FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Miao, YB Harp, J Mo, K Bhattacharya, S Baldo, P Yacout, AM AF Miao, Yinbin Harp, Jason Mo, Kun Bhattacharya, Sumit Baldo, Peter Yacout, Abdellatif M. TI Short Communication on "In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures" SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Nuclear fuel; Accident tolerant fuel; Uranium suicide; Ion irradiation; In-situ TEM ID NEUTRON-IRRADIATION; BEAM IRRADIATION; AMORPHIZATION; OXIDATION; BEHAVIOR; SILICON AB The radiation-induced amorphization of U3Si2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 degrees C and 550 degrees C up to 7.2 x 10(15) ions/cm(2) to examine their amorphization behavior under light water reactor (LWR) conditions. U3Si2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses. (C) 2016 Elsevier B.V. All rights reserved. C1 [Miao, Yinbin; Mo, Kun; Baldo, Peter; Yacout, Abdellatif M.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Harp, Jason] Idaho Natl Lab, Idaho Fall, ID 83415 USA. [Bhattacharya, Sumit] Northwestern Univ, Evanston, IL 60208 USA. RP Miao, YB (reprint author), 9700 S Cass Ave, Argonne, IL 60439 USA. EM ymiao@anl.gov OI Miao, Yinbin/0000-0002-3128-4275; Harp, Jason/0000-0002-5345-8440 FU Accident Tolerant Fuel High-Impact Problems (ATF HIP) of the U.S. Department of Energy (DOE)'s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program; UChicago Argonne, LLC [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-06CH11357]; MRSEC program at the Materials Research Center [NSFDMR-1121262]; Nanoscale Science and Engineering Center at the International Institute for Nanotechnology [NSFEEC-0647560]; State of Illinois, through the International Institute for Nanotechnology; U.S. Department of Energy, Office of Nuclear Energy; Westinghouse Electric Company [DE-FOA-0001063] FX This work was funded by the Accident Tolerant Fuel High-Impact Problems (ATF HIP) of the U.S. Department of Energy (DOE)'s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The efforts involving Argonne National Laboratory, including the use of the IVEM-Tandem Facility, were sponsored under Contract no. DE-AC02-06CH11357 between UChicago Argonne, LLC and the U.S. Department of Energy. This work made use of the EPIC facility (NUANCE Center-Northwestern University), which has received support from the MRSEC program (NSFDMR-1121262) at the Materials Research Center; the Nanoscale Science and Engineering Center (NSFEEC-0647560) at the International Institute for Nanotechnology; and the State of Illinois, through the International Institute for Nanotechnology.; Fabrication of the samples used in this work was supported by the U.S. Department of Energy, Office of Nuclear Energy. Fabrication was part of a collaboration led by Westinghouse Electric Company comprising several national laboratories, vendors, and universities awarded in response to the DE-FOA-0001063 funding opportunity. The authors would like to acknowledge the assistance of the support staff associated with the Fuels Applied Science Building at Idaho National Laboratory specifically Rita Hoggan for preparing samples for FIB liftouts. NR 26 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 168 EP 173 DI 10.1016/j.jnucmat.2016.11.020 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300020 ER PT J AU El-Atwani, O Nathaniel, JE Leff, AC Muntifering, BR Baldwin, JK Hattar, K Taheri, ML AF El-Atwani, O. Nathaniel, J. E., II Leff, A. C. Muntifering, B. R. Baldwin, J. K. Hattar, K. Taheri, M. L. TI The role of grain size in He bubble formation: Implications for swelling resistance SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Bubble formation; Nanocrystalline; Denuded zone; Swelling ID RADIATION-INDUCED SEGREGATION; AUSTENITIC STAINLESS-STEEL; IN-SITU; ION IRRADIATION; STRUCTURAL-MATERIALS; BOUNDARY CHARACTER; NANOCRYSTALLINE TUNGSTEN; HELIUM; DAMAGE; METALS AB Nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas ranging from 3000 to 7500 nm(2) show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm(2) possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle. Published by Elsevier B.V. C1 [El-Atwani, O.; Nathaniel, J. E., II; Leff, A. C.; Taheri, M. L.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Muntifering, B. R.; Hattar, K.] Sandia Natl Labs, Dept Radiat Solid Interact, Livermore, NM USA. [Baldwin, J. K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM USA. RP Taheri, ML (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA.; El-Atwani, O (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM USA. EM oelatwan25@gmail.com OI El Atwani, Osman/0000-0002-1862-7018 FU United States Department of Energy Basic Energy Sciences (DOE/BES) under the Early Career program [DE-SC0008274]; U.S. Department of Energy (DOE) Office of Science [DE-AC52-06NA25396, DE-AC04-94AL85000]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX MLT, OEA, ACL, and JEN gratefully acknowledge funding from the United States Department of Energy Basic Energy Sciences (DOE/BES) under the Early Career program through contract DE-SC0008274. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 79 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 236 EP 244 DI 10.1016/j.jnucmat.2016.12.003 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300026 ER PT J AU Wood, ES White, JT Nelson, AT AF Wood, E. Sooby White, J. T. Nelson, A. T. TI Oxidation behavior of U-Si compounds in air from 25 to 1000 C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID URANIUM-DIOXIDE; THERMOPHYSICAL PROPERTIES; 1773 K; U3SI AB The air oxidation behavior of U3Si2, USi, and U3Si5 is studied from room temperature to 1000 C. The onsets of breakaway oxidation for each compound are identified during synthetic air ramps to 1000 C using thermogravimetric analysis. Isothermal air oxidation tests are performed below and above the breakaway oxidation onset to discern the oxidation kinetic behavior of these candidate accident tolerant fuel forms. Uranium metal is tested in the same manner to provide a reference for the oxidation behavior. Thermogravimetric, x-ray diffraction, and scanning electron microscopy analysis are presented here along with a discussion of the oxidation behavior of these materials and the impact of the lack of oxidation resistance to their deployment as accident tolerant nuclear fuels. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wood, E. Sooby; White, J. T.; Nelson, A. T.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Wood, ES (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM sooby@lanl.gov OI Nelson, Andrew/0000-0002-4071-3502 FU U.S. Department of Energy [DE-AC52-06NA25396]; Office of Nuclear Energy Fuel Cycle Research and Development program; Los Alamos National Laboratory Seaborg Institute for Plutonium and Actinide Science FX This work was supported by the U.S. Department of Energy contract # DE-AC52-06NA25396, Office of Nuclear Energy Fuel Cycle Research and Development program and the Los Alamos National Laboratory Seaborg Institute for Plutonium and Actinide Science. NR 28 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 245 EP 257 DI 10.1016/j.jnucmat.2016.12.016 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300027 ER PT J AU Kim, YS Wiencek, T O'Hare, E Fortner, J Wright, A Cheon, JS Lee, BO AF Kim, Yeon Soo Wiencek, T. O'Hare, E. Fortner, J. Wright, A. Cheon, J. S. Lee, B. O. TI Effect of indium addition in U-Zr metallic fuel on lanthanide migration SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE U-10Zr metallic fuel; FCCI; Lanthanide immobilization; Dopant method; Out-of-pile test ID CONSTITUENT REDISTRIBUTION; DIFFUSION COUPLES; DISPERSION FUEL; IRRADIATION; ALLOYS; TEMPERATURE; STABILITY; PALLADIUM; GRADIENT AB Advanced fast reactor concepts to achieve ultra-high burnup (similar to 50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys was performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration. (C) 2016 Elsevier B.V. All rights reserved. C1 [Kim, Yeon Soo; Wiencek, T.; O'Hare, E.; Fortner, J.; Wright, A.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Cheon, J. S.; Lee, B. O.] Korea Atom Energy Res Inst, 989-111 Daedeok Daero, Daejeon 305353, South Korea. RP Kim, YS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov FU UChicago Argonne, LLC [DE-AC-02-06CH11357]; US Department of Energy [DE-AC-02-06CH11357]; KAERI, Korea [8517F] FX The authors thank Dr. G. Hofman for useful discussion on the topic of this paper and Dr. L. Jamison for reviewing the manuscript. The submitted manuscript has been created by the UChicago Argonne, LCC as Operator of Argonne National Laboratory under Contract No.DE-AC-02-06CH11357 between UChicago Argonne, LLC and the US Department of Energy, and in part by the WFO fund No. 8517F provided by KAERI, Korea. NR 19 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 297 EP 306 DI 10.1016/j.jnucmat.2016.11.012 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300033 ER PT J AU Jiang, WL Zhang, JD Kovarik, L Zhu, ZH Price, L Gigax, J Castanon, E Wang, XM Shao, L Senor, DJ AF Jiang, Weilin Zhang, Jiandong Kovarik, Libor Zhu, Zihua Price, Lloyd Gigax, Jonathan Castanon, Elizabeth Wang, Xuemei Shao, Lin Senor, David J. TI Irradiation effects and hydrogen behavior in HI and He implanted gamma-LiAlO2 single crystals SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CERAMIC BREEDER MATERIALS; TRANSMISSION ELECTRON-MICROSCOPY; ION-BEAM IRRADIATION; LITHIUM ALUMINATE; TRITIUM TRANSPORT; LIALO2; DAMAGE; DEUTERIUM; DEFECTS; RELEASE AB Gamma-phase lithium aluminate (gamma-LiAlO2) is a breeder material for tritium, a necessary substance for strategic stockpile and fusion power systems. A fundamental study of structural evolution and tritium diffusion in gamma-LiAlO2 under displacive irradiation is needed to fully assess the material performance. This study utilizes ion implantation of protium (surrogate for tritium) and helium in gamma-LiAlO2 single crystals at elevated temperatures to emulate the irradiation effects. The results show that at 573 K there are two distinct disorder saturation stages to I dpa without full amorphization; overlapping implantation of H-2(+) and He+ ions suggests possible formation of gas bubbles. For irradiation to 10(21) H+/m(2) (0.36 dpa at peak) at 773 K, amorphization occurs at surface with H diffusion and dramatic Li loss; the microstructure contains bubbles and cubic LiAl5O8 precipitates with sizes up to 200 nm or larger. In addition, significant H diffusion and release are observed during thermal annealing. (C) 2016 Elsevier B.V. All rights reserved. C1 [Jiang, Weilin; Zhang, Jiandong; Kovarik, Libor; Zhu, Zihua; Senor, David J.] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Price, Lloyd; Gigax, Jonathan; Castanon, Elizabeth; Wang, Xuemei; Shao, Lin] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Jiang, WL (reprint author), Pacific Northwest Natl Lab, Richland, WA 99354 USA. EM weilin.jiang@pnnl.gow RI Zhu, Zihua/K-7652-2012 FU PNNL Tritium Technology Program - National Nuclear Security Administration, U.S. Department of Energy [DE-AC05-76RL01830]; DOE Office of Biological and Environmental Research at PNNL FX This work was supported by PNNL Tritium Technology Program, sponsored by National Nuclear Security Administration, U.S. Department of Energy under Contract DE-AC05-76RL01830. Ion implantation and ion-beam analysis were performed in collaboration with Texas A&M University. ToF-SIMS and STEM were performed under a general user proposal of EMSL, a national scientific user facility sponsored by DOE Office of Biological and Environmental Research and located at PNNL. NR 49 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 374 EP 381 DI 10.1016/j.jnucmat.2016.03.014 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300041 ER PT J AU White, JT Nelson, AT Dunwoody, JT Safarik, DJ McClellan, KJ AF White, J. T. Nelson, A. T. Dunwoody, J. T. Safarik, D. J. McClellan, K. J. TI Thermophysical properties of U3Si2 to 1773 K (vol 464, pg 275, 2015) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Correction C1 [White, J. T.; Nelson, A. T.; Dunwoody, J. T.; Safarik, D. J.; McClellan, K. J.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP White, JT (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM jtwhite@lanl.gov NR 3 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2017 VL 484 BP 386 EP 387 DI 10.1016/j.jnucmat.2016.11.015 PG 2 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EJ5GR UT WOS:000393246300043 ER PT J AU Srivastava, SC AF Srivastava, Suresh C. TI ICRT 2016: International Focus on Theragnostics SO JOURNAL OF NUCLEAR MEDICINE LA English DT News Item DE \ C1 [Srivastava, Suresh C.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Srivastava, SC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 2 TC 0 Z9 0 U1 1 U2 1 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 EI 1535-5667 J9 J NUCL MED JI J. Nucl. Med. PD FEB PY 2017 VL 58 IS 2 BP 16N EP 16N PG 1 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA EJ6WH UT WOS:000393360100002 PM 28151417 ER PT J AU Baker, SL Lockhart, SN Price, JC He, M Huesman, RH Schonhaut, D Faria, J Rabinovici, G Jagust, WJ AF Baker, Suzanne L. Lockhart, Samuel N. Price, Julie C. He, Mark Huesman, Ronald H. Schonhaut, Daniel Faria, Jamie Rabinovici, Gil Jagust, William J. TI Reference Tissue-Based Kinetic Evaluation of F-18-AV-1451 for Tau Imaging SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE F-18-AV-1451; tau; kinetics; Alzheimer's ID ALZHEIMERS-DISEASE; NEUROFIBRILLARY PATHOLOGY; PET; MODEL; BINDING; RECEPTOR; TRACER AB The goal of this paper was to evaluate the in vivo kinetics of the novel tau-specific PET radioligand F-18-AV-1451 in cognitively healthy control (HC) and Alzheimer disease (AD) subjects, using reference region analyses. Methods: F-18-AV-1451 PET imaging was performed on 43 subjects (5 young HCs, 23 older HCs, and 15 AD subjects). Data were collected from 0 to 150 min after injection, with a break from 100 to 120 min. T1-weighted MR images were segmented using FreeSurfer to create 14 bilateral regions of interest (ROls). In all analyses, cerebellar gray matter was used as the reference region. Nondisplaceable binding potentials (BP(ND)s) were calculated using the simplified reference tissue model (SRTM) and SRTM2; the Logan graphical analysis distribution volume ratio (DVR) was calculated for 30-150 min (DVR30-150). These measurements were compared with each other and used as reference standards for defining an appropriate 20-min window for the SUV ratio (SUVR). Pearson correlations were used to compare the reference standards to 20-min SUVRs (start times varied from 30 to 130 min), for all values, for ROls with low F-18-AV-1451 binding (IROIs, mean of BPND + 1 and DVR30-150 < 1.5), and for ROls with high F-18-AV-1451 binding (hROls, mean of BPND + 1 and DVR30-150 > 1.5). Results: SRTM2 BPND + 1 and DVR30-150 were in good agreement. Both were in agreement with SRTM BPND + 1 for IROIs but were greater than SRTM BPND + 1 for hROls, resulting in a nonlinear relationship. hROI SUVRs increased from 80-100 to 120-140 min by 0.24 +/- 0.15. The SUVR time interval resulting in the highest correlation and slope closest to 1 relative to the reference standards for all values was 120-140 min for hROls, 60-80 min for IROIs, and 80-100 min for IROIs and hROls. There was minimal difference between methods when statistical significance between ADs and HCs was calculated. Conclusion: Despite later time periods providing better agreement between reference standards and SUVRs for hROls, a good compromise for studying IROIs and hROls is SUVR80-100. The lack of SUVR plateau for hROls highlights the importance of precise acquisition time for longitudinal assessment. C1 [Baker, Suzanne L.; Huesman, Ronald H.; Faria, Jamie; Jagust, William J.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA USA. [Lockhart, Samuel N.; He, Mark; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Price, Julie C.] