI Warneke, Carsten/E-7174-2010; Frost, Gregory/I-1958-2013; Brown, Steven/I-1762-2013; Trainer, Michael/H-5168-2013; Yuan, Bin/A-1223-2012; Wild, Robert/I-1963-2013; Manager, CSD Publications/B-2789-2015; Ahmadov, Ravan/F-2036-2011; Banta, Robert/B-8361-2008; Langford, Andrew/D-2323-2009; Roberts, James/A-1082-2009; Veres, Patrick/E-7441-2010; de Gouw, Joost/A-9675-2008; Peischl, Jeff/E-7454-2010; Lerner, Brian/H-6556-2013; Olson, Joseph/N-3726-2014; Koss, Abigail/B-5421-2015; Edwards, Peter/H-5236-2013; Ryerson, Tom/C-9611-2009; Thompson, Chelsea/L-2302-2015 OI Yuan, Bin/0000-0003-3041-0329; Wild, Robert/0000-0002-4800-5172; Ahmadov, Ravan/0000-0002-6996-7071; Langford, Andrew/0000-0002-2932-7061; Roberts, James/0000-0002-8485-8172; Veres, Patrick/0000-0001-7539-353X; de Gouw, Joost/0000-0002-0385-1826; Peischl, Jeff/0000-0002-9320-7101; Lerner, Brian/0000-0001-8721-8165; Olson, Joseph/0000-0003-3612-0808; Edwards, Peter/0000-0002-1076-6793; Thompson, Chelsea/0000-0002-7332-9945 FU US Weather Research Program within the NOAA/OAR Office of Weather and Air Quality; Western Energy Alliance; NOAA FX Part of this work (R. Ahmadov and S. McKeen) is supported by the US Weather Research Program within the NOAA/OAR Office of Weather and Air Quality. The authors thank David Parrish (NOAA and CU Boulder), Gail Tonnesen (EPA) and Seth Lyman (Utah State University) for useful discussions. We wish to thank Georg Grell and Steven Peckham (NOAA and CU Boulder) for the user support of the WRF-Chem model. We are grateful to two anonymous reviewers for their contributions to the improvements and clarifications of the manuscript. Measurements were funded in part by the Western Energy Alliance and NOAA's Climate and Health of the Atmosphere programs. The contents of this paper reflect only the opinions of the authors, and not necessarily those of National Oceanic and Atmospheric Administration, or any other individuals or organizations mentioned herein. NR 50 TC 21 Z9 24 U1 7 U2 87 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 1 BP 411 EP 429 DI 10.5194/acp-15-411-2015 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ0TQ UT WOS:000347958200024 ER PT J AU Bergamaschi, P Corazza, M Karstens, U Athanassiadou, M Thompson, RL Pison, I Manning, AJ Bousquet, P Segers, A Vermeulen, AT Janssens-Maenhout, G Schmidt, M Ramonet, M Meinhardt, F Aalto, T Haszpra, L Moncrieff, J Popa, ME Lowry, D Steinbacher, M Jordan, A O'Doherty, S Piacentino, S Dlugokencky, E AF Bergamaschi, P. Corazza, M. Karstens, U. Athanassiadou, M. Thompson, R. L. Pison, I. Manning, A. J. Bousquet, P. Segers, A. Vermeulen, A. T. Janssens-Maenhout, G. Schmidt, M. Ramonet, M. Meinhardt, F. Aalto, T. Haszpra, L. Moncrieff, J. Popa, M. E. Lowry, D. Steinbacher, M. Jordan, A. O'Doherty, S. Piacentino, S. Dlugokencky, E. TI Top-down estimates of European CH4 and N2O emissions based on four different inverse models SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID GENERAL-CIRCULATION MODEL; IN-SITU MEASUREMENTS; ATMOSPHERIC METHANE; NITROUS-OXIDE; TALL TOWER; SURFACE MEASUREMENTS; DATA ASSIMILATION; GREENHOUSE GASES; TRANSPORT; CO2 AB European CH4 and N2O emissions are estimated for 2006 and 2007 using four inverse modelling systems, based on different global and regional Eulerian and Lagrangian transport models. This ensemble approach is designed to provide more realistic estimates of the overall uncertainties in the derived emissions, which is particularly important for verifying bottom-up emission inventories. We use continuous observations from 10 European stations (including 5 tall towers) for CH4 and 9 continuous stations for N2O, complemented by additional European and global discrete air sampling sites. The available observations mainly constrain CH4 and N2O emissions from northwestern and eastern Europe. The inversions are strongly driven by the observations and the derived total emissions of larger countries show little dependence on the emission inventories used a priori. Three inverse models yield 26-56% higher total CH4 emissions from north-western and eastern Europe compared to bottom-up emissions reported to the UNFCCC, while one model is close to the UNFCCC values. In contrast, the inverse modelling estimates of European N2O emissions are in general close to the UNFCCC values, with the overall range from all models being much smaller than the UNFCCC uncertainty range for most countries. Our analysis suggests that the reported uncertainties for CH4 emissions might be underestimated, while those for N2O emissions are likely overestimated. C1 [Bergamaschi, P.; Corazza, M.; Segers, A.; Janssens-Maenhout, G.] Inst Environm & Sustainabil, European Commiss Joint Res Ctr, Ispra, Italy. [Karstens, U.; Popa, M. E.; Jordan, A.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Athanassiadou, M.; Manning, A. J.] Met Off, Exeter, Devon, England. [Thompson, R. L.; Pison, I.; Bousquet, P.; Schmidt, M.; Ramonet, M.] LSCE, Gif Sur Yvette, France. [Vermeulen, A. T.] Energy Res Ctr Netherlands ECN, Petten, Netherlands. [Meinhardt, F.] Messstelle Schauinsland, Umweltbundesamt, Kirchzarten, Germany. [Aalto, T.] FMI, Helsinki, Finland. [Haszpra, L.] Hungarian Meteorol Serv, Budapest, Hungary. [Haszpra, L.] Geodet & Geophys Inst, Res Ctr Astron & Earth Sci, Sopron, Hungary. [Moncrieff, J.] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. [Lowry, D.] Univ London RHUL, Dept Earth Sci, Egham, Surrey, England. [Steinbacher, M.] Swiss Fed Labs Mat Sci & Technol Empa, Dubendorf, Switzerland. [O'Doherty, S.] Univ Bristol, Atmospher Chem Res Grp, Bristol, Avon, England. [Piacentino, S.] Italian Natl Agcy New Technol, Energy & Sustainable Dev ENEA, Rome, Italy. [Dlugokencky, E.] NOAA Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA. RP Bergamaschi, P (reprint author), Inst Environm & Sustainabil, European Commiss Joint Res Ctr, Ispra, Italy. EM peter.bergamaschi@jrc.ec.europa.eu RI Corazza, Matteo/B-6085-2012; Popa, Maria Elena/B-8834-2014; Aalto, Tuula/P-6183-2014; Vermeulen, Alex/A-2867-2015; Steinbacher, Martin/B-7424-2009; Karstens, Ute/P-7075-2014; Athanassiadou, Maria/H-8663-2016 OI Thompson, Rona/0000-0001-9485-7176; Corazza, Matteo/0000-0003-3610-1666; Popa, Maria Elena/0000-0001-7957-0329; Aalto, Tuula/0000-0002-3264-7947; Vermeulen, Alex/0000-0002-8158-8787; Steinbacher, Martin/0000-0002-7195-8115; Karstens, Ute/0000-0002-8985-7742; FU European Commission's Sixth Framework Programme project NitroEurope [017841-2]; Department of Climate Change and Energy [GA0201]; EU FP5 project CHIOTTO [EVK-CT-2002-00163] FX This work has been supported by the European Commission's Sixth Framework Programme project NitroEurope under Grant Agreement no. 017841-2. The UK Met Office component was equally supported through the Department of Climate Change and Energy contract GA0201. The tall tower observational data were initiated and partially funded by the EU FP5 project CHIOTTO (grant EVK-CT-2002-00163); further data collection and processing were supported by ESF RNP TTorch. We thank Euan Nisbet for helpful comments on the manuscript. NR 71 TC 12 Z9 12 U1 2 U2 42 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PY 2015 VL 15 IS 2 BP 715 EP 736 DI 10.5194/acp-15-715-2015 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ0TT UT WOS:000347958500010 ER PT J AU Nevison, CD Manizza, M Keeling, RF Kahru, M Bopp, L Dunne, J Tiputra, J Ilyina, T Mitchell, BG AF Nevison, C. D. Manizza, M. Keeling, R. F. Kahru, M. Bopp, L. Dunne, J. Tiputra, J. Ilyina, T. Mitchell, B. G. TI Evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data SO BIOGEOSCIENCES LA English DT Article ID LINE SIMULATION CHARACTERISTICS; CARBON-CYCLE MODELS; SOUTHERN-OCEAN; CO2 CONCENTRATION; EXPORT PRODUCTION; CLIMATE-CHANGE; O-2/N-2 RATIO; AIR; IMPACT; FLUX AB The observed seasonal cycles in atmospheric potential oxygen (APO) at a range of mid- to high-latitude surface monitoring sites are compared to those inferred from the output of six Earth system models (ESMs) participating in the fifth phase of the Coupled Model Intercomparison Project phase 5 (CMIP5). The simulated air-sea O-2 fluxes are translated into APO seasonal cycles using a matrix method that takes into account atmospheric transport model (ATM) uncertainty among 13 different ATMs. Three of the ocean biogeochemistry models tested are able to reproduce the observed APO cycles at most sites, to within the large TransCom3-era ATM uncertainty used here, while the other three generally are not. Net primary production (NPP) and net community production (NCP), as estimated from satellite ocean color data, provide additional constraints, albeit more with respect to the seasonal phasing of ocean model productivity than overall magnitude. The present analysis suggests that, of the tested ocean biogeochemistry models, the community ecosystem model (CESM) and the Geophysical Fluid Dynamics Laboratory (GFDL) ESM2M are best able to capture the observed APO seasonal cycle at both northern and southern hemispheric sites. In most models, discrepancies with observed APO can be attributed to the underestimation of NPP, deep ventilation or both in the northern oceans. C1 [Nevison, C. D.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. [Manizza, M.; Keeling, R. F.; Kahru, M.; Mitchell, B. G.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Bopp, L.] CNRS CEA UVSQ, UMR8212, IPSL LSCE, Gif Sur Yvette, France. [Dunne, J.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Tiputra, J.] Uni Res & Bjerknes Ctr Climate Res, Uni Climate, Bergen, Norway. [Ilyina, T.] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. RP Nevison, CD (reprint author), Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA. EM cynthia.nevison@colorado.edu OI Tjiputra, Jerry/0000-0002-4600-2453; Mitchell, B. Greg/0000-0002-8550-4333 FU NASA Ocean Biology and Biogeochemistry grant [NNX11AL73G] FX The authors gratefully acknowledge the CMIP5 ocean modelers for providing the output that made this project possible. In particular, we thank Keith Lindsay, Laure Resplandy and Cristoph Heinze for their assistance. We also thank Britt Stephens and an anonymous reviewer for their helpful comments, which much improved the manuscript. Lastly, we thank Michael Bender and Robert Mika for providing APO data and acknowledge support from NASA Ocean Biology and Biogeochemistry grant NNX11AL73G. NR 57 TC 5 Z9 5 U1 0 U2 21 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PY 2015 VL 12 IS 1 BP 193 EP 208 DI 10.5194/bg-12-193-2015 PG 16 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA AZ0UR UT WOS:000347960800012 ER PT J AU Tomasi, C Kokhanovsky, AA Lupi, A Ritter, C Smirnov, A O'Neill, NT Stone, RS Holben, BN Nyeki, S Wehrli, C Stohl, A Mazzola, M Lanconelli, C Vitale, V Stebel, K Aaltonen, V de Leeuw, G Rodriguez, E Herber, AB Radionov, VF Zielinski, T Petelski, T Sakerin, SM Kabanov, DM Xue, Y Mei, LL Istomina, L Wagener, R McArthur, B Sobolewski, PS Kivi, R Courcoux, Y Larouche, P Broccardo, S Piketh, SJ AF Tomasi, Claudio Kokhanovsky, Alexander A. Lupi, Angelo Ritter, Christoph Smirnov, Alexander O'Neill, Norman T. Stone, Robert S. Holben, Brent N. Nyeki, Stephan Wehrli, Christoph Stohl, Andreas Mazzola, Mauro Lanconelli, Christian Vitale, Vito Stebel, Kerstin Aaltonen, Veijo de Leeuw, Gerrit Rodriguez, Edith Herber, Andreas B. Radionov, Vladimir F. Zielinski, Tymon Petelski, Tomasz Sakerin, Sergey M. Kabanov, Dmitry M. Xue, Yong Mei, Linlu Istomina, Larysa Wagener, Richard McArthur, Bruce Sobolewski, Piotr S. Kivi, Rigel Courcoux, Yann Larouche, Pierre Broccardo, Stephen Piketh, Stuart J. TI Aerosol remote sensing in polar regions SO EARTH-SCIENCE REVIEWS LA English DT Article DE Sun-photometer measurements; Aerosol optical thickness; Polar aerosol optical characteristics; Lidar backscattering coefficient profiles; Satellite aerosol remote sensing; Multimodal aerosol extinction models ID OPTICAL DEPTH RETRIEVAL; RESOLUTION IMAGING SPECTRORADIOMETER; TROPOSPHERIC AEROSOL; BOUNDARY-LAYER; ARCTIC HAZE; AVHRR DATA; ANTARCTIC ATMOSPHERE; SIZE DISTRIBUTIONS; LAND SURFACES; SOUTH-POLE AB Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness tau(lambda) at visible and near-infrared wavelengths, from which best-fit values of Angstrom's exponent alpha were calculated. Analysing these data, the monthly mean values of tau(0.50 mu m) and alpha and the relative frequency histograms of the daily mean values of both parameters were determined for winter spring and summer autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of alpha versus tau(0.50 mu m) showed: (i) a considerable increase in tau(0.50 mu m) for the Arctic aerosol from summer to winter spring, without marked changes in alpha; and (ii) a marked increase in tau(0.50 mu m) passing from the Antarctic Plateau to coastal sites, whereas alpha decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of tau(lambda) and alpha at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Alesund. Satellite-based MODIS, MISR, and AATSR retrievals of tau(lambda) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface-atmosphere system over polar regions. (C) 2014 Elsevier B.V. All rights reserved. C1 [Tomasi, Claudio; Lupi, Angelo; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito] Italian Natl Res Council CNR, Inst Atmospher Sci & Climate ISAC, Climate Change Div, Bologna, Italy. [Kokhanovsky, Alexander A.; Istomina, Larysa] Univ Bremen, Inst Environm Phys IUP, D-28359 Bremen, Germany. [Kokhanovsky, Alexander A.] EUMETSAT, D-64295 Darmstadt, Germany. [Ritter, Christoph] Alfred Wegener Inst Polar & Marine Res, Climate Syst Div, Potsdam, Germany. [Smirnov, Alexander] Sigma Space Corp, Lanham, MD USA. [Smirnov, Alexander] NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [O'Neill, Norman T.] Univ Sherbrooke, Dept Appl Geomat, Canadian Network Detect Atmospher Change CANDAC, Sherbrooke, PQ J1K 2R1, Canada. [O'Neill, Norman T.] Univ Sherbrooke, Dept Appl Geomat, CARTEL, Sherbrooke, PQ J1K 2R1, Canada. [Stone, Robert S.] NOAA, Global Monitoring Div, Boulder, CO USA. [Stone, Robert S.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Nyeki, Stephan; Wehrli, Christoph] Phys Meteorol Observ PMOD, World Radiat Ctr, Davos, Switzerland. [Stohl, Andreas; Stebel, Kerstin] Norwegian Inst Air Res NILU, Kjeller, Norway. [Aaltonen, Veijo; Rodriguez, Edith] Finnish Meteorol Inst, Climate & Global Change Div, FIN-00101 Helsinki, Finland. [de Leeuw, Gerrit] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland. [Herber, Andreas B.] Alfred Wegener Inst Polar & Marine Res, Climate Syst Div, Bremerhaven, Germany. [Radionov, Vladimir F.] Arctic & Antarctic Res Inst, St Petersburg 199226, Russia. [Zielinski, Tymon; Petelski, Tomasz] Polish Acad Sci, Inst Oceanol, Sopot, Poland. [Sakerin, Sergey M.; Kabanov, Dmitry M.] Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt IAO, Tomsk, Russia. [Xue, Yong] London Metropolitan Univ, Fac Life Sci & Comp, London, England. [Xue, Yong; Mei, Linlu] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China. [Wagener, Richard] Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA. [McArthur, Bruce] Environm Canada, N York, ON, Canada. [Sobolewski, Piotr S.] Polish Acad Sci, Inst Geophys, Warsaw 42, Poland. [Kivi, Rigel] Finnish Meteorol Inst, Arctic Res Ctr, Sodankyla, Finland. [Courcoux, Yann] Univ Reunion, CNRS, Inst Atmosphere Reunion OPAR, St Denis, Reunion. [Larouche, Pierre] Inst Maurice Lamontagne, Mont Joli, PQ G5H 3Z4, Canada. [Broccardo, Stephen] Univ Witwatersrand, Johannesburg, South Africa. [Piketh, Stuart J.] North West Univ, Climatol Res Grp, Unit Environm Sci & Management, Potchefstroom, South Africa. RP Tomasi, C (reprint author), Italian Natl Res Council CNR, Inst Atmospher Sci & Climate ISAC, Climate Change Div, Bologna, Italy. EM c.tomasi@isac.cnr.it RI Stohl, Andreas/A-7535-2008; Kokhanovsky, Alexander/C-6234-2016; Mazzola, Mauro/K-9376-2016; OI Stohl, Andreas/0000-0002-2524-5755; Kokhanovsky, Alexander/0000-0001-7370-1164; Mazzola, Mauro/0000-0002-8394-2292; Lanconelli, Christian/0000-0002-9545-1255 FU Italian Research Programme in Antarctica (PNRA); AERONET network in the Arctic and Antarctica; AEROCAN/AERONET sub-network in the Canadian Arctic FX The present study was developed as a part of the CLIMSLIP (Climate Impacts of Short-Lived Pollutants in the Polar Regions) joint project, approved by the European Polar Consortium and coordinated by A. Stohl at NILU (Kjeller, Norway), and supported by the Italian Research Programme in Antarctica (PNRA). The authors gratefully acknowledge the Office of Antarctic Observation of the Japan Meteorological Agency (Tokyo, Japan), for supplying the data-set of EKO sun-photometer measurements carried out at Syowa (Antarctica) from 2000 to 2011. In general we acknowledge the support provided by the AERONET network in the Arctic and Antarctica and the AEROCAN/AERONET sub-network in the Canadian Arctic. The Cimel sun-photometer data at Barrow (Alaska) were collected by the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Program Climate Research Facility (ARM) and processed by AERONET. James H. Butler (Global Monitoring Division, Earth System Research Laboratory (ERL), National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado, USA) is acknowledged for his effort in establishing and maintaining the activities at the AERONET South Pole Amundsen-Scott base. The colleagues D. G. Chernov, Yu. S. Turchinovich and Victor V. Polkin, (V. E. Zuev Institute of Atmospheric Optics (IAO), Siberian Branch, Russian Academy of Sciences, Tomsk, Russia) are also acknowledged for their participation to field measurements conducted at Barentsburg and in Antarctica. Author's acknowledgements are also due to the managerial and operational support given by M. Fily (LGGE, CNRS, Grenoble, France) at the AERONET Antarctic Dome Concordia station, and to the P.I.s of the AERONET/MAN cruises conducted in the Arctic and Antarctic Oceans, during which Microtops measurements of aerosol optical thickness were performed and examined in the present analysis: Patricia K. Quinn (NOAA Pacific Marine Environmental Laboratory, Seattle, Washington, USA), Andrey Proshutinsky (Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA), Carlos Duarte (Instituto Mediterraneo de Estudios Avanzados, Esporles, Mallorca, Spain), Simon Belanger (Universite du Quebec, Rimouski, Quebec, Canada), Elizabeth A. Reid (Naval Research Laboratory, Monterey, California, USA), Gennadi Milinevsky (Space Physics Laboratory, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine), and Heitor Evangelista (Rio de Janeiro State University, Brazil). The analyses and visualisations used in this paper to obtain the sets of MODIS and MISR daily aerosol optical thickness Level-3 data over the Arctic and Antarctic regions were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. NR 200 TC 12 Z9 13 U1 9 U2 75 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-8252 EI 1872-6828 J9 EARTH-SCI REV JI Earth-Sci. Rev. PD JAN PY 2015 VL 140 BP 108 EP 157 DI 10.1016/j.earscirev.2014.11.001 PG 50 WC Geosciences, Multidisciplinary SC Geology GA AY9IJ UT WOS:000347863500006 ER PT J AU Yang, WY Li, D Sun, T Ni, GH AF Yang, Wen-Yu Li, Dan Sun, Ting Ni, Guang-Heng TI Saturation-excess and infiltration-excess runoff on green roofs SO ECOLOGICAL ENGINEERING LA English DT Article DE Green roof; Rainwater retention; Saturation excess; Infiltration excess; Rainfall-runoff relationship; HYDRUS-1D ID HYDROLOGIC PERFORMANCE; STORMWATER RETENTION; SUBTROPICAL CLIMATE; WATER QUANTITY; QUALITY; MODEL; MITIGATION; MANAGEMENT; RAINFALL; SURFACE AB Green roofs (GRs), as compared to conventional roofs, can retain a considerable amount of water in the soil layer and hence have been used in many urban areas to mitigate urban flooding. However, a simple yet physical model for describing the rainfall (P)-runoff (R) relationship over GRs is still lacking. In this study, a physically-based P-R relationship, which utilizes soil moisture measurements that are often available in field experiments, is proposed based on the water balance equation over flat and horizontally homogenous GRs and evaluated against field measurements. First, the two different runoff generation mechanisms on GRs, namely, saturation-excess (runoff is generated when the soil becomes saturated) and infiltration-excess (runoff is generated when the rainfall intensity is larger than the infiltration rate), are discussed. A water balance analysis is then performed to obtain a physically-based P-R relationship over flat and horizontally homogenous GRs, which is validated using measurements from a field experiment conducted over a GR site in Beijing, China. Results show that our P-R relationship is able to estimate the runoff generated on our GR site. The proposed P-R relationship is also tested against other observational data and empirical models in the literature and shows broad consistency with these previous studies. To further quantify the relative importance of saturation-excess runoff and infiltration-excess runoff, numerical simulations are carried out using HYDRUS-1D. The simulation results indicate that runoff at our GR site is generated by both saturation-excess and infiltration-excess. Nonetheless, the infiltration-excess runoff accounts for a small portion of the total runoff, which suggests that the saturation-excess mechanism is more important for generating runoff over GRs. (C) 2014 Elsevier B.V. All rights reserved. C1 [Yang, Wen-Yu; Sun, Ting; Ni, Guang-Heng] Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China. [Li, Dan] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. RP Sun, T (reprint author), Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China. EM sunting@tsinghua.edu.cn RI Li, Dan /G-5794-2015; Sun, Ting/A-3388-2013 OI Sun, Ting/0000-0002-2486-6146 FU National Science Foundation of China [NSFC-51190092]; China Postdoctoral Science Foundation [2014M550070]; Ministry of Science and Technology of China [2013DFG72270] FX This work is supported by the National Science Foundation of China under Grant No. NSFC-51190092, by China Postdoctoral Science Foundation under Grant No. 2014M550070 and by the Ministry of Science and Technology of China under Grant No. 2013DFG72270. We are grateful to the Tsinghua Property Management Center for the assistance in field measurements. NR 47 TC 8 Z9 10 U1 10 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-8574 EI 1872-6992 J9 ECOL ENG JI Ecol. Eng. PD JAN PY 2015 VL 74 BP 327 EP 336 DI 10.1016/j.ecoleng.2014.10.023 PG 10 WC Ecology; Engineering, Environmental; Environmental Sciences SC Environmental Sciences & Ecology; Engineering GA AY4ZG UT WOS:000347582800038 ER PT J AU Breckenridge, JK Bollens, SM Rollwagen-Bollens, G Roegner, GC AF Breckenridge, J. K. Bollens, S. M. Rollwagen-Bollens, G. Roegner, G. C. TI Plankton Assemblage Variability in a River-Dominated Temperate Estuary During Late Spring (High-flow) and Late Summer (Low-flow) Periods SO ESTUARIES AND COASTS LA English DT Article DE Zooplankton; Microplankton; Columbia River Estuary; Freshwater flow; Non-indigenous species; Copepods; Mesodinium; Pseudodiaptomus ID SAN-FRANCISCO-ESTUARY; DIEL VERTICAL MIGRATION; FRESH-WATER INPUT; COLUMBIA RIVER; COMMUNITY STRUCTURE; CYCLOPOID COPEPOD; STANDING STOCK; RED-TIDE; PHYTOPLANKTON; BAY AB Seasonally variable freshwater flows are known to influence estuarine plankton assemblages. There has been little recent study of the plankton dynamics of the Columbia River Estuary (CRE), a large, river-dominated estuary that has experienced great modification to its hydrological cycle. Zooplankton (>75 mu m) were collected during four late spring (high-flow) cruises and three late summer (low-flow) cruises in 2005 and 2006. Surface-water microplankton (5-200 mu m) were collected during cruises in 2005. Zooplankton and phytoplankton assemblage composition varied along an axial salinity gradient and between flow periods. Estuarine zooplankton were strongly seasonal and dominated by the calanoid copepod Eurytemora affinis in the late spring, high-flow period and by the invasive calanoid Pseudodiaptomus forbesi in the late summer, low-flow period. The phytoplankton assemblage was dominated by freshwater diatoms, primarily Aulacoseira spp. The ciliate Mesodinium rubrum (=Myrionecta rubra) reached high densities during the low-flow period, but otherwise, distinct high-flow and low-flow phytoplankton assemblages were not detected. Comparison to prior studies in the CRE suggests that the plankton assemblage composition during the low-flow period has undergone considerable change, which may in turn have important trophic implications. C1 [Breckenridge, J. K.; Bollens, S. M.; Rollwagen-Bollens, G.] Washington State Univ, Sch Environm, Vancouver, WA 98686 USA. [Roegner, G. C.] NOAA Fisheries, NW Fisheries Sci Ctr, Point Adams Res Stn, Hammond, OR 97121 USA. RP Breckenridge, JK (reprint author), Univ British Columbia, Dept Earth Ocean & Atmospher Sci, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM jbrecken@eos.ubc.ca NR 62 TC 4 Z9 4 U1 4 U2 36 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD JAN PY 2015 VL 38 IS 1 BP 93 EP 103 DI 10.1007/s12237-014-9820-7 PG 11 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA AY6MM UT WOS:000347680300009 ER PT J AU Ache, BW Crossett, KM Pacheco, PA Adkins, JE Wiley, PC AF Ache, Brent W. Crossett, Kristen M. Pacheco, Percy A. Adkins, Jeffery E. Wiley, Peter C. TI "The Coast" is Complicated: A Model to Consistently Describe the Nation's Coastal Population SO ESTUARIES AND COASTS LA English DT Article DE Coastal population; Coastal counties; Coastal Watershed Counties; Coastal Shoreline Counties ID AREAS AB Our nation's coast is a complicated management area where no single delineation provides all of the demographic statistics needed to address the full range of policy and management issues. As a result, several different coastal delineations are currently being used, yielding a variety of US coastal population statistics. This paper proposes a simple model for generating and applying coastal population statistics at the national and regional level to increase consistency in coastal policy discussions and improve public understanding of coastal issues. The model includes two major components. The first component is "the population that most directly affects the coast," represented by the permanent US population that resides in a standard suite of Coastal Watershed Counties, where land use and water quality changes most directly impact coastal ecosystems. The second component is " the population most directly affected by the coast," represented by the permanent US population that resides in a standard suite of Coastal Shoreline Counties that are directly adjacent to the open ocean, major estuaries, and the Great Lakes, which due to their proximity to these waters, bear a great proportion of the full range of effects from coastal hazards and host the majority of economic production associated with coastal and ocean resources. C1 [Ache, Brent W.; Crossett, Kristen M.; Pacheco, Percy A.] NOAA, Natl Ocean Serv, Special Projects Div, Silver Spring, MD 20910 USA. [Adkins, Jeffery E.] NOAA, NOAA Coastal Serv Ctr, Natl Ocean Serv, Charleston, SC 29405 USA. [Wiley, Peter C.] NOAA, NOAA Coastal Serv Ctr, Natl Ocean Serv, Silver Spring, MD 20910 USA. RP Crossett, KM (reprint author), NOAA, Natl Ocean Serv, Special Projects Div, 1305 East West Highway,N MB7, Silver Spring, MD 20910 USA. EM kristen.crossett@noaa.gov NR 23 TC 3 Z9 3 U1 1 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD JAN PY 2015 VL 38 SU 1 BP S151 EP S155 DI 10.1007/s12237-013-9629-9 PG 5 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA AZ0TE UT WOS:000347956700012 ER PT J AU Sanger, D Blair, A DiDonato, G Washburn, T Jones, S Riekerk, G Wirth, E Stewart, J White, D Vandiver, L Holland, AF AF Sanger, D. Blair, A. DiDonato, G. Washburn, T. Jones, S. Riekerk, G. Wirth, E. Stewart, J. White, D. Vandiver, L. Holland, A. F. TI Impacts of Coastal Development on the Ecology of Tidal Creek Ecosystems of the US Southeast Including Consequences to Humans SO ESTUARIES AND COASTS LA English DT Article DE Sentinel habitat; Conceptual model; Impervious cover; Urbanization ID SALT-MARSH SEDIMENTS; ESTUARINE ECOSYSTEMS; WATER-QUALITY; CAROLINA; MARINE; FUTURE; GROWTH AB Upland areas of southeastern United States tidal creek watersheds are popular locations for development, and they form part of the estuarine ecosystem characterized by high economic and ecological value. The primary objective of this work was to define the relationships between coastal development, with its concomitant land use changes and associated increases in nonpoint source pollution loading, and the ecological condition of tidal creek ecosystems including related consequences to human populations and coastal communities. Nineteen tidal creek systems, located along the southeastern US coast from southern North Carolina to southern Georgia, were sampled in the summer, 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning-intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections)-and then watersheds were delineated for each segment. Relationships between coastal development, concomitant land use changes, nonpoint source pollution loading, the ecological condition of tidal creek ecosystems, and the potential impacts to human populations and coastal communities were evaluated. In particular, relationships were identified between the amount of impervious cover (indicator of coastal development) and a range of exposure and response measures including increased chemical contamination of the sediments, increased pathogens in the water, increased nitrate/nitrite levels, increased salinity range, decreased biological productivity of the macrobenthos, alterations to the food web, increased flooding potential, and increased human risk of exposure to pathogens and harmful chemicals. The integrity of tidal creeks, particularly the headwaters or intertidally dominated sections, was impaired by increases in nonpoint source pollution associated with sprawling urbanization (i.e., increases in impervious cover). This finding suggests that these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health and flooding risk from sprawling coastal development. The results also validate the use of a conceptual model with impervious cover thresholds for tidal creek systems in the southeast region. C1 [Sanger, D.] South Carolina Sea Grant Consortium, Charleston, SC 29401 USA. [Sanger, D.; Blair, A.; DiDonato, G.; White, D.; Holland, A. F.] NOAA, Ctr Excellence Oceans & Human Hlth, Ctr Human Hlth Risk, Hollings Marine Lab, Charleston, SC 29412 USA. [Washburn, T.; Jones, S.] Coll Charleston, Charleston, SC 29412 USA. [Sanger, D.; Riekerk, G.] Marine Resources Res Inst, South Carolina Dept Nat Resources, Charleston, SC 29412 USA. [Wirth, E.; Stewart, J.] NOAA, Ctr Coastal Environm Hlth & Biomol Res, Charleston, SC 29412 USA. [Stewart, J.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Vandiver, L.] Univ S Carolina, Arnold Sch Publ Hlth, Columbia, SC 29208 USA. RP Sanger, D (reprint author), Marine Resources Res Inst, South Carolina Dept Nat Resources, 217 Ft Johnson Rd, Charleston, SC 29412 USA. EM sangerd@dnr.sc.gov FU National Estuarine Research Reserve FX The breadth of this research project has resulted in a large number of individuals and organizations to thank for their efforts. We are grateful to our National Estuarine Research Reserve partners for field work and support: R. Ellin, J. Fear, P. Murray, and H. Wells (North Carolina) and D. Hurley and B. Sullivan (Sapelo Island). We appreciate the field assistance and laboratory space provided by P. Christian and K. Gates, University of Georgia Marine Extension Office, Brunswick. We wish to thank, for their dedication and hard work, the many individuals who assisted in sample collection: P. Biondo, C. Buzzelli, A. Coghill, A. Colton, C. Cooksey, D. Couillard, S. Drescher, M. Dunlap, J. Felber, R. Garner, A. Hilton, S. Lovelace, E. McDonald, M. Messersmith, S. Mitchell, C. Rathburn, J. Reeves, J. Richardson, A. Rourk, K. Seals, J. Siewicki, and M. Tibbett. We appreciate laboratory work provided by Barry A. Vittor & Associates; the South Carolina Department of Natural Resources-Marine Resources Research Institute (P. Biondo, S. Burns, J. Felber, L. Forbes, A. Rourk); NOAA, NOS, CCEHBR (J. Gregory, C. Johnston, B. Robinson, B. Thompson, L. Webster); NOAA, NOS, Center for Human Health Risk/Hollings Marine Laboratory (D. Liebert, Y. Sapozhnikova, B. Shaddrix, L. Thorsell, M. Beal, A. Mancia, C. Rathburn); and University of Maryland Center for Environmental Science- Chesapeake Biological Laboratory's Nutrient Analytical Services Lab. We thank the individuals who provided insightful peer reviews of the NOAA Technical Memorandum 82 that this manuscript is modified from: J. Fear, D. Hurley, L. Balthis, G. Lauenstein, R. Van Dolah. And we thank M. Fulton, L. Webster, P. Key, M. DeLorenzo, and two anonymous reviewers for providing comments, enhancing the quality of this manuscript. This project is supported by NOAA's Oceans and Human Health Initiative and NOAA's National Centers for Coastal Ocean Science at Hollings Marine Laboratory. Marine Resources Center Contribution No. 698. NR 68 TC 2 Z9 2 U1 13 U2 65 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1559-2723 EI 1559-2731 J9 ESTUAR COAST JI Estuaries Coasts PD JAN PY 2015 VL 38 SU 1 BP S49 EP S66 DI 10.1007/s12237-013-9635-y PG 18 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA AZ0TE UT WOS:000347956700005 ER PT J AU Ashby, N AF Ashby, Neil TI Probability Distributions and Confidence Intervals for Simulated Power Law Noise SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Article; Proceedings Paper CT 23rd International Symposium on the Applications of Ferroelectrics (ISAF) CY MAY 12-16, 2014 CL Pennsylvania State Univ, Univ Pk, PA HO Pennsylvania State Univ ID FREQUENCY STABILITY; VARIANCE AB A method for simulating power law noise in clocks and oscillators is presented based on modification of the spectrum of white phase noise, then Fourier transforming to the time domain. Symmetric real matrices are introduced whose traces-the sums of their eigenvalues-are equal to the Allan variances, in overlapping or non-overlapping forms, as well as for the corresponding forms of the modified Allan variance. We show that the standard expressions for spectral densities, and their relations to Allan variance, are obtained with this method. The matrix eigenvalues determine probability distributions for observing a variance at an arbitrary value of the sampling interval T, and hence for estimating confidence in the measurements. Examples are presented for the common power-law noises. Extension to other variances such as the Hadamard variance, and variances with dead time, are discussed. C1 [Ashby, Neil] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Ashby, Neil] NIST, Boulder, CO USA. RP Ashby, N (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA. EM ashby@boulder.nist.gov NR 20 TC 1 Z9 1 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 EI 1525-8955 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD JAN PY 2015 VL 62 IS 1 BP 116 EP 128 DI 10.1109/TUFFC.2013.006167 PG 13 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA AZ0PU UT WOS:000347948000012 PM 25585396 ER PT J AU Kedzierski, MA AF Kedzierski, M. A. TI Effect of concentration on R134a/Al2O3 nanolubricant mixture boiling on a reentrant cavity surface SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID LA English DT Article DE Additives; Aluminum oxide; Boiling; Enhanced heat transfer; Nanolubricant; Nanotechnology; Refrigerants; Refrigerant/lubricant mixtures; Structured surface ID HEAT-TRANSFER; ENHANCEMENT; NANOFLUIDS AB This paper quantifies the influence of Al2O3 nanoparticles on the pool boiling performance of R134a/polyolester mixtures on a Turbo-BII-HP boiling surface. Nanolubricants with 10 nm diameter Al2O3 nanoparticles of various volume fractions (1.6%, 2.3%, and 5.1%) in the base polyolester lubricant were mixed with R134a at two different mass fractions (0.5% and 1%). The study showed that nanolubricants can improve R134a boiling on a reentrant cavity surface as long as the nanoparticles remain well dispersed in the lubricant and are at sufficiently large concentration. For example, three of the refrigerant/nanolubricant mixtures with the smallest nanoparticle mass fraction exhibited average enhancements over the entire heat flux range of approximately 10%. However, when the nanoparticle mass fraction was increased to a point that likely encouraged agglomeration, an average heat transfer degradation of approximately 14% resulted. An existing model was used to predict the boiling heat transfer. Published by Elsevier Ltd. C1 NIST, Gaithersburg, MD 20899 USA. RP Kedzierski, MA (reprint author), NIST, 100 Bur Dr,Stop 861, Gaithersburg, MD 20899 USA. EM Mark.Kedzierski@nist.gov FU U.S. Department of Energy under Project Manager Antonio Bouza [DE-EE0002057/004] FX This Work was funded by the U.S. Department of Energy (project no. DE-EE0002057/004) under Project Manager Antonio Bouza. Thanks go to Dongsoo Jung of Inha University and to the following NIST personnel for their constructive criticism of the draft manuscript: A. Pertzbom, and P. Domanski. Furthermore, the author extends appreciation to W. Guthrie and A. Heckert of the NIST Statistical Engineering Division for their consultations on the uncertainty analysis. Boiling heat transfer measurements were taken by D. Wilmering of KT Consulting at the NIST laboratory. The RL68H (EMKARATE FL 68H) was donated by K. Lilje of CPI Engineering Services, Inc. The RL68H1Al0 was manufactured by Nanophase Technologies with an aluminum oxide and dispersant in RL68H especially for NIST. NR 30 TC 8 Z9 8 U1 1 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0140-7007 EI 1879-2081 J9 INT J REFRIG JI Int. J. Refrig.-Rev. Int. Froid PD JAN PY 2015 VL 49 BP 36 EP 48 DI 10.1016/j.ijrefrig.2014.09.012 PG 13 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA AZ1QG UT WOS:000348012500006 ER PT J AU Haynes, WM AF Haynes, William M. TI Retirement of Editor-in-Chief SO INTERNATIONAL JOURNAL OF THERMOPHYSICS LA English DT Editorial Material C1 NIST, Boulder, CO 80305 USA. RP Haynes, WM (reprint author), NIST, Mail Stop 647,325 Broadway, Boulder, CO 80305 USA. EM william.haynes@nist.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0195-928X EI 1572-9567 J9 INT J THERMOPHYS JI Int. J. Thermophys. PD JAN PY 2015 VL 36 IS 1 BP 1 EP 2 DI 10.1007/s10765-014-1822-y PG 2 WC Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied SC Thermodynamics; Chemistry; Mechanics; Physics GA AZ4JJ UT WOS:000348187000001 ER PT J AU Bilotta, R Bell, JE Shepherd, E Arguez, A AF Bilotta, Rocky Bell, Jesse E. Shepherd, Ethan Arguez, Anthony TI Calculation and Evaluation of an Air-Freezing Index for the 1981-2010 Climate Normals Period in the Coterminous United States SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID FROST-FREE SEASON; SOIL; TEMPERATURE; WEATHER; TRENDS AB The air-freezing index (AFI) is a common metric for determining the freezing severity of the winter season and estimating frost depth for midlatitude regions, which is useful for determining the depth of shallow foundation construction. AFI values represent the seasonal magnitude and duration of below-freezing air temperature. Departures of the daily mean temperature above or below 0 degrees C (32 degrees F) are accumulated over each August-July cold season; the seasonal AFI value is defined as the difference between the highest and lowest extrema points. Return periods are computed using generalized extreme value distribution analysis. This research replaces the methodology used by the National Oceanic and Atmospheric Administration to calculate AFI return periods for the 1951-80 time period, applying the new methodology to the 1981-2010 climate normals period. Seasonal AFI values and return period values were calculated for 5600 stations across the coterminous United States (CONUS), and the results were validated using U.S. Climate Reference Network temperature data. Return period values are typically 14%-18% lower across CONUS during 1981-2010 versus a recomputation of 1951-80 return periods with the new methodology. For the 100-yr (2 yr) return periods, about 59% (83%) of stations show a decrease of more than 10% in the more recent period, whereas 21% (2%) show an increase of more than 10%, indicating a net reduction in winter severity that is consistent with observed climate change. C1 [Bilotta, Rocky; Bell, Jesse E.; Shepherd, Ethan; Arguez, Anthony] NOAA, Natl Climat Data Ctr, Asheville, NC USA. [Bilotta, Rocky] ERT Inc, Asheville, NC USA. [Bell, Jesse E.] N Carolina State Univ, Cooperat Inst Climate & Satellites North Carolina, Asheville, NC USA. [Shepherd, Ethan] STG Inc, Asheville, NC USA. RP Bilotta, R (reprint author), NCDC ERT Inc, 151 Patton Ave, Asheville, NC 28801 USA. EM rocky.bilotta@noaa.gov FU NOAA through the Cooperative Institute for Climate and Satellites-North Carolina [NA09NES4400006] FX We greatly appreciate Peter Steurer for his assistance and expertise in the subject. We also thank Scott Stephens for providing data. Special thanks to M. Kruk, J. Crouch, and the three anonymous reviewers for providing feedback on this paper. This work was supported by NOAA through the Cooperative Institute for Climate and Satellites-North Carolina under Cooperative Agreement NA09NES4400006. NR 36 TC 0 Z9 0 U1 3 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD JAN PY 2015 VL 54 IS 1 BP 69 EP 76 DI 10.1175/JAMC-D-14-0119.1 PG 8 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ0SB UT WOS:000347953700005 ER PT J AU Wang, WH Cao, CY AF Wang, Wenhui Cao, Changyong TI DCC Radiometric Sensitivity to Spatial Resolution, Cluster Size, and LWIR Calibration Bias Based on VIIRS Observations SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID DEEP CONVECTIVE CLOUDS; SATELLITE; ATMOSPHERE; TERRA AB The Visible and Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-Orbiting Partnership satellite brings new opportunities for improving scientists' understanding of deep convective cloud (DCC) radiometry with multiple bands in the visible (VIS), near-infrared (NIR), and longwave infrared (LWIR) spectrum. This paper investigated the radiometric sensitivity of DCC reflectance to spatial resolution, brightness temperature of the LWIR band centered at; similar to 11 mu m (TB11), TB11 calibration bias, and cluster size using VIIRS VIS (M5), NIR (M7 and I2), and LWIR (M15 and I5) observations at 375-and 750-m spatial resolutions. The mean and mode of the monthly probability distribution functions of DCC reflectance are used as two important indices in using DCC for calibration, and the results show that the onboard radiometric calibration of M5, M7, and I2 are stable during May 2013-April 2014 despite severe instrument responsivity degradations. The standard deviations of the mean and mode of monthly DCC reflectance are 0.5% and 0.2%, respectively, for all bands. It was found that a TB11 calibration bias on the order of 0.5K has minimal impact on monthly DCC reflectance, especially when the mode method is used. The mean and mode of VIS and NIR DCC reflectance are functions of spatial resolution, TB11 threshold, and DCC cluster size in all seasons. However, the mode of DCC reflectance is more stable than the mean in terms of all three factors. Therefore, the mode is more suitable as an indicator of calibration stability for individual VIS and NIR bands. C1 [Wang, Wenhui] Earth Resource Technol Inc, Laurel, MD USA. [Cao, Changyong] NOAA, NESDIS, Ctr Satellite Applicat & Res, College Pk, MD USA. RP Wang, WH (reprint author), NOAA, NESDIS, STAR, ERT, 5830 Univ Res Ct,2nd Floor,Cubicle 2664, College Pk, MD 20740 USA. EM wenhui.wang@noaa.gov RI Cao, Changyong/F-5578-2010; Wang, Wenhui/D-3240-2012 FU JPSS program office FX This work is funded by the JPSS program office. The authors thank the anonymous reviewers for their valuable comments, which greatly helped improve the quality of this paper. The authors would also thank the GSICS VIR/NIR subgroup for kindly providing the Hu et al. (2004) angular distribution model. The manuscript contents are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. government. NR 19 TC 4 Z9 4 U1 0 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JAN PY 2015 VL 32 IS 1 BP 48 EP 60 DI 10.1175/JTECH-D-14-00024.1 PG 13 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA AZ4WL UT WOS:000348221100003 ER PT J AU Meunier, V Turner, DD Kollias, P AF Meunier, Veronique Turner, David D. Kollias, Pavlos TI On the Challenges of Tomography Retrievals of a 2D Water Vapor Field Using Ground-Based Microwave Radiometers: An Observation System Simulation Experiment SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID CLOUD LIQUID WATER; RAMAN LIDAR; ATMOSPHERIC RADIATION; TEMPERATURE; HUMIDITY; ABSORPTION; PROFILES; ACCURACY; AEROSOLS; SENSORS AB Two-dimensional water vapor fields were retrieved by simulated measurements from multiple ground-based microwave radiometers using a tomographic approach. The goal of this paper was to investigate how the various aspects of the instrument setup (number and spacing of elevation angles and of instruments, number of frequencies, etc.) affected the quality of the retrieved field. This was done for two simulated atmospheric water vapor fields: 1) an exaggerated turbulent boundary layer and 2) a simplified water vapor front. An optimal estimation algorithm was used to obtain the tomographic field from the microwave radiometers and to evaluate the fidelity and information content of this retrieved field. While the retrieval of the simplified front was reasonably successful, the retrieval could not reproduce the details of the turbulent boundary layer field even using up to nine instruments and 25 elevation angles. In addition, the vertical profile of the variability of the water vapor field could not be captured. An additional set of tests was performed using simulated data from a Raman lidar. Even with the detailed lidar measurements, the retrieval did not succeed except when the lidar data were used to define the a priori covariance matrix. This suggests that the main limitation to obtaining fine structures in a retrieved field using tomographic retrievals is the definition of the a priori covariance matrix. C1 [Meunier, Veronique; Kollias, Pavlos] McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ H3A 0B9, Canada. [Turner, David D.] Natl Severe Storms Lab, Natl Ocean & Atmospher Adm, Norman, OK 73069 USA. RP Meunier, V (reprint author), McGill Univ, Dept Atmospher & Ocean Sci, Burnside Hall,Room 945,805 Sherbrook St West, Montreal, PQ H3A 0B9, Canada. EM veronique.meunier2@mcgill.ca FU National Sciences and Engineering Research Council of Canada; Fonds de la Recherche du Quebec sur la Nature et les Technologies FX The funding for this project was provided by the National Sciences and Engineering Research Council of Canada and from the Fonds de la Recherche du Quebec sur la Nature et les Technologies. We thank Adam Clark (National Severe Storm Laboratory and Cooperative Institute for Mesoscale Meteorological Studies) and Fanyou Kong (Center for Analysis and Prediction of Storms, Oklahoma University) for their help in determining the horizontal correlation length scale from a series of 1-km-resolution WRF simulations. We thank the National Severe Storm Laboratory for supporting the first author's visit to its offices in Norman, OK, in September 2011. We thank the McGill Marshall Radar Observatory for the use of its computers for the time of this project. Finally, we also thank our colleagues in the Integrated Remote Sensing research group at Cologne University and Frederic Fabry at McGill University for discussions related to this paper. NR 37 TC 1 Z9 1 U1 1 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JAN PY 2015 VL 32 IS 1 BP 116 EP 130 DI 10.1175/JTECH-D-13-00194.1 PG 15 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA AZ4WL UT WOS:000348221100007 ER PT J AU Yablonsky, RM Ginis, I Thomas, B Tallapragada, V Sheinin, D Bernardet, L AF Yablonsky, Richard M. Ginis, Isaac Thomas, Biju Tallapragada, Vijay Sheinin, Dmitry Bernardet, Ligia TI Description and Analysis of the Ocean Component of NOAA's Operational Hurricane Weather Research and Forecasting Model (HWRF) SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID TROPICAL CYCLONE INTENSITY; SEA-SURFACE TEMPERATURE; RESOLUTION COUPLED MODEL; ATMOSPHERE-WAVE-OCEAN; MIXED-LAYER RESPONSE; PREDICTION SYSTEM; DATA ASSIMILATION; NUMERICAL SIMULATIONS; INITIALIZATION; IMPACTS AB The Princeton Ocean Model for Tropical Cyclones (POM-TC), a version of the three-dimensional primitive equation numerical ocean model known as the Princeton Ocean Model, was the ocean component of NOAA's operational Hurricane Weather Research and Forecast Model (HWRF) from 2007 to 2013. The coupled HWRF-POM-TC system facilitates accurate tropical cyclone intensity forecasts through proper simulation of the evolving SST field under simulated tropical cyclones. In this study, the 2013 operational version of HWRF is used to analyze the POM-TC ocean temperature response in retrospective HWRF-POM-TC forecasts of Atlantic Hurricanes Earl (2010), Igor (2010), Irene (2011), Isaac (2012), and Leslie (2012) against remotely sensed and in situ SST and subsurface ocean temperature observations. The model generally underestimates the hurricane-induced upper-ocean cooling, particularly far from the storm track, as well as the upwelling and downwelling oscillation in the cold wake, compared with observations. Nonetheless, the timing of the model SST cooling is generally accurate (after accounting for along-track timing errors), and the ocean model's vertical temperature structure is generally in good agreement with observed temperature profiles from airborne expendable bathythermographs. C1 [Yablonsky, Richard M.; Ginis, Isaac; Thomas, Biju] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA. [Tallapragada, Vijay; Sheinin, Dmitry] NOAA, NWS, Environm Modeling Ctr, NCEP, College Pk, MD USA. [Bernardet, Ligia] Univ Colorado, Environm Modeling Ctr, NOAA, NWS NCEP, Boulder, CO 80309 USA. [Bernardet, Ligia] Univ Colorado, CIRES, Boulder, CO 80309 USA. RP Yablonsky, RM (reprint author), Univ Rhode Isl, Grad Sch Oceanog, Box 67,215 South Ferry Rd, Narragansett, RI 02882 USA. EM rmyablon@mail.uri.edu RI Bernardet, Ligia/N-3357-2014 FU NASA Earth Science MEaSUREs DISCOVER Project; NOAA/HFIP [NA12NWS4680002] FX Thanks to the NOAA Environmental Modeling Center and Developmental Testbed Center HWRF teams; and thanks to Joe Cione, Eric Uhlhorn, and George Halliwell at NOAA's Atlantic Oceanographic and Meteorological Laboratory, as well as Melissa Kaufman and Tracy McCormick, who contributed to the HWRF-POM-TC analysis. Thanks to Elizabeth Sanabia at the U.S. Naval Academy for the helpful suggestions. AXBT data are provided by the U.S. Naval Academy TROPIC program and the U.S. Naval Research Laboratory (http://www.usna.edu/Users/oceano/sanbia/tropic.htm). TMI data are produced by Remote Sensing Systems and sponsored by the NASA Earth Science MEaSUREs DISCOVER Project (http://www.remss.com). Buoy data are provided by NOAA's National Data Buoy Center (http://www.ndbc.noaa.gov). The satellite-derived SSH is from Robert Leben at the Colorado Center for Astrodynamics Research (http://eddy.colorado.edu/ccar/ssh/hist_gom_grid_viewer). NCODA data are provided by the U.S. Navy's Fleet Numerical Meteorology and Oceanography Center for the Global Ocean Data Assimilation Experiment (http://usgodae.org/cgi-bin/datalist.pl?summary=Go&dset=fnmoc_glb_ocn). Finally, thanks to five anonymous reviewers, who provided helpful suggestions to improve this manuscript. This research was funded by NOAA/HFIP Grant NA12NWS4680002, awarded to the University of Rhode Island. NR 58 TC 7 Z9 7 U1 1 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD JAN PY 2015 VL 32 IS 1 BP 144 EP 163 DI 10.1175/JTECH-D-14-00063.1 PG 20 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA AZ4WL UT WOS:000348221100009 ER PT J AU Lovas, FJ Sobhanadri, J AF Lovas, F. J. Sobhanadri, J. TI Microwave rotational spectral study of CH3CN-H2O and Ar-CH3CN SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Acetonitrile; Dimer; Microwave spectrum; Rotational spectrum; Structure; Water ID BONDED ACETONITRILE-WATER; GAS-PHASE; PULSED-NOZZLE; COMPLEXES; DIMER; SPECTROMETER; SPECTROSCOPY; MOLECULES; BEAM AB The microwave spectrum of the molecular complex of acetonitrile (CH3CN) with water (H2O) has been studied with a pulsed-beam Fourier Transform Microwave Spectrometer (FTMW) from a gas sample of 1% by volume of CH3CN in Ar flowed over a water sample. The frequency coverage was about 922 GHz for various isotopomers. The CH3CN-H2O complex exhibited a symmetric top spectrum for two tunneling components, whereby the water subunit tunnels between two equivalent forms. The molecular structure was determined with the aid of spectral studies of isotopically substituted monomers containing C-13, N-15 and O-18 and mono- and di-deuterated water. In the process of measuring the (CH3CN)-C-13-H2O species, we observed some nearby transitions for the Ar-(CH3CN)-C-13 complex. Since the molecular structure of the Ar complex in the literature was not completely determined, we also measured several isotopomers of it to improve the molecular structure. The rotational analyses provide the rotational, centrifugal distortion and nuclear quadrupole coupling constants for all of the isotopomers analyzed. Published by Elsevier Inc. C1 [Lovas, F. J.] NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA. [Sobhanadri, J.] Indian Inst Technol, Dept Phys, Madras 600036, Tamil Nadu, India. RP Lovas, FJ (reprint author), NIST, Sensor Sci Div, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM lovas@nist.gov NR 28 TC 4 Z9 4 U1 2 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD JAN PY 2015 VL 307 BP 59 EP 64 DI 10.1016/j.jms.2014.12.017 PG 6 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA AZ5EZ UT WOS:000348244500012 ER PT J AU Liu, FH Hsu, CS Lo, ST Chuang, C Huang, LI Woo, TP Liang, CT Fukuyama, Y Yang, Y Elmquist, RE Wang, PJ Lin, X AF Liu, Fan-Hung Hsu, Chang-Shun Lo, Shun-Tsung Chuang, Chiashain Huang, Lung-I Woo, Tak-Pong Liang, Chi-Te Fukuyama, Y. Yang, Y. Elmquist, R. E. Wang, Pengjie Lin, Xi TI Thermometry for Dirac fermions in graphene SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE Graphene; Dirac fermions; Weak localization; Thermometry ID 2-DIMENSIONAL ELECTRON-GAS; QUANTUM HALL TRANSITION; EPITAXIAL GRAPHENE; MAGNETIC-FIELD; TRANSPORT; INSULATOR; SYSTEM; OSCILLATIONS; FILMS; HETEROSTRUCTURES AB We use both the zero-magnetic-field resistivity and the phase coherence time determined by weak localization as independent thermometers for Dirac fermions (DF) in multilayer graphene. In the high current (I) region, there exists a simple power law T (DF) ae I (similar to 0.5), where T (DF) is the effective Dirac fermion temperature for epitaxial graphene on SiC. In contrast, T (DF) ae I (similar to 1) in exfoliated multilayer graphene. We discuss possible reasons for the different power laws observed in these multilayer graphene systems. Our experimental results on DF-phonon scattering may find applications in graphene-based nanoelectronics. C1 [Liu, Fan-Hung; Hsu, Chang-Shun; Lo, Shun-Tsung] Natl Taiwan Univ, Grad Inst Appl Phys, Taipei 106, Taiwan. [Chuang, Chiashain; Huang, Lung-I; Woo, Tak-Pong; Liang, Chi-Te] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan. [Fukuyama, Y.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan. [Yang, Y.; Elmquist, R. E.] NIST, Gaithersburg, MD 20899 USA. [Wang, Pengjie; Lin, Xi] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. RP Liu, FH (reprint author), Natl Taiwan Univ, Grad Inst Appl Phys, Taipei 106, Taiwan. EM ctliang@phys.ntu.edu.tw RI Liang, Chi-Te/A-3902-2009; OI Liang, Chi-Te/0000-0003-4435-5949; Wang, Pengjie/0000-0002-1427-6599 FU National Taiwan University [103R7552-2]; National Science Council (NSC), Taiwan [NSC 102-2119-M-002-016-MY3, NSC 102-2811-M-002-086]; NSFC [11274020, 11322435] FX This work was partly funded by National Taiwan University (Grant no: 103R7552-2). C.T.L. and T.P.W. acknowledge support from the National Science Council (NSC), Taiwan (grant no: NSC 102-2119-M-002-016-MY3 and NSC 102-2811-M-002-086). The work at PKU was funded by NSFC (Grant No. 11274020 and 11322435). NR 57 TC 1 Z9 1 U1 5 U2 16 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 EI 1976-8524 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD JAN PY 2015 VL 66 IS 1 BP 1 EP 6 DI 10.3938/jkps.66.1 PG 6 WC Physics, Multidisciplinary SC Physics GA AZ3PQ UT WOS:000348139700001 ER PT J AU Caldow, C Monaco, ME Pittman, SJ Kendall, MS Goedeke, TL Menza, C Kinlan, BP Costa, BM AF Caldow, Chris Monaco, Mark E. Pittman, Simon J. Kendall, Matthew S. Goedeke, Theresa L. Menza, Charles Kinlan, Brian P. Costa, Bryan M. TI Biogeographic assessments: A framework for information synthesis in marine spatial planning SO MARINE POLICY LA English DT Article DE Coastal and marine spatial planning; Spatial predictive modeling; Human uses; Ecosystem-based management; Seascape ecology ID ECOSYSTEM-BASED MANAGEMENT; SPECIES DISTRIBUTION MODELS; LAND-USE; SERVICES; CONSERVATION; UNCERTAINTY; CHALLENGES; SEA; NEIGHBORHOODS; PERSPECTIVES AB This paper presents the Biogeographic Assessment Framework (BAF), a decision support process for marine spatial planning (MSP), developed through two decades of close collaborations between scientists and marine managers. Spatial planning is a considerable challenge for marine stewardship agencies because of the need to synthesize information on complex socio-ecological patterns across geographically broad spatial scales. This challenge is compounded by relatively short time-frames for implementation and limited financial and technological resources. To address this pragmatically, BAF provides a rapid, flexible and multi-disciplinary approach to integrate geospatial information into formats and visualization tools readily useable for spatial planning. Central to BAF is four sequential components: (1) Planning; (2) Data Evaluation; (3) Ecosystem Characterization; and (4) Management Applications. The framework has been applied to support the development of several marine spatial plans in the United States and Territories. This paper describes the structure of the BAF framework and the associated analytical techniques. Two management applications are provided to demonstrate the utility of BAF in supporting decision making in MSP. Published by Elsevier Ltd. C1 [Caldow, Chris; Monaco, Mark E.; Pittman, Simon J.; Kendall, Matthew S.; Goedeke, Theresa L.; Menza, Charles; Kinlan, Brian P.; Costa, Bryan M.] NOAA, Natl Ctr Coastal Ocean Sci, Ctr Coastal Monitoring &Assessment, Biogeog Branch SSMC4, Silver Spring, MD 20910 USA. [Pittman, Simon J.] Univ Plymouth, Inst Marine, Ctr Marine & Coastal Policy Res, Plymouth PL4 8AA, Devon, England. [Kinlan, Brian P.; Costa, Bryan M.] CSS Dynamac Inc, Fairfax, VA 22030 USA. RP Caldow, C (reprint author), NOAA, Natl Ctr Coastal Ocean Sci, Ctr Coastal Monitoring &Assessment, Biogeog Branch SSMC4, 1305 East West Highway, Silver Spring, MD 20910 USA. EM Chris.Caldow@noaa.gov; Mark.Monaco@noaa.gov; Simon.Pittman@noaa.gov; Matthew.Kendall@noaa.gov; Theresa.Geodeke@noaa.gov; Charles.Menza@noaa.gov; Brian.Kinlan@noaa.gov; Bryan.Costa@noaa.gov NR 93 TC 11 Z9 11 U1 4 U2 28 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0308-597X EI 1872-9460 J9 MAR POLICY JI Mar. Pol. PD JAN PY 2015 VL 51 BP 423 EP 432 DI 10.1016/j.marpol.2014.07.023 PG 10 WC Environmental Studies; International Relations SC Environmental Sciences & Ecology; International Relations GA AZ1MS UT WOS:000348003700050 ER PT J AU Jaimes, B Shay, LK Uhlhorn, EW AF Jaimes, Benjamin Shay, Lynn K. Uhlhorn, Eric W. TI Enthalpy and Momentum Fluxes during Hurricane Earl Relative to Underlying Ocean Features SO MONTHLY WEATHER REVIEW LA English DT Article ID AIR-SEA INTERACTION; EQUIVALENT POTENTIAL TEMPERATURE; LAYER ENERGY RESPONSE; TROPICAL CYCLONES; BOUNDARY-LAYER; TURBULENT FLUXES; INTENSITY CHANGE; WIND SPEEDS; PART II; EXCHANGE AB Using dropsondes from 27 aircraft flights, in situ observations, and satellite data acquired during Tropical Cyclone Earl (category 4 hurricane), bulk air-sea fluxes of enthalpy and momentum are investigated in relation to intensity change and underlying upper-ocean thermal structure. During Earl's rapid intensification (RI) period, ocean heat content (OHC) variability relative to the 26 degrees C isotherm exceeded 90 kJ cm(-2), and sea surface cooling was less than 0.5 degrees C. Enthalpy fluxes of similar to 1.1 kWm(-2) were estimated for Earl's peak intensity. Daily sea surface heat losses of -6.5 +/- 0.8, -7.8 +/- 1.1, and +2.3 +/- 0.7 kJ cm(-2) were estimated for RI, mature, and weakening stages, respectively. A ratio CK/CD of the exchange coefficients of enthalpy (C-K) and momentum (C-D) between 0.54 and 0.7 produced reliable estimates for the fluxes relative to OHC changes, even during RI; a ratio C-K/C-D 51 overestimated the fluxes. The most important result is that bulk enthalpy fluxes were controlled by the thermodynamic disequilibrium between the sea surface and the near-surface air, independently of wind speed. This disequilibrium was strongly influenced by underlying warm oceanic features; localized maxima in enthalpy fluxes developed over tight horizontal gradients of moisture disequilibrium over these eddy features. These regions of local buoyant forcing preferentially developed during RI. The overall magnitude of the moisture disequilibrium (Delta q - q(s) - q(a)) was determined by the saturation specific humidity at sea surface temperature (q(s)) rather than by the specific humidity of the atmospheric environment (q(a)). These results support the hypothesis that intense local buoyant forcing by the ocean could be an important intensification mechanism in tropical cyclones over warm oceanic features. C1 [Jaimes, Benjamin; Shay, Lynn K.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Div Meteorol & Phys Oceanog, Miami, FL 33149 USA. [Uhlhorn, Eric W.] NOAA, Hurricane Res Div, Atlantic Oceanog & Meteorol Lab, Miami, FL USA. RP Jaimes, B (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Div Meteorol & Phys Oceanog, 4600 Rickenbacker Cswy, Miami, FL 33149 USA. EM bjaimes@rsmas.miami.edu RI Jaimes, Benjamin/I-5666-2015 OI Jaimes, Benjamin/0000-0002-5286-0972 FU NASA Hurricane Science Program (NASA Award) [NNX09AC47G]; Deep-C [SA1212GoMRI008]; NOAA/NESDIS; National Science Foundation FX The research team gratefully acknowledges support from the NASA Hurricane Science Program (NASA Award NNX09AC47G), Deep-C (Grant SA1212GoMRI008), and NOAA/NESDIS. The project continues to be grateful to the NOAA Aircraft Operation Center (Dr. Jim McFadden), who made it possible to acquire high quality data during hurricanes through the Hurricane Forecast Improvement Project (HFIP) and the collaborative ties with NOAA's Hurricane Research Division directed by Dr. Frank Marks at AOML. Kathryn Sellwood (NOAA/HRD) provided valuable advice during the processing of the raw dropsonde data with ASPEN. Dr. George Halliwell (NOAA/AOML) provided the USGODAE datasets. Comments and suggestions by three anonymous reviewers contributed to significantly improving this paper. NOAA/HRD provided raw IFEX and USAFR dropsonde data. GRIP NASA DC-8 quality controlled dropsonde data were provided by NCAR/EOL under sponsorship of the National Science Foundation (http://data.eol.ucar.edu/). Processed altimeter data are from the U.S. Navy's Altimetry Data Fusion Center (ADFC) at Stennis Space Center; the derived product suite (and its evaluation) is available online (either at http://www.rsmas.miami.edu/groups/upper-ocean-dynamics/research/ocean-he at-content/ or http://www.ospo.noaa.gov/Products/ocean/ocean_heat.html). NR 71 TC 9 Z9 10 U1 4 U2 18 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD JAN PY 2015 VL 143 IS 1 BP 111 EP 131 DI 10.1175/MWR-D-13-00277.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ0DO UT WOS:000347916700008 ER PT J AU Jones, TA Stensrud, D Wicker, L Minnis, P Palikonda, R AF Jones, Thomas A. Stensrud, David Wicker, Louis Minnis, Patrick Palikonda, Rabindra TI Simultaneous Radar and Satellite Data Storm-Scale Assimilation Using an Ensemble Kalman Filter Approach for 24 May 2011 SO MONTHLY WEATHER REVIEW LA English DT Article ID BULK MICROPHYSICS PARAMETERIZATION; MULTICASE COMPARATIVE-ASSESSMENT; ADAPTIVE COVARIANCE INFLATION; WARN-ON-FORECAST; CONVECTIVE-SCALE; PART II; EXPLICIT FORECASTS; INITIAL CONDITION; MODEL; SYSTEM AB Assimilating high-resolution radar reflectivity and radial velocity into convection-permitting numerical weather prediction models has proven to be an important tool for improving forecast skill of convection. The use of satellite data for the application is much less well understood, only recently receiving significant attention. Since both radar and satellite data provide independent information, combing these two sources of data in a robust manner potentially represents the future of high-resolution data assimilation. This research combines Geostationary Operational Environmental Satellite 13 (GOES-13) cloud water path (CWP) retrievals with Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivity and radial velocity to examine the impacts of assimilating each for a severe weather event occurring in Oklahoma on 24 May 2011. Data are assimilated into a 3-km model using an ensemble adjustment Kalman filter approach with 36 members over a 2-h assimilation window between 1800 and 2000 UTC. Forecasts are then generated for 90 min at 5-min intervals starting at 1930 and 2000 UTC. Results show that both satellite and radar data are able to initiate convection, but that assimilating both spins up a storm much faster. Assimilating CWP also performs well at suppressing spurious precipitation and cloud cover in the model as well as capturing the anvil characteristics of developed storms. Radar data are most effective at resolving the 3D characteristics of the core convection. Assimilating both satellite and radar data generally resulted in the best model analysis and most skillful forecast for this event. C1 [Jones, Thomas A.] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73072 USA. [Stensrud, David; Wicker, Louis] NOAA, OAR, Severe Storms Lab, Norman, OK 73072 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23665 USA. [Palikonda, Rabindra] Sci Syst & Applicat Inc, Hampton, VA USA. RP Jones, TA (reprint author), Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, 120 David L Boren Blvd, Norman, OK 73072 USA. EM thomas.jones@noaa.gov FU NOAA National Environmental Satellite, Data, and Information Service as part of the GOES-R program; NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma under the U.S. Department of Commerce [NA11OAR4320072]; NASA Modeling, Analysis, and Prediction (MAP) Program; Department of Energy Atmospheric Science Research Program [DE-SC0000991/006] FX This research was supported by the NOAA National Environmental Satellite, Data, and Information Service as part of the GOES-R program. Partial funding for this research was also provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement NA11OAR4320072, under the U.S. Department of Commerce. P. Minnis and R. Palikonda are supported by the NASA Modeling, Analysis, and Prediction (MAP) Program and by the Department of Energy Atmospheric Science Research Program under Interagency Agreement DE-SC0000991/006. The near-real-time satellite analyses can be accessed for a variety of domains at http://cloudsgate2.larc.nasa.gov/. The computing for this project was performed at the OU Supercomputing Center for Education and Research (OSCER) at the University of Oklahoma (OU). NR 82 TC 12 Z9 12 U1 0 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD JAN PY 2015 VL 143 IS 1 BP 165 EP 194 DI 10.1175/MWR-D-14-00180.1 PG 30 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ0DO UT WOS:000347916700010 ER PT J AU Del'Haye, P Coillet, A Loh, W Beha, K Papp, SB Diddams, SA AF Del'Haye, Pascal Coillet, Aurelien Loh, William Beha, Katja Papp, Scott B. Diddams, Scott A. TI Phase steps and resonator detuning measurements in microresonator frequency combs SO NATURE COMMUNICATIONS LA English DT Article ID MODE-LOCKING; CHIP; GENERATION; DISPERSION; PULSE; MICROCAVITIES; SPECTROSCOPY; COHERENCE; ROUTE; NOISE AB Experiments and theoretical modelling yielded significant progress toward understanding of Kerr-effect induced optical frequency comb generation in microresonators. However, the simultaneous Kerr-mediated interaction of hundreds or thousands of optical comb frequencies with the same number of resonator modes leads to complicated nonlinear dynamics that are far from fully understood. An important prerequisite for modelling the comb formation process is the knowledge of phase and amplitude of the comb modes as well as the detuning from their respective microresonator modes. Here, we present comprehensive measurements that fully characterize optical microcomb states. We introduce a way of measuring resonator dispersion and detuning of comb modes in a hot resonator while generating an optical frequency comb. The presented phase measurements show unpredicted comb states with discrete pi and pi/2 steps in the comb phases that are not observed in conventional optical frequency combs. C1 [Del'Haye, Pascal; Coillet, Aurelien; Loh, William; Beha, Katja; Papp, Scott B.; Diddams, Scott A.] Natl Inst Stand & Technol, Boulder, CO 80305 USA. RP Del'Haye, P (reprint author), Natl Inst Stand & Technol, Boulder, CO 80305 USA. EM pascal.delhaye@nist.gov RI Del'Haye, Pascal/G-2588-2016 OI Del'Haye, Pascal/0000-0002-6517-6942 FU NIST; DARPA QuASAR program; AFOSR; NASA; Humboldt Foundation FX This work is supported by NIST, the DARPA QuASAR program, the AFOSR and NASA. P.D. thanks the Humboldt Foundation for support. This paper is a contribution of NIST and is not subject to copyright in the United States. NR 43 TC 26 Z9 26 U1 1 U2 21 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN PY 2015 VL 6 AR 5668 DI 10.1038/ncomms6668 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA1AH UT WOS:000348644300001 PM 25565467 ER PT S AU Schneider, BI Bartschat, KR Guan, XX Feder, D Collins, LA AF Schneider, Barry I. Bartschat, Klaus R. Guan, Xiaoxu Feder, David Collins, Lee A. BE Dinner, AR TI TIME-DEPENDENT COMPUTATIONAL METHODS FOR MATTER UNDER EXTREME CONDITIONS SO PROCEEDINGS OF THE 240 CONFERENCE: SCIENCE'S GREAT CHALLENGES SE Advances in Chemical Physics LA English DT Review CT 240th Conference on Science's Great Challenges CY SEP 13-15, 2012 CL Univ Chicago, Chicago, IL HO Univ Chicago C1 [Schneider, Barry I.] Natl Sci Fdn, Off Cyberinfrastruct, Arlington, VA 22230 USA. [Bartschat, Klaus R.; Guan, Xiaoxu] Drake Univ, Dept Phys & Astron, Des Moines, IA 50311 USA. [Feder, David] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada. [Feder, David] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Schneider, BI (reprint author), NIST, Appl & Computat Math Div, Gaithersburg, MD 20899 USA. RI Guan, Xiaoxu/A-1299-2013 FU National Science Foundation [PHY-0757755, PHY-1068140, PHY-1430245]; Institutional Computing Program at the Los Alamos National Laboratory; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; XSEDE program [TG-PHY-090031] FX This work was supported, in part, by the National Science Foundation under grants No. PHY-0757755, No. PHY-1068140, and No, PHY-1430245 (KB and XG), and by the Institutional Computing Program at the Los Alamos National Laboratory, operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396 (LAC). The authors also thank the National Science Foundation and the XSEDE program for significant computational support under TeraGrid/XSEDE allocation No. TG-PHY-090031. NR 22 TC 0 Z9 0 U1 0 U2 0 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0065-2385 BN 978-1-118-95960-2; 978-1-118-95959-6 J9 ADV CHEM PHYS JI Adv. Chem. Phys. PY 2015 VL 157 BP 195 EP 214 PG 20 WC Physics, Atomic, Molecular & Chemical SC Physics GA BB9TT UT WOS:000348650300017 ER PT S AU Tan, JN Hoogerheide, SF Brewer, SM Guise, ND AF Tan, Joseph N. Hoogerheide, Shannon Fogwell Brewer, Samuel M. Guise, Nicholas D. BE Lapierre, A Schwarz, S Baumann, TM TI Multiply-ionized Atoms Isolated at Low Energy in a Unitary Penning Trap SO PROCEEDINGS OF THE XII INTERNATIONAL SYMPOSIUM ON ELECTRON BEAM ION SOURCES AND TRAPS SE AIP Conference Proceedings LA English DT Proceedings Paper CT 12th International Symposium on Electron Beam Ion Sources and Traps CY MAY 18-21, 2014 CL Michigan State Univ, Natl Superconducting Cyclotron Lab, East Lansing, MI SP Facil Rare Isotope Beams, GSI Helmholtz Ctr Heavy Ion Res, Amer Inst Phys, Review Sci Instruments, Agilent Technologies, DREEBIT HO Michigan State Univ, Natl Superconducting Cyclotron Lab ID IONS AB Ions extracted from the EBIT at NIST are slowed and captured in a Penning trap that is made very compact (< 150 cm(3)) by a unitary architecture [1]. Measurements after 1 ms of ion storage indicate that the isolated ions are distributed with 5.5(5) eV of energy spread, which is roughly 2 orders of magnitude lower than expected in the ion source, without implementing any active cooling [2]. Some experiments are discussed. One goal is to produce one-electron ions in high angular momentum states for studying optical transitions between Rydberg states that could potentially enable new tests of quantum electrodynamics (QED) and determinations of fundamental constants [3]. C1 [Tan, Joseph N.; Hoogerheide, Shannon Fogwell; Brewer, Samuel M.; Guise, Nicholas D.] NIST, Gaithersburg, MD 20899 USA. [Brewer, Samuel M.] Univ Maryland, College Pk, MD 20742 USA. RP Tan, JN (reprint author), NIST, Gaithersburg, MD 20899 USA. EM joseph.tan@nist.gov NR 17 TC 0 Z9 0 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA SN 0094-243X BN 978-0-7354-1279-8 J9 AIP CONF PROC PY 2015 VL 1640 DI 10.1063/1.4905405 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BB8XD UT WOS:000347721900013 ER PT J AU Spada, M Jorba, O Garcia-Pando, CP Janjic, Z Baldasano, JM AF Spada, M. Jorba, O. Garcia-Pando, C. Perez Janjic, Z. Baldasano, J. M. TI On the evaluation of global sea-salt aerosol models at coastal/orographic sites SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Sea-salt aerosol; Global model evaluation; University of Miami Network; Surface concentration measurements; Coastal sites; Orographic effects ID ZEALAND PRECIPITATION EVENTS; SOUTHERN ALPS; MESOSCALE RAINFALL; CLIMATE; SENSITIVITY; RESOLUTION; PARAMETERIZATION; SIMULATION; DUST; MASS AB Sea-salt aerosol global models are typically evaluated against concentration observations at coastal stations that are unaffected by local surf conditions and thus considered representative of open ocean conditions. Despite recent improvements in sea-salt source functions, studies still show significant model errors in specific regions. Using a multiscale model, we investigated the effect of high model resolution (0.1 degrees x 0.1 degrees vs. 1 degrees x 1.4 degrees) upon sea-salt patterns in four stations from the University of Miami Network: Baring Head, Chatam Island, and Invercargill in New Zealand, and Marion Island in the sub-antarctic Indian Ocean. Normalized biases improved from +63.7% to +3.3% and correlation increased from 0.52 to 0.84. The representation of sea/land interfaces, mesoscale circulations, and precipitation with the higher resolution model played a major role in the simulation of annual concentration trends. Our results recommend caution when comparing or constraining global models using surface concentration observations from coastal stations. (C) 2014 The Authors. Published by Elsevier Ltd. C1 [Spada, M.; Jorba, O.; Baldasano, J. M.] Ctr Nacl Supercomputac, Barcelona Supercomp Ctr, Barcelona, Spain. [Garcia-Pando, C. Perez] NASA Goddard Inst Space Studies, New York, NY USA. [Garcia-Pando, C. Perez] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Janjic, Z.] Natl Ctr Environm Predict, College Pk, MD USA. [Baldasano, J. M.] Univ Politecn Cataluna, Barcelona, Spain. RP Spada, M (reprint author), BSC CNS, Dept Earth Sci, Edificio Nexus II,C Jordi Girona 29, Barcelona 08034, Spain. EM michele.spada@bsc.es OI Perez Garcia-Pando, Carlos/0000-0002-4456-0697; Jorba, Oriol/0000-0001-5872-0244 FU "Supercomputacion and e-ciencia" Project from the Consolider-Ingenio program of the Spanish Ministry of Economy and Competitiveness [CSD2007-0050]; Severo Ochoa Program - Spanish Government [SEV-2011-00067]; [CGL2013-46736-R] FX We would like to thank the scientists of the University of Miami Ocean Aerosol Network, the National Institute of Water and Atmospheric Research, and the South African Weather Service for establishing and providing data from the stations used in this work. In particular, we thank J. Prospero for his personal communications, M. Schulz for providing postprocessing of the University of Miami Ocean Aerosol Network dataset, and A. Tait for providing postprocessing of the National Institute of Water and Atmospheric Research climatological maps. We also thank F. Benincasa for technical support. BSC acknowledges the support from projects CGL2013-46736-R and "Supercomputacion and e-ciencia" Project (CSD2007-0050) from the Consolider-Ingenio 2010 program of the Spanish Ministry of Economy and Competitiveness and the support from the grant SEV-2011-00067 of Severo Ochoa Program, awarded by the Spanish Government. Carlos Perez Garcia-Pando acknowledges DoE and NASA Roses. NR 37 TC 2 Z9 2 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD JAN PY 2015 VL 101 BP 41 EP 48 DI 10.1016/j.atmosenv.2014.11.019 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AZ1SB UT WOS:000348017000005 ER PT J AU Brown-Steiner, B Hess, PG Lin, MY AF Brown-Steiner, B. Hess, P. G. Lin, M. Y. TI On the capabilities and limitations of GCCM simulations of summertime regional air quality: A diagnostic analysis of ozone and temperature simulations in the US using CESM CAM-Chem SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Surface ozone; Atmospheric chemistry; Climate-chemistry model; Climate change penalty; Extreme value theory; Mixed model statistics ID SURFACE OZONE; CLIMATE-CHANGE; UNITED-STATES; TRANSPORT MODEL; ATMOSPHERIC CHEMISTRY; BIOGENIC EMISSIONS; BOUNDARY-LAYER; EASTERN US; VARIABILITY; TRENDS AB We conduct a diagnostic analysis of ozone chemistry simulated by four different configurations of a Global Climate-Chemistry Model (GCCM), the Community Earth System Model (CESM) with detailed tropospheric chemistry. The purpose of this study is to evaluate the ability of GCCMs to simulate future ozone chemistry by evaluating their ability to simulate present-day chemistry. To address this we chose four configurations of the CESM that differ in their meteorology (analyzed versus simulated meteorological fields), number of vertical levels, and the coupling of the ice and ocean models. We apply mixed model statistics to evaluate these different configurations against CASTNET ozone observations within different regions of the US by using various performance metrics relevant to evaluating future ozone changes. These include: mean biases and interannual variability, the ozone response to emission changes, the ozone response to temperature changes and ozone extreme values. Using these metrics, we find that although the configuration using analyzed meteorology best simulates temperatures it does not outperform a configuration with simulated meteorology in other metrics. All configurations are unable to capture observed ozone decreases and the ozone north-south gradient over the eastern US during 1995-2005. We find that the configuration with simulated meteorology with 56 vertical levels is markedly better in capturing observed ozone-temperature relationships and extreme values than a configuration that is identical except that it contains 26 vertical levels. We recommend caution in the use of GCCMs in simulating surface chemistry as differences in a variety of model parameters have a significant impact on the resulting chemical and climate variables. Isoprene emissions depend strongly on surface temperature and the resulting ozone chemistry is dependent on isoprene emissions but also on cloud cover, photolysis, the number of vertical levels, and the choice of meteorology. These dependencies must be accounted for in the interpretation of GCCM results. (C) 2014 Published by Elsevier Ltd. C1 [Brown-Steiner, B.; Hess, P. G.] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY 14853 USA. [Lin, M. Y.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Lin, M. Y.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Brown-Steiner, B (reprint author), Cornell Univ, B62 Riley-Robb Hall, Ithaca, NY 14853 USA. EM beb83@cornell.edu RI Lin, Meiyun/D-6107-2013; Hess, Peter/M-3145-2015 OI Lin, Meiyun/0000-0003-3852-3491; Hess, Peter/0000-0003-2439-3796 FU US EPA [83520501, 83428301]; NSF [CNS-0832782] FX This publication was made possible by US EPA grant 83520501 and grant 83428301. Its contents are solely the responsibility of the grantee and do not necessarily represent the official views of the US EPA. Further, US EPA does not endorse the purchase of any commercial products or services mentioned in the publication. The authors also acknowledge the support of NSF grant CNS-0832782. We would also like to acknowledge the helpful advice of Daniel Fuka, Qi Tang, and the climate-chemistry research group at Cornell University. In addition, we would like to thank the guidance of Francoise Vermeylen and Jay Barry of the Cornell University Statistical Consulting Unit for their invaluable help with the Mixed Modeling analysis. NR 73 TC 8 Z9 8 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD JAN PY 2015 VL 101 BP 134 EP 148 DI 10.1016/j.atmosenv.2014.11.001 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AZ1SB UT WOS:000348017000015 ER PT J AU Wang, B Lee, JY Xiang, BQ AF Wang, Bin Lee, June-Yi Xiang, Baoqiang TI Asian summer monsoon rainfall predictability: a predictable mode analysis SO CLIMATE DYNAMICS LA English DT Article DE Asian summer monsoon rainfall; Seasonal predictability; Predictable mode analysis; ENSO; Monsoon-ocean coupled mode; Physics-based empirical prediction; Multi-model ensemble ID INDIAN-OCEAN; AUSTRALIAN MONSOON; EAST-ASIA; TEMPERATURE VARIABILITY; SEASONAL PREDICTION; PRINCIPAL MODES; FUTURE CHANGE; DIPOLE MODE; CLIMATE; ENSO AB To what extent the Asian summer monsoon (ASM) rainfall is predictable has been an important but long-standing issue in climate science. Here we introduce a predictable mode analysis (PMA) method to estimate predictability of the ASM rainfall. The PMA is an integral approach combining empirical analysis, physical interpretation and retrospective prediction. The empirical analysis detects most important modes of variability; the interpretation establishes the physical basis of prediction of the modes; and the retrospective predictions with dynamical models and physics-based empirical (P-E) model are used to identify the "predictable" modes. Potential predictability can then be estimated by the fractional variance accounted for by the "predictable" modes. For the ASM rainfall during June-July-August, we identify four major modes of variability in the domain (20A degrees S-40A degrees N, 40A degrees E-160A degrees E) during 1979-2010: (1) El Nio-La Nina developing mode in central Pacific, (2) Indo-western Pacific monsoon-ocean coupled mode sustained by a positive thermodynamic feedback with the aid of background mean circulation, (3) Indian Ocean dipole mode, and (4) a warming trend mode. We show that these modes can be predicted reasonably well by a set of P-E prediction models as well as coupled models' multi-model ensemble. The P-E and dynamical models have comparable skills and complementary strengths in predicting ASM rainfall. Thus, the four modes may be regarded as "predictable" modes, and about half of the ASM rainfall variability may be predictable. This work not only provides a useful approach for assessing seasonal predictability but also provides P-E prediction tools and a spatial-pattern-bias correction method to improve dynamical predictions. The proposed PMA method can be applied to a broad range of climate predictability and prediction problems. C1 [Wang, Bin; Xiang, Baoqiang] Univ Hawaii, Dept Meteorol, Honolulu, HI 96822 USA. [Wang, Bin; Xiang, Baoqiang] Univ Hawaii, Int Pacific Res Ctr, Honolulu, HI 96822 USA. [Wang, Bin] Nanjing Univ Informat Sci & Technol, Earth Syst Modeling Ctr NIAMS, Nanjing 210044, Jiangsu, Peoples R China. [Lee, June-Yi] Pusan Natl Univ, Inst Environm Studies, Pusan 609735, South Korea. [Xiang, Baoqiang] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Lee, JY (reprint author), Pusan Natl Univ, Inst Environm Studies, Pusan 609735, South Korea. EM juneyi@pusan.ac.kr FU APEC Climate Center; IPRC - JAMSTEC; IPRC - NOAA; National Research Foundation of Korea (NRF) through a Global Research Laboratory (GRL) Grant [MEST 2011-0021927] FX This work was supported by APEC Climate Center, and IPRC, which is in part supported by JAMSTEC and NOAA. This work was also funded by the National Research Foundation of Korea (NRF) through a Global Research Laboratory (GRL) Grant (MEST 2011-0021927). We thank Drs. J. Schemm, O. Alves, B. Stern, and J.-J. Luo for providing the hindcast data. The authors appreciate two anonymous reviewers' comments. This is the SOEST publication number 9136, IPRC publication number 1066 and ESMC publication number 6. NR 53 TC 25 Z9 26 U1 1 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JAN PY 2015 VL 44 IS 1-2 BP 61 EP 74 DI 10.1007/s00382-014-2218-1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AY6ZF UT WOS:000347710400003 ER PT J AU Gao, LH Yan, ZW Quan, XW AF Gao, L. H. Yan, Z. W. Quan, X. W. TI Observed and SST-forced multidecadal variability in global land surface air temperature SO CLIMATE DYNAMICS LA English DT Article DE Multidecadal variability; Ensemble empirical mode decomposition; Atmospheric general circulation model; Sea surface temperature ID CLIMATE VARIABILITY; NORTH-AMERICAN; OSCILLATION; PERIOD; SYSTEM; MODEL; US AB The characteristics of multidecadal variability (MDV) in global land surface air temperature (SAT) are analyzed based on observations. The role of sea surface temperature (SST) variations in generating MDV in land SAT is assessed using atmospheric general circulation model simulations forced by observed SST. MDV in land SAT exhibits regional differences, with amplitude larger than 0.3 A degrees C mainly over North America, East Asia, Northern Eurasia, Northern Africa and Greenland for the study period of 1902-2004. MDV can account for more than 30 % of long-term temperature variation during the last century in most regions, especially more than 50 % in parts of the above-mentioned regions. The SST-forced simulations reproduce the observed feature of zonal mean MDV in land SAT, though with weaker amplitude especially at the northern high-latitudes. Two types of MDV in land SAT, one of 60-year-timescale, mainly observed in the northern mid-high-latitude lands, and another of 20-30-year-timescale, mainly observed in the low-latitude lands, are also well reproduced. The SST-forced MDV accounts for more than 40 % amplitude of observed MDV in most regions. Except for some sporadically distributed regions in central Eurasia, South America and Western Australia, the SST-forced multidecadal variations are well in-phase with observations. The Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation signals are found dominant in MDV of both the observed and SST-forced land SAT, suggesting important roles of these oceanic oscillations in generating MDV in global land SAT. C1 [Gao, L. H.; Yan, Z. W.] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Reg Climate Environm East Asia, Beijing, Peoples R China. [Gao, L. H.] Univ Chinese Acad Sci, Beijing, Peoples R China. [Quan, X. W.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Quan, X. W.] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Yan, ZW (reprint author), Chinese Acad Sci, Inst Atmospher Phys, Key Lab Reg Climate Environm East Asia, Beijing, Peoples R China. EM yzw@tea.ac.cn FU grant CAS-SPRP [XDA05090000]; grant MOST-NBRPC [2012CB956200] FX The authors thank Philip Pegion, Taiyi Xu, and Tao Zhang at NOAA/ESRL/PSD for helps in preparing the data. Thanks are also due to two anonymous reviewers for their constructive comments. This work was supported by grants CAS-SPRP XDA05090000 and MOST-NBRPC 2012CB956200. NR 29 TC 6 Z9 7 U1 0 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD JAN PY 2015 VL 44 IS 1-2 BP 359 EP 369 DI 10.1007/s00382-014-2121-9 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AY6ZF UT WOS:000347710400015 ER PT J AU Draxler, R Arnold, D Chino, M Galmarini, S Hort, M Jones, A Leadbetter, S Malo, A Maurer, C Rolph, G Saito, K Servranckx, R Shimbori, T Solazzo, E Wotawa, G AF Draxler, Roland Arnold, Delia Chino, Masamichi Galmarini, Stefano Hort, Matthew Jones, Andrew Leadbetter, Susan Malo, Alain Maurer, Christian Rolph, Glenn Saito, Kazuo Servranckx, Rene Shimbori, Toshiki Solazzo, Efisio Wotawa, Gerhard TI World Meteorological Organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Fukushima; Deposition; Air concentration; ATDM; Iodine; Cesium ID 4-DIMENSIONAL VARIATIONAL ASSIMILATION; ECMWF OPERATIONAL IMPLEMENTATION; MULTISCALE GEM MODEL; ATMOSPHERIC DISPERSION; SOURCE-TERM; PART II; SYSTEM; TRANSPORT; FORMULATION; FORECASTS AB Five different atmospheric transport and dispersion model's (ATDM) deposition and air concentration results for atmospheric releases from the Fukushima Daiichi nuclear power plant accident were evaluated over Japan using regional Cs-137 deposition measurements and Cs-137 and I-131 air concentration time series at one location about 110 km from the plant. Some of the ATDMs used the same and others different meteorological data consistent with their normal operating practices. There were four global meteorological analyses data sets available and two regional high-resolution analyses. Not all of the ATDMs were able to use all of the meteorological data combinations. The ATDMs were configured identically as much as possible with respect to the release duration, release height, concentration grid size, and averaging time. However, each ATDM retained its unique treatment of the vertical velocity field and the wet and dry deposition, one of the largest uncertainties in these calculations. There were 18 ATDM-meteorology combinations available for evaluation. The deposition results showed that even when using the same meteorological analysis, each ATDM can produce quite different deposition patterns. The better calculations in terms of both deposition and air concentration were associated with the smoother ATDM deposition patterns. The best model with respect to the deposition was not always the best model with respect to air concentrations. The use of high-resolution mesoscale analyses improved ATDM performance; however, high-resolution precipitation analyses did not improve ATDM predictions. Although some ATDMs could be identified as better performers for either deposition or air concentration calculations, overall, the ensemble mean of a subset of better performing members provided more consistent results for both types of calculations. Published by Elsevier Ltd. C1 [Draxler, Roland; Rolph, Glenn] NOAA, College Pk, MD 20740 USA. [Hort, Matthew; Jones, Andrew; Leadbetter, Susan] Met Off, Exeter, Devon, England. [Malo, Alain; Servranckx, Rene] Canadian Meteorol Ctr, Montreal, PQ, Canada. [Saito, Kazuo; Shimbori, Toshiki] Japan Meteorol Agcy, Ibaraki, Japan. [Arnold, Delia; Maurer, Christian; Wotawa, Gerhard] Zent Anstalt Meteorol & Geodynam, Vienna, Austria. [Galmarini, Stefano; Solazzo, Efisio] European Commiss, Joint Res Ctr, Ispra, Italy. [Chino, Masamichi] Japan Atom Energy Agcy, Ibaraki, Japan. RP Draxler, R (reprint author), NOAA, College Pk, MD 20740 USA. EM Roland.Draxler@noaa.gov RI Rolph, Glenn/P-6860-2015; OI Arnold, Delia/0000-0003-1204-234X; Malo, Alain/0000-0003-2441-3216; solazzo, efisio/0000-0002-6333-1101 NR 54 TC 19 Z9 21 U1 2 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD JAN PY 2015 VL 139 SI SI BP 172 EP 184 DI 10.1016/j.jenvrad.2013.09.014 PG 13 WC Environmental Sciences SC Environmental Sciences & Ecology GA AY5EN UT WOS:000347596000020 PM 24182910 ER PT J AU Saito, K Shimbori, T Draxler, R AF Saito, Kazuo Shimbori, Toshiki Draxler, Roland TI JMA's regional atmospheric transport model calculations for the WMO technical task team on meteorological analyses for Fukushima Daiichi Nuclear Power Plant accident SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Fukushima; Deposition; Air concentration; Atmospheric transport model; Cesium; WMO ID MESOSCALE MODEL; SOURCE-TERM; DISPERSION; JAPAN; RADIONUCLIDES; ASSIMILATION; DIFFUSION; RELEASE; AGENCY AB The World Meteorological Organization (WMO) convened a small technical task team of experts to produce a set of meteorological analyses to drive atmospheric transport, dispersion and deposition models (ATDMs) for the United Nations Scientific Committee on the Effects of Atomic Radiation's assessment of the Fukushima Daiichi Nuclear Power Plant (DNPP) accident. The Japan Meteorological Agency (JMA) collaborated with the WMO task team as the regional specialized meteorological center of the country where the accident occurred, and provided its operational 5-km resolution mesoscale (MESO) analysis and its 1-km resolution radar/rain gauge-analyzed precipitation (RAP) data. The JMA's mesoscale tracer transport model was modified to a regional ATDM for radionuclides (RATM), which included newly implemented algorithms for dry deposition, wet scavenging, and gravitational settling of radionuclide aerosol particles. Preliminary and revised calculations of the JMA-RATM were conducted according to the task team's protocol. Verification against Cesium 137 (Cs-137) deposition measurements and observed air concentration time series showed that the performance of RATM with MESO data was significantly improved by the revisions to the model. The use of RAP data improved the Cs-137 deposition pattern but not the time series of air concentrations at Tokai-mura compared with calculations just using the MESO data. Sensitivity tests of some of the more uncertain parameters were conducted to determine their impacts on ATDM calculations, and the dispersion and deposition of radionuclides on 15 March 2011, the period of some of the largest emissions and deposition to the land areas of Japan. The area with high deposition in the northwest of Fukushima DNPP and the hotspot in the central part of Fukushima prefecture were primarily formed by wet scavenging influenced by the orographic effect of the mountainous area in the west of the Fukushima prefecture. (C) 2014 The Authors. Published by Elsevier Ltd. C1 [Saito, Kazuo; Shimbori, Toshiki] JMA Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Draxler, Roland] NOAA, Air Resources Lab, College Pk, MD USA. RP Saito, K (reprint author), JMA Meteorol Res Inst, 1-1 Nagamine, Tsukuba, Ibaraki 3050052, Japan. EM ksaito@mri-jma.go.jp OI Draxler, Roland/0000-0001-7081-9992; Saito, Kazuo/0000-0001-9011-0729 FU Ministry of Education, Culture, Sports, Science and Technology of Japan [24340115]; Field 3 of the Strategic Programs for Innovative Research (SPIRE), 'Ultra high accuracy mesoscale weather prediction' FX This study was partly supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan through the Grant-in-Aid for Scientific Research (24340115) and the Field 3 of the Strategic Programs for Innovative Research (SPIRE), 'Ultra high accuracy mesoscale weather prediction'. NR 37 TC 5 Z9 6 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD JAN PY 2015 VL 139 SI SI BP 185 EP 199 DI 10.1016/j.jenvrad.2014.02.007 PG 15 WC Environmental Sciences SC Environmental Sciences & Ecology GA AY5EN UT WOS:000347596000021 PM 24703334 ER PT J AU Leadbetter, SJ Hort, MC Jones, AR Webster, HN Draxler, RR AF Leadbetter, Susan J. Hort, Matthew C. Jones, Andrew R. Webster, Helen N. Draxler, Roland R. TI Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Wet deposition; Atmospheric dispersion modelling; Fukushima Dai-ichi nuclear power plant ID SCALE ATMOSPHERIC DISPERSION; 4-DIMENSIONAL VARIATIONAL ASSIMILATION; ECMWF OPERATIONAL IMPLEMENTATION; SOURCE-TERM ESTIMATION; DRY DEPOSITION; ACCIDENT; RADIONUCLIDES; SIMULATION; TRANSPORT; DISCHARGE AB This paper describes an investigation into the impact of different meteorological data sets and different wet scavenging coefficients on the model predictions of radionuclide deposits following the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. Three separate operational meteorological data sets, the UK Met Office global meteorology, the ECMWF global meteorology and the Japan Meteorological Agency (JMA) mesoscale meteorology as well as radar rainfall analyses from JMA were all used as inputs to the UK Met Office's dispersion model NAME (the Numerical Atmospheric-dispersion Modelling Environment). The model predictions of Caesium-137 deposits based on these meteorological models all showed good agreement with observations of deposits made in eastern Japan with correlation coefficients ranging from 0.44 to 0.80. Unexpectedly the NAME run using radar rainfall data had a lower correlation coefficient (R = 0.66), when compared to observations, than the run using the JMA mesoscale model rainfall (R = 0.76) or the run using ECMWF met data (R = 0.80). Additionally the impact of modifying the wet scavenging coefficients used in the parameterisation of wet deposition was investigated. The results showed that modifying the scavenging parameters had a similar impact to modifying the driving meteorology on the rank calculated from comparing the modelled and observed deposition. Crown Copyright (C) 2014 Published by Elsevier Ltd. All rights reserved. C1 [Leadbetter, Susan J.; Hort, Matthew C.; Jones, Andrew R.; Webster, Helen N.] Met Off, Exeter, Devon, England. [Draxler, Roland R.] NOAA, College Pk, MD USA. RP Leadbetter, SJ (reprint author), Met Off, Exeter, Devon, England. EM susan.leadbetter@metoffice.gov.uk OI Draxler, Roland/0000-0001-7081-9992 NR 42 TC 9 Z9 10 U1 3 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD JAN PY 2015 VL 139 SI SI BP 200 EP 211 DI 10.1016/j.jenvrad.2014.03.018 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA AY5EN UT WOS:000347596000022 PM 24745690 ER PT J AU Arnold, D Maurer, C Wotawa, G Draxler, R Saito, K Seibert, P AF Arnold, D. Maurer, C. Wotawa, G. Draxler, R. Saito, K. Seibert, P. TI Influence of the meteorological input on the atmospheric transport modelling with FLEXPART of radionuclides from the Fukushima Daiichi nuclear accident SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Fukushima accident; Atmospheric transport modelling; FLEXPART; Wet deposition; Airborne nuclear releases ID POWER-PLANT ACCIDENT; SOURCE-TERM ESTIMATION; DRY DEPOSITION; DISPERSION; SIMULATION; DISCHARGE; RELEASE; JAPAN; JMA AB In the present paper the role of precipitation as FLEXPART model input is investigated for one possible release scenario of the Fukushima Daiichi accident. Precipitation data from the European Center for Medium-Range Weather Forecast (ECMVVF), the NOAA's National Center for Environmental Prediction (NCEP), the Japan Meteorological Agency's (JMA) mesoscale analysis and a JMA radar-rain gauge precipitation analysis product were utilized. The accident of Fukushima in March am and the following observations enable us to assess the impact of these precipitation products at least for this single case. As expected the differences in the statistical scores are visible but not large. Increasing the ECMWF resolution of all the fields from 0.5 degrees to 0.2 degrees rises the correlation from 0.71 to 0.80 and an overall rank from 3.38 to 3.44. Substituting ECMWF precipitation, while the rest of the variables remains unmodified, by the JMA mesoscale precipitation analysis and the JMA radar gauge precipitation data yield the best results on a regional scale, specially when a new and more robust wet deposition scheme is introduced. The best results are obtained with a combination of ECMWF 0.2 degrees data with precipitation from JMA mesoscale analyses and the modified wet deposition with a correlation of 0.83 and an overall rank of 3.58. NCEP-based results with the same source term are generally poorer, giving correlations around 0.66, and comparatively large negative biases and an overall rank of 3.05 that worsens when regional precipitation data is introduced. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Arnold, D.; Maurer, C.; Wotawa, G.] Cent Inst Meteorol & Geodynam, Vienna, Austria. [Draxler, R.] NOAA, Washington, DC USA. [Saito, K.] Meteorol Res Inst, Tsukuba, Ibaraki 305, Japan. [Seibert, P.] Univ Vienna, Dept Meteorol & Geophys, A-1010 Vienna, Austria. RP Arnold, D (reprint author), Cent Inst Meteorol & Geodynam, Vienna, Austria. EM delia.arnold-arias@zamg.ac.at OI Arnold, Delia/0000-0003-1204-234X; Draxler, Roland/0000-0001-7081-9992; Saito, Kazuo/0000-0001-9011-0729 NR 46 TC 4 Z9 6 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD JAN PY 2015 VL 139 SI SI BP 212 EP 225 DI 10.1016/j.jenvrad.2014.02.013 PG 14 WC Environmental Sciences SC Environmental Sciences & Ecology GA AY5EN UT WOS:000347596000023 PM 24679678 ER PT J AU Xu, Q Wei, L Jin, Y Zhao, QY Cao, J AF Xu, Qin Wei, Li Jin, Yi Zhao, Qingyun Cao, Jie TI A Dynamically Constrained Method for Determining the Vortex Centers of Tropical Cyclones Predicted by High-Resolution Models SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article DE Hurricanes; Variational analysis; Diagnostics ID INITIALIZATION SCHEME; RELOCATION; SYSTEM AB This paper proposes a new method to properly define and accurately determine the vortex center of a model-predicted tropical cyclone (TC) from a dynamic perspective. Ideally, a dynamically determined TC vortex center should maximize the gradient wind balance or, equivalently, minimize the gradient wind imbalance measured by an energy norm over the TC vortex. In practice, however, such an energy norm cannot be used to easily and unambiguously determine the TC vortex center. An alternative yet practical approach is developed to dynamically and unambiguously define the TC vortex center. In this approach, the TC vortex core of near-solid-body rotation is modeled by a simple parametric vortex constrained by the gradient wind balance. Therefore, the modeled vortex can fit simultaneously the perturbation pressure and streamfunction of the TC vortex part (extracted from the model-predicted fields) over the TC vortex core area (within the radius of maximum tangential wind), while the misfit is measured by a properly defined cost function. Minimizing this cost function yields the desired dynamic optimality condition that can uniquely define the TC vortex center. Using this dynamic optimality condition, a new method is developed in the form of iterative least squares fit to accurately determine the TC vortex center. The new method is shown to be efficient and effective for finding the TC vortex center that accurately satisfies the dynamic optimality condition. C1 [Xu, Qin] Natl Severe Storms Lab, Norman, OK 73072 USA. [Wei, Li] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA. [Jin, Yi; Zhao, Qingyun] Naval Res Lab, Marine Meteorol Div, Monterey, CA USA. [Cao, Jie] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China. RP Xu, Q (reprint author), Natl Severe Storms Lab, 120 David L Boren Blvd, Norman, OK 73072 USA. EM qin.xu@noaa.gov FU ONR [N000141010778, N000141410281]; NOAA/OAR under NOAA-OU [NA11OAR4320072] FX The authors are thankful to Qingfu Liu and Guang-Ping Lou of NCEP, Vincent Wood of NSSL, and anonymous reviewers for their comments and suggestions that improved the presentation of the results. The research was supported by the ONR Grants N000141010778 and N000141410281 to the University of Oklahoma (OU). Funding was also provided by NOAA/OAR under NOAA-OU Cooperative Agreement NA11OAR4320072, U.S. Department of Commerce. The COAMPS-TC simulations were performed at the Navy DoD Supercomputing Resource Center at Stennis, MS. NR 21 TC 3 Z9 3 U1 0 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD JAN PY 2015 VL 72 IS 1 BP 88 EP 103 DI 10.1175/JAS-D-14-0090.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AY1WA UT WOS:000347378900007 ER PT J AU Garner, S AF Garner, Stephen TI The Relationship between Hurricane Potential Intensity and CAPE SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article DE Atmosphere-ocean interaction; Hurricanes; Boundary layer; Sea surface temperature; Tropical cyclones; Algorithms ID TROPICAL CYCLONE ACTIVITY; LOW-FREQUENCY VARIABILITY; SEA-SURFACE TEMPERATURE; MAXIMUM INTENSITY; MOMENTUM EXCHANGE; WIND SHEAR; MODEL; EYE; SENSITIVITY; EYEWALL AB The theoretical minimum eyewall pressure of tropical cyclones can be computed from convective available potential energy (CAPE) if the buoyancy in the CAPE is allowed to feed back on the surface pressure via hydrostatic balance. The relationship between this so-called hurricane CAPE and the surface pressure is exploited by a widely used algorithm for hurricane potential intensity (PI). For the observed atmosphere, the algorithm is shown to yield significantly weaker pressure intensity (20%-25%) and velocity intensity (5%-10%) than the most familiar analytical formulas. This discrepancy is found to come mostly from thermodynamic approximations in the formulas.The CAPE-PI algorithm makes a significant adjustment to the hurricane CAPE by subtracting the environmental CAPE. Most of the environmental profile becomes irrelevant as a result. Other steady-state theories retain the influence of the full environmental column. The impact of this choice on the pressure and velocity PI is analyzed. Another important choicewhether to allow the eyewall kinetic energy to contribute to the surface pressure perturbationis also analyzed and quantified. The analytical formula for the velocity is updated with full moist thermodynamics and compared to the algorithm. The latter emerges as an excellent overall diagnostic of the underlying model. An exact algorithm for the velocity is also derived, based on its relationship to the radial derivative of hurricane CAPE. The thermodynamic efficiency often invoked to interpret velocity PI is identified as a marginal efficiency measured at the point of maximum energy dissipation rate and is contrasted with the global efficiency, which has a direct connection with the pressure intensity. C1 NOAA, GFDL, Princeton, NJ 08542 USA. RP Garner, S (reprint author), NOAA, GFDL, 201 Forrestal Rd, Princeton, NJ 08542 USA. EM steve.garner@noaa.gov NR 44 TC 3 Z9 3 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD JAN PY 2015 VL 72 IS 1 BP 141 EP 163 DI 10.1175/JAS-D-14-0008.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AY1WA UT WOS:000347378900010 ER PT J AU Phillips, VTJ Khain, A Benmoshe, N Ilotoviz, E Ryzhkov, A AF Phillips, Vaughan T. J. Khain, Alexander Benmoshe, Nir Ilotoviz, Eyal Ryzhkov, Alexander TI Theory of Time-Dependent Freezing. Part II: Scheme for Freezing Raindrops and Simulations by a Cloud Model with Spectral Bin Microphysics SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article DE Cloud microphysics; Hail; Ice particles ID WATER DROPS; TERMINAL VELOCITY; ACCRETION PROCESS; FREE FALL; FRAGMENTATION; MARITIME; DROPLETS; GRAUPEL; GROWTH; STORM AB The time-dependent process of raindrop freezing is described in a general form, including thermodynamic effects from the accretion of cloud liquid and cloud ice. Freezing drops (FDs) larger than 80 m (and their water mass) are represented explicitly in a cloud model with spectral bin microphysics. FDs consist of interior water covered by ice initially. Possibilities of both dry (icy surface) and wet growth (surface covered by liquid) of FDs are accounted for.Schemes of time-dependent freezing for rain (discussed in this paper) and wet growth of hail and graupel (discussed in Part I) were implemented in a spectral bin microphysics cloud model. The model predicted that accretion of liquid produces giant FDs of 0.5-2 cm in diameter, far larger than purely liquid drops can become. This growth of FDs is promoted by recirculation from the downdraft back into the updraft and by cessation of internal freezing from some accreted liquid remaining unfrozen (wet growth of FDs). Significant contents of FDs reach a height level of 7 km (-29 degrees C) in the simulated storm. After FDs finish freezing and become hailstones, wet growth may resume. The critical diameter separating wet- and dry-growth regimes is predicted to increase with height for FDs and is more vertically uniform for hail.A sensitivity test shows that time-dependent freezing initially delays the formation of hail but later in the mature stage of the storm boosts it. Convection is invigorated. Hail and freezing drops are upwelled to higher levels, causing hail to grow to sizes up to 100% larger than without time-dependent freezing. C1 [Phillips, Vaughan T. J.] Lund Univ, Dept Phys Geog & Ecosyst Sci, SE-22362 Lund, Sweden. [Khain, Alexander; Ilotoviz, Eyal] Hebrew Univ Jerusalem, Jerusalem, Israel. [Benmoshe, Nir] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Benmoshe, Nir] Princeton Univ, Cooperat Inst Climate Sci, Princeton, NJ 08544 USA. [Ryzhkov, Alexander] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA. [Ryzhkov, Alexander] NOAA, OAR Natl Severe Storms Lab, Norman, OK USA. RP Phillips, VTJ (reprint author), Lund Univ, Dept Phys Geog & Ecosyst Sci, Solvegatan 12, SE-22362 Lund, Sweden. EM vaughan.phillips@nateko.lu.se FU U.S. National Science Foundation [ATM-0852620]; U.S. Department of Energy [Office of Biological and Environmental Research (BER), ASR program] [DE-SC0002383]; Hebrew University [DE-SC0006788]; J.-I. Yano's COST Action of the European Union [ES0905]; BER/DoE [DE-SC0006788, DE-SC0008811]; Binational U.S.-Israel Science Foundation (BSF) [2010446] FX V. Phillips was supported by two awards related to ice microphysics from the U.S. National Science Foundation [Physical and Dynamic Meteorology (PDM) program; Award ATM-0852620] and U.S. Department of Energy [Office of Biological and Environmental Research (BER), ASR program; Award DE-SC0002383], as well as by a subaward from Hebrew University (DE-SC0006788) and by three Short-Term Scientific Mission (STSM) research grants from J.-I. Yano's COST Action (ES0905) of the European Union. The group of the Hebrew University is supported by awards from BER/DoE (DE-SC0006788; DE-SC0008811) and by the Binational U.S.-Israel Science Foundation (BSF) (Grant 2010446). The authors are grateful to D. Rosenfeld for discussion of the cloud simulations. NR 28 TC 6 Z9 7 U1 4 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD JAN PY 2015 VL 72 IS 1 BP 262 EP 286 DI 10.1175/JAS-D-13-0376.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AY1WA UT WOS:000347378900016 ER PT J AU Dawson, DT Mansell, ER Kumjian, MR AF Dawson, Daniel T., II Mansell, Edward R. Kumjian, Matthew R. TI Does Wind Shear Cause Hydrometeor Size Sorting? SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article DE Wind shear; Precipitation; Supercells; Drop size distribution ID ENSEMBLE KALMAN FILTER; POLARIMETRIC RADAR; PART I; SUPERCELL; SIGNATURES; REFLECTIVITY; ASSIMILATION; SIMULATIONS; ENVIRONMENT; ORIENTATION AB Several recent studies have implicated vertical wind shear in producing steady-state size sorting of a distribution of hydrometeors falling at their terminal velocity, which varies as a function of hydrometeor diameter. In particular, this mechanism has been invoked to explain both the strength and storm-relative orientation of the commonly observed differential reflectivity (Z(DR)) arc in supercell thunderstorms. However, the actual role of the shear has not been fully clarified. In this study, a simple analytical model is used to show that the fundamental source of size sorting is the storm-relative wind field itself and, in particular, its mean taken over the depth of the sorting layer. Wind shear is only strictly required for producing sustained size sorting in the special but common case of a precipitation source having a motion that lies on the hodograph (such as with the environmental winds at the source level). In supercells, the precipitation source (the rotating updraft) does not necessarily move with the winds at any level. It is shown that this off-hodograph propagation and the associated storm-relative mean wind is responsible for the positive correlation of size-sorting observables (such as Z(DR)) and storm-relative helicity that has been noted in previous work. C1 [Dawson, Daniel T., II] Ctr Anal & Predict Storms, Norman, OK 73071 USA. [Mansell, Edward R.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Kumjian, Matthew R.] Penn State Univ, University Pk, PA 16802 USA. RP Dawson, DT (reprint author), Ctr Anal & Predict Storms, 120 David L Boren Blvd, Norman, OK 73071 USA. EM ddawson@ou.edu RI Dawson II, Daniel/I-4552-2012 OI Dawson II, Daniel/0000-0002-2079-1247 FU National Science Foundation [AGS-1137702]; NOAA National Severe Storms Laboratory; NSF [AGS-0802888] FX This work was primarily supported by the National Science Foundation Postdoctoral Fellowship (AGS-1137702) awarded to the first author and the NOAA National Severe Storms Laboratory, and was partially supported by NSF Grant AGS-0802888. We gratefully acknowledge helpful discussions with Alan Shapiro, Jeff Snyder, Robin Tanamachi, and Ming Xue. Graphics were generated using Matplotlib (Hunter 2007). NR 22 TC 9 Z9 9 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD JAN PY 2015 VL 72 IS 1 BP 340 EP 348 DI 10.1175/JAS-D-14-0084.1 PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AY1WA UT WOS:000347378900019 ER PT J AU Yu, YY Cai, M Ren, RC van den Dool, HM AF Yu, Yueyue Cai, Ming Ren, Rongcai van den Dool, Huug M. TI Relationship between Warm Airmass Transport into the Upper Polar Atmosphere and Cold Air Outbreaks in Winter SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article DE Atmospheric circulation; Cold air surges ID LARGE-SCALE CIRCULATION; NORTHERN-HEMISPHERE; EAST-ASIA; ARCTIC OSCILLATION; UNITED-STATES; INTERANNUAL VARIATION; DOWNWARD PROPAGATION; GENERAL-CIRCULATION; CLIMATE VARIABILITY; SEASON VARIABILITY AB This study investigates dominant patterns of daily surface air temperature anomalies in winter (November-February) and their relationship with the meridional mass circulation variability using the daily Interim ECMWF Re-Analysis in 1979-2011. Mass circulation indices are constructed to measure the day-to-day variability of mass transport into the polar region by the warm air branch aloft and out of the polar region by the cold air branch in the lower troposphere. It is shown that weaker warm airmass transport into the upper polar atmosphere is accompanied by weaker equatorward advancement of cold air in the lower troposphere. As a result, the cold air is largely imprisoned within the polar region, responsible for anomalous warmth in midlatitudes and anomalous cold in high latitudes. Conversely, stronger warm airmass transport into the upper polar atmosphere is synchronized with stronger equatorward discharge of cold polar air in the lower troposphere, resulting in massive cold air outbreaks in midlatitudes and anomalous warmth in high latitudes. There are two dominant geographical patterns of cold air outbreaks during the cold air discharge period (or 1-10 days after a stronger mass circulation across 60 degrees N). One represents cold air outbreaks in midlatitudes of both North America and Eurasia, and the other is the dominance of cold air outbreaks only over one of the two continents with abnormal warmth over the other continent. The first pattern mainly corresponds to the first and fourth leading empirical orthogonal functions (EOFs) of daily surface air temperature anomalies in winter, whereas the second pattern is related to the second EOF mode. C1 [Yu, Yueyue; Cai, Ming] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Yu, Yueyue; Ren, Rongcai] Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing, Peoples R China. [Yu, Yueyue] Univ Chinese Acad Sci, Beijing, Peoples R China. [van den Dool, Huug M.] NOAA, NCEP, NWS, Climate Predict Ctr, College Pk, MD USA. RP Cai, M (reprint author), Florida State Univ, Dept Earth Ocean & Atmospher Sci, 1017 Acad Way, Tallahassee, FL 32306 USA. EM mcai@fsu.edu FU National Basic Research Program of China [2010CB428603]; NOAA CPO/CPPA program [NA10OAR4310168]; National Science Foundation [AGS-1262173, AGS-1354834]; DOE Office of Science Regional and Global Climate Modeling (RGCM) program [DE-SC0004974] FX The authors are grateful for the informative and constructive comments from the three anonymous reviewers. YYY and RRC are supported by a research grant from the National Basic Research Program of China (2010CB428603). YYY is also supported by a research grant from the NOAA CPO/CPPA program (NA10OAR4310168). MC is supported by grants from the National Science Foundation (AGS-1262173 and AGS-1354834), the NOAA CPO/CPPA program (NA10OAR4310168), and the DOE Office of Science Regional and Global Climate Modeling (RGCM) program (DE-SC0004974). NR 54 TC 8 Z9 8 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD JAN PY 2015 VL 72 IS 1 BP 349 EP 368 DI 10.1175/JAS-D-14-0111.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AY1WA UT WOS:000347378900020 ER PT J AU Ghate, VP Miller, MA Albrecht, BA Fairall, CW AF Ghate, Virendra P. Miller, Mark A. Albrecht, Bruce A. Fairall, Christopher W. TI Thermodynamic and Radiative Structure of Stratocumulus-Topped Boundary Layers SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article DE Clouds; Cumulus clouds; Radiative fluxes; Thermodynamics ID SOUTHEAST PACIFIC STRATOCUMULUS; LOWER-TROPOSPHERIC STABILITY; COMMUNITY ATMOSPHERE MODEL; LARGE-EDDY SIMULATIONS; LOW CLOUD COVER; MARINE STRATOCUMULUS; PART I; ACCURATE PARAMETERIZATION; CLIMATE MODELS; CIRRUS CLOUDS AB Stratocumulus-topped boundary layers (STBLs) observed in three different regions are described in the context of their thermodynamic and radiative properties. The primary dataset consists of 131 soundings from the southeastern Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic, and 83 soundings from the U.S. Southern Great Plains (SGP). A new technique that makes an attempt to preserve the depths of the sublayers within an STBL is proposed for averaging the profiles of thermodynamic and radiative variables. A one-dimensional radiative transfer model known as the Rapid Radiative Transfer Model was used to compute the radiative fluxes within the STBL. The SEP STBLs were characterized by a stronger and deeper inversion, together with thicker clouds, lower free-tropospheric moisture, and higher radiative flux divergence across the cloud layer, as compared to the GRW STBLs. Compared to the STBLs over the marine locations, the STBLs over SGP had higher wind shear and a negligible (-0.41 g kg(-1)) jump in mixing ratio across the inversion. Despite the differences in many of the STBL thermodynamic parameters, the differences in liquid water path at the three locations were statistically insignificant. The soundings were further classified as well mixed or decoupled based on the difference between the surface and cloud-base virtual potential temperature. The decoupled STBLs were deeper than the well-mixed STBLs at all three locations. Statistically insignificant differences in surface latent heat flux (LHF) between well-mixed and decoupled STBLs suggest that parameters other than LHF are responsible for producing decoupling. C1 [Ghate, Virendra P.] Argonne Natl Lab, Div Environm Sci, Argonne, IL 60439 USA. [Miller, Mark A.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Albrecht, Bruce A.] Univ Miami, Dept Atmospher Sci, Miami, FL USA. [Fairall, Christopher W.] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Ghate, VP (reprint author), 9700 S Cass Ave, Argonne, IL 60439 USA. EM vghate@anl.gov FU U.S. Department of Energy's Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program [DE-AC02-06CH11357]; Atmospheric System Research Grant [DE-FG02-08ER64531]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division; NOAA FX The authors wish to thank Dr. Ping Zhu for many helpful discussions about the topic, which led to significant improvement of the manuscript. The authors would also like to thank the anonymous reviewers, particularly reviewer 3, whose comments led to a significant improvement of the manuscript. The authors also would like to thank the crew of R/V Ronald H. Brown for their support in launching the radiosondes and collecting valuable data from multiple cruises. This work was supported primarily by the U.S. Department of Energy's Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program, under Contract DE-AC02-06CH11357. MAM was supported through the Atmospheric System Research Grant DE-FG02-08ER64531. Some of the data were obtained from the Atmospheric Radiation Measurement Program (ARM) sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division. We thank the NOAA Climate Observation Program (COP) for their funding support. NR 62 TC 6 Z9 6 U1 2 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD JAN PY 2015 VL 72 IS 1 BP 430 EP 451 DI 10.1175/JAS-D-13-0313.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AY1WA UT WOS:000347378900025 ER PT J AU He, JX Bence, JR Madenjian, CP Pothoven, SA Dobiesz, NE Fielder, DG Johnson, JE Ebener, MP Cottrill, RA Mohr, LC Koproski, SR AF He, Ji X. Bence, James R. Madenjian, Charles P. Pothoven, Steven A. Dobiesz, Norine E. Fielder, David G. Johnson, James E. Ebener, Mark P. Cottrill, R. Adam Mohr, Lloyd C. Koproski, Scott R. TI Coupling age-structured stock assessment and fish bioenergetics models: a system of time-varying models for quantifying piscivory patterns during the rapid trophic shift in the main basin of Lake Huron SO CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES LA English DT Article ID LAURENTIAN GREAT-LAKES; TROUT SALVELINUS-NAMAYCUSH; WALLEYE STIZOSTEDION-VITREUM; WHITEFISH COREGONUS-CLUPEAFORMIS; SALMON ONCORHYNCHUS-TSHAWYTSCHA; HIERARCHICAL BAYESIAN-APPROACH; ALEWIFE ALOSA-PSEUDOHARENGUS; SEASONAL ENERGY DYNAMICS; LONG-TERM TRENDS; TOP-DOWN CONTROL AB We quantified piscivory patterns in the main basin of Lake Huron during 1984-2010 and found that the biomass transfer from prey fish to piscivores remained consistently high despite the rapid major trophic shift in the food webs. We coupled age-structured stock assessment models and fish bioenergetics models for lake trout (Salvelinus namaycush), Chinook salmon (Oncorhynchus tshawytscha), walleye (Sander vitreus), and lake whitefish (Coregonus clupeaformis). The model system also included time-varying parameters or variables of growth, length-mass relations, maturity schedules, energy density, and diets. These time-varying models reflected the dynamic connections that a fish cohort responded to year-to-year ecosystem changes at different ages and body sizes. We found that the ratio of annual predation by lake trout, Chinook salmon, and walleye combined with the biomass indices of age-1 and older alewives (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) increased more than tenfold during 1987-2010, and such increases in predation pressure were structured by relatively stable biomass of the three piscivores and stepwise declines in the biomass of alewives and rainbow smelt. The piscivore stability was supported by the use of alternative energy pathways and changes in relative composition of the three piscivores. In addition, lake whitefish became a new piscivore by feeding on round goby (Neogobius melanostomus). Their total fish consumption rivaled that of the other piscivores combined, although fish were still a modest proportion of their diet. Overall, the use of alternative energy pathways by piscivores allowed the increases in predation pressure on dominant diet species. C1 [He, Ji X.; Fielder, David G.; Johnson, James E.] Michigan Dept Nat Resources, Lake Huron Res Stn, Alpena, MI 49707 USA. [Bence, James R.; Dobiesz, Norine E.] Michigan State Univ, E Lansing, MI 48824 USA. [Madenjian, Charles P.] US Geol Survey, Great Lakes Sci Ctr, Ann Arbor, MI 48105 USA. [Pothoven, Steven A.] NOAA, Great Lakes Environm Res Lab, Muskegon, MI 49441 USA. [Ebener, Mark P.] Chippewa Ottawa Resource Author, Marie, MI 49783 USA. [Cottrill, R. Adam; Mohr, Lloyd C.] Ontario Minist Nat Resources, Owen Sound, ON N4K 2Z1, Canada. [Koproski, Scott R.] US Fish & Wildlife Serv, Alpena Fish & Wildlife Conservat Off, Alpena, MI 49707 USA. RP He, JX (reprint author), Michigan Dept Nat Resources, Lake Huron Res Stn, 160 East Fletcher St, Alpena, MI 49707 USA. EM hej@michigan.gov RI Bence, James/E-5057-2017; OI Bence, James/0000-0002-2534-688X; Pothoven, Steven/0000-0002-7992-5422 FU Great Lakes Fishery Commission; Federal Aid in Sport Fish Restoration program [F-81-R, Study 230522]; Michigan Department of Natural Resources Game and Fish Protection Fund FX This article is a result of the project entitled "Quantifying new top-down influences on the rapidly changing food web in the main basin of Lake Huron", funded by the Great Lakes Fishery Commission. Funding was also provided through a grant from the Federal Aid in Sport Fish Restoration program to Michigan Department of Natural Resources (F-81-R, Study 230522) and from the Michigan Department of Natural Resources Game and Fish Protection Fund. This article is Publication 2014-17 of the Quantitative Fisheries Center at Michigan State University, Contribution 1881 of USGS Great Lakes Science Center, and Contribution 1728 of NOAA, the Great Lakes Environmental Research Laboratory. Use of trade, product, or firm names does not imply endorsement by the US Government. NR 147 TC 14 Z9 14 U1 2 U2 56 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0706-652X EI 1205-7533 J9 CAN J FISH AQUAT SCI JI Can. J. Fish. Aquat. Sci. PD JAN PY 2015 VL 72 IS 1 BP 7 EP 23 DI 10.1139/cjfas-2014-0161 PG 17 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA AY0PH UT WOS:000347298300002 ER PT J AU Bradbury, IR Hamilton, LC Rafferty, S Meerburg, D Poole, R Dempson, JB Robertson, MJ Reddin, DG Bourret, V Dionne, M Chaput, G Sheehan, TF King, TL Candy, JR Bernatchez, L AF Bradbury, Ian R. Hamilton, Lorraine C. Rafferty, Sara Meerburg, David Poole, Rebecca Dempson, J. Brian Robertson, Martha J. Reddin, David G. Bourret, Vincent Dionne, Melanie Chaput, Gerald Sheehan, Timothy F. King, Timothy L. Candy, John R. Bernatchez, Louis TI Genetic evidence of local exploitation of Atlantic salmon in a coastal subsistence fishery in the Northwest Atlantic SO CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES LA English DT Article ID MIXED-STOCK FISHERIES; SALAR L.; POPULATION-STRUCTURE; ASSIGNMENT METHODS; WEST GREENLAND; TAG RECOVERIES; MICROSATELLITES; SEA; DIFFERENTIATION; IDENTIFICATION AB Fisheries targeting mixtures of populations risk the overutilization of minor stock constituents unless harvests are monitored and managed. We evaluated stock composition and exploitation of Atlantic salmon (Salmo salar) in a subsistence fishery in coastal Labrador, Canada, using genetic mixture analysis and individual assignment with a microsatellite baseline (15 loci, 11 829 individuals, 12 regional groups) encompassing the species' western Atlantic range. Bayesian and maximum likelihood mixture analyses of fishery samples over 6 years (2006-2011; 1772 individuals) indicate contributions of adjacent stocks of 96%-97%. Estimates of fishery-associated exploitation were highest for Labrador salmon (4.2%-10.6% per year) and generally < 1% for other regions. Individual assignment of fishery samples indicated nonlocal contributions to the fishery (e. g., Quebec, Newfoundland) were rare and primarily in southern Labrador, consistent with migration pathways utilizing the Strait of Belle Isle. This work illustrates how genetic analysis of mixed stock Atlantic salmon fisheries in the Northwest Atlantic using this new baseline can disentangle exploitation and reveal complex migratory behaviours. C1 [Bradbury, Ian R.; Poole, Rebecca; Dempson, J. Brian; Robertson, Martha J.; Reddin, David G.] Fisheries & Oceans Canada, Sci Branch, Northwest Atlantic Fisheries Ctr, St John, NF A1C 5X1, Canada. [Hamilton, Lorraine C.; Rafferty, Sara] Fisheries & Oceans Canada, Bedford Inst Oceanog, Halifax, NS B2Y 4A2, Canada. [Meerburg, David] Atlantic Salmon Federat, St Andrews, NB E5B 3S8, Canada. [Bourret, Vincent; Bernatchez, Louis] Univ Laval, IBIS, Dept Biol, Quebec City, PQ G1V 0A6, Canada. [Bourret, Vincent; Dionne, Melanie] Minist Dev Durable Environm Faune & Parcs, Direct Faune Aquat, Quebec City, PQ G1S 4X4, Canada. [Chaput, Gerald] Fisheries & Oceans Canada, Ctr Sci Advice, Moncton, NB E1C 9B6, Canada. [Sheehan, Timothy F.] NOAA Fisheries Serv, Northeast Fisheries Sci Ctr, Woods Hole, MA 02543 USA. [King, Timothy L.] US Geol Survey, Leetown Sci Ctr, Kearneysville, WV 25430 USA. [Candy, John R.] Fisheries & Oceans Canada, Pacific Biol Stn, Nanaimo, BC V9T 6N7, Canada. RP Bradbury, IR (reprint author), Fisheries & Oceans Canada, Sci Branch, Northwest Atlantic Fisheries Ctr, 80 East White Hills Rd, St John, NF A1C 5X1, Canada. EM ibradbur@me.com FU Atlantic Salmon Federation; Genomics Research and Development Initiative of Fisheries and Oceans Canada; Natural Sciences and Engineering Research Council of Canada (NSERC); Ministere du Developpement durable, de l'Environnement, de la Faune et des Parcs; Ressources Aquatiques Quebec (RAQ) FX All fishery samples were collected with the assistance of the NunatuKavut Community Council, the Nunatsiavut Government, and Fisheries and Oceans Canada staff. Funding for baseline sample collection in Newfoundland and fishery sample analysis was provided by the Atlantic Salmon Federation and by the Genomics Research and Development Initiative of Fisheries and Oceans Canada. Funding was also provided by a strategic project grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) led by L. Bernatchez, as well as the Ministere du Developpement durable, de l'Environnement, de la Faune et des Parcs and Ressources Aquatiques Quebec (RAQ). Use of trade, product, or firm names does not imply endorsement by the US Government of this work. NR 56 TC 7 Z9 7 U1 2 U2 26 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 0706-652X EI 1205-7533 J9 CAN J FISH AQUAT SCI JI Can. J. Fish. Aquat. Sci. PD JAN PY 2015 VL 72 IS 1 BP 83 EP 95 DI 10.1139/cjfas-2014-0058 PG 13 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA AY0PH UT WOS:000347298300007 ER PT J AU Talmaki, S Kamat, VR Saidi, K AF Talmaki, Sanat Kamat, Vineet R. Saidi, Kamel TI Feasibility of real-time graphical simulation for active monitoring of visibility-constrained construction processes SO ENGINEERING WITH COMPUTERS LA English DT Article DE Accidents; Buried utilities; Proximity queries; Collision avoidance; Simulation; Monitoring; Sensor-based tracking; Real-time visualization ID VISUALIZATION; AVOIDANCE; EQUIPMENT; FRAMEWORK; SYSTEM AB The lack of clear visibility and spatial awareness frequently results in construction accidents such as workers being struck by heavy equipment; and collisions between equipment and workers or between two pieces of equipment. In addition, certain processes such as excavation and drilling inherently pose constraints on equipment operators' abilities to clearly perceive and analyze their working environment. In this paper, the authors investigate the types of spatial interactions on construction sites and the need for graphical real-time monitoring. A computing framework is presented for monitoring interactions between mobile construction equipment and static job-site entities, workers, and other equipment. The framework is based on the use of sensor-based tracking, georeferenced models, and a resulting concurrent, evolving 3D graphical database. The developed framework enables a real-time 3D visualization scheme that provides equipment operators with graphical job-site views that are not possible through conventional on-site cameras. The two key parameters affecting a proximity monitoring framework's effectiveness are measurement error and latency. Measurement error refers to the error in proximity computation-with respect to ground truth or theoretically expected values. Latency is a difference in the time between when an event occurs in the real world and when a proximity monitoring framework provides output to warning systems that end users depend upon. Results from validation experiments conducted to analyze the achievable measurement error and latency of the monitoring framework using indoor GPS tracking as a ground truth system are also presented and discussed. C1 [Talmaki, Sanat; Kamat, Vineet R.] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. [Saidi, Kamel] NIST, Gaithersburg, MD 20899 USA. RP Kamat, VR (reprint author), Univ Michigan, Dept Civil & Environm Engn, 2340 GG Brown,2350 Hayward, Ann Arbor, MI 48109 USA. EM stalmaki@umich.edu; vkamat@umich.edu; kamel.saidi@nist.gov FU US National Science Foundation (NSF) [CMMI-927475, CMMI-1160937]; NSF FX The presented research was funded by the US National Science Foundation (NSF) via Grants CMMI-927475 and CMMI-1160937. The writers gratefully acknowledge NSF's support. Any opinions, findings, conclusions, and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the NSF, NIST, or the University of Michigan. NR 60 TC 3 Z9 3 U1 4 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0177-0667 EI 1435-5663 J9 ENG COMPUT-GERMANY JI Eng. Comput. PD JAN PY 2015 VL 31 IS 1 BP 29 EP 49 DI 10.1007/s00366-013-0323-0 PG 21 WC Computer Science, Interdisciplinary Applications; Engineering, Mechanical SC Computer Science; Engineering GA AY2FP UT WOS:000347404400003 ER PT J AU Van Doornik, DM Berejikian, BA AF Van Doornik, Donald M. Berejikian, Barry A. TI Landscape factors affect the genetic population structure of Oncorhynchus mykiss populations in Hood Canal, Washington SO ENVIRONMENTAL BIOLOGY OF FISHES LA English DT Article DE Landscape genetics; Steelhead; Rainbow trout; Local adaptation ID CROSS-SPECIES AMPLIFICATION; SPRING CHINOOK SALMON; LIFE-HISTORY TYPES; BRITISH-COLUMBIA; ATLANTIC SALMON; SOCKEYE-SALMON; MICROSATELLITE LOCI; PACIFIC SALMON; RAINBOW-TROUT; COHO SALMON AB Among salmonids, local adaptation can reduce gene flow among populations, which can then lead to population sub-division. As such, it is important to understand what landscape variables affect local adaptation, especially for populations for which conservation concerns exist. By examining allele frequencies at 15 microsatellite DNA loci from anadromous (steelhead) and freshwater resident (rainbow trout) Oncorhynchus mykiss collected from 7 Hood Canal, Washington rivers, we surveyed the genetic population structure within and among populations, and examined the landscape factors that could be affecting their genetic population structure. We found that samples from within a river system were more genetically similar to each other regardless of life history type or sampling location than they were to similar types from other rivers. Rainbow trout samples had lower genetic diversity then steelhead samples. We identified two main population groups among the steelhead samples. Genetic distance among populations was most strongly influenced by the populations' locations on one of two peninsulas, and to a lesser extent, river flow rate and hydrological characteristics. These factors influence genetic population structure and local adaptation more than geographic distance, river gradient, or mean annual river temperature. C1 [Van Doornik, Donald M.; Berejikian, Barry A.] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Manchester Res Stn, Port Orchard, WA 98366 USA. RP Van Doornik, DM (reprint author), Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Manchester Res Stn, 7305 Beach Dr East, Port Orchard, WA 98366 USA. EM don.vandoornik@noaa.gov NR 115 TC 1 Z9 1 U1 4 U2 35 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0378-1909 EI 1573-5133 J9 ENVIRON BIOL FISH JI Environ. Biol. Fishes PD JAN PY 2015 VL 98 IS 2 BP 637 EP 653 DI 10.1007/s10641-014-0301-4 PG 17 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA AY4DA UT WOS:000347527200014 ER PT J AU East, AE Pess, GR Bountry, JA Magirl, CS Ritchie, AC Logan, JB Randle, TJ Mastin, MC Minear, JT Duda, JJ Liermann, MC McHenry, ML Beechie, TJ Shafroth, PB AF East, Amy E. Pess, George R. Bountry, Jennifer A. Magirl, Christopher S. Ritchie, Andrew C. Logan, Joshua B. Randle, Timothy J. Mastin, Mark C. Minear, Justin T. Duda, Jeffrey J. Liermann, Martin C. McHenry, Michael L. Beechie, Timothy J. Shafroth, Patrick B. TI Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change SO GEOMORPHOLOGY LA English DT Article DE Fluvial geomorphology; Dams; Dam removal; Channel evolution; Floodplain; Sediment wave ID GRAVEL-BED RIVER; FLUVIAL SEDIMENT TRANSPORT; FROM-MOTION PHOTOGRAMMETRY; FINE-SEDIMENT; LAND-USE; RIPARIAN VEGETATION; MOUNTAIN RIVERS; GRAIN-SIZE; BENTHIC INVERTEBRATES; SPAWNING GRAVELS AB A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years. As 10.5 million t (7.1 million m(3)) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of similar to 1 m (greater where pools filled), changed the river from pool-riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, similar to 1.2 million t of new sediment (similar to 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors. Published by Elsevier B.V. C1 [East, Amy E.; Logan, Joshua B.] US Geol Survey, Pacific Coastal & Marine Sci Ctr, Santa Cruz, CA 95060 USA. [Pess, George R.; Liermann, Martin C.; Beechie, Timothy J.] NOAA, Natl Marine Fisheries Serv, Seattle, WA 98112 USA. [Bountry, Jennifer A.; Randle, Timothy J.] US Bur Reclamat, Denver, CO 80225 USA. [Magirl, Christopher S.; Mastin, Mark C.] US Geol Survey, Washington Water Sci Ctr, Tacoma, WA 98402 USA. [Ritchie, Andrew C.] Natl Pk Serv, Port Angeles, WA 98362 USA. [Minear, Justin T.] US Geol Survey, Calif Water Sci Ctr, Sacramento, CA 95819 USA. [Duda, Jeffrey J.] US Geol Survey, Western Fisheries Res Ctr, Seattle, WA 98115 USA. [McHenry, Michael L.] Lower Elwha Klallam Tribe, Port Angeles, WA 98363 USA. [Shafroth, Patrick B.] US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80526 USA. RP East, AE (reprint author), US Geol Survey, Pacific Coastal & Marine Sci Ctr, 400 Nat Bridges Dr, Santa Cruz, CA 95060 USA. EM aeast@usgs.gov RI Duda, Jeffrey/A-7132-2009; OI Duda, Jeffrey/0000-0001-7431-8634; Magirl, Christopher/0000-0002-9922-6549; East, Amy/0000-0002-9567-9460; Mastin, Mark/0000-0003-4018-7861 FU National Park Service; U.S. Bureau of Reclamation; U.S. Geological Survey; National Oceanic and Atmospheric Administration FX This study was funded by the National Park Service, U.S. Bureau of Reclamation, U.S. Geological Survey, and National Oceanic and Atmospheric Administration. We also acknowledge valuable discussions among colleagues through the USGS John Wesley Powell Center for Analysis and Synthesis working group on dam removal (2013-2015). The use of trade and company names in this publication is for descriptive purposes only and does not constitute endorsement by the U.S. Government. We thank A. Geffre, H. Hugunin, S. Kimbrel, P. Perkins, K. Wille, and numerous volunteers for their contributions to fieldwork on the Elwha River and related data analysis. A Tan processed sediment samples in the USGS sediment laboratory, Santa Cruz, CA. RI. Major, L. Harrison, J.A. Warrick, G.R. Gelfenbaum, B. Free, J.E. O'Connor, J.W. Lauer, and V. Leung are thanked for their discussions and comments on this manuscript. T.E. Lisle, M.A. Collins, one anonymous reviewer, and editor R.A. Marston provided thorough, constructive comments that improved the paper. NR 173 TC 37 Z9 37 U1 21 U2 142 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-555X EI 1872-695X J9 GEOMORPHOLOGY JI Geomorphology PD JAN 1 PY 2015 VL 228 BP 765 EP 786 DI 10.1016/j.geomorph.2014.08.028 PG 22 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA AY4WQ UT WOS:000347576300062 ER PT J AU Tesfagiorgis, KB Mahani, SE AF Tesfagiorgis, Kibrewossen B. Mahani, Shayesteh E. TI A multi-source precipitation estimation approach to fill gaps over a radar precipitation field: a case study in the Colorado River Basin SO HYDROLOGICAL PROCESSES LA English DT Article DE Radar gap; multi-source precipitation; merging; radar precipitation ID RAIN-GAUGE DATA; UNITED-STATES; SATELLITE; ALGORITHM; OKLAHOMA AB The present work develops an approach to seamlessly blend satellite, available radar, climatological and gauge precipitation products to fill gaps in ground-based radar precipitation field. To mix different precipitation products, the error of any of the products relative to each other should be removed. For bias correction, the study uses an ensemble-based method that aims to estimate spatially varying multiplicative biases in SPEs using a radar precipitation product. A weighted successive correction method (SCM) is used to make the merging between error corrected satellite and radar precipitation estimates. In addition to SCM, we use a combination of SCM and Bayesian spatial model for merging the rain gauges (RGs) and climatological precipitation sources with radar and SPEs. We demonstrated the method using a satellite-based hydro-estimator; a radar-based, stage-II; a climatological product, Parameter-elevation Regressions on Independent Slopes Model and a RG dataset for several rain events from 2006 to 2008 over an artificial gap in Oklahoma and a real radar gap in the Colorado River basin. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, RG, Parameter-elevation Regressions on Independent Slopes Model and satellite products, a radar-like product is achievable over radar gap areas that benefit the operational meteorology and hydrology community. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Tesfagiorgis, Kibrewossen B.; Mahani, Shayesteh E.] CUNY City Coll, Dept Civil Engn, New York, NY 10031 USA. [Tesfagiorgis, Kibrewossen B.; Mahani, Shayesteh E.] CUNY City Coll, NOAA CREST Ctr, New York, NY 10031 USA. [Tesfagiorgis, Kibrewossen B.] CUNY, Borough Manhattan Community Coll, Dept Sci, New York, NY 10007 USA. RP Tesfagiorgis, KB (reprint author), CUNY City Coll, Dept Civil Engn, New York, NY 10031 USA. EM Ktesfagiorgis@ccny.cuny.edu FU National Oceanic and Atmospheric Administration (NOAA) [NA11SEC4810004] FX This study was partially supported and monitored by the National Oceanic and Atmospheric Administration (NOAA) under the grant number NA11SEC4810004. The statements contained within this paper are not the opinions of the funding agency or the US government, but reflect the authors' opinions. NR 33 TC 1 Z9 1 U1 1 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0885-6087 EI 1099-1085 J9 HYDROL PROCESS JI Hydrol. Process. PD JAN 1 PY 2015 VL 29 IS 1 BP 29 EP 42 DI 10.1002/hyp.10103 PG 14 WC Water Resources SC Water Resources GA AX1KC UT WOS:000346705000004 ER PT J AU Dai, Q Rico-Ramirez, MA Han, DW Islam, T Liguori, S AF Dai, Qiang Rico-Ramirez, Miguel A. Han, Dawei Islam, Tanvir Liguori, Sara TI Probabilistic radar rainfall nowcasts using empirical and theoretical uncertainty models SO HYDROLOGICAL PROCESSES LA English DT Article DE radar rainfall forecasts; radar nowcasts; ensemble generation; probabilistic forecasts ID GAUGE MEASUREMENTS; SCALE-DEPENDENCE; PRECIPITATION; FORECASTS; FLOW; ALGORITHM; TRACKING; ERRORS; PREDICTABILITY; IDENTIFICATION AB Weather radar has a potential to provide accurate short-term (0-3h) forecasts of rainfall (i.e. radar nowcasts), which are of great importance in warnings and risk management for hydro-meteorological events. However, radar nowcasts are affected by large uncertainties, which are not only linked to limitations in the forecast method but also because of errors in the radar rainfall measurement. The probabilistic quantitative precipitation nowcasting approach attempts to quantify these uncertainties by delivering the forecasts in a probabilistic form. This study implements two forms of probabilistic quantitative precipitation nowcasting for a hilly area in the south of Manchester, namely, the theoretically based scheme [ensemble rainfall forecasts (ERF)-TN] and the empirically based scheme (ERF-EM), and explores which one exhibits higher predictive skill. The ERF-TN scheme generates ensemble forecasts of rainfall in which each ensemble member is determined by the stochastic realisation of a theoretical noise component. The so-called ERF-EM scheme proposed and applied for the first time in this study, aims to use an empirically based error model to measure and quantify the combined effect of all the error sources in the radar rainfall forecasts. The essence of the error model is formulated into an empirical relation between the radar rainfall forecasts and the corresponding ground truth' represented by the rainfall field from rain gauges measurements. The ensemble members generated by the two schemes have been compared with the rain gauge rainfall. The hit rate and the false alarm rate statistics have been computed and combined into relative operating characteristic curves. The comparison of the performance scores for the two schemes shows that the ERF-EM achieves better performance than the ERF-TN at 1-h lead time. The predictive skills of both schemes are almost identical when the lead time increases to 2h. In addition, the relation between uncertainty in the radar rainfall forecasts and lead time is also investigated by computing the dispersion of the generated ensemble members. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Dai, Qiang; Rico-Ramirez, Miguel A.; Han, Dawei] Univ Bristol, Dept Civil Engn, WEMRC, Bristol, Avon, England. [Islam, Tanvir] NOAA NESDIS Ctr Satellite Applicat & Res, College Pk, MD USA. [Islam, Tanvir] Colorado State Univ, Cooperat Inst Res Atmosphere, Ft Collins, CO 80523 USA. [Liguori, Sara] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. RP Dai, Q (reprint author), Univ Bristol, Dept Civil Engn, Bristol, Avon, England. EM q.dai@bristol.ac.uk RI Islam, Tanvir/F-6922-2011; Rico-Ramirez, Miguel/H-3248-2014; OI Rico-Ramirez, Miguel/0000-0002-8885-4582; Islam, Tanvir/0000-0003-2429-3074 FU University of Bristol; China Scholarship Council FX The first author would like to thank the University of Bristol and China Scholarship Council for providing the necessary support and funding for this research. The authors would like to thank the British Atmospheric Data Centre, the European Center for Medium range Weather Forecasting, the UK Environment Agency and the UK Met Office for providing the data sets used in this study and also the UK Met Office for providing the STEPS model. NR 53 TC 3 Z9 3 U1 0 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0885-6087 EI 1099-1085 J9 HYDROL PROCESS JI Hydrol. Process. PD JAN 1 PY 2015 VL 29 IS 1 BP 66 EP 79 DI 10.1002/hyp.10133 PG 14 WC Water Resources SC Water Resources GA AX1KC UT WOS:000346705000007 ER PT J AU Butler, CM Logan, JM Provaznik, JM Hoffmayer, ER Staudinger, MD Quattro, JM Roberts, MA Ingram, GW Pollack, AG Lutcavage, ME AF Butler, C. M. Logan, J. M. Provaznik, J. M. Hoffmayer, E. R. Staudinger, M. D. Quattro, J. M. Roberts, M. A. Ingram, G. W., Jr. Pollack, A. G. Lutcavage, M. E. TI Atlantic bluefin tuna Thunnus thynnus feeding ecology in the northern Gulf of Mexico: a preliminary description of diet from the western Atlantic spawning grounds SO JOURNAL OF FISH BIOLOGY LA English DT Article DE food web; lipids; Pyrosoma atlanticum; stable isotopes; trophic ecology ID POPULATION-STRUCTURE; ISOTOPE ANALYSIS; STOMACH CONTENTS; THERMAL BIOLOGY; YELLOWFIN TUNA; MOVEMENTS; PREFERENCES; MIGRATION; WATERS; CARBON AB A combination of stomach contents, nitrogen stable-isotope and tissue C:N values are presented to demonstrate feeding activity of Atlantic bluefin tuna Thunnus thynnus on the Gulf of Mexico (GOMEX) spawning grounds. Diets include teleosts, cephalopods, crustaceans and a pelagic tunicate (Pyrosoma atlanticum). Results reveal the need to classify the GOMEX as a T. thynnus feeding ground. C1 [Butler, C. M.] Univ So Mississippi, Gulf Coast Res Lab, Ctr Fisheries Res & Dev, Ocean Springs, MS 39564 USA. [Logan, J. M.] Massachusetts Div Marine Fisheries, New Bedford, MA 02740 USA. [Logan, J. M.; Lutcavage, M. E.] Univ New Hampshire, Dept Zool, Large Pelag Res Ctr, Durham, NH 03824 USA. [Provaznik, J. M.; Hoffmayer, E. R.; Ingram, G. W., Jr.] Natl Ocean & Atmospher Adm, Southeast Fisheries Sci Ctr, Mississippi Labs, Pascagoula, MS 39567 USA. [Provaznik, J. M.] Texas Parks & Wildlife Dept, La Marque, TX 77568 USA. [Staudinger, M. D.] Univ Massachusetts, Dept Environm Conservat, Amherst, MA 01003 USA. [Staudinger, M. D.] Univ Missouri, Dept Fisheries & Wildlife Sci, Missouri Cooperat Fish & Wildlife Res Unit, Columbia, MO 65211 USA. [Quattro, J. M.; Roberts, M. A.] Univ S Carolina, Dept Biol Sci, Marine Sci Program & Sch Environm, Columbia, SC 29208 USA. [Pollack, A. G.] Riverside Technol Inc, Natl Ocean & Atmospher Adm, Southeast Fisheries Sci Ctr, Mississippi Labs Pascagoula, Pascagoula, MS 39567 USA. [Lutcavage, M. E.] Univ Massachusetts, Dept Environm Conservat, Large Pelag Res Ctr, Gloucester, MA 01930 USA. RP Butler, CM (reprint author), Univ So Mississippi, Gulf Coast Res Lab, Ctr Fisheries Res & Dev, Ocean Springs, MS 39564 USA. EM c.m.butler@usm.edu OI Roberts, Mark/0000-0002-0931-9363; Staudinger, Michelle/0000-0002-4535-2005 FU UNH Marine Program; NOAA [NA04NMF4550391]; UNH Marine Program Grant FX We would like to thank the NOAA pelagic fishery observers that collected the samples used during this study and L. Beerkircher and K. Keene for co-ordinating sample collection. This work was partly supported by the UNH Marine Program and by NOAA Grant NA04NMF4550391 to M.E.L. and a UNH Marine Program Grant to J.M.L. We also thank C. Knight, S. Curran, J. Hemphil, D. Bailey and D. Gibson of the Gulf Coast Research Laboratory for their assistance in visual identifications of teleost and crustacean prey, L. Cole of the National Museum of Natural History for her help identifying tunicates, and D. Bohaska and M. Vecchione of the National Museum of Natural History for their help identifying cephalopod remains. E. Dumount of the University of Massachusetts Amherst provided use of laboratory space and equipment. A. Ouimette provided assistance with isotope and elemental analyses. K. Fritches, K. Dillon and J. Blank provided valuable insight that strengthened this article. NR 41 TC 5 Z9 5 U1 2 U2 30 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-1112 EI 1095-8649 J9 J FISH BIOL JI J. Fish Biol. PD JAN PY 2015 VL 86 IS 1 BP 365 EP 374 DI 10.1111/jfb.12556 PG 10 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA AY1NH UT WOS:000347359200026 PM 25418682 ER PT J AU Hazra, SS Beuth, JL Myers, GA DelRio, FW Boer, MP AF Hazra, S. S. Beuth, J. L. Myers, G. A. DelRio, F. W. de Boer, M. P. TI Design and test of reliable high strength ingressive polycrystalline silicon microgripper arrays SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING LA English DT Article DE microgripper array; snap-fit latch; MEMS reliability; confocal Raman stress imaging ID DRIVEN MICROGRIPPER; THIN-FILMS; FORCE; MICROSTRUCTURES; MECHANISM AB We present the design and validation of a micromachined gripper array that enables reliable transmission of forces of at least 14 mN. The gripper is constructed with polycrystalline silicon (polysilicon), a brittle material, and is compatible with polysilicon surface micromachining. Two ingressive snap- and-lock array designs are presented. After developing design guidelines, it is shown that the first gripper array is functional. However, a risk remains that the gripper array rather than the tensile bar that it grips in its intended application fails. Therefore, an improved geometry is designed and it is shown that it is robust with respect to failure. Scanning confocal Raman imaging directly confirms that the local peak tensile stresses in the robust gripper array are approximately 50% of the lower bound material strength, and also resolves a 25% stress variation across the array. C1 [Hazra, S. S.; Beuth, J. L.; de Boer, M. P.] Carnegie Mellon Univ, Dept Engn Mech, Pittsburgh, PA 15213 USA. [Myers, G. A.; DelRio, F. W.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. RP Hazra, SS (reprint author), Carnegie Mellon Univ, Dept Engn Mech, Pittsburgh, PA 15213 USA. EM mpdebo@andrew.cmu.edu RI de Boer, Maarten/C-1525-2013 OI de Boer, Maarten/0000-0003-1574-9324 FU National Science Foundation [CMMI-1030682]; Sandia National Labs FX SSH, JB and MdB acknowledge funding from the National Science Foundation under Grant No CMMI-1030682. SSH and MdB acknowledge support from Sandia National Labs. The test structures used in this study were fabricated by the technical staff in the Microelectronics Development Lab at Sandia National Laboratories in Albuquerque, NM, USA. Certain commercial equipment, instruments, or materials are identified in this report in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose. NR 37 TC 1 Z9 1 U1 3 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0960-1317 EI 1361-6439 J9 J MICROMECH MICROENG JI J. Micromech. Microeng. PD JAN PY 2015 VL 25 IS 1 AR 015009 DI 10.1088/0960-1317/25/1/015009 PG 12 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA AY1FZ UT WOS:000347340500010 ER PT J AU Espinal, L Green, ML Fischer, DA DeLongchamp, DM Jaye, C Horn, JC Sakwa-Novak, MA Chaikittisilp, W Brunelli, NA Jones, CW AF Espinal, Laura Green, Martin L. Fischer, Daniel A. DeLongchamp, Dean M. Jaye, Cherno Horn, Jarod C. Sakwa-Novak, Miles A. Chaikittisilp, Watcharop Brunelli, Nicholas A. Jones, Christopher W. TI Interrogating the Carbon and Oxygen K-Edge NEXAFS of a CO2-Dosed Hyperbranched Aminosilica SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID FINE-STRUCTURE SPECTRA; SOFT-X-RAY; CO2 CAPTURE; SUPPORTED AMINES; PT(111) SURFACE; DIOXIDE CAPTURE; SILICA IMPACT; ADSORBENTS; SORBENT; DEGRADATION AB Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, we shed light on the nature of the interaction between CO2 and the amine moieties in a hyperbranched aminosilica (HAS) material, a porous aminosilica composite with great potential for postcombustion carbon capture applications. We show that after dosing a pristine (annealed) HAS sample with CO2, the C K-edge NEXAFS spectrum presents a new pi* resonance at 289.9 eV, which can be attributed to the formation of a C=O (carbonyl) bond. Additional analyses of the O K-edge using model samples containing carbamate, carbonate, and bicarbonate functional groups as reference demonstrate a carbamate bonding mechanism for the chemical adsorption of CO2 by the HAS material under the conditions employed. These findings show the capability of the C and O K-edge NEXAFS technique to identify CO2-adsorbate species despite the high concentration of C and O atoms inherently present in the sample (prior to CO2 dosing) and the significant similarities between the possible adsorbates. C1 [Espinal, Laura; Green, Martin L.; Fischer, Daniel A.; DeLongchamp, Dean M.; Jaye, Cherno; Horn, Jarod C.] NIST, Gaithersburg, MD 20899 USA. [Sakwa-Novak, Miles A.; Chaikittisilp, Watcharop; Brunelli, Nicholas A.; Jones, Christopher W.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. RP Espinal, L (reprint author), NIST, Gaithersburg, MD 20899 USA. EM laura.espinal@nist.gov RI Brunelli, Nicholas/E-7675-2012 FU Office of Naval Research via ONR [33]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX C.W.J. acknowledges partial support from the Office of Naval Research via ONR code 33. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 29 TC 3 Z9 3 U1 11 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 1 PY 2015 VL 6 IS 1 BP 148 EP 152 DI 10.1021/jz502483v PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AY3XW UT WOS:000347513700021 PM 26263103 ER PT J AU Wiederhorn, SM Yi, F LaVan, D Richter, LJ Fett, T Hoffmann, MJ AF Wiederhorn, Sheldon M. Yi, Feng LaVan, David Richter, Lee J. Fett, Theo Hoffmann, Michael J. TI Volume Expansion Caused by Water Penetration into Silica Glass SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID FICTIVE TEMPERATURE; CRACK-GROWTH; DIFFUSION; SOLUBILITY; STRENGTH; DENSITY AB By measuring the curvature of thin disks of vitreous silica that have been penetrated by water from one side only, we determined the volume expansion of the silica and the effect of this volume expansion on its strength. We found that the water-strengthening process depended on crack-size, temperature, and the amount of swelling of the silica. We also evaluated the diffusivity of water in vitreous silica, using the swelling stresses as the diffusion metric. Diffusivity values, so obtained, are close to the accepted values for the diffusion of water in vitreous silica, as is the activation energy for the diffusion process. Our data suggest that swelling and the consequent bending of the disks is caused by silanol group formation in the silica structure; molecular water plays little role in the swelling process. C1 [Wiederhorn, Sheldon M.; Yi, Feng; LaVan, David; Richter, Lee J.] NIST, Gaithersburg, MD 20899 USA. [Fett, Theo; Hoffmann, Michael J.] Karlsruhe Inst Technol, Inst Appl Mat, D-76021 Karlsruhe, Germany. RP Wiederhorn, SM (reprint author), NIST, Gaithersburg, MD 20899 USA. EM sheldon.wiederhorn@nist.gov RI Richter, Lee/N-7730-2016 OI Richter, Lee/0000-0002-9433-3724 NR 24 TC 6 Z9 6 U1 2 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JAN PY 2015 VL 98 IS 1 BP 78 EP 87 DI 10.1111/jace.13264 PG 10 WC Materials Science, Ceramics SC Materials Science GA AY0QQ UT WOS:000347302000012 ER PT J AU Stacy, BA Costidis, AM Keene, JL AF Stacy, B. A. Costidis, A. M. Keene, J. L. TI Histologic Changes in Traumatized Skeletal Muscle Exposed to Seawater: A Canine Cadaver Study SO VETERINARY PATHOLOGY LA English DT Article DE canine; forensic pathology; histology; seawater; skeletal muscle; supravital; trauma ID STIMULATION AB Wounds were created by incision in skeletal muscle of 2 mixed-breed canine cadavers at multiple time points from 0.5 to 74.5 hours postmortem and were exposed to artificial seawater (35 parts per thousand), 0.9% saline (8 parts per thousand), or freshwater for 24 hours before fixation for histology. Discoid and segmental disintegration of myofibers deep to the severed edges was observed in injuries inflicted within 6.5 hours of death and exposed to 0.9% saline and seawater and was not observed in injuries made at later time points or in other treatments. Exposure to artificial seawater had pronounced effects on histomorphology that markedly diminished with increasing postmortem wounding interval. In a third cadaver, these changes were shown to be detectable with confidence following up to 10 days of submergence in seawater at 22.2 degrees C despite decomposition. These findings are important for evaluation of skeletal muscle injuries that are exposed to seawater, such as those occurring in marine animals, and may assist in recognizing wounds inflicted either antemortem or within the supravital period. C1 [Stacy, B. A.] Natl Marine Fisheries Serv, Off Protected Resources, Silver Spring, MD USA. [Stacy, B. A.; Keene, J. L.] Univ Florida, Coll Vet Med, Gainesville, FL USA. [Costidis, A. M.] Univ N Carolina, Wilmington, NC 28401 USA. RP Stacy, BA (reprint author), Natl Marine Fisheries Serv, Off Protected Resources, POB 110885, Gainesville, FL 32611 USA. EM Brian.Stacy@noaa.gov NR 8 TC 2 Z9 2 U1 0 U2 6 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0300-9858 EI 1544-2217 J9 VET PATHOL JI Vet. Pathol. PD JAN PY 2015 VL 52 IS 1 BP 170 EP 175 DI 10.1177/0300985814522820 PG 6 WC Pathology; Veterinary Sciences SC Pathology; Veterinary Sciences GA AY0QC UT WOS:000347300600020 PM 24513798 ER PT J AU Pulwarty, RS Maia, R AF Pulwarty, Roger S. Maia, Rodrigo TI Adaptation Challenges in Complex Rivers Around the World: The Guadiana and the Colorado Basins SO WATER RESOURCES MANAGEMENT LA English DT Article DE Adaptation; Climate; Drought; Transboundary river basins; Colorado basin; Guadiana basin ID WATER-RESOURCES; CLIMATE-CHANGE; MANAGEMENT; POLICY; KNOWLEDGE; DROUGHT AB Integrated water resources management provides an often-recommended governance framework to manage water resources in a sustainable way. The application of this framework on Transboundary Rivers brings additional challenges, which can be exacerbated due to climate changes and extremes (such as droughts). These changes affect the operation of water infrastructures and will affect water management practices. Thus, the understanding and development of adaptation measures (across socio-economic, environmental and administrative systems) are critical, mainly on drought prone transboundary river basins. The paper draws on research conducted to 1) assess climatic risks in those watersheds, 2) describe the challenges in water resources management in the context of climate change, and 3) draw lessons for improving the use of research-based information. Two case studies were selected, the Colorado River Basin (North America) and the Guadiana River (Iberian Peninsula), the latter of which in the context of the five river basins shared between Portugal and Spain. Research and experience in these Basins show that several paradoxes in multistate water management and governance across borders militate against the accurate assessment of socio-economic impacts and the effective use of scientific information for meeting short-term needs in reducing longer-term vulnerabilities. Lessons drawn from both studies, but not always learned in practice, abound. These lessons include an expanded use of incentives for improving collaboration, water-use efficiency, demand management and for the development of climate services to inform water-related management as new threats arise. Recommendations are established for more effectively linking risk assessment approaches with resilience strategies that are applicable in practice and available to decision makers in a changing climate. C1 [Pulwarty, Roger S.] Natl Ocean & Atmospher Adm, Boulder, CO 80302 USA. [Maia, Rodrigo] Univ Porto, FEUP Fac Engn, Hydraul Water Resources & Environm Div, P-4200465 Oporto, Portugal. RP Maia, R (reprint author), Univ Porto, FEUP Fac Engn, Hydraul Water Resources & Environm Div, P-4200465 Oporto, Portugal. EM roger.pulwarty@noaa.gov; rmaia@fe.up.pt FU Fundacao para a Ciencia e Tecnologia (FCT), Portugal; Project Development of a Methodology to Integrate Climate Change effects in Water Resources Management on a Portuguese River Basin [PTDC/AAC-AMB/115587/2009] FX The authors gratefully acknowledge Fundacao para a Ciencia e Tecnologia (FCT), Portugal, for the financial support of the Project Development of a Methodology to Integrate Climate Change effects in Water Resources Management on a Portuguese River Basin (PTDC/AAC-AMB/115587/2009). NR 64 TC 1 Z9 1 U1 3 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-4741 EI 1573-1650 J9 WATER RESOUR MANAG JI Water Resour. Manag. PD JAN PY 2015 VL 29 IS 2 SI SI BP 273 EP 293 DI 10.1007/s11269-014-0885-7 PG 21 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA AY2HQ UT WOS:000347410000005 ER PT J AU Eastwood, JP Kataria, DO McInnes, CR Barnes, NC Mulligan, P AF Eastwood, J. P. Kataria, D. O. McInnes, C. R. Barnes, N. C. Mulligan, P. TI Sunjammer SO WEATHER LA English DT Article ID SPACE WEATHER C1 [Eastwood, J. P.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Kataria, D. O.] UCL, Dept Space & Climate Phys, Mullard Space Sci, London WC1E 6BT, England. [McInnes, C. R.] Univ Strathclyde, Dept Mech & Aerosp Engn, Glasgow, Lanark, Scotland. [Barnes, N. C.] L Garde Inc, Tustin, CA USA. [Mulligan, P.] NOAA, Off Syst Dev, Silver Spring, MD USA. RP Eastwood, JP (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. EM jonathan.eastwood@imperial.ac.uk RI McInnes, Colin/H-7794-2012 NR 17 TC 2 Z9 2 U1 2 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0043-1656 EI 1477-8696 J9 WEATHER JI Weather PD JAN PY 2015 VL 70 IS 1 BP 27 EP 30 DI 10.1002/wea.2438 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AY0TF UT WOS:000347309100012 ER PT J AU Kehimkar, B Parsons, BA Hoggard, JC Billingsley, MC Bruno, TJ Synovec, RE AF Kehimkar, Benjamin Parsons, Brendon A. Hoggard, Jamin C. Billingsley, Matthew C. Bruno, Thomas J. Synovec, Robert E. TI Modeling RP-1 fuel advanced distillation data using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry and partial least squares analysis SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE GCxGC-TOFMS; Partial least squares (PLS) analysis; Advanced distillation curve (ADC); Two-dimensional; Gas chromatography; RP-1 fuel ID GC X GC; ROCKET PROPELLANTS RP-1; CURVE METHOD; QUANTITATIVE-ANALYSIS; CONVENTIONAL DIESEL; FEATURE-SELECTION; TOFMS DATA; JET FUEL; IMPROVEMENTS; RESOLUTION AB Recent efforts in predicting rocket propulsion (RP-1) fuel performance through modeling put greater emphasis on obtaining detailed and accurate fuel properties, as well as elucidating the relationships between fuel compositions and their properties. Herein, we study multidimensional chromatographic data obtained by comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC x GC-TOFMS) to analyze RP-1 fuels. For GC x GC separations, RTX-Wax (polar stationary phase) and RTX-1 (non-polar stationary phase) columns were implemented for the primary and secondary dimensions, respectively, to separate the chemical compound classes (alkanes, cycloalkanes, aromatics, etc.), providing a significant level of chemical compositional information. The GC x GC-TOFMS data were analyzed using partial least squares regression (PLS) chemometric analysis to model and predict advanced distillation curve (ADC) data for ten RP-1 fuels that were previously analyzed using the ADC method. The PLS modeling provides insight into the chemical species that impact the ADC data. The PLS modeling correlates compositional information found in the GC x GC-TOFMS chromatograms of each RP-1 fuel, and their respective ADC, and allows prediction of the ADC for each RP-1 fuel with good precision and accuracy. The root-mean-square error of calibration (RMSEC) ranged from 0.1 to 0.5 A degrees C, and was typically below similar to 0.2 A degrees C, for the PLS calibration of the ADC modeling with GC x GC-TOFMS data, indicating a good fit of the model to the calibration data. Likewise, the predictive power of the overall method via PLS modeling was assessed using leave-one-out cross-validation (LOOCV) yielding root-mean-square error of cross-validation (RMSECV) ranging from 1.4 to 2.6 A degrees C, and was typically below similar to 2.0 A degrees C, at each % distilled measurement point during the ADC analysis. C1 [Kehimkar, Benjamin; Parsons, Brendon A.; Hoggard, Jamin C.; Synovec, Robert E.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Billingsley, Matthew C.] Air Force Res Lab RQRC, Edwards AFB, CA 93524 USA. [Bruno, Thomas J.] NIST, Appl Chem & Mat Div, Boulder, CO 80305 USA. RP Synovec, RE (reprint author), Univ Washington, Dept Chem, Box 351700, Seattle, WA 98195 USA. EM synovec@chem.washington.edu OI Parsons, Brendon/0000-0002-4411-0063 NR 42 TC 6 Z9 6 U1 2 U2 24 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 EI 1618-2650 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD JAN PY 2015 VL 407 IS 1 BP 321 EP 330 DI 10.1007/s00216-014-8233-6 PG 10 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA AX8GM UT WOS:000347148100023 PM 25315453 ER PT J AU Hsieh, PY Bruno, TJ AF Hsieh, Peter Y. Bruno, Thomas J. TI A perspective on the origin of lubricity in petroleum distillate motor fuels SO FUEL PROCESSING TECHNOLOGY LA English DT Review DE Boundary lubrication; High-frequency reciprocating rig (HFRR); Hydrodesulfurization; Hydrotreatrnent; Lubricity ID DIESEL FUELS; LUBRICATION PROPERTIES; CURVE APPROACH; JET FUEL; WEAR; SURFACES; MECHANISMS; GASOLINE; SATURATION; MONOLAYERS AB Lubricity, or a substance's effect on friction and wear between two surfaces in relative motion, is affected by both chemical and physical mechanisms present at a sliding contact. The inherent lubricity of distillate motor fuels stems from surface-active compounds found in petroleum, principally heavy aromatic compounds such as polycyclic aromatic hydrocarbons (PAH) and nitrogen heterocyclic polyaromatic hydrocarbons (NPAH) containing three or more fused rings. These compounds are less abundant in motor gasoline and more abundant in diesel fuel due to differences in the boiling ranges of these distillate fuels. PAH and NPAH compounds can form chemical bonds with metal surfaces and reduce the friction of metal surfaces in sliding contact. Reducing the coefficient of friction lowers the peak stress amplitude at the sliding contact, thereby mitigating the effects of plasticity-induced wear mechanisms and delaying the transition to abrasive wear. Hydrotreatment of distillate motor fuels to remove sulfur also hydrogenates heavy aromatic compounds, leading to a reduction in fuel lubricity and increased wear of fuel injectors and pumps. The addition of linear alkyl polar compounds can improve fuel lubricity in severely hydrotreated petroleum distillate motor fuels. Boundary lubrication by linear alkyl polar compounds is distinct from lubrication by native heavy polar aromatic compounds found in petroleum. Mechanical testing is typically employed to measure fuel lubricity due to the complex interactions between the surface-active compounds and wear mechanisms at work in a sliding contact, and the lack of a single SI unit like viscosity that describes the sum of interactions between the fluid, material, and mechanical forces at a sliding contact. Published by Elsevier B.V. C1 [Hsieh, Peter Y.; Bruno, Thomas J.] Natl Inst Stand & Technol, Mat Measurement Lab, Appl Chem & Mat Div, Boulder, CO 80305 USA. RP Bruno, TJ (reprint author), Natl Inst Stand & Technol, Mat Measurement Lab, Appl Chem & Mat Div, 325 Broadway MS 647-07, Boulder, CO 80305 USA. EM bruno@boulder.nist.gov RI Hsieh, Peter/F-5433-2012 OI Hsieh, Peter/0000-0001-9010-4863 FU National Research Council Research Associateship Award at NIST FX This research was performed while Peter Y. Hsieh held a National Research Council Research Associateship Award at NIST. NR 88 TC 1 Z9 1 U1 3 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 EI 1873-7188 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD JAN PY 2015 VL 129 BP 52 EP 60 DI 10.1016/j.fuproc.2014.08.012 PG 9 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA AX6HG UT WOS:000347023000006 ER PT J AU Anthony, KRN Marshall, PA Abdulla, A Beeden, R Bergh, C Black, R Eakin, CM Game, ET Gooch, M Graham, NAJ Green, A Heron, SF van Hooidonk, R Knowland, C Mangubhai, S Marshall, N Maynard, JA McGinnity, P McLeod, E Mumby, PJ Nystrom, M Obura, D Oliver, J Possingham, HP Pressey, RL Rowlands, GP Tamelander, J Wachenfeld, D Wear, S AF Anthony, Kenneth R. N. Marshall, Paul A. Abdulla, Ameer Beeden, Roger Bergh, Chris Black, Ryan Eakin, C. Mark Game, Edward T. Gooch, Margaret Graham, Nicholas A. J. Green, Alison Heron, Scott F. van Hooidonk, Ruben Knowland, Cheryl Mangubhai, Sangeeta Marshall, Nadine Maynard, Jeffrey A. McGinnity, Peter McLeod, Elizabeth Mumby, Peter. J. Nystroem, Magnus Obura, David Oliver, Jamie Possingham, Hugh P. Pressey, Robert L. Rowlands, Gwilym P. Tamelander, Jerker Wachenfeld, David Wear, Stephanie TI Operationalizing resilience for adaptive coral reef management under global environmental change SO GLOBAL CHANGE BIOLOGY LA English DT Review DE climate change; coral reefs; ecosystem vulnerability; environmental management; ocean acidification; social-ecological system; structured decision-making ID GREAT-BARRIER-REEF; OF-THORNS STARFISH; PROTECTED AREA NETWORK; CLIMATE-CHANGE; BIODIVERSITY CONSERVATION; ECOLOGICAL RESILIENCE; CHANGE VULNERABILITY; OCEAN ACIDIFICATION; MARINE RESERVES; LINKING THEORY AB Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. C1 [Anthony, Kenneth R. N.; Oliver, Jamie] Australian Inst Marine Sci, Townsville, Qld 4810, Australia. [Marshall, Paul A.; Beeden, Roger; Gooch, Margaret; McGinnity, Peter; Wachenfeld, David] Great Barrier Reef Marine Pk Author, Townsville, Qld 4810, Australia. [Abdulla, Ameer] Gland Switzerland, Int Union Conservat Nat, Brisbane, Qld, Australia. [Abdulla, Ameer] Univ Queensland, Brisbane, Qld, Australia. [Bergh, Chris] Nature Conservancy, Big Pine Key, FL USA. [Black, Ryan] Great Barrier Reef Taskforce, Dept Environm, Canberra, ACT, Australia. [Eakin, C. Mark] US Natl Ocean & Atmospher Adm, Coral Reef Watch, College Pk, MD USA. [Game, Edward T.; Green, Alison] Nature Conservancy, West End, Qld 4101, Australia. [Graham, Nicholas A. J.; Pressey, Robert L.] James Cook Univ, Australian Res Council Ctr Excellence Coral Reef, Townsville, Qld 4811, Australia. [Heron, Scott F.] NOAA, Coral Reef Watch, Townsville, Qld, Australia. [Heron, Scott F.] James Cook Univ, Sch Engn & Phys Sci, Townsville, Qld 4811, Australia. [van Hooidonk, Ruben] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. [Knowland, Cheryl; Mumby, Peter. J.] Univ Queensland, Spatial Ecol Lab, St Lucia, Qld 4072, Australia. [Mangubhai, Sangeeta] Wildlife Conservat Soc, Fiji Country Program, Suva, Fiji. [Marshall, Nadine] CSIRO Ecosyst Sci, PMB, Aitkenvale, Qld 4810, Australia. [Maynard, Jeffrey A.] CRIOBE, USR CNRS EPHE 3278, Moorea 98729, Fr Polynesia. [McLeod, Elizabeth] Nature Conservancy, Austin, TX USA. [Nystroem, Magnus] Stockholm Univ, Stockholm Resilience Ctr, SE-10405 Stockholm, Sweden. [Obura, David] CORDIO East Africa, Mombasa, Kenya. [Possingham, Hugh P.] Univ Queensland, Australian Res Council Ctr Excellence Environm De, St Lucia, Qld, Australia. [Rowlands, Gwilym P.] Nova SE Univ, Natl Coral Reef Inst, Dania, FL USA. [Tamelander, Jerker] UN, United Nations Environm Programme, Bangkok 10200, Thailand. [Wear, Stephanie] Univ Florida, Dept Biol, Nat Conservancy, Gainesville, FL USA. RP Anthony, KRN (reprint author), Australian Inst Marine Sci, PMB3, Townsville, Qld 4810, Australia. EM k.anthony@aims.gov.au RI Heron, Scott/E-7928-2011; Graham, Nicholas/C-8360-2014; Research ID, CTBCC /O-3564-2014; marshall, nadine/D-9339-2011; Eakin, C. Mark/F-5585-2010; van Hooidonk, Ruben/F-7395-2010; Possingham, Hugh/B-1337-2008 OI marshall, nadine/0000-0003-4463-3558; van Hooidonk, Ruben/0000-0002-3804-1233; Possingham, Hugh/0000-0001-7755-996X FU National Environmental Research Program (NERP) under the Australian Government; Great Barrier Reef Marine Park Authority; Australian Institute of Marine Science; International Union for the Conservation of Nature (IUCN, Switzerland); National Oceanographic and Atmospheric Administration (NOAA, US) FX This study was supported by the National Environmental Research Program (NERP) under the Australian Government, the Great Barrier Reef Marine Park Authority, Australian Institute of Marine Science, the International Union for the Conservation of Nature (IUCN, Switzerland), and the National Oceanographic and Atmospheric Administration (NOAA, US). We thank P. Doherty, S. Carpenter and four anonymous reviewers for comments that improved the paper, and D Koustenis and B DeJoseph for administrative support and for organizing the workshop. The authors have no conflict of interest with the contents in this manuscript, which are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of institutions or Governments the authors represent. NR 97 TC 29 Z9 29 U1 47 U2 351 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD JAN PY 2015 VL 21 IS 1 BP 48 EP 61 DI 10.1111/gcb.12700 PG 14 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA AX1HJ UT WOS:000346698100008 PM 25196132 ER PT J AU Rajamohanan, B Pandey, R Chobpattana, V Vaz, C Gundlach, D Cheung, KP Suehle, J Stemmer, S Datta, S AF Rajamohanan, Bijesh Pandey, Rahul Chobpattana, Varistha Vaz, Canute Gundlach, David Cheung, Kin P. Suehle, John Stemmer, Susanne Datta, Suman TI 0.5 V Supply Voltage Operation of In0.65Ga0.35As/GaAs0.4Sb0.6 Tunnel FET SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE III-V; tunnel FET; steep switching slope ID FIELD-EFFECT TRANSISTORS AB In this letter, we demonstrate using fast currentvoltage measurements, low switching slope of 64 mV/decade over a drain current range between 10(-3) and 2 x 10(-2) mu A/mu m in staggered-gap In0.65Ga0.35As/GaAs0.4Sb0.6 tunneling field-effect transistors (TFETs) at VDS = 0.5 V. This is achieved through a combination of low damage mesa sidewall etch and improvement in electrical quality of the high-kappa gate-stack. Benchmarking our results against experimentally demonstrated TFETs, we conclude that, the staggered-gap TFETs are capable of achieving simultaneously high drive current and low switching slope. C1 [Rajamohanan, Bijesh; Pandey, Rahul; Datta, Suman] Penn State Univ, University Pk, PA 16801 USA. [Chobpattana, Varistha; Stemmer, Susanne] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Vaz, Canute; Gundlach, David; Cheung, Kin P.; Suehle, John] NIST, Gaithersburg, MD 20899 USA. RP Rajamohanan, B (reprint author), SanDisk Corp, Milpitas, CA 95035 USA. EM bijesh.rajamohanan@sandisk.com RI Stemmer, Susanne/H-6555-2011 OI Stemmer, Susanne/0000-0002-3142-4696 FU National Science Foundation Nanosystems Engineering Research Center through the Advanced Self-Powered Systems of Integrated Sensors and Technology [EEC-1160483] FX This work was supported by the National Science Foundation Nanosystems Engineering Research Center through the Advanced Self-Powered Systems of Integrated Sensors and Technology under Award EEC-1160483. The review of this letter was arranged by Editor S. J. Koester. NR 22 TC 9 Z9 9 U1 0 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 EI 1558-0563 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD JAN PY 2015 VL 36 IS 1 BP 20 EP 22 DI 10.1109/LED.2014.2368147 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA AX6QA UT WOS:000347045200008 ER PT J AU Yim, SC Wei, Y Azadbakht, M Nimmala, S Potisuk, T AF Yim, Solomon C. Wei, Yong Azadbakht, Mohsen Nimmala, Seshu Potisuk, Tanarat TI Case Study for Tsunami Design of Coastal Infrastructure: Spencer Creek Bridge, Oregon SO JOURNAL OF BRIDGE ENGINEERING LA English DT Article DE Bridge; Bridge design; Cascadia subduction zone; Finite-element method (FEM); Finite-volume method; Tsunamis; Tsunami load estimation ID CASCADIA SUBDUCTION ZONE; WAVE RUNUP; EARTHQUAKE; BREAKING; MODEL AB The absence of tsunami load provisions in coastal infrastructure design has led to unchecked resistance capacity of bridges against one of the most eminent natural hazards on the U.S. west coast. The Spencer Creek Bridge, which was completely rebuilt on the Oregon coast in 2009, is a unique example to demonstrate development and implementation of site-specific tsunami loads during the design stage. Two tsunami models, the Cornell Multigrid Coupled Tsunami model (COMCOT) and the Finite-Volume Wave model (FVWAVE), defined the flow fields from three rupture configurations postulated for a Cascadia earthquake, which has a moment magnitude of 9.0 consistent with the seismic design of the bridge structure. Although both models produce comparable surface elevations at the site, the finite-volume formulation of FVWAVE provides higher flow speed because of its capability to conserve momentum and mass even with formation of tsunami bores. The FVWAVE results define the input to the computational fluid dynamic module of LS-DYNA. The computed time history of the horizontal and vertical loads on the bridge deck, in turn, provide the input to a finite-element model of the bridge structure for capacity comparisons and damage analysis. It is concluded that the earthquake design specifications used for this particular bridge provide more than sufficient strength to resist the maximum tsunami horizontal force. The margin of safety is much smaller for the uplift force, but still remains in an acceptable range. DOI: 10.1061/(ASCE)BE.1943-5592.0000631. (C) 2014 American Society of Civil Engineers. C1 [Yim, Solomon C.; Azadbakht, Mohsen; Nimmala, Seshu] Oregon State Univ, Sch Civil & Construct Engn, Corvallis, OR 97331 USA. [Wei, Yong] NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA. [Potisuk, Tanarat] Oregon Dept Transportat, Salem, OR 97301 USA. RP Yim, SC (reprint author), Oregon State Univ, Sch Civil & Construct Engn, Corvallis, OR 97331 USA. EM solomon.yim@oregonstate.edu; yong.wei@noaa.gov; azadbakm@onid.orst.edu; nimmala@engr.orst.edu; Tanarat.potisuk@odot.state.or.us RI Wei, Yong/I-3462-2015 OI Wei, Yong/0000-0002-6908-1342 FU Oregon DOT (ODOT) [06-09]; Joint Institute for the Study of the Atmosphere and Ocean (JISAO); NOAA [NA100AR4320148] FX Partial support from the Oregon DOT (ODOT) under Work Order No. 06-09 to Oregon State University is gratefully acknowledged. The authors thank Professor Kwok Fai Cheung for his comments and suggestions that improved the presentation and layout of the paper. This publication is also partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA100AR4320148, JISAO Contribution 2182; PMEL Contribution 4087. NR 43 TC 3 Z9 3 U1 2 U2 25 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1084-0702 EI 1943-5592 J9 J BRIDGE ENG JI J. Bridge Eng. PD JAN PY 2015 VL 20 IS 1 AR 05014008 DI 10.1061/(ASCE)BE.1943-5592.0000631 PG 12 WC Engineering, Civil SC Engineering GA AX1IE UT WOS:000346700200001 ER PT J AU Mei, W Xie, SP Zhao, M Wang, YQ AF Mei, Wei Xie, Shang-Ping Zhao, Ming Wang, Yuqing TI Forced and Internal Variability of Tropical Cyclone Track Density in the Western North Pacific SO JOURNAL OF CLIMATE LA English DT Article ID SEA-SURFACE TEMPERATURE; REGIONAL ATMOSPHERIC MODEL; LARGE-SCALE CIRCULATION; EAST-INDIAN OCEAN; EL-NINO; TYPHOON TRACKS; INTERANNUAL VARIABILITY; INTERDECADAL VARIABILITY; CLUSTER-ANALYSIS; ENSO EVENTS AB Forced interannual-to-decadal variability of annual tropical cyclone (TC) track density in the western North Pacific between 1979 and 2008 is studied using TC tracks from observations and simulations by a 25-km-resolution version of the GFDL High-Resolution Atmospheric Model (HiRAM) that is forced by observed sea surface temperatures (SSTs). Two modes dominate the decadal variability: a nearly basinwide mode, and a dipole mode between the subtropics and lower latitudes. The former mode links to variations in TC number and is forced by SST variations over the off-equatorial tropical central North Pacific, whereas the latter might be associated with the Atlantic multidecadal oscillation. The interannual variability is also controlled by two modes: a basinwide mode driven by SST anomalies of opposite signs located in the tropical central Pacific and eastern Indian Ocean, and a southeast-northwest dipole mode connected to the conventional eastern Pacific ENSO. The seasonal evolution of the ENSO effect on TC activity is further explored via a joint empirical orthogonal function analysis using TC track density of consecutive seasons, and the analysis reveals that two types of ENSO are at work. Internal variability in TC track density is then examined using ensemble simulations from both HiRAM and a regional atmospheric model. It exhibits prominent spatial and seasonal patterns, and it is particularly strong in the South China Sea and along the coast of East Asia. This makes an accurate prediction and projection of TC landfall extremely challenging in these regions. In contrast, basin-integrated metrics (e.g., total TC counts and TC days) are more predictable. C1 [Mei, Wei; Xie, Shang-Ping] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Zhao, Ming] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Zhao, Ming] Univ Corp Atmospher Res, Boulder, CO USA. [Wang, Yuqing] Univ Hawaii Manoa, Int Pacific Res Ctr, Honolulu, HI 96822 USA. [Wang, Yuqing] Univ Hawaii Manoa, Dept Meteorol, Honolulu, HI 96822 USA. RP Mei, W (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr,0206, La Jolla, CA 92093 USA. EM wmei@ucsd.edu RI Zhao, Ming/C-6928-2014; Xie, Shang-Ping/C-1254-2009 OI Xie, Shang-Ping/0000-0002-3676-1325 FU NSF [AGS-1305719]; NOAA [NA13OAR4310092] FX This work was supported by NSF Grant AGS-1305719 and NOAA Grant NA13OAR4310092. We thank Prof. Kerry Emanuel for sharing the compiled tropical cyclone best-track data; and we thank the anonymous reviewers for their comments, which helped improve the manuscript. Y. Wang thanks Prof. Chun-Chieh Wu and Dr. Ruifen Zhan for making the iRAM TC track data available for this study. NR 59 TC 10 Z9 10 U1 2 U2 23 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JAN PY 2015 VL 28 IS 1 BP 143 EP 167 DI 10.1175/JCLI-D-14-00164.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AX6XJ UT WOS:000347061200009 ER PT J AU Domeisen, DIV Butler, AH Frohlich, K Bittner, M Muller, WA Baehr, J AF Domeisen, Daniela I. V. Butler, Amy H. Froehlich, Kristina Bittner, Matthias Mueller, Wolfgang A. Baehr, Johanna TI Seasonal Predictability over Europe Arising from El Nino and Stratospheric Variability in the MPI-ESM Seasonal Prediction System SO JOURNAL OF CLIMATE LA English DT Article ID QUASI-BIENNIAL OSCILLATION; LOW-TOP VERSIONS; SUDDEN WARMINGS; SOUTHERN-OSCILLATION; NORTHERN WINTER; CMIP5 SIMULATIONS; WEATHER REGIMES; FORECAST SKILL; CLIMATE MODEL; ENSO AB Predictability on seasonal time scales over the North Atlantic-Europe region is assessed using a seasonal prediction system based on an initialized version of the Max Planck Institute Earth System Model (MPI-ESM). For this region, two of the dominant predictors on seasonal time scales are El Nino-Southern Oscillation (ENSO) and sudden stratospheric warming (SSW) events. Multiple studies have shown a potential for improved North Atlantic predictability for either predictor. Their respective influences are however difficult to disentangle, since the stratosphere is itself impacted by ENSO. Both El Nino and SSW events correspond to a negative signature of the North Atlantic Oscillation (NAO), which has a major influence on European weather. This study explores the impact on Europe by separating the stratospheric pathway of the El Nino teleconnection. In the seasonal prediction system, the evolution of El Nino events is well captured for lead times of up to 6 months, and stratospheric variability is reproduced with a realistic frequency of SSW events. The model reproduces the El Nino teleconnection through the stratosphere, involving a deepened Aleutian low connected to a warm anomaly in the northern winter stratosphere. The stratospheric anomaly signal then propagates downward into the troposphere through the winter season. Predictability of 500-hPa geopotential height over Europe at lead times of up to 4 months is shown to be increased only for El Nino events that exhibit SSW events, and it is shown that the characteristic negative NAO signal is only obtained for winters also containing major SSW events for both the model and the reanalysis data. C1 [Domeisen, Daniela I. V.; Baehr, Johanna] Univ Hamburg, Inst Oceanog, Ctr Earth Syst Res & Sustainabil CEN, D-20144 Hamburg, Germany. [Butler, Amy H.] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Butler, Amy H.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. [Froehlich, Kristina] Deutsch Wetterdienst, Offenbach, Germany. [Bittner, Matthias] Max Planck Inst Meteorol, Int Max Planck Res Sch Earth Syst Modeling, D-20146 Hamburg, Germany. [Mueller, Wolfgang A.] Max Planck Inst Meteorol, D-20146 Hamburg, Germany. RP Domeisen, DIV (reprint author), Univ Hamburg, Inst Oceanog, Bundesstr 53, D-20144 Hamburg, Germany. EM daniela.domeisen@zmaw.de RI Butler, Amy/K-6190-2012; Domeisen, Daniela/J-2589-2015; Manager, CSD Publications/B-2789-2015 OI Butler, Amy/0000-0002-3632-0925; Domeisen, Daniela/0000-0002-1463-929X; FU Cluster of Excellence CliSAP, Universitat Hamburg - German Research Foundation (DFG) [EXC177]; European Union's Seventh Framework Programme (FP7) [308378 ENV.2012.6.1-1]; Federal Ministry for Education and Research in Germany (BMBF) through the research program MiKlip [FKZ:01LP1130A] FX We thank Elisa Manzini, Shigeo Yoden, Masakazu Taguchi, and Thomas Reichler for helpful discussions of the presented results, Modali Kameswarrao and Martin Scharffenberg for technical support, Tim Stockdale for consultation on the computation of the statistics, and Felix Bunzel for helpful discussions of the model setup. This work was partly supported through the Cluster of Excellence CliSAP (EXC177), Universitat Hamburg, funded through the German Research Foundation (DFG) (DD, JB). Further, research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement 308378 ENV.2012.6.1-1: Seasonal-to-decadal climate predictions towards climate services (http://www.specs-fp7.eu/). The work of MB was supported by the Federal Ministry for Education and Research in Germany (BMBF) through the research program MiKlip (FKZ:01LP1130A). NR 66 TC 11 Z9 11 U1 1 U2 22 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JAN PY 2015 VL 28 IS 1 BP 256 EP 271 DI 10.1175/JCLI-D-14-00207.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AX6XJ UT WOS:000347061200015 ER PT J AU Cicerone, MT Averett, D de Pablo, JJ AF Cicerone, Marcus T. Averett, Devin de Pablo, Juan J. TI The role of hopping on transport above T-c in glycerol SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 7th International Discussion Meeting on Relaxations in Complex Systems (IDMRCS) CY JUL 21-26, 2013 CL Univ Politecnica Catalunya, Barcelona, SPAIN SP Energia Campus Int Excellence, Barcelona Knowledge Campus, Inst Laue Langevin, Julich Forschungszentrum, CNRS, Lab Leon Brillouin, Int Dielectr Soc, AirLiquide, Almirall, Bruker, Extrasolution, Matgas, Mettler Toledo, Novocontrol Technologies, TA Instruments, Polish Acad Sci, Inst High Pressure Phys HO Univ Politecnica Catalunya DE Supercooled liquids; Transport; Hopping; Two-state ID GLASS-TRANSITION; MOLECULAR-DYNAMICS; STRUCTURAL RELAXATION; NEUTRON-SCATTERING; LIQUID-STATE; O-TERPHENYL; DIFFUSION; MODEL; SIMULATION; MIXTURES AB We present an analysis of atomistic MD simulations of glycerol that give evidence of two distinct dynamic states at short times in a realistic molecular liquid and show that these are associated with hopping at temperatures well above the melting temperature and the mode coupling critical temperature, T-c. We find that this hopping mode contributes significantly to transport, even at these high temperatures. The simulations support our previous interpretation of incoherent quasi-elastic neutron scattering (QENS) where we determined that, on a 1 ps timescale and over a very wide temperature range, molecules are either highly confined or free to undergo relatively large scale motion. Published by Elsevier B.V. C1 [Cicerone, Marcus T.] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA. [Cicerone, Marcus T.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Averett, Devin] Univ Wisconsin, Madison, WI 53706 USA. [de Pablo, Juan J.] Univ Chicago, Chicago, IL 60637 USA. RP Cicerone, MT (reprint author), MailStop 8543,100 Bur Dr, Gaithersburg, MD 20899 USA. EM cicerone@nist.gov OI Cicerone, Marcus/0000-0002-2718-6533 NR 43 TC 2 Z9 2 U1 3 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JAN 1 PY 2015 VL 407 SI SI BP 118 EP 125 DI 10.1016/j.jnonaysol.2014.09.004 PG 8 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA AX6FJ UT WOS:000347018300018 ER PT J AU Hess, JE Campbell, NR Docker, MF Baker, C Jackson, A Lampman, R McIlraith, B Moser, ML Statler, DP Young, WP Wildbill, AJ Narum, SR AF Hess, Jon E. Campbell, Nathan R. Docker, Margaret F. Baker, Cyndi Jackson, Aaron Lampman, Ralph McIlraith, Brian Moser, Mary L. Statler, David P. Young, William P. Wildbill, Andrew J. Narum, Shawn R. TI Use of genotyping by sequencing data to develop a high-throughput and multifunctional SNP panel for conservation applications in Pacific lamprey SO MOLECULAR ECOLOGY RESOURCES LA English DT Article DE animal mating; breeding systems; conservation genetics; ecological genetics; fisheries management; life history evolution; population genetics - empirical ID COLUMBIA RIVER-BASIN; ENTOSPHENUS-TRIDENTATUS PETROMYZONTIDAE; SINGLE-NUCLEOTIDE POLYMORPHISMS; GENETIC STOCK IDENTIFICATION; CHINOOK SALMON; LAMPETRA-TRIDENTATA; WILD POPULATIONS; BRITISH-COLUMBIA; CANDIDATE LOCI; NORTH-AMERICA AB Next-generation sequencing data can be mined for highly informative single nucleotide polymorphisms (SNPs) to develop high-throughput genomic assays for nonmodel organisms. However, choosing a set of SNPs to address a variety of objectives can be difficult because SNPs are often not equally informative. We developed an optimal combination of 96 high-throughput SNP assays from a total of 4439 SNPs identified in a previous study of Pacific lamprey (Entosphenus tridentatus) and used them to address four disparate objectives: parentage analysis, species identification and characterization of neutral and adaptive variation. Nine of these SNPs are F-ST outliers, and five of these outliers are localized within genes and significantly associated with geography, run-timing and dwarf life history. Two of the 96 SNPs were diagnostic for two other lamprey species that were morphologically indistinguishable at early larval stages and were sympatric in the Pacific Northwest. The majority (85) of SNPs in the panel were highly informative for parentage analysis, that is, putatively neutral with high minor allele frequency across the species' range. Results from three case studies are presented to demonstrate the broad utility of this panel of SNP markers in this species. As Pacific lamprey populations are undergoing rapid decline, these SNPs provide an important resource to address critical uncertainties associated with the conservation and recovery of this imperiled species. C1 [Hess, Jon E.; Campbell, Nathan R.; Narum, Shawn R.] Columbia River Intertribal Fish Commiss, Hagerman, ID 83332 USA. [Docker, Margaret F.] Univ Manitoba, Dept Biol Sci, Winnipeg, MB R3T 2N2, Canada. [Baker, Cyndi; Wildbill, Andrew J.] Confederated Tribes Warm Springs Reservat Oregon, Branch Nat Resources, Warm Springs, OR 97761 USA. [Jackson, Aaron] Confederated Tribes Umatilla Indian Reservat, Dept Nat Resources, Fisheries Program, Pendleton, OR 97801 USA. [Lampman, Ralph] Yakama Nation Fisheries Resource Management Progr, Pacific Lamprey Project, Toppenish, WA 98948 USA. [McIlraith, Brian] Columbia River Intertribal Fish Commiss, Portland, OR 97232 USA. [Moser, Mary L.] NOAA Fisheries, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. [Statler, David P.; Young, William P.] Nez Perce Tribe Dept Fisheries Resources Manageme, Lapwai, ID 83540 USA. RP Hess, JE (reprint author), Columbia River Intertribal Fish Commiss, 3059-F Natl Fish Hatchery Rd, Hagerman, ID 83332 USA. EM hesj@critfc.org RI Hess, Jon/F-5124-2012 OI Hess, Jon/0000-0002-3643-202X FU Bonneville Power Administration FX We are grateful to all who contributed lamprey samples to this project: Tyler Beals, Dave Boguski, Ben Clemens, David Close, Matt Fox, Damon Goodman, Leo Grandmontagne, Kim Hastings, Mike Hayes, Don Ignace, Patrick Luke, Dave'y Lumley, Stewart Reid, Nat Scholz, Greg Silver, Frank Sommers, Mark Tagal, Greg Tamblyn, Eric Taylor, and Tim Whitesel. Genotyping was performed by Nick Hoffman, Lori Maxwell, and Amanda Matala. Funding was provided by Bonneville Power Administration. NR 52 TC 19 Z9 19 U1 2 U2 43 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1755-098X EI 1755-0998 J9 MOL ECOL RESOUR JI Mol. Ecol. Resour. PD JAN PY 2015 VL 15 IS 1 BP 187 EP 202 DI 10.1111/1755-0998.12283 PG 16 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA AX1HT UT WOS:000346699100018 PM 24842551 ER PT J AU VandenBoer, TC Young, CJ Talukdar, RK Markovic, MZ Brown, SS Roberts, JM Murphy, JG AF VandenBoer, Trevor C. Young, Cora J. Talukdar, Ranajit K. Markovic, Milos Z. Brown, Steven S. Roberts, James M. Murphy, Jennifer G. TI Nocturnal loss and daytime source of nitrous acid through reactive uptake and displacement SO NATURE GEOSCIENCE LA English DT Article ID CONTINUOUS GENERATION SYSTEM; VERTICAL PROFILES; URBAN ATMOSPHERE; FOREST CANOPY; MINERAL DUST; HUMIC-ACID; HONO; NO2; SURFACE; AEROSOL AB The nature of daytime sources and night-time sinks of nitrous acid is a key uncertainty in understanding atmospheric oxidation and radical cycling. The accumulation of nitrous acid in the air has been observed to slow down during the night, implying the presence of a night-time sink. In addition, there may be a photochemical source of nitrous acid during the daytime. We used flow tube experiments, measurements of acid displacement efficiencies, and field monitoring of nitrous acid and nitrite concentrations to study the exchange of nitrous acid with soils. Here we show that nitrous acid can react with carbonates or soil at night and subsequently be displaced from soils during the day by air-to-soil transfer of hydrogen chloride and nitric acid, which are generated in the atmosphere photochemically. These processes provide a critical link between the sink of nitrous acid at night and its emission the following day. We conclude that the acid displacement process could contribute a substantial fraction of daytime nitrous acid emissions in numerous environments, including agricultural, urban and vegetated regions, and in any location subject to deposition of soil-derived mineral dust. C1 [VandenBoer, Trevor C.; Markovic, Milos Z.; Murphy, Jennifer G.] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada. [Young, Cora J.; Talukdar, Ranajit K.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Young, Cora J.; Talukdar, Ranajit K.; Brown, Steven S.; Roberts, James M.] NOAA, Div Chem Sci, Boulder, CO USA. RP Murphy, JG (reprint author), Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada. EM jmurphy@chem.utoronto.ca RI Young, Cora/A-4551-2010; Roberts, James/A-1082-2009; Manager, CSD Publications/B-2789-2015; TALUKDAR, RANAJIT/G-4530-2013; Murphy, Jennifer/C-2367-2011; Brown, Steven/I-1762-2013; VandenBoer, Trevor/F-1032-2011 OI Young, Cora/0000-0002-6908-5829; Roberts, James/0000-0002-8485-8172; TALUKDAR, RANAJIT/0000-0001-6017-8431; VandenBoer, Trevor/0000-0001-8926-4237 FU Natural Science and Engineering Research Council of Canada FX The authors thank N. L. Wagner for experimental assistance and participants of the CalNex and NACHTT field campaigns for support, particularly X. Ren for the measured HONO(g) flux data. T.C.V. and C.J.Y. acknowledge fellowships from the Natural Science and Engineering Research Council of Canada. NR 45 TC 14 Z9 14 U1 8 U2 73 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD JAN PY 2015 VL 8 IS 1 BP 55 EP 60 DI 10.1038/NGEO2298 PG 6 WC Geosciences, Multidisciplinary SC Geology GA AX3FF UT WOS:000346825000016 ER PT J AU Liu, YH Hangarter, CM Garcia, D Moffat, TP AF Liu, Yihua Hangarter, Carlos M. Garcia, Desiree Moffat, Thomas P. TI Self-terminating electrodeposition of ultrathin Pt films on Ni: An active, low-cost electrode for H-2 production SO SURFACE SCIENCE LA English DT Article DE Electrochemistry; Electrodeposition; Electrocatalysis,Pt; Ni; XPS; ISS ID ATOMIC LAYER DEPOSITION; OXYGEN REDUCTION REACTION; IN-SITU STM; HYDROGEN EVOLUTION; INITIAL GROWTH; BIMETALLIC NANOPARTICLES; ALKALINE ELECTROLYTES; PLATINUM MONOLAYER; THERMAL EVOLUTION; SURFACES AB Self-terminating electrodeposition was developed for depositing ultrathin Pt overlayers on segmented electrodeposited Ni films supported on Au. The partitioned substrates provided an internal reference, namely, Pt on Au versus Pt on Ni, for every growth experiment. Deposition at large overpotentials yielded a Pt overlayer approximately 1 ML thick on Au or 2 to 3 ML thick on Ni as determined by X-ray photoelectron spectroscopy (XPS). Ion scattering spectroscopy (ISS) indicated that Pt covered 60% of the Ni surface forming a Pt50Ni50 surface alloy stabilized by excess Pt-Ni bond enthalpy supplemented by O- and H-induced Ni segregation. The Pt deposition rate on Ni was constrained by Ni oxide reduction while self-termination was mediated by the formation of a layer of adsorbed hydrogen (H-upd) on the Pt-Ni surface. Multi-cycle Pt deposition on Ni involved emersion and rapid water rinsing in air to oxidize the Hupd followed byre-immersion for additional Pt deposition. Four deposition cycles resulted in a Pt-terminated surface. The electrocatalytic activity for hydrogen production in alkaline media was significantly enhanced on the Pt-Ni monolayer film relative to Pt. The Pt-Ni electrode deactivated with time although intermittent oxidation at, or above, 1 V-RHE restructured the electrode to form an active Pt-Ni(OH)(2) composite surface. Published by Elsevier B.V. C1 [Liu, Yihua; Hangarter, Carlos M.; Garcia, Desiree; Moffat, Thomas P.] NIST, Div Engn & Mat Sci, Mat Measurement Lab, Gaithersburg, MD 20899 USA. RP Moffat, TP (reprint author), NIST, Div Engn & Mat Sci, Mat Measurement Lab, Gaithersburg, MD 20899 USA. EM thomas.moffat@nist.gov RI Hangarter, Carlos/M-7924-2016 OI Hangarter, Carlos/0000-0002-7149-0903 FU NIST-Material Measurement Laboratory programs; NIST-National Research Council Postdoctoral Fellowship Program; NIST-American Recovery and Reinvestment Act funds FX This work was supported by the NIST-Material Measurement Laboratory programs. The X-ray photoelectron spectrometer was provided by NIST-American Recovery and Reinvestment Act funds. Y.L. and C.H. thank the NIST-National Research Council Postdoctoral Fellowship Program for the support while D.G. thanks the NIST-SURF program. NR 66 TC 11 Z9 11 U1 17 U2 93 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD JAN PY 2015 VL 631 SI SI BP 141 EP 154 DI 10.1016/j.susc.2014.06.002 PG 14 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA AY0CR UT WOS:000347266000021 ER PT J AU Shaw, KS Sapkota, AR Jacobs, JM He, X Crump, BC AF Shaw, Kristi S. Sapkota, Amy R. Jacobs, John M. He, Xin Crump, Byron C. TI Recreational swimmers' exposure to Vibrio vulnificus and Vibrio parahaemolyticus in the Chesapeake Bay, Maryland, USA SO ENVIRONMENT INTERNATIONAL LA English DT Article DE Chesapeake Bay; Exposure assessment; Recreational exposure; Waterborne illness; Vibrio vulnificus; Vibrio parahaemolyticus ID REAL-TIME PCR; BODY-SURFACE AREA; GULF-OF-MEXICO; UNITED-STATES; WATERBORNE DISEASE; PATHOGENIC VIBRIOS; HEALTH EVENTS; SURVEILLANCE; OUTBREAKS; OYSTERS AB Vibrio vulnificus and Vibrio parahaemolyticus are ubiquitous in the marine-estuarine environment, but the magnitude of human non-ingestion exposure to these waterborne pathogens is largely unknown. We evaluated the magnitude of dermal exposure to V. vulnificus and V. parahaemolyticus among swimmers recreating in Vibrio-populated waters by conducting swim studies at four swimming locations in the Chesapeake Bay in 2009 and 2011. Volunteers (n = 31) swam for set time periods, and surface water (n = 25) and handwash (n = 250) samples were collected. Samples were analyzed for Vibrio concentrations using quantitative PCR. Linear and logistic regressions were used to evaluate factors associated with recreational exposures. Mean surface water V. vulnificus and V. parahaemolyticus concentrations were 1128 CFU mL(-1) (95% confidence interval (CI): 665.6, 1591.4) and 18 CFU mL(-1) (95% CI: 9.8, 26.1), respectively, across all sampling locations. Mean Vibrio concentrations in handwash samples (V. vulnificus, 180 CFU cm(-2) (95% CI: 136.6, 222.5); V. parahaemolyticus, 3 CFU cm(-2) (95% CI: 2.4, 3.7)) were significantly associated with Vibrio concentrations in surface water (V. vulnificus, p < 0.01; V. parahaemolyticus, p < 0.01), but not with salinity or temperature (V. vulnificus, p = 0.52, p = 0.17; V. parahaemolyticus, p = 0.82, p = 0.06). Handwashing reduced V. vulnificus and V. parahaemolyticus on subjects' hands by approximately one log (93.9%, 89.4%, respectively). It can be concluded that when Chesapeake Bay surface waters are characterized by elevated concentrations of Vibrio, swimmers and individuals working in those waters could experience significant dermal exposures to V. vulnificus and V. parahaemolyticus, increasing their risk of infection. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Shaw, Kristi S.; Crump, Byron C.] Univ Maryland, Ctr Environm Sci, Horn Point Lab, Cambridge, MD 21601 USA. [Shaw, Kristi S.; Sapkota, Amy R.] Univ Maryland, Sch Publ Hlth, Maryland Inst Appl Environm Hlth, College Pk, MD 20742 USA. [Jacobs, John M.] NOS, NCCOS, COL, Oxford, MD 21654 USA. [He, Xin] Univ Maryland, Sch Publ Hlth, Dept Epidemiol & Biostat, College Pk, MD 20742 USA. [Crump, Byron C.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. RP Shaw, KS (reprint author), Univ Maryland, Sch Publ Hlth, Maryland Inst Appl Environm Hlth, 2234P SPH Bldg 255, College Pk, MD 20742 USA. EM krististevensshaw@gmail.com RI Sapkota, Amy/A-6046-2011; He, Xin/N-6742-2016; OI Shaw, Kristi/0000-0001-8164-0891 FU National Oceanic and Atmospheric Administration (NOAA) [EA133C07CN0163] FX We are grateful to the swim study volunteers, participants and Sandy Point State Park for facility use. Laboratory assistance was provided by Bryan Shaw, Erica Kiss, Caroline Fortunato, Joshua Condon, and Matt Rhodes. The National Oceanic and Atmospheric Administration (NOAA) (award EA133C07CN0163) provided financial support for the conduct of the research. NR 47 TC 1 Z9 2 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0160-4120 EI 1873-6750 J9 ENVIRON INT JI Environ. Int. PD JAN PY 2015 VL 74 BP 99 EP 105 DI 10.1016/j.envint.2014.09.016 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA AX1AU UT WOS:000346681700012 PM 25454225 ER PT J AU Vandersea, MW Birkenheuer, AJ Litaker, RW Vaden, SL Renschler, JS Gookin, JL AF Vandersea, Mark W. Birkenheuer, Adam J. Litaker, R. Wayne Vaden, Shelly L. Renschler, Janelle S. Gookin, Jody L. TI Identification of Parabodo caudatus (class Kinetoplastea) in urine voided from a dog with hematuria SO JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION LA English DT Article DE Bodo urinarius; canine; flagellate; Parabodo caudatus; protozoa ID TRYPANOSOMATIDS; CLASSIFICATION; PHYLOGENY; SEQUENCES; EVOLUTION; PROPOSAL AB A voided urine sample, obtained from a 13-year-old intact male dog residing in a laboratory animal research facility, was observed to contain biflagellate protozoa 5 days following an episode of gross hematuria. The protozoa were identified as belonging to the class Kinetoplastea on the basis of light microscopic observation of Wright-Giemsa-stained urine sediment in which the kinetoplast was observed basal to 2 anterior flagella. A polymerase chain reaction (PCR) assay using primers corresponding with conserved regions within the 18S ribosomal RNA gene of representative kinetoplastid species identified nucleotide sequences with 100% identity to Parabodo caudatus. Parabodo caudatus organisms were unable to be demonstrated cytologically or by means of PCR in samples collected from the dog's environment. The dog had a history of 50 complete urinalyses performed over the 12-year period preceding detection of P. caudatus, and none of these were noted to contain protozoa. Moreover, the gross hematuria that was documented 5 days prior to detection of P. caudatus had never before been observed in this dog. Over the ensuing 2.5 years of the dog's life, 16 additional complete urinalyses were performed, none of which revealed the presence of protozoa. Bodonids are commonly found in soil as well as in freshwater and marine environments. However, P. caudatus, in particular, has a 150-year-long, interesting, and largely unresolved history in people as either an inhabitant or contaminant of urine. This historical conundrum is revisited in the current description of P. caudatus as recovered from the urine of a dog. C1 [Vandersea, Mark W.; Litaker, R. Wayne] NOAA, Ctr Coastal Fisheries & Habitat Res, Beaufort, NC USA. [Birkenheuer, Adam J.; Vaden, Shelly L.; Renschler, Janelle S.; Gookin, Jody L.] N Carolina State Univ, Dept Clin Sci, Coll Vet Med, Raleigh, NC 27607 USA. RP Gookin, JL (reprint author), N Carolina State Univ, 1060 William Moore Dr, Raleigh, NC 27607 USA. EM jody_gookin@ncsu.edu NR 21 TC 0 Z9 0 U1 1 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1040-6387 EI 1943-4936 J9 J VET DIAGN INVEST JI J. Vet. Diagn. Invest. PD JAN PY 2015 VL 27 IS 1 BP 117 EP 120 DI 10.1177/1040638714562827 PG 4 WC Veterinary Sciences SC Veterinary Sciences GA AX0PD UT WOS:000346653200018 PM 25525146 ER PT J AU Lowther-Thieleking, JL Archer, FI Lang, AR Weller, DW AF Lowther-Thieleking, Janet L. Archer, Frederick I. Lang, Aimee R. Weller, David W. TI Genetic differentiation among coastal and offshore common bottlenose dolphins, Tursiops truncatus, in the eastern North Pacific Ocean SO MARINE MAMMAL SCIENCE LA English DT Article DE mitochondrial DNA; microsatellites; population structure; bottlenose dolphin; Tursiops truncatus; management ID POPULATION-STRUCTURE; MICROSATELLITE MARKERS; MITOCHONDRIAL-DNA; ORCINUS-ORCA; CALIFORNIA; ECOTYPES; INDIVIDUALS; SOFTWARE; WHALES AB Common bottlenose dolphins (Tursiops truncatus) are found worldwide in temperate and tropical regions, often occurring as distinct coastal and offshore ecotypes. Along the west coast of the United States, two stocks are recognized for management based on morphological and photo-identification studies: a California coastal stock, estimated at 450-500 individuals, and a California/Oregon/Washington offshore stock of about 1,000 animals. This study is the first to analyze genetic differentiation between these stocks. We examined both the hypervariable portion of the mitochondrial DNA (mtDNA) control region and fifteen microsatellite markers for coastal (n = 64) and offshore (n = 69) dolphins. Significant genetic differentiation was found between the two stocks for mtDNA (phi(ST) = 0.30, P < 0.001; F-ST = 0.14, P < 0.001) and microsatellite loci (F-ST = 0.19, P < 0.001). Coastal dolphins had less genetic diversity than offshore dolphins. Further substructuring within the offshore stock was not detected. The level of genetic differentiation between the coastal and offshore dolphins is consistent with long-term separation and reinforces recognizing them as separate stocks. These findings are particularly important for management of the smaller, less genetically diverse, coastal stock that is vulnerable to a variety of anthropogenic threats. C1 [Lowther-Thieleking, Janet L.; Archer, Frederick I.; Lang, Aimee R.; Weller, David W.] SW Fisheries Sci Ctr, La Jolla, CA 92037 USA. RP Lowther-Thieleking, JL (reprint author), SW Fisheries Sci Ctr, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA. EM janet_lynn21@hotmail.com NR 64 TC 4 Z9 6 U1 3 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0824-0469 EI 1748-7692 J9 MAR MAMMAL SCI JI Mar. Mamm. Sci. PD JAN PY 2015 VL 31 IS 1 BP 1 EP 20 DI 10.1111/mms.12135 PG 20 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA AX2JK UT WOS:000346769200001 ER PT J AU Jansen, JK Boveng, PL Hoef, JMV Dahle, SP Bengtson, JL AF Jansen, John K. Boveng, Peter L. Hoef, Jay M. Ver Dahle, Shawn P. Bengtson, John L. TI Natural and human effects on harbor seal abundance and spatial distribution in an Alaskan glacial fjord SO MARINE MAMMAL SCIENCE LA English DT Article DE harbor seal; spatial distribution; seasonal abundance; human disturbance; glacial fjords; cruise tourism; ice habitat; aerial survey; space-time model; zero-inflated counts ID PHOCA-VITULINA-RICHARDSI; HAUL-OUT BEHAVIOR; OFFSHORE WIND FARM; SAN-FRANCISCO BAY; TUGIDAK ISLAND; COUNT DATA; NATIONAL-PARK; FUR SEALS; POPULATION; CALIFORNIA AB Tidewater glacial fjords support the largest populations of harbor seals (Phoca vitulina richardii) in Alaska and are a prime destination for tour ships. Chronic disturbance from ships, however subtle, could impact long-term population stability. We examined variation in abundance and distribution of harbor seals on floating ice in Disenchantment Bay, Alaska, a tour ship destination for over a century with near daily visitation by ships in the spring/summer over the last decade. Counts of seals by aerial transect showed a sharp decline in May, prior to pupping and the first ships arriving; counts rebounded by the end of June remaining high until August. Seal distribution and abundance peaked in 5-7 tenths ice cover; total area of ice cover showed no effect. Despite regular flushing of seals by ships, we found no broad-scale patterns in seal abundance and distribution that could be explained by ship presence. We cannot rule out mechanisms of long-term disturbance, difficult to detect and that might explain notable differences with other, similar sites. Population declines at disturbed glacial sites and the still rising popularity of vessel-based tourism indicate a need for individual-based studies on how seals respond to the dynamics of glacial ice environments and human-caused stresses. C1 [Jansen, John K.; Boveng, Peter L.; Hoef, Jay M. Ver; Dahle, Shawn P.; Bengtson, John L.] NOAA, Natl Marine Fisheries Serv, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. RP Jansen, JK (reprint author), NOAA, Natl Marine Fisheries Serv, Natl Marine Mammal Lab, Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE, Seattle, WA 98115 USA. EM john.jansen@noaa.gov OI Ver Hoef, Jay/0000-0003-4302-6895 FU NWCA via Cruise Line Agencies of Alaska (CLAA) FX We thank the following people for conducting observations and collecting GPS tracks from cruise ships: Marc Basterretche (Southwest Fisheries Science Center, NOAA), Michael Cameron (AFSC/NMML), Alana Phillips (AFSC/NMML), Dana Seagars (U.S. Fish and Wildlife Service), Jim Wilder (U.S. National Park Service), and Dave Withrow (AFSC/NMML). We are grateful for the traditional ecological knowledge passed on to us during discussions with Bert Adams Sr., Bert Adams Jr., Victoria Demmert, Sheldon James, George Ramos, David Ramos, Ray Sensmeier, and other Tribal elders and members of the Yakutat Tlingit Tribe. Discussions with the Yakutat community were important to the formulation of the working hypotheses. We also thank the Yakutat Tlingit Tribe, particularly Bert Adams Jr., for help in arranging logistics, and for sponsoring two student interns, Derek James and Lori Vale. We appreciate the support of John Hanson, president of the NorthWest CruiseShip Association (NWCA), and the NWCA members' interest in working with the Yakutat Tlingit Tribe. In addition to partly funding this study, NWCA provided transportation, via Cruise Line Agencies of Alaska (CLAA), for our observers to and from cruise ships. The U. S. National Park Service generously provided personnel for field work. Tricia O'Connor, Bill Lucey, Dan Gillikin, Ian Colvert, and numerous other employees of the Yakutat District of the U. S. Forest Service (USFS) aided in developing the study. We appreciated Dave Russell of Yakutat Coastal Airways as our pilot for the aerial surveys. The findings and conclusions in this paper are those of the author(s) and do not necessarily represent the views of the National Marine Fisheries Service (NMFS), NOAA. Reference to trade names does not imply endorsement by the NMFS, NOAA. NR 95 TC 7 Z9 7 U1 5 U2 44 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0824-0469 EI 1748-7692 J9 MAR MAMMAL SCI JI Mar. Mamm. Sci. PD JAN PY 2015 VL 31 IS 1 BP 66 EP 89 DI 10.1111/mms.12140 PG 24 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA AX2JK UT WOS:000346769200004 ER PT J AU Witteveen, BH De Robertis, A Guo, L Wynne, KM AF Witteveen, Briana H. De Robertis, Alex Guo, Lei Wynne, Kate M. TI Using dive behavior and active acoustics to assess prey use and partitioning by fin and humpback whales near Kodiak Island, Alaska SO MARINE MAMMAL SCIENCE LA English DT Article DE pelagic backscatter; Balaenoptera physalus; Megaptera novaeangliae; suction-cup tag; multi-frequency differencing; prey partitioning; humpback whale; fin whale; Gulf of Alaska ID NORTH PACIFIC-OCEAN; POLLOCK THERAGRA-CHALCOGRAMMA; MEGAPTERA-NOVAEANGLIAE; BALEEN WHALES; WALLEYE POLLOCK; TARGET-STRENGTH; BALAENOPTERA-PHYSALUS; FEEDING PERFORMANCE; FORAGING ECOLOGY; SOUTHEAST ALASKA AB Near the Kodiak Archipelago, fin (Balaenoptera physalus) and humpback (Megaptera novaeangliae) whales frequently overlap spatially and temporally. The Gulf Apex Predator-prey study (GAP) investigated the prey use and potential prey partitioning between these sympatric species by combining concurrent analysis of vertical whale distribution with acoustic assessment of pelagic prey. Acoustic backscatter was classified as consistent with either fish or zooplankton. Whale dive depths were determined through suction cup tags. Tagged humpback whales (n = 10) were most often associated with distribution of fish, except when zooplankton density was very high. Associations between the dive depths of tagged fin whales (n = 4) and the vertical distribution of either prey type were less conclusive. However, prey assessment methods did not adequately describe the distribution of copepods, a potentially significant resource for fin whales. Mean dive parameters showed no significant difference between species when compared across all surveys. However, fin whales spent a greater proportion of dive time in the foraging phase than humpbacks, suggesting a possible difference in foraging efficiency between the two. These results suggest that humpback and fin whales may target different prey, with the greatest potential for diet overlap occurring when the density of zooplankton is very high. C1 [Witteveen, Briana H.; Guo, Lei; Wynne, Kate M.] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Alaska Sea Grant Marine Advisory Program, Kodiak, AK 99615 USA. [De Robertis, Alex] NOAA, Natl Marine Fisheries Serv, Resource Assessment & Conservat Engn Div, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA. RP Witteveen, BH (reprint author), Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Alaska Sea Grant Marine Advisory Program, 118 Trident Way, Kodiak, AK 99615 USA. EM bree.witteveen@alaska.edu FU NOAA [NA04NMF4390158, NA07NMF4390339, NA09NMF439039, NA10NMF4390295] FX The authors are grateful to Casey Clark, Aaren Ellsworth, Brian Ellsworth, Jane McKenzie, Sophie Piersolowski, Beth Pingree, Natura Richardson, Mike Trussell, and Jordy Thomson for their assistance with tagging efforts in the field. We thank the captain and crews of the F/V Alaska and F/V Mythos. We thank the Alaska Department of Fish and Game, including Matthew Foster, Mark Witteveen, and the captain and crew of the R/V Resolution. Special thanks to Dr. Robert Foy (NMFS, Alaska Fisheries Science Center) for his assistance with prey surveys and assessment. We thank the three anonymous reviewers who provided valuable comments to improve this manuscript. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. Funding was provided by NOAA Grants NA04NMF4390158, NA07NMF4390339, NA09NMF439039, NA10NMF4390295 to the Gulf Apex Predator prey project at the University of Alaska Fairbanks. All whale research was conducted under NMFS Federal Research Permits # 1049-1718 and 14296. All data collection was covered under University of Alaska Fairbanks IACUC protocols 140171 and 140169. NR 75 TC 6 Z9 6 U1 4 U2 36 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0824-0469 EI 1748-7692 J9 MAR MAMMAL SCI JI Mar. Mamm. Sci. PD JAN PY 2015 VL 31 IS 1 BP 255 EP 278 DI 10.1111/mms.12158 PG 24 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA AX2JK UT WOS:000346769200014 ER PT J AU Urian, K Gorgone, A Read, A Balmer, B Wells, RS Berggren, P Durban, J Eguchi, T Rayment, W Hammond, PS AF Urian, Kim Gorgone, Antoinette Read, Andrew Balmer, Brian Wells, Randall S. Berggren, Per Durban, John Eguchi, Tomoharu Rayment, William Hammond, Philip S. TI Recommendations for photo-identification methods used in capture-recapture models with cetaceans SO MARINE MAMMAL SCIENCE LA English DT Article DE capture-recapture; mark-recapture; photo-identification; abundance; population size estimates ID BOTTLE-NOSED DOLPHINS; WHALES HYPEROODON-AMPULLATUS; PHOTOGRAPHIC IDENTIFICATION; MARK-RECAPTURE; TURSIOPS-TRUNCATUS; MEGAPTERA-NOVAEANGLIAE; STATISTICAL-INFERENCE; NATURAL MARKINGS; POPULATION; ABUNDANCE AB Capture-recapture methods are frequently employed to estimate abundance of cetaceans using photographic techniques and a variety of statistical models. However, there are many unresolved issues regarding the selection and manipulation of images that can potentially impose bias on resulting estimates. To examine the potential impact of these issues we circulated a test data set of dorsal fin images from bottlenose dolphins to several independent research groups. Photo-identification methods were generally similar, but the selection, scoring, and matching of images varied greatly amongst groups. Based on these results we make the following recommendations. Researchers should: (1) determine the degree of marking, or level of distinctiveness, and use images of sufficient quality to recognize animals of that level of distinctiveness; (2) ensure that markings are sufficiently distinct to eliminate the potential for twins to occur; (3) stratify data sets by distinctiveness and generate a series of abundance estimates to investigate the influence of including animals of varying degrees of markings; and (4) strive to examine and incorporate variability among analysts into capture-recapture estimation. In this paper we summarize these potential sources of bias and provide recommendations for best practices for using natural markings in a capture-recapture framework. C1 [Urian, Kim; Read, Andrew] Duke Univ, Nicholas Sch Environm, Beaufort, NC 28516 USA. [Gorgone, Antoinette] NOAA Fisheries Serv, Southeast Fisheries Sci Ctr, Beaufort, NC 28516 USA. [Balmer, Brian; Wells, Randall S.] Mote Marine Lab, Sarasota Dolphin Res Program, Chicago Zool Soc, Sarasota, FL 34236 USA. [Berggren, Per] Newcastle Univ, Sch Marine Sci & Technol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Durban, John; Eguchi, Tomoharu] Natl Ocean & Atmospher Adm, Marine Mammal & Turtle Div, SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, La Jolla, CA 92037 USA. [Rayment, William] Univ Otago, Dept Marine Sci, Dunedin, New Zealand. [Hammond, Philip S.] Univ St Andrews, Sea Mammal Res Unit, Gatty Marine Lab, St Andrews KY16 8LB, Fife, Scotland. RP Urian, K (reprint author), Duke Univ, Nicholas Sch Environm, Beaufort, NC 28516 USA. EM kim.urian@gmail.com NR 74 TC 10 Z9 11 U1 6 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0824-0469 EI 1748-7692 J9 MAR MAMMAL SCI JI Mar. Mamm. Sci. PD JAN PY 2015 VL 31 IS 1 BP 298 EP 321 DI 10.1111/mms.12141 PG 24 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA AX2JK UT WOS:000346769200016 ER PT J AU Friedlaender, AS Goldbogen, JA Hazen, EL Calambokidis, J Southall, BL AF Friedlaender, Ari S. Goldbogen, Jeremy A. Hazen, Elliott L. Calambokidis, John Southall, Brandon L. TI Feeding performance by sympatric blue and fin whales exploiting a common prey resource SO MARINE MAMMAL SCIENCE LA English DT Article ID WESTERN ANTARCTIC PENINSULA; MARINE MAMMALS; KRILL; BEHAVIOR; COMPETITION; STRATEGIES; ABUNDANCE; SYSTEM C1 [Friedlaender, Ari S.] Oregon State Univ, Hatfield Marine Sci Ctr, Marine Mammal Inst, Newport, OR 97365 USA. [Friedlaender, Ari S.; Southall, Brandon L.] Southall Environm Associates Inc, Aptos, CA 95003 USA. [Goldbogen, Jeremy A.] Stanford Univ, Hopkins Marine Stn, Dept Biol, Pacific Grove, CA 93950 USA. [Hazen, Elliott L.; Southall, Brandon L.] Inst Marine Sci, UC Santa Cruz Long Marine Lab, Santa Cruz, CA 95060 USA. [Hazen, Elliott L.] NOAA, SW Fisheries Sci Ctr, Div Environm Res, Pacific Grove, CA 93950 USA. [Calambokidis, John] Cascadia Res Collect, Olympia, WA 98501 USA. RP Friedlaender, AS (reprint author), Oregon State Univ, Hatfield Marine Sci Ctr, Marine Mammal Inst, 2035 Marine Sci Dr, Newport, OR 97365 USA. EM ari.friedlaender@oregonstate.edu OI Goldbogen, Jeremy/0000-0002-4170-7294 FU Marine Mammal Program within the U.S. Office of Naval Research FX This research was supported by the Marine Mammal Program within the U.S. Office of Naval Research. The authors thank G. Schorr, E. Falcone, A. Stimpert, and S. DeRuiter and other members of the SOCAL-BRS for their contributions in the field. Research was conducted under NMFS scientific permit 14534, Duke IACUC #A049-12-02, and was consistent and approved through the U.S. Department of Defense Animal Care and Use Protocols. We confirm that we have no conflict of interest regarding the publishing of our manuscript as required by Marine Mammal Science. NR 28 TC 5 Z9 5 U1 5 U2 32 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0824-0469 EI 1748-7692 J9 MAR MAMMAL SCI JI Mar. Mamm. Sci. PD JAN PY 2015 VL 31 IS 1 BP 345 EP 354 DI 10.1111/mms.12134 PG 10 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA AX2JK UT WOS:000346769200018 ER PT J AU Jacobson, EK Forney, KA Harvey, JT AF Jacobson, Eiren K. Forney, Karin A. Harvey, James T. TI Acoustic evidence that harbor porpoises (Phocoena phocoena) avoid bottlenose dolphins (Tursiops truncatus) SO MARINE MAMMAL SCIENCE LA English DT Article ID VIOLENT INTERACTIONS; AERIAL SURVEYS; CALIFORNIA; ABUNDANCE; INFANTICIDE; HEARING; CLICKS; SENSITIVITY; AUDIOGRAM; SIGNALS C1 [Jacobson, Eiren K.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Forney, Karin A.] Natl Ocean & Atmospher Adm, Marine Mammal & Turtle Div, SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Santa Cruz, CA 95060 USA. [Harvey, James T.] Moss Landing Marine Labs, Moss Landing, CA 95039 USA. RP Jacobson, EK (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM eiren.jacobson@gmail.com NR 46 TC 3 Z9 3 U1 2 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0824-0469 EI 1748-7692 J9 MAR MAMMAL SCI JI Mar. Mamm. Sci. PD JAN PY 2015 VL 31 IS 1 BP 386 EP 397 DI 10.1111/mms.12154 PG 12 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA AX2JK UT WOS:000346769200022 ER PT J AU Becerra, FE Fan, J Migdall, A AF Becerra, F. E. Fan, J. Migdall, A. TI Photon number resolution enables quantum receiver for realistic coherent optical communications SO NATURE PHOTONICS LA English DT Article ID STATE DISCRIMINATION; PHASE; TRANSMISSION; DETECTOR; CHANNEL; LIMIT AB Quantum-enhanced measurements can provide information about the properties of a physical system with sensitivities beyond what is fundamentally possible with conventional technologies. However, this advantage can be achieved only if quantum measurement technologies are robust against losses and real-world imperfections, and can operate in regimes compatible with existing systems. Here, we demonstrate a quantum receiver for coherent communication, the performance of which not only surpasses the standard quantum limit, but does so for input powers extending to high mean photon numbers. This receiver uses adaptive measurements and photon number resolution to achieve high sensitivity and robustness against imperfections, and ultimately shows the greatest advantage over the standard quantum limit ever achieved by any quantum receiver at power levels compatible with state-of-the-art optical communication systems. Our demonstration shows that quantum measurements can provide real and practical advantages over conventional technologies for optical communications. C1 [Becerra, F. E.] Univ New Mexico, Ctr Quantum Informat & Control, Albuquerque, NM 87131 USA. [Fan, J.; Migdall, A.] Univ Maryland, Joint Quantum Inst, Gaithersburg, MD 20899 USA. [Fan, J.; Migdall, A.] NIST, Gaithersburg, MD 20899 USA. RP Becerra, FE (reprint author), Univ New Mexico, Ctr Quantum Informat & Control, MSC07-4220, Albuquerque, NM 87131 USA. EM fbecerra@unm.edu FU Physics Frontier Center at the Joint Quantum Institute FX The authors acknowledge financial support from the Physics Frontier Center at the Joint Quantum Institute. F.E.B. thanks J. Kosloski and J. Goldhar for discussions. The authors also thank S.V. Polyakov, who developed the original FPGA-based platform on which our data acquisition system was built45. NR 45 TC 8 Z9 8 U1 4 U2 21 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD JAN PY 2015 VL 9 IS 1 BP 48 EP 53 DI 10.1038/NPHOTON.2014.280 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA AX3GK UT WOS:000346828000014 ER PT J AU Hucul, D Inlek, IV Vittorini, G Crocker, C Debnath, S Clark, SM Monroe, C AF Hucul, D. Inlek, I. V. Vittorini, G. Crocker, C. Debnath, S. Clark, S. M. Monroe, C. TI Modular entanglement of atomic qubits using photons and phonons SO NATURE PHYSICS LA English DT Article ID QUANTUM TELEPORTATION; COMMUNICATION; SPECTROSCOPY; DISTANCE; NETWORK; STATES; IONS; BITS AB Quantum entanglement is the central resource behind quantum information science, from quantum computation and simulation(1,2) to enhanced metrology(3) and secure communication(1). These applications require the quantum control of large networks of qubits to realize gains and speed increases over conventional devices. However, propagating entanglement becomes difficult or impossible as the system grows in size. Here, we demonstrate the first step in a modular approach(4) to scaling entanglement by using complementary quantum buses on a collection of three atomic ion qubits stored in two remote ion trap modules. Entanglement within a module is achieved with deterministic near-field interactions through phonons(5), and remote entanglement between modules is achieved with a probabilistic interaction through photons(6). This minimal system allows us to address generic issues in the synchronization of entanglement with multiple buses. It points the way towards a modular large-scale quantum information architecture that promises less spectral crowding and thus potentially less decoherence as the number of qubits increases(4). We generate this modular entanglement faster than the observed remotely entangled qubit-decoherence rate, showing that entanglement can be scaled simply by adding more modules. C1 [Hucul, D.] Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA. NIST, College Pk, MD 20742 USA. RP Hucul, D (reprint author), Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA. EM dhucul@umd.edu RI Monroe, Christopher/G-8105-2011 FU Intelligence Advanced Research Projects Activity; Army Research Office MURI Program on Hybrid Quantum Optical Circuits; NSF Physics Frontier Center at JQI FX We thank K. R. Brown, L-M. Duan, J. Kim, P. Kwiat, D. N. Matsukevich, P. Maunz, D. L. Moehring, S. Olmschenk and P. Richerme for helpful discussions. This work was supported by the Intelligence Advanced Research Projects Activity, the Army Research Office MURI Program on Hybrid Quantum Optical Circuits, and the NSF Physics Frontier Center at JQI. NR 33 TC 37 Z9 37 U1 6 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD JAN PY 2015 VL 11 IS 1 BP 37 EP 42 DI 10.1038/NPHYS3150 PG 6 WC Physics, Multidisciplinary SC Physics GA AX3HQ UT WOS:000346831100021 ER PT J AU Rekdal, SL Hansen, RG Borchers, D Bachmann, L Laidre, KL Wiig, O Nielsen, NH Fossette, S Tervo, O Heide-Jorgensen, MP AF Rekdal, Silje L. Hansen, Rikke Guldborg Borchers, David Bachmann, Lutz Laidre, Kristin L. Wiig, Oystein Nielsen, Nynne Hjort Fossette, Sabrina Tervo, Outi Heide-Jorgensen, Mads Peter TI Trends in bowhead whales in West Greenland: Aerial surveys vs. genetic capture-recapture analyses SO MARINE MAMMAL SCIENCE LA English DT Article DE Hidden Markov Models; aerial surveys; capture-recapture; Arctic; genetics; bowhead whale; Balaena mysticetus; Disko Bay; abundance ID BALAENA-MYSTICETUS; BALEEN WHALES; POPULATION-GENETICS; HUMPBACK WHALES; BAFFIN-BAY; DISKO BAY; ABUNDANCE; CETACEANS; SOFTWARE; ATLANTIC AB We contrast two methods for estimating the trends of bowhead whales (Balaena mysticetus) in West Greenland: (1) double platform visual aerial survey, corrected for missed sightings and the time the whales are available at the surface; and (2) a genetic capture-recapture approach based on a 14-yr-long biopsy sampling program in Disko Bay. The aerial survey covered 39,000 km(2) and resulted in 58 sightings, yielding an abundance estimate of 744 whales (CV = 0.34, 95% CI: 357-1,461). The genetic method relied on determining sex, mitochondrial haplotypes and genotypes of nine microsatellite markers. Based on samples from a total of 427 individuals, with 11 recaptures from previous years in 2013, this resulted in an estimate of 1,538 whales (CV = 0.24, 95% CI: 827-2,249). While the aerial survey is considered a snapshot of the local spring aggregation in Disko Bay, the genetic approach estimates the abundance of the source of this aggregation. As the whales in Disko Bay primarily are adult females that do not visit the bay annually, the genetic method would presumably yield higher estimates. The studies indicate that an increase in abundance observed between 1998 and 2006 has leveled off. C1 [Rekdal, Silje L.; Bachmann, Lutz; Wiig, Oystein] Univ Oslo, Nat Hist Museum, N-0318 Oslo, Norway. [Hansen, Rikke Guldborg; Laidre, Kristin L.; Nielsen, Nynne Hjort; Tervo, Outi; Heide-Jorgensen, Mads Peter] Greenland Inst Nat Resources, Nuuk 3900, Greenland. [Borchers, David] Univ St Andrews, Sch Math & Stat, Ctr Res Ecol & Environm Modelling, St Andrews KY16 9LZ, Fife, Scotland. [Laidre, Kristin L.] Univ Washington, Appl Phys Lab, Polar Sci Ctr, Seattle, WA 98105 USA. [Fossette, Sabrina] NOAA, SW Fisheries Sci Ctr, Pacific Grove, CA 93950 USA. RP Rekdal, SL (reprint author), Univ Oslo, Nat Hist Museum, POB 1172 Blindern, N-0318 Oslo, Norway. EM silje.rekdal@gmail.com RI Wiig, Oystein/J-8383-2012 OI Wiig, Oystein/0000-0003-0395-5251 FU Greenland Institute of Natural Resources; Greenlandic Bureau of Minerals and Petroleum; National Ocean Partnership Program (NOPP: US National Science Foundation); National Ocean Partnership Program (NOPP: Office of Naval Research); Danish Natural Science Research Council; Commission for Scientific Investigations in Greenland (KVUG); Danish Cooperation for Environment in the Arctic (Dancea); University of Oslo FX This study was funded by the Greenland Institute of Natural Resources, the Greenlandic Bureau of Minerals and Petroleum, the National Ocean Partnership Program (NOPP: US National Science Foundation and Office of Naval Research), the Danish Natural Science Research Council, the Commission for Scientific Investigations in Greenland (KVUG), the Danish Cooperation for Environment in the Arctic (Dancea) and the University of Oslo. We are grateful to local hunters in Qeqertarsuaq for collection of the biopsies, and we wish to thank the University of Copenhagen for accommodation in its Arctic Station in Disko Bay. We are grateful to Ryan Huebinger for giving us access to an unpublished primer. CITES permits have been provided by Greenlandic and Norwegian authorities. Two anonymous reviewers improved the manuscript. NR 61 TC 3 Z9 5 U1 5 U2 29 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0824-0469 EI 1748-7692 J9 MAR MAMMAL SCI JI Mar. Mamm. Sci. PD JAN PY 2015 VL 31 IS 1 BP 133 EP 154 DI 10.1111/mms.12150 PG 22 WC Marine & Freshwater Biology; Zoology SC Marine & Freshwater Biology; Zoology GA AX2JK UT WOS:000346769200008 ER PT J AU Li, X Grasley, ZC Garboczi, EJ Bullard, JW AF Li, X. Grasley, Z. C. Garboczi, E. J. Bullard, J. W. TI Modeling the apparent and intrinsic viscoelastic relaxation of hydrating cement paste SO CEMENT & CONCRETE COMPOSITES LA English DT Article DE C-S-H; Finite element analysis; Microstructure; Viscoelastic; Dissolution; THAMES ID LINEAR ELASTIC PROPERTIES; MEASURING PERMEABILITY; STRESS-RELAXATION; PORTLAND-CEMENT; CONCRETE; CREEP; SOLIDIFICATION; WATER AB Finite element procedures combined with microstructure development modeling are integrated to quantitatively predict the viscoelastic/viscoplastic relaxation of cement paste due to intrinsic calcium silicate hydrate viscoelasticity and microstructure evolution associated with the hydration process. The combined models are implemented in a computational routine to predict time-dependent stress and strain fields in cement paste. The model simulations suggest that inherent viscoelastic deformation caused by calcium silicate hydrate is not necessarily the primary mechanism leading to the overall early-age viscoelastic/viscoplastic behavior of cement paste. The effect of time-dependent dissolution of cement grains occurring during the hydration process is substantial and should be considered as a significant mechanism for the apparent viscoelasticity/viscoplasticity of cement paste. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Li, X.; Grasley, Z. C.] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA. [Garboczi, E. J.; Bullard, J. W.] NIST, Mat & Struct Syst Div, Engn Lab, Gaithersburg, MD 20899 USA. RP Grasley, ZC (reprint author), Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA. EM xiaodanl@tamu.edu; zgrasley@tamu.edu; edward.garboczi@nist.gov; jeffrey.bullard@nist.gov FU National Science Foundation [0843979, 1327314] FX This research was supported by the National Science Foundation under grant numbers 0843979 and 1327314. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. NR 39 TC 9 Z9 9 U1 1 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0958-9465 EI 1873-393X J9 CEMENT CONCRETE COMP JI Cem. Concr. Compos. PD JAN PY 2015 VL 55 BP 322 EP 330 DI 10.1016/j.cemconcomp.2014.09.012 PG 9 WC Construction & Building Technology; Materials Science, Composites SC Construction & Building Technology; Materials Science GA AW4AS UT WOS:000346224600036 ER PT J AU Pagliaro, JL Linteris, GT Sunderland, PB Baker, PT AF Pagliaro, John L. Linteris, Gregory T. Sunderland, Peter B. Baker, Patrick T. TI Combustion inhibition and enhancement of premixed methane-air flames by halon replacements SO COMBUSTION AND FLAME LA English DT Article DE Fire suppression; Halon 1301; Aircraft cargo bay fire protection; Halon replacement; Refrigerant flammability; Explosion suppression ID LAMINAR-BURNING VELOCITY; NUMERICAL-SIMULATION; EXPLOSION PRESSURES; FLAMMABILITY LIMITS; GASEOUS-MIXTURES; SPHERICAL-VESSEL; HIGH-TEMPERATURE; CLOSED VESSELS; PROPANE; SPEEDS AB Apparent combustion enhancement by some halon replacement fire suppressants (proposed for use in aircraft cargo bays) has been observed in full-scale, constant-volume tests at the FAA. In order to explore the phenomena, laboratory-scale constant-volume combustion experiments were performed. The maximum explosion pressure and burning velocity were measured for methane-air flames with added CF3Br (Halon 1301), C6F12O (Novec 1230), C3H2F3Br (2-BTP), and C2HF5 (HFC-125). The explosion pressure, for initially stoichiometric flames, was increased mildly (up to 11% and 6%) with C6F12O and C2HF5 added at low concentrations, while at lean conditions (Phi = 0.6), it was increased about 50% for added C6F12O, C3H2F3Br, or C2HF5, at agent volume fractions X-a= 0.02, 0.03, and 0.06. The burning velocity for initially stoichiometric flames was always decreased with addition of any of the agents, whereas, for the lean conditions, it increased with added C6F12O or C2HF5 (32% and 14%, at X-a = 0.01 and 0.03). Burning velocities at higher initial pressure (3 bar) and temperature (400 K) showed lower inhibition effectiveness (than at ambient conditions) for the stoichiometric flames, and larger enhancement for the lean flames (and the effect was due primarily to the temperature increase). CF3Br did not increase the explosion pressure or burning velocity for any of the tested conditions. Equilibrium calculations were used to interpret the experiments. The present work is consistent with the FAA results and previous analysis of the full-scale tests. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Pagliaro, John L.; Sunderland, Peter B.] Univ Maryland, Dept Fire Protect Engn, College Pk, MD 20742 USA. [Linteris, Gregory T.] NIST, Fire Res Div, Gaithersburg, MD 20899 USA. [Baker, Patrick T.] Boeing Co, Seattle, WA 98124 USA. RP Linteris, GT (reprint author), NIST, Engn Lab, Gaithersburg, MD 20899 USA. EM linteris@nist.gov OI Sunderland, Peter/0000-0002-8262-7100 FU Boeing Company; ARRA grant FX We thank Dr. Kenji Takizawa at the National Institute of Advanced Industrial Science and Technology (AIST) for providing a list of parts used in his experimental setup. Conversations with him and with Dr. Valeri Babushok, Dr. Don Burgess, and Dr. Jeff Manion at NIST were very helpful. This research was supported by the Boeing Company and by an ARRA grant. NR 70 TC 12 Z9 12 U1 3 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD JAN PY 2015 VL 162 IS 1 BP 41 EP 49 DI 10.1016/j.combustflame.2014.07.006 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA AW6QL UT WOS:000346393600004 ER PT J AU Quinn, GD AF Quinn, G. D. TI On edge chipping testing and some personal perspectives on the state of the art of mechanical testing SO DENTAL MATERIALS LA English DT Article DE Edge chipping; Edge strength; Edge toughness; Dental restorative materials; Denture materials; Porcelain; Glass ceramic; Zirconia; Alumina; Filled-resin composite ID FIXED DENTAL PROSTHESES; ALL-CERAMIC CROWNS; FRACTURE-RESISTANCE; RESTORATIVE MATERIALS; RESIDUAL-STRESSES; RESIN-COMPOSITE; STRENGTH; FAILURE; TOUGHNESS; RELEVANT AB Objective. The edge chipping test is used to measure the fracture resistance of dental restoration ceramics and resin composites. This paper focuses on the progress of evaluating chipping resistance of these materials and also on the progress of standardization of this test method. This paper also makes observations about the state of the art of mechanical testing of ceramic and composite restorative materials in general. Interlaboratory comparative studies ("round robins") are recommended. Methods. An edge chipping machine was used to evaluate dozens of materials including porcelains, glass ceramics, aluminas, zirconias, filled resin-composites, new hybrid ceramicresin composites, laminated composite ceramics, and even polymethyl methacrylate based denture materials. Force versus distance data was collected over a broad range with different indenters. Several chipping resistance parameters were quantified. Results. Older restorative materials such as feldspathic porcelains and veneering materials had limited chipping resistance, but more modern ceramics and filled composites show significant improvements. A yttria-partially stabilized zirconia had the greatest resistance to chipping. Much of the early work on edge chipping resistance of brittle materials emphasized linear force versus distance trends obtained with relatively blunt Rockwell C indenters. More recently, trends for dental restorative materials with alternative sharper indenters have been nonlinear. A new phenomenological model with a simple quadratic function fits all data exceptionally well. It is loosely based on an energy balance between indenter work and fracture and deformation energies in the chipped material. Signcance. Although a direct comparison of our laboratory scale tests on idealized simple geometries to clinical outcomes has not yet been done, anecdotal evidence suggests the procedure does produce clinically relevant rankings and outcomes. Despite the variations in the trends and indenters, comparisons between materials can easily be made by chipping convenient block-shaped specimens with sharp conical 120, Vickers, or Rockwell C indenters at a defined edge distance of 0.5 mm. Broad distance ranges are recommended for trend evaluation. This work has provided important information for standardization. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved. C1 NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. RP Quinn, GD (reprint author), NIST, Mat Measurement Sci Div, Stop 852-9, Gaithersburg, MD 20899 USA. EM george.quinn@nist.gov FU NIH [R01DE17983]; Ivoclar-Vivadent, Schaan, Liechtenstein FX This work was made possible by a grant from NIH, R01DE17983 and the people and facilities at the National Institute of Standards and Technology ADAF Volpe Research Center (formerly the Paffenbarger). The author wishes to thank Ivoclar-Vivadent, Schaan, Liechtenstein for donating materials and partial support of this work. 3M-ESPE, St. Paul, MN, Ivoclar-Vivadent, Vita Zahnfabrik, Bad Sackingen, Germany, and Dentsply, York, PA all donated materials for this study. I also am indebted to Dr. Roger Morrell at the National Physical Laboratory, UK for many productive discussions on edge chipping as well as numerous collaborations over the course of 30 years on standardization of the mechanical property testing of ceramics. The edge chipping project was initiated in 1996 by Dr. Janet Quinn of the University of Maryland and then continued by her at the ADA Paffenbarger Research Center until her passing in 2008. Her work is chronicled in many of the references cited in this paper. Nearly all the data in this paper is new, but she paved the way and we continue to draw inspiration from her pioneering work. NR 73 TC 2 Z9 2 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0109-5641 EI 1879-0097 J9 DENT MATER JI Dent. Mater. PD JAN PY 2015 VL 31 IS 1 BP 26 EP 36 DI 10.1016/j.dental.2014.08.378 PG 11 WC Dentistry, Oral Surgery & Medicine; Materials Science, Biomaterials SC Dentistry, Oral Surgery & Medicine; Materials Science GA AW7GD UT WOS:000346431700004 PM 25244927 ER PT J AU Lou, GB Zhu, MC Li, M Zhang, C Li, GQ AF Lou, Guo-Biao Zhu, Mei-Chun Li, Ming Zhang, Chao Li, Guo-Qiang TI Experimental research on slip-resistant bolted connections after fire SO JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH LA English DT Article DE Slip-resistant bolted connections; Post fire test; Slip factor; Bolt pre-tension force; Temperature AB Slip factor and bolt pre-tension force for slip-resistant bolted connections after fire were investigated experimentally. 74 connections made up of four plates and four class 10.9 bolts were first heated to specified temperature levels, and then cooled to ambient temperature and tested. Slip load tests were conducted to obtain the slip factor and bolt pre-tension force for the post-fire connections. In case of slip factor tests the bolts in connections after fire were replaced by new bolts and the pre-tension in the new bolts was measured, so the slip factor could be determined from the post-fire slip load. While in case of bolt pre-tension tests the old bolts were kept and the residual pre-tension was calculated based on the slip factor data obtained from accompanying tests. Two friction surface treatment methods were considered which were blast-cleaning (Class A) and inorganic zincs paint coated after blast-cleaning (Class B). Nine temperature levels from 200 C to 700 C were considered. Test results show that heating-cooling process has significant effects on both slip factor and bolt pre-tension force. The slip factor after fire increases with increasing temperature level, and residual bolt pre-tension force decreases with increasing temperature level. The increase in slip factor for Class A friction surface is much greater than that for Class B friction surface. Tri-linear models are proposed to calculate the normalized slip factor and bolt residual pre-tension force for slip-resistant 10.9 bolted connections after fire. New suggestions are proposed for post fire checking of slip-resistant bolted connections. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Lou, Guo-Biao; Li, Guo-Qiang] Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China. [Zhu, Mei-Chun] Shanghai Normal Univ, Dept Civil Engn, Shanghai 201418, Peoples R China. [Li, Ming] China State Construct Engn Corp Tech Ctr, Beijing 101300, Peoples R China. [Zhang, Chao] NIST, Gaithersburg, MD 20899 USA. RP Zhu, MC (reprint author), Shanghai Normal Univ, Dept Civil Engn, Shanghai 201418, Peoples R China. EM meichunzhu@163.com FU National Natural Science Foundation of China [50908180, 51108265]; Innovation Program of Shanghai Municipal Education Commission [12YZ80]; Leading Academic Discipline Project of Shanghai Normal University [DZL127] FX This work was financially supported by the National Natural Science Foundation of China (50908180), National Natural Science Foundation of China (51108265), Innovation Program of Shanghai Municipal Education Commission (12YZ80), and Leading Academic Discipline Project of Shanghai Normal University (DZL127). The financial support is highly appreciated. NR 15 TC 2 Z9 2 U1 3 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0143-974X EI 1873-5983 J9 J CONSTR STEEL RES JI J. Constr. Steel. Res. PD JAN PY 2015 VL 104 BP 1 EP 8 DI 10.1016/j.jcsr.2014.09.018 PG 8 WC Construction & Building Technology; Engineering, Civil SC Construction & Building Technology; Engineering GA AW3XU UT WOS:000346217300001 ER PT J AU Lafouresse, MC Bertocci, U Stafford, GR AF Lafouresse, M. C. Bertocci, U. Stafford, G. R. TI Dynamic Stress Analysis Applied to the Electrodeposition of Copper SO JOURNAL OF THE ELECTROCHEMICAL SOCIETY LA English DT Article ID WEBER FILM GROWTH; THIN METAL-FILMS; INTRINSIC STRESS; INTERNAL-STRESS; IMPEDANCE SPECTROSCOPY; POLYCRYSTALLINE FILMS; TENSILE STRESSES; CHARGE RESPONSE; SURFACE; DEPOSITION AB Stress development during the electrodeposition of copper from additive-free, acidic CuSO4 electrolyte was analyzed by dynamic stress analysis, an in situ characterization technique that combines electrochemical impedance spectroscopy with cantilever curvature. Two sources of stress account for the dynamic stress behavior in the frequency range of 0.1 Hz to 25 Hz. The high frequency region is controlled by electrocapillarity (charge-induced stress). The stress is 180. out of phase with the input potential, and its amplitude is relatively small. Low frequency is dominated by the growth stress of the Cu film, which under the conditions examined here is tensile. The amplitude of the stress response increases with decreasing frequency and its phase angle shifts from + 180 degrees to + 90 degrees. Both of these transitions are potential dependent and can be simulated from the electrochemical impedance, making use of separate stress-charge coefficients for double layer charging and Cu deposition. Since these stress-generating mechanisms have dramatically different frequency dependency, Cu deposition is a nice demonstration that highlights the attributes of DSA; i.e., using frequency to separate the various stress contributions. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved. C1 [Lafouresse, M. C.; Bertocci, U.; Stafford, G. R.] NIST, Gaithersburg, MD 20899 USA. RP Lafouresse, MC (reprint author), NIST, Gaithersburg, MD 20899 USA. EM gery.stafford@nist.gov NR 51 TC 0 Z9 0 U1 2 U2 25 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 SOUTH MAIN STREET, PENNINGTON, NJ 08534 USA SN 0013-4651 EI 1945-7111 J9 J ELECTROCHEM SOC JI J. Electrochem. Soc. PY 2015 VL 162 IS 1 BP D27 EP D35 DI 10.1149/2.0261501jes PG 9 WC Electrochemistry; Materials Science, Coatings & Films SC Electrochemistry; Materials Science GA AW0JZ UT WOS:000345979700056 ER PT J AU Moldover, MR Schmidt, JW Gillis, KA Mehl, JB Wright, JD AF Moldover, M. R. Schmidt, J. W. Gillis, K. A. Mehl, J. B. Wright, J. D. TI Microwave determination of the volume of a pressure vessel SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE volume; pressure vessel; flow metrology; flow calibrations; microwave resonances ID THERMOMETRY AB Using microwave techniques that are scalable to very large volumes, we measured the interior volume of a 0.3 m(3), commercially manufactured pressure vessel with a relative uncertainty of 0.06%, as confirmed by independent, more-accurate gas-expansion measurements. This pressure vessel (or a much larger one of a similar design) could be used as either a calibrated volume standard or as a gas source and/or a gas collector for the calibration of gas-flow meters. In addition, we determined the expansion of the vessel with temperature (partial derivative V/partial derivative T)(p)/V = (35.3 +/- 1.9) x 10(-6) K-1, and we estimated the pressure expansion (partial derivative V/partial derivative p)(T)/V = 0.9 x 10(-3) MPa-1. The volume measurement did not require careful thermostatting; its uncertainty was dominated by imperfect modeling of the volume's shape. (The estimated uncertainties are one standard uncertainty with coverage factor k = 1 corresponding to 68% confidence level.) C1 [Moldover, M. R.; Schmidt, J. W.; Gillis, K. A.; Wright, J. D.] NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA. RP Moldover, MR (reprint author), NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA. EM michael.moldover@nist.gov NR 15 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD JAN PY 2015 VL 26 IS 1 AR 015304 DI 10.1088/0957-0233/26/1/015304 PG 13 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA AW6DS UT WOS:000346360300021 ER PT J AU Das, AK Rao, YVR Tallapragada, V Zhang, Z Bhowmik, SKR Sharma, A AF Das, A. K. Rao, Y. V. Rama Tallapragada, Vijay Zhang, Zhan Bhowmik, S. K. Roy Sharma, Arun TI Evaluation of the Hurricane Weather Research and Forecasting (HWRF) model for tropical cyclone forecasts over the North Indian Ocean (NIO) SO NATURAL HAZARDS LA English DT Article DE Tropical cyclone; Bogusing schemes; Assimilation; Track forecasts; HWRF model ID NUMERICAL-MODELS; BOUNDARY-LAYER; TRACK FORECAST; PREDICTION; INITIALIZATION; RESOLUTION; PHYSICS; SCHEME; IMPACT AB The Hurricane Weather Research and Forecast (HWRF) model, which was operational at the US National Centers for Environmental Prediction, was ported in India Meteorological Department (IMD) for its operational tropical cyclone (TC) track and intensity forecast at Regional Specialised Meteorological Center, New Delhi. As part of the validation of the model, case studies of nine major TCs formed during the 2010-2013 seasons over the Bay of Bengal and the Arabian Sea of the North Indian Ocean were examined to test the ability of the model for Indian Seas. The model was integrated for 5-day forecasts with basic input from the IMD Global Forecast System spectral fields. The model's basic fields as well as track and intensity errors are evaluated. The average track errors for these nine cases were found to be 83 km at 12 h, 135 km at 24 h, 176 km at 36 h, 186 km at 48 h, 233 at 60 h, and 319 km at 72 h. The HWRF track forecast errors displayed an improvement of 7, 27, 25 and 15 % over the IMD operational forecasts at 36, 48, 60, and 72 h, respectively. The model with high-resolution 3 km nest displayed a significant improvement in track forecasts with 12-46 % over the model with 9-km resolution nest. However, the HWRF model intensity forecasts displayed only marginal improvement of 5-8 % over the IMD operational forecasts. C1 [Das, A. K.; Rao, Y. V. Rama; Bhowmik, S. K. Roy; Sharma, Arun] Indian Meteorol Dept, New Delhi 110003, India. [Tallapragada, Vijay; Zhang, Zhan] NOAA, Environm Modeling Ctr, NWS, NCEP, College Pk, MD 20740 USA. RP Rao, YVR (reprint author), Indian Meteorol Dept, New Delhi 110003, India. EM yvramarao.imd@gmail.com NR 36 TC 4 Z9 4 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0921-030X EI 1573-0840 J9 NAT HAZARDS JI Nat. Hazards PD JAN PY 2015 VL 75 IS 2 BP 1205 EP 1221 DI 10.1007/s11069-014-1362-6 PG 17 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA AW6WW UT WOS:000346407100011 ER PT J AU Dunne, JP AF Dunne, John P. TI A roadmap on ecosystem change SO NATURE CLIMATE CHANGE LA English DT Editorial Material ID OCEAN; CMIP5 C1 NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. RP Dunne, JP (reprint author), NOAA, Geophys Fluid Dynam Lab, 201 Forrestal Rd, Princeton, NJ 08540 USA. EM John.Dunne@noaa.gov NR 10 TC 1 Z9 1 U1 0 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD JAN PY 2015 VL 5 IS 1 BP 20 EP 21 PG 2 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA AW8LQ UT WOS:000346513900010 ER PT J AU Shen, ZL Sintim, HO Semancik, S AF Shen, Zuliang Sintim, Herman O. Semancik, Steve TI Rapid nucleic acid melting analyses using a microfabricated electrochemical platform SO ANALYTICA CHIMICA ACTA LA English DT Article DE DNA melting curves; Nucleic acid self-assembly; Microfabricated electrochemical platform; Rapid temperature control; Single nucleotide polymorphism ID TETHERED DNA; HYBRIDIZATION; TEMPERATURE AB Microfabrication methods have been used to fabricate a new microscale platform that integrates thermal control and multi-electrode components to enable rapid, temperature-dependent electrochemical measurements on small-volume fluid samples. A wide range of biochemical phenomena can be characterized with the device, for example, when monitoring interactions at the working electrode between probe and target species which include an electroactive moiety. Employing square wave voltammetry, we have demonstrated the utility and reproducibility of the microplatform in melting studies on full-match, single-mismatch, and double-mismatch DNA structures of relevance to single-nucleotide polymorphism (SNP) discrimination. As shown, the small size of the reported device, low volume for the samples it can interrogate (similar to 10 mL), individual addressing of platform components and fast localized heating (settling times similar to 5 s) combine to allow for efficient sample analyses. In addition, a straight-forward route exists, involving replication into array formats and integration with microfluidics, for extending the technology toward eventual high throughput work on drug discovery and medical diagnostics. (C) 2014 Elsevier B.V. All rights reserved. C1 [Shen, Zuliang; Sintim, Herman O.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20740 USA. [Semancik, Steve] NIST, Biomol Measurement Div, Gaithersburg, MD 20899 USA. RP Sintim, HO (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20740 USA. EM hsintim@umd.edu; stephen.semancik@nist.gov RI Sintim, Herman/B-4475-2009 OI Sintim, Herman/0000-0002-2280-9359 FU National Institute of Standards and Technology through UMCP/NIST Professional Research Experience Program; Camille Dreyfus Foundation; Teacher-Scholar Fellowship FX The authors thank C. B. Montgomery for technical assistance in mounting and wire bonding our devices. ZS thanks the National Institute of Standards and Technology for financial support through the UMCP/NIST Professional Research Experience Program. HS also acknowledges funding from the Camille Dreyfus Foundation, Teacher-Scholar Fellowship. NR 17 TC 3 Z9 3 U1 2 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0003-2670 EI 1873-4324 J9 ANAL CHIM ACTA JI Anal. Chim. Acta PD JAN 1 PY 2015 VL 853 BP 265 EP 270 DI 10.1016/j.aca.2014.10.025 PG 6 WC Chemistry, Analytical SC Chemistry GA AU5MT UT WOS:000345652000023 PM 25467468 ER PT J AU Kim, JH Koo, SM AF Kim, Ji-Hong Koo, Sang-Mo TI Effect of epitaxial growth on electrical properties of Ga-doped ZnO thin films SO CERAMICS INTERNATIONAL LA English DT Article DE Epitaxial growth; Ga-doped ZnO; Transparent electrode materials ID PULSED-LASER DEPOSITION; SUBSTRATE-TEMPERATURE; OPTICAL-PROPERTIES AB The effect of epitaxial growth on the electrical properties of Ga-doped ZnO (GZO) thin films was studied. GZO thin films were grown on Al2O3 (0001) substrates using pulsed laser deposition (PLD) at various substrate temperatures. Pole figure measurement revealed that the GZO films were grown epitaxially with a 30 degrees in-plane rotation relative to Al2O3 (GZO [11 (2) over bar0]vertical bar vertical bar Al2O3 [01 (1) over bar0]) to reduce the lattice mismatch. An interesting difference in the variation trend of the resistivity by substrate temperature compared with that of the polycrystalline GZO films, which were prepared for comparison, was observed. The resistivity of the polycrystalline GZO decreased at 200 degrees C, decreased slightly more at 400 degrees C, and abruptly increased at 600 degrees C. However, the resistivity of the epitaxial GZO decreased sharply at up to 400 degrees C, and decreased continuously at 600 degrees C. Consequentially, much lower resistivities were obtained at high temperatures of 400 and 600 degrees C. Considering little difference in the rate of decrease in the carrier concentration between the two kinds of films at each temperature, this different tendency in the resistivity can be explained by the fact that the rate of increase in the Hall mobility of the epitaxial GZO at above 200 degrees C is much higher than that of the polycrystalline GZO. The higher Hall mobility of the epitaxial GZO is attributed to high crystallinity caused by the epitaxial growth that can induce lower grain boundary scattering. It was proved by using an atomic force microscope (AFM) and a high resolution X-ray diffractometer (HRXRD) that the epitaxial GZO grown at higher temperature showed larger grain size and higher crystallinity, that is, the grain boundary scattering can decrease more, and the Hall mobility can increase enough to compensate for the decrease in the carrier concentration even at high temperature differently from the polycrystalline GZO films. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved. C1 [Kim, Ji-Hong] Korea Univ, Dept Elect Engn, Seoul 136713, South Korea. [Kim, Ji-Hong] NIST, Semiconductor & Dimens Metrol Div, Gaithersburg, MD 20899 USA. [Koo, Sang-Mo] Kwangwoon Univ, Dept Elect Mat Engn, Seoul 139701, South Korea. RP Kim, JH (reprint author), Korea Univ, Dept Elect Engn, Seoul 136713, South Korea. EM jihong81@gmail.com NR 12 TC 3 Z9 3 U1 3 U2 49 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 EI 1873-3956 J9 CERAM INT JI Ceram. Int. PD JAN PY 2015 VL 41 IS 1 BP 37 EP 42 DI 10.1016/j.ceramint.2014.07.053 PN A PG 6 WC Materials Science, Ceramics SC Materials Science GA AW3XK UT WOS:000346216300004 ER PT J AU Moura, AE Kenny, JG Chaudhuri, RR Hughes, MA Reisinger, RR de Bruyn, PJN Dahlheim, ME Hall, N Hoelzel, AR AF Moura, A. E. Kenny, J. G. Chaudhuri, R. R. Hughes, M. A. Reisinger, R. R. de Bruyn, P. J. N. Dahlheim, M. E. Hall, N. Hoelzel, A. R. TI Phylogenomics of the killer whale indicates ecotype divergence in sympatry SO HEREDITY LA English DT Article ID DISPERSAL-VICARIANCE ANALYSIS; EASTERN NORTH PACIFIC; DNA-SEQUENCING DATA; ORCINUS-ORCA; GENETIC DIFFERENTIATION; POPULATION-STRUCTURE; HABITAT PREFERENCE; MARINE-SPECIATION; SOUTHERN-OCEAN; GENOME AB For many highly mobile species, the marine environment presents few obvious barriers to gene flow. Even so, there is considerable diversity within and among species, referred to by some as the 'marine speciation paradox'. The recent and diverse radiation of delphinid cetaceans (dolphins) represents a good example of this. Delphinids are capable of extensive dispersion and yet many show fine-scale genetic differentiation among populations. Proposed mechanisms include the division and isolation of populations based on habitat dependence and resource specializations, and habitat release or changing dispersal corridors during glacial cycles. Here we use a phylogenomic approach to investigate the origin of differentiated sympatric populations of killer whales (Orcinus orca). Killer whales show strong specialization on prey choice in populations of stable matrifocal social groups (ecotypes), associated with genetic and phenotypic differentiation. Our data suggest evolution in sympatry among populations of resource specialists. C1 [Moura, A. E.; Hoelzel, A. R.] Univ Durham, Sch Biol & Biomed Sci, Durham DH1 3LE, England. [Kenny, J. G.; Chaudhuri, R. R.; Hughes, M. A.; Hall, N.] Univ Liverpool, Inst Integrat Biol, Dept Funct & Comparat Genom, Liverpool L69 3BX, Merseyside, England. [Reisinger, R. R.; de Bruyn, P. J. N.] Univ Pretoria, Mammal Res Inst, Dept Zool & Entomol, ZA-0002 Pretoria, South Africa. [Dahlheim, M. E.] NOAA, Natl Marine Fisheries Serv, Natl Marine Mammal Lab, Seattle, WA 98115 USA. RP Hoelzel, AR (reprint author), Univ Durham, Sch Biol & Biomed Sci, South Rd, Durham DH1 3LE, England. EM a.r.hoelzel@dur.ac.uk RI Reisinger, Ryan/D-6151-2014; de Bruyn, P. J. Nico/E-4176-2010; OI Reisinger, Ryan/0000-0002-8933-6875; de Bruyn, P. J. Nico/0000-0002-9114-9569; Moura, Andre/0000-0003-2140-0196; Chaudhuri, Roy/0000-0001-5037-2695; Hall, Neil/0000-0003-2808-0009 FU Natural Environment Research Council UK [NE/014443/1]; Department of Science and Technology FX We thank Howard Gray for providing primer sequences for the amplification of mitochondrial DNA, and Charlene Janse van Rensburg and Colin Nicholson for labwork associated with DNA extraction and archiving. This study was funded by the Natural Environment Research Council UK (grant number NE/014443/1). We thank the South African Department of Environmental Affairs for providing logistical support within the South African National Antarctic Programme and the Department of Science and Technology (administered through the South African National Research Foundation) for funding the marine mammal monitoring programme at Marion Island. NR 56 TC 12 Z9 12 U1 15 U2 155 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0018-067X EI 1365-2540 J9 HEREDITY JI Heredity PD JAN PY 2015 VL 114 IS 1 BP 48 EP 55 DI 10.1038/hdy.2014.67 PG 8 WC Ecology; Evolutionary Biology; Genetics & Heredity SC Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GA AW2XM UT WOS:000346150000006 PM 25052415 ER PT J AU Waltrip, BC Nelson, TL So, E Angelo, D AF Waltrip, Bryan C. Nelson, Thomas L. So, Eddy Angelo, David TI A Comparison Between the NIST PJVS-Based Power Standard and the NRC Current-Comparator-Based Power Standard SO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT LA English DT Article DE Bridge circuits; current-comparator; Josephson junctions; power measurement; wattmeters ID METER CALIBRATIONS; 60 HZ AB This paper presents the results of a comparison of active/reactive power meter calibrations between the National Institute of Standards and Technology and National Research Council. The comparison was implemented using a transfer standard consisting of a highly stable commercial sampling-type power/energy meter. Active and reactive power measurements were made at 120 V, 5 A, 50 Hz, and 60 Hz. For active power, the measurements were made at applied current phase angles of 0 degrees, +60 degrees, and -60 degrees. For reactive power, the measurements were made at applied current phase angles of +60 degrees, +90 degrees, -60 degrees, and -90 degrees. The results of the comparison indicate agreement to within the stated uncertainties of the participants.(1) C1 [Waltrip, Bryan C.; Nelson, Thomas L.] NIST, Gaithersburg, MD 20899 USA. [So, Eddy; Angelo, David] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada. RP Waltrip, BC (reprint author), NIST, Gaithersburg, MD 20899 USA. EM waltrip@nist.gov FU National Institute of Standards and Technology; U.S. Department of Commerce FX This work was supported in part by the National Institute of Standards and Technology and in part by the U.S. Department of Commerce. The Associate Editor coordinating the review process was Dr. Lucas Di Lillo. NR 15 TC 0 Z9 0 U1 2 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9456 EI 1557-9662 J9 IEEE T INSTRUM MEAS JI IEEE Trans. Instrum. Meas. PD JAN PY 2015 VL 64 IS 1 BP 14 EP 18 DI 10.1109/TIM.2014.2329386 PG 5 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA AW1YU UT WOS:000346085800002 ER PT J AU Vaudin, MD Osborn, WA Friedman, LH Gorham, JM Vartanian, V Cook, RF AF Vaudin, M. D. Osborn, W. A. Friedman, L. H. Gorham, J. M. Vartanian, V. Cook, R. F. TI Designing a standard for strain mapping: HR-EBSD analysis of SiGe thin film structures on Si SO ULTRAMICROSCOPY LA English DT Article DE Electron backscattered diffraction; EBSD; Epitaxial SiGe-Si; Strain measurement; Standard ID ELECTRON BACKSCATTER DIFFRACTION; BACK-SCATTER DIFFRACTION; HYDROSTATIC PRESSURE; ELASTIC STRAINS; SILICON; RELAXATION; PRECISION; GERMANIUM; PATTERNS; DEFECTS AB Parrerned SiGe thin film structures, hcreroepiraxially deposited on Si substrates, are investigated as potential reference standards to establish the accuracy of high resolution electron backscattered diffraction (HR-EBSD) strain measurement methods. The proposed standards incorporate thin films of tetragonally distorted epitaxial Si1-xGex adjacent to strain-free Si. Six films of three different nominal compositions (x=0.2, 0.3, and 0.4) and various thicknesses were studied. Film composition and out-of-plane lattice spacing measurements, by x-ray photoelectron spectroscopy and x-ray diffraction, respectively, provided independent determinations of him epitaxy and predictions of tetragonal strain for direct comparison with HR-EBSD strain measurements. Films assessed to be coherent with the substrate exhibited tetragonal strain values measured by HR-EBSD identical to those predicted from the composition and x-ray diffraction measurements, within experimental relative uncertainties of order 2%. Such films thus provide suitable prototypes for designing a strain reference standard. Published by Elsevier B.V. C1 [Vaudin, M. D.; Osborn, W. A.; Friedman, L. H.; Gorham, J. M.; Cook, R. F.] NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. [Vartanian, V.] SEMATECH, Interconnect Div 3D, Albany, NY 12203 USA. RP Vaudin, MD (reprint author), NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. EM mark.vaudin@nist.gov RI Friedman, Lawrence/G-5650-2011; OI Friedman, Lawrence/0000-0003-2416-9903; Gorham, Justin/0000-0002-0569-297X NR 40 TC 6 Z9 6 U1 3 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD JAN PY 2015 VL 148 BP 94 EP 104 DI 10.1016/j.ultramic.2014.09.007 PG 11 WC Microscopy SC Microscopy GA AW0HU UT WOS:000345973000013 PM 25461586 ER PT J AU Powell, CJ Shimizu, R Yoshihara, K Ichimura, S AF Powell, C. J. Shimizu, R. Yoshihara, K. Ichimura, S. TI Development of standards for reliable surface analyses by ISO technical committee 201 on surface chemical analysis SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE International standards; ISO; TC 201; surface chemical analysis ID X-RAY PHOTOELECTRON; AUGER-ELECTRON-SPECTROSCOPY; ION MASS-SPECTROMETRY; FLUORESCENCE TXRF SPECTROSCOPY; RELATIVE SENSITIVITY FACTORS; ISO/TC-201 STANDARD; INTENSITY SCALE; ENERGY SCALES; CALIBRATION; RESOLUTION AB The need for reliable surface analyses together with quality-management requirements for analytical laboratories led the International Organization for Standardization (ISO) to form its Technical Committee (TC) 201 on Surface Chemical Analysis in 1991. This article describes the organization of TC 201, the strategies that have been found useful for identifying and assessing possible projects for new international standards, and the 57 international standards and other documents prepared to date by TC 201. Standards have now been developed for Auger-electron spectroscopy, glow-discharge spectroscopy, various types of scanning probe microscopy, secondary-ion mass spectrometry, sputter-depth profiling, total-reflection X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and X-ray reflectometry. In addition, standards have been developed with definitions of terms used in surface chemical analysis; the handling, preparation of specimens for surface analysis; information and data-transfer formats; and methods for determining the lateral resolution of beam-based methods of surface analysis. Copyright (c) 2014 John Wiley & Sons, Ltd. C1 [Powell, C. J.] NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. [Shimizu, R.] Osaka Univ, Off Univ Ind Collaborat, Suita, Osaka 5650871, Japan. [Yoshihara, K.] Omicron NanoTechnol Japan Inc, Shinagawa Ku, Tokyo 1400002, Japan. [Ichimura, S.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. RP Powell, CJ (reprint author), NIST, Mat Measurement Sci Div, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM cedric.powell@nist.gov NR 49 TC 1 Z9 1 U1 2 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0142-2421 EI 1096-9918 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD JAN PY 2015 VL 47 IS 1 BP 127 EP 134 DI 10.1002/sia.5684 PG 8 WC Chemistry, Physical SC Chemistry GA AW3CC UT WOS:000346162100017 ER PT J AU Funk, C Peterson, P Landsfeld, M Pedreros, D Verdin, J Shukla, S Husak, G Rowland, J Harrison, L Hoell, A Michaelsen, J AF Funk, Chris Peterson, Pete Landsfeld, Martin Pedreros, Diego Verdin, James Shukla, Shraddhanand Husak, Gregory Rowland, James Harrison, Laura Hoell, Andrew Michaelsen, Joel TI The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes SO SCIENTIFIC DATA LA English DT Article AB The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset builds on previous approaches to 'smart' interpolation techniques and high resolution, long period of record precipitation estimates based on infrared Cold Cloud Duration (CCD) observations. The algorithm i) is built around a 0.05 degrees climatology that incorporates satellite information to represent sparsely gauged locations, ii) incorporates daily, pentadal, and monthly 1981-present 0.05 degrees CCD-based precipitation estimates, iii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iv) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. We present the CHIRPS algorithm, global and regional validation results, and show how CHIRPS can be used to quantify the hydrologic impacts of decreasing precipitation and rising air temperatures in the Greater Horn of Africa. Using the Variable Infiltration Capacity model, we show that CHIRPS can support effective hydrologic forecasts and trend analyses in southeastern Ethiopia. C1 [Funk, Chris; Pedreros, Diego; Verdin, James; Rowland, James] US Geol Survey, Ctr Earth Resources Observat & Sci, 47914 252nd St, Sioux Falls, SD 57198 USA. [Funk, Chris; Peterson, Pete; Landsfeld, Martin; Shukla, Shraddhanand; Husak, Gregory; Harrison, Laura; Michaelsen, Joel] Univ Calif Santa Barbara, Climate Hazards Grp, Santa Barbara, CA 93106 USA. [Hoell, Andrew] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA. RP Funk, C (reprint author), US Geol Survey, Ctr Earth Resources Observat & Sci, 47914 252nd St, Sioux Falls, SD 57198 USA.; Funk, C (reprint author), Univ Calif Santa Barbara, Climate Hazards Grp, Santa Barbara, CA 93106 USA. EM cfunk@usgs.gov FU US Geological Survey (USGS) [G09AC000001]; NOAA [NA11OAR4310151]; USGS Climate and Land Use Change program; NASA SERVIR; NASA [NNH12ZDA001N-IDS, NNX14AD30G] FX This work was supported by US Geological Survey (USGS) cooperative agreement (#G09AC000001), NOAA Award NA11OAR4310151, the USGS Climate and Land Use Change program, NASA SERVIR, and NASA grants NNH12ZDA001N-IDS and NNX14AD30G. NR 90 TC 28 Z9 28 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2052-4463 J9 SCI DATA JI Sci. Data PY 2015 VL 2 AR 150066 DI 10.1038/sdata.2015.66 PG 21 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V45VM UT WOS:000209844100067 ER PT J AU Livneh, B Bohn, TJ Pierce, DW Munoz-Arriola, F Nijssen, B Vose, R Cayan, DR Brekke, L AF Livneh, Ben Bohn, Theodore J. Pierce, David W. Munoz-Arriola, Francisco Nijssen, Bart Vose, Russell Cayan, Daniel R. Brekke, Levi TI A spatially comprehensive, hydrometeorological data set for Mexico, the US, and Southern Canada 1950-2013 SO SCIENTIFIC DATA LA English DT Article AB A data set of observed daily precipitation, maximum and minimum temperature, gridded to a 1/16 degrees (similar to 6 km) resolution, is described that spans the entire country of Mexico, the conterminous U.S. (CONUS), and regions of Canada south of 53 degrees N for the period 1950-2013. The dataset improves previous products in spatial extent, orographic precipitation adjustment over Mexico and parts of Canada, and reduction of transboundary discontinuities. The impacts of adjusting gridded precipitation for orographic effects are quantified by scaling precipitation to an elevation-aware 1981-2010 precipitation climatology in Mexico and Canada. Differences are evaluated in terms of total precipitation as well as by hydrologic quantities simulated with a land surface model. Overall, orographic correction impacts total precipitation by up to 50% in mountainous regions outside CONUS. Hydrologic fluxes show sensitivities of similar magnitude, with discharge more sensitive than evapotranspiration and soil moisture. Because of the consistent gridding methodology, the current product reduces transboundary discontinuities as compared with a commonly used reanalysis product, making it suitable for estimating large-scale hydrometeorologic phenomena. C1 [Livneh, Ben] Univ Colorado, CIRES, 216 UCB, Boulder, CO 80309 USA. [Livneh, Ben] NOAA, Earth Syst Res Lab Phys Sci Div, Boulder, CO 80309 USA. [Bohn, Theodore J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Pierce, David W.; Cayan, Daniel R.] Scripps Inst Oceanog, Climate Atmospher Sci & Phys Oceanog, La Jolla, CA 92093 USA. [Munoz-Arriola, Francisco] Univ Nebraska, Dept Biol Syst Engn, Lincoln, NE 68583 USA. [Nijssen, Bart] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Vose, Russell] NOAA, Natl Climat Data Ctr, Asheville, NC 28801 USA. [Brekke, Levi] US Bur Reclamat, Washington, DC USA. RP Livneh, B (reprint author), Univ Colorado, CIRES, 216 UCB, Boulder, CO 80309 USA. EM ben.livneh@colorado.edu FU United States Bureau of Reclamation: Water and Climate Change Research [BOR: R11AC81334]; National Science Foundation Science, Engineering, and Education for Sustainability (SEES) Fellows program [1216037] FX B. Livneh was funded by United States Bureau of Reclamation (BOR: R11AC81334): Water and Climate Change Research, including Technical Support of Reclamation Programs. T. Bohn was funded by grant 1216037 of the National Science Foundation Science, Engineering, and Education for Sustainability (SEES) Fellows program. We are grateful to CONAGUA's Servicio Meteorologico Nacional and Regional offices, as well as Dr Agustin Robles-Morua of Instituto Tecnologico de Sonora who was instrumental in obtaining station records for Northwest Mexico. NR 50 TC 9 Z9 9 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2052-4463 J9 SCI DATA JI Sci. Data PY 2015 VL 2 AR 150042 DI 10.1038/sdata.2015.42 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V45VM UT WOS:000209844100040 ER PT J AU Sharma, S Gray, DK Read, JS O'Reilly, CM Schneider, P Qudrat, A Gries, C Stefanoff, S Hampton, SE Hook, S Lenters, JD Livingstone, DM McIntyre, PB Adrian, R Allan, MG Anneville, O Arvola, L Austin, J Bailey, J Baron, JS Brookes, J Chen, YW Daly, R Dokulil, M Dong, B Ewing, K de Eyto, E Hamilton, D Havens, K Haydon, S Hetzenauer, H Heneberry, J Hetherington, AL Higgins, SN Hixson, E Izmest'eva, LR Jones, BM Kangur, K Kasprzak, P Koster, O Kraemer, BM Kumagai, M Kuusisto, E Leshkevich, G May, L MacIntyre, S Muller-Navarra, D Naumenko, M Noges, P Noges, T Niederhauser, P North, RP Paterson, AM Plisnier, PD Rigosi, A Rimmer, A Rogora, M Rudstam, L Rusak, JA Salmaso, N Samal, NR Schindler, DE Schladow, G Schmidt, SR Schultz, T Silow, EA Straile, D Teubner, K Verburg, P Voutilainen, A Watkinson, A Weyhenmeyer, GA Williamson, CE Woo, KH AF Sharma, Sapna Gray, Derek K. Read, Jordan S. O'Reilly, Catherine M. Schneider, Philipp Qudrat, Anam Gries, Corinna Stefanoff, Samantha Hampton, Stephanie E. Hook, Simon Lenters, John D. Livingstone, David M. McIntyre, Peter B. Adrian, Rita Allan, Mathew G. Anneville, Orlane Arvola, Lauri Austin, Jay Bailey, John Baron, Jill S. Brookes, Justin Chen, Yuwei Daly, Robert Dokulil, Martin Dong, Bo Ewing, Kye de Eyto, Elvira Hamilton, David Havens, Karl Haydon, Shane Hetzenauer, Harald Heneberry, Jocelyne Hetherington, Amy L. Higgins, Scott N. Hixson, Eric Izmest'eva, Lyubov R. Jones, Benjamin M. Kangur, Kulli Kasprzak, Peter Koster, Olivier Kraemer, Benjamin M. Kumagai, Michio Kuusisto, Esko Leshkevich, George May, Linda MacIntyre, Sally Mueller-Navarra, Doerthe Naumenko, Mikhail Noges, Peeter Noges, Tiina Niederhauser, Pius North, Ryan P. Paterson, Andrew M. Plisnier, Pierre-Denis Rigosi, Anna Rimmer, Alon Rogora, Michela Rudstam, Lars Rusak, James A. Salmaso, Nico Samal, Nihar R. Schindler, Daniel E. Schladow, Geoffrey Schmidt, Silke R. Schultz, Tracey Silow, Eugene A. Straile, Dietmar Teubner, Katrin Verburg, Piet Voutilainen, Ari Watkinson, Andrew Weyhenmeyer, Gesa A. Williamson, Craig E. Woo, Kara H. TI A global database of lake surface temperatures collected by in situ and satellite methods from 1985-2009 SO SCIENTIFIC DATA LA English DT Article AB Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues. C1 [Sharma, Sapna; Qudrat, Anam; Stefanoff, Samantha] York Univ, Dept Biol, Toronto, ON M3J 1P3, Canada. [Gray, Derek K.] Calif Univ Penn, California, PA 15419 USA. [Read, Jordan S.] US Geol Survey, Ctr Integrated Data Analyt, Middleton, WI 53562 USA. [O'Reilly, Catherine M.] Illinois State Univ, Dept Geog Geol, Normal, IL 61790 USA. [Schneider, Philipp] NILU Norwegian Inst Air Res, N-2027 Kjeller, Norway. [Gries, Corinna; McIntyre, Peter B.; Kraemer, Benjamin M.] Univ Wisconsin Madison, Ctr Limnol, Madison, WI 53706 USA. [Hampton, Stephanie E.; Woo, Kara H.] Washington State Univ, Ctr Environm Res Educ & Outreach, Pullman, WA 99164 USA. [Hook, Simon] CALTECH, Jet Prop Lab, NASA, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Lenters, John D.] LimnoTech, Ann Arbor, MI 48108 USA. [Livingstone, David M.] Eawag Swiss Fed Inst Aquat Sci & Technol, Dept Water Resources & Drinking Water, CH-8600 Dubendorf, Switzerland. [Adrian, Rita; Schmidt, Silke R.] Leibniz Inst Freshwater Ecol & Inland Fisheries, D-12587 Berlin, Germany. [Allan, Mathew G.] Univ Waikato, Environm Res Inst, Hamilton 3240, New Zealand. [Anneville, Orlane] French Natl Inst Agr Res INRA, Stn Hydrobiol Lacustre UMR CARRTEL, F-74200 Thonon Les Bains, France. [Arvola, Lauri] Univ Helsinki, Lammi Biol Stn, FI-16900 Helsinki, Finland. [Austin, Jay] Univ Minnesota Duluth, Large Lakes Observ, Duluth, MN 55812 USA. [Bailey, John; Heneberry, Jocelyne] Ontario Minist Environm & Climate Change, Vale Living Lakes Ctr, Sudbury, ON P3E 2C6, Canada. [Baron, Jill S.] Colorado State Univ, US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80523 USA. [Brookes, Justin; Rigosi, Anna] Univ Adelaide, Sch Biol Sci, Water Res Ctr, Adelaide, SA 5005, Australia. [Chen, Yuwei] Chinese Acad Sci, Nanjing Inst Geog & Limnol, Nanjing 210008, Peoples R China. [Daly, Robert] SA Water Corp, Australian Water Qual Ctr, Adelaide, SA 5001, Australia. [Dokulil, Martin] Univ Innsbruck, Res Inst Limnol, A-5310 Mondsee, Austria. [Dong, Bo] SUNY Albany, Dept Atmospher & Environm Sci, Albany, NY 12222 USA. [Ewing, Kye] Archbold Biol Stn, Venus, FL 33960 USA. [de Eyto, Elvira] Inst Marine, Fisheries Ecosyst Advisory Serv, Newport, Mayo, Ireland. [Hamilton, David] Univ Waikato, Environm Res Inst, Hamilton 3240, New Zealand. [Havens, Karl] Florida Sea Grant, Gainesville, FL 32611 USA. [Havens, Karl] Univ Florida, Inst Food & Agr Sci, Gainesville, FL 32611 USA. [Haydon, Shane] Melbourne Water Corp, Melbourne, Vic 3001, Australia. [Hetzenauer, Harald] LUBW Landesanstalt Umwelt Messungen & Nat Schutz, Inst Seenforsch, D-88045 Langenargen, Germany. [Hetherington, Amy L.; Rudstam, Lars] Cornell Univ, Dept Nat Resources, Ithaca, NY 14853 USA. [Higgins, Scott N.] Int Inst Sustainable Dev Expt Lakes Area, Winnipeg, MB R3B 2L6, Canada. [Hixson, Eric] Cent Nebraska Publ Power & Irrigat Dist, Holdredge, NE 68949 USA. [Izmest'eva, Lyubov R.; Silow, Eugene A.] Irkutsk State Univ, Sci Res Inst Biol, Irkutsk 664003, Russia. [Jones, Benjamin M.] US Geol Survey, Alaska Sci Ctr, Anchorage, AK 99508 USA. [Kangur, Kulli] Estonian Univ Life Sci Rannu, Inst Agr & Environm Sci, EE-61117 Tartu, Estonia. [Kasprzak, Peter] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Expt Limnol, D-12587 Berlin, Germany. [Koster, Olivier] Wasserversorgung Stadt Zurich WVZ, CH-8021 Zurich, Switzerland. [Kumagai, Michio] Lake Biwa Environm Res Inst, Otsu, Shiga 5200022, Japan. [Kuusisto, Esko] Finnish Environm Inst, FI-00250 Helsinki, Finland. [Leshkevich, George] NOAA, Great Lakes Environm Res Lab, Ann Arbor, MI 48108 USA. [May, Linda] Ctr Ecol & Hydrol, Bush Estate EH26 0QB, Midlothian, Scotland. [MacIntyre, Sally] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. [Mueller-Navarra, Doerthe] Univ Hamburg, Dept Biol, D-22609 Hamburg, Germany. [Naumenko, Mikhail] Russian Acad Sci, Limnol Inst, Hydrol Lab, St Petersburg 196105, Russia. [Noges, Peeter; Noges, Tiina] Estonian Univ Life Sci, Inst Agr & Environm Sci, Ctr Limnol, EE-61117 Tartumaa, Estonia. [Niederhauser, Pius] Kanton Zurich, Amt Abfall Wasser Energie & Luft, CH-8005 Zurich, Switzerland. [North, Ryan P.] Helmholtz Zentrum Geesthacht, Inst Coastal Res, D-21502 Geesthacht, Germany. [Paterson, Andrew M.; Rusak, James A.] Ontario Minist Environm & Climate Change, Dorset Environm Sci Ctr, Dorset, ON P0A 1E0, Canada. [Plisnier, Pierre-Denis] Royal Museum Cent Africa, Dept Earth Sci, B-3080 Tervuren, Belgium. [Rimmer, Alon] Israel Oceanog & Limnol Res, Lake Kinneret Limnol Lab, IL-14950 Migdal, Israel. [Rogora, Michela] CNR, Inst Ecosyst Study, I-28922 Verbania, Pallanza, Italy. [Salmaso, Nico] Fdn E Mach, IASMA Res & Innovat Ctr, Ist Agr S Michele allAdige, I-38010 San Michele All Adige, Trento, Italy. [Samal, Nihar R.] CUNY, Inst Sustainable Cities, New York, NY 10065 USA. [Schindler, Daniel E.