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15260 USA. [Schonhaut, Daniel; Rabinovici, Gil] Univ Calif San Francisco, Memory & Aging Ctr, San Francisco, CA 94143 USA. RP Baker, SL (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS550121, Berkeley, CA 94702 USA. EM slbaker@lbl.gov FU NIH [AG034570, AG045611]; Avid Radiopharmaceuticals; GE Healthcare; Piramal Imaging FX This work was supported by NIH grants AG034570 and AG045611. William E Jagust has consulted for Novartis, Genentech, and Bioclinica. Gil Rabinovici receives research funding from Avid Radiopharmaceuticals, GE Healthcare, and Piramal Imaging. No other potential conflict of interest relevant to this article was reported. NR 25 TC 1 Z9 1 U1 1 U2 1 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 EI 1535-5667 J9 J NUCL MED JI J. Nucl. Med. PD FEB PY 2017 VL 58 IS 2 BP 332 EP 338 DI 10.2967/jnumed.116.175273 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA EJ6WH UT WOS:000393360100030 PM 27587706 ER PT J AU Juan, PA Dingreville, R AF Juan, Pierre-Alexandre Dingreville, Remi TI Mechanics of finite cracks in dissimilar anisotropic elastic media considering interfacial elasticity SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Crack mechanics; Stroh formalism; Anisotropic bimaterial; Interface properties; Surface stress ID MISMATCHED INTERFACES; BICRYSTAL INTERFACES; FRACTURE-MECHANICS; IMPERFECT INTERFACES; MATRIX-N; BIMATERIALS; TIP; SINGULARITIES; DISLOCATION; COHERENT AB Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive "interferences" are directly affected by the interface structure and its elastic response. This general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip. C1 [Juan, Pierre-Alexandre; Dingreville, Remi] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Dingreville, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rdingre@sandia.gov OI Dingreville, Remi/0000-0003-1613-695X FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors thank Scott Grutzik, Jianmin Qu and Stephane Berbenni for their comments and suggestions on this manuscript. NR 53 TC 0 Z9 0 U1 5 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD FEB PY 2017 VL 99 BP 1 EP 18 DI 10.1016/j.jmps.2016.10.009 PG 18 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA EJ5ET UT WOS:000393241100001 ER PT J AU Finnell, J AF Finnell, Joshua TI Mikhail and Margarita SO LIBRARY JOURNAL LA English DT Book Review C1 [Finnell, Joshua] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Finnell, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD FEB 1 PY 2017 VL 142 IS 2 BP 70 EP 70 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA EJ6WY UT WOS:000393362400130 ER PT J AU Urban, JJ AF Urban, Jeffrey J. TI One model to rule them all SO NATURE MATERIALS LA English DT News Item ID POLYMERS; TRANSPORT C1 [Urban, Jeffrey J.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Urban, JJ (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM jjurban@lbl.gov NR 11 TC 0 Z9 0 U1 8 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD FEB PY 2017 VL 16 IS 2 BP 157 EP 159 PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA EJ6ST UT WOS:000393349800003 PM 27842074 ER PT J AU Robinson, I Huang, XJ AF Robinson, Ian Huang, Xiaojing TI Reaching the third dimension SO NATURE MATERIALS LA English DT News Item ID NANOSCALE C1 [Robinson, Ian; Huang, Xiaojing] Brookhaven Natl Lab, Upton, NY 11973 USA. [Robinson, Ian] London Ctr Nanotechnol, London WC1 6BT, England. RP Robinson, I (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.; Robinson, I (reprint author), London Ctr Nanotechnol, London WC1 6BT, England. EM i.robinson@ucl.ac.uk NR 5 TC 0 Z9 0 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD FEB PY 2017 VL 16 IS 2 BP 160 EP 161 PG 2 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA EJ6ST UT WOS:000393349800005 PM 28119524 ER PT J AU Sheberla, D Bachman, JC Elias, JS Sun, CJ Shao-Horn, Y Dinca, M AF Sheberla, Dennis Bachman, John C. Elias, Joseph S. Sun, Cheng-Jun Shao-Horn, Yang Dinca, Mircea TI Conductive MOF electrodes for stable supercapacitors with high areal capacitance SO NATURE MATERIALS LA English DT Article ID METAL-ORGANIC FRAMEWORKS; DOUBLE-LAYER CAPACITORS; ENERGY-STORAGE; CARBON; PERFORMANCE; BATTERIES; GRAPHENE AB Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles'. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs4-9. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs)(10). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni-3(2,3,6,7,10,11-hexaiminotriphenylene)(2) (Ni-3(HITP)(2)), a MOF with high electrical conductivity(11), can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level. C1 [Sheberla, Dennis; Elias, Joseph S.; Dinca, Mircea] MIT, Dept Chem, Cambridge, MA 02139 USA. [Bachman, John C.; Shao-Horn, Yang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Sun, Cheng-Jun] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Dinca, M (reprint author), MIT, Dept Chem, Cambridge, MA 02139 USA. EM mdinca@mit.edu OI Elias, Joseph/0000-0002-2941-777X FU Center for Excitonics, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001088]; BMW; Skoltech Center for Electrochemical Energy Storage; National Science Foundation under NSF [ECS-0335765]; US Department of Energy-Basic Energy Sciences; Canadian Light Source; Advanced Photon Source; US DOE [DE-AC02-06CH11357] FX This work was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award no. DE-SC0001088 (MIT). M.D. gratefully acknowledges early career support from the Sloan Foundation, the Research Corporation for Science Advancement (Cottrell Scholar), and 3M. J.C.B., Y.S.-H. and J.S.E. were supported by BMW and the Skoltech Center for Electrochemical Energy Storage. Part of the characterization was performed at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. CNS is part of Harvard University. Sector 20 facilities at the Advanced Photon Source, and research at these facilities is supported by the US Department of Energy-Basic Energy Sciences, the Canadian Light Source and its funding partners, and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 29 TC 2 Z9 2 U1 120 U2 120 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD FEB PY 2017 VL 16 IS 2 BP 220 EP 224 DI 10.1038/NMAT4766 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA EJ6ST UT WOS:000393349800015 PM 27723738 ER PT J AU Latimer, AA Kulkarni, AR Aljama, H Montoya, JH Yoo, JS Tsai, C Abild-Pedersen, F Studt, F Norskov, JK AF Latimer, Allegra A. Kulkarni, Ambarish R. Aljama, Hassan Montoya, Joseph H. Yoo, Jong Suk Tsai, Charlie Abild-Pedersen, Frank Studt, Felix Norskov, Jens K. TI Understanding trends in C-H bond activation in heterogeneous catalysis SO NATURE MATERIALS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; OXIDATIVE DEHYDROGENATION; METHANE ACTIVATION; CONVERSION; MORDENITE; MECHANISM; ZEOLITES; SURFACES; ETHANOL; SITES AB While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed(1). Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C-H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes. C1 [Latimer, Allegra A.; Kulkarni, Ambarish R.; Aljama, Hassan; Yoo, Jong Suk; Tsai, Charlie; Abild-Pedersen, Frank; Studt, Felix; Norskov, Jens K.] Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, 450 Serra Mall, Stanford, CA 94305 USA. [Montoya, Joseph H.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Abild-Pedersen, Frank; Studt, Felix; Norskov, Jens K.] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RP Norskov, JK (reprint author), Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, 450 Serra Mall, Stanford, CA 94305 USA.; Norskov, JK (reprint author), SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM norskov@stanford.edu RI Studt, Felix/C-7874-2017 FU US Department of Energy Office of Basic Energy Science; DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship [32 CFR 168a]; National Science Foundation Graduate Research Fellowship Program (GRFP) [DGE-114747]; NSF GRFP [DGE-114747]; Center of Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center - US Department of Energy, Office of Basic Energy Sciences [DE-SC0001060]; US DOS via the International Fulbright Science & Technology Award programme; Aramco Services Company FX Support from the US Department of Energy Office of Basic Energy Science to the SUNCAT Center for Interface Science and Catalysis is gratefully acknowledged. The research of A.A.L. was conducted with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. A.R.K. acknowledges the computing resources from the Carbon High-Performance Computing Cluster at Argonne National Laboratory under proposal CNM-46405. C.T. acknowledges support from the National Science Foundation Graduate Research Fellowship Program (GRFP) Grant DGE-114747. J.H.M. acknowledges funding from the NSF GRFP, grant number DGE-114747, and also the Center of Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences under award number DE-SC0001060. J.S.Y. appreciates the financial support from the US DOS via the International Fulbright Science & Technology Award programme. H.A. receives funding from Aramco Services Company. NR 30 TC 1 Z9 1 U1 39 U2 39 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD FEB PY 2017 VL 16 IS 2 BP 225 EP 229 DI 10.1038/NMAT4760 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA EJ6ST UT WOS:000393349800016 PM 27723737 ER PT J AU Hruszkewycz, SO Allain, M Holt, MV Murray, CE Holt, JR Fuoss, PH Chamard, V AF Hruszkewycz, S. O. Allain, M. Holt, M. V. Murray, C. E. Holt, J. R. Fuoss, P. H. Chamard, V. TI High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography SO NATURE MATERIALS LA English DT Article ID X-RAY-DIFFRACTION; ELECTRON TOMOGRAPHY; PHASE RETRIEVAL; NANOSCALE; CRYSTAL; STRAIN; CRYSTALLOGRAPHY; NANOCRYSTALS; DYNAMICS AB Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure-property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series of two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. We present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device. C1 [Hruszkewycz, S. O.; Fuoss, P. H.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Allain, M.; Chamard, V.] Aix Marseille Univ, CNRS, Cent Marseille, Inst Fresnel, F-13013 Marseille, France. [Holt, J. R.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. [Murray, C. E.] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Holt, J. R.] IBM Semicond Res & Dev Ctr, Hopewell Jct, NY 12533 USA. RP Hruszkewycz, SO (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shrus@anl.gov RI Chamard, Virginie/B-3704-2016 OI Chamard, Virginie/0000-0002-6894-4169 FU US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; French ANR [ANR-11-BS10-0005]; French OPTITEC cluster; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX 3DBPP simulations and experimental measurements were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Design of the 3DBPP phase retrieval algorithm was partially funded by the French ANR under project number ANR-11-BS10-0005 and the French OPTITEC cluster. Use of the Center for Nanoscale Materials and the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Sample manufacturing was performed by the Research Alliance Teams at various IBM Research and Development facilities. The authors also acknowledge A. Pateras for fruitful discussion and A. Diaz for comments on the manuscript. NR 46 TC 4 Z9 4 U1 12 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD FEB PY 2017 VL 16 IS 2 BP 244 EP 251 DI 10.1038/NMAT4798 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA EJ6ST UT WOS:000393349800019 PM 27869823 ER PT J AU Fellmann, C Cowen, BC Lin, PC Doudna, JA Corn, JE AF Fellmann, Christof Cowen, Benjamin C. Lin, Pei-Chun Doudna, Jennifer A. Corn, Jacob E. TI Cornerstones of CRISPR-Cas in drug discovery and therapy SO NATURE REVIEWS DRUG DISCOVERY LA English DT Review ID EMBRYONIC STEM-CELLS; HEMATOPOIETIC STEM/PROGENITOR CELLS; GENOME-EDITING SPECIFICITY; ZINC-FINGER NUCLEASES; VIRUS ENTRY REQUIRES; DOUBLE-STRAND BREAKS; HUMAN CANCER-CELLS; OFF-TARGET SITES; IN-VIVO; T-CELLS AB The recent development of CRISPR-Cas systems as easily accessible and programmable tools for genome editing and regulation is spurring a revolution in biology. Paired with the rapid expansion of reference and personalized genomic sequence information, technologies based on CRISPR-Cas are enabling nearly unlimited genetic manipulation, even in previously difficult contexts, including human cells. Although much attention has focused on the potential of CRISPR-Cas to cure Mendelian diseases, the technology also holds promise to transform the development of therapies to treat complex heritable and somatic disorders. In this Review, we discuss how CRISPR-Cas can affect the next generation of drugs by accelerating the identification and validation of high-value targets, uncovering high-confidence biomarkers and developing differentiated breakthrough therapies. We focus on the promises, pitfalls and hurdles of this revolutionary gene-editing technology, discuss key aspects of different CRISPR-Cas screening platforms and offer our perspectives on the best practices in genome engineering. C1 [Fellmann, Christof; Cowen, Benjamin C.; Lin, Pei-Chun; Doudna, Jennifer A.; Corn, Jacob E.] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [Cowen, Benjamin C.; Lin, Pei-Chun; Corn, Jacob E.] Univ Calif Berkeley, Innovat Genom Inst, Berkeley, CA 94720 USA. [Lin, Pei-Chun] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94158 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Li Ka Shing Biomed & Hlth Sci Ctr, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, MBIB Div, Berkeley, CA 94720 USA. RP Corn, JE (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.; Corn, JE (reprint author), Univ Calif Berkeley, Innovat Genom Inst, Berkeley, CA 94720 USA. EM jcorn@berkeley.edu OI Fellmann, Christof/0000-0002-9545-5723 FU US National Institutes of Health from the National Institute of General Medical Sciences (NIGMS) [K99GM118909]; Li Ka Shing Foundation FX The authors thank members of the Doudna and Corn laboratories, as well as F. Urnov for insightful comments and discussions. C.F. is supported by a US National Institutes of Health K99/R00 Pathway to Independence Award (K99GM118909) from the National Institute of General Medical Sciences (NIGMS). The Innovative Genomics Initiative (IGI) is supported by the Li Ka Shing Foundation. NR 159 TC 1 Z9 1 U1 15 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1474-1776 EI 1474-1784 J9 NAT REV DRUG DISCOV JI Nat. Rev. Drug Discov. PD FEB PY 2017 VL 16 IS 2 BP 89 EP 100 DI 10.1038/nrd.2016.238 PG 12 WC Biotechnology & Applied Microbiology; Pharmacology & Pharmacy SC Biotechnology & Applied Microbiology; Pharmacology & Pharmacy GA EJ8BH UT WOS:000393446800016 PM 28008168 ER PT J AU Kelly, BG Loether, A Unruh, KM DeCamp, MF DiChiara, AD AF Kelly, B. G. Loether, A. Unruh, K. M. DeCamp, M. F. DiChiara, A. D. TI X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers SO PHYSICAL REVIEW B LA English DT Article ID PICOSECOND LIGHT-PULSES; STRUCTURAL REFINEMENT; INTERDIFFUSION; SUPERLATTICES; GENERATION; TRANSITION; PHONONS; COUPLES; GROWTH AB An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. The data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of a NiPt alloy. C1 [Kelly, B. G.; Loether, A.; Unruh, K. M.; DeCamp, M. F.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [DiChiara, A. D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kelly, BG (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. FU NSF [DMR1410076]; U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]; National Institutes of Health, National Institute of General Medical Sciences [R24GM111072] FX We would like to thank John Xiao for growing the sample, Robert Henning for technical support, and James MacDondald for useful discussions. This work was supported by the NSF under Grant No. DMR1410076. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-06CH11357. Use of the BioCARS Sector 14 was also supported by the National Institutes of Health, National Institute of General Medical Sciences Grant No. R24GM111072. NR 27 TC 0 Z9 0 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD FEB 1 PY 2017 VL 95 IS 6 AR 064301 DI 10.1103/PhysRevB.95.064301 PG 5 WC Physics, Condensed Matter SC Physics GA EK8CA UT WOS:000394150300006 ER PT J AU King, C Hong, YL Meeker, WQ AF King, Caleb Hong, Yili Meeker, William Q. TI Product Component Genealogy Modeling and Field-failure Prediction SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE competing risks; component generation; lifetime data; prediction intervals; product reliability ID COMPETING RISKS; INCOMPLETE DATA; INFORMATION AB Many industrial products consist of multiple components that are necessary for system operation. There is an abundance of literature on modeling the lifetime of such components through competing risks models. During the life-cycle of a product, it is common for there to be incremental design changes to improve reliability, to reduce costs, or due to changes in availability of certain part numbers. These changes can affect product reliability but are often ignored in system lifetime modeling. By incorporating this information about changes in part numbers over time (information that is readily available in most production databases), better accuracy can be achieved in predicting time to failure, thus yielding more accurate field-failure predictions. This paper presents methods for estimating parameters and predictions for this generational model and a comparison with existing methods through the use of simulation. Our results indicate that the generational model has important practical advantages and outperforms the existing methods in predicting field failures. Copyright (C) 2016 John Wiley & Sons, Ltd. C1 [King, Caleb] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Hong, Yili] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA. [Meeker, William Q.] Iowa State Univ, Dept Stat, Ames, IA 50011 USA. RP King, C (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM kingcaleb7@gmail.com FU National Science Foundation [CMMI-1068933]; DuPont Young Professor Grant FX The work by King and Hong was partially supported by the National Science Foundation under Grant CMMI-1068933 to Virginia Tech and the 2011 DuPont Young Professor Grant. NR 20 TC 1 Z9 1 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0748-8017 EI 1099-1638 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD FEB PY 2017 VL 33 IS 1 BP 135 EP 148 DI 10.1002/qre.1996 PG 14 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA EJ6EA UT WOS:000393310200009 ER PT J AU Zeng, XF Collins, MA Borole, AP Pavlostathis, SG AF Zeng, Xiaofei Collins, Maya A. Borole, Abhijeet P. Pavlostathis, Spyros G. TI The extent of fermentative transformation of phenolic compounds in the bioanode controls exoelectrogenic activity in a microbial electrolysis cell SO WATER RESEARCH LA English DT Article DE Syringic acid; Vanillic acid; 4-hydroxybenzoic acid; Fermentation; Exoelectrogenesis; Metabolic pathways ID FUEL-CELL; ANAEROBIC DEGRADATION; WASTE-WATER; PELOBACTER-ACIDIGALLICI; HYDROGEN-PRODUCTION; AROMATIC-COMPOUNDS; CONVERSION; BIOTRANSFORMATION; 4-HYDROXYBENZOATE; HYDROXYBENZOATE AB Phenolic compounds in hydrolysate/pyrolysate and wastewater streams produced during the pretreatment of lignocellulosic biomass for biofuel production present a significant challenge in downstream processes. Bioelectrochemical systems are increasingly recognized as an alternative technology to handle biomass-derived streams and to promote water reuse in biofuel production. Thus, a thorough understanding of the fate of phenolic compounds in bioanodes is urgently needed. The present study investigated the biotransformation of three structurally similar phenolic compounds (syringic acid, SA; vanillic acid, VA; 4-hydroxybenzoic acid, HBA), and their individual contribution to exoelectrogenesis in a microbial electrolysis cell (MEC) bioanode. Fermentation of SA resulted in the highest exoelectrogenic activity among the three compounds tested, with 50% of the electron equivalents converted to current, compared to 12 and 9% for VA and HBA, respectively. The biotransformation of SA, VA and HBA was initiated by demethylation and decarboxylation reactions common to all three compounds, resulting in their corresponding hydroxylated analogs. SA was transformed to pyrogallol (1,2,3-trihydroxybenzene), whose aromatic ring was then cleaved via a phloroglucinol pathway, resulting in acetate production, which was then used in exoelectrogenesis. In contrast, more than 80% of VA and HBA was converted to catechol (1,2-dihydroxybenzene) and phenol (hydroxybenzene) as their respective dead-end products. The persistence of catechol and phenol is explained by the fact that the phloroglucinol pathway does not apply to di- or mono-hydroxylated benzenes. Previously reported, alternative ring-cleaving pathways were either absent in the bioanode microbial community or unfavorable due to high energy-demand reactions. With the exception of acetate oxidation, all biotransformation steps in the bioanode occurred via fermentation, independently of exoelectrogenesis. Therefore, the observed exoelectrogenic activity in batch runs conducted with SA, VA and HBA was controlled by the extent of fermentative transformation of the three phenolic compounds in the bioanode, which is related to the number and position of the methoxy and hydroxyl substituents. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zeng, Xiaofei; Collins, Maya A.; Pavlostathis, Spyros G.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Borole, Abhijeet P.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Borole, Abhijeet P.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Educ, Knoxville, TN 37996 USA. RP Pavlostathis, SG (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM spyros.pavlostathis@ce.gatech.edu OI Borole, Abhijeet/0000-0001-8423-811X FU U.S. Department of Energy, BioEnergy Technologies Office under the Carbon, Hydrogen and Separations Efficiency (CHASE) in Bio-Oil Conversion Pathways program [DE-FOA-0000812]; US Department of Energy [DE-AC05-00OR22725] FX We acknowledge funding for this work from the U.S. Department of Energy, BioEnergy Technologies Office under the Carbon, Hydrogen and Separations Efficiency (CHASE) in Bio-Oil Conversion Pathways program, DE-FOA-0000812. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. NR 53 TC 0 Z9 0 U1 15 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD FEB 1 PY 2017 VL 109 BP 299 EP 309 DI 10.1016/j.watres.2016.11.057 PG 11 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA EI8WM UT WOS:000392788900030 PM 27914260 ER PT J AU Vianco, PT AF Vianco, Paul T. TI Understanding the Reliability of Solder Joints Used in Advanced Structural and Electronics Applications: Part 1-Filler Metal Properties and the Soldering Process SO WELDING JOURNAL LA English DT Article DE Solder; Joint Reliability; Filler Metal Properties; Processing Effects ID INTERFACE REACTIONS; DISSOLUTION; 95.5SN-3.9AG-0.6CU; SOLDERABILITY; PALLADIUM; ALLOY AB Soldering technology has made tremendous strides in the past half-century. Whether structural or electronic, all solder joints must provide a level of reliability that is required by the application. This Part 1 report examines the effects of filler metal properties and the soldering process on joint reliability. Solder alloy composition must have the appropriate melting and mechanical properties that suit the product's assembly process(es) and use environment. The filler metal must also optimize solderability (wetting and spreading) to realize the proper joint geometry. The soldering process also affects joint reliability. The choice of flux and thermal profile support the solderability performance of the molten filler metal to successfully fill the joint clearance and complete the fillet. Base material and/or surface finish dissolution can alter the filler metal composition, which together with the interface reaction, affect the long-term mechanical performance of the solder joint. A second report, Part 2, explores the factors that explicitly affect solder joint reliability, including solid-state growth of the solder/base material reaction layer as well as solder joint fatigue under cyclic loading environments. C1 [Vianco, Paul T.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Vianco, PT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ptvianc@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX The author wishes to acknowledge the contributions of these persons of his nearly 30 years in soldering technology (alphabetical order): W. Buttry, R. Grant, J. Grazier, P. Hlava, A. Kilgo, B. McKenzie, M. Neilsen, J. Rejent, and G. Zender, as well as other, countless individuals, who in many ways, supported the work and performed the work, the results of which, are reported here. The author wishes to thank Don Susan for his review of the manuscript. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 15 TC 0 Z9 0 U1 0 U2 0 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD FEB PY 2017 VL 96 IS 2 BP 39S EP 52S PG 14 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA EJ3ZM UT WOS:000393151900020 ER PT J AU Sturtevant, D Duenas, ME Lee, YJ Chapman, KD AF Sturtevant, Drew Duenas, Maria Emilia Lee, Young-Jin Chapman, Kent D. TI Three-dimensional visualization of membrane phospholipid distributions in Arabidopsis thaliana seeds: A spatial perspective of molecular heterogeneity SO BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS LA English DT Article DE 3D; MALDI-MSI; Lipids; Arabidopsis; Phosphatidylcholine; Phosphatidylinositol ID IONIZATION MASS-SPECTROMETRY; IN-SITU; METABOLITES; LIPIDS; BIOSYNTHESIS; RESOLUTION; MUTANTS; PLANTS; GENE; MS AB Arabidopsis thaliana has been widely used as a model plant to study acyl lipid metabolism. Seeds of A. thaliana are quite small (approximately 500 x 300 mu m and weigh similar to 20 mu g), making lipid compositional analyses of single seeds difficult to achieve. Here we have used matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to map and visualize the three-dimensional spatial distributions of two common membrane phospholipid classes, phosphatidylcholine (PC) and phosphatidylinositol (PI), in single A. thaliana seeds. The 3D images revealed distinct differences in distribution of several molecular species of both phospholipids among different seed tissues. Using data from these 3D reconstructions, the PC and PI mol% lipid profiles were calculated for the embryonic axis, cotyledons, and peripheral endosperm, and these data agreed well with overall quantification of these lipids in bulk seed extracts analyzed by conventional electrospray ionization-mass spectrometry (ESI-MS). In addition, MALDI-MSI was used to profile PC and PI molecular species in seeds of wild type, fad2-1, fad3-2,fad6-1, and fae1-1 acyl lipid mutants. The resulting distributions revealed previously unobserved changes in spatial distribution of several lipid molecular species, and were used to suggest new insights into biochemical heterogeneity of seed lipid metabolism. These studies highlight the value of mass spectrometry imaging to provide unprecedented spatial and chemical resolution of metabolites directly in samples even as small as a single A. thaliana seeds, and allow for expanded imaging of plant metabolites to improve our understanding of plant lipid metabolism from a spatial perspective. (C) 2016 Elsevier B.V. All rights reserved. C1 [Sturtevant, Drew; Chapman, Kent D.] Univ North Texas, Dept Biol Sci, 1155 Union Circle 305220, Denton, TX 76203 USA. [Duenas, Maria Emilia; Lee, Young-Jin] US DOE, Ames Lab, Ames, IA 50011 USA. [Duenas, Maria Emilia; Lee, Young-Jin] Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA. [Duenas, Maria Emilia; Lee, Young-Jin] Iowa State Univ, Dept Chem, Roy J Carver Colab 35A, Ames, IA 50011 USA. RP Chapman, KD (reprint author), Univ North Texas, Dept Biol Sci, 1155 Union Circle 305220, Denton, TX 76203 USA. EM drewsturtevant@my.unt.edu; mduenas@iastate.edu; yjlee@iastate.edu; chapman@unt.edu FU US Department of Energy (DOE), Office of Science, Basic Energy Sciences program [DE-FG02-14ER15647]; US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through Ames Laboratory; DOE [DE-AC02-07CH11358] FX This work was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences program #DE-FG02-14ER15647 to KDC. The MALDI-MSI measurements were conducted at the Ames Laboratory and supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through Ames Laboratory. The Ames Laboratory is operated by Iowa State University under DOE Contract DE-AC02-07CH11358. NR 44 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1388-1981 EI 0006-3002 J9 BBA-MOL CELL BIOL L JI Biochim. Biophys. Acta Mol. Cell Biol. Lipids PD FEB PY 2017 VL 1862 IS 2 BP 268 EP 281 DI 10.1016/j.bbalip.2016.11.012 PG 14 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA EJ0KU UT WOS:000392898100013 PM 27919665 ER PT J AU Homel, MA Herbold, EB AF Homel, Michael A. Herbold, Eric B. TI Field-gradient partitioning for fracture and frictional contact in the material point method SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE material point method (MPM); fracture; cracks; contact; friction; fragmentation; comminution; mesoscale modeling; continuum damage; CPDI ID BRITTLE MATERIALS; DYNAMIC FRACTURE; GRANULAR-MATERIALS; CRACK-GROWTH; DAMAGE MODEL; FRAGMENTATION; PENETRATION; SIMULATION; MECHANICS; FAILURE AB Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. A new method is presented in which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. This approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approach permits frictional 'self-contact' between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach. Copyright (C) 2016 John Wiley & Sons, Ltd. C1 [Homel, Michael A.; Herbold, Eric B.] Lawrence Livermore Natl Lab, Computat Geosci Grp, Livermore, CA 94550 USA. RP Homel, MA (reprint author), Lawrence Livermore Natl Lab, Computat Geosci Grp, Livermore, CA 94550 USA. EM homel1@llnl.gov RI Herbold, Eric/G-3432-2011 OI Herbold, Eric/0000-0002-9837-1824 FU Joint DoD/DOE Munitions Technology Development Program (JMP); US Department of Energy by University of California, Lawrence Livermore National Laboratory [PND-L45911-WFO-DOD]; National Nuclear Security Administration [LLNL-JRNL-679544 DE-AC52-07NA27344] FX The authors would like to acknowledge the Joint DoD/DOE Munitions Technology Development Program (JMP) for partial funding to perform this work. The authors are also very grateful for invaluable assistance provided by Randolph Settgast, in the implementation of the field-gradient partitioning method within the GEOS computational framework.; The work was performed under the auspices of the US Department of Energy by University of California, Lawrence Livermore National Laboratory under contract PND-L45911-WFO-DOD. The work was supported by National Nuclear Security Administration release LLNL-JRNL-679544 DE-AC52-07NA27344. NR 71 TC 0 Z9 0 U1 3 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 EI 1097-0207 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD FEB PY 2017 VL 109 IS 7 BP 1013 EP 1044 DI 10.1002/nme.5317 PG 32 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA EI9HN UT WOS:000392818700001 ER PT J AU Wu, FT Fu, CB Qian, Y Gao, Y Wang, SY AF Wu, Fu-Ting Fu, Congbin Qian, Yun Gao, Yang Wang, Shu-Yu TI High-frequency daily temperature variability in China and its relationship to large-scale circulation SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Article DE intra-seasonal variability; day-to-day variability; Western Pacific Subtropical High; East Asian Subtropical Jet; Arctic Oscillation; Siberian High ID ASIAN SUMMER MONSOON; CLIMATE EXTREMES; TRENDS; WEATHER; INDEXES; 20TH-CENTURY; TORONTO; EASTERN; EUROPE; CANADA AB Two measures of intra-seasonal variability, indicated respectively by standard deviations (SD) and day-to-day (DTD) fluctuations denoted by absolute differences between adjacent 2-day periods, as well as their relationships with large-scale circulation patterns were investigated in China during 1962-2008 on the basis of homogenized daily temperature records from 549 local stations and reanalysis data. Our results show that both the SD and DTD of daily minimum temperatures (T-min) in summer as well as the minimum and maximum temperatures in winter have been decreasing, while the daily maximum temperature (T-max) variability in summer is fluctuating more, especially over southern China. In summer, an attribution analysis indicates that the intensity of the Western Pacific Subtropical High (WPSH) and high-level East Asian Subtropical Jet stream (EASJ) are positively correlated with both SD and DTD, but the correlation coefficients are generally greater with the SD than with the DTD of the daily maximum temperature, T-max. In contrast, the location of the EASJ shows the opposite correlation pattern, with intensity regarding the correlation with both SD and