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Schladow, Geoffrey] UC Davis Tahoe Environm Res Ctr, Incline Village, NV 95616 USA. [Schultz, Tracey] Sydney Catchment Author, Penrith, NSW 2750, Australia. [Straile, Dietmar] Univ Konstanz, Dept Biol, D-78464 Constance, Germany. [Teubner, Katrin] Univ Vienna, Dept Limnol & Biol Oceanog, A-1090 Vienna, Austria. [Verburg, Piet] Natl Inst Water & Atmospher Res, Hamilton 1010, New Zealand. [Voutilainen, Ari] Univ Eastern Finland, Dept Biol, Kuopio 70211, Finland. [Watkinson, Andrew] Seqwater, Ipswich, Qld 4305, Australia. [Weyhenmeyer, Gesa A.] Uppsala Univ, Dept Ecol & Genet Limnol, S-75236 Uppsala, Sweden. [Williamson, Craig E.] Miami Univ, Dept Biol, Oxford, OH 45056 USA. RP Sharma, S (reprint author), York Univ, Dept Biol, Toronto, ON M3J 1P3, Canada. EM sharma11@yorku.ca RI May, Linda/D-7943-2011; ROGORA, MICHELA/B-9237-2008; Silow, Eugene/C-2958-2011; OI ROGORA, MICHELA/0000-0003-3515-0220; Silow, Eugene/0000-0002-7039-3220; Rusak, James/0000-0002-4939-6478; Woo, Kara/0000-0002-5125-4188; de Eyto, Elvira /0000-0003-2281-2491; Hampton, Stephanie/0000-0003-2389-4249; Straile, Dietmar/0000-0002-7441-8552 FU Russian Ministry of Education and Science [GR 01201461929]; National Science Foundation [DEB-1136637]; Amt fur Abfall, Wasser, Energie und Luft (AWEL), Canton of Zurich, Switzerland; Andrew W. Mellon Foundation; Austrian Academy of Sciences; Bay of Plenty Regional Council; Belgian Science Policy; Bristol Bay; Central Nebraska Public Power and Irrigation District; Chinese Academy of Sciences; City of Seattle; City of Zurich Water Supply (WVZ); Comite intersyndical pour l'assainissement du lac du Bourget (CISALB); Commission Internationale pour la Protection des Eaux du Leman (CIPEL); Cornell University Agricultural Experiment Station; Environmental Agency of the Veneto Region; European Union Central Europe Programme (Project EULAKES) [2CE243P3]; Belgian Federal Science Policy-Belgium; Estonian Institute for Meteorology and Hydrology; Estonian Ministry of Education and Research; Estonian Science Foundation; Finland's Environmental Authorities; Finland State Budget; Finnish International Development Agency; Fish and Wildlife Service Landscape Conservation Cooperative; Food and Agriculture Organization of the United Nations; French National Institute for Agricultural Research (INRA); Gordon and Betty Moore Foundation; Government of Canada; Integrated Climate System Analysis and Prediction; International Commission for the Protection of Water between Italy and Switzerland (CIPAIS); Israeli Water Authority; Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Long Term Ecological Research Italian network 'Southern Alpine lakes'; Marine Institute (Ireland); Max-Planck Society; Ministry of Business, Innovation and Employment, New Zealand; National Aeronautics and Space Administration; National Sciences and Engineering Research Council; National Oceanic and Atmospheric Administration; National Park Service; National Science Foundation; Nebraska Game and Parks Commission; New York City Department of Environmental Protection; New York State Department of Environmental Conservation; Ontario Ministry of the Environment and Climate Change; Russian Academy of Sciences; Ministry of Education and Science of Russian Federation; Seqwater; State of Florida; Swedish Environmental Protection Agency; Syndicat Mixte du Lac d'Annecy (SILA); United Kingdom Natural Environment Research Council; United States Department of Agriculture Hatch; United States Geological Survey; United States National Foundation Division of Environmental Biology (NSF DEB) [1026843]; University of Nebraska-Lincoln; U.S. Geological Survey Center for Integrated Data Analytics, University of Washington; Vale Canada Limited; WVZ; Waikato Regional Council; West Coast Regional Council; Xstrata Nickel; York University FX We would like to thank the numerous field and research scientists who worked tirelessly to collect and document data from each lake over the past 25+ years. We thank Tim Kratz for helping with the initiation of this project. The Lake Baikal data are part of a dataset (No. 2005620028) registered with the government of the Russian Federation and collected by many Irkutsk State University staff, now supported by Russian Ministry of Education and Science, research project GR 01201461929, National Science Foundation (DEB-1136637) supported additional data management. Data for the Austrian lakes were extracted from the year books of the Austrian Hydrological Survey, Department IV/4-Water cycle, Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management. The daily time series from Lake Vattern since 1955 was prepared and provided by Vattern's Water Protection Association. Dorset Environmental Science Centre lakes have been sampled under the supervision of two senior technicians, Robert Girard and Ron Ingram, and two research scientists, Norman Yan and Andrew Paterson. Data for the New York City drinking water reservoirs were sampled and provided by the New York City Department of Environmental Protection (NYCDEP). Data for Lakes Peipsi and Vortsjarv were provided by the Estonian Meteorological and Hydrological Institute. Some of the data for Loch Leven have been published by Dudley et al. (2013). Data for Plusssee were collected by the Max-Planck-Institute for Limnology, Ploen until 2006. Data from the Swiss lakes were kindly provided by the City of Zurich Water Supply (WVZ) and by the Amt fur Abfall, Wasser, Energie und Luft (AWEL) of the Canton of Zurich. Data for Lakes Annecy, Bourget and Geneva are from the Information System of the SOERE OLA, INRA Thonon les Bains, CIPEL, CISALB, SILA. Data for Lake Constance were provided by the Institut fur Seenforschung, Langenargen (Intenationale Gewasserschutzkommission fur den Bodensee - IGKB). Sudbury area lakes have been sampled by the Cooperative Freshwater Ecology Unit at Laurentian University, under the supervision of two research scientists, Bill Keller and Norman Yan. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.; Funding and other support for this project were provided by Amt fur Abfall, Wasser, Energie und Luft (AWEL), Canton of Zurich, Switzerland; Andrew W. Mellon Foundation; Austrian Academy of Sciences; Bay of Plenty Regional Council; Belgian Science Policy; Bristol Bay salmon processors; Central Nebraska Public Power and Irrigation District; Chinese Academy of Sciences; City of Seattle; City of Zurich Water Supply (WVZ); Comite intersyndical pour l'assainissement du lac du Bourget (CISALB); Commission Internationale pour la Protection des Eaux du Leman (CIPEL), Cornell University Agricultural Experiment Station; Environmental Agency of the Veneto Region; European Union Central Europe Programme (Project EULAKES, 2CE243P3; Garda); Belgian Federal Science Policy-Belgium; Estonian Institute for Meteorology and Hydrology; Estonian Ministry of Education and Research; Estonian Science Foundation; Finland's Environmental Authorities; Finland State Budget; Finnish International Development Agency; Fish and Wildlife Service Landscape Conservation Cooperative; Food and Agriculture Organization of the United Nations; French National Institute for Agricultural Research (INRA), Gordon and Betty Moore Foundation; Government of Canada; Integrated Climate System Analysis and Prediction; International Commission for the Protection of Water between Italy and Switzerland (CIPAIS); Israeli Water Authority; Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Long Term Ecological Research Italian network 'Southern Alpine lakes'; Marine Institute (Ireland); Max-Planck Society; Ministry of Business, Innovation and Employment, New Zealand; National Aeronautics and Space Administration; National Sciences and Engineering Research Council; National Oceanic and Atmospheric Administration; National Park Service; National Science Foundation; Nebraska Game and Parks Commission; New York City Department of Environmental Protection; New York State Department of Environmental Conservation; Ontario Ministry of the Environment and Climate Change; Russian Academy of Sciences; Ministry of Education and Science of Russian Federation; Seqwater; State of Florida; Swedish Environmental Protection Agency; Syndicat Mixte du Lac d'Annecy (SILA); United Kingdom Natural Environment Research Council, United States Department of Agriculture Hatch; United States Geological Survey; United States National Foundation Division of Environmental Biology (NSF DEB) Grant 1026843 to the Arctic Long Term Environmental Research Project; University of Nebraska-Lincoln; U.S. Geological Survey Center for Integrated Data Analytics, University of Washington; Vale Canada Limited (formerly Inco Limited), WVZ; Waikato Regional Council; West Coast Regional Council; Xstrata Nickel (formerly Falconbridge Ltd.) and York University. NR 71 TC 6 Z9 7 U1 6 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2052-4463 J9 SCI DATA JI Sci. Data PY 2015 VL 2 AR 150008 DI 10.1038/sdata.2015.8 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V45VM UT WOS:000209844100078 PM 25977814 ER PT J AU McAllister, TP LaMalva, KJ Garlock, MEM AF McAllister, Therese P. LaMalva, Kevin J. Garlock, Maria E. Moreyra BE Ingraffea, N Libby, M TI ASCE/SEI 7 Appendix E Proposal: Performance-Based Design Procedures for Fire Effects on Structures SO Structures Congress 2015 LA English DT Proceedings Paper CT Structures Congress CY APR 23-25, 2015 CL Portland, OR SP Amer Soc Civil Engineers, Struct Engn Inst AB The ASCE/SEI Technical Committee on Fire Protection was formed to support professional structural engineers conducting performance-based design of structural systems for fire effects with guidance documents. The Committee saw a need for an ASCE/SEI Standard 7 Appendix on fire effects on structures, and the authors led the development of a performance-based design method to support alternative approaches to prescriptive design methods. The use of performance-based design procedures for fire effects on structures is permitted by the alternative materials, design, and methods of construction provision in the building codes. The proposed Appendix fills a long-standing need within the industry to foster improved design and approval procedures for structural performance under fire conditions. The Appendix addresses fire, thermal, and structural topics that the structural engineer may need to understand or perform during a performance-based design, including general requirements, performance objectives, thermal analysis of fire effects, and structural analysis of fire effects. C1 [McAllister, Therese P.] NIST, Engn Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA. [LaMalva, Kevin J.] Simpson Gumpertz & Heger Inc, Waltham, MA 02453 USA. [Garlock, Maria E. Moreyra] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. RP McAllister, TP (reprint author), NIST, Engn Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM therese.mcallister@nist.gov; kjlamalva@sgh.com; mgarlock@princeton.edu NR 22 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CIVIL ENGINEERS PI NEW YORK PA UNITED ENGINEERING CENTER, 345 E 47TH ST, NEW YORK, NY 10017-2398 USA BN 978-0-7844-7911-7 PY 2015 BP 807 EP 818 PG 12 WC Construction & Building Technology; Engineering, Civil; Engineering, Mechanical SC Construction & Building Technology; Engineering GA BG8WG UT WOS:000392737000069 ER PT J AU Sattar, S Hulsey, AM AF Sattar, Siamak Hulsey, Anne M. BE Ingraffea, N Libby, M TI Assessment of First Generation Performance-Based Seismic Design Methods: Case Study of a 4-Story Reinforced Concrete Special Moment Frame Building SO Structures Congress 2015 LA English DT Proceedings Paper CT Structures Congress CY APR 23-25, 2015 CL Portland, OR SP Amer Soc Civil Engineers, Struct Engn Inst AB The anticipated performance of a 4-story reinforced concrete (RC) building designed in accordance with ASCE/SEI 7, is assessed using ASCE/SEI 41. Engineering practitioners employing the performance-based seismic engineering philosophy are increasingly using ASCE/SEI 41, as the "first generation" performance-based seismic design principle, to justify the adequacy of the seismic performance of new buildings. However, ASCE/SEI 41 was developed to assess the structural performance of existing buildings. In order to compare the anticipated structural performance between ASCE 7 and ASCE 41, the seismic performance of an ASCE/SEI 7 code-compliant 4-story special RC moment frame building is assessed based on the four evaluation methodologies defined in the Tier 3 analysis of ASCE/SEI 41 for the collapse prevention structural performance level. The assessment results show that the ASCE/SEI 7 code-compliant building does not meet the collapse prevention performance level requirements in ASCE/SEI 41 for the columns in the first story when linear analyses are employed. C1 [Sattar, Siamak] Natl Inst Stand & Technol, 100 Bur Dr,Mail Stop 8604, Gaithersburg, MD 20899 USA. [Hulsey, Anne M.] Univ Texas Austin, Civ Arch Env Engr Semm, Austin, TX 78712 USA. RP Sattar, S (reprint author), Natl Inst Stand & Technol, 100 Bur Dr,Mail Stop 8604, Gaithersburg, MD 20899 USA. EM siamak.sattar@nist.gov; annehulsey@utexas.edu NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CIVIL ENGINEERS PI NEW YORK PA UNITED ENGINEERING CENTER, 345 E 47TH ST, NEW YORK, NY 10017-2398 USA BN 978-0-7844-7911-7 PY 2015 BP 984 EP 994 PG 11 WC Construction & Building Technology; Engineering, Civil; Engineering, Mechanical SC Construction & Building Technology; Engineering GA BG8WG UT WOS:000392737000084 ER PT J AU Main, JA Weigand, JM Johnson, ES Francisco, TW Liu, J Berman, JW Fahnestock, LA AF Main, J. A. Weigand, J. M. Johnson, E. S. Francisco, T. W. Liu, J. Berman, J. W. Fahnestock, L. A. BE Ingraffea, N Libby, M TI Analysis of a Half-Scale Composite Floor System Test under Column Loss Scenarios SO Structures Congress 2015 LA English DT Proceedings Paper CT Structures Congress CY APR 23-25, 2015 CL Portland, OR SP Amer Soc Civil Engineers, Struct Engn Inst AB This paper describes modeling and analysis of a half-scale steel gravity frame system with composite concrete slab on steel deck that was constructed and tested at the University of Illinois under corner, edge, and interior column removal scenarios. For each scenario, distributed floor loading was incrementally increased until the floor system could not sustain additional load. The experimental results showed that the ultimate capacity of the floor system ranged from 44 % to 62 % of the applicable gravity load combination (1.2D + 0.5L), indicating a potential vulnerability to collapse. Analyses of the floor system used a component-based modeling approach for the shear connections, with load-displacement curves for each bolt row calibrated against experimental data from half-scale connections. Girders, beams, and columns were modeled with beam elements, and alternating strips of shell elements were used to represent the ribbed profile of the concrete slab on steel deck. The model accounted for partial continuity of the steel deck, as influenced by the actual placement of shear studs and spot welds. Blind pre-test predictions are compared with experimental data for the four column removal scenarios. The modeling approach was refined after each of the first two tests, and two factors were identified as having a significant influence on the response of the system: the post-ultimate softening modulus of concrete in tension and the out-of-plane (torsional and transverse shear) behavior of the shear connections. C1 [Main, J. A.; Weigand, J. M.] NIST, 100 Bur Dr,Mail Stop 8611, Gaithersburg, MD 20899 USA. [Johnson, E. S.] Weidlinger Associates Inc, Boston, MA 02210 USA. [Francisco, T. W.] Ruby Associates, Bingham Farms, MI 48025 USA. [Liu, J.] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA. [Berman, J. W.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Fahnestock, L. A.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. RP Main, JA (reprint author), NIST, 100 Bur Dr,Mail Stop 8611, Gaithersburg, MD 20899 USA. EM joseph.main@nist.gov; jonathan.weigand@nist.gov; eric.johnson@wai.com; tfrancisco@rubyandassociates.com; jliu@purdue.edu; jwberman@uw.edu; fhnstck@illinois.edu OI Fahnestock, Larry/0000-0003-3172-2260 NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CIVIL ENGINEERS PI NEW YORK PA UNITED ENGINEERING CENTER, 345 E 47TH ST, NEW YORK, NY 10017-2398 USA BN 978-0-7844-7911-7 PY 2015 BP 1065 EP 1077 PG 13 WC Construction & Building Technology; Engineering, Civil; Engineering, Mechanical SC Construction & Building Technology; Engineering GA BG8WG UT WOS:000392737000091 ER PT J AU Weigand, JM Berman, JW AF Weigand, J. M. Berman, J. W. BE Ingraffea, N Libby, M TI New Steel Gravity Connection Details for Enhanced Integrity SO Structures Congress 2015 LA English DT Proceedings Paper CT Structures Congress CY APR 23-25, 2015 CL Portland, OR SP Amer Soc Civil Engineers, Struct Engn Inst AB Recent large-scale tests have found that Steel Gravity Framing Systems (SGFSs) with conventional connections may not be adequate to support the specified gravity load combinations under column removal scenarios. To address this issue, detailed connection models were validated against experimental results and then used to investigate alternative gravity connection details to enhance the integrity of SGFSs. A procedure was developed to design new single plate shear connection details with multiple columns of bolts so that they had design shear capacities equal to or greater than corresponding conventional configurations. Analyses of the connections under column removal showed that improvements in both connection strength and deformation capacity can be achieved using the multi-bolt-column configurations. C1 [Weigand, J. M.] NIST, Engn Lab, Gaithersburg, MD 20899 USA. [Berman, J. W.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. RP Weigand, JM (reprint author), NIST, Engn Lab, Gaithersburg, MD 20899 USA. EM jonathan.weigand@nist.gov; jwberman@u.washington.edu FU American Institute of Steel Construction (AISC); National Science Foundation [CMMI-1000926] FX This research was supported by the American Institute of Steel Construction (AISC) and the National Science Foundation under Grant No. CMMI-1000926. The authors also wish to thank AISC for donating steel wide flange sections used in the experiments. Any opinions, findings, conclusions, and recommendations are those of the authors, and do not necessarily reflect the views of the sponsors. NR 20 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CIVIL ENGINEERS PI NEW YORK PA UNITED ENGINEERING CENTER, 345 E 47TH ST, NEW YORK, NY 10017-2398 USA BN 978-0-7844-7911-7 PY 2015 BP 1150 EP 1160 PG 11 WC Construction & Building Technology; Engineering, Civil; Engineering, Mechanical SC Construction & Building Technology; Engineering GA BG8WG UT WOS:000392737000098 ER PT J AU McAllister, TP AF McAllister, Therese P. BE Ingraffea, N Libby, M TI Community Resilience of the Built Environment SO Structures Congress 2015 LA English DT Proceedings Paper CT Structures Congress CY APR 23-25, 2015 CL Portland, OR SP Amer Soc Civil Engineers, Struct Engn Inst AB Buildings and infrastructure systems support housing, business, government, industry, and other vital services in communities. The concept of disaster resilience addresses the way that communities prepare for and recover from disruptive events. Needs of citizens and institutions in a community define the performance requirements for buildings and infrastructure systems, including the recovery in the aftermath of damaging hazard events. However, current practice does not adequately address risks and reliability at a community systems level, interdependencies between systems, or the role each system plays in recovery. NIST has established a research program to improve guidance, standards, and tools that support community disaster resilience planning. The immediate research has been initiated with guidance documents to identify best practices and research needs. The longer term research includes development of metrics and tools for communities based on integrated systems modeling at a community level. C1 [McAllister, Therese P.] NIST, Engn Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA. RP McAllister, TP (reprint author), NIST, Engn Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA. EM therese.mcallister@nist.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC CIVIL ENGINEERS PI NEW YORK PA UNITED ENGINEERING CENTER, 345 E 47TH ST, NEW YORK, NY 10017-2398 USA BN 978-0-7844-7911-7 PY 2015 BP 1518 EP 1529 PG 12 WC Construction & Building Technology; Engineering, Civil; Engineering, Mechanical SC Construction & Building Technology; Engineering GA BG8WG UT WOS:000392737000130 ER PT J AU Read, TC FitzSimmons, NN Wantiez, L Jensen, MP Keller, F Chateau, O Farman, R Werry, J MacKay, KT Petro, G Limpus, CJ AF Read, Tyffen C. FitzSimmons, Nancy N. Wantiez, Laurent Jensen, Michael P. Keller, Florent Chateau, Olivier Farman, Richard Werry, Jonathan MacKay, Kenneth T. Petro, George Limpus, Colin J. TI Mixed stock analysis of a resident green turtle, Chelonia mydas, population in New Caledonia links rookeries in the South Pacific SO WILDLIFE RESEARCH LA English DT Article DE Cheloniidae; management unit; marine conservation; marine migratory species; mtDNA; sea turtle AB Context. Migratory species are known to pose a challenge for conservation because it is essential to understand their complex life history in order to implement efficient conservation actions. Aims. In New Caledonia, large seagrass habitats in the Grand Lagon Sud (GLS) are home to resident green turtles (Chelonia mydas) of unknown origins. To assess the stock composition in the GLS, 164 foraging turtles were sampled for genetic analysis of similar to 770 base pairs of the mitochondrial DNA (mtDNA) control region. Methods. Foraging turtles ranging in size from 48.0 to 108.4 cm curved carapace length were captured at five different sites within the GLS between September 2012 and December 2013. To provide baseline data for mixed stock analysis, published data from rookeries were used in addition to 105 samples collected at rookeries in the d'Entrecasteaux Islands and Chesterfield Islands in New Caledonia and at Malekula Island in Vanuatu. Exact tests of population differentiation and pairwise F-ST estimates were used to test for differences in mtDNA haplotype frequencies. Key results. These analyses indicated that rookeries in the d'Entrecasteaux Islands and Vanuatu form unique management units and that the Chesterfield Islands rookeries are linked to the Coral Sea management unit. Mixed stock analysis indicated the highest proportion (mean = 0.63) of foraging turtles originate from the d'Entrecasteaux stock. Conclusions. The larger contribution is estimated to be from a large rookery from New Caledonia, but smaller contributions are suggested from other rookeries in the South Pacific. Implications. Marine conservation policies in New Caledonia need to consider the links between the foraging and nesting populations of C. mydas in New Caledonia and other rookeries and foraging grounds in the Coral Sea. C1 [Read, Tyffen C.; Keller, Florent; Chateau, Olivier; Farman, Richard] Aquarium Lagons, Lab Marine Biol & Ecol, Noumea 98807, New Caledonia. [Read, Tyffen C.; Werry, Jonathan] Griffith Univ, Griffith Ctr Coastal Management, Griffith, Qld 4222, Australia. [FitzSimmons, Nancy N.] Griffith Univ, Environm Futures Ctr, Griffith, Qld 4222, Australia. [Wantiez, Laurent] Univ Nouvelle Caledonie, LIVE EA4243, Noumea 98807, New Caledonia. [Jensen, Michael P.] NOAA, Marine Mammal & Turtle Div, Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, La Jolla, CA 92037 USA. [Werry, Jonathan] Ocean & Coast Res, Main Beach, Qld 4217, Australia. [MacKay, Kenneth T.] Vonu Environm Consulting, Victoria, BC 250, Canada. [Petro, George] Wan Smolbag Theatre, Port Vila, Vanuatu. [Limpus, Colin J.] Queensland Govt, Dept Environm & Heritage Protect, Aquat Threatened Species Unit, Brisbane, Qld 4001, Australia. RP Read, TC (reprint author), Aquarium Lagons, Lab Marine Biol & Ecol, Noumea 98807, New Caledonia. EM tyffen.read@aquarium.nc FU Tribal Council for the Environment (CCCE); Vale Inco through the Biodiversity Convention; Australian Aid; New Zealand Aid Programme; National Marine Fisheries Service South-west Regional Office of NOAA FX This project was funded by the Tribal Council for the Environment (CCCE) and Vale Inco through the Biodiversity Convention signed with the South Province of New Caledonia. we would like to thank all the tribes (especially Goro, Ile Ouen and Isle of Pines) that helped during fieldwork. The Aquarium des Lagons provided technical and field support (particularly Thibault Brasseur, Stephane Bourget, Jeff Dubose, Laurent Foure and Vincent Robineau). We extend our gratitude to the Fisheries Department of New Caledonia (SMMPM) for taking us to these remote rookeries and Eric Clua for collecting some samples from the Chesterfields. Thanks to Sonya Clegg from Griffith University for providing the use of her genetics laboratory and to Peter Dutton for giving us access to data before publication. The Vanuatu work was carried out by the Environment Programme of Wan Smolbag Theatre, working with the Vanua-Tai turtle monitors. Core funding was received from Australian Aid and the New Zealand Aid Programme; additional funding was supplied by the National Marine Fisheries Service South-west Regional Office of NOAA for the project 'Sea turtle nesting beach monitoring/survey, outreach and education in Vanuatu' 2004-12. We write this in memory of our co-author Georges Petro, a leading force for turtle conservation in the Pacific region. NR 73 TC 1 Z9 1 U1 0 U2 0 PU CSIRO PUBLISHING PI CLAYTON PA UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA SN 1035-3712 EI 1448-5494 J9 WILDLIFE RES JI Wildl. Res. PY 2015 VL 42 IS 6 BP 488 EP 499 DI 10.1071/WR15064 PG 12 WC Ecology; Zoology SC Environmental Sciences & Ecology; Zoology GA V46OJ UT WOS:000209893200004 ER PT J AU Cheng, GJ Calizo, I Walker, ARH AF Cheng, Guangjun Calizo, Irene Walker, Angela R. Hight TI Metal-catalyzed etching of graphene governed by metal-carbon interactions: A comparison of Fe and Cu SO CARBON LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; LAYER GRAPHENE; SUSPENDED GRAPHENE; LARGE-AREA; GROWTH; NANOTUBES; GRAPHITE; GASIFICATION; COPPER; FILMS AB We present a comparative investigation on the etching of graphene catalyzed by Fe and Cu. When Fe or Cu thin film deposited on graphene is rapidly annealed in either N-2 or forming gas (10% H-2/90% N-2), particles are produced due to the dewetting of thin films. Low-voltage scanning electron microscopy reveals different morphology for Fe and Cu particles and their strikingly different catalytic etching behaviors. For the Fe thin film on graphene annealed at 950 degrees C in either gas environment, graphene is severely damaged, suggesting that the etching could occur through catalytic carbon hydrogenation or carbon dissolution into Fe due to the strong Fe-C interactions. In contrast, while no etching takes place for Cu particles on graphene at 1050 degrees C in N-2, Cu particles catalytically etch channels in graphene in forming gas through carbon hydrogenation, and the width of the channel is much narrower than the diameter of Cu particle due to the non-wetting behavior of Cu on graphene. The weak interactions between Cu and graphene, along with the low solubility of carbon in Cu, make Cu particles ideal for tracking their etching paths on graphene. This work provides new insights into the metal-catalyzed etching of graphene. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Cheng, Guangjun; Calizo, Irene; Walker, Angela R. Hight] Natl Inst Stand & Technol, Semicond & Dimens Metrol Div, Phys Measurement Lab, Gaithersburg, MD 20899 USA. RP Cheng, GJ (reprint author), Natl Inst Stand & Technol, Semicond & Dimens Metrol Div, Phys Measurement Lab, Gaithersburg, MD 20899 USA. EM guangjun.cheng@nist.gov RI Hight Walker, Angela/C-3373-2009 OI Hight Walker, Angela/0000-0003-1385-0672 FU National Research Council FX I. C. was partially supported by the National Research Council. Research performed in part at the NIST Center for Nanoscale Science and Technology. The authors thank Dr. Shin G. Chou for the fruitful discussions. We identify certain commercial equipment, instruments, or materials in this article to specify adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. NR 60 TC 7 Z9 7 U1 13 U2 74 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD JAN PY 2015 VL 81 BP 678 EP 687 DI 10.1016/j.carbon.2014.10.005 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA AU5ZX UT WOS:000345682900071 ER PT J AU Beyer, SG Sogard, SM Harvey, CJ Field, JC AF Beyer, Sabrina G. Sogard, Susan M. Harvey, Chris J. Field, John C. TI Variability in rockfish (Sebastes spp.) fecundity: species contrasts, maternal size effects, and spatial differences SO ENVIRONMENTAL BIOLOGY OF FISHES LA English DT Article DE Sebastes spp.; Fecundity; Maternal size; Spatial effects; Multiple broods ID PACIFIC-OCEAN PERCH; YELLOWTAIL ROCKFISH; LARVAL PRODUCTION; REFERENCE POINTS; BODY-SIZE; AGE; MANAGEMENT; CALIFORNIA; CYCLE; SCORPAENIDAE AB Over 60 species of rockfish (Sebastes spp.) reside off the coast of California, many of which are economically important to both recreational and commercial fisheries. Rockfish are live-bearers with a diverse array of reproductive strategies. Understanding the reproductive potential of an exploited stock is critical to assessing the health and status of a fishery. We investigated the reproductive ecology of four rockfish species to examine species contrasts and to determine spatial and maternal-size effects on reproductive potential. Females were sampled during the winter parturition season (November through March) of 2009 through 2012. Maternal length and somatic weight were positively correlated with relative fecundity (larvae per g somatic weight) in all four species, indicating a disproportionately greater reproductive output by larger, older females. Fecundity estimates in Chilipepper, S. goodei, and Yellowtail rockfish, S. flavidus, varied regionally, but did not significantly differ over time within the years sampled (sample sizes for Speckled, S. ovalis, and Blackgill rockfish, S. melanostomus, were too small to allow spatiotemporal comparisons). Two reproductive strategies were evident as Yellowtail and Blackgill rockfish produced a relatively highly fecund, single brood of smaller-sized larvae annually, in contrast to Chilipepper and Speckled rockfish, which produced larger-sized larvae with lower fecundity. In some regions multiple broods were common, complicating estimates of annual fecundity for these two species. There was some evidence that egg production was positively correlated with female condition, indicating that environmental variability in oceanographic conditions and productivity may drive changes in fecundity and reproductive strategy (i.e., single versus multiple broods). C1 [Beyer, Sabrina G.; Sogard, Susan M.; Field, John C.] NOAA, Fisheries Ecol Div, Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, Santa Cruz, CA 95060 USA. [Harvey, Chris J.] NOAA, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA. RP Beyer, SG (reprint author), NOAA, Fisheries Ecol Div, Southwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, 110 Shaffer Rd, Santa Cruz, CA 95060 USA. EM sabrina.beyer@noaa.gov FU NOAA Fisheries and the Environment (FATE) Program; NOAA National Cooperative Research Program; NOAA Southwest Fisheries Science Center, Fisheries Ecology Division FX We thank the captains J. Churchman, J. Diamond, T. Klassen, T. Mattusch, R. Powers, their crews and volunteer anglers for fishing expertise. We are grateful for the technical support provided by N. Parker, D. Stafford, N. Kashef, D. Pearson, L. Lefebrve, R. Miller, A. Payne and student interns J. Willeford, M. Helfenberger, N. Mertz, N. Nigro, K. Boreman, B. Robinson, N. Magana, K. Craig, M. Kaiser and K. Mattingly. We also thank S. Ralston, E.J. Dick and anonymous reviewers for their helpful comments on earlier drafts of this manuscript. This project was funded in part by the NOAA Fisheries and the Environment (FATE) Program, the NOAA National Cooperative Research Program and the NOAA Southwest Fisheries Science Center, Fisheries Ecology Division. Blackgill rockfish collections were made possible with help from S. Rienecke at The Nature Conservancy in partnership with Morro Bay commercial fishermen. This research was approved by the University of California, Santa Cruz Institutional Animal Care and Use Committee (IACUC). NR 49 TC 7 Z9 7 U1 6 U2 30 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0378-1909 EI 1573-5133 J9 ENVIRON BIOL FISH JI Environ. Biol. Fishes PD JAN PY 2015 VL 98 IS 1 BP 81 EP 100 DI 10.1007/s10641-014-0238-7 PG 20 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA AU5CS UT WOS:000345625400008 ER PT J AU Goetz, FA Jeanes, E Moore, ME Quinn, TP AF Goetz, Fred A. Jeanes, Eric Moore, Megan E. Quinn, Thomas P. TI Comparative migratory behavior and survival of wild and hatchery steelhead (Oncorhynchus mykiss) smolts in riverine, estuarine, and marine habitats of Puget Sound, Washington SO ENVIRONMENTAL BIOLOGY OF FISHES LA English DT Article DE Behavior; Migration; Oncorhynchus mykiss; Survival; Telemetry ID ATLANTIC SALMON SMOLTS; BRITISH-COLUMBIA; SOCKEYE-SALMON; CHINOOK SALMON; PACIFIC SALMON; DETECTION PROBABILITIES; MARKED ANIMALS; NORTH-AMERICA; KEOGH RIVER; TROUT AB Declines in the survival of steelhead (Oncorhynchus mykiss) populations in protected waters of Washington and British Columbia have drawn attention to the need for more information on migratory patterns and losses in river, estuary, and nearshore habitats. Accordingly, acoustic telemetry was used to quantify movements by wild and hatchery steelhead smolts released from 2006 to 2009 in the Green River, and tracked through Puget Sound, Washington. Survival varied by release group and migration segment but overall survival rates from release to the Strait of Juan de Fuca were 9.7 % for wild and 3.6 % for hatchery fish. These rates are low relative to similar studies on steelhead. Survival was higher for wild fish along all migration segments than hatchery-origin fish; the greatest loss for both groups coincided with the slowest travel rates as fish first entered the estuary and as they exited Puget Sound. Wild fish travelled faster than hatchery fish in the river (15.1 vs. 4.4 km/d) with the fastest travel in the lower river (41 vs. 20.2 km/d) and slowest immediately after release (3.7 vs. 2.4 km/d). The travel rates of wild and hatchery fish became progressively more similar over time: 15.4 vs. 10.6 km/d in the estuary, and 10.3 vs. 9.3 km/d in nearshore areas. Movement was primarily nocturnal in the river, nearly equal between day and night in the upper estuary, and predominately diurnal in the lower estuary and nearshore waters, with no difference between wild and hatchery fish. The migration in marine water showed an early offshore movement and a strong northward and westward orientation, and all fish exited the Strait of Juan de Fuca rather than the Strait of Georgia. The findings support research suggesting that declines in wild and hatchery steelhead populations may be caused primarily by factors in the early marine period. C1 [Goetz, Fred A.] US Army Corps Engineers, Seattle, WA 98134 USA. [Goetz, Fred A.; Quinn, Thomas P.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98105 USA. [Jeanes, Eric] R2 Resource Consultants, Redmond, WA 98052 USA. [Moore, Megan E.] Natl Ocean & Atmospher Adm Fisheries, Resource Enhancement & Utilizat Technol Div, NW Fisheries Sci Ctr, Manchester, WA 98353 USA. RP Goetz, FA (reprint author), US Army Corps Engineers, POB 3755, Seattle, WA 98134 USA. EM fgoetz@comcast.net FU Washington Department of Fish and Wildlife (WDFW); Seattle District US Army Corps of Engineers (USACE); H. Mason Keeler Endowment; Steelhead Trout Club of Washington (STC); King County Department of Natural Resources (KCDNR); Seattle City Light (SCL); Seattle Aquarium (SA); NOAA Fisheries; Pacific Ocean Shelf Tracking (POST); Hydrophone Data Repository (HYDRA) FX This study was supported by funding and/or in-kind assistance by the Washington Department of Fish and Wildlife (WDFW), Seattle District US Army Corps of Engineers (USACE), H. Mason Keeler Endowment to the University of Washington, Steelhead Trout Club of Washington (STC), King County Department of Natural Resources (KCDNR), Seattle City Light (SCL), Seattle Aquarium (SA), NOAA Fisheries, Pacific Ocean Shelf Tracking (POST), and Hydrophone Data Repository (HYDRA). This study was reviewed and approved by the University of Washington's Institutional Animal Care and Use Committee. We thank Bob Leland, Kelly Kiyohara, Pat Michael, Brody Antipa, Pete Topping, and Deborah Feldman of the WDFW for their efforts in project planning, smolt collection, hatchery rearing, tagging, and receiver deployment; Hal Boynton, John Kelly, Ed Conroy and other members of the STC for their enthusiasm and support; Kelly Andrews (NOAA Fisheries), Ed Connor (SCL), John Blaine and Jim Devereaux (KCNDR) for their assistance; Correigh Greene (NOAA), Shawn Larson and Jeff Christiansen (SA), Chuck Ebel (USACE), Kurt Dobszinsky, Paul Winchell, David Welch and Debbie Goetz for deployment of receivers, and Jose Reyes-Tomassini for assistance with the AquaTracker program. We also thank Jennifer Scheuerell, Chris Ewing, and Dawn Pucci (HYDRA) and Jose Gimenez and Aswea Porter (POST) for data sharing and management, and Jonathan Thar and Jim Bolger for helping expand the POST project to Puget Sound. NR 69 TC 2 Z9 2 U1 8 U2 47 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0378-1909 EI 1573-5133 J9 ENVIRON BIOL FISH JI Environ. Biol. Fishes PD JAN PY 2015 VL 98 IS 1 BP 357 EP 375 DI 10.1007/s10641-014-0266-3 PG 19 WC Ecology; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA AU5CS UT WOS:000345625400031 ER PT J AU Apeti, DA Hartwell, IS AF Apeti, Dennis A. Hartwell, Ian S. TI Baseline assessment of heavy metal concentrations in surficial sediment from Kachemak Bay, Alaska SO ENVIRONMENTAL MONITORING AND ASSESSMENT LA English DT Article DE Metals; Surficial sediment; Kachemak Bay; Grain size; Organic carbon ID CHEMICAL CONCENTRATIONS; ESTUARINE SEDIMENTS; MARINE AB Heavy metal inputs to coastal Alaska ecosystems are driven by sediment loads from glacial meltwater and river outflows. This study characterized the spatial distribution of 16 major and trace metals in five strata in Kachemak Bay, as well as sediment total organic carbon content and grain size. Homer Harbor, a shallow harbor within the study area, contained elevated metal concentrations compared to the other strata. Outside the harbor, several metals, including Cr, Ni, Pb, and Zn, were significantly higher in the eastern strata than in the western portions of the bay. The opposite was true for a few other metals, such as Hg. However, most metal concentrations were below the National Oceanic and Atmospheric Administration's sediment quality guidelines for sediment toxicity to benthic communities. C1 [Apeti, Dennis A.; Hartwell, Ian S.] NOAA, Natl Ctr Coastal & Ocean Sci, Ctr Coastal Monitoring & Assessment, Silver Spring, MD 20910 USA. RP Apeti, DA (reprint author), NOAA, Natl Ctr Coastal & Ocean Sci, Ctr Coastal Monitoring & Assessment, 1305 East West Highway, Silver Spring, MD 20910 USA. EM Dennis.Apeti@noaa.gov; ian.hartwell@noaa.gov FU North Pacific Research Board; Cook Inlet Regional Citizens Advisory Council FX The authors wish to acknowledge the North Pacific Research Board for major funding support. The Cook Inlet Regional Citizens Advisory Council also provided funding to support field work. The Kachemak Bay National Estuarine Research Reserve and Kasitsna Bay Lab provided logistical support. Capt. John Crosbie and Everett Anderson worked tirelessly aboard the vessel Columbia. Mark Janes and Tim Robertson of Nuka Research also assisted in the field work. We thank Kevin McMahon for his constructive comments. NR 28 TC 1 Z9 3 U1 2 U2 37 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-6369 EI 1573-2959 J9 ENVIRON MONIT ASSESS JI Environ. Monit. Assess. PD JAN PY 2015 VL 187 IS 1 AR 4106 DI 10.1007/s10661-014-4106-x PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA AU1GK UT WOS:000345368800029 PM 25394770 ER PT J AU Sepulveda, CA Heberer, C Aalbers, SA Spear, N Kinney, M Bernal, D Kohin, S AF Sepulveda, C. A. Heberer, C. Aalbers, S. A. Spear, N. Kinney, M. Bernal, D. Kohin, S. TI Post-release survivorship studies on common thresher sharks (Alopias vulpinus) captured in the southern California recreational fishery SO FISHERIES RESEARCH LA English DT Article DE Trailing gear; Circle hook; Survival; Catch-and-release mortality; Fishery ID WESTERN NORTH-ATLANTIC; RAINBOW-TROUT; ISTIOPHORUS-PLATYPTERUS; EXHAUSTIVE EXERCISE; MOVEMENT PATTERNS; J-HOOKS; SURVIVAL; STRESS; CIRCLE; BIGHT AB The common thresher shark (Alopias vulpinus) is the focus of a popular southern California recreational fishery that targets individuals using multiple fishing gears and techniques. Despite increasing trends in the use of catch and release techniques in the recreational fishery for thresher sharks, a comprehensive estimate of post-release survival is not available for all modes of capture. This study focused on assessing post-release survival in two modes of capture routinely observed in the southern California recreational fishery: (1) sharks that are caught using caudal-based angling techniques and unintentionally released with trailing gear left embedded and (2) sharks that are caught and released using mouth-based angling techniques. Post-release survivorship was assessed using pop-up satellite archival tags programed for 10-and 90-day deployments, with the former used for mouth-caught sharks and the latter for individuals with trailing gear. Post-release survivorship estimates for the trailing gear studies were based on data from nine common thresher sharks (111-175 cm FL) while the mouth-based experiments utilized data from an additional seven sharks (125-187 cm fork length, FL). For the trailing gear studies, six sharks died within 5 days after release, one died after 81 days, and two sharks survived the deployment period for an overall survivorship rate of 22%. All seven mouth-hooked common thresher sharks survived the acute (similar to 10 days) effects of capture (100% survivorship). These results suggest that in the southern California recreational thresher shark fishery, caudal-based angling techniques, which often result in trailing gear left embedded in the shark, can negatively affect post-release survivorship. This work also reveals that mouth-based angling techniques can, when performed properly, result in high survivorship of released sharks. (C) 2014 Elsevier B.V. All rights reserved. C1 [Sepulveda, C. A.; Aalbers, S. A.] Pfleger Inst Environm Res, Oceanside, CA 92054 USA. [Heberer, C.] Natl Marine Fisheries Serv, Carlsbad, CA 92011 USA. [Spear, N.; Kinney, M.; Kohin, S.] NMFS, Southwest Fisheries Sci Ctr, La Jolla, CA USA. [Bernal, D.] Univ Massachusetts, Dept Biol, Dartmouth, MA 02747 USA. RP Sepulveda, CA (reprint author), Pfleger Inst Environm Res, 2110 South Coast Highway,Suite F, Oceanside, CA 92054 USA. EM chugey@pier.org FU Bycatch Reduction and Engineering Program of the National Oceanic and Atmospheric Administration [NFFR5200-11-05196]; William H. and Mattie Wattis Harris Foundation [1.38] FX This material is based upon work supported by the Bycatch Reduction and Engineering Program of the National Oceanic and Atmospheric Administration (Req. # NFFR5200-11-05196). Additional support was provided by the George T. Pfleger Foundation, the William H. and Mattie Wattis Harris Foundation (Grant # 1.38) and the Flying Mako Tournament. Special thanks are offered to Paul Tutunjian, Corey Chan, Eddy Shook, Lyall Belquist, Thomas Fullam, Nick Wegner, James Wraith, James Hilger, Megan Winton, Jeanine Sepulveda, Victoria Wintrode, Jock and Charlie Albright. We would also like to thank the editor and reviewers of this manuscript for their valuable contributions. NR 34 TC 5 Z9 5 U1 4 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 EI 1872-6763 J9 FISH RES JI Fish Res. PD JAN PY 2015 VL 161 BP 102 EP 108 DI 10.1016/j.fishres.2014.06.014 PG 7 WC Fisheries SC Fisheries GA AU2XT UT WOS:000345478600012 ER PT J AU Shideler, GS Carter, DW Liese, C Serafy, JE AF Shideler, Geoffrey S. Carter, David W. Liese, Christopher Serafy, Joseph E. TI Lifting the goliath grouper harvest ban: Angler perspectives and willingness to pay SO FISHERIES RESEARCH LA English DT Article DE Epinephelus itajara; Fishery management; Mail survey; Angler motivations; Willingness to pay ID DISCRETE-RESPONSE VALUATION; EPINEPHELUS-ITAJARA; NONPARAMETRIC APPROACH; CONTINGENT VALUATION; SOUTHERN FLORIDA; MAIL SURVEY; MODEL; MANAGEMENT; NONRESPONSE; FISHERIES AB Despite uncertainties surrounding the protected Atlantic goliath grouper's stock size and resilience, fishery managers are under pressure to end the harvest moratorium in place since 1990. The present study sought to measure the proportion of anglers interested in reopening the goliath grouper fishery and to identify key reasons for this interest. We also present an estimate of the amount that anglers would be willing to pay for a goliath grouper harvest tag (the right sold to an angler to harvest one goliath grouper). A survey was mailed to a random sample of Florida (USA) residents with a recreational fishing license. Approximately half of the respondents agreed that the goliath grouper should now be open to recreational take. A probit analysis indicated that the best predictor for the opinion the fishery should be open is the belief that there are "too many goliath grouper." Also, more anglers agreed than disagreed that goliath grouper are eating "all the fish on the reef," a belief that was related to anglers personally viewing goliath grouper depredation. The mean willingness to pay for a goliath grouper harvest tag was estimated to be between $34 and $79. This information can be used to estimate the potential revenues available from a hypothetical tag system and can be compared with the economic value of goliath grouper in non-consumptive uses such as recreational diving. (C) 2014 Elsevier B.V. All rights reserved. C1 [Shideler, Geoffrey S.; Serafy, Joseph E.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Carter, David W.; Liese, Christopher; Serafy, Joseph E.] NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Miami, FL 33149 USA. RP Shideler, GS (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM geoffreyshideler@gmail.com RI Carter, David/G-7472-2016; OI Carter, David/0000-0001-8960-7236; Shideler, Geoffrey/0000-0002-0160-2973 FU University of Miami Human Subjects Research Office [20121050]; National Marine Fisheries Service through the University of Miami's Cooperative Institute of Marine and Atmospheric Studies FX We thank M. Estevanez, M. Shivlani, R. Araujo, A.R.C. Shideler, and D. Suman for their helpful comments on the survey design and this manuscript; and many thanks to the anonymous reviewers for their very helpful comments that greatly improved the manuscript. We also thank A.R.C. Shideler and T. Krakoski for assistance with survey mailing preparation and response processing. Most of all we thank the many anglers in Florida who participated in the study. This study was approved by the University of Miami Human Subjects Research Office under protocol #20121050. This mangrove-fish research was funded by the National Marine Fisheries Service through the University of Miami's Cooperative Institute of Marine and Atmospheric Studies. NR 38 TC 4 Z9 4 U1 6 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 EI 1872-6763 J9 FISH RES JI Fish Res. PD JAN PY 2015 VL 161 BP 156 EP 165 DI 10.1016/j.fishres.2014.07.009 PG 10 WC Fisheries SC Fisheries GA AU2XT UT WOS:000345478600016 ER PT J AU Yochum, N Rose, CS Hammond, CF AF Yochum, Noelle Rose, Craig S. Hammond, Carwyn F. TI Evaluating the flexibility of a reflex action mortality predictor to determine bycatch mortality rates: A case study of Tanner crab (Chionoecetes bairdi) bycaught in Alaska bottom trawls SO FISHERIES RESEARCH LA English DT Article DE Bycatch mortality; Trawl; Chionoecetes; RAMP; Discard ID DISCARD MORTALITY; PHYSIOLOGICAL STRESS; NEPHROPS FISHERY; AIR EXPOSURE; SURVIVAL; IMPAIRMENT; CRUSTACEANS; RESPONSES; DURATION; OPILIO AB To quantify total fishing mortality it is necessary to incorporate mortality rates attributed to bycatch, including animals that are discarded and that interact with the gear without being caught. The Reflex Action Mortality Predictor (RAMP) approach has been increasingly used to determine bycatch mortality rates in fisheries. This methodology creates a RAMP that relates reflex impairment to probability of mortality. As the RAMP approach becomes more prevalent it becomes important to evaluate the efficacy of its application. We evaluated the flexibility of this methodology by creating a RAMP for Tanner crab (Chionoecetes bairdi) discarded from the groundfish bottom trawl fishery in the Gulf of Alaska and comparing it to a previously established RAMP for unobserved Tanner crab bycatch (encountered gear and remained on the seafloor) from the bottom trawl fishery in the Bering Sea. The two RAMPs and the overall mortality rates calculated using these predictors were comparable. However, we detected significant differences between RAMPs. While probabilities of mortality were similar between the two studies for crab with all or no reflexes missing, discarded crab with intermediate reflex impairment had lower mortality probabilities than those from the unobserved-bycatch study. Our results indicate that a RAMP may produce more accurate mortality estimates when applied to animals experiencing similar stressors as those evaluated to create the RAMP, through similar methodology. (C) 2014 The Authors. Published by Elsevier B.V. C1 [Yochum, Noelle] Oregon State Univ, Corvallis, OR 97331 USA. [Rose, Craig S.; Hammond, Carwyn F.] Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, NOAA, Seattle, WA 98115 USA. RP Yochum, N (reprint author), Oregon State Univ, 104 Nash Hall, Corvallis, OR 97331 USA. EM noelle.yochum@oregonstate.edu; fishnextresearch@gmail.com; carwyn.hammond@noaa.gov FU Northeast Consortium through the Virginia Institute of Marine Science,; University of Massachusetts Dartmouth; University of New Hampshire; NOAA National Cooperative Research Program FX Funding support came from the Northeast Consortium as part of the Collaborative Fisheries Research Graduate Fellowship through the Virginia Institute of Marine Science, University of Massachusetts Dartmouth, and University of New Hampshire; and the NOAA National Cooperative Research Program. Publication of this paper was supported by the Thomas G. Scott Publication Fund. We gratefully acknowledge the captain, D. Sitton, and crew, J. Sanchez and S. Perez, of the F/VSea Mac who contributed ideas for the project methods and provided the opportunity to gather these data; K. Swiney and the Alaska Fisheries Science Center in Kodiak, AK for providing laboratory space and assistance with husbandry; J. Bonney and K. McGauley at the Alaska Groundfish DataBank, and S. McEntire for assisting with logistics; D. Hall and D. Evans for designing custom tags for this project; and M. Davis, J. Napp, D. Sampson, A. Stoner, D. Urban, N. Williamson, and C. Wilson for thoughtful comments on the manuscript. The findings and conclusions in the paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. Reference to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NR 50 TC 2 Z9 2 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 EI 1872-6763 J9 FISH RES JI Fish Res. PD JAN PY 2015 VL 161 BP 226 EP 234 DI 10.1016/j.fishres.2014.07.012 PG 9 WC Fisheries SC Fisheries GA AU2XT UT WOS:000345478600024 ER PT J AU Newbury, DE Ritchie, NWM AF Newbury, Dale E. Ritchie, Nicholas W. M. TI Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS) SO JOURNAL OF MATERIALS SCIENCE LA English DT Review ID PROBE; INTENSITY AB Electron-excited X-ray microanalysis performed in the scanning electron microscope with energy-dispersive X-ray spectrometry (EDS) is a core technique for characterization of the microstructure of materials. The recent advances in EDS performance with the silicon drift detector (SDD) enable accuracy and precision equivalent to that of the high spectral resolution wavelength-dispersive spectrometer employed on the electron probe microanalyzer platform. SDD-EDS throughput, resolution, and stability provide practical operating conditions for measurement of high-count spectra that form the basis for peak fitting procedures that recover the characteristic peak intensities even for elemental combination where severe peak overlaps occur, such PbS, MoS2, BaTiO3, SrWO4, and WSi2. Accurate analyses are also demonstrated for interferences involving large concentration ratios: a major constituent on a minor constituent (Ba at 0.4299 mass fraction on Ti at 0.0180) and a major constituent on a trace constituent (Ba at 0.2194 on Ce at 0.00407; Si at 0.1145 on Ta at 0.0041). Accurate analyses of low atomic number elements, C, N, O, and F, are demonstrated. Measurement of trace constituents with limits of detection below 0.001 mass fraction (1000 ppm) is possible within a practical measurement time of 500 s. C1 [Newbury, Dale E.; Ritchie, Nicholas W. M.] NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. RP Newbury, DE (reprint author), NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. EM dale.newbury@nist.gov NR 25 TC 13 Z9 13 U1 9 U2 77 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD JAN PY 2015 VL 50 IS 2 BP 493 EP 518 DI 10.1007/s10853-014-8685-2 PG 26 WC Materials Science, Multidisciplinary SC Materials Science GA AU1WJ UT WOS:000345407900001 ER PT J AU Rasulov, SM Orakova, SM Abdulagatov, IM AF Rasulov, S. M. Orakova, S. M. Abdulagatov, I. M. TI Calculating the Krichevsky Function and Parameter for an n-Hexane plus Water System from Direct Densitometric Measurements SO RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article DE Krichevsky parameter; n-hexane; water; critical point; solubility of hydrocarbons ID ISOCHORIC HEAT-CAPACITIES; MIXTURES; TEMPERATURE; STATE AB Based on experimental pVTx data, a theoretical study of the thermodynamic properties of a binary n-hexane + water system is performed for ten water concentrations (0.166, 0.201, 0.234, 0.237, 0.347, 0.615, 0.827, 0.918, 0.935, and 0.964 mole fractions of H2O) along different isochors. Constant volume piezometer measurements are made in the temperature, density, and pressure intervals of 303.65-690.55 K, 66.87-801.20 kg/m(3), and 65.7 MPa. Based on the pVTx data and using different methods, the Krichevsky parameter is determined near the critical properties of the pure solvent (n-hexane or water). C1 [Rasulov, S. M.; Orakova, S. M.] Russian Acad Sci, Inst Phys, Dagestan Sci Ctr, Makhachkala 367005, Russia. [Abdulagatov, I. M.] NIST, Gaithersburg, MD 20899 USA. RP Rasulov, SM (reprint author), Russian Acad Sci, Inst Phys, Dagestan Sci Ctr, Makhachkala 367005, Russia. EM orakova.s@mail.ru NR 18 TC 1 Z9 1 U1 1 U2 4 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0036-0244 EI 1531-863X J9 RUSS J PHYS CHEM A+ JI Russ. J. Phys. Chem. A PD JAN PY 2015 VL 89 IS 1 BP 61 EP 64 DI 10.1134/S0036024415010215 PG 4 WC Chemistry, Physical SC Chemistry GA AU1QY UT WOS:000345396500012 ER PT J AU Kroner, E Davis, CS AF Kroner, Elmar Davis, Chelsea S. TI A Study of the Adhesive Foot of the Gecko: Translation of a Publication by Franz Weitlaner SO JOURNAL OF ADHESION LA English DT Article DE Gecko; Adhesion; Foot; Toe; in vivo AB Although it seems that gecko adhesion research is a relatively young branch of science, this recently rediscovered work presents some very old studies with quite remarkable findings. The publication of Dr. F. Weitlaner from 1902 is very impressive, as it covers many recently published topics and - even more impressively often comes to the same conclusions and provides similar results compared with current publications. Weitlaner published his paper in German which was - at that time - very common in science. This makes it almost impossible for today's international community of bioinspired adhesion researchers to enjoy and appreciate this early gem of scientific work. Thus, we have decided to translate his paper in the hope that it finds the attention it deserves and that it inspires us to stay curious and pursue answers to the questions which have been asked for over a century. C1 [Kroner, Elmar] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany. [Davis, Chelsea S.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. RP Kroner, E (reprint author), INM Leibniz Inst New Mat, Campus D2 2, D-66123 Saarbrucken, Germany. EM elmar.kroner@inm-gmbh.de RI Kroner, Elmar/C-5888-2009 OI Kroner, Elmar/0000-0002-4822-5028 NR 1 TC 4 Z9 4 U1 1 U2 9 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0021-8464 EI 1545-5823 J9 J ADHESION JI J. Adhes. PY 2015 VL 91 IS 6 BP 481 EP 482 DI 10.1080/00218464.2014.922418 PG 2 WC Engineering, Chemical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA AT9YZ UT WOS:000345281300005 ER PT J AU Barzilai, S Tavazza, F Levine, LE AF Barzilai, S. Tavazza, F. Levine, L. E. TI Sensitivity of gold nano-conductors to voids, substitutions, and electric field: ab initio results SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID GEOMETRY OPTIMIZATION; BAND-STRUCTURE; MOLECULES; CHAINS AB Gold nanowires are good candidates for nanoelectronics devices. A previous study has shown that the beryllium-terminated BeO (0001) surface may be a useful platform for supporting gold nano-conductors, since it preserves the nano wire configuration and does not restrict its conductivity. Here, we used ab initio simulations to determine the sensitivity of potential gold nano-conductors to the presence of point defects, O-2 substitutions and to an applied perpendicular electric field, as in field effect transistors. We found that the presence of the point defects causes only small changes in the atomic bond lengths of the NW, does not alter the NW configuration, but may affect the overall conductivity. Single or double voids on the same channel reduce the conductance by 28 % at most, but when the voids arrange in a way that only one channel remains for conductance, it reduces by factor of two to & 1 G(0) (G(0) = 2e(2)/h). The presence of a single O-2 molecule as a substitution reduces the electron availability in the neighboring Au atoms, in most cases reducing the conductance. The perpendicular electric field, which is typical for field effect transistors, affects the electron density distribution, shifts and changes the conductance spectra profile, but does not decrease the conductivity. C1 [Barzilai, S.; Tavazza, F.; Levine, L. E.] NIST, MSED, Mat Measurement Lab, Gaithersburg, MD 20899 USA. RP Barzilai, S (reprint author), NIST, MSED, Mat Measurement Lab, 100 Bur Dr,Stop 8553, Gaithersburg, MD 20899 USA. EM barzilai.shmuel@gmail.com NR 48 TC 0 Z9 0 U1 2 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD JAN PY 2015 VL 50 IS 1 BP 412 EP 419 DI 10.1007/s10853-014-8600-x PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA AT6WH UT WOS:000345077000042 ER PT J AU Allison, TC Burgess, DR AF Allison, Thomas C. Burgess, Donald R., Jr. TI High-Quality Thermochemistry Data on Polycyclic Aromatic Hydrocarbons via Quantum Chemistry SO POLYCYCLIC AROMATIC COMPOUNDS LA English DT Article ID DENSITY-FUNCTIONAL THEORIES; ADDITIVITY RULES; GAUSSIAN-3; ENERGIES; SET AB In this article, recent work on calculating high-quality enthalpies of formation for polycyclic aromatic hydrocarbons (PAHs) based on both density functional theory (DFT) and Gaussian-3 (G3) model chemistry methods is discussed. It is shown that through the use of an empirical correction model, the systematic errors in low-level DFT calculations can be controlled to produce reliable thermochemistry. It is further shown that the G3 results have a more regular systematic error and as a consequence a simpler model may be used to correct for systematic deviations. It is seen that the resulting enthalpy of formation values are in good agreement with the available experimental data, and that the predictions are sufficiently robust to point out certain errors in experimental determinations. This work was done as part of a larger effort to create a curated data set of property data for a large set of PAH molecules. In furtherance of this goal, UV/Vis spectra have been computed using time-dependent DFT. The collection of PAH data is being made publicly available through a web-based database that is briefly described. C1 [Allison, Thomas C.; Burgess, Donald R., Jr.] NIST, Chem Informat Res Grp, Mat Measurement Lab, Gaithersburg, MD 20899 USA. RP Allison, TC (reprint author), NIST, Chem Informat Res Grp, Mat Measurement Lab, 100 Bur Dr,Stop 8320, Gaithersburg, MD 20899 USA. EM thomas.allison@nist.gov NR 23 TC 0 Z9 0 U1 4 U2 11 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1040-6638 EI 1563-5333 J9 POLYCYCL AROMAT COMP JI Polycycl. Aromat. Compd. PD JAN 1 PY 2015 VL 35 IS 1 SI SI BP 16 EP 31 DI 10.1080/10406638.2014.892890 PG 16 WC Chemistry, Organic SC Chemistry GA AT3XC UT WOS:000344866600003 ER PT J AU Gultepe, I Zhou, B Milbrandt, J Bott, A Li, Y Heymsfield, AJ Ferrier, B Ware, R Pavolonis, M Kuhn, T Gurka, J Liu, P Cermak, J AF Gultepe, I. Zhou, B. Milbrandt, J. Bott, A. Li, Y. Heymsfield, A. J. Ferrier, B. Ware, R. Pavolonis, M. Kuhn, T. Gurka, J. Liu, P. Cermak, J. TI A review on ice fog measurements and modeling SO ATMOSPHERIC RESEARCH LA English DT Article; Proceedings Paper CT 6th International Conference on Fog, Fog Collection and Dew CY MAY 19-24, 2013 CL Yokohama, JAPAN DE Ice fog; Arctic weather systems; Aviation; Visibility; Ice fog forecasting ID BULK MICROPHYSICS PARAMETERIZATION; SCANNING DOPPLER RADAR; BASE-LINE IMAGER; PART I; RADIATION FOG; EXPLICIT FORECASTS; NUMERICAL-MODEL; CLIMATE MODELS; CLOUD LIQUID; GOES-R AB The rate of weather-related aviation accident occurrence in the northern latitudes is likely 25 times higher than the national rate of Canada. If only cases where reduced visibility was a factor are considered, the average rate of occurrence in the north is about 31 times higher than the Canadian national rate. Ice fog occurs about 25% of the time in the northern latitudes and is an important contributor to low visibility. This suggests that a better understanding of ice fog prediction and detection is required over the northern latitudes. The objectives of this review are the following: 1) to summarize the current knowledge of ice fog microphysics, as inferred from observations and numerical weather prediction (NWP) models, and 2) to describe the remaining challenges associated with measuring ice fog properties, remote sensing microphysical retrievals, and simulating/predicting ice fog within numerical models. Overall, future challenges related to ice fog microphysics and visibility are summarized and current knowledge is emphasized. (C) 2014 Published by Elsevier B.V. C1 [Gultepe, I.; Liu, P.] Environm Canada, Cloud Phys & Severe Weather Res Sect, Toronto, ON, Canada. [Zhou, B.; Ferrier, B.] IM Syst Grp, Rockville, MD USA. [Zhou, B.; Ferrier, B.] NOAA, NWS, NCEP, Washington, DC USA. [Milbrandt, J.] Environm Canada, CMC, RPN, Dorval, PQ, Canada. [Bott, A.] Univ Bonn, Meteorolooieches Inst, D-53121 Bonn, Germany. [Li, Y.] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China. [Heymsfield, A. J.] NCAR, Boulder, CO USA. [Ware, R.] Radiometr Corp, Boulder, CO USA. [Pavolonis, M.] NOAA, NESDIS, Madison, WI USA. [Kuhn, T.] Lulea Univ Technol, Div Space Technol, S-98128 Kiruna, Sweden. [Gurka, J.] NOAA, NESDIS, Greenbelt, MD USA. [Cermak, J.] Ruhr Univ Bochum, Dept Geog, D-44780 Bochum, Germany. RP Gultepe, I (reprint author), Environm Canada, Cloud Phys & Severe Weather Res Sect, Toronto, ON, Canada. EM Ismail.gultepe@ec.gc.ca RI Pavolonis, Mike/F-5618-2010; Kuhn, Thomas/F-9532-2011; Cermak, Jan/B-7844-2009 OI Pavolonis, Mike/0000-0001-5822-219X; Kuhn, Thomas/0000-0003-3701-7925; Cermak, Jan/0000-0002-4240-595X FU Canadian National Search and Rescue Secretariat (SAR); Environment Canada; US DOE [DE-FG02-08ER64554] FX Funding for this work was provided by the Canadian National Search and Rescue Secretariat (SAR) and Environment Canada. The authors would like to thank Dr. Flynn for providing the DOE MPL and ceilometer measurements and images, and US DOE for providing partial funding for FRAM-IF project (Grant DE-FG02-08ER64554). NR 100 TC 9 Z9 9 U1 4 U2 50 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 EI 1873-2895 J9 ATMOS RES JI Atmos. Res. PD JAN PY 2015 VL 151 SI SI BP 2 EP 19 DI 10.1016/j.atmosres.2014.04.014 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AR7WA UT WOS:000343786500002 ER PT J AU Cardellach, E Tomas, S Oliveras, S Padulles, R Rius, A de la Torre-Juarez, M Turk, J Ao, CO Kursinski, ER Schreiner, B Ector, D Cucurull, L AF Cardellach, Estel Tomas, Sergio Oliveras, Santi Padulles, Ramon Rius, Antonio de la Torre-Juarez, Manuel Turk, Joseph Ao, Chi O. Kursinski, E. Robert Schreiner, Bill Ector, Dave Cucurull, Lidia TI Sensitivity of PAZ LEO Polarimetric GNSS Radio-Occultation Experiment to Precipitation Events SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Global Navigation Satellite System (GNSS) radio occultation (RO); heavy rain; remote sensing precipitation ID SCATTERING; PROPAGATION; HYDROMETEORS; ATTENUATION; RAINFALL; SHAPE; AIR AB A Global Navigation Satellite System (GNSS) radio occultation (RO) experiment is being accommodated in the Spanish low Earth orbiter for Earth Observation PAZ. The RO payload will provide globally distributed vertical thermodynamic profiles of the atmosphere suitable to be assimilated into weather numerical prediction models. The Ground Segment services of the U.S. National Oceanographic and Atmospheric Administration and standard-RO processing services by University Corporation for Atmospheric Research (USA) will be available under best effort basis. Moreover, the mission will run, for the first time, a double-polarization GNSS RO experiment to assess the capabilities of polarimetric GNSS RO for sensing heavy rain events. This paper introduces the Radio-Occultation and Heavy Precipitation experiment aboard PAZ and performs a theoretical analysis of the concept. The L-band GNSS polarimetric observables to be used during the experiment are presented, and their sensitivity to moderate to heavy precipitation events is evaluated. This study shows that intense rain events will induce polarimetric features above the detectability level. C1 [Cardellach, Estel; Tomas, Sergio; Oliveras, Santi; Padulles, Ramon; Rius, Antonio] CSIC, ICE, Inst Space Sci, Inst Estudis Espacials Catalunya, Barcelona 08193, Spain. [de la Torre-Juarez, Manuel; Turk, Joseph; Ao, Chi O.