DTD. In winter, the Arctic Oscillation (AO) is negatively correlated with both the SD and DTD of the daily minimum temperature, but its intra-seasonal variability exhibits good agreement with the SD of the T-min. The Siberian High acts differently with respect to the SD and DTD of the T-min, demonstrating a regionally consistent positive correlation with the SD. Overall, the large-scale circulation can well explain the intra-seasonal SD, but DTD fluctuations may be more local and impacted by local conditions, such as changes in the temperature itself, the land surface, and so on. C1 [Wu, Fu-Ting; Fu, Congbin; Wang, Shu-Yu] Nanjing Univ, Inst Climate & Global Change Res, 163 Xianlindadao Rd, Nanjing 210023, Jiangsu, Peoples R China. [Wu, Fu-Ting; Fu, Congbin; Wang, Shu-Yu] Nanjing Univ, Sch Atmospher Sci, 163 Xianlindadao Rd, Nanjing 210023, Jiangsu, Peoples R China. [Wu, Fu-Ting; Fu, Congbin; Wang, Shu-Yu] Jiangsu Collaborat Innovat Ctr Climate Change, Nanjing, Jiangsu, Peoples R China. [Qian, Yun; Gao, Yang] Pacific Northwest Natl Lab, Richland, WA USA. RP Fu, CB (reprint author), Nanjing Univ, Inst Climate & Global Change Res, 163 Xianlindadao Rd, Nanjing 210023, Jiangsu, Peoples R China.; Fu, CB (reprint author), Nanjing Univ, Sch Atmospher Sci, 163 Xianlindadao Rd, Nanjing 210023, Jiangsu, Peoples R China. EM fcb@nju.edu.cn RI qian, yun/E-1845-2011 FU National Basic Research and Development (973) Program of China [2011CB952004]; Jiangsu Collaborative Innovation Center for Climate Change; U.S. Department of Energy's Office of Science as part of the Regional and Global Climate Modeling Program; DOE by the Battelle Memorial Institute [DE-AC05-76RL01830] FX This research was supported by the National Basic Research and Development (973) Program of China under grant 2011CB952004, the Jiangsu Collaborative Innovation Center for Climate Change. The contributions of Yun Qian and Yang Gao to this study were supported by the U.S. Department of Energy's Office of Science as part of the Regional and Global Climate Modeling Program. The Pacific Northwest National Laboratory is operated for the DOE by the Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 47 TC 0 Z9 0 U1 7 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-8418 EI 1097-0088 J9 INT J CLIMATOL JI Int. J. Climatol. PD FEB PY 2017 VL 37 IS 2 BP 570 EP 582 DI 10.1002/joc.4722 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EJ7PQ UT WOS:000393415100002 ER PT J AU Moghim, S McKnight, SL Zhang, K Ebtehaj, AM Knox, RG Bras, RL Moorcroft, PR Wang, JF AF Moghim, Sanaz McKnight, Shawna L. Zhang, Ke Ebtehaj, Ardeshir M. Knox, Ryan G. Bras, Rafael L. Moorcroft, Paul R. Wang, Jingfeng TI Bias-corrected data sets of climate model outputs at uniform space-time resolution for land surface modelling over Amazonia SO INTERNATIONAL JOURNAL OF CLIMATOLOGY LA English DT Article DE General Circulation Models; bias correction; climate data sets; climate simulations; climate change; Amazon Basin ID GENERAL-CIRCULATION MODEL; GLOBAL CLIMATE; CHANGE SCENARIOS; EL-NINO; THUNDERSTORM FREQUENCIES; DOWNSCALING METHODS; CHANGE PROJECTIONS; WATER MANAGEMENT; SEASONAL CYCLE; PRECIPITATION AB Developing high-quality long-term data sets at uniform space-time resolution is essential for improved climate studies. This article processes the outputs from two global and regional climate models, the Community Climate System Model (CCSM3) and the Regional Climate Model driven by the Hadley Centre Coupled Model (RegCM3). The results are bias-corrected time series of atmospheric variables corresponding to Intergovernmental Panel on Climate Change (IPCC's) historical (20C3M) and future (A2) climate scenarios over the Amazon Basin. We use a series of simple but effective interpolation approaches to produce hourly climate data sets at 1 degrees by 1 degrees grid cells. A quantile-based mapping approach is used to reduce the biases of temperature and precipitation in CCSM3 and RegCM3. Adjustments are also made on specific humidity and downwelling longwave radiation to avoid inconsistency between those variables and bias-corrected temperature values. We also interpolated an already bias-corrected Parallel Climate Model data set (PCM1) from 3-hourly to the hourly resolution. The final climate data sets can be used as forcing of ecosystem and hydrologic models to study climate changes and impact assessments over the Amazon Basin. C1 [Moghim, Sanaz; McKnight, Shawna L.; Bras, Rafael L.; Wang, Jingfeng] Georgia Inst Technol, Sch Civil & Environm Engn, North Ave NW, Atlanta, GA 30332 USA. [Zhang, Ke] Univ Oklahoma, Cooperat Inst Mesoscale Meteorol Studies, Norman, OK 73019 USA. [Ebtehaj, Ardeshir M.] Utah State Univ, Dept Civil & Environm Engn, Utah Water Res Lab, Logan, UT 84322 USA. [Knox, Ryan G.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Moorcroft, Paul R.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. RP Moghim, S (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, North Ave NW, Atlanta, GA 30332 USA. EM smoghim@gatech.edu RI Zhang, Ke/B-3227-2012 OI Zhang, Ke/0000-0001-5288-9372 FU Andes-Amazon Initiative of the Gordon and Betty Moore Foundation; K. Harrison Brown Family Chair FX This work was supported by the Andes-Amazon Initiative of the Gordon and Betty Moore Foundation. Additional support was provided to Prof. Bras by the K. Harrison Brown Family Chair. We are thankful to all sponsors. GCMs data sets for this study are provided by the UCAR, the Land Surface Hydrology Research Group in Princeton University, and CPTEC/INPE. The CRU data were created by the Climatic Research Unit, University of East Anglia (UK). We also appreciate Drs. Gaj Sivandran, Gautam Bisht, Anthony Parolari, and Liao-fan Lin for quality control of the data. We thank Drs Justin Sheffield, Marcos Heil Costa, and Adan Juliano de Paula Silva for providing some of the data sets used in this study. NR 84 TC 1 Z9 1 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0899-8418 EI 1097-0088 J9 INT J CLIMATOL JI Int. J. Climatol. PD FEB PY 2017 VL 37 IS 2 BP 621 EP 636 DI 10.1002/joc.4728 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EJ7PQ UT WOS:000393415100006 ER PT J AU Vallejo, E Fuentes-Cabrera, M Sumpter, BG Cortes, ER AF Vallejo, Emmanuel Fuentes-Cabrera, Miguel Sumpter, Bobby G. Rangel Cortes, Eduardo TI Isomeric effects on the self-assembly of a plausible prebiotic nucleoside analogue: A theoretical study SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY LA English DT Article DE dielectric devices; nucleoside; self-assembly ID ADENINE; DENSITY; MECHANISM; SURFACES; SPECTRA AB The self-assembly properties of N(9)-(2,3-dihydroxypropyl adenine) (DHPA), a plausible prebiotic nucleoside analogue of adenosine, were investigated using density functional theory. Two different isomers were considered, and it is found that while both isomers can form a variety of structures, including chains, one of them is also able to form cages and helixes. When these results were put in the context of substrate supported molecular self-assembly, it is concluded that gasphase self-assembly studies that consider isomer identity and composition not only can aid interpreting the experimental results, but also reveal structures that might be overlooked otherwise. In particular, this study suggest that a double-helical structure made of DHPA molecules which could have implications in prebiotic chemistry and nanotechnology, is stable even at room temperature. For example electrical properties (energy gap of 4.52eV) and a giant permanent electrical dipole moment (49.22 Debye) were found in our larger double-helical structure (3.7 nm) formed by 14 DHPA molecules. The former properties could be convenient for construction of organic dielectric-based devices. C1 [Vallejo, Emmanuel; Rangel Cortes, Eduardo] Univ Autonoma Estado Hidalgo, Escuela Super Apan, Carretera Apan Calpulalpan Km 8,Col Chimalpa, Apan 43920, Hidalgo, Mexico. [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Rige, TN USA. [Fuentes-Cabrera, Miguel; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Rige, TN USA. RP Cortes, ER (reprint author), Univ Autonoma Estado Hidalgo, Ingn, Escuela Super Apan, Carretera Apan Calpulalpan Km 8,Col Chimalpa, Hidalgo, Apan, Mexico. EM kovoldedu@yahoo.com.mx FU US DOE office of Science User Facility at ORNL [DE-AC05-00OR22725]; PRODEP [UAEH-PTC-715 DSA/103.5/15/7001, UAEH-PTC-723 DSA/103.5/15/10450] FX Part of this work was performed at the CNMS which is a US DOE office of Science User Facility at ORNL supported under contract no. DE-AC05-00OR22725. We acknowledge financial support from PRODEP, grants E. R. UAEH-PTC-715 DSA/103.5/15/7001 and E. V. UAEH-PTC-723 DSA/103.5/15/10450. NR 35 TC 0 Z9 0 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0020-7608 EI 1097-461X J9 INT J QUANTUM CHEM JI Int. J. Quantum Chem. PD FEB PY 2017 VL 117 IS 3 BP 213 EP 221 DI 10.1002/qua.25314 PG 9 WC Chemistry, Physical; Mathematics, Interdisciplinary Applications; Physics, Atomic, Molecular & Chemical SC Chemistry; Mathematics; Physics GA EI9AJ UT WOS:000392799200007 ER PT J AU Murph, SEH Larsen, GK Korinko, P Coopersmith, KJ Summer, AJ Lewis, R AF Murph, Simona E. Hunyadi Larsen, George K. Korinko, Paul Coopersmith, Kaitlin J. Summer, Ansley J. Lewis, Rebecca TI Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration SO JOM LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; IRON NANOPARTICLES; SILICA NANOPARTICLES; ZN-65; CELLS AB The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration. C1 [Murph, Simona E. Hunyadi; Larsen, George K.; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca] Savannah River Natl Lab, Natl Secur Directorate, Aiken, SC 29808 USA. [Murph, Simona E. Hunyadi] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Korinko, Paul] Savannah River Natl Lab, Energy Mat Directorate, Aiken, SC USA. RP Murph, SEH (reprint author), Savannah River Natl Lab, Natl Secur Directorate, Aiken, SC 29808 USA.; Murph, SEH (reprint author), Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. EM Simona.Murph@srnl.doe.gov FU Savannah River Tritium Enterprise [DE-AC09-08SR22470] FX The authors would like to acknowledge Savannah River Tritium Enterprise for providing funding for this work under Contract DE-AC09-08SR22470. NR 34 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD FEB PY 2017 VL 69 IS 2 BP 162 EP 172 DI 10.1007/s11837-016-2206-5 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA EJ3IS UT WOS:000393106400004 ER PT J AU Brown, AD Pham, Q Fortin, EV Peralta, P Patterson, BM Escobedo, JP Cerreta, EK Luo, SN Dennis-Koller, D Byler, D Koskelo, A Xiao, X AF Brown, A. D. Pham, Q. Fortin, E. V. Peralta, P. Patterson, B. M. Escobedo, J. P. Cerreta, E. K. Luo, S. N. Dennis-Koller, D. Byler, D. Koskelo, A. Xiao, X. TI Correlations Among Void Shape Distributions, Dynamic Damage Mode, and Loading Kinetics SO JOM LA English DT Article ID HIGH-PURITY COPPER; X-RAY TOMOGRAPHY; SPALL DAMAGE; POLYCRYSTALLINE COPPER; FRACTURE; FAILURE; MULTICRYSTALS; DETONATION; SIMULATION; STRENGTH AB Three-dimensional x-ray tomography (XRT) provides a nondestructive technique to characterize the size, shape, and location of damage in dynamically loaded metals. A shape-fitting method comprising the inertia tensors of individual damage sites was applied to study differences of spall damage development in face-centered-cubic (FCC) and hexagonal-closed-packed (HCP) multicrystals and for a suite of experiments on high-purity copper to examine the influence of loading kinetics on the spall damage process. Applying a volume-weighted average to the best-fit ellipsoidal aspect-ratios allows a quantitative assessment for determining the extent of damage coalescence present in a shocked metal. It was found that incipient transgranular HCP spall damage nucleates in a lenticular shape and is heavily oriented along particular crystallographic slip directions. In polycrystalline materials, shape distributions indicate that a decrease in the tensile loading rate leads to a transition to coalesced damage dominance and that the plastic processes driving void growth are time dependent. C1 [Brown, A. D.; Escobedo, J. P.] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia. [Pham, Q.; Fortin, E. V.; Peralta, P.] Arizona State Univ, Tempe, AZ 85287 USA. [Patterson, B. M.; Cerreta, E. K.; Dennis-Koller, D.; Byler, D.; Koskelo, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Luo, S. N.] Peac Inst Multiscale Sci, Chengdu 610207, Peoples R China. [Xiao, X.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Brown, AD (reprint author), Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia. EM A.Brown@adfa.edu.au RI Luo, Sheng-Nian /D-2257-2010 OI Luo, Sheng-Nian /0000-0002-7538-0541 FU LANL under LDRD [20060021DR]; LDRD-DR [20100026]; Department of Energy; NNSA; SSAA [DE-FG52-06NA26169, DE-FG52-10NA29653, DE-NA0002005, DE-NANA0002917]; APS General User Proposal [35561]; US Department of Energy [DE-AC52-06NA25396] FX This research work was funded by LANL under LDRD #20060021DR and LDRD-DR #20100026 and by the Department of Energy; NNSA; under SSAA Grants #DE-FG52-06NA26169, DE-FG52-10NA29653, DE-NA0002005, and DE-NANA0002917; and APS General User Proposal 35561. The Los Alamos National Laboratory is operated by LANS, LLC, for the NNSA of the US Department of Energy under Contract DE-AC52-06NA25396. Eric Loomis, Pat Dickerson (LANL), Damian Swift (LLNL), David Wright, and Dallas Kingsbury (ASU) are thanked for their help during the various phases of the research work. Access to the TRIDENT Facility & Electron Microscopy Laboratory at LANL, Pavel Shevchenko at APS 2-BM, as well as the Center for High Resolution Electron Microscopy and the Mechanical Testing Laboratory at ASU is gratefully acknowledged. NR 34 TC 0 Z9 0 U1 5 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD FEB PY 2017 VL 69 IS 2 BP 198 EP 206 DI 10.1007/s11837-016-2178-5 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA EJ3IS UT WOS:000393106400009 ER PT J AU Sachan, R Tomar, V AF Sachan, Ritesh Tomar, Vikas TI Advanced Characterization of Interfaces and Thin Films SO JOM LA English DT Article C1 [Sachan, Ritesh] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Tomar, Vikas] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47906 USA. RP Sachan, R (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM sachan.ritesh@gmail.com; Tomar@purdue.edu OI Sachan, Ritesh/0000-0002-3604-1467 NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD FEB PY 2017 VL 69 IS 2 BP 225 EP 226 DI 10.1007/s11837-016-2208-3 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA EJ3IS UT WOS:000393106400012 ER PT J AU Ma, MD Yan, R Du, YJ Ma, XR Cai, WG Xu, PP AF Ma, Minda Yan, Ran Du, Yongjie Ma, Xianrui Cai, Weiguang Xu, Pengpeng TI A methodology to assess China's building energy savings at the national level: An IPAT-LMDI model approach SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE National building energy savings (NBES); National building energy consumption (NBEC); China's existing buildings; Building energy-efficiency (BEE) policy; IPAT model; LMDI decomposition ID CO2 EMISSION; LONG-TERM; DECOMPOSITION; CONSUMPTION; REDUCTION; MITIGATION; INDUSTRY; GROWTH AB National building energy savings (NBES) plays an essential role in policymaking of China's building energy-efficiency (BEE) work. Numerous factors, such as technological progress and users' behavior, affect NBES while most of them are unquantifiable. One missing possibility along this direction is that there is currently no method to calculate China's NBES by summarizing all driving factors. To arrive at a solution, we proposed a concept of comparable building energy consumption per unit area and a method of China's NBES calculation based on an extended version of IPAT model (I = PAT, I = Human Impact, P = Population, A = Affluence, T = Technology) and LMDI decomposition (Logarithmic Mean Divisia Index, LMDI). Calculation revealed that China's NBES in "The 10th Five Year Plan" period (2001-2005), "The 11th Five Year Plan" period (2006-2010), and the first four years of "The 12th Five Year Plan" period (2011-2014) was 165, 158, and 127 million tce, respectively. Based on these calculation results, we checked NBES data then successfully proved the validity of this calculation method. Furthermore, after comparing the calculated NBES with the official planned NBES, we found that China surpassed its BEE targets. In the third stage of China's BEE work (2006-2015), the implementation of BEE policies obtained good results. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Ma, Minda; Yan, Ran; Du, Yongjie; Ma, Xianrui; Cai, Weiguang; Xu, Pengpeng] Chongqing Univ, Sch Construct Management & Real Estate, Chongqing 400045, Peoples R China. [Cai, Weiguang] Lawrence Berkeley Natl Lab, China Energy Grp, Berkeley, CA 94720 USA. RP Cai, WG (reprint author), Chongqing Univ, Sch Construct Management & Real Estate, Chongqing 400045, Peoples R China. EM cquwgcai@163.com FU Social Science and Humanity on Young Fund of the Ministry of Education P.R. China [15YJC630003]; National Natural Science Foundation of P.R. China [71403033]; Fundamental Research Fund for the Central Universities of P.R. China [106112015CDJXY030009] FX We thank all the anonymous reviewers for their invaluable and constructive comments on an earlier draft of this manuscript and hence their contribution to the substantial revisions made since that time. We also deeply appreciate Prof. Liyin Shen's substantial help for this revised manuscript. The study was supported by the Social Science and Humanity on Young Fund of the Ministry of Education P.R. China (No. 15YJC630003), National Natural Science Foundation of P.R. China (No. 71403033), and the Fundamental Research Fund for the Central Universities of P.R. China (No. 106112015CDJXY030009). NR 36 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 EI 1879-1786 J9 J CLEAN PROD JI J. Clean Prod. PD FEB 1 PY 2017 VL 143 BP 784 EP 793 DI 10.1016/j.jclepro.2016.12.046 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA EI8WN UT WOS:000392789000069 ER PT J AU Wainwright, HM Seki, A Chen, JS Saito, K AF Wainwright, Haruko M. Seki, Akiyuki Chen, Jinsong Saito, Kimiaki TI A multiscale Bayesian data integration approach for mapping air dose rates around the Fukushima Daiichi Nuclear Power Plant SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Mapping of air dose rates; Bayesian hierarchical models; Fukushima Daiichi Nuclear Power Plant accident; Geostatistics; Multi-scale; Data integration ID RADIOACTIVE CESIUM; KURAMA-II; ACCIDENT; OUTLINE; MODEL AB This paper presents a multiscale data integration method to estimate the spatial distribution of air dose rates in the regional scale around the Fukushima Daiichi Nuclear Power Plant. We integrate various types of datasets, such as ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi type datasets in a consistent manner. The Bayesian method allows us to quantify the uncertainty in the estimates, and to provide the confidence intervals that are critical for robust decision-making. Although this approach is primarily data-driven, it has great flexibility to include mechanistic models for representing radiation transport or other complex correlations. We demonstrate our approach using three types of datasets collected at the same time over Fukushima City in Japan: (1) coarse-resolution airborne surveys covering the entire area, (2) car surveys along major roads, and (3) walk surveys in multiple neighborhoods. Results show that the method can successfully integrate three types of datasets and create an integrated map (including the confidence intervals) of air dose rates over the domain in high resolution. Moreover, this study provides us with various insights into the characteristics of each dataset, as well as radiocaesium distribution. In particular, the urban areas show high heterogeneity in the contaminant distribution due to human activities as well as large discrepancy among different surveys due to such heterogeneity. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Wainwright, Haruko M.; Chen, Jinsong] Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 74R-316C, Berkeley, CA 94720 USA. [Seki, Akiyuki] Japan Atom Energy Agcy, Ctr Computat Sci & E Syst, 178-4-4 Wakashiba, Kashiwa, Chiba 2270871, Japan. [Saito, Kimiaki] Japan Atom Energy Agcy, Fukushima Environm Safety Ctr, Chiyoda Ku, 2-2-2 Uchisawai Cho, Tokyo 1000011, Japan. RP Wainwright, HM (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 74R-316C, Berkeley, CA 94720 USA. EM hmwainwright@lbl.gov; seki.akiyuki@jaea.go.jp; jchen@lbl.gov; saito.kimiaki@jaea.go.jp RI Chen, Jinsong/A-1374-2009 FU Japan Atomic Energy Agency, Berkeley Lab [AWD00000626]; U.S. Department of Energy [DE-AC02-05CH11231] FX The environmental monitoring data in this study were acquired during the projects commissioned by the Japan Nuclear Regulatory Agency. We thank the people who contributed to collecting the data and compiling them into the JAEA database. We also thank Marilyn Saarni for English editing. Funding for this work was provided by Japan Atomic Energy Agency under Award No. AWD00000626, as part of Work for Others funding from Berkeley Lab, provided by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD FEB PY 2017 VL 167 BP 62 EP 69 DI 10.1016/j.jenvrad.2016.11.033 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI8ST UT WOS:000392779000008 PM 27939095 ER PT J AU Emerson, HP Di Pietro, S Katsenovich, Y Szecsody, J AF Emerson, Hilary P. Di Pietro, Silvina Katsenovich, Yelena Szecsody, Jim TI Effects of ammonium on uranium partitioning and kaolinite mineral dissolution SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Uranium; Remediation; Ammonia gas ID SAVANNA RIVER SITE; ACTINIDE ENVIRONMENTAL CHEMISTRY; VADOSE ZONE SEDIMENTS; SEQUENTIAL EXTRACTION; SUBSURFACE SEDIMENTS; COMPLEX-FORMATION; HANFORD SITE; TANK WASTE; ALKALINE; SPECIATION AB Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution. Published by Elsevier Ltd. C1 [Emerson, Hilary P.; Di Pietro, Silvina; Katsenovich, Yelena] Florida Int Univ, Appl Res Ctr, 10555 W Flagler St, Miami, FL 33174 USA. [Szecsody, Jim] Pacific Northwest Natl Lab, Environm Syst Grp, POB 999, Richland, WA 99352 USA. RP Emerson, HP (reprint author), Florida Int Univ, Appl Res Ctr, 10555 W Flagler St, Miami, FL 33174 USA. EM hemerson@fiu.edu FU Department of Energy Office of Environmental Management [DE-EM0000598] FX The authors would like to thank Drs. Jim Szecsody and Nik Qafoku for their valuable input on these experiments as well as the Department of Energy Office of Environmental Management for funding under Cooperative Agreement #DE-EM0000598. NR 66 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD FEB PY 2017 VL 167 BP 150 EP 159 DI 10.1016/j.jenvrad.2016.11.029 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI8ST UT WOS:000392779000019 PM 28007440 ER PT J AU Johnson, C Biegalski, S Haas, D Lowrey, J Bowyer, T Hayes, J Suarez, R Ripplinger, M AF Johnson, Christine Biegalski, Steven Haas, Derek Lowrey, Justin Bowyer, Theodore Hayes, James Suarez, Reynold Ripplinger, Michael TI Detection in subsurface air of radioxenon released from medical isotope production SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Xenon; Barometric pumping; Medical isotope production; On-site inspection; CTBT; Radionuclide detection ID MONITORING-SYSTEM; NUCLEAR; TRANSPORT AB In order to better understand potential backgrounds of Comprehensive-Nuclear Test-Ban Treaty on-site inspection relevant gases, a sampling campaign was performed near Canadian Nuclear Laboratories in the Ottawa River Valley, a major source of environmental radioxenon. First of their kind measurements of atmospheric radioxenon imprinted into the shallow subsurface from an atmospheric pressure driven force were made using current on-site inspection techniques. Both atmospheric and subsurface gas samples were measured and analyzed to determine radioxenon concentrations. These measurements indicate that under specific sampling conditions, on the order of ten percent of the atmospheric radio xenon concentration may be measured via subsurface sampling. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Johnson, Christine; Biegalski, Steven] Univ Texas Austin, Nucl Engn Teaching Lab, 10100 Burnet Rd,Bldg 159, Austin, TX 78758 USA. [Haas, Derek; Lowrey, Justin; Bowyer, Theodore; Hayes, James; Suarez, Reynold; Ripplinger, Michael] Pacific Northwest Natl Lab, Richland, WA 99354 USA. RP Johnson, C (reprint author), Univ Texas Austin, Nucl Engn Teaching Lab, 10100 Burnet Rd,Bldg 159, Austin, TX 78758 USA. EM christine.johnson@utexas.edu FU U.S. Department of Defense, Defense Threat Reduction Agency [HDTRA1-12-1-0018] FX This material is based upon work supported by the U.S. Department of Defense, Defense Threat Reduction Agency under Grant Number HDTRA1-12-1-0018. NR 21 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD FEB PY 2017 VL 167 BP 160 EP 165 DI 10.1016/j.jenvrad.2016.10.021 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI8ST UT WOS:000392779000020 PM 27843063 ER PT J AU Johnson, C Biegalski, SR Artnak, EJ Moll, E Haas, DA Lowrey, JD Aalseth, CE Seifert, A Mace, EK Woods, VT Humble, P AF Johnson, Christine Biegalski, Steven R. Artnak, Edward J. Moll, Ethan Haas, Derek A. Lowrey, Justin D. Aalseth, Craig E. Seifert, Allen Mace, Emily K. Woods, Vincent T. Humble, Paul TI Production and release rate of Ar-37 from the UT TRIGA Mark-II research reactor SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE CTBT; Effluent monitoring; Ar-37; TRIGA research reactor; Treaty monitoring; On-site inspection ID SYSTEM AB Air samples were taken at various locations around The University of Texas at Austin's TRIGA Mark II research reactor and analyzed to determine the concentrations of Ar-37, Ar-41, and Xe-133 present. The measured ratio of Ar-37/Ar-41 and historical records of Ar-41 releases were then utilized to estimate an annual average release rate of Ar-37 from the reactor facility. Using the calculated release rate, atmospheric transport modeling was performed in order to determine the potential impact of research reactor operations on nearby treaty verification activities. Results suggest that small research reactors (similar to 1 MWt) do not release Ar-37 in concentrations measurable by currently proposed OSI detection equipment (C) 2016 Elsevier Ltd. All rights reserved. C1 [Johnson, Christine; Biegalski, Steven R.; Artnak, Edward J.; Moll, Ethan; Haas, Derek A.] Univ Texas Austin, Nucl Engn Teaching Lab, 10100 Burnet Rd,Bldg 159, Austin, TX 78758 USA. [Lowrey, Justin D.; Aalseth, Craig E.; Seifert, Allen; Mace, Emily K.; Woods, Vincent T.; Humble, Paul] Pacific Northwest Natl Lab, Richland, WA 99354 USA. RP Johnson, C (reprint author), Univ Texas Austin, Nucl Engn Teaching Lab, 10100 Burnet Rd,Bldg 159, Austin, TX 78758 USA. EM christine.johnson@utexas.edu FU U.S. Department of Defense, Defense Threat Reduction Agency [HDTRA1-12-1-0018] FX This material is based upon work supported by the U.S. Department of Defense, Defense Threat Reduction Agency under Grant Number HDTRA1-12-1-0018. NR 15 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD FEB PY 2017 VL 167 BP 249 EP 253 DI 10.1016/j.jenvrad.2016.11.017 PG 5 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI8ST UT WOS:000392779000029 PM 27887970 ER PT J AU Meyers, A Chourey, K Weiskittel, TM Pfiffner, S Dunlap, JR Hettich, RL Dalhaimer, P AF Meyers, Alex Chourey, Karuna Weiskittel, Taylor M. Pfiffner, Susan Dunlap, John R. Hettich, Robert L. Dalhaimer, Paul TI The protein and neutral lipid composition of lipid droplets isolated from the fission yeast, Schizosaccharomyces pombe SO JOURNAL OF MICROBIOLOGY LA English DT Article DE lipid droplets; yeast; proteomics; lipid metabolism ID ENDOPLASMIC-RETICULUM; SACCHAROMYCES-CEREVISIAE; PROTEOMIC ANALYSIS; TRIACYLGLYCEROL LIPASE; HIGH CONFIDENCE; CELL-CYCLE; PARTICLES; IDENTIFICATION; BODIES; ACCUMULATION AB Lipid droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer with bound proteins. Much of the information on lipid droplet function comes from proteomic and lipodomic studies that identify the components of droplets isolated from organisms throughout the phylogenetic tree. Here, we add to that important inventory by reporting lipid droplet factors from the fission yeast, Schizosaccharomyces pombe. Unique to this study was the fact that cells were cultured in three different environments: 1) late log growth phase in glucose-based media, 2) stationary phase in glucose based media, and 3) late log growth phase in media containing oleic acid. We confirmed colocalization of major factors with lipid droplets using live-cell fluorescent microscopy. We also analyzed droplets from each of the three conditions for sterol ester (SE) and triacylglycerol (TAG) content, along with their respective fatty acid compositions. We identified a previously undiscovered lipid droplet protein, Vip1p, which affects droplet size distribution. The results provide further insight into the workings of these ubiquitous organelles. C1 [Meyers, Alex; Weiskittel, Taylor M.; Dalhaimer, Paul] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Chourey, Karuna; Hettich, Robert L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Pfiffner, Susan; Dunlap, John R.; Dalhaimer, Paul] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. [Dunlap, John R.] Univ Tennessee, Adv Microscopy & Imaging Ctr, Knoxville, TN 37996 USA. [Dalhaimer, Paul] Univ Tennessee, Inst Biomed Engn, Knoxville, TN 37996 USA. RP Dalhaimer, P (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.; Dalhaimer, P (reprint author), Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA.; Dalhaimer, P (reprint author), Univ Tennessee, Inst Biomed Engn, Knoxville, TN 37996 USA. EM pdalhaim@utk.edu FU American Heart Association [13SDG14500046]; U.S. Department of Energy, Office of Biological and Environmental Research, Genome Sciences Program FX This work was supported by American Heart Association award 13SDG14500046 to P.D. The authors thank Dr. Gunther Daum (Technische Universitat Graz) for antibodies for Western blots, Eric T. Boder (Univ. of Tennessee) for the use of his shaking incubators, tabletop centrifuge, and Western blot analysis equipment; Donovan Layton and Cong Trinh for the use of their GC-MS; and the Center for Environmental Biotechnology (Univ. of Tennessee) for the use of their ultracentrifuge. K.C. and R.L.H. acknowledge the financial support provided by the U.S. Department of Energy, Office of Biological and Environmental Research, Genome Sciences Program. Oak Ridge National Laboratory is managed by the University of Tennessee, Battelle LLC for the Department of Energy. NR 74 TC 0 Z9 0 U1 6 U2 6 PU MICROBIOLOGICAL SOCIETY KOREA PI SEOUL PA KOREA SCIENCE & TECHNOLOGY CENTER 803, 635-4 YEOGSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 1225-8873 EI 1976-3794 J9 J MICROBIOL JI J. Microbiol. PD FEB PY 2017 VL 55 IS 2 BP 112 EP 122 DI 10.1007/s12275-017-6205-1 PG 11 WC Microbiology SC Microbiology GA EJ0JJ UT WOS:000392894200005 PM 28120187 ER PT J AU Shrestha, U Sciammarella, M Alhassen, F Yeghiazarians, Y Ellin, J Verdin, E Boyle, A Seo, YH Botvinick, EH Gullberg, GT AF Shrestha, Uttam Sciammarella, Maria Alhassen, Fares Yeghiazarians, Yerem Ellin, Justin Verdin, Emily Boyle, Andrew Seo, Youngho Botvinick, Elias H. Gullberg, Grant T. TI Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and Tc-99m-tetrofosmin: Method and validation SO JOURNAL OF NUCLEAR CARDIOLOGY LA English DT Article DE Dynamic SPECT; myocardial blood flow quantification; tracer kinetics; ammonia PET ID CORONARY-ARTERY-DISEASE; QUANTITATIVE ASSESSMENT; COMPUTED-TOMOGRAPHY; N-13 AMMONIA; QUANTIFICATION; PET; INDICATOR; RESERVE; MODEL AB Background. The objective of this study was to measure myocardial blood flow (MBF) in humans using Tc-99m-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Methods. Dynamic SPECT using Tc-99m-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for Tc-99m-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for Tc-99m-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curve K-1 = F(1 - A exp(-B/F)) for K-1 values estimated with Tc-99m-tefrofosmin using SPECT and MBF values estimated with N-13-NH3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with N-13-NH3 PET. The flow-dependent permeability surface-area product (PS) for Tc-99m-tefrofosmin was also estimated. Results. The estimated flow-extraction parameters for Tc-99m-tefrofosmin were found to be A = 0.91 +/- 0.11, B = 0.34 +/- 0.20 (R-2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for Tc-99m-tefrofosmin was (0.019 +/- 0.10)*MBF + (0.32 +/- 0.16). Conclusions. Dynamic cardiac SPECT using Tc-99m-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF. C1 [Shrestha, Uttam; Alhassen, Fares; Ellin, Justin; Verdin, Emily; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 185 Berry St,Suite 350, San Francisco, CA 94143 USA. [Shrestha, Uttam; Seo, Youngho; Gullberg, Grant T.] Lawrence Berkeley Natl Lab, Div Mol Biophys & Integrated Bioimaging, Berkeley, CA USA. [Sciammarella, Maria; Yeghiazarians, Yerem; Boyle, Andrew; Botvinick, Elias H.] Univ Calif San Francisco, Dept Med, Div Cardiol, San Francisco, CA 94143 USA. [Boyle, Andrew] Univ Newcastle, Sch Med & Publ Hlth, Newcastle, NSW, Australia. RP Shrestha, U (reprint author), Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 185 Berry St,Suite 350, San Francisco, CA 94143 USA. EM uttam.shrestha@ucsf.edu OI Boyle, Andrew/0000-0002-3919-5269 FU National Institutes of Health [R01HL50663]; Office of Science, Office of Biological, and Environmental Research of the U.S. Department of Energy [DEAC02-05CH11231] FX Authors would like to thank nuclear medicine technologists and clinical staff at the UCSF Imaging Center at China Basin local facility for conducting patient scans and Astellas Pharma US and GE Healthcare for providing Lexiscan and 99mTc-tetrofosmin, respectively. The study was supported by the National Institutes of Health under Grant R01HL50663, and by the Director, Office of Science, Office of Biological, and Environmental Research of the U.S. Department of Energy under Contract DEAC02-05CH11231. NR 28 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1071-3581 EI 1532-6551 J9 J NUCL CARDIOL JI J. Nucl. Cardiol. PD FEB PY 2017 VL 24 IS 1 BP 268 EP 277 DI 10.1007/s12350-015-0320-3 PG 10 WC Cardiac & Cardiovascular Systems; Radiology, Nuclear Medicine & Medical Imaging SC Cardiovascular System & Cardiology; Radiology, Nuclear Medicine & Medical Imaging GA EJ2RE UT WOS:000393057600051 PM 26715603 ER PT J AU Jung, H Gerasopoulos, K Talin, AA Ghodssi, R AF Jung, Hyun Gerasopoulos, Konstantinos Talin, A. Alec Ghodssi, Reza TI In situ characterization of charge rate dependent stress and structure changes in V2O5 cathode prepared by atomic layer deposition SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium-ion battery; Vanadium oxide; Charge rates; In situ; Raman spectroscopy; Stress ID LITHIUM-ION BATTERIES; X-RAY-DIFFRACTION; THIN-FILMS; RAMAN MICROSPECTROMETRY; ELECTRODE MATERIALS; LITHIATED SILICON; INTERCALATION; INSERTION; LIXV2O5; DEFLECTION AB The insertion/extraction of lithium into/from various host materials is the basic process by which lithium-ion batteries reversible store charge. This process is generally accompanied by strain in the host material, inducing stress which can lead to capacity loss. Therefore, understanding of both the structural changes and the associated stress investigated almost exclusively separate to date is a critical factor for developing high-performance batteries. Here, we report an in situ method, which utilizes Raman spectroscopy in parallel with optical interferometry to study effects of varying charging rates (C-rates) on the structure and stress in a V2O5 thin film cathode. Abrupt stress changes at specific crystal phase transitions in the Li-V-O system are observed and the magnitude of the stress changes with the amount of lithium inserted into the electrode are correlated. A linear increase in the stress as a function of x in LixV2O5 is observed, indicating that C-rate does not directly contribute to larger intercalation stress. However, a more rapid increase in disorder within the LixV2O5 layers is correlated with higher C-rate. Ultimately, these experiments demonstrate how the simultaneous stress/Raman in situ approach can be utilized as a characterization platform for investigating various critical factors affecting lithium-ion battery performance. (C) 2016 Elsevier B.V. All rights reserved. C1 [Jung, Hyun; Gerasopoulos, Konstantinos; Ghodssi, Reza] Univ Maryland, MEMS Sensors & Actuators Lab MSAL, College Pk, MD 20742 USA. [Jung, Hyun; Ghodssi, Reza] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA. [Jung, Hyun; Gerasopoulos, Konstantinos; Ghodssi, Reza] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA. [Talin, A. Alec] Sandia Natl Labs, Livermore, CA 94551 USA. [Gerasopoulos, Konstantinos] Johns Hopkins Univ, Appl Phys Lab LLC, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. RP Ghodssi, R (reprint author), Univ Maryland, Syst Res Inst, Dept Elect & Comp Engn, MEMS Sensors & Actuators Lab MSAL, College Pk, MD 20742 USA. EM ghodssi@umd.edu FU Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DESC0001160]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported as part of the Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award number DESC0001160. The authors acknowledge the staff at Maryland Nanocenter, AIMLab, and Surface Analysis Center. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 43 TC 0 Z9 0 U1 20 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD FEB 1 PY 2017 VL 340 BP 89 EP 97 DI 10.1016/j.jpowsour.2016.11.035 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA EI8QG UT WOS:000392771900011 ER PT J AU Kuppan, S Xu, YH Liu, YJ Chen, GY AF Kuppan, Saravanan Xu, Yahong Liu, Yijin Chen, Guoying TI Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy SO NATURE COMMUNICATIONS LA English DT Article ID VOLTAGE SPINEL CATHODES; ION BATTERIES; ABSORPTION SPECTROSCOPY; MATERIAL LINI0.5MN1.5O4; OPERANDO; LIFEPO4; TRANSITION; NANOSCALE; PARTICLES; SURFACE AB Understanding the reaction pathway and kinetics of solid-state phase transformation is critical in designing advanced electrode materials with better performance and stability. Despite the first-order phase transition with a large lattice mismatch between the involved phases, spinel LiMn1.5Ni0.5O4 is capable of fast rate even at large particle size, presenting an enigma yet to be understood. The present study uses advanced two-dimensional and three-dimensional nano-tomography on a series of well-formed LixMn(1.5)Ni(0.5)O(4) (0 <= x <= 1) crystals to visualize the mesoscale phase distribution, as a function of Li content at the sub-particle level. Inhomogeneity along with the coexistence of Li-rich and Li-poor phases are broadly observed on partially delithiated crystals, providing direct evidence for a concurrent nucleation and growth process instead of a shrinking-core or a particle-by-particle process. Superior kinetics of (100) facets at the vertices of truncated octahedral particles promote preferential delithiation, whereas the observation of strain-induced cracking suggests mechanical degradation in the material. C1 [Kuppan, Saravanan; Chen, Guoying] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Xu, Yahong; Liu, Yijin] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Xu, Yahong] Donghua Univ, Coll Mech Engn, Shanghai 200051, Peoples R China. RP Chen, GY (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA.; Liu, YJ (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. EM liuyijin@slac.stanford.edu; gchen@lbl.gov OI Liu, Yijin/0000-0002-8417-2488 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; Office of FreedomCAR and Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Drs Ryan Davis, D. Van Campen, Johanna Nelson Weker, Jordi Cabana and Young-Sang Yu for the engineering support and helpful discussion on the experiments carried out at beamline 4-1, 6-2c of SSRL. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 50 TC 0 Z9 0 U1 44 U2 44 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB 1 PY 2017 VL 8 AR 14309 DI 10.1038/ncomms14309 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ5YT UT WOS:000393295900001 PM 28145406 ER PT J AU Hayes, AC AF Hayes, A. C. TI Applications of nuclear physics SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review DE nuclear energy; nuclear fusion; nuclear non-proliferation; nuclear geophysics; nuclear medicine; nuclear forensics; nuclear security ID ELECTRON-EMITTING RADIONUCLIDES; ANTINEUTRINO DETECTORS; ENERGY-PRODUCTION; URANIUM; REACTOR; NEUTRONS; FISSION; ALPHA; EARTH; DISINTEGRATION AB Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics. C1 [Hayes, A. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Hayes, AC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM anna_hayes@lanl.gov FU Los Alamos National Laboratory LDRD program FX I wish to tank Ben Gibson and Jerry Wilhelmy for their critical reading of and helpful suggestions for this manuscript. I am also very grateful to the two referees for this manuscript, whose suggested changes greatly improved the first version. Research for this review was funded in part by the Los Alamos National Laboratory LDRD program. NR 135 TC 0 Z9 0 U1 11 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD FEB PY 2017 VL 80 IS 2 AR 026301 DI 10.1088/1361-6633/80/2/026301 PG 25 WC Physics, Multidisciplinary SC Physics GA EK2NY UT WOS:000393765200001 PM 28071601 ER PT J AU Conley, JM Evans, N Mash, H Rosenblum, L Schenck, K Glassmeyer, S Furlong, ET Kolpin, DW Wilson, VS AF Conley, Justin M. Evans, Nicola Mash, Heath Rosenblum, Laura Schenck, Kathleen Glassmeyer, Susan Furlong, Ed T. Kolpin, Dana W. Wilson, Vickie S. TI Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 US drinking water treatment plants SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Effect-based monitoring; In vitro bioassay; Drinking water; Estrogen; Water quality; T47D-KBluc ID ENDOCRINE-DISRUPTING COMPOUNDS; STEROID ESTROGENS; PIMEPHALES-PROMELAS; STABLY EXPRESSES; FATHEAD MINNOWS; WASTE-WATER; CELL-LINE; 17-BETA-ESTRADIOL; FISH; CONTAMINANTS AB In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated water samples were assayed for estrogenic activity using T47D-KBluc cells and analyzed by liquid chromatography-Fourier transform mass spectrometry (LC-FTMS) for natural and synthetic estrogens (including estrone, 17 beta-estradiol, estriol, and ethinyl estradiol). None of the estrogens were detected above the LC-FTMS quantification limits in treated samples and only 5 source waters had quantifiable concentrations of estrone, whereas 3 treated samples and 16 source samples displayed in vitro estrogenicity. Estrone accounted for the majority of estrogenic activity in respective samples, however the remaining samples that displayed estrogenic activity had no quantitative detections of known estrogenic compounds by chemical analyses. Source water estrogenicity (max, 0.47 ng 17 beta-estradiol equivalents (E2Eq)L-1) was below levels that have been linked to adverse effects in fish and other aquatic organisms. Treated water estrogenicity (max, 0.078 ng E2Eq L-1) was considerably below levels that are expected to be biologically relevant to human consumers. Overall, the advantage of using in vitro techniques in addition to analytical chemical determinations was displayed by the sensitivity of the T47D-KBluc bioassay, coupled with the ability to measure cumulative effects of mixtures, specifically when unknown chemicals may be present. Published by Elsevier B.V. C1 [Conley, Justin M.; Evans, Nicola; Wilson, Vickie S.] US EPA, Tox Assessment Div, Res Triangle Pk, NC 27711 USA. [Conley, Justin M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Mash, Heath; Schenck, Kathleen] US EPA, Water Supply & Water Resources Div, Cincinnati, OH 45268 USA. [Rosenblum, Laura] CB&I Fed Serv, Cincinnati, OH USA. [Glassmeyer, Susan] US EPA, Microbial & Chem Exposure Assessment Res Div, Cincinnati, OH 45268 USA. [Furlong, Ed T.] US Geol Survey, Natl Water Qual Lab, Box 25046, Denver, CO 80225 USA. [Kolpin, Dana W.] US Geol Survey, Iowa Water Sci Ctr, Iowa City, IA USA. RP Wilson, VS (reprint author), US EPA, B105-04,109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. EM wilson.vickie@epa.gov OI Conley, Justin M./0000-0002-6622-5769; Wilson, Vickie/0000-0003-1661-8481 FU USEPA [DW14922330]; USEPA's Office of Research and Development, Office of Water, Office of Chemical Safety and Pollution Prevention, and Region 8 FX The authors declare no competing financial interest. The information in this document has been funded partially or wholly by the USEPA. The research described in this article has been funded in part by the USEPA through Interagency Agreement DW14922330 to the USGS, and through programmatic support of the USGS' Toxic Substances Hydrology Program and the USEPA's Office of Research and Development, Office of Water, Office of Chemical Safety and Pollution Prevention, and Region 8. Information Collection Rule approval for the Phase II Questionnaire was granted under USEPA ICR No. 2346.01, OMB Control No. 2080-0078. This manuscript has been subjected to review by the National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the USEPA and mention of trade names or commercial products does not constitute endorsement or recommendation for use by USEPA. This document has been reviewed in accordance with USGS policy and approved for publication. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The authors would like to thank all participating DWTPs for their involvement in the project and for their assistance in collecting the samples. The authors would also like to thank Earl Gray (USEPA) and Dan Villeneuve (USEPA) for feedback on earlier drafts of the manuscript. JMC was supported in part by an appointment to the Internship/Research Participation Program at the Office of Research and Development, USEPA, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and USEPA. NR 49 TC 3 Z9 3 U1 14 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD FEB 1 PY 2017 VL 579 BP 1610 EP 1617 DI 10.1016/j.scitotenv.2016.02.093 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA EJ6HP UT WOS:000393320400061 PM 26936661 ER PT J AU Dautel, SE Kyle, JE Clair, G Sontag, RL Weitz, KK Shukla, AK Nguyen, SN Kim, YM Zink, EM Luders, T Frevert, CW Gharib, SA Laskin, J Carson, JP Metz, TO Corley, RA Ansong, C AF Dautel, Sydney E. Kyle, Jennifer E. Clair, Geremy Sontag, Ryan L. Weitz, Karl K. Shukla, Anil K. Nguyen, Son N. Kim, Young-Mo Zink, Erika M. Luders, Teresa Frevert, Charles W. Gharib, Sina A. Laskin, Julia Carson, James P. Metz, Thomas O. Corley, Richard A. Ansong, Charles TI Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung SO SCIENTIFIC REPORTS LA English DT Article ID MEDIUM-CHAIN TRIGLYCERIDES; MASS-SPECTROMETRY; SYSTEMS BIOLOGY; LYSOPHOSPHATIDYLCHOLINE; METABOLISM; APOPTOSIS; SPHINGOLIPIDS; INFLAMMATION; DISEASE; SURFACTANT AB Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylphosphatidylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murine lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6-8 week mice (adult) identified 924 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post- natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. This multi-omic view provides a unique resource and deeper insight into normal pulmonary development. C1 [Dautel, Sydney E.; Kyle, Jennifer E.; Clair, Geremy; Sontag, Ryan L.; Weitz, Karl K.; Shukla, Anil K.; Kim, Young-Mo; Zink, Erika M.; Luders, Teresa; Metz, Thomas O.; Corley, Richard A.; Ansong, Charles] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99352 USA. [Nguyen, Son N.; Laskin, Julia] Pacific Northwest Natl Lab, Phys Sci Div, Richland, WA USA. [Frevert, Charles W.; Gharib, Sina A.] Univ Washington, Ctr Lung Biol, Seattle, WA 98195 USA. [Carson, James P.] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78758 USA. RP Ansong, C (reprint author), Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99352 USA. EM charles.ansong@pnnl.gov RI Kim, Young-Mo/D-3282-2009; OI Kim, Young-Mo/0000-0002-8972-7593; Laskin, Julia/0000-0002-4533-9644 FU National Heart Lung Blood Institute of NIH [U01 HL122703]; US. Department of Energy; DOE [DE-AC05-76RLO 1830] FX Research supported by grant U01 HL122703 from the National Heart Lung Blood Institute of NIH. Omics analyses were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US. Department of Energy and located at Pacific Northwest National Laboratory (PNNL) in Richland, WA. PNNL is a multi-program national laboratory operated by Battelle for the DOE under contract DE-AC05-76RLO 1830. The authors graciously acknowledge Kelly Stratton for guidance on statistical methods and the LungMAP MouseHub (U01 HL122642) for providing samples for nano-DESI MSI analysis. NR 70 TC 0 Z9 0 U1 5 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 1 PY 2017 VL 7 AR 40555 DI 10.1038/srep40555 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ4BN UT WOS:000393161000001 PM 28145528 ER PT J AU Fahy, D Sanad, MNME Duscha, K Lyons, M Liu, FQ Bozhkov, P Kunz, HH Hu, JP Neuhaus, HE Steel, PG Smertenko, A AF Fahy, Deirdre Sanad, Marwa N. M. E. Duscha, Kerstin Lyons, Madison Liu, Fuquan Bozhkov, Peter Kunz, Hans-Henning Hu, Jianping Neuhaus, H. Ekkehard Steel, Patrick G. Smertenko, Andrei TI Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY SO SCIENTIFIC REPORTS LA English DT Article ID INOSITOL POLYPHOSPHATE 1-PHOSPHATASE; MATRIX PROTEIN-DEGRADATION; REACTIVE OXYGEN; ARABIDOPSIS-THALIANA; PLANT PEROXISOMES; ANTIOXIDANT ENZYMES; OXIDATIVE STRESS; BETA-OXIDATION; ABSCISIC-ACID; 3(2),5-BISPHOSPHATE NUCLEOTIDASE AB Plant peroxisomes maintain a plethora of key life processes including fatty acid beta-oxidation, photorespiration, synthesis of hormones, and homeostasis of reactive oxygen species (ROS). Abundance of peroxisomes in cells is dynamic; however mechanisms controlling peroxisome proliferation remain poorly understood because measuring peroxisome abundance is technically challenging. Counting peroxisomes in individual cells of complex organs by electron or fluorescence microscopy is expensive and time consuming. Here we present a simple technique for quantifying peroxisome abundance using the small probe Nitro-BODIPY, which in vivo fluoresces selectively inside peroxisomes. The physiological relevance of our technique was demonstrated using salinity as a known inducer of peroxisome proliferation. While significant peroxisome proliferation was observed in wildtype Arabidopsis leaves following 5-hour exposure to NaCl, no proliferation was detected in the salt-susceptible mutants fry1-6, sos1-14, and sos1-15. We also found that N-BODIPY detects aggregation of peroxisomes during final stages of programmed cell death and can be used as a marker of this stage. Furthermore, accumulation of peroxisomes in an autophagy-deficient Arabidopsis mutant atg5 correlated with N-BODIPY labeling. In conclusion, the technique reported here enables quantification of peroxisomes in plant material at various physiological settings. Its potential applications encompass identification of genes controlling peroxisome homeostasis and capturing stress-tolerant genotypes. C1 [Fahy, Deirdre; Sanad, Marwa N. M. E.; Lyons, Madison; Smertenko, Andrei] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA. [Sanad, Marwa N. M. E.] Natl Res Ctr, Dept Genet & Cytol, Giza, Egypt. [Duscha, Kerstin; Neuhaus, H. Ekkehard] Univ Kaiserslautern, Plant Physiol, Erwin Schrodinger Str, D-67653 Kaiserslautern, Germany. [Liu, Fuquan; Smertenko, Andrei] Queens Univ Belfast, Sch Biol Sci, Inst Global Food Secur, 18-30 Malone Rd, Belfast BT9 5BN, Antrim, North Ireland. [Bozhkov, Peter] Swedish Univ Agr Sci, Dept Chem & Biotechnol, Uppsala BioCtr, POB 7015, SE-75007 Uppsala, Sweden. [Bozhkov, Peter] Linnean Ctr Plant Biol, POB 7015, SE-75007 Uppsala, Sweden. [Kunz, Hans-Henning] Washington State Univ, Sch Biol Sci, Pullman, WA 99164 USA. [Hu, Jianping] Michigan State Univ, MSU DOE Plant Res Lab, 612 Wilson Rd, E Lansing, MI 48824 USA. [Steel, Patrick G.] Univ Durham, Dept Chem, Durham DH1 3LE, England. RP Smertenko, A (reprint author), Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA.; Smertenko, A (reprint author), Queens Univ Belfast, Sch Biol Sci, Inst Global Food Secur, 18-30 Malone Rd, Belfast BT9 5BN, Antrim, North Ireland. EM andrei.smertenko@wsu.edu FU NIFA hatch project [WNP00826]; Dr. OA Vogel Foundation; WSU New Faculty Seed Grant FX Arabidopsis cell line T87 was supplied by the Arabidopsis Biological Resources Center (ABRC), the seeds of Salk114744 and Salk149947 lines were provided by Nottingham Arabidopsis Stock Centre (NASC). The authors are grateful to Steve Simasko and Gary Wayman from the College of Veterinary Medicine, WSU for access to confocal microscopes and Synergy Neo B plate reader. This project was supported by NIFA hatch project WNP00826 (to AS), by Dr. OA Vogel Foundation (to AS), and WSU New Faculty Seed Grant (to AS). NR 92 TC 0 Z9 0 U1 19 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 1 PY 2017 VL 7 AR 39069 DI 10.1038/srep39069 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ4AP UT WOS:000393158600001 PM 28145408 ER PT J AU Spalding, R Tencer, J Sweatt, W Conley, B Hogan, R Boslough, M Gonzales, G Spurny, P AF Spalding, Richard Tencer, John Sweatt, William Conley, Benjamin Hogan, Roy Boslough, Mark Gonzales, GiGi Spurny, Pavel TI Photoacoustic Sounds from Meteors SO SCIENTIFIC REPORTS LA English DT Article ID FIREBALL AB Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with -11 to -13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally. Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies >= 40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that -12 brightness meteors can generate audible sound at similar to 25 dB SPL. The photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs. C1 [Spalding, Richard; Tencer, John; Sweatt, William; Conley, Benjamin; Hogan, Roy; Boslough, Mark; Gonzales, GiGi] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Spurny, Pavel] Acad Sci Czech Republic, Astron Inst, Ondrejov, Czech Republic. RP Sweatt, W (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wsweatt@sandia.gov FU Praemium Academiae of the AS CR; Sandia National Laboratories; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; [RVO 67985815] FX PS was supported by Praemium Academiae of the AS CR and by the project RVO 67985815. RS, JT, WS, MB, and GGG were supported by Sandia National Laboratories which is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This document was reviewed and approved for unclassified, unlimited release under 2015-1873J. NR 21 TC 0 Z9 0 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 1 PY 2017 VL 7 AR 41251 DI 10.1038/srep41251 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ5ZQ UT WOS:000393298400001 PM 28145486 ER PT J AU Kwon, YH Kiang, C Benjamin, E Crawford, P Nair, S Bhave, R AF Kwon, Yeon Hye Kiang, Christine Benjamin, Emily Crawford, Phillip Nair, Sankar Bhave, Ramesh TI Krypton-xenon separation properties of SAPO-34 zeolite materials and membranes SO AICHE JOURNAL LA English DT Article DE zeolite membrane; gas separation; krypton; xenon; SAPO-34 ID CO2/CH4 SEPARATION; WASTE TREATMENT; MFI MEMBRANES; NOBLE-GASES; ADSORPTION; PERMEATION; PURIFICATION; TECHNOLOGY; FRAMEWORKS; DIFFUSION AB Separation of the radioisotope Kr-85 from Xe-136 is an important target during used nuclear fuel recycling. We report a detailed study on the Kr and Xe adsorption, diffusion, and membrane permeation properties of the silicoaluminophosphate zeolite SAPO-34. Adsorption and diffusion measurements on SAPO-34 crystals indicate their potential for use in Kr-Xe separation membranes, but also highlight competing effects of adsorption and diffusion selectivity. SAPO-34 membranes are synthesized on -alumina disk and tubular substrates via steam assisted conversion seeding and hydrothermal growth, and are characterized in detail. Membrane transport measurements reveal that SAPO-34 membranes can separate Kr from Xe by molecular sieving, with Kr permeabilities around 50 Barrer and mixture selectivity of 25-30 for Kr at ambient or slight sub-ambient conditions. The membrane transport characteristics are modeled by the Maxwell-Stefan equations, whose predictions are in very good agreement with experiment and confirm the minimal competing effects of adsorption and diffusion. (c) 2016 American Institute of Chemical Engineers AIChE J, 63: 761-769, 2017 C1 [Kwon, Yeon Hye; Kiang, Christine; Benjamin, Emily; Crawford, Phillip; Nair, Sankar] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Bhave, Ramesh] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Nair, S (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM sankar.nair@chbe.gatech.edu FU Department of Energy Office of Nuclear Energy [DE-NE 0008298] FX This work was supported by the Department of Energy Office of Nuclear Energy (grant number DE-NE 0008298). We are grateful to Dr. R. Jubin, Dr. G. Del Cul, and Dr. E. Collins (all ORNL) for useful discussions, K. Eum and Dr. S. Yang (Georgia Tech) for their assistance in setting up permeation measurements, and V. Pisharodi and J. Hwang (Georgia Tech) for their assistance in adsorption measurements. NR 41 TC 1 Z9 1 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 EI 1547-5905 J9 AICHE J JI AICHE J. PD FEB PY 2017 VL 63 IS 2 BP 761 EP 769 DI 10.1002/aic.15434 PG 9 WC Engineering, Chemical SC Engineering GA EI9QX UT WOS:000392844900027 ER PT J AU Kirchstetter, TW Preble, CV Hadley, OL Bond, TC Apte, JS AF Kirchstetter, Thomas W. Preble, Chelsea V. Hadley, Odelle L. Bond, Tami C. Apte, Joshua S. TI Large reductions in urban black carbon concentrations in the United States between 1965 and 2000 SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Concentration trends; Coefficient of haze; Elemental carbon; Air pollution; Energy consumption; Carbon dioxide emissions ID VEHICLE EMISSIONS; ELEMENTAL CARBON; ABSORPTION; AEROSOL; TRENDS; AETHALOMETER; COEFFICIENT; CALIFORNIA; PARTICLES; LIGHT AB Long-term pollutant concentration trends can be useful for evaluating air quality effects of emission controls and historical transitions in energy sources. We employed archival records of coefficient of haze (COH), a now-retired measure of light-absorbing particulate matter, to re-construct historical black carbon (BC) concentrations at urban locations in the United States (U.S.). The following relationship between COH and BC was determined by reinstating into service COH monitors beside aethalometers for two years in Vallejo and one year in San Jose, California: BC (mu g m(-3)) = 6.7COH + 0.1, R-2 = 0.9. Estimated BC concentrations in ten states stretching from the East to West Coast decreased markedly between 1965 and 1980: 5-fold in Illinois, Ohio, and Virginia, 4-fold in Missouri, and 2.5-fold in Pennsylvania. Over the period from the mid-1960s to the early 2000s, annual average BC concentrations in New Jersey and California decreased from 13 to 2 mu m(-3) and 4 to 1 mu g m(-3), respectively, despite concurrent increases in fossil fuel consumption from 1.6 to 2.1 EJ (EJ = 10(18) J) in New Jersey and 4.2 to 6.4 EJ in California. New Jersey's greater reliance on BC-producing heavy fuel oils and coal in the 1960s and early 1970s and subsequent transition to cleaner fuels explains why the decrease was larger in New Jersey than California. Patterns in seasonal and weekly BC concentrations and energy consumption trends together indicate that reducing wintertime emissions - namely substituting natural gas and electricity for heavy fuel oil in the residential sector - and decreasing emissions from diesel vehicles contributed to lower ambient BC concentrations. Over the period of study, declining concentrations of BC, a potent and shortlived climate warming pollutant, contrast increasing fossil fuel carbon dioxide (CO2) emissions in the U.S. Declining BC emissions may have had the benefit of mitigating some atmospheric warming driven by increased CO2 emissions with complementary health benefits. Published by Elsevier Ltd. C1 [Kirchstetter, Thomas W.; Hadley, Odelle L.] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. [Kirchstetter, Thomas W.; Preble, Chelsea V.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Bond, Tami C.] Univ Illinois, Dept Civil & Environm Engn, Champaign, IL USA. [Apte, Joshua S.] Univ Texas Austin, Dept Civil Architectural & Environm Engn, Austin, TX 78712 USA. [Hadley, Odelle L.] Olymp Reg Clean Air Agcy, Olympia, WA USA. FU National Science Foundation [0852775]; California Air Resources Board [08-323] FX This work was supported by the National Science Foundation (award number 0852775) and the California Air Resources Board (contract 08-323). The statements and conclusions herein are those of the authors and do not necessarily reflect the views of the project sponsors. We thank the Bay Area and Lake County Air Quality Management Districts and the California Air Resources Board for supplying COH monitors. We also thank the Bay Area Air Quality Management District for supporting us in our efforts to operate COH monitors at their facilities in Vallejo and San Jose. NR 40 TC 0 Z9 0 U1 14 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2017 VL 151 BP 17 EP 23 DI 10.1016/j.atmosenv.2016.11.001 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA EI7KZ UT WOS:000392678000003 ER PT J AU Wecker, MSA Beaton, SE Chado, RA Ghirardi, ML AF Wecker, Matt S. A. Beaton, Stephen E. Chado, Robert A. Ghirardi, Maria L. TI Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H-2 production SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE R; capsulatus H-2 sensor; high-throughput screening; photobiohydrogen; nitrogenase; H-2 production ID BACTERIUM RHODOPSEUDOMONAS-CAPSULATA; HYDROGEN-PRODUCTION; CHLAMYDOMONAS-REINHARDTII; GENE-EXPRESSION; NITROGENASE; FERREDOXIN; MATURATION; EVOLUTION; CULTURES; PHOTOPRODUCTION AB The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H-2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H-2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system (Ghirardi et al., 2009 Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52-61). Here, we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H-2. The resulting strain photoproduces H-2 and self-reports its own H-2 production through fluorescence. This model system represents a unique method of developing hydrogenase-based H-2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H-2. Biotechnol. Bioeng. 2017;114: 291-297. (c) 2016 Wiley Periodicals, Inc. C1 [Wecker, Matt S. A.] GeneBiologics LLC, Boulder, CO USA. [Beaton, Stephen E.; Chado, Robert A.] US Air Force Acad, Dept Chem, Colorado Springs, CO 80840 USA. [Ghirardi, Maria L.] Natl Renewable Energy Lab, MS 3313,15013 Denver West Pkwy, Golden, CO 80401 USA. EM maria.ghirardi@nrel.gov FU Department of Energy; Office of Science, Biological and Environmental Research [DE-AC36-08GC28308z] FX Contract grant sponsor: Department of Energy; Contract grant sponsor: Office of Science, Biological and Environmental Research; Contract grant number: DE-AC36-08GC28308z NR 45 TC 0 Z9 0 U1 9 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD FEB PY 2017 VL 114 IS 2 BP 291 EP 297 DI 10.1002/bit.26076 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EI5MU UT WOS:000392539800004 PM 27531314 ER PT J AU Johnson, TC Hammond, GE Chen, XY AF Johnson, Timothy C. Hammond, Glenn E. Chen, Xingyuan TI PFLOTRAN-E4D: A parallel open source PFLOTRAN module for simulating time-lapse electrical resistivity data SO COMPUTERS & GEOSCIENCES LA English DT Article DE Hydrogeophysics; Time-lapse geophysics; Electrical resistivity tomography; Groundwater; Simulation; Multi-physics; Parallel; Open-source ID HYDRAULIC CONDUCTIVITY; SUBSURFACE PROCESSES; INVERSION AB Time-lapse electrical resistivity tomography (ERT) is finding increased application for remotely monitoring processes occurring in the near subsurface in three-dimensions (i.e. 4D monitoring). However, there are few codes capable of simulating the evolution of subsurface resistivity and corresponding tomographic measurements arising from a particular process, particularly in parallel and with an open source license. Herein we describe and demonstrate an electrical resistivity tomography module for the PFLOTRAN subsurface flow and reactive transport simulation code, named PFLOTRAN-E4D. The PFLOTRAN-E4D module operates in parallel using a dedicated set of compute cores in a master-slave configuration. At each time step, the master processes receives subsurface states from PFLOTRAN, converts those states to bulk electrical conductivity, and instructs the slave processes to simulate a tomographic data set. The resulting multi-physics simulation capability enables accurate feasibility studies for ERT imaging, the identification of the ERT signatures that are unique to a given process, and facilitates the joint inversion of ERT data with hydrogeological data for subsurface characterization. PFLOTRAN-E4D is demonstrated herein using a field study of stage-driven groundwater/river water interaction ERT monitoring along the Columbia