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kursinski, E. Robert] Broadreach Engn, Golden, CO 80401 USA. [Schreiner, Bill; Ector, Dave] Univ Corp Atmospher Res, Golden, CO 80401 USA. [Cucurull, Lidia] NOAA, Boulder, CO 80307 USA. RP Cardellach, E (reprint author), CSIC, ICE, Inst Space Sci, Inst Estudis Espacials Catalunya, Barcelona 08193, Spain. EM estel@ieec.uab.es RI Cardellach, Estel/C-9418-2012; Tomas , Sergio/L-8424-2014; Cucurull, Lidia/E-8900-2015; OI Cardellach, Estel/0000-0001-8908-0972; Tomas , Sergio/0000-0002-3997-6815; Padulles, Ramon/0000-0003-2058-3779 FU Spanish Ministry of Economy and Competitiveness [AYA2011-29183-C02-02, ACI2010-1089, ACI2009-1023]; Fondo Europeo de Desarrollo Regional (FEDER); National Aeronautics and Space Administration (NASA) [ROSES 10-GEOIM10-0018, ROSES NNH10ZDA001N, NNH10ZDA001N-GEOIM, NNH10ZDA001N-GEODESY] FX These studies are supported in part by the Spanish Ministry of Economy and Competitiveness (AYA2011-29183-C02-02, ACI2010-1089, and ACI2009-1023) and in part by NASA Grants (ROSES 10-GEOIM10-0018 and ROSES NNH10ZDA001N). E. Cardellach is under the Spanish Ramon y Cajal Programme. Some of these grants are partially supported by Fondo Europeo de Desarrollo Regional (FEDER) Funds. The Radio-Occultation and Heavy Precipitation with PAZ experiment has only been possible under a Consejo Superior de Investigaciones Cientificas (CSIC)-HISDESAT agreement, while some of its ground segment services were possible owing to agreements between Institute of Space Sciences (ICE)-National Oceanographic and Atmospheric Administration and ICE-University Corporation for Atmospheric Research. Authors M. de la Torre-Juarez, F. J. Turk, and C. O. Ao. performed this work at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). They were supported by NASA's programs for Applications of Geodetic Imaging, NNH10ZDA001N-GEOIM, and Advanced Concepts in Space Geodesy, NNH10ZDA001N-GEODESY. NR 27 TC 10 Z9 10 U1 2 U2 22 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD JAN PY 2015 VL 53 IS 1 BP 190 EP 206 DI 10.1109/TGRS.2014.2320309 PG 17 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA AO7MG UT WOS:000341536700015 ER PT J AU Gaigalas, AK DeRose, P Wang, LL Zhang, YZ AF Gaigalas, Adolfas K. DeRose, Paul Wang, Lili Zhang, Yu-Zhong TI Optical Properties of CdSe/ZnS Nanocrystals SO JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY LA English DT Article DE absorbance; CdSe/ZnS; fluorescence life time; fluorescence quantum yield ID INTEGRATING SPHERE DETECTOR; SEMICONDUCTOR NANOCRYSTALS; QUANTUM DOTS; FLOW-CYTOMETRY; CROSS-SECTION; YIELD AB Measurements are presented of the absorbance, fluorescence emission, fluorescence quantum yield, and fluorescence lifetime of CdSe/ZnS nanocrystals, also known as quantum dots (QDs). The study included three groups of nanocrystals whose surfaces were either passivated with organic molecules, modified further with carboxyl groups, or conjugated with CD14 mouse anti- human antibodies. The surface modifications had observable effects on the optical properties of the nanocrystals. The oscillator strength (OS) of the band edge transition was about 1.0 for the nanocrystals emitting at 565 nm, 605 nm, and 655 nm. The OS could not be determined for QDs with emission at 700 nm and 800 nm. The fluorescence lifetimes varied from 26 ns for nanocrystals emitting near 600 nm to 150 ns for nanocrystals emitting near 800 nm. The quantum yield ranged between 0.4 and 0.9 for the nanocrystals in this study. A brightness index (BI) was used to evaluate the suitability of the nanocrystal labels for flow cytometer measurements. Most QD labels are at least as bright as fluorescein for applications in flow cytometer assays with 488 nm excitation. For optimal brightness the QDs should be excited with 405 nm light. We observed a strong dependence of the QD absorbance at 250 nm on the surface modification of the QD. C1 [Gaigalas, Adolfas K.; DeRose, Paul; Wang, Lili] NIST, Gaithersburg, MD 20899 USA. [Zhang, Yu-Zhong] Life Technol Corp, Eugene, OR 97402 USA. RP Gaigalas, AK (reprint author), NIST, Gaithersburg, MD 20899 USA. EM adolfas.gaigalas@nist.gov; paul.derose@nist.gov; lili.wang@nist.gov; yu-zhong.zhang@lifetech.com NR 23 TC 0 Z9 0 U1 4 U2 30 PU US GOVERNMENT PRINTING OFFICE PI WASHINGTON PA SUPERINTENDENT DOCUMENTS,, WASHINGTON, DC 20402-9325 USA SN 1044-677X J9 J RES NATL INST STAN JI J. Res. Natl. Inst. Stand. Technol. PD DEC 31 PY 2014 VL 119 BP 610 EP 628 DI 10.6028/jres.119.026 PG 19 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CC5MZ UT WOS:000350404000001 PM 26601047 ER PT J AU Carasso, AS Vladar, AE AF Carasso, Alfred S. Vladar, Andras E. TI Recovery of Background Structures in Nanoscale Helium Ion Microscope Imaging SO JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY LA English DT Article DE adaptive histogram equalization; background recovery; composed fast-scan frames; HIM; nanoscale helium ion microscopy; noise reduction; progressive fractional diffusion smoothing; SEM AB This paper discusses a two step enhancement technique applicable to noisy Helium Ion Microscope images in which background structures are not easily discernible due to a weak signal. The method is based on a preliminary adaptive histogram equalization, followed by 'slow motion' low-exponent Levy fractional diffusion smoothing. This combined approach is unexpectedly effective, resulting in a companion enhanced image in which background structures are rendered much more visible, and noise is significantly reduced, all with minimal loss of image sharpness. The method also provides useful enhancements of scanning charged-particle microscopy images obtained by composing multiple drift-corrected 'fast scan' frames. The paper includes software routines, written in Interactive Data Language (IDL), 1 that can perform the above image processing tasks. C1 [Carasso, Alfred S.; Vladar, Andras E.] NIST, Gaithersburg, MD 20899 USA. RP Carasso, AS (reprint author), NIST, Gaithersburg, MD 20899 USA. EM alfred.carasso@nist.gov; andras.vladar@nist.gov NR 13 TC 0 Z9 0 U1 0 U2 19 PU US GOVERNMENT PRINTING OFFICE PI WASHINGTON PA SUPERINTENDENT DOCUMENTS,, WASHINGTON, DC 20402-9325 USA SN 1044-677X J9 J RES NATL INST STAN JI J. Res. Natl. Inst. Stand. Technol. PD DEC 31 PY 2014 VL 119 BP 683 EP 701 DI 10.6028/jres.119.030 PG 19 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CC5NE UT WOS:000350404500001 PM 26601050 ER PT J AU Tan, HY Zhu, Y Dwyer, C Xin, HL AF Tan, Haiyan Zhu, Ye Dwyer, Christian Xin, Huolin L. TI Energy-loss-and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID CORE-LOSS; INELASTIC-SCATTERING; RESOLUTION; STEM; EELS; DIFFRACTION; MICROSCOPE; IMAGES AB Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counterintuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100-keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5 lambda(lambda is the electron mean-free path, here approximately 110 nm). At greater thicknesses we observe a counterintuitive "negative" contrast. Only at much higher energy losses is an intuitive "positive" contrast gradually restored. Our quantitative analysis shows that the energy loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive "positive" chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. Implications for the interpretation of atomic-scale elemental maps are discussed. C1 [Tan, Haiyan] Univ Toulouse, CEMES CNRS, nMat Grp, F-31055 Toulouse 4, France. [Tan, Haiyan] NIST, Div Engn & Mat Sci, Gaithersburg, MD 20899 USA. [Zhu, Ye] Monash Univ, Monash Ctr Electron Microscopy, Clayton, Vic 3800, Australia. [Zhu, Ye] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia. [Dwyer, Christian] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany. [Dwyer, Christian] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany. [Xin, Huolin L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Tan, HY (reprint author), Univ Toulouse, CEMES CNRS, nMat Grp, BP94347, F-31055 Toulouse 4, France. EM c.dwyer@fz-juelich.de; hxin@bnl.gov RI Tan, Haiyan/G-4426-2015; Zhu, Ye/A-1844-2011; Xin, Huolin/E-2747-2010 OI Tan, Haiyan/0000-0002-1407-9587; Zhu, Ye/0000-0002-5217-493X; Xin, Huolin/0000-0002-6521-868X FU Centre d'Elaboration de Materiaux et d'Etudes Structurales, CNRS; National Institute of Standards and Technology, USA; Australian Research Council [DP110104734]; Ernst Ruska CentreCenter for Functional Nanomaterials, Brookhaven National Laboratory; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Science Foundation Materials Research Science and Engineering Centers (MRSEC) program [DMR 1120296]; Energy Materials Center at Cornell; Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences [DESC0001086] FX H. T. acknowledges financial support from Centre d'Elaboration de Materiaux et d'Etudes Structurales, CNRS, and National Institute of Standards and Technology, USA. Y.Z. and C. D. gratefully acknowledge financial support from the Australian Research Council (Grant No. DP110104734). C.D. acknowledges support from the Ernst Ruska Centre. H. L. X. acknowledges support from Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This work made use of the electron microscopy facility of the Cornell Center for Materials Research (CCMR) with support from the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) program (Contract No. DMR 1120296). Experimental data recording, and H.L.X. for that period, was supported by the Energy Materials Center at Cornell (emc2), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences, under Award No. DESC0001086. H.L.X. also thanks David A. Muller for his support and advice on this project. Correspondence and requests for materials should be addressed to C.D. and H.L.X. NR 32 TC 1 Z9 1 U1 4 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 31 PY 2014 VL 90 IS 21 AR 214305 DI 10.1103/PhysRevB.90.214305 PG 8 WC Physics, Condensed Matter SC Physics GA CB8OV UT WOS:000349891100002 ER PT J AU Chalfoun, J Majurski, M Dima, A Stuelten, C Peskin, A Brady, M AF Chalfoun, Joe Majurski, Michael Dima, Alden Stuelten, Christina Peskin, Adele Brady, Mary TI FogBank: a single cell segmentation across multiple cell lines and image modalities SO BMC BIOINFORMATICS LA English DT Article DE FogBank; Single cell segmentation; Robustness; Open-source ID WATERSHED TRANSFORM; ALGORITHMS; MICROSCOPY; CANCER; ROBUST AB Background: Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. Results: We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. Conclusions: FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution. C1 [Chalfoun, Joe; Majurski, Michael; Dima, Alden; Peskin, Adele; Brady, Mary] NIST, Informat Technol Lab, Gaithersburg, MD 20899 USA. [Stuelten, Christina] NCI, Cellular & Mol Biol Lab, NIH, Bethesda, MD 20892 USA. RP Chalfoun, J (reprint author), NIST, Informat Technol Lab, Gaithersburg, MD 20899 USA. EM joe.chalfoun@nist.gov NR 45 TC 6 Z9 6 U1 3 U2 11 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD DEC 30 PY 2014 VL 15 AR 431 DI 10.1186/s12859-014-0431-x PG 12 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA AZ8PG UT WOS:000348476800001 PM 25547324 ER PT J AU Pan, CH Flynn, L Wu, XQ Buss, R AF Pan, Chunhui Flynn, Larry Wu, Xiangqian Buss, Rich TI Suomi National Polar-orbiting Partnership Ozone Mapping Profiler Suite Nadir instruments in-flight performance SO JOURNAL OF APPLIED REMOTE SENSING LA English DT Article DE Ozone Mapping Profiler Suite; calibration; charge coupled device; remote sensing; ultraviolet spectroscopy AB This paper analyzes the in-flight performance of the Suomi National Polar-orbiting Partnership Ozone Mapping & Profiling Suite (OMPS) nadir instruments and evaluates sensors' on-orbit calibrations after sensors' two-year operation. All uncertainty values quoted in this paper are 1 - sigma values unless stated otherwise. With the data collected from in-flight nominal calibration, our results have demonstrated that sensor performance complies with the system specifications in most cases. The largest term in the wavelength-dependent albedo calibration uncertainty for Nadir Mapper is the cross-track position difference effect of 2.5%. Final adjustments of stray light and wavelength variation are still being made to optimize OMPS sensor data records before reaching the validation mature level. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Pan, Chunhui] Univ Maryland, Dept Earth Syst, Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. [Flynn, Larry; Wu, Xiangqian] NOAA, Ctr Satellite Applicat & Res STAR, College Pk, MD 20740 USA. [Buss, Rich] Innovim LLC, NOAA Affiliate, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Pan, CH (reprint author), Univ Maryland, Dept Earth Syst, Sci Interdisciplinary Ctr, College Pk, MD 20740 USA. EM chpan@umd.edu RI Flynn, Lawrence/B-6321-2009; Wu, Xiangqian/F-5634-2010 OI Flynn, Lawrence/0000-0001-6856-2614; Wu, Xiangqian/0000-0002-7804-5650 FU NOAA Grant at the University of Maryland [NA09NES4400006] FX This work was supported by NOAA Grant NA09NES4400006 (Cooperative Institute for Climate and Satellites) at the University of Maryland. The sensor data used in their analyses were provided by NOAA Comprehensive Large Array-Data Stewardship System. The manuscript contents are solely the opinions of the authors and do not constitute a statement of policy, decision, or position on behalf of NOAA or the U.S. government. NR 6 TC 1 Z9 1 U1 0 U2 9 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1931-3195 J9 J APPL REMOTE SENS JI J. Appl. Remote Sens. PD DEC 30 PY 2014 VL 8 AR UNSP 083499 DI 10.1117/1.JRS.8.083499 PG 13 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA CA1JG UT WOS:000348668300001 ER PT J AU Johnstone, JA Mantua, NJ AF Johnstone, James A. Mantua, Nathan J. TI Reply to Abatzoglou et al.: Atmospheric controls on northwest United States air temperatures, 1948-2012 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter ID VARIABILITY; PACIFIC C1 [Johnstone, James A.; Mantua, Nathan J.] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA. [Mantua, Nathan J.] Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv Southwest Fisheries Sc, Santa Cruz, CA 95060 USA. RP Johnstone, JA (reprint author), Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA. EM jajstone@gmail.com NR 4 TC 1 Z9 1 U1 2 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 30 PY 2014 VL 111 IS 52 BP E5607 EP E5608 DI 10.1073/pnas.1421618112 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AY2UL UT WOS:000347444400004 PM 25527719 ER PT J AU Zhu, CJ Deng, L Hagley, EW AF Zhu, Chengjie Deng, L. Hagley, E. W. TI Polarization-selective Kerr-phase-shift method for fast, all-optical polarization switching in a cold atomic medium SO PHYSICAL REVIEW A LA English DT Article ID QUANTUM; GATE AB We examine an all-optical atomic-polarization-gate scheme using a polarization-selective Kerr phase-shift technique. Using a Kerr pi-phase-shift technique, we selectively write a pi phase shift to one of the circularly polarized components of a linearly polarized signal field while leaving the other component unchanged. Upon recombination, the signal field acquires a 90 degrees linear-polarization rotation, completing the critical polarization-gate operation. We demonstrate with numerical simulations that a special phase-control light-field detuning can be obtained which results in a complete linear-polarization rotation with a phase-control light. C1 [Zhu, Chengjie; Deng, L.; Hagley, E. W.] NIST, Gaithersburg, MD 20899 USA. [Zhu, Chengjie] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China. RP Zhu, CJ (reprint author), NIST, Gaithersburg, MD 20899 USA. NR 25 TC 6 Z9 6 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 30 PY 2014 VL 90 IS 6 AR 063841 DI 10.1103/PhysRevA.90.063841 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AX7QY UT WOS:000347111200006 ER PT J AU Walsh, LA Hughes, G Weiland, C Woicik, JC Lee, RTP Loh, WY Lysaght, P Hobbs, C AF Walsh, Lee A. Hughes, Greg Weiland, Conan Woicik, Joseph C. Lee, Rinus T. P. Loh, Wei-Yip Lysaght, Pat Hobbs, Chris TI Ni-(In,Ga)As Alloy Formation Investigated by Hard-X-Ray Photoelectron Spectroscopy and X-Ray Absorption Spectroscopy SO PHYSICAL REVIEW APPLIED LA English DT Article ID SCHOTTKY-BARRIER FORMATION; METAL INTERFACES; SILICON-NITRIDE; FINE-STRUCTURE; SEMICONDUCTOR; OXIDATION; GAAS; XANES; EXAFS; FILMS AB The electrical, chemical, and structural interactions between Ni films and In0.53Ga0.47 As for source-drain applications in transistor structures have been investigated. It was found that for thick (> 10 nm) Ni films, a steady decrease in sheet resistance occurs with increasing anneal temperatures, however, this trend reverses at 450 degrees C for 5 nm thick Ni layers, primarily due to the agglomeration or phase separation of the Ni-(In,Ga) As layer. A combined hard-x-ray photoelectron spectroscopy (HAXPES) and x-ray absorption spectroscopy (XAS) analysis of the chemical structure of the Ni-(In,Ga)As alloy system shows: (1) that Ni readily interacts with In0.53Ga0.47 As upon deposition at room temperature resulting in significant interdiffusion and the formation of NiIn, NiGa, and NiAs alloys, and (2) the steady diffusion of Ga through the Ni layer with annealing, resulting in the formation of a Ga2O3 film at the surface. The need for the combined application of HAXPES and XAS measurements to fully determine chemical speciation and sample structure is highlighted and this approach is used to develop a structural and chemical compositional model of the Ni-(In,Ga)As system as it evolves over a thermal annealing range of 250 to 500 degrees C. C1 [Walsh, Lee A.; Hughes, Greg] Dublin City Univ, Dept Phys Sci, Dublin 9, Ireland. [Weiland, Conan; Woicik, Joseph C.] NIST, Gaithersburg, MD 20899 USA. [Lee, Rinus T. P.; Loh, Wei-Yip; Lysaght, Pat; Hobbs, Chris] SEMATECH, Albany, NY 12203 USA. RP Walsh, LA (reprint author), Dublin City Univ, Dept Phys Sci, Dublin 9, Ireland. EM lee.walsh36@mail.dcu.ie RI Weiland, Conan/K-4840-2012; OI Hughes, Greg/0000-0003-1310-8961; Hughes, Gregory/0000-0002-1358-9032 FU Science Foundation Ireland [SFI/09/IN.1/I2633]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors from Dublin City University acknowledge the financial support of Science Foundation Ireland under Grant No. SFI/09/IN.1/I2633. Access to the X24A HAXPES beam line, and the X23A2 XAS beam line at Brookhaven National Laboratory was obtained through a General User Proposal. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 43 TC 4 Z9 4 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2331-7019 J9 PHYS REV APPL JI Phys. Rev. Appl. PD DEC 30 PY 2014 VL 2 IS 6 AR 064010 DI 10.1103/PhysRevApplied.2.064010 PG 12 WC Physics, Applied SC Physics GA AX9CE UT WOS:000347200800001 ER PT J AU Wang, LL Zhang, YZ Choquette, S Gaigalas, AK AF Wang, Lili Zhang, Yu-Zhong Choquette, Steven Gaigalas, A. K. TI Measurement of Microsphere Concentration Using a Flow Cytometer with Volumetric Sample Delivery SO JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY LA English DT Article DE attune flow cytometer; concentration; microspheres AB Microsphere concentrations are needed to assign equivalent reference fluorophores (ERF) units to microspheres used in quantitative flow cytometry. A flow cytometer with a syringe based sample delivery system was evaluated for the measurement of the concentration of microspheres contained in a vial of lyophilized microspheres certified by BD Biosciences to contain 50,600 microspheres. The concentration was measured by counting the number of microspheres contained in the volume delivered by the flow cytometer and dividing the number by the volume. The syringe volume was calibrated both in the delivery and draw modes, and the results of the volume calibration were summarized by two calibration lines. The delivered volume was obtained by dividing the number of recorded events by the concentration of microsphere count standard in the sample tube. The draw volume was obtained by weighting the sample tube before and after the draw. The slope of the draw volume calibration line was equal to 1.00 with an offset of -13 mu L. The slope of the delivered volume calibration was 0.93 suggesting a systematic volume-dependent bias, which can be rationalized as an effect of suspension flow in capillaries. When the sample volume was set to values between 150 mu L and 300 mu L, both calibration curves gave similar results suggesting that a good estimate of the true delivered volume can be obtained by subtracting 13 mu L from the delivered volume indicated by the syringe settings. The number of microspheres in the volume was obtained by passing the suspension contained in the volume through a laser beam and counting the number of events in which the signals from the scattering and fluorescence detectors exceeded threshold values. Measurements were performed with the lyophilized microspheres made by BD Biosciences and fluorescein microspheres (expired reference material RM 8640) in three buffers: a phosphate buffer saline (PBS), a buffer containing PBS and 0.05 % BSA (bovine serum albumin) by mass, and a buffer containing PBS and 0.05 % TWEEN 20 detergent solution (P1379 Sigma-Aldrich) by mass. It was found that the concentration of count standard was significantly higher in the PBS+BSA buffer relative to the value obtained in PBS buffer. Values for PBS+0.05 % TWEEN 20 buffer were intermediate. The effect of buffer on the measured microsphere concentration was reported previously. The suggested procedure for the measurement of the concentration of microspheres with the flow cytometer is to use PBS+0.05 % BSA buffer, accumulate data for a delivered volume of 150 mu L to 300 mu L, and reduce the indicated delivered volume by 13 mu L when performing the concentration calculation. The procedure was tested on a mixture of lyophilized microspheres and RM 8640 microspheres. The resulting lyophilized microsphere concentration was consistent with the certified value. The RM 8640 concentration determined using the suggested procedure was consistent with the concentration value determined using the relative method with the lyophilized microspheres as the reference. The uncertainties, obtained from one standard deviation of repeated measurements, were about 4 %. C1 [Wang, Lili; Zhang, Yu-Zhong; Choquette, Steven; Gaigalas, A. K.] NIST, Gaithersburg, MD 20899 USA. [Zhang, Yu-Zhong] Life Technol Corp, Eugene, OR 97402 USA. RP Wang, LL (reprint author), NIST, Gaithersburg, MD 20899 USA. EM lili.wang@nist.gov; steven.choquette@nist.gov; adolfas.gaigalas@nist.gov NR 9 TC 1 Z9 1 U1 1 U2 6 PU US GOVERNMENT PRINTING OFFICE PI WASHINGTON PA SUPERINTENDENT DOCUMENTS,, WASHINGTON, DC 20402-9325 USA SN 1044-677X J9 J RES NATL INST STAN JI J. Res. Natl. Inst. Stand. Technol. PD DEC 29 PY 2014 VL 119 BP 629 EP 643 DI 10.6028/jres.119.027 PG 15 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA CC5NB UT WOS:000350404200001 PM 26601048 ER PT J AU Cox, KC Norcia, MA Weiner, JM Bohnet, JG Thompson, JK AF Cox, Kevin C. Norcia, Matthew A. Weiner, Joshua M. Bohnet, Justin G. Thompson, James K. TI Reducing collective quantum state rotation errors with reversible dephasing SO APPLIED PHYSICS LETTERS LA English DT Article ID COMPOSITE PULSES; SPIN; CLOCK; TIMES AB We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21 dB in the context of collective population measurements of the spin states of an ensemble of 2.1 x 10(5) laser cooled and trapped Rb-87 atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors. (C) 2014 AIP Publishing LLC. C1 [Cox, Kevin C.] Univ Colorado, JILA, NIST, Boulder, CO 80309 USA. Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Cox, KC (reprint author), Univ Colorado, JILA, NIST, 440 UCB, Boulder, CO 80309 USA. FU DARPA QuASAR; ARO; NSF PFC; NIST; NDSEG; National Science Foundation [1125844] FX The authors would like to acknowledge helpful discussions with Zilong Chen. All authors acknowledge financial support from DARPA QuASAR, ARO, NSF PFC, and NIST. K.C.C. acknowledges support from NDSEG. This material is based upon work supported by the National Science Foundation under Grant No. 1125844. NR 29 TC 1 Z9 1 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 29 PY 2014 VL 105 IS 26 AR 261102 DI 10.1063/1.4905148 PG 5 WC Physics, Applied SC Physics GA AX8PO UT WOS:000347171300002 ER PT J AU Saleh, K Henriet, R Diallo, S Lin, GP Martinenghi, R Balakireva, IV Salzenstein, P Coillet, A Chembo, YK AF Saleh, Khaldoun Henriet, Remi Diallo, Souleymane Lin, Guoping Martinenghi, Romain Balakireva, Irina V. Salzenstein, Patrice Coillet, Aurelien Chembo, Yanne K. TI Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators SO OPTICS EXPRESS LA English DT Article ID MICROWAVE-OSCILLATORS; LASER FREQUENCY; REDUCTION AB We investigate the phase noise performance of optoelectronic oscillators when the optical energy storage elements are in the following three configurations: a high-Q whispering gallery mode resonator, an optical delay-line and a combination of both elements. The stability properties of these various optical elements are first characterized, and then systematically compared in the optical and in the microwave frequency domains. Subsequently, the spectral purity of the oscillator is theoretically and experimentally examined for each case. When the resonator is used as both delay and filtering element inside the delay-line based oscillator, the generated spurious modes are highly rejected. A spur rejection by more than 53 dB has been demonstrated for the first-neighboring spur. (c) 2014 Optical Society of America C1 [Saleh, Khaldoun; Henriet, Remi; Diallo, Souleymane; Lin, Guoping; Martinenghi, Romain; Balakireva, Irina V.; Salzenstein, Patrice; Coillet, Aurelien; Chembo, Yanne K.] FEMTO ST Inst UMR CNRS 6174, Opt Dept, F-25030 Besancon, France. [Coillet, Aurelien] NIST, Boulder, CO 80305 USA. RP Saleh, K (reprint author), FEMTO ST Inst UMR CNRS 6174, Opt Dept, 15B Ave Montboucons, F-25030 Besancon, France. EM khaldoun.saleh@femto-st.fr RI Salzenstein, Patrice/D-4692-2011; Lin, Guoping/I-3381-2015 OI Salzenstein, Patrice/0000-0003-0207-5279; Lin, Guoping/0000-0003-4007-1850 FU European Research Council through the project NextPhase; European Research Council through the project Versyt; Centre National d'Etudes Spatiales (CNES) through the project SHYRO; French National Research Agency (ANR) [2010 BLAN 0312]; Region de Franche-Comte; Labex ACTION FX This work has received financial support from the European Research Council through the projects NextPhase and Versyt, from the Centre National d'Etudes Spatiales (CNES) through the project SHYRO, from the French National Research Agency (ANR) through the grant "ANR 2010 BLAN 0312", from the Region de Franche-Comte, and from the Labex ACTION. NR 30 TC 13 Z9 13 U1 4 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD DEC 29 PY 2014 VL 22 IS 26 BP 32158 EP 32173 DI 10.1364/OE.22.032158 PG 16 WC Optics SC Optics GA AX8SR UT WOS:000347179300051 PM 25607180 ER PT J AU Young, PJ Davis, SM Hassler, B Solomon, S Rosenlof, KH AF Young, P. J. Davis, S. M. Hassler, B. Solomon, S. Rosenlof, K. H. TI Modeling the climate impact of Southern Hemisphere ozone depletion: The importance of the ozone data set SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE CMIP5; SPARC; ozone; SAM ID ANTARCTIC OZONE; STRATOSPHERIC OZONE; TROPOSPHERIC OZONE; CMIP5 SIMULATIONS; ANNULAR MODE; TIME-SERIES; TRENDS; HOLE; TEMPERATURE; VARIABILITY AB The ozone hole is an important driver of recent Southern Hemisphere (SH) climate change, and capturing these changes is a goal of climate modeling. Most climate models are driven by off-line ozone data sets. Previous studies have shown that there is a substantial range in estimates of SH ozone depletion, but the implications of this range have not been examined systematically. We use a climate model to evaluate the difference between using the ozone forcing (Stratospheric Processes and their Role in Climate (SPARC)) used by many Intergovernmental Panel on Climate Change Fifth Assessment Report (Coupled Model Intercomparison Project) models and one at the upper end of the observed depletion estimates (Binary Database of Profiles (BDBP)). In the stratosphere, we find that austral spring/summer polar cap cooling, geopotential height decreases, and zonal wind increases in the BDBP simulations are all doubled compared to the SPARC simulations, while tropospheric responses are 20-100% larger. These results are important for studies attempting to diagnose the climate fingerprints of ozone depletion. C1 [Young, P. J.] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England. [Davis, S. M.; Hassler, B.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Davis, S. M.; Hassler, B.; Rosenlof, K. H.] NOAA Earth Syst Res Lab, Boulder, CO USA. [Solomon, S.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA. RP Young, PJ (reprint author), Univ Lancaster, Lancaster Environm Ctr, Lancaster, England. EM paul.j.young@lancaster.ac.uk RI Rosenlof, Karen/B-5652-2008; Hassler, Birgit/E-8987-2010; Young, Paul/E-8739-2010; Davis, Sean/C-9570-2011; Manager, CSD Publications/B-2789-2015 OI Rosenlof, Karen/0000-0002-0903-8270; Hassler, Birgit/0000-0003-2724-709X; Young, Paul/0000-0002-5608-8887; Davis, Sean/0000-0001-9276-6158; FU Faculty of Science and Technology Research grant from Lancaster University FX We would like to thank Jean-Francois Lamarque for his assistance in setting up CAM and Greg Bodeker of Bodeker Scientific for providing the combined total column ozone database. We acknowledge the World Climate Research Program's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. P.J.Y. acknowledges support of the Faculty of Science and Technology Research grant from Lancaster University. We also acknowledge the comments from two anonymous reviewers. Please contact the lead author to obtain the data and code used in this publication. NR 46 TC 5 Z9 5 U1 4 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2014 VL 41 IS 24 BP 9033 EP 9039 DI 10.1002/2014GL061738 PG 7 WC Geosciences, Multidisciplinary SC Geology GA CA4ZN UT WOS:000348916500046 ER PT J AU Su, JZ Xiang, BQ Wang, B Li, T AF Su, Jingzhi Xiang, Baoqiang Wang, Bin Li, Tim TI Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE El Nino; SSTA in the subtropical Pacific; ENSO prediction ID OCEAN-ATMOSPHERE MODEL; EL-NINO; SURFACE-TEMPERATURE; DATA ASSIMILATION; MERIDIONAL MODES; VARIABILITY; ATLANTIC; SYSTEM AB In the summer of 2012, there was a clear signal of the developing El Nino over the equatorial Pacific, and many climate models forecasted the occurrence of El Nino with a peak phase in the subsequent winter. However, the warming was aborted abruptly in late fall. Here we show that the abrupt termination of the 2012 Pacific warming was largely attributed to the anomalous sea surface temperature (SST) cooling in the northeastern and southeastern subtropical Pacific. The anomalous SST cooling induced strong easterly and low-level divergence anomalies, suppressing the development of westerly and convection anomalies over the equatorial central Pacific. Thus, the surface warming over the equatorial Pacific was decoupled from the surface wind forcing and subsurface thermocline variability, inhibiting its further development into a mature El Nino in the winter of 2012-2013. This study highlights the importance of the SST anomaly in the subtropical Pacific in El Nino prediction. C1 [Su, Jingzhi] Chinese Acad Meteorol Sci, Beijing, Peoples R China. [Xiang, Baoqiang] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Xiang, Baoqiang] Univ Corp Atmospher Res, Boulder, CO USA. [Wang, Bin; Li, Tim] Univ Hawaii, Int Pacific Res Ctr, Honolulu, HI 96822 USA. [Wang, Bin; Li, Tim] Univ Hawaii, Dept Meteorol, Honolulu, HI 96822 USA. [Wang, Bin; Li, Tim] Nanjing Univ Informat Sci & Technol, Earth Syst Modeling Ctr, Nanjing, Jiangsu, Peoples R China. RP Su, JZ (reprint author), Chinese Acad Meteorol Sci, Beijing, Peoples R China. EM sujz@cams.cma.gov.cn FU China National 973 project [2015CB453200]; National Natural Science Foundation of China [41221064, 41376020]; International S&T Cooperation Project of the Ministry of Science and Technology of China [2009DFA21430]; NOAA MAPP Program [NA12OAR4310075]; ONR [N00014-1210450] FX Comments from the two anonymous reviewers were helpful to improving the paper. This research was founded by China National 973 project 2015CB453200, the National Natural Science Foundation of China (under Grant 41221064 and 41376020), and the International S&T Cooperation Project of the Ministry of Science and Technology of China under Grant 2009DFA21430. BX was supported by NOAA MAPP Program under Awards NA12OAR4310075. TL acknowledged the support of ONR grant N00014-1210450. This is the ESMC publication 24. NR 28 TC 8 Z9 8 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2014 VL 41 IS 24 BP 9058 EP 9064 DI 10.1002/2014GL062380 PG 7 WC Geosciences, Multidisciplinary SC Geology GA CA4ZN UT WOS:000348916500049 ER PT J AU Biswas, MK Bernardet, L Dudhia, J AF Biswas, Mrinal K. Bernardet, Ligia Dudhia, Jimy TI Y Sensitivity of hurricane forecasts to cumulus parameterizations in the HWRF model SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE cumulus; initial conditions ID TROPICAL CYCLONE INTENSITY; CONVECTION; SCHEME AB The Developmental Testbed Center used the Hurricane Weather Research and Forecasting (HWRF) system to test the sensitivity of tropical cyclone track and intensity forecasts to different convective schemes. A control configuration that employed the HWRF Simplified Arakawa Scheme (SAS) was compared with the Kain-Fritsch and Tiedtke schemes, as well as with a newer implementation of the SAS. A comprehensive test for Atlantic and Eastern North Pacific storms shows that the SAS scheme produces the best track forecasts. Even though the convective parameterization was absent in the inner 3km nest, the intensity forecasts are sensitive to the choice of cumulus scheme on the outer grids. The impact of convective-scale heating on the environmental flow accumulates in time since the hurricane vortex is cycled in the HWRF model initialization. This study shows that, for a given forecast, the sensitivity to cumulus parameterization combines the influence of physics and initial conditions. C1 [Biswas, Mrinal K.] Natl Ctr Atmospher Res, Dev Testbed Ctr, Boulder, CO 80307 USA. [Bernardet, Ligia] Univ Colorado, CIRES, NOAA Earth Syst Res Lab, Boulder, CO 80309 USA. [Bernardet, Ligia] Dev Testbed Ctr, Boulder, CO USA. [Dudhia, Jimy] Natl Ctr Atmospher Res, Mesoscale & Microscale Meteorol Div, Boulder, CO 80307 USA. RP Biswas, MK (reprint author), Natl Ctr Atmospher Res, Dev Testbed Ctr, POB 3000, Boulder, CO 80307 USA. EM biswas@ucar.edu RI Dudhia, Jimy/B-1287-2008; Bernardet, Ligia/N-3357-2014 OI Dudhia, Jimy/0000-0002-2394-6232; FU National Oceanic and Atmospheric Administration (NOAA); Air Force Weather Agency; National Center for Atmospheric Research; HFIP FX The DTC is funded by the National Oceanic and Atmospheric Administration (NOAA), the Air Force Weather Agency, and the National Center for Atmospheric Research. This work was partially supported by HFIP. The authors thank Vijay Tallapragada of NOAA EMC for his support in designing the test. The use of the Diapost postprocessing software from the NOAA Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory is acknowledged. The authors thank Bill Kuo and two anonymous reviewers for their constructive comments. All the data are available on NOAA's Jet computer. Please write to Mrinal Biswas (biswas@ucar.edu) to access the data. NR 27 TC 1 Z9 2 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2014 VL 41 IS 24 BP 9113 EP 9119 DI 10.1002/2014GL062071 PG 7 WC Geosciences, Multidisciplinary SC Geology GA CA4ZN UT WOS:000348916500056 ER PT J AU Hemri, S Scheuerer, M Pappenberger, F Bogner, K Haiden, T AF Hemri, S. Scheuerer, M. Pappenberger, F. Bogner, K. Haiden, T. TI Trends in the predictive performance of raw ensemble weather forecasts SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE ensemble weather forecasts; statistical postprocessing; EMOS; model verification ID MODEL OUTPUT STATISTICS; PROBABILISTIC FORECASTS; SCORING RULES; SYSTEM; SIZE; DISTRIBUTIONS; RESOLUTION; SKILL AB This study applies statistical postprocessing to ensemble forecasts of near-surface temperature, 24 h precipitation totals, and near-surface wind speed from the global model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the postprocessed forecasts. Reliability and sharpness, and hence skill, of the former is expected to improve over time. Thus, the gain by postprocessing is expected to decrease. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from globally distributed stations, we generate postprocessed forecasts by ensemble model output statistics (EMOS) for each station and variable. Given the higher average skill of the postprocessed forecasts, we analyze the evolution of the difference in skill between raw ensemble and EMOS. This skill gap remains almost constant over time indicating that postprocessing will keep adding skill in the foreseeable future. C1 [Hemri, S.] HITS, Heidelberg, Germany. [Hemri, S.; Pappenberger, F.; Bogner, K.; Haiden, T.] European Ctr Medium Range Weather Forecasts ECMWF, Reading, Berks, England. [Scheuerer, M.] NOAA, Div Phys Sci, ESRL, Boulder, CO USA. [Pappenberger, F.] Hohai Univ, Coll Hydrol & Water Resources, Nanjing, Jiangsu, Peoples R China. [Pappenberger, F.] Univ Bristol, Sch Geog Sci, Bristol, Avon, England. [Bogner, K.] Swiss Fed Inst Forest Snow & Landscape Res WSL, Birmensdorf, Switzerland. RP Hemri, S (reprint author), HITS, Heidelberg, Germany. EM stephan.hemri@h-its.org RI Scheuerer, Michael/D-5472-2015; Pappenberger, Florian/A-2839-2009 OI Scheuerer, Michael/0000-0003-4540-9478; Pappenberger, Florian/0000-0003-1766-2898 NR 33 TC 7 Z9 7 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 28 PY 2014 VL 41 IS 24 BP 9197 EP 9205 DI 10.1002/2014GL062472 PG 9 WC Geosciences, Multidisciplinary SC Geology GA CA4ZN UT WOS:000348916500067 ER PT J AU Heindl, R Rippard, WH Russek, SE Pufall, MR AF Heindl, R. Rippard, W. H. Russek, S. E. Pufall, M. R. TI Time-domain analysis of spin-torque induced switching paths in nanoscale CoFeB/MgO/CoFeB magnetic tunnel junction devices SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RANDOM-ACCESS MEMORY; VALVE DEVICES AB We performed thousands of single-shot, real-time measurements of spin-transfer-torque induced switching in nanoscale CoFeB/MgO/CoFeB magnetic tunnel junctions having in-plane magnetizations. Our investigation discovered a variety of switching paths occurring in consecutive, nominally identical switching trials of a single device. By mapping the voltage as a function of time to an effective magnetization angle, we determined that reversal of a single device occurs via a variety of thermally activated paths. Our results show a complex switching behavior that has not been captured by previous observations and cannot be fully explained within the simple macrospin model. (C) 2014 AIP Publishing LLC. C1 [Heindl, R.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95112 USA. [Rippard, W. H.; Russek, S. E.; Pufall, M. R.] NIST, Boulder, CO 80305 USA. RP Heindl, R (reprint author), San Jose State Univ, Dept Phys & Astron, San Jose, CA 95112 USA. EM ranko.heindl@sjsu.edu NR 19 TC 1 Z9 1 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 28 PY 2014 VL 116 IS 24 AR 243902 DI 10.1063/1.4905023 PG 5 WC Physics, Applied SC Physics GA AX8MT UT WOS:000347164300012 ER PT J AU Kravitz, B Wang, HL Rasch, PJ Morrison, H Solomon, AB AF Kravitz, Ben Wang, Hailong Rasch, Philip J. Morrison, Hugh Solomon, Amy B. TI Process-model simulations of cloud albedo enhancement by aerosols in the Arctic SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE solar radiation management; aerosol-cloud interactions; Arctic clouds; process modelling ID LARGE-EDDY SIMULATIONS; MARINE STRATIFORM CLOUDS; LEVEL MARITIME CLOUDS; CONDENSATION NUCLEI; STRATOCUMULUS CLOUDS; CELLULAR STRUCTURES; BOUNDARY-LAYER; CLIMATE MODELS; SHIP TRACKS; MICROPHYSICS AB A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. C1 [Kravitz, Ben; Wang, Hailong; Rasch, Philip J.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Morrison, Hugh] Natl Ctr Atmospher Res, Mesoscale & Microscale Meteorol Div, NCAR Earth Syst Lab, Boulder, CO 80301 USA. [Solomon, Amy B.] Univ Colorado, Cooperat Inst Res Environm Sci, NOAA, Earth Syst Res Lab, Boulder, CO 80309 USA. RP Kravitz, B (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-24, Richland, WA 99352 USA. EM ben.kravitz@pnnl.gov RI Kravitz, Ben/P-7925-2014; Solomon, Amy/L-8988-2013; Wang, Hailong/B-8061-2010 OI Kravitz, Ben/0000-0001-6318-1150; Wang, Hailong/0000-0002-1994-4402 FU Office of Science of the US Department of Energy Earth System Modeling programme; Fund for Innovative Climate and Energy Research FX This research was supported by the Office of Science of the US Department of Energy Earth System Modeling programme. B. K. acknowledges support from the Fund for Innovative Climate and Energy Research. NR 63 TC 3 Z9 3 U1 5 U2 32 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD DEC 28 PY 2014 VL 372 IS 2031 SI SI AR 20140052 DI 10.1098/rsta.2014.0052 PG 24 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AT9XW UT WOS:000345278000003 ER PT J AU Cai, XT Yang, ZL Xia, YL Huang, MY Wei, HL Leung, LR Ek, MB AF Cai, Xitian Yang, Zong-Liang Xia, Youlong Huang, Maoyi Wei, Helin Leung, L. Ruby Ek, Michael B. TI Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DATA ASSIMILATION SYSTEM; LAND-SURFACE MODEL; HYDROLOGICALLY BASED DATASET; CONTERMINOUS UNITED-STATES; MESOSCALE ETA-MODEL; SOIL-MOISTURE; CONTINENTAL-SCALE; CLIMATE MODEL; EVAPOTRANSPIRATION ALGORITHM; RIVER-BASINS AB This study assesses the hydrologic performance of four land surface models (LSMs) for the conterminous United States using the North American Land Data Assimilation System (NLDAS) test bed. The four LSMs are the baseline community Noah LSM (Noah, version 2.8), the Variable Infiltration Capacity (VIC, version 4.0.5) model, the substantially augmented Noah LSM with multiparameterization options (hence Noah-MP), and the Community Land Model version 4 (CLM4). All four models are driven by the same NLDAS-2 atmospheric forcing. Modeled terrestrial water storage (TWS), streamflow, evapotranspiration (ET), and soil moisture are compared with each other and evaluated against the identical observations. Relative to Noah, the other three models offer significant improvements in simulating TWS and streamflow and moderate improvements in simulating ET and soil moisture. Noah-MP provides the best performance in simulating soil moisture and is among the best in simulating TWS, CLM4 shows the best performance in simulating ET, and VIC ranks the highest in performing the streamflow simulations. Despite these improvements, CLM4, Noah-MP, and VIC exhibit deficiencies, such as the low variability of soil moisture in CLM4, the fast growth of spring ET in Noah-MP, and the constant overestimation of ET in VIC. C1 [Cai, Xitian; Yang, Zong-Liang] Univ Texas Austin, Dept Geol Sci, John A & Katherine G Jackson Sch Geosci, Austin, TX 78712 USA. [Xia, Youlong; Wei, Helin; Ek, Michael B.] NOAA, Environm Modeling Ctr, Natl Ctr Environm & Predict, College Pk, MD USA. [Xia, Youlong; Wei, Helin] NOAA, IMSG, NCEP, EMC, College Pk, MD USA. [Huang, Maoyi; Leung, L. Ruby] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Yang, ZL (reprint author), Univ Texas Austin, Dept Geol Sci, John A & Katherine G Jackson Sch Geosci, Austin, TX 78712 USA. EM liang@jsg.utexas.edu RI Yang, Zong-Liang/B-4916-2011; Huang, Maoyi/I-8599-2012; OI Huang, Maoyi/0000-0001-9154-9485; Cai, Xitian/0000-0002-4798-4954 FU NASA [NNX11AJ43G]; National Natural Science Foundation of China [41375088]; Ronald K. DeFord Field Scholarship of the University of Texas at Austin; NOAA/CPO/MAPP; Office of Science of the U.S. DOE through Earth System Modeling program; U.S. DOE by Battelle Memorial Institute [DE-AC05-76RLO1830] FX This work is supported by the NASA grant NNX11AJ43G, the National Natural Science Foundation of China grant 41375088, and the Ronald K. DeFord Field Scholarship (2012) of the University of Texas at Austin. Y.X. was sponsored by NOAA/CPO/MAPP. M.H. and L.R.L. were supported by the Office of Science of the U.S. DOE through the Earth System Modeling program. PNNL is operated for the U.S. DOE by Battelle Memorial Institute under contract DE-AC05-76RLO1830. The authors would like to thank Huilin Gao for her help in calculating the modeled TWS anomaly, Qiaozhen Mu for providing 1/8 degree monthly MODIS ET data over CONUS, Rolf Reichle for providing the quality-controlled SCAN soil moisture observations, and three anonymous reviewers for their constructive comments. The observational data used in this study are available from the data sources described in the paper. The model output data presented here are available upon request to the corresponding author (liang@jsg.utexas.edu). NR 84 TC 17 Z9 17 U1 3 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 27 PY 2014 VL 119 IS 24 BP 13751 EP 13770 DI 10.1002/2014JD022113 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ8IX UT WOS:000348460000010 ER PT J AU Chen, F Barlage, M Tewari, M Rasmussen, R Jin, JM Lettenmaier, D Livneh, B Lin, CY Miguez-Macho, G Niu, GY Wen, LJ Yang, ZL AF Chen, Fei Barlage, Michael Tewari, Mukul Rasmussen, Roy Jin, Jiming Lettenmaier, Dennis Livneh, Ben Lin, Chiyu Miguez-Macho, Gonzalo Niu, Guo-Yue Wen, Lijuan Yang, Zong-Liang TI Modeling seasonal snowpack evolution in the complex terrain and forested Colorado Headwaters region: A model intercomparison study SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID DATA ASSIMILATION SYSTEM; WESTERN UNITED-STATES; TELEMETRY SNOTEL DATA; LAND-SURFACE SCHEMES; MESOSCALE ETA-MODEL; ATMOSPHERIC CIRCULATION; NORTHERN-HEMISPHERE; ENERGY-BALANCE; ALPINE SITE; PART 1 AB Correctly modeling snow is critical for climate models and for hydrologic applications. Snowpack simulated by six land surface models (LSM: Noah, Variable Infiltration Capacity, snow-atmosphere-soil transfer, Land Ecosystem-Atmosphere Feedback, Noah with Multiparameterization, and Community Land Model) were evaluated against 1 year snow water equivalent (SWE) data at 112 Snow Telemetry (SNOTEL) sites in the Colorado River Headwaters region and 4 year flux tower data at two AmeriFlux sites. All models captured the main characteristics of the seasonal SWE evolution fairly well at 112 SNOTEL sites. No single model performed the best to capture the combined features of the peak SWE, the timing of peak SWE, and the length of snow season. Evaluating only simulated SWE is deceiving and does not reveal critical deficiencies in models, because the models could produce similar SWE for starkly different reasons. Sensitivity experiments revealed that the models responded differently to variations of forest coverage. The treatment of snow albedo and its cascading effects on surface energy deficit, surface temperature, stability correction, and turbulent fluxes was a major intermodel discrepancy. Six LSMs substantially overestimated (underestimated) radiative flux (heat flux), a crucial deficiency in representing winter land-atmosphere feedback in coupled weather and climate models. Results showed significant intermodel differences in snowmelt efficiency and sublimation efficiency, and models with high rate of snow accumulation and melt were able to reproduce the observed seasonal evolution of SWE. This study highlights that the parameterization of cascading effects of snow albedo and below-canopy turbulence and radiation transfer is critical not only for SWE simulation but also for correctly capturing the winter land-atmosphere interactions. C1 [Chen, Fei; Barlage, Michael; Tewari, Mukul; Rasmussen, Roy] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Jin, Jiming] Utah State Univ, Dept Watershed Sci, Logan, UT 84322 USA. [Lettenmaier, Dennis; Lin, Chiyu] Univ Washington, Seattle, WA 98195 USA. [Livneh, Ben] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Miguez-Macho, Gonzalo] Univ Santiago de Compostela, Fac Fis, Santiago De Compostela, Spain. [Niu, Guo-Yue] Univ Arizona, Dept Hydrol & Water Resources & Biosphere 2, Tucson, AZ USA. [Wen, Lijuan] Cold & Arid Reg Environm & Engn Res Inst, Lanzhou, Peoples R China. [Yang, Zong-Liang] Univ Texas Austin, Dept Geol Sci, Austin, TX USA. RP Chen, F (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM feichen@ucar.edu RI Yang, Zong-Liang/B-4916-2011; Chen, Fei/B-1747-2009; Livneh, Ben/I-2939-2015; Niu, Guo-Yue/B-8317-2011; OI LIVNEH, BEN/0000-0001-5445-2473 FU NCAR Water System program; NCAR BEACHON program; NOAA MAPP; NOAA MAPP-CTB; NOAA JCSDA [NA09OAR4310193, NA09OAR4310194]; National Natural Science Foundation of China [41275014]; National Science Foundation FX All data (model simulation and observations) used in this paper are available at public AmeriFlux data repository and at NCAR upon request. This research was supported by the NCAR Water System and BEACHON programs, as well as by the NOAA MAPP, MAPP-CTB, and JCSDA grants (NA09OAR4310193 and NA09OAR4310194). It was under the auspice of the National Natural Science Foundation of China (grant 41275014). We wanted to thank David Lawrence, Martyn Clark, and Margaret LeMone for their valuable comments. The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 90 TC 11 Z9 12 U1 3 U2 27 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 27 PY 2014 VL 119 IS 24 BP 13795 EP 13819 DI 10.1002/2014JD022167 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ8IX UT WOS:000348460000012 ER PT J AU McAfee, S Guentchev, G Eischeid, J AF McAfee, Stephanie Guentchev, Galina Eischeid, Jon TI Reconciling precipitation trends in Alaska: 2. Gridded data analyses SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE DIVISIONS; 20TH-CENTURY; VARIABILITY; HOMOGENEITY; TEMPERATURE; SENSITIVITY; PATTERNS; SERIES AB There is a great deal of interest in whether and how Alaska's precipitation is changing but little agreement in the existing peer-reviewed literature. To provide insight on this question, we have selected three commonly used 0.5 degrees resolution gridded precipitation products that have long-term monthly data coverage (Climatic Research Unit TS3.10.1, Global Precipitation Climatology Centre Full Data Reanalysis version 5, and University of Delaware version 2.01) and evaluated their homogeneity and trends with multiple methods over two periods, 1950-2008 and 1980-2008. All three data sets displayed common broadscale features of Alaska's precipitation climatology, but there were substantial differences between them in terms of average precipitation amount and interannual variability. Temporal inhomogeneity was a significant concern over Alaska in gridded precipitation products, as it was in the state's coastal weather stations. Although underlying station inhomogeneities were inherited to some extent by all of the gridded data sets, differences in data set construction contributed to dissimilarities in inhomogeneity, as well. There were contrasts in trends between the two time periods, and some minor discrepancies occurred as a function of the trend detection method, but the main disparities stemmed from choice of data set. Indeed, there were large areas where these data sets disagreed on both the sign and significance of precipitation trends. Until further analysis can resolve these differences, researchers using gridded precipitation data or evaluating studies based on such data should interpret results with extreme caution. C1 [McAfee, Stephanie] Wilderness Soc, Anchorage, AK USA. [McAfee, Stephanie] Univ Alaska Fairbanks, Scenarios Network Alaska & Arctic Planning, Fairbanks, AK USA. [Eischeid, Jon] NOAA, Cooperat Inst Res Environm Sci, Boulder, CO USA. RP McAfee, S (reprint author), Univ Nevada, Dept Geog, Reno, NV 89557 USA. EM smcafee@unr.edu FU Arctic Landscape Conservation Cooperative; Wilderness Society FX Funding for this project was provided by the Arctic Landscape Conservation Cooperative and The Wilderness Society. We would like to thank the Editor, John Walsh, and two anonymous reviewers for their constructive comments on the manuscript. Model output from the CMIP3 experiments was retrieved from the Program for Climate Model Diagnosis and Intercomparison. Gridded precipitation data from GPCC, CRU, and UDEL were retrieved from their websites: http://gpcc.dwd.de, http://www.cru.uea.ac.uk/data, and http://climate.geog.udel.edu/similar to climate/, respectively. NR 58 TC 4 Z9 4 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 27 PY 2014 VL 119 IS 24 BP 13820 EP 13837 DI 10.1002/2014JD022461 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ8IX UT WOS:000348460000013 ER PT J AU Varble, A Zipser, EJ Fridlind, AM Zhu, P Ackerman, AS Chaboureau, JP Fan, JW Hill, A Shipway, B Williams, C AF Varble, Adam Zipser, Edward J. Fridlind, Ann M. Zhu, Ping Ackerman, Andrew S. Chaboureau, Jean-Pierre Fan, Jiwen Hill, Adrian Shipway, Ben Williams, Christopher TI Evaluation of cloud-resolving and limited area model intercomparison simulations using TWP-ICE observations: 2. Precipitation microphysics SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID MIDLATITUDE SQUALL LINE; MULTIMOMENT BULK MICROPHYSICS; RAINDROP SIZE DISTRIBUTION; DUAL-FREQUENCY PROFILER; PART I; STRATIFORM PRECIPITATION; TROPICAL CONVECTION; POLARIZED RADAR; PARAMETERIZATION; SENSITIVITY AB Ten 3-D cloud-resolving model (CRM) simulations and four 3-D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, colocated UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rainwater contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (mu) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes but lower RWCs. Two-moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and, thus, may have issues balancing raindrop formation, collision-coalescence, and raindrop breakup. Assuming a mu of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing mu to have values greater than 0 may improve excessive size sorting in two-moment schemes. Underpredicted stratiform rain rates are associated with underpredicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. A limited domain size also prevents a large, well-developed stratiform region like the one observed from developing in CRMs, although LAMs also fail to produce such a region. C1 [Varble, Adam; Zipser, Edward J.] Univ Utah, Dept Atmospher Sci, Salt Lake City, UT 84112 USA. [Fridlind, Ann M.; Ackerman, Andrew S.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Zhu, Ping] Florida Int Univ, Dept Earth Sci, Miami, FL 33199 USA. [Chaboureau, Jean-Pierre] Univ Toulouse, CNRS, Lab Aerol, Toulouse, France. [Fan, Jiwen] Pacific NW Natl Lab, Dept Climate Phys, Richland, WA 99352 USA. [Hill, Adrian; Shipway, Ben] Met Off, Exeter, Devon, England. [Williams, Christopher] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Williams, Christopher] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Varble, A (reprint author), Univ Utah, Dept Atmospher Sci, Salt Lake City, UT 84112 USA. EM a.varble@utah.edu RI Fan, Jiwen/E-9138-2011; Williams, Christopher/A-2723-2015; Ackerman, Andrew/D-4433-2012 OI Williams, Christopher/0000-0001-9394-8850; Ackerman, Andrew/0000-0003-0254-6253 FU Department of Energy's Atmospheric System Research program [DEFG0208ER64557]; DOE Office of Science, Office of Biological and Environmental Research [DE-AI02-06ER64173, DE-FG03-02ER63337]; NASA Radiation Sciences Program; DOE National Energy Research Scientific Computing Center; NASA Advanced Supercomputing Division; DOE ASR program [DE-FG02-09ER64737, DE-SC0007080]; DOE ASR program; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX This research was supported by the Department of Energy's Atmospheric System Research program, award DEFG0208ER64557, Program Manager Ashley Williamson, with computing resources provided by the Center for High Performance Computing at the University of Utah. Simulations are available for download in the ARM archive (www.archive.arm.gov) or from Adam Varble (a.varble@utah.edu). Special thanks are given to Peter May at the Centre for Australian Weather and Climate Research and the Australian Bureau of Meteorology for providing the CPOL radar data and derived rain rates and DSDs. DHARMA simulations were supported by the DOE Office of Science, Office of Biological and Environmental Research, through interagency agreement DE-AI02-06ER64173 and contract DE-FG03-02ER63337, the NASA Radiation Sciences Program, the DOE National Energy Research Scientific Computing Center, and the NASA Advanced Supercomputing Division. Ping Zhu and Christopher Williams wish to acknowledge their support from the DOE ASR program under grants DE-FG02-09ER64737 and DE-SC0007080, respectively. Fan also thanks the support from the DOE ASR program. PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. We would also like to thank three anonymous reviewers for comments that improved the quality of the paper. NR 56 TC 8 Z9 8 U1 3 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 27 PY 2014 VL 119 IS 24 BP 13919 EP 13945 DI 10.1002/2013JD021372 PG 27 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ8IX UT WOS:000348460000018 ER PT J AU Kazil, J McKeen, S Kim, SW Ahmadov, R Grell, GA Talukdar, RK Ravishankara, AR AF Kazil, J. McKeen, S. Kim, S. -W. Ahmadov, R. Grell, G. A. Talukdar, R. K. Ravishankara, A. R. TI Deposition and rainwater concentrations of trifluoroacetic acid in the United States from the use of HFO-1234yf SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ATMOSPHERIC CHEMISTRY; AIR-QUALITY; SURFACE WATERS; WRF MODEL; KINETICS; CALIFORNIA; CF3CF=CH2; ENVIRONMENT; HFC-134A; HCFCS AB Currently, HFC-134a (1,1,1,2-tetrafluoroethane) is the most common refrigerant in automobile air conditioners. This high global warming potential substance (100 year GWP of 1370) will likely be phased out and replaced with HFO-1234yf (2,3,3,3-tetrafluoropropene) that has a 100 year GWP of 4. HFO-1234yf will be oxidized to produce trifluoroacetic acid (TFA) in clouds. TFA, a mildly toxic substance with detrimental effects on some aquatic organisms at high concentrations (>= 100 mu gL(-1)), would be transported by rain to the surface and enter bodies of water. We investigated the dry and wet deposition of TFA from HFO-1234yf over the contiguous USA using the Advanced Research Weather Research and Forecasting model (ARW) with interactive chemical, aerosol, and cloud processes (WRF/Chem) model. Special focus was placed on emissions from three continental USA regions with different meteorological characteristics. WRF/Chem simulated meteorology, cloud processes, gas and aqueous phase chemistry, and dry and wet deposition between May and September 2006. The model reproduced well the multimonth total sulfate wet deposition (4% bias) and its spatial variability (r = 0.86) observed by the National Atmospheric Deposition Program. HFO-1234yf emissions were obtained by assuming the number of automobile air conditioners to remain unchanged, and substituting HFO-1234yf, mole-per-mole for HFC-134a. Our estimates of current HFC-134a emissions were in agreement with field data. Average TFA rainwater concentration was 0.89 mu gL(-1), with peak values of 7.8 mu gL(-1), for the May-September 2006 period over the contiguous USA. TFA rainwater concentrations over the dry western USA were often significantly higher, but wet-deposited TFA amounts remained relatively low at such locations. C1 [Kazil, J.; McKeen, S.; Kim, S. -W.; Ahmadov, R.; Talukdar, R. K.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Kazil, J.; McKeen, S.; Kim, S. -W.; Ahmadov, R.; Talukdar, R. K.; Ravishankara, A. R.] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO USA. [Grell, G. A.] NOAA, Global Syst Div, Earth Syst Res Lab, Boulder, CO USA. RP Kazil, J (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. EM jan.kazil@noaa.gov RI Ahmadov, Ravan/F-2036-2011; grell, georg/B-6234-2015; Kazil, Jan/B-7652-2013; Kim, Si-Wan/I-3979-2013; Manager, CSD Publications/B-2789-2015; TALUKDAR, RANAJIT/G-4530-2013 OI Ahmadov, Ravan/0000-0002-6996-7071; grell, georg/0000-0001-5214-8742; Kazil, Jan/0000-0003-3271-2451; Kim, Si-Wan/0000-0002-7889-189X; TALUKDAR, RANAJIT/0000-0001-6017-8431 FU NOAA; NOAA OAR Climate Program Office [NA08OAR4310566]; U.S. Weather Research Program within NOAA/OAR Office of Weather and Air Quality FX Data presented in this work are available upon requests from the corresponding author. National Atmospheric Deposition Program precipitation and wet deposition data are available from http://nadp.sws.uiuc.edu. The WRF and WRF/Chem model are available through http://www.wrf-model.org. This work was supported by NOAA's Climate Goal and NOAA OAR Climate Program Office grant NA08OAR4310566. S. McKeen and R. Ahmadov were supported by the U.S. Weather Research Program within the NOAA/OAR Office of Weather and Air Quality. The authors thank D. Luecken (U.S. Environmental Protection Agency) for helpful comments. NR 70 TC 2 Z9 2 U1 6 U2 34 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 27 PY 2014 VL 119 IS 24 BP 14059 EP 14079 DI 10.1002/2014JD022058 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ8IX UT WOS:000348460000025 ER PT J AU Ray, EA Moore, FL Rosenlof, KH Davis, SM Sweeney, C Tans, P Wang, T Elkins, JW Bonisch, H Engel, A Sugawara, S Nakazawa, T Aoki, S AF Ray, Eric A. Moore, Fred L. Rosenlof, Karen H. Davis, Sean M. Sweeney, Colm Tans, Pieter Wang, Tao Elkins, James W. Boenisch, Harald Engel, Andreas Sugawara, Satoshi Nakazawa, T. Aoki, S. TI Improving stratospheric transport trend analysis based on SF6 and CO2 measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID QUASI-BIENNIAL OSCILLATION; PINATUBO AEROSOL; ERA-INTERIM; PIPE MODEL; MEAN AGE; AIR; CIRCULATION; REANALYSIS; DIFFUSIVITY; TROPOSPHERE AB In this study we reexamine nearly four decades of in situ balloon-based stratospheric observations of SF6 and CO2 with an idealized model and reanalysis products. We use new techniques to account for the spatial and temporal inhomogeneity of the sparse balloon profiles and to calculate stratospheric mean ages of air more consistently from the observations with the idealized model. By doing so we are able to more clearly show and account for the variability of mean age of air throughout the bulk of the depth of the stratosphere. From an idealized model guided by the observations, we identify variability in the mean age due to the seasonal cycle of stratospheric transport, the quasi-biennial oscillation in tropical zonal winds, major volcanic eruptions, and linear trends that vary significantly with altitude. We calculate a negative mean age trend in the lowest 5 km of the stratosphere that agrees within uncertainties with a trend calculated from a set of chemistry climate model mean ages in this layer. The mean age trends reverse sign in the middle and upper stratosphere and are in agreement with a previous positive trend estimate using the same observational data set, although we have substantially reduced the uncertainty on the trend. Our analysis shows that a long time series of in situ profile measurements of trace gases such as SF6 and CO2 can be a unique and useful indicator of stratospheric circulation variability on a range of time scales and an important contributor to help validate the stratospheric portion of global chemistry climate models. However, with only SF6 and CO2 measurements, the competing effects on mean age between mean circulation and mixing (tropical entrainment) are not uniquely separable. C1 [Ray, Eric A.; Rosenlof, Karen H.; Davis, Sean M.] NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO 80305 USA. [Ray, Eric A.; Moore, Fred L.; Davis, Sean M.; Sweeney, Colm] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Moore, Fred L.; Sweeney, Colm; Tans, Pieter; Elkins, James W.] NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO USA. [Wang, Tao] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA. [Wang, Tao] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Boenisch, Harald; Engel, Andreas] Goethe Univ Frankfurt, Inst Atmospher & Environm Sci, D-60054 Frankfurt, Germany. [Sugawara, Satoshi] Miyagi Univ Educ, Inst Earth Sci, Sendai, Miyagi, Japan. [Nakazawa, T.; Aoki, S.] Tohoku Univ, Ctr Atmospher & Ocean Studies, Sendai, Miyagi 980, Japan. RP Ray, EA (reprint author), NOAA, Chem Sci Div, Earth Syst Res Lab, Boulder, CO 80305 USA. EM eric.ray@noaa.gov RI Rosenlof, Karen/B-5652-2008; Wang, Tao/C-2381-2011; Davis, Sean/C-9570-2011; Manager, CSD Publications/B-2789-2015; Engel, Andreas/E-3100-2014 OI Rosenlof, Karen/0000-0002-0903-8270; Wang, Tao/0000-0003-3430-8508; Davis, Sean/0000-0001-9276-6158; Engel, Andreas/0000-0003-0557-3935 FU NOAA Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) program; Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement and Terrestrial Ecology Programs [DE-AC02-05CH11231] FX This work was supported by the NOAA Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) program. We would like to thank the balloon instrument groups that took the original measurements used in Engel et al. [2009]. We thank Marc L. Fischer for coordinating the flight campaigns and other personnel for their assistance at the U.S. Department of Energy (DOE) Atmospheric Research Measurement Southern Great Plains (ARM-SGP) on January 2012. Work at ARM-SGP was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy under contract DE-AC02-05CH11231 as part of the Atmospheric Radiation Measurement and Terrestrial Ecology Programs. We also thank three anonymous reviewers for comments that led to an improved manuscript. The MERRA output was obtained from NASA Goddard Earth Sciences Data and Information Services Center (http://disc.sci.gsfc.nasa.gov/mdisc/). The NCEP/NCAR Reanalysis I output was obtained from NOAA ESRL Physical Sciences Division (http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml). The ERA-40 and ERA-Interim output was obtained from ECMWF (http://apps.ecmwf.int/datasets/). NR 59 TC 11 Z9 11 U1 3 U2 23 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 27 PY 2014 VL 119 IS 24 BP 14110 EP 14128 DI 10.1002/2014JD021802 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AZ8IX UT WOS:000348460000028 ER PT J AU Ona-Ruales, JO Ruiz-Morales, Y AF Ona-Ruales, Jorge O. Ruiz-Morales, Yosadara TI Extended Y-Rule Method for the Characterization of the Aromatic Sextets in Cata-Condensed Polycyclic Aromatic Hydrocarbons SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID INDEPENDENT CHEMICAL-SHIFTS; MOLECULAR-ORBITAL CALCULATIONS; HOMO-LUMO GAP; BENZENOID HYDROCARBONS; CLAR STRUCTURES; DELOCALIZATION INDEXES; LOCAL AROMATICITY; ELECTRONIC ABSORPTION; OPTICAL SPECTROSCOPY; CORRELATION-ENERGY AB The location, number, and migrating behavior of the sextets in the cata-condensed benzenoid polycyclic aromatic hydrocarbons with available bay regions have been determined by a new proposed topological methodology called the extended Y-rule. The precursor of this rule is the well-known Y-rule method for determining sextets in peri-condensed polycyclic aromatic hydrocarbons. The new methodology has been successfully validated by means of literature information and by theoretical nucleus independent chemical shift (NICS) calculations. Even though the families of polycyclic aromatic hydrocarbons analyzed here comprise the C14H10, C18H12, C22H14, and C26H16 isomers, the procedure can practically be extended to the families C(10+4x)H(8+2x), where x = 1, ..., infinity. It is the first time that a straightforward procedure, easy to apply, has been proposed to obtain the sextets arrangement and behavior in the group of cata-condensed benzenoid polycyclic aromatic hydrocarbons. C1 [Ona-Ruales, Jorge O.] NIST, Gaithersburg, MD 20899 USA. [Ruiz-Morales, Yosadara] Inst Mexicano Petr, Mexico City 07730, DF, Mexico. RP Ona-Ruales, JO (reprint author), NIST, Gaithersburg, MD 20899 USA. EM jorge.ona-ruales@nist.gov RI Ona, Jorge/I-1260-2014 OI Ona, Jorge/0000-0001-6907-9632 FU Instituto Mexican del Petroleo [D.60019, Y.61000, CONACYT-SENER 177007] FX Y.R.-M. acknowledges the support under Projects D.60019 and Y.61000 (CONACYT-SENER 177007) of the Instituto Mexican del Petroleo. NR 59 TC 4 Z9 4 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD DEC 25 PY 2014 VL 118 IS 51 BP 12262 EP 12273 DI 10.1021/jp510180j PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AY1NP UT WOS:000347360000042 PM 25455151 ER PT J AU Stock, C Gehring, PM Xu, G Lamago, D Reznik, D Russina, M Wen, J Boatner, LA AF Stock, C. Gehring, P. M. Xu, G. Lamago, D. Reznik, D. Russina, M. Wen, J. Boatner, L. A. TI Fluctuating defects in the incipient relaxor K1-xLixTaO3 (x=0.02) SO PHYSICAL REVIEW B LA English DT Article ID INELASTIC-NEUTRON-SCATTERING; LONG-RANGE ORDER; PHASE-TRANSITION; SINGLE-CRYSTALS; LATTICE-DYNAMICS; FERROELECTRIC PZN; SPIN CORRELATIONS; ELECTRIC-FIELDS; DOMAIN STATE; NIST CENTER AB We report neutron scattering measurements of the structural correlations associated with the apparent relaxor transition in K1-xLixTaO3 for x = 0.02 [KLT(0.02)]. This compound displays a broad and frequency-dependent peak in the dielectric permittivity, which is the accepted hallmark of all relaxors. However, no evidence of elastic diffuse scattering or any soft-mode anomaly is observed in KLT(0.02) [J. Wen et al., Phys. Rev. B 78, 144202 (2008)], a situation that diverges from that in other relaxors such as PbMg1/3Nb2/3O3. We resolve this dichotomy by showing that the structural correlations associated with the transition in KLT(0.02) are purely dynamic at all temperatures, having a time scale on the order of similar to THz. These fluctuations are overdamped, nonpropagating, and spatially uncorrelated. Identical measurements made on pure KTaO3 show that they are absent (within experimental error) in the undoped parent material. They exhibit a temperature dependence that correlates well with the dielectric response, which suggests that they are associated with local ferroelectric regions induced by the Li+ doping. The ferroelectric transition that is induced by the introduction of Li+ cations is therefore characterized by quasistatic fluctuations, which represents a stark contrast to the soft-harmonic-mode-driven transition observed in conventional perovskite ferroelectrics such as PbTiO3. The dynamic, glasslike structural correlations in KLT(0.02) are much faster than those measured in random-field-based lead-based relaxors, which exhibit a frequency scale of order similar to GHz and are comparatively better correlated spatially. Our results support the view that static random fields give rise to the relaxor phenomena, and that the glasslike dynamics observed here characterize a nascent response. C1 [Stock, C.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Gehring, P. M.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Xu, G.; Wen, J.] Nanjing Univ, Ctr Superconducting Phys & Mat, Natl Lab Solid State Microstruct, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Xu, G.; Wen, J.] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Lamago, D.; Reznik, D.] CEA Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. [Lamago, D.; Reznik, D.] Karlsruhe Inst Technol, Inst Festkorperphys, D-76021 Karlsruhe, Germany. [Reznik, D.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Russina, M.] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany. [Boatner, L. A.] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Stock, C (reprint author), Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. RI Wen, Jinsheng/F-4209-2010; Xu, Guangyong/A-8707-2010; Boatner, Lynn/I-6428-2013 OI Wen, Jinsheng/0000-0001-5864-1466; Xu, Guangyong/0000-0003-1441-8275; Boatner, Lynn/0000-0002-0235-7594 FU Carnegie Trust for the Universities of Scotland; Royal Society; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy (DOE) [DE-SC0006939]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; National Natural Science Foundation of China [11374143]; Ministry of Education [NCET-13-0282]; Fundamental Research Funds for the Central Universities FX C.S. is grateful to the Carnegie Trust for the Universities of Scotland and the Royal Society for financial support during this work. D.R. was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy (DOE), through Contract No. DE-SC0006939. Research at the Oak Ridge National Laboratory for one author (L.A.B.) is sponsored by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. Work at Nanjing University was supported by National Natural Science Foundation of China under Contract No. 11374143, Ministry of Education under Contract No. NCET-13-0282, and Fundamental Research Funds for the Central Universities. NR 94 TC 4 Z9 4 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 24 PY 2014 VL 90 IS 22 AR 224302 DI 10.1103/PhysRevB.90.224302 PG 13 WC Physics, Condensed Matter SC Physics GA CA3PQ UT WOS:000348819300002 ER PT J AU Beloy, K Hinkley, N Phillips, NB Sherman, JA Schioppo, M Lehman, J Feldman, A Hanssen, LM Oates, CW Ludlow, AD AF Beloy, K. Hinkley, N. Phillips, N. B. Sherman, J. A. Schioppo, M. Lehman, J. Feldman, A. Hanssen, L. M. Oates, C. W. Ludlow, A. D. TI Atomic Clock with 1 x 10(-18) Room-Temperature Blackbody Stark Uncertainty SO PHYSICAL REVIEW LETTERS LA English DT Article ID LATTICE CLOCK AB The Stark shift due to blackbody radiation (BBR) is the key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we demonstrate an in-vacuum radiation shield that furnishes a uniform, well-characterized BBR environment for the atoms in an ytterbium optical lattice clock. Operated at room temperature, this shield enables specification of the BBR environment to a corresponding fractional clock uncertainty contribution of 5.5 x 10(-19). Combined with uncertainty in the atomic response, the total uncertainty of the BBR Stark shift is now 1 x 10(-18). Further operation of the shield at elevated temperatures enables a direct measure of the BBR shift temperature dependence and demonstrates consistency between our evaluated BBR environment and the expected atomic response. C1 [Beloy, K.; Hinkley, N.; Phillips, N. B.; Sherman, J. A.; Schioppo, M.; Lehman, J.; Feldman, A.; Oates, C. W.; Ludlow, A. D.] NIST, Boulder, CO 80305 USA. [Hinkley, N.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hanssen, L. M.] NIST, Gaithersburg, MD 20899 USA. RP Beloy, K (reprint author), NIST, 325 Broadway, Boulder, CO 80305 USA. EM kyle.beloy@nist.gov; andrew.ludlow@nist.gov FU NIST; DARPA QuASAR; NASA Fundamental Physics; DARPA PULSE; NRC-RAP FX This work was supported by NIST, DARPA QuASAR, NASA Fundamental Physics, DARPA PULSE, and NRC-RAP. We thank W. Tew, G. Strouse, and D. Cross of NIST for useful discussions on precision temperature measurement and W. McGrew and S. Jefferts for careful reading of the manuscript. NR 28 TC 26 Z9 27 U1 1 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 24 PY 2014 VL 113 IS 26 AR 260801 DI 10.1103/PhysRevLett.113.260801 PG 5 WC Physics, Multidisciplinary SC Physics GA CA4KX UT WOS:000348874100002 PM 25615296 ER PT J AU Aikawa, K Frisch, A Mark, M Baier, S Grimm, R Bohn, JL Jin, DS Bruun, GM Ferlaino, F AF Aikawa, K. Frisch, A. Mark, M. Baier, S. Grimm, R. Bohn, J. L. Jin, D. S. Bruun, G. M. Ferlaino, F. TI Anisotropic Relaxation Dynamics in a Dipolar Fermi Gas Driven Out of Equilibrium SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; ULTRACOLD COLLISIONS; QUANTUM; ATOMS; THRESHOLD; PHYSICS AB We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic Er-167 fermions, spin polarized in the lowest Zeeman sublevel. In this system, elastic collisions arise purely from universal dipolar scattering. Based on cross-dimensional rethermalization experiments, we observe a strong anisotropy of the scattering, which manifests itself in a large angular dependence of the thermal relaxation dynamics. Our result is in good agreement with recent theoretical predictions. Furthermore, we measure the rethermalization rate as a function of temperature for different angles and find that the suppression of collisions by Pauli blocking is not influenced by the dipole orientation. C1 [Aikawa, K.; Frisch, A.; Mark, M.; Baier, S.; Grimm, R.; Ferlaino, F.] Univ Innsbruck, Inst Expt Phys, A-6020 Innsbruck, Austria. [Aikawa, K.; Frisch, A.; Mark, M.; Baier, S.; Grimm, R.; Ferlaino, F.] Univ Innsbruck, Zentrum Quantenphys, A-6020 Innsbruck, Austria. [Grimm, R.; Ferlaino, F.] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, A-6020 Innsbruck, Austria. [Bohn, J. L.; Jin, D. S.] Univ Colorado, NIST, JILA, Boulder, CO 80309 USA. [Bohn, J. L.; Jin, D. S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Bruun, G. M.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. RP Aikawa, K (reprint author), Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria. RI Grimm, Rudolf/D-2864-2009; Aikawa, Kiyotaka/D-4896-2016; Ferlaino, francesca/E-6726-2012 OI Grimm, Rudolf/0000-0003-1085-5558; FU Austrian Ministry of Science and Research (BMWF); Austrian Science Fund (FWF) [Y479-N20]; European Research Council [259435]; Lise-Meitner program of the FWF; U.S. National Science Foundation [1125844] FX We are grateful to M. Baranov for fruitful discussions. This work is supported by the Austrian Ministry of Science and Research (BMWF) and the Austrian Science Fund (FWF) through a START Grant under Project No. Y479-N20 and by the European Research Council under Project No. 259435. K. A. is supported within the Lise-Meitner program of the FWF. J. L. B. and D. S. J. acknowledge support from U.S. National Science Foundation Grant No. 1125844. NR 30 TC 13 Z9 13 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 23 PY 2014 VL 113 IS 26 AR 263201 DI 10.1103/PhysRevLett.113.263201 PG 5 WC Physics, Multidisciplinary SC Physics GA AZ6YE UT WOS:000348364000004 PM 25615326 ER PT J AU Gotrik, KW Lam, T Hannon, AF Bai, WB Ding, Y Winterstein, J Alexander-Katz, A Liddle, JA Ross, CA AF Gotrik, Kevin W. Lam, Thomas Hannon, Adam F. Bai, Wubin Ding, Yi Winterstein, Jonathan Alexander-Katz, Alfredo Liddle, J. Alexander Ross, Caroline A. TI 3D TEM Tomography of Templated Bilayer Films of Block Copolymers SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID THIN-FILMS; NANOPOROUS MEMBRANES; LITHOGRAPHY; BLENDS; ARRAYS; ELECTROLYTES; ARRANGEMENT; FILTRATION; POLYMERS; BEHAVIOR AB Transmission electron microscope (TEM) tomography was used to visualize the morphology and 3D connectivity of a lithographically templated, self-assembled bilayer film of cylinder-forming 45.5 kg/mol polystyrene-block polydimethylsiloxane. The structure, formed after a 5 min solvothermal anneal, was imaged with a resolution of approximate to 3 nm in 3D, enabling a comparison between measurement and self-consistent mean-field theory (SCFT) calculations. Images of etched and unetched samples showed that etching collapsed the PDMS microdomain structure and reduced the template dimensions. In addition to the general comparison between modeled and measured dimensions, the tomography revealed connections between the orthogonal layers of cylinders at their crossing points. Comparison with the SCFT model, even under solvothermal annealing conditions, shows that it is helpful in understanding the detailed nanoscale structure of features created by directed self-assembly (DSA), which is essential in developing nanomanufacturing processes based on DSA. C1 [Gotrik, Kevin W.; Hannon, Adam F.; Bai, Wubin; Ding, Yi; Alexander-Katz, Alfredo; Ross, Caroline A.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Lam, Thomas; Winterstein, Jonathan; Liddle, J. Alexander] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. RP Gotrik, KW (reprint author), MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM caross@mit.edu RI Liddle, James/A-4867-2013; Bai, Wubin/B-6317-2017 OI Liddle, James/0000-0002-2508-7910; Bai, Wubin/0000-0003-2872-5559 FU Semiconductor Research Corporation; C-SPIN Center, a STARnet Center by MARCO; DARPA; Tokyo Electron; Taiwan Semiconductor Manufacturing Company; National Science Foundation FX The authors gratefully acknowledge support of the Semiconductor Research Corporation; the C-SPIN Center, a STARnet Center supported by MARCO and DARPA; Tokyo Electron; Taiwan Semiconductor Manufacturing Company; and the National Science Foundation. Disclaimer: Certain commercial equipment, instruments, or materials are identified in this report in order to specify the experimental procedure adequately. Such identifi cation is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose. NR 42 TC 13 Z9 13 U1 4 U2 64 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD DEC 23 PY 2014 VL 24 IS 48 BP 7689 EP 7697 DI 10.1002/adfm.201402457 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA AW8GI UT WOS:000346498900015 ER PT J AU Lee, C Zhang, ZS Steinbrecher, GR Zhou, HC Mower, J Zhong, T Wang, LG Hu, XL Horansky, RD Verma, VB Lita, AE Mirin, RP Marsili, F Shaw, MD Nam, SW Wornell, GW Wong, FNC Shapiro, JH Englund, D AF Lee, Catherine Zhang, Zheshen Steinbrecher, Gregory R. Zhou, Hongchao Mower, Jacob Zhong, Tian Wang, Ligong Hu, Xiaolong Horansky, Robert D. Verma, Varun B. Lita, Adriana E. Mirin, Richard P. Marsili, Francesco Shaw, Matthew D. Nam, Sae Woo Wornell, Gregory W. Wong, Franco N. C. Shapiro, Jeffrey H. Englund, Dirk TI Entanglement-based quantum communication secured by nonlocal dispersion cancellation SO PHYSICAL REVIEW A LA English DT Article ID KEY DISTRIBUTION; STATES; PHOTONS; CONVERSION; PROOF AB Quantum key distribution (QKD) enables participants to exchange secret information over long distances with unconditional security. However, the performance of today's QKD systems is subject to hardware limitations, such as those of available nonclassical-light sources and single-photon detectors. By encoding photons in high-dimensional states, the rate of generating secure information under these technical constraints can be maximized. Here, we demonstrate a complete time-energy entanglement-based QKD system with proven security against the broad class of arbitrary collective attacks. The security of the system is based on nonlocal dispersion cancellation between two time-energy entangled photons. This resource-efficient QKD system is implemented at telecommunications wavelength, is suitable for optical fiber and free-space links, and is compatible with wavelength-division multiplexing. C1 [Lee, Catherine; Zhang, Zheshen; Steinbrecher, Gregory R.; Zhou, Hongchao; Mower, Jacob; Zhong, Tian; Wang, Ligong; Hu, Xiaolong; Wornell, Gregory W.; Wong, Franco N. C.; Shapiro, Jeffrey H.; Englund, Dirk] MIT, Elect Res Lab, Cambridge, MA 02139 USA. [Lee, Catherine] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Horansky, Robert D.; Verma, Varun B.; Lita, Adriana E.; Mirin, Richard P.; Nam, Sae Woo] NIST, Boulder, CO 80305 USA. [Marsili, Francesco; Shaw, Matthew D.] NASA, Jet Prop Lab, Pasadena, CA 91109 USA. RP Lee, C (reprint author), MIT, Elect Res Lab, Cambridge, MA 02139 USA. OI Mirin, Richard/0000-0002-4472-4655 FU DARPA Information in a Photon program from the Army Research Office [W911NF-10-1-0416]; Columbia Optics and Quantum Electronics IGERT under NSF [DGE1069420] FX This work was supported by the DARPA Information in a Photon program, through Grant No. W911NF-10-1-0416 from the Army Research Office, and the Columbia Optics and Quantum Electronics IGERT under NSF Grant No. DGE1069420. NR 39 TC 8 Z9 8 U1 0 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 22 PY 2014 VL 90 IS 6 AR 062331 DI 10.1103/PhysRevA.90.062331 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AX3FB UT WOS:000346824600005 ER PT J AU Dudowicz, J Douglas, JF Freed, KF AF Dudowicz, Jacek Douglas, Jack F. Freed, Karl F. TI Advances in the generalized entropy theory of glass-formation in polymer melts SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SOLID-LIQUID TRANSITION; LATTICE CLUSTER THEORY; GIBBS-DIMARZIO THEORY; CONFIGURATIONAL ENTROPY; CHAIN STIFFNESS; FORMING LIQUIDS; TEMPERATURE-DEPENDENCE; SUPERCOOLED LIQUIDS; CHEMICAL-STRUCTURE; COHESIVE ENERGY AB The generalized entropy theory (GET) of polymeric glass-forming liquids is reformulated into a computationally simpler and more natural formalism than the original version of this theory. The new theoretical framework greatly facilitates establishing essential trends in the dependence of the segmental relaxation time tau, fragility, characteristic temperatures of glass-formation, etc., on the combined influences of monomer molecular structure, chain rigidity, and cohesive interaction strength. Special attention is placed on the estimating the parameters of the phenomenological Vogel-FulcherTammann relations for describing segmental relaxation in diverse liquids in the low temperature range of glass-formation, T-g > T > T-c (or T-g < T < T-g + 100 K), where T-g and T-c are, respectively, the glass transition temperature and the crossover temperature separating the high and low temperature regimes of glass-formation. Finally, we discuss how the molecular energetic interaction parameters of the GET can be estimated from experimental data. Illustrative calculations are performed for the stiffness factor sigma and the cohesive energy density u as a first step in this direction. (C) 2014 AIP Publishing LLC. C1 [Dudowicz, Jacek; Freed, Karl F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Dudowicz, Jacek; Freed, Karl F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Douglas, Jack F.] NIST, Div Engn & Mat Sci, Gaithersburg, MD 20899 USA. RP Dudowicz, J (reprint author), Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-SC0008631] FX The research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award No. DE-SC0008631. NR 75 TC 11 Z9 11 U1 3 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD DEC 21 PY 2014 VL 141 IS 23 AR 234903 DI 10.1063/1.4903842 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA AX0SQ UT WOS:000346662700048 PM 25527959 ER PT J AU Trampedach, R Stein, RF Christensen-Dalsgaard, J Nordlund, A Asplund, M AF Trampedach, Regner Stein, Robert F. Christensen-Dalsgaard, Jorgen Nordlund, Ake Asplund, Martin TI Improvements to stellar structure models, based on a grid of 3D convection simulations - II. Calibrating the mixing-length formulation SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE convection; stars: atmospheres; stars: evolution ID EQUATION-OF-STATE; BALMER LINE-PROFILES; INFRARED FLUX METHOD; ALPHA-CENTAURI-B; LOW-MASS STARS; SOLAR CONVECTION; NUMERICAL SIMULATIONS; TURBULENT CONVECTION; ROTATION PERIODS; HELIUM ABUNDANCE AB We perform a calibration of the mixing length of convection in stellar structure models against realistic 3D radiation-coupled hydrodynamics simulations of convection in stellar surface layers, determining the adiabat deep in convective stellar envelopes. The mixing-length parameter alpha is calibrated by matching averages of the 3D simulations to 1D stellar envelope models, ensuring identical atomic physics in the two cases. This is done for a previously published grid of solar-metallicity convection simulations, covering from 4200 to 6900 K on the main sequence, and from 4300 to 5000 K for giants with log g = 2.2. Our calibration results in an alpha varying from 1.6 for the warmest dwarf, which is just cool enough to admit a convective envelope, and up to 2.05 for the coolest dwarfs in our grid. In between these is a triangular plateau of alpha similar to 1.76. The Sun is located on this plateau and has seen little change during its evolution so far. When stars ascend the giant branch, they largely do so along tracks of constant alpha, with alpha decreasing with increasing mass. C1 [Trampedach, Regner; Christensen-Dalsgaard, Jorgen] Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, DK-8000 Aarhus C, Denmark. [Trampedach, Regner] Univ Colorado, JILA, Boulder, CO 80309 USA. [Trampedach, Regner] Natl Inst Stand & Technol, Boulder, CO 80309 USA. [Stein, Robert F.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Nordlund, Ake] Niels Bohr Inst, Astron Observ, DK-2100 Copenhagen O, Denmark. [Asplund, Martin] Mt Stromlo & Siding Spring Observ, Res Sch Astron & Astrophys, Weston, ACT 2611, Australia. RP Trampedach, R (reprint author), Aarhus Univ, Dept Phys & Astron, Stellar Astrophys Ctr, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. EM trampeda@lcd.colorado.edu FU Danish National Research Foundation [DNRF106]; ASTERISK project - European Research Council [267864]; NASA [NNX08AI57G, NNX11AJ36G, NNX12AH49G]; Australian Research Council [DP 0342613, DP 0558836]; NSF [AGS-1141921] FX We thank the anonymous referee for helpful comments which have substantially improved the presentation. We are grateful to Werner Dappen for granting us access to the MHD-EOS code and to R. F. Kurucz for providing us with his tables of opacity distribution functions. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant DNRF106). The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (Grant agreement no.: 267864). We would like to thank the Australian Partnership for Advanced Computations (APAC) for generous amounts of computer time. RT acknowledges funding from NASA grants NNX08AI57G and NNX11AJ36G and from the Australian Research Council (grants DP 0342613 and DP 0558836) RFS acknowledges NSF grant AGS-1141921 and NASA grant and NNX12AH49G. This research has made use of NASA's Astrophysics Data System Bibliographic Services. NR 140 TC 32 Z9 32 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 21 PY 2014 VL 445 IS 4 BP 4366 EP 4384 DI 10.1093/mnras/stu2084 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AX5JY UT WOS:000346963300082 ER PT J AU Balram, KC Davanco, M Lim, JY Song, JD Srinivasan, K AF Balram, Krishna C. Davanco, Marcelo Lim, Ju Young Song, Jin Dong Srinivasan, Kartik TI Moving boundary and photoelastic coupling in GaAs optomechanical resonators SO OPTICA LA English DT Article ID CRYSTAL CAVITY; WAVE-GUIDES AB Chip-based cavity optomechanical systems are being considered for applications in sensing, metrology, and quantum information science. Critical to their development is an understanding of how the optical andmechanical modes interact, quantified by the coupling rate g(0). Here, we develop GaAs optomechanical resonators and investigate the moving dielectric boundary and photoelastic contributions to g(0). First, we consider coupling between the fundamental radial breathing mechanical mode and a 1550 nm band optical whispering gallery mode in microdisks. For decreasing disk radius from R = 5 to 1 mu m, simulations and measurements show that g(0) changes from being dominated by the moving boundary contribution to having an equal photoelastic contribution. Next, we design and demonstrate nanobeam optomechanical crystals, in which a 2.5 GHz mechanical breathing mode couples to a 1550 nm optical mode, predominantly through the photoelastic effect. We show a significant (30%) dependence of g(0) on the device's in-plane orientation, resulting from the difference in GaAs photoelastic coefficients along different crystalline axes, with fabricated devices exhibiting g(0)/2 pi as high as 1.1MHz, for orientation along the [110] axis. GaAs nanobeam optomechanical crystals are a promising system, which can combine the demonstrated large optomechanical coupling strength with additional functionality, such as piezoelectric actuation and incorporation of optical gain media. (C) 2014 Optical Society of America C1 [Balram, Krishna C.; Davanco, Marcelo; Srinivasan, Kartik] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Balram, Krishna C.] Univ Maryland, Maryland NanoCtr, College Pk, MD 20742 USA. [Lim, Ju Young; Song, Jin Dong] Korea Inst Sci & Technol, Ctr Optoelect Convergence Syst, Seoul 136791, South Korea. RP Srinivasan, K (reprint author), NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. EM krishna.coimbatorebalram@nist.gov; kartik.srinivasan@nist.gov FU DARPA (MESO); KIST (Future Convergence Pioneer Program); University of Maryland [70NANB10H193]; NIST-CNST [70NANB10H193]; KIST (Flagship Program); KIST (GRL program) FX DARPA (MESO); KIST (Future Convergence Pioneer Program, Flagship Program, GRL program); Cooperative Research Agreement between University of Maryland and NIST-CNST (70NANB10H193). NR 31 TC 19 Z9 19 U1 0 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2334-2536 J9 OPTICA JI Optica PD DEC 20 PY 2014 VL 1 IS 6 BP 414 EP 420 DI 10.1364/OPTICA.1.000414 PG 7 WC Optics SC Optics GA CI6JG UT WOS:000354864400010 ER PT J AU Sun, JQ Wang, MH AF Sun, Junqiang Wang, Menghua TI Visible Infrared Imaging Radiometer Suite solar diffuser calibration and its challenges using a solar diffuser stability monitor SO APPLIED OPTICS LA English DT Article ID BANDS; PERFORMANCE; ULTRAVIOLET AB The reflective solar bands (RSB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite is calibrated by a solar diffuser (SD) whose performance is itself monitored by a solar diffuser stability monitor (SDSM). In this study, we describe the calibration algorithm of the SDSM, analyze the current two and a half years of calibration data, and derive the performance result for the SD, commonly called SD degradation or H-factors. The application of the newly derived vignetting functions for both the SD screen and the SDSM sun-view screen effectively removes the seasonal oscillations in the derived SD degradation and significantly improves the quality of the H-factors. The full illumination region, the so-called "sweet spot," for both SD view and SDSM sun view is carefully examined and selected to ensure a consistent and an optimal number of valid data samples to reduce the sample noise owing to inconsistent or lack of samples. The result shows that SD degrades much faster at short wavelength as expected, about 28.5% at 412 nm but only 1.2% at 935 nm up to date. The performance of the SD degrades exponentially with time until 7 November 2013 but has since become flat. This sudden flattening of the SD degradation is a new phenomenon never previously observed for the degradations of the SD on VIIRS or other satellite sensors. The overall result shows that SDSM is essentially functioning without flaws in catching the on-orbit degradation of the SD. The most significant and direct impact of this work would be on the quality of the ocean color products that depend sensitively on moderate RSB (RSB) (M1-M8, M10, and M11). Two very important and key questions on the performance of the SD are also raised. One pertains to the directional dependence of the SD degradation result, and it is shown that the SD does not degrade uniformly in all directions as has been assumed by all SD calibration analyses. This has a definitive impact on the RSB calibration. Another is on the degradation of the SD at the shortwave infrared (SWIR) wavelengths, and it is shown that the zero degradation input for the RSB calibration would be erroneous. Last, the impact of the stray light on the SD since " first light" is cleanly exhibited in the improved SD degradation result. (C) 2014 Optical Society of America C1 [Sun, Junqiang; Wang, Menghua] NOAA Natl Environm Satellite, Data & Informat Serv, Ctr Satellite Applicat & Res, College Pk, MD 20740 USA. [Sun, Junqiang] Global Sci & Technol, Greenbelt, MD 20770 USA. RP Sun, JQ (reprint author), NOAA Natl Environm Satellite, Data & Informat Serv, Ctr Satellite Applicat & Res, E-RA3,5830 Univ Res Court, College Pk, MD 20740 USA. EM junqiang.sun@noaa.gov RI Wang, Menghua/F-5631-2010 OI Wang, Menghua/0000-0001-7019-3125 FU Joint Polar Satellite System (JPSS) FX The work was supported by Joint Polar Satellite System (JPSS) funding. We would like to thank Mike Chu for insightful suggestions. We thank two anonymous reviewers for their useful comments. The views, opinions, and findings contained in this paper are those of the authors and should not be construed as an official NOAA or US Government position, policy, or decision. NR 26 TC 25 Z9 25 U1 1 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD DEC 20 PY 2014 VL 53 IS 36 BP 8571 EP 8584 DI 10.1364/AO.53.008571 PG 14 WC Optics SC Optics GA AX3ED UT WOS:000346822300025 PM 25608208 ER PT J AU Coughlin, ER Begelman, MC AF Coughlin, Eric R. Begelman, Mitchell C. TI THE GENERAL RELATIVISTIC EQUATIONS OF RADIATION HYDRODYNAMICS IN THE VISCOUS LIMIT SO ASTROPHYSICAL JOURNAL LA English DT Article DE radiation: dynamics; radiative transfer; relativistic processes ID SUPER-EDDINGTON ACCRETION; MASSIVE BLACK-HOLE; GAMMA-RAY BURSTS; MAGNETOHYDRODYNAMIC SIMULATION; FRIEDMANN UNIVERSES; TIDAL DISRUPTION; M1 CLOSURE; FLOWS; DISKS; FLUID AB We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit with viscous terms included. Contrary to relativistic generalizations of the viscous stress tensor that appear in the literature, we find that the stress tensor should contain a correction to the comoving energy density proportional to the divergence of the four-velocity, as well as a finite bulk viscosity. These modifications are consistent with the framework of radiation hydrodynamics in the limit of large optical depth, and do not depend on thermodynamic arguments such as the assignment of a temperature to the zeroth-order photon distribution. We perform a perturbation analysis on our equations and demonstrate that as long as the wave numbers do not probe scales smaller than the mean free path of the radiation, the viscosity contributes only decaying, i.e., stable, corrections to the dispersion relations. The astrophysical applications of our equations, including jets launched from super-Eddington tidal disruption events and those from collapsars, are discussed and will be considered further in future papers. C1 [Coughlin, Eric R.; Begelman, Mitchell C.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Coughlin, Eric R.; Begelman, Mitchell C.] NIST, Boulder, CO 80309 USA. [Coughlin, Eric R.; Begelman, Mitchell C.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. RP Coughlin, ER (reprint author), Univ Colorado, JILA, UCB 440, Boulder, CO 80309 USA. EM eric.coughlin@colorado.edu; mitch@jila.colorado.edu OI BEGELMAN, MITCHELL/0000-0003-0936-8488 FU NASA Astrophysics Theory Program grant [NNX14AB37G]; NSF grant [AST-1411879]; NASA's Fermi Guest Investigator Program FX This work was supported in part by NASA Astrophysics Theory Program grant NNX14AB37G, NSF grant AST-1411879, and NASA's Fermi Guest Investigator Program. We thank Charles Gammie for drawing our attention to the work of Hiscock & Lindblom (1985). NR 49 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 20 PY 2014 VL 797 IS 2 AR 103 DI 10.1088/0004-637X/797/2/103 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AW5BS UT WOS:000346291600031 ER PT J AU Oleson, EM Slrovic, A Bayless, AR Hildebrand, JA AF Oleson, Erin M. Slrovic, Ana Bayless, Alexandra R. Hildebrand, John A. TI Synchronous Seasonal Change in Fin Whale Song in the North Pacific SO PLOS ONE LA English DT Article ID BALAENOPTERA-PHYSALUS; HUMPBACK WHALES; GEOGRAPHIC-VARIATION; ATLANTIC OCEAN; 20-HZ SIGNALS; BLUE WHALES; CALLS; VOCALIZATION; PHOTOPERIOD; FREQUENCY AB Fin whale (Balaenoptera physalus) song consists of down-swept pulses arranged into stereotypic sequences that can be characterized according to the interval between successive pulses. As in blue (B. musculus) and humpback whales (Megaptera novaeangliae), these song sequences may be geographically distinct and may correlate with population boundaries in some regions. We measured inter-pulse intervals of fin whale songs within year-round acoustic datasets collected between 2000 and 2006 in three regions of the eastern North Pacific: Southern California, the Bering Sea, and Hawaii. A distinctive song type that was recorded in all three regions is characterized by singlet and doublet inter-pulse intervals that increase seasonally, then annually reset to the same shorter intervals at the beginning of each season. This song type was recorded in the Bering Sea and off Southern California from September through May and off Hawaii from December through April, with the song interval generally synchronized across all monitoring locations. The broad geographic and seasonal occurrence of this particular fin whale song type may represent a single population broadly distributed throughout the eastern Pacific with no clear seasonal migratory pattern. Previous studies attempting to infer population structure of fin whales in the North Pacific using synchronous individual song samples have been unsuccessful, likely because they did not account for the seasonal lengthening in song intervals observed here. C1 [Oleson, Erin M.] NOAA Fisheries, Pacific Islands Fisheries Sci Ctr, Protected Species Div, Honolulu, HI USA. [Slrovic, Ana; Hildebrand, John A.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Bayless, Alexandra R.] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA. RP Oleson, EM (reprint author), NOAA Fisheries, Pacific Islands Fisheries Sci Ctr, Protected Species Div, Honolulu, HI USA. EM erin.oleson@noaa.gov FU NOAA Fisheries Pacific Islands Fisheries Science Center; Alaska Department of Fish and Wildlife; United States Navy Chief of Naval Operations Environmental Compliance [CNO-N45]; Strategic Environmental Research and Development Program (SERDP) FX The Ecosystem and Oceanography and Protected Species Divisions at NOAA Fisheries Pacific Islands Fisheries Science Center supported deployment of HARPs at Cross Seamount and provided salary support for E. Oleson and A. Bayless during a portion of this work. The Alaska Department of Fish and Wildlife provided funds for the deployment and maintenance of HARPs in the Bering Sea. United States Navy Chief of Naval Operations Environmental Compliance (CNO-N45) and the Strategic Environmental Research and Development Program (SERDP) provided funds for deployment and maintenance of ARPs and HARPs off Hawaii Island and in the Southern California Bight. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 51 TC 4 Z9 4 U1 2 U2 12 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 18 PY 2014 VL 9 IS 12 AR e115678 DI 10.1371/journal.pone.0115678 PG 18 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA CA4AC UT WOS:000348845600053 PM 25521493 ER PT J AU Winton, M Anderson, WG Delworth, TL Griffies, SM Hurlin, WJ Rosati, A AF Winton, Michael Anderson, Whit G. Delworth, Thomas L. Griffies, Stephen M. Hurlin, William J. Rosati, Anthony TI Has coarse ocean resolution biased simulations of transient climate sensitivity? SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE climate sensitivity ID PART I; MODELS; CIRCULATION; GFDL; FORMULATION AB We investigate the influence of ocean component resolution on simulation of climate sensitivity using variants of the GFDL CM2.5 climate model incorporating eddy-resolving (1/10 degrees) and eddy-parameterizing (1 degrees) ocean resolutions. Two parameterization configurations of the coarse-resolution model are used yielding a three-model suite with significant variation in the transient climate response (TCR). The variation of TCR in this suite and in an enhanced group of 10 GFDL models is found to be strongly associated with the control climate Atlantic meridional overturning circulation (AMOC) magnitude and its decline under forcing. We find that it is the AMOC behavior rather than resolution per se that accounts for most of the TCR differences. A smaller difference in TCR stems from the eddy-resolving model having more Southern Ocean surface warming than the coarse models. C1 [Winton, Michael; Anderson, Whit G.; Delworth, Thomas L.; Griffies, Stephen M.; Hurlin, William J.; Rosati, Anthony] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. RP Winton, M (reprint author), NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. EM Michael.Winton@noaa.gov RI Delworth, Thomas/C-5191-2014 NR 34 TC 13 Z9 13 U1 2 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 16 PY 2014 VL 41 IS 23 BP 8522 EP 8529 DI 10.1002/2014GL061523 PG 8 WC Geosciences, Multidisciplinary SC Geology GA AZ8JP UT WOS:000348462000048 ER PT J AU Lee, SK DiNezio, PN Chung, ES Yeh, SW Wittenberg, AT Wang, CZ AF Lee, Sang-Ki DiNezio, Pedro N. Chung, Eui-Seok Yeh, Sang-Wook Wittenberg, Andrew T. Wang, Chunzai TI Spring persistence, transition, and resurgence of El Nino SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE El Nino; ENSO; seasonal forecast; springtime ENSO variability; ENSO diversity ID SEA-SURFACE TEMPERATURE; PACIFIC MERIDIONAL MODE; SOUTHERN-OSCILLATION; COUPLED MODEL; ENSO; TERMINATION; EVENTS; EVOLUTION; RAINFALL; NONLINEARITY AB We present a systematic exploration of differences in the spatiotemporal sea surface temperature (SST) evolution along the equatorial Pacific among observed El Nino events. This inter-El Nino variability is captured by two leading orthogonal modes, which explain more than 60% of the interevent variance. The first mode illustrates the extent to which warm SST anomalies (SSTAs) in the eastern tropical Pacific (EP) persist into the boreal spring after the peak of El Nino. Our analysis suggests that a strong El Nino event tends to persist into the boreal spring in the EP, whereas a weak El Nino favors a rapid development of cold SSTAs in the EP shortly after its peak. The second mode captures the transition and resurgence of El Nino in the following year. An early-onset El Nino tends to favor a transition to La Nina, whereas a late-onset El Nino tends to persist long enough to produce another El Nino event. The spatiotemporal evolution of several El Nino events during 1949-2013 can be efficiently summarized in terms of these two modes, which are not mutually exclusive, but exhibit distinctive coupled atmosphere-ocean dynamics. C1 [Lee, Sang-Ki] Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33124 USA. [Lee, Sang-Ki; Wang, Chunzai] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. [DiNezio, Pedro N.] Univ Hawaii Manoa, Dept Oceanog, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. [Chung, Eui-Seok] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. [Yeh, Sang-Wook] Hanyang Univ, Dept Marine Sci & Convergent Technol, Ansan, South Korea. [Wittenberg, Andrew T.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Lee, SK (reprint author), Univ Miami, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33124 USA. EM sang-ki.lee@noaa.gov RI Wang, Chunzai /C-9712-2009; Lee, Sang-Ki/A-5703-2011; Wittenberg, Andrew/G-9619-2013 OI Wang, Chunzai /0000-0002-7611-0308; Lee, Sang-Ki/0000-0002-4047-3545; Wittenberg, Andrew/0000-0003-1680-8963 FU NOAA/CPO through its MAPP program [NA12OAR4310083]; NOAA/AOML; NOAA [NA14OAR4310229. 20CR, ERSST3]; SODA FX This work was supported by NOAA/CPO through its MAPP program NA12OAR4310083 and by the base funding of NOAA/AOML. P. DiNezio was supported by NOAA grant NA14OAR4310229. 20CR, ERSST3, and SODA were, respectively, provided by NOAA/ESRL/PSD at http://www.esrl.noaa.gov/psd/, by NOAA NCDC at http://www.ncdc.noaa.gov, and by TAMU SODA research group at http://soda.tamu.edu/data.htm. S.-K. Lee acknowledge helpful discussions on the recharge-discharge oscillator with Chris Meinen and constructive review of an early version of this paper by Hosmay Lopez. NR 49 TC 8 Z9 8 U1 2 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 16 PY 2014 VL 41 IS 23 BP 8578 EP 8585 DI 10.1002/2014GL062484 PG 8 WC Geosciences, Multidisciplinary SC Geology GA AZ8JP UT WOS:000348462000055 ER PT J AU Neely, RR Marsh, DR Smith, KL Davis, SM Polvani, LM AF Neely, R. R., III Marsh, D. R. Smith, K. L. Davis, S. M. Polvani, L. M. TI Biases in southern hemisphere climate trends induced by coarsely specifying the temporal resolution of stratospheric ozone SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE ozone; climate; trends; southern hemisphere; troposphere; stratosphere ID CMIP5 MODELS; IMPACT AB Global climate models that do not include interactive middle atmosphere chemistry, such as most of those contributing to the Coupled Model Intercomparison Project Phase 5, typically specify stratospheric ozone using monthly mean, zonal mean values and linearly interpolate to the time resolution of the model. We show that this method leads to significant biases in the simulated climate of the southern hemisphere (SH) over the late twentieth century. Previous studies have attributed similar biases in simulated SH climate change to the effect of the spatial smoothing of the specified ozone, i.e., to using zonal mean concentrations. We here show that the bias in climate trends due to undersampling of the rapid temporal changes in ozone during the seasonal evolution of the Antarctic ozone hole is considerable and reaches all the way into the troposphere. Our results suggest that the bias can be substantially reduced by specifying daily ozone concentrations. C1 [Neely, R. R., III; Marsh, D. R.] NCAR, Boulder, CO 80307 USA. [Neely, R. R., III] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England. [Neely, R. R., III] Univ Leeds, Inst Climate & Atmospher Sci, Leeds, W Yorkshire, England. [Neely, R. R., III; Davis, S. M.] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Smith, K. L.; Polvani, L. M.] Columbia Univ, New York, NY USA. [Davis, S. M.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO USA. RP Neely, RR (reprint author), NCAR, Boulder, CO 80307 USA. EM r.neely@leeds.ac.uk RI Marsh, Daniel/A-8406-2008; Davis, Sean/C-9570-2011; Neely, Ryan/F-8702-2010; Manager, CSD Publications/B-2789-2015 OI Marsh, Daniel/0000-0001-6699-494X; Davis, Sean/0000-0001-9276-6158; Neely, Ryan/0000-0003-4560-4812; FU U.S. National Science Foundation (NSF); Office of Science of the U.S. Department of Energy; NSF; NSF via the NCAR's Advanced Study Program's postdoctoral fellowship; Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship; NASA ACMAP grant [12-ACMAP12-0010]; Frontier of Earth System Dynamics grant from the NSF [OCE-1338814] FX We thank Rolando Garcia, Doug Kinnison, Anne Smith, Francis Vitt, Sean Santos, and Michael Mills for their assistance in developing CESM1 (WACCM and SC-WACCM) and interpreting its output. The CESM project is supported by the U.S. National Science Foundation (NSF) and the Office of Science of the U.S. Department of Energy. The National Center for Atmospheric Research (NCAR) is sponsored by the NSF. The authors also want to acknowledge Robert W. Portman (NOAA/ESRL) for the many fruitful discussions on this topic. The authors acknowledge the NOAA Research and Development High Performance Computing Program for providing computing and storage resources that significantly contributed to the research results reported within this paper (http://rdhpcs.noaa.gov). We also thank Henry LeRoy Miller Jr. (NOAA/ESRL) for his assistance with NOAA's high-performance computing facilities. Computing resources were also provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory, sponsored by the NSF and other agencies. R.R.N. is currently supported by the NSF via the NCAR's Advanced Study Program's postdoctoral fellowship and as a postdoctoral research associate at NOAA/ESRL. K.L.S. is funded by a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship. SMD's participation in this work was funded by NASA ACMAP grant 12-ACMAP12-0010. The work of D.R.M. and L.M.P. is funded, in part, by Frontier of Earth System Dynamics grant (OCE-1338814) from the NSF. All of the original model results produced in this work are freely available via requests to the corresponding author. NR 28 TC 9 Z9 9 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 16 PY 2014 VL 41 IS 23 BP 8602 EP 8610 DI 10.1002/2014GL061627 PG 9 WC Geosciences, Multidisciplinary SC Geology GA AZ8JP UT WOS:000348462000058 ER PT J AU Rivera-Rios, JC Nguyen, TB Crounse, JD Jud, W St Clair, JM Mikoviny, T Gilman, JB Lerner, BM Kaiser, JB de Gouw, J Wisthaler, A Hansel, A Wennberg, PO Seinfeld, JH Keutsch, FN AF Rivera-Rios, J. C. Nguyen, T. B. Crounse, J. D. Jud, W. St Clair, J. M. Mikoviny, T. Gilman, J. B. Lerner, B. M. Kaiser, J. B. de Gouw, J. Wisthaler, A. Hansel, A. Wennberg, P. O. Seinfeld, J. H. Keutsch, F. N. TI Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Isoprene-oxidation; hydroperoxides; anthropogenic influence; secondary pollutant formation; interference ID VOLATILE ORGANIC-COMPOUNDS; MASTER CHEMICAL MECHANISM; MCM V3 PART; TROPOSPHERIC DEGRADATION; ISOPRENE OXIDATION; AEROSOL FORMATION; OH REACTIVITY; PROTOCOL; FOREST AB Atmospheric volatile organic compound (VOC) oxidation mechanisms under pristine (rural/remote) and urban (anthropogenically-influenced) conditions follow distinct pathways due to large differences in nitrogen oxide (NOx) concentrations. These two pathways lead to products that have different chemical and physical properties and reactivity. Under pristine conditions, isoprene hydroxy hydroperoxides (ISOPOOHs) are the dominant first-generation isoprene oxidation products. Utilizing authentic ISOPOOH standards, we demonstrate that two of the most commonly used methods of measuring VOC oxidation products (i.e., gas chromatography and proton transfer reaction mass spectrometry) observe these hydroperoxides as their equivalent high-NO isoprene oxidation products - methyl vinyl ketone (MVK) and methacrolein (MACR). This interference has led to an observational bias affecting our understanding of global atmospheric processes. Considering these artifacts will help close the gap on discrepancies regarding the identity and fate of reactive organic carbon, revise our understanding of surface-atmosphere exchange of reactive carbon and SOA formation, and improve our understanding of atmospheric oxidative capacity. C1 [Rivera-Rios, J. C.; Kaiser, J. B.; Keutsch, F. N.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Nguyen, T. B.; Crounse, J. D.; St Clair, J. M.; Wennberg, P. O.] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA. [Jud, W.; Wisthaler, A.; Hansel, A.] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria. [Mikoviny, T.; Wisthaler, A.] Univ Oslo, Dept Chem, Oslo, Norway. [Gilman, J. B.; Lerner, B. M.; de Gouw, J.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Gilman, J. B.; Lerner, B. M.; de Gouw, J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Wennberg, P. O.; Seinfeld, J. H.] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Seinfeld, J. H.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. RP Keutsch, FN (reprint author), Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. EM keutsch@chem.wisc.edu RI Lerner, Brian/H-6556-2013; de Gouw, Joost/A-9675-2008; Hansel, Armin/F-3915-2010; Kaiser, Jennifer/N-7732-2014; Gilman, Jessica/E-7751-2010; Manager, CSD Publications/B-2789-2015; Crounse, John/C-3700-2014 OI Lerner, Brian/0000-0001-8721-8165; de Gouw, Joost/0000-0002-0385-1826; Hansel, Armin/0000-0002-1062-2394; Gilman, Jessica/0000-0002-7899-9948; Crounse, John/0000-0001-5443-729X FU NSF-AGS [1247421]; National Science Foundation Graduate Research Fellowship Program [DGE-1256259]; NSF [AGS-1240604]; National Science Foundation Fellowship grant [AGS-1331360]; Austrian Science Fund (FWF) [I655-B16]; Austrian Space Applications Program of the Austrian Federal Ministry for Transport, Innovation, and Technology (bmvit); Visiting Scientist Program at the National Institute of Aerospace FX J.C.R., J.B.K., and F.N.K. thank NSF-AGS (1247421) for the support. J.B.K. also acknowledges support from the National Science Foundation Graduate Research Fellowship Program under grant DGE-1256259. J.D.C., T.B.N., J.S., and P.O.W. thank NSF grant AGS-1240604 for the support. T.B.N. also acknowledges support from the National Science Foundation Fellowship grant AGS-1331360. This work was financially supported by the Austrian Science Fund (FWF) under the project I655-B16. A.W. and T.M. acknowledge support through the Austrian Space Applications Program of the Austrian Federal Ministry for Transport, Innovation, and Technology (bmvit) and through the Visiting Scientist Program at the National Institute of Aerospace. Compound characterization, additional figures, and experimental details are available online as supporting information. NR 27 TC 34 Z9 34 U1 13 U2 69 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD DEC 16 PY 2014 VL 41 IS 23 BP 8645 EP 8651 DI 10.1002/2014GL061919 PG 7 WC Geosciences, Multidisciplinary SC Geology GA AZ8JP UT WOS:000348462000063 ER PT J AU Mihailescu, M Krepkiy, D Milescu, M Gawrisch, K Swartz, KJ White, S AF Mihailescu, Mihaela Krepkiy, Dmitriy Milescu, Mirela Gawrisch, Klaus Swartz, Kenton J. White, Stephen TI Structural interactions of a voltage sensor toxin with lipid membranes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE voltage sensor toxin; voltage-activated ion channel; toxin-membrane interaction; membrane structure; neutron diffraction ID DEPENDENT K+ CHANNEL; OMEGA-GRAMMOTOXIN-SIA; GATING MODIFIER TOXINS; TARANTULA TOXIN; NEUTRON-DIFFRACTION; MAGNETIC-RESONANCE; POTASSIUM CHANNELS; SENSING DOMAINS; ION CHANNELS; HYDROCARBON CHAINS AB Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor. C1 [Mihailescu, Mihaela] Univ Maryland, Inst Biosci & Biotechnol Res, Rockville, MD 20850 USA. [Mihailescu, Mihaela] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Krepkiy, Dmitriy; Milescu, Mirela; Swartz, Kenton J.] NINDS, Porter Neurosci Res Ctr, Mol Physiol & Biophys Sect, NIH, Bethesda, MD 20892 USA. [Milescu, Mirela] Univ Missouri, Div Biol, Columbia, MO 65211 USA. [Gawrisch, Klaus] NIAAA, Lab Membrane Biochem & Biophys, NIH, Bethesda, MD 20892 USA. [White, Stephen] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA. RP Swartz, KJ (reprint author), NINDS, Porter Neurosci Res Ctr, Mol Physiol & Biophys Sect, NIH, Bethesda, MD 20892 USA. EM swartzk@ninds.nih.gov; Stephen.white@uci.edu FU Intramural Research Programs of the NINDS-NIH; National Institute on Alcohol Abuse and Alcoholism-NIH; NIH [GM74637]; NINDS [GM86685]; National Institute of General Medical Sciences FX We thank Howard Jaffe, Tomohiro Kimura, David Worcester, Joseph Mindell, and members of the K.J.S. and S.W. laboratories for helpful discussions. We thank Tomohiro Kimura for oriented sample NMR probe-head design. We also thank the NINDS protein sequencing facility for mass spectrometry and peptide sequencing. This work was supported by the Intramural Research Programs of the NINDS-NIH (K.J.S.) and National Institute on Alcohol Abuse and Alcoholism-NIH (K.G.), NIH Grant GM74637 (to S.W.), and Program Project GM86685 from NINDS and National Institute of General Medical Sciences (to S.W.). We are grateful for the National Institute of Standards and Technology, US Department of Commerce, in providing the neutron research facilities used for neutron diffraction experiments. NR 74 TC 15 Z9 15 U1 2 U2 23 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 16 PY 2014 VL 111 IS 50 BP E5463 EP E5470 DI 10.1073/pnas.1415324111 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW6GA UT WOS:000346366500019 PM 25453087 ER PT J AU Fibiger, DL Hastings, MG Lew, AF Peltier, RE AF Fibiger, Dorothy L. Hastings, Meredith G. Lew, Audrey F. Peltier, Richard E. TI Collection of NO and NO2 for Isotopic Analysis of NOx Emissions SO ANALYTICAL CHEMISTRY LA English DT Article ID NITROGEN ISOTOPES; NITRATE; DIOXIDE; SOIL; AMMONIA; OXIDES; PLANTS; WATER; ION AB There have been several measurements made of the nitrogen isotopic composition of gaseous NOx (NOx = NO + NO2) from various emission sources, utilizing a wide variety of methods to collect the NOx in solution as nitrate or nitrite. However, previous collection techniques have not been verified for complete or efficient capture of NOx such that the isotopic composition of NOx remains unaltered during collection. Here, we present a method of collecting NOx (NO + NO2) in solution as nitrate to evaluate the nitrogen isotopic composition of the NOx (xi N-15-NOx). Using a 0.25 M KMnO4 and 0.5 M NaOH solution, quantitative NOx collection was achieved under a variety of conditions in laboratory and field settings, allowing for isotopic analysis without correcting for fractionations. The uncertainty across the entire analytic procedure is +/- 1.5 (1 sigma). With this method, a more robust inventory of NOx source isotopic composition is possible, which has implications for studies of air quality and acid deposition. C1 [Fibiger, Dorothy L.] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Hastings, Meredith G.; Lew, Audrey F.] Brown Univ, Dept Earth Environm & Planetary Sci, Providence, RI 02912 USA. [Peltier, Richard E.] Univ Massachusetts, Amherst, MA 01003 USA. RP Fibiger, DL (reprint author), NOAA, Div Chem Sci, Earth Syst Res Lab, 325 Broadway, Boulder, CO 80302 USA. EM dorothy_fibiger@brown.edu; meredith_hastings@brown.edu FU National Science Foundation [AGS-1351932]; American Association of University Women; Brown University Research and Teaching Awards FX This research was partially supported by the National Science Foundation (Award No. AGS-1351932 to M.G.H.), the American Association of University Women (D.L.F.), and Brown University Research and Teaching Awards (A.F.L.). We thank Cate Levey, Connor Hilton, and Ruby Ho for laboratory assistance. NR 21 TC 8 Z9 9 U1 5 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD DEC 16 PY 2014 VL 86 IS 24 BP 12115 EP 12121 DI 10.1021/ac502968e PG 7 WC Chemistry, Analytical SC Chemistry GA AX1BR UT WOS:000346683900030 PM 25415365 ER PT J AU Li, MD Tan, JJ Tarlov, MJ Zachariah, MR AF Li, Mingdong Tan, Jiaojie Tarlov, Michael J. Zachariah, Michael R. TI Absolute Quantification Method for Protein Concentration SO ANALYTICAL CHEMISTRY LA English DT Article ID DIFFERENTIAL MOBILITY ANALYSIS; IONIZATION MASS-SPECTROMETRY; ELECTROSPRAY-IONIZATION; MECHANISM; RANGE; IONS AB A fast and accurate assay to determine the absolute concentration of proteins is described based on direct measurement of droplet entrapped oligomer formation in electrospray. Here we demonstrate the approach using electrospray differential mobility analysis (ES-DMA), which can distinguish monomers and dimers from higher order oligomers. A key feature of the method is that it allows determination of the absolute number concentration of proteins eliminating the need for protein-specific calibration. The method was demonstrated by measuring the concentration of a NIST Standard Reference Material 927e (bovine serum albumin), a high-purity immunoglobulin G 1, and a formulated Rituximab. The method may be applied to any electrospray source, regardless of diagnostic tool (e.g., MS or ion-mobility, etc.), provided the electrospray is operated in a droplet-fission mode. C1 [Li, Mingdong; Tan, Jiaojie; Zachariah, Michael R.] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA. [Li, Mingdong; Tan, Jiaojie; Zachariah, Michael R.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Li, Mingdong; Tan, Jiaojie; Tarlov, Michael J.; Zachariah, Michael R.] NIST, Gaithersburg, MD 20899 USA. RP Zachariah, MR (reprint author), Univ Maryland, 3130 Chem Bldg, College Pk, MD 20742 USA. EM mrz@umd.edu FU FDA-CERSI FX We thank John E. Schiel for providing us a high-purity immunoglobulin G 1 kappa. Commercial equipment, instruments, or materials identified in this report does not imply recommendation or endorsement by the University of Maryland or the National Institute of Standards and Technology. Partial financial support was provided by a FDA-CERSI grant. NR 27 TC 2 Z9 2 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD DEC 16 PY 2014 VL 86 IS 24 BP 12130 EP 12137 DI 10.1021/ac5030123 PG 8 WC Chemistry, Analytical SC Chemistry GA AX1BR UT WOS:000346683900032 PM 25412350 ER PT J AU Yonkos, LT Friedel, EA Perez-Reyes, AC Ghosal, S Arthur, CD AF Yonkos, Lance T. Friedel, Elizabeth A. Perez-Reyes, Ana C. Ghosal, Sutapa Arthur, Courtney D. TI Microplastics in Four Estuarine Rivers in the Chesapeake Bay, USA SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID PLASTIC MARINE DEBRIS; COASTAL WATERS; SURFACE WATERS; SUBTROPICAL GYRE; PACIFIC-OCEAN; SE-PACIFIC; ENVIRONMENT; ZOOPLANKTON; ACCUMULATION; PARTICLES AB Once believed to degrade into simple compounds, increasing evidence suggests plastics entering the environment are mechanically, photochemically, and/or biologically degraded to the extent that they become imperceptible to the naked eye yet are not significantly reduced in total mass. Thus, more and smaller plastics particles, termed microplastics, reside in the environment and are now a contaminant category of concern. The current study tested the hypotheses that microplastics concentration would be higher in proximity to urban sources, and vary temporally in response to weather phenomena such as storm events. Triplicate surface water samples were collected approximately monthly between July and December 2011 from four estuarine tributaries within the Chesapeake Bay, U.S.A. using a manta net to capture appropriately sized microplastics (operationally defined as 0.3-5.0 mm). Selected sites have watersheds with broadly divergent land use characteristics (e.g., proportion urban/suburban, agricultural and/or forested) and wide ranging population densities. Microplastics were found in all but one of 60 samples, with concentrations ranging over 3 orders of magnitude (<1.0 to >560 g/km(2)). Concentrations demonstrated statistically significant positive correlations with population density and proportion of urban/suburban development within watersheds. The greatest microplastics concentrations also occurred at three of four sites shortly after major rain events. C1 [Yonkos, Lance T.; Perez-Reyes, Ana C.] Univ Maryland, Dept Environm Sci & Technol, College Pk, MD 20742 USA. [Yonkos, Lance T.; Friedel, Elizabeth A.] Univ Maryland, Wye Res & Educ Ctr, Queenstown, MD 21658 USA. [Ghosal, Sutapa] Calif Dept Publ Hlth, Environm Hlth Lab, Richmond, CA 94804 USA. [Arthur, Courtney D.] NOAA, Marine Debris Program, Silver Spring, MD 20910 USA. [Arthur, Courtney D.] IM Syst Grp, Rockville, MD 20852 USA. RP Yonkos, LT (reprint author), Univ Maryland, Dept Environm Sci & Technol, College Pk, MD 20742 USA. EM lyonkos@umd.edu FU National Oceanic and Atmospheric Administration (NOAA) - National Marine Sanctuary Foundation (NMSF) FX This study was supported by the National Oceanic and Atmospheric Administration (NOAA), and funded by a grant from the National Marine Sanctuary Foundation (NMSF). The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the authors and do not reflect the views or policies of NOAA or the U.S. Department of Commerce. The photograph of the manta net was provided by Versar, Inc., Columbia, MD, U.S.A. Authors thank Sherry Lippiatt and Alan Mearns at NOAA for their constructive comments during an initial review of the manuscript and ES&T reviewers for their many helpful suggestions. NR 51 TC 24 Z9 25 U1 23 U2 124 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 16 PY 2014 VL 48 IS 24 BP 14195 EP 14202 DI 10.1021/es5036317 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AX1CO UT WOS:000346686100018 PM 25389665 ER PT J AU Webb, SJ Zychowski, GV Bauman, SW Higgins, BM Raudsepp, T Gollahon, LS Wooten, KJ Cole, JM Godard-Codding, C AF Webb, Sarah J. Zychowski, Gregory V. Bauman, Sandy W. Higgins, Benjamin M. Raudsepp, Terje Gollahon, Lauren S. Wooten, Kimberly J. Cole, Jennifer M. Godard-Codding, Celine TI Establishment, Characterization, and Toxicological Application of Loggerhead Sea Turtle (Caretta caretta) Primary Skin Fibroblast Cell Cultures SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; CHELONIA-MYDAS; GREEN TURTLE; PERFLUORINATED COMPOUNDS; GENE-EXPRESSION; CYTO-TOXICITY; UNITED-STATES; PLASMA; ORGANOCHLORINE; CONTAMINANTS AB Pollution is a well-known threat to sea turtles but its impact is poorly understood. In vitro toxicity testing presents a promising avenue to assess and monitor the effects of environmental pollutants in these animals within the legal constraints of their endangered status. Reptilian cell cultures are rare and, in sea turtles, largely derived from animals affected by tumors. Here we describe the full characterization of primary skin fibroblast cell cultures derived from biopsies of multiple healthy loggerhead sea turtles (Caretta caretta), and the subsequent optimization of traditional in vitro toxicity assays to reptilian cells. Characterization included validating fibroblast cells by morphology and immunocytochemistry, and optimizing culture conditions by use of growth curve assays with a fractional factorial experimental design. Two cell viability assays, MTT and lactate dehydrogenase (LDH), and an assay measuring cytochrome P4501A (CYP1A) expression by quantitative PCR were optimized in the characterized cells. MTT and LDH assays confirmed cytotoxicity of perfluorooctanoic acid at 500 mu M following 72 and 96 h exposures while CYP1A5 induction was detected after 72 h exposure to 0.1-10 mu M benzo[a]pyrene. This research demonstrates the validity of in vitro toxicity testing in sea turtles and highlights the need to optimize mammalian assays to reptilian cells. C1 [Webb, Sarah J.; Zychowski, Gregory V.; Bauman, Sandy W.; Wooten, Kimberly J.; Cole, Jennifer M.; Godard-Codding, Celine] Texas Tech Univ, Dept Environm Toxicol, Inst Environm & Human Hlth, Lubbock, TX 79409 USA. [Higgins, Benjamin M.] NOAA, Natl Marine Fisheries Serv, Galveston, TX 77551 USA. [Raudsepp, Terje] Texas A&M Univ, Dept Vet Integrat Biosci, College Stn, TX 77843 USA. [Gollahon, Lauren S.] Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79409 USA. RP Godard-Codding, C (reprint author), Texas Tech Univ, Dept Environm Toxicol, Inst Environm & Human Hlth, 1207 Gilbert Dr, Lubbock, TX 79409 USA. EM celine.godard@ttu.edu FU PADI Foundation; Department of Interior/U.S. Geological Survey Deep Water Horizon Natural Resource Damage Assessment program FX Funding was provided by the PADI Foundation and the Department of Interior/U.S. Geological Survey Deep Water Horizon Natural Resource Damage Assessment program. NR 71 TC 5 Z9 5 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD DEC 16 PY 2014 VL 48 IS 24 BP 14728 EP 14737 DI 10.1021/es504182e PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA AX1CO UT WOS:000346686100080 PM 25384208 ER PT J AU Khanna, J Medvigy, D AF Khanna, Jaya Medvigy, David TI Strong control of surface roughness variations on the simulated dry season regional atmospheric response to contemporary deforestation in Rondonia, Brazil SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LARGE-EDDY SIMULATIONS; AMAZON BASIN; CUMULUS CLOUDS; CLIMATE-CHANGE; COVER CHANGE; LAND; IMPACT; MODEL; RAINFALL; SCALE AB The atmospheric effects of Amazon deforestation have frequently been studied in the context of small scales (approximate to 1 km) and very large scales (hundreds of kilometers). However, analysis of intermediate-scale deforestation (tens of kilometers) has received less attention, despite the fact that it better represents the contemporary landscape in some parts of the Amazon. In this study, the dynamic and thermodynamic effects of contemporary intermediate-scale deforestation in Rondonia, Brazil are investigated through variable resolution Global Circulation Model (GCM) simulations carried out with the Ocean-Land-Atmosphere Model. In particular, the atmospheric response to surface roughness changes brought about by deforestation is emphasized. This study shows that reductions in surface roughness associated with intermediate-scale deforestation give rise to a mesoscale circulation. This circulation is capable of convective triggering, but it also weakens the turbulent exchange of energy between land and atmosphere. Furthermore, this mesoscale circulation has distinct impacts on the hydroclimates of the western and eastern halves of Rondnia, increasing shallow cloudiness in the former while suppressing it in the latter. These results show that the atmospheric response to contemporary intermediate-scale deforestation in Rondnia is likely to be more influenced by differences in surface roughness between forest and forest clearings than by the differences in the surface energy partitioning. C1 [Khanna, Jaya; Medvigy, David] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Medvigy, David] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. RP Khanna, J (reprint author), Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. EM jkhanna@princeton.edu FU National Science Foundation [1151102] FX We thank the three anonymous reviewers, Stephan Fueglistaler, Elie Bou-Zeid, and Kirsten Findell for their valuable comments. The authors gratefully acknowledge support from National Science Foundation Award 1151102. NCEP reanalysis 2 data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, United States (from their website at http://www.esrl.noaa.gov/psd/). The simulations presented in this article were performed on computational resources supported by the PICSciE OIT High Performance Computing Center and Visualization Laboratory at Princeton University. The numerical model, data, and MATLAB codes used to obtain the results reported in this article can be obtained from Princeton University's DataSpace online repository: http://arks.princeton.edu/ark:/88435/dsp01st74cs697. NR 49 TC 4 Z9 4 U1 1 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 16 PY 2014 VL 119 IS 23 BP 13067 EP 13078 DI 10.1002/2014JD022278 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AX4MR UT WOS:000346907100002 ER PT J AU Zou, CZ Qian, HF Wang, WH Wang, LK Long, C AF Zou, Cheng-Zhi Qian, Haifeng Wang, Wenhui Wang, Likun Long, Craig TI Recalibration and merging of SSU observations for stratospheric temperature trend studies SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID BREWER-DOBSON CIRCULATION; MICROWAVE SOUNDING UNIT AB Long-term observations from the Stratospheric Sounding Unit (SSU) during 1979-2006 onboard NOAA historical polar orbiting satellites were recalibrated for climate change investigation. A two-point linear calibration equation, with cold space and an internal blackbody warm target as end-point references, was used to transfer SSU raw counts data into radiances. The warm target temperature was represented by measurements from the space side thermistor on the blackbody, and the cold space radiance was assumed to be zero. Space view corrections due to an electrical interference were applied. Intersatellite calibration was conducted simultaneously by applying calibration offsets determined from residual intersatellite biases. The recalibration reached an accuracy of 0.1-0.2 K for global means and thus is expected to improve the consistency in stratospheric temperature time series in climate reanalyses. The recalibrated SSU radiances were further adjusted to develop Version 2 of the NOAA stratospheric temperature time series. The effects being adjusted included those from changes in instrument cell pressure and atmospheric carbon dioxide concentration, viewing angle differences, and semidiurnal tides due to orbital drift. Intersatellite biases were carefully removed to ensure smooth transitions between satellite pairs. Differences from Version 1 included improved radiance calibration, improved adjusting schemes for diurnal drift and intersatellite biases, removal of time-varying cell pressure adjustment for NOAA-9 channel 1, and excluding NOAA-7 channel 2 in the time series. In addition to the final merged data set, intermediate synthetic time series corresponding to different adjustments were also created to quantify their impact on the final trend as well as its reliability and uncertainty. Excellent matching between satellite pairs, especially the 7 year overlaps between NOAA-11 and NOAA-14 during 1997-2004, in intermediate as well as the final time series provided strong evidence on the validity of adjustments and thus confidence on the resulting trends. The Version 2 global mean trends for 1979-2006 were - 0.69 +/- 0.18, -0.77 +/- 0.15, and - 0.85 +/- 0.15 K/decade for SSU channels 1, 2, and 3, representing temperatures of middle stratosphere, upper stratosphere, and stratosphere-mesosphere, respectively. Among these, cooling of channel 2 was stronger and channel 3 weaker than those in UK Met Office (UKMO) data by about 1 K during the entire SSU period from 1979 to 2006. Finally, the average of the channel 1 and channel 3 anomalies in Version 2 was close to channel 2 anomalies to within 0.2 K for the entire 1979-2006 period with identical trends. This feature was found consistent with chemistry-climate model simulations. C1 [Zou, Cheng-Zhi] NOAA, Ctr Satellite Applicat & Res, NESDIS, College Pk, MD 20740 USA. [Qian, Haifeng; Wang, Wenhui] Earth Resource Technol Inc, Laurel, MD USA. [Wang, Likun] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Long, Craig] NOAA, NWS, NCEP, Climate Predict Ctr, College Pk, MD USA. RP Zou, CZ (reprint author), NOAA, Ctr Satellite Applicat & Res, NESDIS, College Pk, MD 20740 USA. EM Cheng-Zhi.Zou@noaa.gov RI Zou, Cheng-Zhi/E-3085-2010; Wang, Likun/B-7524-2008; Wang, Wenhui/D-3240-2012; Qian, Haifeng/F-1987-2011 OI Wang, Likun/0000-0001-5646-9746; FU NOAA [NESDIS-NESDISPO-2009-2001589 (SDS-09-15)] FX The original SSU Level-1b data are available through the NOAA/NCDC CLASS. The UK Met Office SSU time series are available from the NOAA/CPC website, ftp://ftp.cpc.ncep.noaa.gov/wd53rl/ssu/. Both the recalibrated SSU Level-1c radiances and NOAA Version 2 stratospheric temperature time series are publicly available at the NOAA/STAR website http://www.star.nesdis.noaa.gov/smcd/emb/mscat/. The authors thank John Nash and Roger Saunders for providing space view correction values and other valuable comments during the recalibration process. Thanks are extended to Laurie Rokke and Shinya Kobayashi for providing note and data on cell pressure changes. Comments from William Randel, Dian Seidel, David Thompson, and Roger Lin during meeting discussions were greatly appreciated. The work is supported by NOAA grant NESDIS-NESDISPO-2009-2001589 (SDS-09-15). The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. Government position, policy, or decision. NR 29 TC 15 Z9 15 U1 0 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 16 PY 2014 VL 119 IS 23 BP 13180 EP 13205 DI 10.1002/2014JD021603 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AX4MR UT WOS:000346907100009 ER PT J AU Flannaghan, TJ Fueglistaler, S Held, IM Po-Chedley, S Wyman, B Zhao, M AF Flannaghan, T. J. Fueglistaler, S. Held, I. M. Po-Chedley, S. Wyman, B. Zhao, M. TI Tropical temperature trends in Atmospheric General Circulation Model simulations and the impact of uncertainties in observed SSTs SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SEA-SURFACE TEMPERATURE; MICROWAVE SOUNDING UNIT; WARM TARGET FACTOR; TROPOSPHERIC TEMPERATURE; VAPOR-PRESSURE; CLIMATE; GCM; MSU; VARIABILITY; FREQUENCY AB The comparison of trends in various climate indices in observations and models is of fundamental importance for judging the credibility of climate projections. Tropical tropospheric temperature trends have attracted particular attention as this comparison may suggest a model deficiency. One can think of this problem as composed of two parts: one focused on tropical surface temperature trends and the associated issues related to forcing, feedbacks, and ocean heat uptake and a second part focusing on connections between surface and tropospheric temperatures and the vertical profile of trends in temperature. Here we focus on the atmospheric component of the problem. We show that two ensembles of Geophysical Fluid Dynamics Laboratory HiRAM model runs (similar results are shown for National Center for Atmospheric Research's CAM4 model) with different commonly used prescribed sea surface temperatures (SSTs), namely, the HadISST1 and "Hurrell" data sets, have a difference in upper tropical tropospheric temperature trends (similar to 0.1 K/decade at 300 hPa for the period 1984-2008) that is about a factor 3 larger than expected from moist adiabatic scaling of the tropical average SST trend difference. We show that this surprisingly large discrepancy in temperature trends is a consequence of SST trend differences being largest in regions of deep convection. Further, trends, and the degree of agreement with observations, not only depend on SST data set and the particular atmospheric temperature data set but also on the period chosen for comparison. Due to the large impact on atmospheric temperatures, these systematic uncertainties in SSTs need to be resolved before the fidelity of climate models' tropical temperature trend profiles can be assessed. C1 [Flannaghan, T. J.; Fueglistaler, S.; Held, I. M.] Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. [Fueglistaler, S.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Held, I. M.; Wyman, B.] Geophys Fluid Dynam Lab, Princeton, NJ USA. [Po-Chedley, S.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Zhao, M.] Univ Corp Atmospher Res, Boulder, CO USA. RP Fueglistaler, S (reprint author), Princeton Univ, Program Atmospher & Ocean Sci, Princeton, NJ 08544 USA. EM stf@princeton.edu RI Fueglistaler, Stephan/I-5803-2013; Po-Chedley, Stephen/E-9706-2013; Zhao, Ming/C-6928-2014 OI Po-Chedley, Stephen/0000-0002-0390-238X; FU DOE [SC0006841] FX We thank three anonymous reviewers for their helpful suggestions. This work was supported by DOE grant SC0006841. We thank John Lanzante and Tom Knutson for their helpful comments on an earlier version of this manuscript. We thank Qiang Fu for fruitful discussions and sharing the UW MSU analysis. We thank RSS and UAH for providing MSU data, retrieved from http://www.remss.com and http://www.ncdc.noaa.gov/temp-and-precip/msu/, respectively. We thank the Hadley Centre for the HadISST1 data, retrieved from http://www.metoffice.gov.uk/hadobs/hadisst/data/download.html. We thank NCAR for the Hurrell SSTs, retrieved from https://climatedataguide.ucar.edu/climate-data/merged-hadley-noaaoi-sea- surface-temperature-sea-ice-concentration-hurrell-et-al-2008. All data will be made available upon request (contact: Stephan Fueglistaler, stf@princeton.edu). NR 41 TC 7 Z9 7 U1 1 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC 16 PY 2014 VL 119 IS 23 BP 13327 EP 13337 DI 10.1002/2014JD022365 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA AX4MR UT WOS:000346907100016 ER PT J AU Parks, SE Cusano, DA Stimpert, AK Weinrich, MT Friedlaender, AS Wiley, DN AF Parks, Susan E. Cusano, Dana A. Stimpert, Alison K. Weinrich, Mason T. Friedlaender, Ari S. Wiley, David N. TI Evidence for acoustic communication among bottom foraging humpback whales SO SCIENTIFIC REPORTS LA English DT Article ID DOLPHINS TURSIOPS-TRUNCATUS; MEGAPTERA-NOVAEANGLIAE; FEEDING-BEHAVIOR; SOUTHERN GULF; SOUND TYPES; COOPERATION; EVOLUTION; MAINE; SONGS; ECOLOGY AB Humpback whales (Megaptera novaeangliae), a mysticete with a cosmopolitan distribution, demonstrate marked behavioural plasticity. Recent studies show evidence of social learning in the transmission of specific population level traits ranging from complex singing to stereotyped prey capturing behaviour. Humpback whales have been observed to employ group foraging techniques, however details on how individuals coordinate behaviour in these groups is challenging to obtain. This study investigates the role of a novel broadband patterned pulsed sound produced by humpback whales engaged in bottom-feeding behaviours, referred to here as a 'paired burst' sound. Data collected from 56 archival acoustic tag deployments were investigated to determine the functional significance of these signals. Paired burst sound production was associated exclusively with bottom feeding under low-light conditions, predominantly with evidence of associated conspecifics nearby suggesting that the sound likely serves either as a communicative signal to conspecifics, a signal to affect prey behaviour, or possibly both. This study provides additional evidence for individual variation and phenotypic plasticity of foraging behaviours in humpback whales and provides important evidence for the use of acoustic signals among foraging individuals in this species. C1 [Parks, Susan E.; Cusano, Dana A.] Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA. [Stimpert, Alison K.] Moss Landing Marine Labs, Moss Landing, CA 95039 USA. [Weinrich, Mason T.] Whale Ctr New England, Gloucester, MA 01931 USA. [Friedlaender, Ari S.] Oregon State Univ, Marine Mammal Inst, Newport, OR 97365 USA. [Wiley, David N.] NOAA, Natl Ocean Serv, Stellwagen Bank Natl Marine Sanctuary, Scituate, MA 02066 USA. RP Parks, SE (reprint author), Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA. EM sparks@syr.edu OI Cusano, Dana/0000-0002-4186-4206 FU Stellwagen Bank National Marine Sanctuary, Office of National Marine Sanctuaries; Office of Naval Research, University of Hawaii Sea Grant College Program; National Oceanographic Partnership Program FX Funding was provided by the Stellwagen Bank National Marine Sanctuary, Office of National Marine Sanctuaries, the Office of Naval Research, University of Hawaii Sea Grant College Program and the National Oceanographic Partnership Program. Whale tag data were collected under permit No. 775-185 (Northeast Fisheries Science Center) and 605-1904 (Whale Center of New England) issued by the United States National Marine Fisheries Service. Research protocols were approved by the Institutional Animal Care and Use Committee (IACUC) at Duke University, the Pennsylvania State University, and Syracuse University. N.D. Merchant and L.E. Matthews provided constructive feedback on early drafts of the manuscript. We thank the officers and crew of the NOAA research vessels Nancy Foster and Auk, and the R/V Stellwagen for their capable assistance during field operations. We also thank the members of our field teams including R. Arsenault, A. Bocconcelli, C. Casey, D. Cholewiak, P. Halpin, E. Hazen, T. Hurst, T. Kirchner, J. Moller, C. Pecarcik, A. Rosner, K. Sardi, J. Smith, J. Tackaberry, M. Thompson, C. Ware, B. Woodward, and J. Winn. NR 44 TC 7 Z9 7 U1 18 U2 103 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 16 PY 2014 VL 4 AR 7508 DI 10.1038/srep07508 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW6CR UT WOS:000346357600011 PM 25512188 ER PT J AU Fielding, R Evans, DW AF Fielding, Russell Evans, David W. TI Mercury in Caribbean dolphins (Stenella longirostris and Stenella frontalis) caught for human consumption off St. Vincent, West Indies SO MARINE POLLUTION BULLETIN LA English DT Article DE Whales; Dolphins; Mercury; Subsistence; Bioaccumulation; Caribbean ID WHALE MEAT; FAROE ISLANDERS; SMALL CETACEANS; HEAVY-METALS; HUMAN HEALTH; RED MEAT; SELENIUM; CONTAMINATION; BLUBBER; ORGANS AB The island of St. Vincent in the Lesser Antilles supports an ongoing, legal cetacean hunt, which targets several species for human consumption. Little is known regarding the healthfulness and potential health risks of these foods in this setting. Following established methodologies we analyzed 39 raw muscle tissue samples and 38 raw blubber samples from two cetacean species for total mercury and methylmercury. We also analyzed samples of muscle tissue from an unknown cetacean species prepared for consumption. We report high concentrations of total mercury and methyl-mercury in these tissues as compared to published data for other seafood products. Further, our findings indicate that the traditional preparation method most often used locally in St. Vincent yields a finished food product with a much higher mercury concentration than the unprocessed tissue. Our results highlight the potential for negative human health effects related to the consumption of these food products in St. Vincent. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Fielding, Russell] Univ South, Sewanee, TN 37383 USA. [Evans, David W.] NOAA, Ctr Coastal Fisheries & Habitat Res, Beaufort, NC 28516 USA. RP Fielding, R (reprint author), Univ South, Sewanee, TN 37383 USA. EM russell.fielding@sewanee.edu; david.w.evans@noaa.gov FU University of Denver; Granskingarraoio (the Faroese Research Council) FX The authors gratefully acknowledge funding provided by Granskingarraoio (the Faroese Research Council) and the University of Denver. Marine mammal tissues were imported to the United States under National Marine Fisheries Service Scientific Research Permit No. 14502. NR 30 TC 1 Z9 1 U1 8 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-326X EI 1879-3363 J9 MAR POLLUT BULL JI Mar. Pollut. Bull. PD DEC 15 PY 2014 VL 89 IS 1-2 BP 30 EP 34 DI 10.1016/j.marpolbul.2014.10.040 PG 5 WC Environmental Sciences; Marine & Freshwater Biology SC Environmental Sciences & Ecology; Marine & Freshwater Biology GA AY3PG UT WOS:000347494700019 PM 25455368 ER PT J AU Schreiber, DK Chiaramonti, AN Gordon, LM Kruska, K AF Schreiber, D. K. Chiaramonti, A. N. Gordon, L. M. Kruska, K. TI Applicability of post-ionization theory to laser-assisted field evaporation of magnetite SO APPLIED PHYSICS LETTERS LA English DT Article ID ATOM-PROBE TOMOGRAPHY; FEMTOSECOND LASER; IONS; RESOLUTION; DESIGN; OXYGEN; OXIDE; MASS AB Analysis of the detected Fe ion charge states from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore, the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperatures also shows that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of O-16(+):(O-16(2)+ + O-16(+)) is well correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions. Plotting the normalized field strength versus laser pulse energy also elucidates a nonlinear dependence, in agreement with the previous observations on semiconductors, which suggests field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples. (C) 2014 AIP Publishing LLC. C1 [Schreiber, D. K.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Chiaramonti, A. N.] NIST, Mat Measurement Lab, Boulder, CO 80305 USA. [Gordon, L. M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Kruska, K.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Schreiber, DK (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, POB 999, Richland, WA 99352 USA. EM daniel.schreiber@pnnl.gov OI Chiaramonti, Ann/0000-0001-9933-3267 FU U.S. Department of Energy (DOE) Office of Basic Energy Science; EMSL William Wiley Postdoctoral Fellowship; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RL01830] FX D.K.S. acknowledges funding from the U.S. Department of Energy (DOE) Office of Basic Energy Science and L.M.G. from the EMSL William Wiley Postdoctoral Fellowship. Sample preparation and LEAP 4000 XHR analyses were performed using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract No. DE-AC05-76RL01830. NR 29 TC 5 Z9 5 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 15 PY 2014 VL 105 IS 24 AR 244106 DI 10.1063/1.4904802 PG 5 WC Physics, Applied SC Physics GA AX0LJ UT WOS:000346643600091 ER PT J AU Chantler, CT Payne, AT Gillaspy, JD Hudson, LT Smale, LF Henins, A Kimpton, JA Takacs, E AF Chantler, C. T. Payne, A. T. Gillaspy, J. D. Hudson, L. T. Smale, L. F. Henins, A. Kimpton, J. A. Takacs, E. TI X-ray measurements in helium-like atoms increased discrepancy between experiment and theoretical QED SO NEW JOURNAL OF PHYSICS LA English DT Article DE helium-like quantum systems; relativistic atomic physics; x-ray spectroscopy; QED ID WAVELENGTH MEASUREMENTS; ISOELECTRONIC SEQUENCE; LAMB-SHIFT; IONS; TRANSITIONS; HYDROGENLIKE; KRYPTON; STATES; SPECTROSCOPY; ENERGIES AB A recent 15 parts per million (ppm) experiment on muonic hydrogen (p(+)mu(-)) found a major discrepancy with quantum electrodynamics (QED) and independent nuclear size determinations. Here we find a significant discrepancy in a different type of exotic atom: a medium-Z nucleus with two electrons. Investigation of the data collected is able to discriminate between available QED formulations and reveals a pattern of discrepancy of almost six standard errors of experimental results from the most recent theoretical predictions, with a functional dependence proportional to Z(n) where n similar or equal to 4. In both the muonic and highly charged systems, the sign of the discrepancy is the same, with the measured transition energy higher than predicted. Some consequences are possible or probable, and some are more speculative. This may give insight into effective nuclear radii, the Rydberg, the fine-structure constant, or unexpectedly large QED terms. C1 [Chantler, C. T.; Payne, A. T.; Smale, L. F.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Gillaspy, J. D.; Hudson, L. T.; Henins, A.] NIST, Gaithersburg, MD 20899 USA. [Kimpton, J. A.] Australian Synchrotron, Melbourne, Vic 3000, Australia. [Takacs, E.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Takacs, E.] Univ Debrecen, Expt Phys Dept, H-4026 Debrecen, Hungary. RP Chantler, CT (reprint author), Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. EM chantler@unimelb.edu.au NR 53 TC 0 Z9 0 U1 3 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD DEC 15 PY 2014 VL 16 AR 123037 DI 10.1088/1367-2630/16/12/123037 PG 15 WC Physics, Multidisciplinary SC Physics GA AX3EB UT WOS:000346822100007 ER PT J AU Kearsley, AJ Gadhyan, Y Wallace, WE AF Kearsley, Anthony J. Gadhyan, Yutheeka Wallace, William E. TI Stochastic regression modeling of chemical spectra SO CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS LA English DT Article DE Signal to noise; Stochastic differential equation; Nonparametric estimation; Mass spectrometry; Spectroscopy ID MASS-SPECTROMETRY; NONPARAMETRIC REGRESSION; DENSITY AB A stochastic regression model is presented that separates signal from noise in chemical spectra. Spectra are decomposed into additive contributions from signal and from estimated noise. Numerical results on sample spectra are presented and suggest that this strategy offers an effective and computationally efficient framework for comprehensive noise estimation and analysis. From this analysis more effective methods of feature extraction in chemical spectra can be created. (C) 2014 Elsevier B.V. All rights reserved. C1 [Kearsley, Anthony J.] NIST, Appl & Computat Math Div, Gaithersburg, MD 20899 USA. [Gadhyan, Yutheeka] Univ Houston, Dept Math, Houston, TX 77204 USA. [Wallace, William E.] NIST, Div Chem Sci, Gaithersburg, MD 20899 USA. RP Wallace, WE (reprint author), NIST, Div Chem Sci, Gaithersburg, MD 20899 USA. EM william.wallace@nist.gov NR 20 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7439 EI 1873-3239 J9 CHEMOMETR INTELL LAB JI Chemometrics Intell. Lab. Syst. PD DEC 15 PY 2014 VL 139 BP 26 EP 32 DI 10.1016/j.chemolab.2014.08.002 PG 7 WC Automation & Control Systems; Chemistry, Analytical; Computer Science, Artificial Intelligence; Instruments & Instrumentation; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Automation & Control Systems; Chemistry; Computer Science; Instruments & Instrumentation; Mathematics GA AW6SK UT WOS:000346398500004 ER PT J AU Bacheler, NM Berrane, DJ Mitchell, WA Schobernd, CM Schobernd, ZH Teer, BZ Ballenger, JC AF Bacheler, Nathan M. Berrane, David J. Mitchell, Warren A. Schobernd, Christina M. Schobernd, Zebulon H. Teer, Bradford Z. Ballenger, Joseph C. TI Environmental conditions and habitat characteristics influence trap and video detection probabilities for reef fish species SO MARINE ECOLOGY PROGRESS SERIES LA English DT Article DE Detectability; Habitat; Catchability; Survey; GAM; Occupancy; Fishery-independent; Sampling gears ID PRESENCE-ABSENCE DATA; IMPERFECT DETECTABILITY; OCCUPANCY ESTIMATION; STOCK ASSESSMENT; UNITED-STATES; ABUNDANCE; RATES; CATCH; SIZE; CATCHABILITY AB Monitoring programs often collect presence-absence data to understand range expansions or contractions, metapopulation dynamics, alien species invasions, or spatial and temporal trends in relative abundance. Using the proportion of sites occupied by a species is misleading, however, if surveys routinely fail to detect species that are present. We used chevron traps paired with underwater videos (N = 1555) in a binomial (presence-absence) generalized additive modeling framework to quantify how environmental conditions, habitat characteristics, and the number of individuals at each site (i.e. site abundance) influenced the detection probabilities of economically important reef fish species in the southeastern USA. After accounting for variable site abundance, trap detection probabilities declined 40% for red porgy Pagrus pagrus, 65% for gray triggerfish Balistes capriscus, and 75% for vermilion snapper Rhomboplites aurorubens as percent hard bottom increased from 0 to 100%. Increasing water temperature caused red porgy trap detection probability to decline modestly, while for gray triggerfish and vermilion snapper it increased substantially. Underwater video was more likely to detect black sea bass Centropristis striata, red porgy, and gray triggerfish when site abundance and water clarity were high and the video camera was facing downcurrent. Using multiple gears simultaneously, we quantified the ways in which predictor variables influenced the sampling process, which will help in designing surveys that maximize detection probability. Our results also suggest that pairing video cameras to trawls, fisheries acoustics, or nets allows for the estimation of detection probabilities. C1 [Bacheler, Nathan M.; Berrane, David J.; Mitchell, Warren A.; Schobernd, Christina M.; Schobernd, Zebulon H.; Teer, Bradford Z.] Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Beaufort, NC 28516 USA. [Ballenger, Joseph C.] Marine Resources Res Inst, South Carolina Dept Nat Resources, Charleston, SC 29412 USA. RP Bacheler, NM (reprint author), Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, 101 Pivers Isl Rd, Beaufort, NC 28516 USA. EM nate.bacheler@noaa.gov NR 45 TC 6 Z9 6 U1 4 U2 34 PU INTER-RESEARCH PI OLDENDORF LUHE PA NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY SN 0171-8630 EI 1616-1599 J9 MAR ECOL PROG SER JI Mar. Ecol.-Prog. Ser. PD DEC 15 PY 2014 VL 517 BP 1 EP 14 DI 10.3354/meps11094 PG 14 WC Ecology; Marine & Freshwater Biology; Oceanography SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography GA AW7CF UT WOS:000346421400001 ER PT J AU Seely, JF Hudson, LT Glover, JL Henins, A Pereira, N AF Seely, John F. Hudson, Lawrence T. Glover, Jack L. Henins, Albert Pereira, Nino TI Ultra-thin curved transmission crystals for high resolving power (up to E/Delta E=6300) x-ray spectroscopy in the 6-13 keV energy range SO OPTICS LETTERS LA English DT Article AB Ultra-thin curved transmission crystals operating in the Cauchois spectrometer geometry were evaluated for the purpose of achieving high spectral resolution in the 6-13 keV x-ray energy range. The crystals were silicon (111) and sapphire R-cut wafers, each 18 mu m thick, and a silicon (100) wafer of 50-mu m thickness. The WL alpha(1) spectral line at 8.398 keV from a laboratory source was used to evaluate the resolution. The highest crystal resolving power, E/Delta E = 6300, was achieved by diffraction from the (33-1) planes of the Si(100) wafer that was cylindrically bent to a radius of curvature of 254 mm, where the (33-1) planes have an asymmetric angle of 13.26 degrees from the normal of the crystal surface facing the x-ray source. This work demonstrates the ability to measure highly resolved line shapes of the K transitions of the elements Fe through Kr and the L transitions of the elements Gd through Th using a relatively compact spectrometer optical system and readily available thin commercial wafers. The intended application is as a diagnostic of laser-produced plasmas where the presence of multiple charged states and broadenings from high temperature and density requires high-resolution methods that are robust in a noisy source environment. C1 [Seely, John F.] Artep Inc, Ellicott City, MD 21042 USA. [Hudson, Lawrence T.; Glover, Jack L.; Henins, Albert] NIST, Gaithersburg, MD 20899 USA. [Pereira, Nino] Ecopulse Inc, Springfield, VA 22152 USA. RP Seely, JF (reprint author), Artep Inc, Ellicott City, MD 21042 USA. EM seelyjf@gmail.com NR 5 TC 1 Z9 1 U1 0 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD DEC 15 PY 2014 VL 39 IS 24 BP 6839 EP 6842 DI 10.1364/OL.39.006839 PG 4 WC Optics SC Optics GA AW5YX UT WOS:000346347900019 PM 25503010 ER PT J AU Hazzard, KRA van den Worm, M Foss-Feig, M Manmana, SR Dalla Torre, EG Pfau, T Kastner, M Rey, AM AF Hazzard, Kaden R. A. van den Worm, Mauritz Foss-Feig, Michael Manmana, Salvatore R. Dalla Torre, Emanuele G. Pfau, Tilman Kastner, Michael Rey, Ana Maria TI Quantum correlations and entanglement in far-from-equilibrium spin systems SO PHYSICAL REVIEW A LA English DT Article ID OPTICAL LATTICE CLOCK; FROZEN RYDBERG GAS; MANY-BODY SYSTEM; TRAPPED IONS; MOTT INSULATOR; EXCHANGE INTERACTIONS; ULTRACOLD FERMIONS; RANGE INTERACTIONS; POLAR-MOLECULES; ATOMS AB By applying complementary analytic and numerical methods, we investigate the dynamics of spin-1/2 XXZ models with variable-range interactions in arbitrary dimensions. The dynamics we consider is initiated from uncorrelated states that are easily prepared in experiments; it can be equivalently viewed as either Ramsey spectroscopy or a quantum quench. Our primary focus is the dynamical emergence of correlations and entanglement in these far-from-equilibrium interacting quantum systems: We characterize these correlations by the entanglement entropy, concurrence, and squeezing, which are inequivalent measures of entanglement corresponding to different quantum resources. In one spatial dimension, we show that the time evolution of correlation functions manifests a nonperturbative dynamic singularity. This singularity is characterized by a universal power-law exponent that is insensitive to small perturbations. Explicit realizations of these models in current experiments using polar molecules, trapped ions, Rydberg atoms, magnetic atoms, and alkaline-earth and alkali-metal atoms in optical lattices, along with the relative merits and limitations of these different systems, are discussed. C1 [Hazzard, Kaden R. A.; Rey, Ana Maria] Univ Colorado, JILA, NIST, Boulder, CO 80309 USA. [Hazzard, Kaden R. A.; Rey, Ana Maria] Univ Colorado, Dept Phys, NIST, Boulder, CO 80309 USA. [van den Worm, Mauritz; Kastner, Michael] Univ Stellenbosch, Inst Theoret Phys, ZA-7600 Stellenbosch, South Africa. [Foss-Feig, Michael] Univ Maryland, Dept Phys, JQI, NIST, College Pk, MD 20742 USA. [Manmana, Salvatore R.] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. [Dalla Torre, Emanuele G.] Harvard Univ, Dept Phys, Cambridge, MA 01238 USA. [Pfau, Tilman] Univ Stuttgart, Phys Inst 5, D-70569 Stuttgart, Germany. [Pfau, Tilman] Univ Stuttgart, Ctr Integrated Quantum Sci & Technol, D-70569 Stuttgart, Germany. [Kastner, Michael] Natl Inst Theoret Phys NITheP, ZA-7600 Stellenbosch, South Africa. RP Hazzard, KRA (reprint author), Univ Colorado, JILA, NIST, Boulder, CO 80309 USA. EM kaden.hazzard@gmail.com RI Pfau, Tilman/G-1774-2011; OI Dalla Torre, Emanuele G./0000-0002-7219-3804 FU NIST; NSF [PIF-1211914, PFC-1125844, PHY11-25915, CNS-0821794]; AFOSR; ARO individual investigator awards; DARPA-OLE program; NRC; Harvard-MIT CUA; ERC [267100]; University of Colorado Boulder; National Research Foundation of South Africa; Competitive Program for Rated Researchers FX We gratefully acknowledge Erez Berg, John Bollinger, Joe Britton, Vadim Cheianov, Jacob Covey, Eugene Demler, Bryce Gadway, Alexey Gorshkov, Murray Holland, Debbie Jin, Stefan Kehrein, Mikhail Lukin, Dominic Meiser, Steven Moses, Brian Neyenhuis, Brian Sawyer, Johannes Schachenmayer, Jon Simon, Michael Wall, Bo Yan, Jun Ye, and Bihui Zhu for discussions around the work in the manuscript. This work was supported by NIST, the NSF (Grants No. PIF-1211914 and No. PFC-1125844), AFOSR and ARO individual investigator awards, and the ARO with funding from the DARPA-OLE program. K.H. and M.F.F. thank the NRC for support; the Aspen Center for Physics, which is supported by the NSF, for its hospitality during the initial conception of this work; and the University of Gottingen for its hospitality during the final preparation of the manuscript. E.G.D.T. acknowledges the financial support of the Harvard-MIT CUA. T.P. acknowledges support by the ERC under Contract No. 267100. We thank the Kavli Institute for Theoretical Physics (KITP) at UCSB, supported by NSF Grant No. NSF PHY11-25915, for its hospitality while part of this work was carried out. This work utilized the Janus supercomputer, which is supported by the NSF (Award No. CNS-0821794) and the University of Colorado Boulder and is a joint effort with the University of Colorado Denver and the National Center for Atmospheric Research. M. K. acknowledges support by the National Research Foundation of South Africa under the Incentive Funding and the Competitive Program for Rated Researchers. NR 210 TC 24 Z9 24 U1 5 U2 40 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD DEC 15 PY 2014 VL 90 IS 6 AR 063622 DI 10.1103/PhysRevA.90.063622 PG 21 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA AW6JN UT WOS:000346375900010 ER PT J AU Telg, H Haroz, EH Duque, JG Tu, XM Khripin, CY Fagan, JA Zheng, M Kono, J Doorn, SK AF Telg, Hagen Haroz, Erik H. Duque, Juan G. Tu, Xiaomin Khripin, Constantine Y. Fagan, Jeffrey A. Zheng, Ming Kono, Junichiro Doorn, Stephen K. TI Diameter dependence of TO phonon frequencies and the Kohn anomaly in armchair single-wall carbon nanotubes SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE; RAMAN-SPECTROSCOPY; SEPARATION; RECOGNITION; DISPERSION AB We present resonant Raman scattering experiments on nanotube samples enriched in metallic armchair single-wall carbon nanotubes (SWCNTs). We establish the transverse optical (A(TO)) phonon frequency for the (5,5) through (10,10) armchair species, ranging in diameter from 0.68 to 1.36 nm. The frequencies show a strong diameter dependence similar to that previously observed in semiconducting nanotubes. We show that the A(TO) frequencies in armchair SWCNTs are dramatically upshifted from those of semiconducting SWCNTs. Furthermore, using electrochemical doping, we demonstrated that the A(TO) frequencies in armchair SWCNTs are independent of the position of the Fermi level. These results suggest that the upshift is a result of a Kohn anomaly involving a forward-scattering mechanism of electrons close to the Fermi level. This is in contrast to the well-known Kohn anomaly that dominates the downshift of the A(LO) and epsilon(2g) phonons in nonarmchair metallic SWCNTs and graphene, respectively. C1 [Telg, Hagen; Haroz, Erik H.; Doorn, Stephen K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Haroz, Erik H.; Kono, Junichiro] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Duque, Juan G.] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect C PCS, Los Alamos, NM 87545 USA. [Tu, Xiaomin; Khripin, Constantine Y.; Fagan, Jeffrey A.; Zheng, Ming] NIST, Div Engn & Mat Sci, Gaithersburg, MD 20899 USA. RP Doorn, SK (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM skdoorn@lanl.gov OI Fagan, Jeffrey/0000-0003-1483-5554; Telg, Hagen/0000-0002-4911-2703 FU LANL Director's Postdoctoral Fellowship; DOE/BES [DE-FG02-06ER46308]; Robert A. Welch Foundation [C-1509]; LANL-LDRD program FX H.T., E.H.H., J.G.D., and S.K.D. acknowledge support of the LANL-LDRD program. H.T. and E.H.H. also gratefully acknowledge support from the LANL Director's Postdoctoral Fellowship. E.H.H. and J.K. were supported by DOE/BES Grant No. DE-FG02-06ER46308 (terahertz and infrared characterization of carbon nanotubes) and the Robert A. Welch Foundation Grant No. C-1509 (sample preparation). This work was performed in part at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Certain equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental details. Such identification does not imply recommendation by the authors nor does it imply the materials are necessarily the best available for the purpose. NR 46 TC 3 Z9 3 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD DEC 15 PY 2014 VL 90 IS 24 AR 245422 DI 10.1103/PhysRevB.90.245422 PG 7 WC Physics, Condensed Matter SC Physics GA AW6KI UT WOS:000346378000009 ER PT J AU Huber, MG Arif, M Chen, WC Gentile, TR Hussey, DS Black, TC Pushin, DA Shahi, CB Wietfeldt, FE Yang, L AF Huber, M. G. Arif, M. Chen, W. C. Gentile, T. R. Hussey, D. S. Black, T. C. Pushin, D. A. Shahi, C. B. Wietfeldt, F. E. Yang, L. TI Neutron interferometric measurement of the scattering length difference between the triplet and singlet states of n-He-3 SO PHYSICAL REVIEW C LA English DT Article ID CROSS-SECTION; LONGITUDINAL COHERENCE; SPIN RELAXATION; HE-3; NUCLEAR; BEAM; LIQUID-HE-3; SYSTEM; FILTER AB We report a determination of the n-He-3 scattering length difference = b = = b = 1 -b = 0 = [-5.411 = 0.031 (statistical) = 0.039 (systematic)] fm between the triplet and singlet states using a neutron interferometer. This revises our previous result = b = = [-5.610 = 0.027 (statistical) = 0.032 (systematic)] fm obtained using the same technique in 2008 [ Huber et al., Phys. Rev. Lett. 102, 200401 (2009);,103, 179903(E) (2009)]. This revision is attributable to a reanalysis of the 2008 experiment that now includes a systematic correction caused by magnetic-field gradients near the 3He cell which had been previously underestimated. Furthermore, we more than doubled our original data set from 2008 by acquiring 6 months of additional data in 2013. Both the new data set and a reanalysis of the older data are in good agreement. Scattering lengths of low-Z isotopes are valued for use in few-body nuclear effective field theories, provide important tests of modern nuclear potential models, and, in the case of 3He, aid in the interpretation of neutron scattering from quantum liquids. The difference = b = was determined by measuring the relative phase shift between two incident neutron polarizations caused by the spin-dependent interaction with a polarized 3He target. The target 3He gas was sealed inside a small, flat-windowed glass cell thatwas placed in one beam path of the interferometer. The relaxation of 3He polarization was monitored continuously with neutron transmission measurements. The neutron polarization and spin-flipper efficiency were determined separately using 3He analyzers and two different polarimetry analysis methods. A summary of the measured scattering lengths for n-3He with a comparison to nucleon interaction models is given. C1 [Huber, M. G.; Arif, M.; Chen, W. C.; Gentile, T. R.; Hussey, D. S.] NIST, Gaithersburg, MD 20899 USA. [Black, T. C.] Univ N Carolina, Wilmington, NC 28403 USA. [Pushin, D. A.] Univ Waterloo, Waterloo, ON N2L 3G1, Canada. [Shahi, C. B.; Wietfeldt, F. E.] Tulane Univ, New Orleans, LA 70188 USA. [Yang, L.] Univ Illinois, Urbana, IL 61801 USA. [Chen, W. C.] Univ Maryland, College Pk, MD 20742 USA. [Chen, W. C.] Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada. RP Huber, MG (reprint author), NIST, Gaithersburg, MD 20899 USA. EM michael.huber@nist.gov FU NIST; National Science Foundation [PHY-0555347, PHY-0855445, PHY-1205342] FX We wish to thank John Fuller and Jeff Anderson at NIST for making the glass target cells. The development and application of the polarized 3He cells and methods used in this experiment were supported in part by the US Department of Energy, Basic Energy Sciences. Also we would like thank Sam Werner and Helmut Kaiser for their helpful discussions. This work is supported by NIST and the National Science Foundation through Grants No. PHY-0555347, No. PHY-0855445, and No. PHY-1205342. NR 68 TC 1 Z9 1 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD DEC 15 PY 2014 VL 90 IS 6 AR 064004 DI 10.1103/PhysRevC.90.064004 PG 15 WC Physics, Nuclear SC Physics GA AW6KT UT WOS:000346379200001 ER PT J AU Abdulagatov, IM Akhmedova-Azizova, LA Azizov, ND AF Abdulagatov, I. M. Akhmedova-Azizova, L. A. Azizov, N. D. TI Experimental study of the density and derived partial molar volumes of complex ternary water+1-propanol + Li2SO4 mixtures at temperatures from (303 to 448) K and pressures up to 40 MPa SO FLUID PHASE EQUILIBRIA LA English DT Article DE Aqueous solutions; Constant-volume piezometer; Density; 1-Propanol; Lithium sulfate; Partial molar volume ID ETHANOL PLUS WATER; 298.15 K; STRONTIUM NITRATE; AQUEOUS-SOLUTIONS; PVTX MEASUREMENTS; HIGH-PRESSURE; 30 MPA; APPARENT; TEMPERATURES; MIXTURES AB Densities of complex ternary water + 1-propanol + Li2SO4 mixtures have been measured over the temperature range from (303 to 448) K and at pressures up to 40 MPa using the constant-volume piezometer immersed in a precision liquid thermostat. The measurements were performed for nine samples with concentrations of Li2SO4 from (0.00623 to 0.0274) mole fraction and concentrations of 1-propanol from (0.01553 to 0.05024) mole fraction. In this work the mole fraction of 1-propanol is given in the electrolyte (Li2SO4)-free solution. The combined expanded uncertainty of the density, pressure, temperature, and concentration measurements at the 95% confidence level with a coverage factor of k= 2 is estimated to be 0.06%, 0.05%, 20 mK, and 0.015%, respectively. Measured values of density for ternary mixtures were used to calculate partial molar volumes of alcohol (1-propanol), ((V) over bar (1)), and salt (Li2SO4), ((V) over bar (2)). The temperature and pressure dependences of the partial molar volumes were studied. The concentration dependences of the partial molar volumes were extrapolated to zero concentration (x(1) -> 0 in alcohol dilute mixture and x2 -> 0 salt dilute mixture) to yield the partial molar volumes of alcohol ((V) over bar (0)(1)) and salt ((V) over bar (0)(2)) at infinite dilutions. (C) 2014 Elsevier B.V. All rights reserved. C1 [Abdulagatov, I. M.] Russian Acad Sci, Dagestan Sci Ctr, Geothermal Res Inst, Makhachkala, Dagestan, Russia. [Akhmedova-Azizova, L. A.] Azerbaijan Tech Univ, Dept Ind Ecol & Ind Safety Properties Aqueous Sys, Baku 370601, Azerbaijan. [Azizov, N. D.] Azerbaijan State Oil Acad, Baku 370601, Azerbaijan. RP Abdulagatov, IM (reprint author), Natl Inst Stand & Technol, Appl Chem & Mat Div, 325 Broadway, Boulder, CO 80305 USA. EM ilmutdin@boulder.nist.gov NR 35 TC 0 Z9 0 U1 3 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3812 EI 1879-0224 J9 FLUID PHASE EQUILIBR JI Fluid Phase Equilib. PD DEC 15 PY 2014 VL 383 BP 78 EP 93 PG 16 WC Thermodynamics; Chemistry, Physical; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA AU6RH UT WOS:000345729100011 ER PT J AU Phan, TQ Lee, IF Levine, LE Tischler, JZ Huang, Y Fox, AG Langdon, TG Kassner, ME AF Phan, Thien Q. Lee, I-Fang Levine, Lyle E. Tischler, Jonathan Z. Huang, Yi Fox, Alan G. Langdon, Terence G. Kassner, Michael E. TI X-ray microbeam measurements of long-range internal stresses in commercial-purity aluminum processed by multiple passes of equal-channel angular pressing SO SCRIPTA MATERIALIA LA English DT Article DE X-ray diffraction; Aluminum; Equal-channel angular pressing; Long-range internal stresses; Severe plastic deformation ID BEAM ELECTRON-DIFFRACTION; MECHANICAL-PROPERTIES; PLASTIC-DEFORMATION; GRAINED ALUMINUM; MICROSCOPY; PREDICTION; CRYSTALS; STRAINS; METALS; ALLOYS AB X-ray microbeam diffraction was used to measure long-range internal stresses (LRISs) in the grain/subgrain interiors of commercial-purity aluminum processed by equal-channel angular pressing for up to eight passes. The LRIS values at +4.9 degrees off the axial (pressing) direction show only a slight increase with increasing numbers of passes. The normalized stress remains approximately constant at similar to 0.10 of the flow stress. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Phan, Thien Q.; Lee, I-Fang; Langdon, Terence G.; Kassner, Michael E.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Phan, Thien Q.; Lee, I-Fang; Langdon, Terence G.; Kassner, Michael E.] Univ So Calif, Dept Mat Sci, Los Angeles, CA 90089 USA. [Levine, Lyle E.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Tischler, Jonathan Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Huang, Yi; Langdon, Terence G.] Univ Southampton, Fac Engn & Environm, Mat Res Grp, Southampton SO17 1BT, Hants, England. [Fox, Alan G.] Asian Univ, Dept Mech Engn, Banglamung 20260, Chon Buri, Thailand. RP Phan, TQ (reprint author), Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. EM thienqph@usc.edu RI Langdon, Terence/B-1487-2008; Huang, Yi/E-9008-2012 OI Huang, Yi/0000-0001-9259-8123 FU National Science Foundation [DMR-1401194]; DOE Office of Science [DE-AC02-06CH11357]; European Research Council [267464-SPDMETALS] FX Research at the University of Southern California was supported the National Science Foundation through DMR-1401194, the XOR/UNI facilities on 11-BM and 34ID at the APS are supported by the DOE Office of Science under Contract No. DE-AC02-06CH11357, and research at the University of Southampton was supported by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS. NR 24 TC 5 Z9 5 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD DEC 15 PY 2014 VL 93 BP 48 EP 51 DI 10.1016/j.scriptamat.2014.09.001 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA AU2XO UT WOS:000345478100012 ER PT J AU Neta, P Farahani, M Simon-Manso, Y Liang, YX Yang, XY Stein, SE AF Neta, Pedatsur Farahani, Mahnaz Simon-Manso, Yamil Liang, Yuxue Yang, Xiaoyu Stein, Stephen E. TI Unexpected peaks in tandem mass spectra due to reaction of product ions with residual water in mass spectrometer collision cells SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID GAS-PHASE REACTIONS; INDUCED DISSOCIATION; QUADRUPOLE FRAGMENTATION; ADDUCT FORMATION; DECOMPOSITION; GUANOSINE; PEPTIDE AB RATIONALE: Certain product ions in electrospray ionization tandem mass spectrometry are found to react with residual water in the collision cell. This reaction often leads to the formation of ions that cannot be formed directly from the precursor ions, and this complicates the mass spectra and may distort MRM (multiple reaction monitoring) results. METHODS: Various drugs, pesticides, metabolites, and other compounds were dissolved in acetonitrile/water/formic acid and studied by electrospray ionization mass spectrometry to record their MS2 and MSn spectra in several mass spectrometers (QqQ, QTOF, IT, and Orbitrap HCD). Certain product ions were found to react with residual water in collision cells. The reaction was confirmed by MSn studies and the rate of reaction was determined in the IT instrument using zero collision energy and variable activation times. RESULTS: Examples of product ions reacting with water include phenyl and certain substituted phenyl cations, benzoyl-type cations formed from protonated folic acid and similar compounds by loss of the glutamate moiety, product ions formed from protonated cyclic siloxanes by loss of methane, product ions formed from organic phosphates, and certain negative ions. The reactions of product ions with residual water varied greatly in their rate constant and in the extent of reaction (due to isomerization). CONCLUSIONS: Various types of product ions react with residual water in mass spectrometer collision cells. As a result, tandem mass spectra may contain unexplained peaks and MRM results may be distorted by the occurrence of such reactions. These often unavoidable reactions must be taken into account when annotating peaks in tandem mass spectra and when interpreting MRM results. Published in 2014. This article is a U. S. Government work and is in the public domain in the USA. C1 [Neta, Pedatsur; Farahani, Mahnaz; Simon-Manso, Yamil; Liang, Yuxue; Yang, Xiaoyu; Stein, Stephen E.] NIST, Biomol Measurement Div, Gaithersburg, MD 20899 USA. RP Neta, P (reprint author), NIST, Biomol Measurement Div, Gaithersburg, MD 20899 USA. EM pedatsur.neta@nist.gov NR 17 TC 4 Z9 4 U1 4 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0951-4198 EI 1097-0231 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD DEC 15 PY 2014 VL 28 IS 23 BP 2645 EP 2660 DI 10.1002/rcm.7055 PG 16 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA AT0HH UT WOS:000344617100017 PM 25366411 ER PT J AU Bernard, AM Shivji, MS Prince, ED Hazin, FHV Arocha, F Domingo, A Feldheim, KA AF Bernard, Andrea M. Shivji, Mahmood S. Prince, Eric D. Hazin, Fabio H. V. Arocha, Freddy Domingo, Andres Feldheim, Kevin A. TI Comparative population genetics and evolutionary history of two commonly misidentified billfishes of management and conservation concern SO BMC GENETICS LA English DT Article DE Roundscale spearfish; White marlin; Genetic population structure; Genetic diversity; Effective population size; Tetrapturus georgii; Kajikia albida ID SPEARFISH TETRAPTURUS-GEORGII; MARLIN MAKAIRA-NIGRICANS; ATLANTIC BLUEFIN TUNA; SWORDFISH XIPHIAS-GLADIUS; MULTILOCUS GENOTYPE DATA; WESTERN NORTH-ATLANTIC; ROUNDSCALE SPEARFISH; MITOCHONDRIAL-DNA; WHITE MARLIN; STOCK STRUCTURE AB Background: Misidentifications between exploited species may lead to inaccuracies in population assessments, with potentially irreversible conservation ramifications if overexploitation of either species is occurring. A notable showcase is provided by the realization that the roundscale spearfish (Tetrapturus georgii), a recently validated species, has been historically misidentified as the morphologically very similar and severely overfished white marlin (Kajikia albida) ( IUCN listing: Vulnerable). In effect, no information exists on the population status and evolutionary history of the enigmatic roundscale spearfish, a large, highly vagile and broadly distributed pelagic species. We provide the first population genetic evaluation of the roundscale spearfish, utilizing nuclear microsatellite and mitochondrial DNA sequence markers. Furthermore, we re-evaluated existing white marlin mitochondrial genetic data and present our findings in a comparative context to the roundscale spearfish. Results: Microsatellite and mitochondrial ( control region) DNA markers provided mixed evidence for roundscale spearfish population differentiation between the western north and south Atlantic regions, depending on marker-statistical analysis combination used. Mitochondrial DNA analyses provided strong signals of historical population growth for both white marlin and roundscale spearfish, but higher genetic diversity and effective female population size (1.5-1.9X) for white marlin. Conclusions: The equivocal indications of roundscale spearfish population structure, combined with a smaller effective female population size compared to the white marlin, already a species of concern, suggests that a species-specific and precautionary management strategy recognizing two management units is prudent for this newly validated billfish. C1 [Bernard, Andrea M.; Shivji, Mahmood S.] Nova SE Univ, Oceanog Ctr, Guy Harvey Res Inst, Dania, FL 33004 USA. [Prince, Eric D.] Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, Miami, FL 33149 USA. [Hazin, Fabio H. V.] Univ Fed Rural Pernambuco, Dept Pesca & Aquicultura, BR-52171032 Recife, PE, Brazil. [Arocha, Freddy] Univ Oriente, Inst Oceanog Venezuela, Cuman 6101, Venezuela. [Domingo, Andres] Direccin Nacl Recursos Acut, Lab Recursos Pelg, Montevideo 11200, Uruguay. [Feldheim, Kevin A.] Field Museum Nat Hist, Pritzker Lab Mol Systemat & Evolut, Chicago, IL 60605 USA. RP Shivji, MS (reprint author), Nova SE Univ, Oceanog Ctr, Guy Harvey Res Inst, 8000 N Ocean Dr, Dania, FL 33004 USA. EM mahmood@nova.edu FU Guy Harvey Ocean Foundation; NOAA National Marine Fisheries Service; Postgraduate Scholarship from the Natural Sciences and Engineering Research Council of Canada; Nova Southeastern University Oceanographic Center Fishing Tournament Scholarship FX We are immensely grateful to L. Beerkircher and the staff of the NOAA Southeast Fisheries Science Center Pelagic Observer Program for providing roundscale spearfish samples. We thank K. Atwater and R. Horn for laboratory assistance. This project was funded by grants from the Guy Harvey Ocean Foundation and NOAA National Marine Fisheries Service to MSS. Author AMB was supported by a Postgraduate Scholarship from the Natural Sciences and Engineering Research Council of Canada and a Nova Southeastern University Oceanographic Center Fishing Tournament Scholarship. NR 87 TC 2 Z9 2 U1 2 U2 17 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2156 J9 BMC GENET JI BMC Genet. PD DEC 14 PY 2014 VL 15 AR 141 DI 10.1186/s12863-014-0141-4 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA AY6AY UT WOS:000347651300003 PM 25494814 ER PT J AU Zhou, XL Horl, A Trugler, A Hohenester, U Norris, TB Herzing, AA AF Zhou, Xiuli Hoerl, Anton Truegler, Andreas Hohenester, Ulrich Norris, Theodore B. Herzing, Andrew A. TI Effect of multipole excitations in electron energy-loss spectroscopy of surface plasmon modes in silver nanowires SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID AU NANOWIRES; NANOPARTICLES; GENERATION; RESONANCES; NANORODS; TOOLBOX; MNPBEM; METALS; GOLD; AG AB We have characterized the surface plasmon resonance (SPR) in silver nanowires using spatially resolved electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope. Non-symmetric EELS spectra due to high-k SPR propagation along the nanowire and spectral shifts due to higher-order mode excitation are observed when the beam is positioned near the tip of the nanowire. When the beam is far from the tip region and on the side of nanowire, no spectral shifts are observed as the beam is scanned in the radial direction of the nanowire. The experimental spectra are compared with three different theoretical approaches: direct numerical calculation of the energy loss, analytical models for energy loss, and numerical simulations using an optical model. All three models reproduce the spectral shifts as the electron beam approaches the cap of the nanowire. The analytical model reveals the origin of the shifts in high-order plasmon mode excitation. (C) 2014 AIP Publishing LLC. C1 [Zhou, Xiuli; Norris, Theodore B.] Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA. [Hoerl, Anton; Truegler, Andreas; Hohenester, Ulrich] Karl Franzens Univ Graz, Inst Physk, A-8010 Graz, Austria. [Herzing, Andrew A.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. RP Herzing, AA (reprint author), NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. EM tnorris@umich.edu RI Trugler, Andreas/I-9095-2014; OI Zhou, Xiuli/0000-0002-0993-6767 FU Center for Photonic and Multiscale Nanomaterials (C-PHOM) - National Science Foundation Materials Research Science and Engineering Center program [DMR 1120923]; Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000957]; Austrian Science Fund FWF [P24511-N26]; SFB NextLite FX This work was supported by the Center for Photonic and Multiscale Nanomaterials (C-PHOM) funded by the National Science Foundation Materials Research Science and Engineering Center program DMR 1120923.; This material is also based upon work partially supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. #DE-SC0000957 used to purchase materials for NP and nanowire synthesis.; The portion of the work at Karl-Franzens-Universitat Graz has been supported by the Austrian Science Fund FWF under Project P24511-N26 and the SFB NextLite. NR 30 TC 5 Z9 5 U1 8 U2 44 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD DEC 14 PY 2014 VL 116 IS 22 AR 223101 DI 10.1063/1.4903535 PG 9 WC Physics, Applied SC Physics GA AW4QR UT WOS:000346266300010 ER PT J AU Dunhill, AC Alexander, RD Nixon, CJ King, AR AF Dunhill, A. C. Alexander, R. D. Nixon, C. J. King, A. R. TI Misaligned accretion on to supermassive black hole binaries SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; black hole physics; hydrodynamics; galaxies: active; galaxies: evolution ID SMOOTHED PARTICLE HYDRODYNAMICS; ACTIVE GALACTIC NUCLEI; SELF-GRAVITATING DISCS; FINAL PARSEC PROBLEM; M-BH-SIGMA; STAR-FORMATION; PROTOPLANETARY DISCS; RADIATIVE-TRANSFER; HOST GALAXIES; YOUNG STARS AB We present the results of high-resolution numerical simulations of gas clouds falling on to binary supermassive black holes to form circumbinary accretion discs, with both prograde and retrograde cloud orbits. We explore a range of clouds masses and cooling rates. We find that for low-mass discs that cool fast enough to fragment, prograde discs are significantly shorter lived than similar discs orbiting retrograde with respect to the binary. For fragmenting discs of all masses, we also find that prograde discs fragment across a narrower radial region. If the cooling is slow enough that the disc enters a self-regulating gravitoturbulent regime, we find that alignment between the disc and binary planes occurs on a time-scale primarily dictated by the disc thickness. We estimate realistic cooling times for such discs, and find that in the majority of cases we expect fragmentation to occur. The longer lifetime of low-mass fragmenting retrograde discs allows them to drive significant binary evolution, and may provide a mechanism for solving the 'last parsec problem'. C1 [Dunhill, A. C.; Alexander, R. D.; King, A. R.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. [Dunhill, A. C.] Pontificia Univ Catolica Chile, Inst Astrofis, Santiago, Chile. [Nixon, C. J.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Nixon, C. J.] NIST, Boulder, CO 80309 USA. RP Dunhill, AC (reprint author), Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. EM adunhill@astro.puc.cl OI Nixon, Christopher/0000-0002-2137-4146 FU Science and Technology Facilities Council (STFC); ALMA CONICYT [311200007]; STFC [ST/G00711X/1, ST/K001000/1]; Leverhulme Trust through a Philip Leverhulme Prize; NASA [PF2-130098]; BIS [ST/K000373/1]; STFC DiRAC [ST/K0003259/1] FX ACD acknowledges support from the Science and Technology Facilities Council (STFC) in the form of a PhD studentship, and from ALMA CONICYT grant 311200007. RDA acknowledges support from STFC through an Advanced Fellowship (ST/G00711X/1), and from the Leverhulme Trust through a Philip Leverhulme Prize. Astrophysical research at the University of Leicester is supported by an STFC Consolidated Grant (ST/K001000/1). CJN acknowledges support provided by NASA through the Einstein Fellowship Program, grant PF2-130098.; This work used the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the UK National E-Infrastructure. NR 70 TC 8 Z9 8 U1 1 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 11 PY 2014 VL 445 IS 3 BP 2285 EP 2296 DI 10.1093/mnras/stu1914 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AX5JT UT WOS:000346962900010 ER PT J AU Owen, JE Armitage, PJ AF Owen, James E. Armitage, Philip J. TI Importance of thermal diffusion in the gravomagnetic limit cycle SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE accretion, accretion discs; magnetohydrodynamics (MHD); turbulence; stars: pre-main-sequence ID LONG-TERM EVOLUTION; SPECTRAL ENERGY-DISTRIBUTIONS; GRAVITATING ACCRETION DISCS; T-TAURI STARS; PROTOPLANETARY DISKS; PROTOSTELLAR DISKS; LAYERED ACCRETION; INSTABILITY MODEL; DWARF NOVAE; OUTBURSTS AB We consider the role of thermal diffusion due to turbulence and radiation on accretion bursts that occur in protoplanetary discs which contain dead-zones. Using 1D viscous disc models, we show that diffusive radial transport of heat is important during the gravomagnetic limit cycle, and can strongly modify the duration and frequency of accretion outbursts. When the Prandtl number is large - such that turbulent diffusion of heat is unimportant - radial radiative diffusion reduces the burst duration compared to models with no diffusive transport of heat. When the Prandtl number is small less than or similar to 25, we find that turbulent diffusion dominates the radial transport of heat, reducing the burst duration to less than or similar to 10(3) yr as well as increasing the burst frequency. Furthermore, inclusion of radial transport of heat extends the range of infall rates under which the disc undergoes accretion bursts from 10(-8) to 10(-6) M(circle dot)yr(-1) with no diffusion, to 10(-8) to greater than or similar to 10(-4) M(circle dot)yr(-1) with radiative and strong turbulent diffusion. The relative roles of radiative and turbulent thermal diffusion are likely to vary during an accretion burst, but simple estimates suggest that the expected Prandtl numbers are of the order of 10 in protoplanetary discs, and hence that turbulent diffusion is likely to be an important process during accretion outbursts due to the gravomagnetic limit cycle. C1 [Owen, James E.] Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Armitage, Philip J.] Univ Colorado, JILA, Boulder, CO 80309 USA. [Armitage, Philip J.] NIST, Boulder, CO 80309 USA. [Armitage, Philip J.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. RP Owen, JE (reprint author), Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. EM jowen@cita.utoronto.ca FU Canada Foundation for Innovation; NASA [NNX13AI58G, NNX14AB42G, NAS 5-26555]; NSF [AST 1313021]; Space Telescope Science Institute [HST-AR-12814] FX We thank the referee for a helpful report that improved this manuscript. We are grateful to Shane Davis, Emmanuel Jacquet and Kristen Menou for useful discussions. The numerical calculations were performed on the Sunnyvale cluster at CITA, which is funded by the Canada Foundation for Innovation. PJA acknowledges support from NASA under grants NNX13AI58G and NNX14AB42G, from the NSF under award AST 1313021 and from grant HST-AR-12814 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contact NAS 5-26555. NR 51 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 11 PY 2014 VL 445 IS 3 BP 2800 EP 2809 DI 10.1093/mnras/stu1928 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA AX5JT UT WOS:000346962900050 ER PT J AU Dall'Osso, F Dominey-Howes, D Moore, C Summerhayes, S Withycombe, G AF Dall'Osso, F. Dominey-Howes, D. Moore, C. Summerhayes, S. Withycombe, G. TI The exposure of Sydney (Australia) to earthquake-generated tsunamis, storms and sea level rise: a probabilistic multi-hazard approach SO SCIENTIFIC REPORTS LA English DT Article ID VULNERABILITY; VALIDATION; BUILDINGS; COAST; MODEL AB Approximately 85% of Australia's population live along the coastal fringe, an area with high exposure to extreme inundations such as tsunamis. However, to date, no Probabilistic Tsunami Hazard Assessments (PTHA) that include inundation have been published for Australia. This limits the development of appropriate risk reduction measures by decision and policy makers. We describe our PTHA undertaken for the Sydney metropolitan area. Using the NOAA NCTR model MOST (Method for Splitting Tsunamis), we simulate 36 earthquake-generated tsunamis with annual probabilities of 15100, 151,000 and 1510,000, occurring under present and future predicted sea level conditions. For each tsunami scenario we generate a high-resolution inundation map of the maximum water level and flow velocity, and we calculate the exposure of buildings and critical infrastructure. Results indicate that exposure to earthquake-generated tsunamis is relatively low for present events, but increases significantly with higher sea level conditions. The probabilistic approach allowed us to undertake a comparison with an existing storm surge hazard assessment. Interestingly, the exposure to all the simulated tsunamis is significantly lower than that for the 15100 storm surge scenarios, under the same initial sea level conditions. The results have significant implications for multi-risk and emergency management in Sydney. C1 [Dall'Osso, F.; Dominey-Howes, D.] Univ Sydney, Asia Pacific Nat Hazards Res Grp, Sydney, NSW 2006, Australia. [Moore, C.] NOAA, Pacific Marine Environm Lab, Washington, DC USA. [Summerhayes, S.; Withycombe, G.] Sydney Coastal Councils Grp Inc, Sydney, NSW, Australia. RP Dall'Osso, F (reprint author), Univ Sydney, Asia Pacific Nat Hazards Res Grp, Sydney, NSW 2006, Australia. EM filippodallosso@gmail.com; dale.dominey-howes@sydney.edu.au FU NOAA Pacific Marine Environmental Laboratory (PMEL) [4200]; NSW Natural Disaster Resilience Program; Geoscience Australia FX We thank the NSW Natural Disaster Resilience Program for funding to support this work. We thank Mark Edwards and David Burbidge from Geoscience Australia for providing support and access to data. We thank 14 people who participated as members of an Advisory Committee to guide and inform our work. This work was partially supported by the NOAA Pacific Marine Environmental Laboratory (PMEL) and represents contribution no. 4200. NR 39 TC 3 Z9 3 U1 3 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 10 PY 2014 VL 4 AR 7401 DI 10.1038/srep07401 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AW4UR UT WOS:000346276300007 PM 25492514 ER PT J AU Liu, HJ Olson, DA Yu, M AF Liu, Haijun Olson, Douglas A. Yu, Miao TI Modeling of an air-backed diaphragm in dynamic pressure sensors: Effects of the air cavity SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID CLOSED RECTANGULAR CAVITY; FIBER-OPTIC MICROPHONE; CYLINDRICAL CAVITY; FORCED RESPONSE; FREE-VIBRATIONS; SYSTEM; FILM; PANEL; EXCITATION; ENERGY AB As the key structure of most dynamic pressure sensors, a diaphragm backed by an air cavity plays a critical role in the determination of sensor performance metrics. In this paper, we investigate the influence of air cavity length on the sensitivity and bandwidth. A continuum mechanics model neglecting the air viscous effect is first developed to capture the structural-acoustic coupling between a clamped circular diaphragm and a cylindrical backing air cavity. To facilitate sensor design, close-form approximations are obtained to calculate the static sensitivity and the fundamental natural frequency of the air-backed diaphragm. Parametric studies based on this analytical model show that the air cavity can change both the effective mass and the effective stiffness of the diaphragm. One new finding is that the natural frequency of the air-backed diaphragm behaves differently in three different cavity length ranges. In particular, due to the mass effect of the air cavity being dominant, it is shown for the first time that the natural frequency decreases when the cavity length decreases below a critical value in the short cavity range. Furthermore, a finite element method (FEM) model is developed to validate the continuum mechanics model and to study the damping effect of the air cavity. These results provide important design guidelines for dynamic pressure sensors with air-backed diaphragms. (C) 2014 Elsevier Ltd. All rights reserved. C1 [Liu, Haijun; Yu, Miao] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [Liu, Haijun; Olson, Douglas A.] NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA. RP Yu, M (reprint author), Univ Maryland, Dept Mech Engn, 2181 Glen L Martin Hall, College Pk, MD 20742 USA. EM liuhj@umd.edu; mmyu@umd.edu RI Liu, Haijun/A-5060-2016; Yu, Miao/M-6252-2013 OI Yu, Miao/0000-0003-4180-5094 FU National Science Foundation [CMMI 0644914]; National Institute of Standards and Technology [70NANB12H211] FX Supports received from the National Science Foundation (CMMI 0644914) and National Institute of Standards and Technology (70NANB12H211) are gratefully acknowledged. NR 45 TC 0 Z9 0 U1 1 U2 26 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X EI 1095-8568 J9 J SOUND VIB JI J. Sound Vibr. PD DEC 10 PY 2014 VL 333 IS 25 BP 7051 EP 7075 DI 10.1016/j.jsv.2014.07.004 PG 25 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA AR1IC UT WOS:000343337900017 ER PT J AU Xiang, B Patra, PK Montzka, SA Miller, SM Elkins, JW Moore, FL Atlas, EL Miller, BR Weiss, RF Prinn, RG Wofsy, SC AF Xiang, Bin Patra, Prabir K. Montzka, Stephen A. Miller, Scot M. Elkins, James W. Moore, Fred L. Atlas, Elliot L. Miller, Ben R. Weiss, Ray F. Prinn, Ronald G. Wofsy, Steven C. TI Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE HCFC-22; HFC-134a; refrigerants; global emissions; emission seasonality ID MONTREAL PROTOCOL; CHLORODIFLUOROMETHANE HCFC-22; GASES; TRENDS; AIR; HALOCARBONS; ATMOSPHERE; CALIFORNIA; CFCS AB HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [Hlaper-Pole-to-Pole Observations (HIPPO) 2009-2011] and combine these data with long-term ground observations from global surface sites [ National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009-2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e. g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e. g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere. C1 [Xiang, Bin; Miller, Scot M.; Wofsy, Steven C.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Patra, Prabir K.] Japan Agcy Marine Earth Sci & Technol, Dept Environm Geochem Cycle Res, Yokohama, Kanagawa 2360001, Japan. [Montzka, Stephen A.; Elkins, James W.; Moore, Fred L.; Miller, Ben R.] NOAA, Earth Syst Res Lab, Global Monitoring Div, Halocarbon & Other Trace Gases Grp, Boulder, CO 80305 USA. [Moore, Fred L.; Miller, Ben R.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Atlas, Elliot L.] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Dept Atmospher Sci, Miami, FL 33149 USA. [Weiss, Ray F.] Univ Calif San Diego, Scripps Inst Oceanog, Geosci Res Div, La Jolla, CA 92093 USA. [Prinn, Ronald G.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. RP Xiang, B (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM bxiang@seas.harvard.edu RI Xiang, Bin/E-8034-2012; Atlas, Elliot/J-8171-2015; Patra, Prabir/B-5206-2009; OI Patra, Prabir/0000-0001-5700-9389; Miller, Benjamin/0000-0003-1647-0122; Montzka, Stephen/0000-0002-9396-0400 FU Harvard University: National Science Foundation (NSF) [ATM-0628575]; National Aeronautics and Space Administration (NASA) [NNX13AH36G, NNX09AJ94G, NNX12AI83G]; NOAA's Climate Program Office; NSF [ATM-0723967]; Japan Society for the Promotion of Science Kakenhi Kiban-A project; NASA FX We thank the Hlaper-Pole-to-Pole Observation (HIPPO), National Oceanic and Atmospheric Administration (NOAA), and Advanced Global Atmospheric Gases Experiment (AGAGE) team for measurements, especially C. Siso, P. Lang, C. Sweeney, B. Hall, and Ed Dlugokencky. We thank J. Muhle [Scripps Institution of Oceanography (SIO)], S. O'Doherty, and D. Young (University of Bristol) and P. Krummel, P. Fraser, and P. Steele [Commonwealth Scientific and Industrial Research Organization (CSIRO)] and their colleagues for access to AGAGE data. This work is supported by the following grants to Harvard University: National Science Foundation (NSF) Grant ATM-0628575 and National Aeronautics and Space Administration (NASA) Grants NNX13AH36G, NNX09AJ94G, and NNX12AI83G. It is also supported in part by NOAA's Climate Program Office and its Atmospheric Chemistry, Carbon Cycle, and Climate Program. Support to the University of Miami comes from NSF Grant ATM-0723967. P.K.P. is supported by the Japan Society for the Promotion of Science Kakenhi Kiban-A project. AGAGE stations used in this paper are supported principally by NASA Upper Atmosphere Research Program grants to Massachusetts Institute of Technology (Mace Head, Barbados, and Cape Grim) and SIO (Trinidad Head, Samoa, Calibration), by Department of Energy & Climate Change (DECC, UK) (Mace Head) and NOAA (Barbados) grants to the University of Bristol, and by CSIRO and the Bureau of Meteorology (Australia) (Cape Grim). NR 34 TC 4 Z9 4 U1 3 U2 23 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD DEC 9 PY 2014 VL 111 IS 49 BP 17379 EP 17384 DI 10.1073/pnas.1417372111 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AU9NR UT WOS:000345921500022 PM 25422438 ER PT J AU Guzman, JM Luckenbach, JA Yamamoto, Y Swanson, P AF Guzman, Jose M. Luckenbach, J. Adam Yamamoto, Yoji Swanson, Penny TI Expression Profiles of Fsh-Regulated Ovarian Genes during Oogenesis in Coho Salmon SO PLOS ONE LA English DT Article ID FOLLICLE-STIMULATING-HORMONE; TROUT ONCORHYNCHUS-MYKISS; MESSENGER-RNA EXPRESSION; TISSUE GROWTH-FACTOR; EUROPEAN SEA BASS; SECONDARY OOCYTE GROWTH; RAT GRANULOSA-CELLS; IN-VITRO; RAINBOW-TROUT; STEROIDOGENIC ENZYMES AB The function of follicle-stimulating hormone (Fsh) during oogenesis in fishes is poorly understood. Using coho salmon as a fish model, we recently identified a suite of genes regulated by Fsh in vitro and involved in ovarian processes mostly unexplored in fishes, like cell proliferation, differentiation, survival or extracellular matrix (ECM) remodeling. To better understand the role of these Fsh-regulated genes during oocyte growth in fishes, we characterized their mRNA levels at discrete stages of the ovarian development in coho salmon. While most of the transcripts were expressed at low levels during primary growth (perinucleolus stage), high expression of genes associated with cell proliferation (pim1, pcna, and mcm4) and survival (ddit4l) was found in follicles at this stage. The transition to secondary oocyte growth (cortical alveolus and lipid droplet stage ovarian follicles) was characterized by a marked increase in the expression of genes related to cell survival (clu1, clu2 and ivns1abpa). Expression of genes associated with cell differentiation and growth (wt2l and adh8l), growth factor signaling (inha), steroidogenesis (cyp19a1a) and the ECM (col1a1, col1a2 and dcn) peaked in vitellogenic follicles, showing a strong and positive correlation with transcripts for fshr. Other genes regulated by Fsh and associated with ECM function (ctgf, wapl and fn1) and growth factor signaling (bmp16 and smad5l) peaked in maturing follicles, along with increases in steroidogenesis-related gene transcripts. In conclusion, ovarian genes regulated by Fsh showed marked differences in their expression patterns during oogenesis in coho salmon. Our results suggest that Fsh regulates different ovarian processes at specific stages of development, likely through interaction with other intra- or extra-ovarian factors. C1 [Guzman, Jose M.; Luckenbach, J. Adam; Yamamoto, Yoji; Swanson, Penny] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Environm & Fisheries Sci Div, Seattle, WA 98112 USA. [Luckenbach, J. Adam; Swanson, Penny] Washington State Univ, Ctr Reprod Biol, Pullman, WA 99164 USA. [Yamamoto, Yoji] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. [Yamamoto, Yoji] Tokyo Univ Marine Sci & Technol, Dept Marine Biosci, Minato Ku, Tokyo 1088477, Japan. RP Guzman, JM (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Environm & Fisheries Sci Div, Seattle, WA 98112 USA. EM jose.guzman-jimenez@noaa.gov RI Yamamoto, Yoji/O-1958-2014 FU NOAA Fisheries; National Research Initiative Competitive Grant from the USDA National Institute of Food and Agriculture [2007-35203-18088]; Fundacion Alfonso Martin Escudero (Spain); National Academy of Sciences (US) FX This research was partially funded by NOAA Fisheries and by National Research Initiative Competitive Grant no. 2007-35203-18088 from the USDA National Institute of Food and Agriculture to PS, and postdoctoral fellowships from the Fundacion Alfonso Martin Escudero (Spain) and The National Academy of Sciences (US) to JMG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 86 TC 3 Z9 3 U1 3 U2 29 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 8 PY 2014 VL 9 IS 12 AR e114176 DI 10.1371/journal.pone.0114176 PG 22 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX4MX UT WOS:000346907600044 PM 25485989 ER PT J AU Melcher, J Stirling, J Cervantes, FG Pratt, JR Shaw, GA AF Melcher, John Stirling, Julian Cervantes, Felipe Guzman Pratt, Jon R. Shaw, Gordon A. TI A self-calibrating optomechanical force sensor with femtonewton resolution SO APPLIED PHYSICS LETTERS LA English DT Article ID QPLUS SENSOR; MICROSCOPY; IDENTIFICATION; SPECTROSCOPY; GEOMETRY; SURFACE AB We report the development of an ultrasensitive optomechanical sensor designed to improve the accuracy and precision of force measurements with atomic force microscopy. The sensors reach quality factors of 4.3 x 10(6) and force resolution on the femtonewton scale at room temperature. Self-calibration of the sensor is accomplished using radiation pressure to create a reference force. Self-calibration enables in situ calibration of the sensor in extreme environments, such as cryogenic ultra-high vacuum. The senor technology presents a viable route to force measurements at the atomic scale with uncertainties below the percent level. (C) 2014 AIP Publishing LLC. C1 [Melcher, John; Stirling, Julian; Cervantes, Felipe Guzman; Pratt, Jon R.; Shaw, Gordon A.] NIST, Gaithersburg, MD 20899 USA. [Cervantes, Felipe Guzman] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA. RP Melcher, J (reprint author), NIST, Gaithersburg, MD 20899 USA. EM john.melcher@nist.gov RI Guzman, Felipe/H-6453-2011 OI Guzman, Felipe/0000-0001-9136-929X FU NIST-NRC FX This work was completed as part of a NIST-NRC Postdoctoral Fellowship. NR 31 TC 7 Z9 7 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 8 PY 2014 VL 105 IS 23 AR 233109 DI 10.1063/1.4903801 PG 4 WC Physics, Applied SC Physics GA AW4QO UT WOS:000346266000082 ER PT J AU Yuan, H Zhang, K Li, HT Zhu, H Bonevich, JE Baumgart, H Richter, CA Li, QL AF Yuan, Hui Zhang, Kai Li, Haitao Zhu, Hao Bonevich, John E. Baumgart, Helmut Richter, Curt A. Li, Qiliang TI Polarization of Bi2Te3 thin film in a floating-gate capacitor structure SO APPLIED PHYSICS LETTERS LA English DT Article ID FIELD-EFFECT TRANSISTORS; TOPOLOGICAL-INSULATOR; SURFACE CONDUCTION; BI2SE3; TRANSITION AB Metal-Oxide-Semiconductor (MOS) capacitors with Bi2Te3 thin film sandwiched and embedded inside the oxide layer have been fabricated and studied. The capacitors exhibit ferroelectric-like hysteresis which is a result of the robust, reversible polarization of the Bi2Te3 thin film while the gate voltage sweeps. The temperature-dependent capacitance measurement indicates that the activation energy is about 0.33 eV for separating the electron and hole pairs in the bulk of Bi2Te3, and driving them to either the top or bottom surface of the thin film. Because of the fast polarization speed, potentially excellent endurance, and the complementary metal-oxide-semiconductor compatibility, the Bi2Te3 embedded MOS structures are very interesting for memory application. (C) 2014 AIP Publishing LLC. C1 [Yuan, Hui; Li, Haitao; Zhu, Hao; Li, Qiliang] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA 22030 USA. [Yuan, Hui; Li, Haitao; Zhu, Hao; Richter, Curt A.] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA. [Zhang, Kai; Baumgart, Helmut] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. [Bonevich, John E.] NIST, Div Engn & Mat Sci, Gaithersburg, MD 20899 USA. RP Yuan, H (reprint author), George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA 22030 USA. EM hyuan@gmu.edu; qli6@gmu.edu RI Li, Qiliang/B-2225-2015 OI Li, Qiliang/0000-0001-9778-7695 FU US NIST [60NANB11D148]; US NSF [ECCS-0846649] FX This work was supported by US NIST Grant No. 60NANB11D148 and US NSF Grant No. ECCS-0846649. NR 26 TC 0 Z9 0 U1 3 U2 44 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD DEC 8 PY 2014 VL 105 IS 23 AR 233505 DI 10.1063/1.4904003 PG 5 WC Physics, Applied SC Physics GA AW4QO UT WOS:000346266000097 ER PT J AU Dally, R Hogan, T Amato, A Luetkens, H Baines, C Rodriguez-Rivera, J Graf, MJ Wilson, SD AF Dally, Rebecca Hogan, Tom Amato, Alex Luetkens, Hubertus Baines, Chris Rodriguez-Rivera, Jose Graf, Michael J. Wilson, Stephen D. TI Short-Range Correlations in the Magnetic Ground State of Na4Ir3O8 SO PHYSICAL REVIEW LETTERS LA English DT Article ID MUON SPIN RELAXATION; DISORDERED MAGNETS AB The magnetic ground state of the J(eff) = 1/2 hyperkagome lattice in Na4Ir3O8 is explored via combined bulk magnetization, muon spin relaxation, and neutron scattering measurements. A short-range, frozen state comprised of quasistatic moments develops below a characteristic temperature of T-F = 6 K, revealing an inhomogeneous distribution of spins occupying the entirety of the sample volume. Quasistatic, short-range spin correlations persist until at least 20 mK and differ substantially from the nominally dynamic response of a quantum spin liquid. Our data demonstrate that an inhomogeneous magnetic ground state arises in Na4Ir3O8 driven either by disorder inherent to the creation of the hyperkagome lattice itself or stabilized via quantum fluctuations. C1 [Dally, Rebecca; Hogan, Tom; Graf, Michael J.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Amato, Alex; Luetkens, Hubertus; Baines, Chris] Paul Scherrer Inst, Lab Muon Spin Spect, CH-5232 Villigen, Switzerland. [Rodriguez-Rivera, Jose] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Wilson, Stephen D.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Dally, R (reprint author), Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. EM stephendwilson@engineering.ucsb.edu RI Rodriguez-Rivera, Jose/A-4872-2013; Amato, Alex/H-7674-2013; Luetkens, Hubertus/G-1831-2011 OI Rodriguez-Rivera, Jose/0000-0002-8633-8314; Amato, Alex/0000-0001-9963-7498; FU NSF CAREER [DMR-1056625]; NSF [DMR-0944772, DMR-1337567] FX We would like to thank Sean Giblin and Ram Seshadri for preliminary SQUID measurements. This work was supported in part by NSF CAREER Grant No. DMR-1056625 (S. D. W.). Muon experiments were performed at the Swiss Muon Source at the Paul Scherrer Institute (Switzerland). This work utilized facilities supported in part under NSF Grant No. DMR-0944772 and SQUID measurements were supported in part by NSF Grant No. DMR-1337567. NR 26 TC 17 Z9 17 U1 4 U2 63 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 8 PY 2014 VL 113 IS 24 AR 247601 DI 10.1103/PhysRevLett.113.247601 PG 5 WC Physics, Multidisciplinary SC Physics GA AW1LA UT WOS:000346049700011 PM 25541804 ER PT J AU Young, RE Vecchione, M Braid, HE AF Young, Richard E. Vecchione, Michael Braid, Heather E. TI Mastigotragus, a new generic name for Mastigoteuthis pyrodes Young, 1972 (Cephalopoda: Mastigoteuthidae) SO European Journal of Taxonomy LA English DT Article DE Mastigoteuthidae; morphology; nomenclature; Mastigotragus gen. nov.; deep-sea squid AB A recent paper on the phylogenetic relationships of species within the cephalopod family Mastigoteuthidae meant great progress in stabilizing the classification of the family. The authors, however, left the generic placement of Mastigoteuthis pyrodes unresolved. This problem is corrected here by placing this species in a new monotypic genus, Mastigotragus, based on unique structures of the photophores and the funnel/mantle locking apparatus. C1 [Young, Richard E.] Univ Hawaii, Honolulu, HI 96822 USA. [Vecchione, Michael] Smithsonian Inst, NMFS Natl Systemat Lab, Washington, DC 20560 USA. [Braid, Heather E.] Auckland Univ Technol, Inst Appl Ecol New Zealand, Auckland, New Zealand. RP Young, RE (reprint author), Univ Hawaii, Honolulu, HI 96822 USA. EM dickphyllisyoung@gmail.com; vecchiom@si.edu; heather.braid@gmail.com NR 6 TC 0 Z9 0 U1 0 U2 4 PU MUSEUM NATL HISTOIRE NATURELLE PI PARIS PA SERVICE PUBLICATIONS SCIENTIFIQUES, 57 RUE CUVIER, 75005 PARIS, FRANCE SN 2118-9773 J9 EUR J TAXON JI Eur. J. Taxon. PD DEC 5 PY 2014 VL 105 BP 1 EP 6 DI 10.5852/ejt.2014.105 PG 6 WC Zoology SC Zoology GA CA4WS UT WOS:000348908600001 ER PT J AU McKinney, GJ Varian, A Scardina, J Nichols, KM AF McKinney, Garrett J. Varian, Anna Scardina, Julie Nichols, Krista M. TI Genetic and Morphological Divergence in Three Strains of Brook Trout Salvelinus fontinalis Commonly Stocked in Lake Superior SO PLOS ONE LA English DT Article ID QUANTITATIVE TRAITS; LIFE-HISTORY; REPRODUCTIVE SUCCESS; SOURCE POPULATIONS; NATURAL-SELECTION; LOCAL ADAPTATION; NIPIGON BAY; HABITAT USE; CHARR; EVOLUTION AB Fitness related traits often show spatial variation across populations of widely distributed species. Comparisons of genetic variation among populations in putatively neutral DNA markers and in phenotypic traits susceptible to selection (Q(ST) F-ST analysis) can be used to determine to what degree differentiation among populations can be attributed to selection or genetic drift. Traditionally, Q(ST) F-ST analyses require a large number of populations to achieve sufficient statistical power; however, new methods have been developed that allow Q(ST) F-ST comparisons to be conducted on as few as two populations if their pedigrees are informative. This study compared genetic and morphological divergence in three strains of brook trout Salvelinus fontinalis that were historically or currently used for stocking in the Lake Superior Basin. Herein we examined if morphological divergence among populations showed temporal variation, and if divergence could be attributed to selection or was indistinguishable from genetic drift. Multivariate Q(ST) F-ST analysis showed evidence for divergent selection between populations. Univariate analyses suggests that the pattern observed in the multivariate analyses was largely driven by divergent selection for length and weight, and moreover by divergence between the Assinica strain and each of the Iron River and Siskiwit strains rather than divergent selection between each population pair. While it could not be determined if divergence was due to natural selection or inadvertent artificial selection in hatcheries, selected differences were consistent with patterns of domestication commonly found in salmonids. C1 [McKinney, Garrett J.; Scardina, Julie; Nichols, Krista M.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Varian, Anna] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA. RP Nichols, KM (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA. EM krista.nichols@noaa.gov OI Matz, Mikhail/0000-0001-5453-9819 FU Purdue University FX Funding was provided by Purdue University. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 45 TC 1 Z9 1 U1 1 U2 22 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 5 PY 2014 VL 9 IS 12 AR UNSP e113809 DI 10.1371/journal.pone.0113809 PG 20 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA AX4MS UT WOS:000346907200031 PM 25479612 ER EF