River, Washington, USA. Results demonstrate the complex nature of subsurface electrical conductivity changes, in both the saturated and unsaturated zones, arising from river stage fluctuations and associated river water intrusion into the aquifer. The results also demonstrate the sensitivity of surface based ERT measurements to those changes over time. PFLOTRAN-E4D is available with the PFLOTRAN development version with an open-source license at https://bitbucket.org/pflotran/pflotrandev. C1 [Johnson, Timothy C.; Chen, Xingyuan] Pacific Northwest Natl Lab, 902 Battelle Blvd,POB 999,MSIN K9-33, Richland, WA 99352 USA. [Hammond, Glenn E.] Sandia Natl Labs, POB 5800 MS 0747, Albuquerque, NM 87185 USA. EM tj@pnnl.gov; gehammo@sandia.gov FU U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER), BER's Subsurface Biogeochemistry Research Program (SBR) [54737] FX This research was supported by the U.S. Department of Energy (DOE) grant number 54737, Office of Biological and Environmental Research (BER), as part of BER's Subsurface Biogeochemistry Research Program (SBR). This contribution originates from the SBR Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). NR 27 TC 0 Z9 0 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD FEB PY 2017 VL 99 BP 72 EP 80 DI 10.1016/j.cageo.2016.09.006 PG 9 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA EI7PR UT WOS:000392690900008 ER PT J AU Xu, XY Zhang, XS Fang, HW Lai, RX Zhang, YF Huang, L Liu, XB AF Xu, Xingya Zhang, Xuesong Fang, Hongwei Lai, Ruixun Zhang, Yuefeng Huang, Lei Liu, Xiaobo TI A real-time probabilistic channel flood-forecasting model based on the Bayesian particle filter approach SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Channel flood forecasting; Probabilistic forecast; Particle filter; Data assimilation; Three Gorges Dam ID ENSEMBLE KALMAN FILTER; SUSPENDED-SEDIMENT TRANSPORT; DATA ASSIMILATION; HYDRODYNAMIC MODEL; MATHEMATICAL-MODEL; HYDROLOGIC MODEL; HYDRAULIC MODEL; YANGTZE-RIVER; RESERVOIR; SYSTEM AB Reliable real-time probabilistic flood forecasting is critical for effective water management and flood protection all over the world. In this study, we develop a real-time probabilistic channel flood-forecasting model by combining a channel hydraulic model with the Bayesian particle filter approach. The new model is tested in the upstream river reach of Three Gorges Dam (TGD) on the Yangtze River, China. Stage observations at seven hydrological stations are used simultaneously to adjust the Manning's roughness coefficients and to update discharges and stages along the river reach to attain reliable probabilistic flood forecasting. The synthetic experiments are applied to demonstrate the new model's correction and forecasting performances. The real-world experiments show that the new model can make accurate flood forecasting as well as derive reliable intervals for different confidence levels. The new probabilistic flood forecasting model not only outperforms the existing deterministic channel flood-forecasting models in accuracy, but also provides a more robust tool with which to incorporate uncertainty into flood-control efforts. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Xu, Xingya; Fang, Hongwei; Zhang, Yuefeng; Huang, Lei] Tsinghua Univ, Dept Hydraul Engn, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China. [Zhang, Xuesong] Pacific Northwest Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. [Zhang, Xuesong] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Lai, Ruixun] Yellow River Inst Hydraul Res, Zhengzhou 450003, Peoples R China. [Liu, Xiaobo] China Inst Water Resources & Hydropower Res, Water Environm Dept, Beijing 100038, Peoples R China. EM fanghw@tsinghua.edu.cn FU National Natural Science Foundation of China [51209230, 11372161]; NASA (NIP) [NNH13ZDA001N]; Terrestrial Ecology Program as part of the North American Carbon Program [NNH12AU03I]; DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494, KP1601050]; DOE Great Lakes Bioenergy Research Center (DOE) [EERE OBP 20469-19145] FX This research was financially supported by the National Natural Science Foundation of China (No. 51209230 and No. 11372161).; Dr. Xuesong Zhang was supported by the NASA New Investigator Award (NIP, NNH13ZDA001N) and Terrestrial Ecology Program (NNH12AU03I) as part of the North American Carbon Program, and the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494, DOE BER Office of Science KP1601050, DOE EERE OBP 20469-19145). NR 56 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 EI 1873-6726 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD FEB PY 2017 VL 88 BP 151 EP 167 DI 10.1016/j.envsoft.2016.11.010 PG 17 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA EI7LQ UT WOS:000392679800013 ER PT J AU Van Wychen, S Long, W Black, SK Laurens, LML AF Van Wychen, Stefanie Long, William Black, Stuart K. Laurens, Lieve M. L. TI MBTH: A novel approach to rapid, spectrophotometric quantitation of total algal carbohydrates SO ANALYTICAL BIOCHEMISTRY LA English DT Article DE Algae; Carbohydrates; Spectrophotometric; Phenol-sulfuric acid; MBTH ID BIOMASS; PROTEIN; SUGARS AB A high-throughput and robust application of the 3-methyl-2-benzothiazolinone hydrazone (MBTH) method was developed for carbohydrate determination in microalgae. The traditional phenol-sulfuric acid method to quantify carbohydrates is strongly affected by algal biochemical components and exhibits a highly variable response to microalgal monosaccharides. We present a novel use of the MBTH method to accurately quantify carbohydrates in hydrolyzate after acid hydrolysis of algal biomass, without a need for neutralization. The MBTH method demonstrated consistent and sensitive quantitation of algae-specific monosaccharides down to 5 mu g mL(-1) without interference from other algae acidic hydrolyzate components. (C) 2016 Elsevier Inc. All rights reserved. C1 [Van Wychen, Stefanie; Long, William; Black, Stuart K.; Laurens, Lieve M. L.] Natl Renewable Energy Lab, Golden, CO USA. RP Laurens, LML (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM Lieve.Laurens@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory as part of the BioEnergy Technology Office (BETO) FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory as part of the BioEnergy Technology Office (BETO). The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 13 TC 0 Z9 0 U1 9 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-2697 EI 1096-0309 J9 ANAL BIOCHEM JI Anal. Biochem. PD FEB 1 PY 2017 VL 518 BP 90 EP 93 DI 10.1016/j.ab.2016.11.014 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA EI4JX UT WOS:000392461000013 PM 27890408 ER PT J AU Mashayekh, S Stadler, M Cardoso, G Heleno, M AF Mashayekh, Salman Stadler, Michael Cardoso, Goncalo Heleno, Miguel TI A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids SO APPLIED ENERGY LA English DT Article DE Multi-energy microgrid design; Power flow; Electrical network; Heating and cooling network; Mixed-integer linear program ID DISTRIBUTED ENERGY-SYSTEMS; OPTIMAL-DESIGN; COMBINED HEAT; OPTIMIZATION; GENERATION; POWER; OPERATION; NETWORKS; SECTOR; TOOLS AB Optimal microgrid design is a challenging problem, especially for multi-energy microgrids with electricity, heating, and cooling loads as well as sources, and multiple energy carriers. To address this problem, this paper presents an optimization model formulated as a mixed-integer linear program, which determines the optimal technology portfolio, the optimal technology placement, and the associated optimal dispatch, in a microgrid with multiple energy types. The developed model uses a multi-node modeling approach (as opposed to an aggregate single-node approach) that includes electrical power flow and heat flow equations, and hence, offers the ability to perform optimal siting considering physical and operational constraints of electrical and heating/cooling networks. The new model is founded on the existing optimization model DER-CAM, a state-of-the-art decision support tool for microgrid planning and design. The results of a case study that compares single-node vs. multi-node optimal design for an example microgrid show the importance of multi-node modeling. It has been shown that single-node approaches are not only incapable of optimal DER placement, but may also result in sub-optimal DER portfolio, as well as underestimation of investment costs. Published by Elsevier Ltd. C1 [Mashayekh, Salman; Stadler, Michael; Cardoso, Goncalo; Heleno, Miguel] Ernest Orlando Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90-1121, Berkeley, CA 94720 USA. RP Stadler, M (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90-1121, Berkeley, CA 94720 USA. EM MStadler@lbl.gov FU Office of Electricity Delivery and Energy Reliability, Distributed Energy Program of the U.S. Department of Energy [M615000492] FX The authors gratefully thank Dan T. Ton, the Smart Grid R&D Program Manager at the US Department of Energy, for his continuous support of the microgrid design tools at LBNL. This work was funded by the Office of Electricity Delivery and Energy Reliability, Distributed Energy Program of the U.S. Department of Energy under Work Order M615000492. NR 39 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD FEB 1 PY 2017 VL 187 BP 154 EP 168 DI 10.1016/j.apenergy.2016.11.020 PG 15 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EI5YC UT WOS:000392571200013 ER PT J AU Nemet, GF O'Shaughnessy, E Wiser, R Darghouth, N Barbose, G Gillingham, K Rai, V AF Nemet, Gregory F. O'Shaughnessy, Eric Wiser, Ryan Darghouth, Naim Barbose, Galen Gillingham, Ken Rai, Varun TI Characteristics of low-priced solar PV systems in the US SO APPLIED ENERGY LA English DT Article DE Subsidies; Solar; PV; Price dispersion; Technological change ID UNITED-STATES; EMPIRICAL-ANALYSIS; DISPERSION; COST; IMPACT; TECHNOLOGY; MARKET; INTEGRATION; ADOPTION; POLICY AB Despite impressive declines in average prices, there is wide dispersion in the prices of U.S. solar photovoltaic (PV) systems; prices span more than a factor of four. What are the characteristics of the systems with low-prices? Using detailed characteristics of 42,611 small-scale (<15 kW) PV systems installed in 15 U.S. states during 2013, we identify the most important factors that make a system likely to be low-priced (LP). Comparing LP and non-LP systems, we find statistically significant differences in nearly all characteristics for which we have data. Logit and probit model results robustly indicate that LP systems are associated with: markets with few active installers; experienced installers; customer ownership; large systems; retrofits; and thin-film, low-efficiency, and Chinese modules. We also find significant differences across states, with LP systems much more likely to occur in some states, such as Arizona, New Jersey, and New Mexico, and less likely in others, such as California. Our focus on the left tail of the price distribution provides implications for policy that are distinct from recent studies of mean prices. While those studies find that PV subsidies increase mean prices, we find that subsidies also generate LP systems. PV subsidies appear to simultaneously shift and broaden the price distribution. Much of this broadening occurs in a particular location, northern California. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Nemet, Gregory F.] Univ Wisconsin Madison, La Follette Sch Publ Affairs, Madison, WI USA. [Nemet, Gregory F.; O'Shaughnessy, Eric] Univ Wisconsin Madison, Nelson Inst Ctr Sustainabil & Global Environm, Madison, WI USA. [Nemet, Gregory F.] Mercator Res Inst Global Commons & Climate Change, Berlin, Germany. [O'Shaughnessy, Eric] Natl Renewable Energy Lab, Golden, CO USA. [Wiser, Ryan; Darghouth, Naim; Barbose, Galen] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Gillingham, Ken] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06520 USA. [Rai, Varun] Univ Texas Austin, LBJ Sch Publ Affairs, Austin, TX 78712 USA. RP Nemet, GF (reprint author), 1225 Observ Dr, Madison, WI 53706 USA. EM nemet@wisc.edu FU Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Office) of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC36-08GO28308] FX This work was supported by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Office) of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231 (LBNL) and DE-AC36-08GO28308 (NREL). For supporting this work, we thank Elaine Ulrich, Odette Mucha, Ammar Qusaibaty, Joshua Huneycutt and the entire DOE Solar Energy Technologies Office team. For reviewing earlier versions of this report, we also thank Joshua Huneycutt (U.S. DOE), Barry Cinnamon (Spice Solar), and Carolyn Davidson (NREL). NR 54 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD FEB 1 PY 2017 VL 187 BP 501 EP 513 DI 10.1016/j.apenergy.2016.11.056 PG 13 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EI5YC UT WOS:000392571200039 ER PT J AU Shen, YW Brown, RC Wen, ZY AF Shen, Yanwen Brown, Robert C. Wen, Zhiyou TI Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production SO APPLIED ENERGY LA English DT Article DE Syngas fermentation; Rotating packed bed biofilm reactor; Mass transfer; Ethanol production ID MONOXIDE MASS-TRANSFER; HOLLOW-FIBER MEMBRANE; STIRRED-TANK BIOREACTOR; CARBON-MONOXIDE; SYNTHESIS-GAS; BIOLOGICAL CONTACTORS; TRANSFER COEFFICIENT; ACETOGENIC BACTERIA; BIOFUEL EVALUATION; PARTIAL-PRESSURE AB Gasification of lignocellulosic biomass followed by syngas fermentation is a promising process for producing fuels and chemicals. Syngas fermentation, however, is commonly limited by low mass transfer rates. In this work, a horizontally oriented rotating packed bed (h-RPB) reactor was developed to improve mass transfer and enhance ethanol production. In the h-RPB reactor, cell attachment materials were packed in the reactor and half submerged in the liquid and half exposed to the headspace. With continuous rotation of the packing materials, the cells in biofilm were alternately in contact with liquid and headspace; thus, transport of syngas to the cells occurred in both the liquid phase and headspace. The volumetric mass transfer coefficient (k(L)a) of the h-RPB reactor was lower than that in a traditional continuous stirred tank reactor (CSTR), indicating the mass transfer in the liquid phase of h-PRB was lower than CSTR, and the mass transfer in the headspace phase played an important role in syngas fermentation. The syngas fermentation of Clostridium carboxidivorans P7 in h-RPB resulted in a 7.0 g/L titer and 6.7 g/L/day productivity of ethanol, respectively, 3.3 times higher than those obtained in a CSTR under the same operational conditions. The results demonstrate that the h-RPB reactor is an efficient system for syngas fermentation, making cellulosic ethanol biorefinery one step closer to technical and economic feasibility. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Shen, Yanwen] Argonne Natl Lab, Energy Syst Div, Lemont, IL 60439 USA. [Brown, Robert C.] Iowa State Univ, Bioecon Inst, Ames, IA 50011 USA. [Wen, Zhiyou] Tianjin Univ Commerce, Tianjin 300134, Peoples R China. [Wen, Zhiyou] Iowa State Univ, Dept Food Sci & Human Nutr, Ames, IA 50011 USA. RP Wen, ZY (reprint author), Iowa State Univ, Dept Food Sci & Human Nutr, Ames, IA 50011 USA. EM wenz@iastate.edu FU NSF Process and Reaction Engineering [CBET-1438042]; Iowa Energy Center [11-02]; Iowa State University Bailey Award FX The authors gratefully acknowledge NSF Process and Reaction Engineering (CBET-1438042), Iowa Energy Center (#11-02), and Iowa State University Bailey Award for financial support of this project. Technical assistance by Martin Gross at Iowa State University is gratefully acknowledged. NR 55 TC 0 Z9 0 U1 15 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD FEB 1 PY 2017 VL 187 BP 585 EP 594 DI 10.1016/j.apenergy.2016.11.084 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EI5YC UT WOS:000392571200045 ER PT J AU Jin, M Feng, W Liu, P Marnay, C Spanos, C AF Jin, Ming Feng, Wei Liu, Ping Marnay, Chris Spanos, Costas TI MOD-DR: Microgrid optimal dispatch with demand response SO APPLIED ENERGY LA English DT Article DE Microgrid dispatch; Demand response; Uncertainty; Unit commitment; Distributed energy resources ID THERMAL-ENERGY STORAGE; UNIT COMMITMENT; MIXED-INTEGER; ELECTRICITY MARKETS; MANAGEMENT-SYSTEM; CHP-PLANTS; LOAD; UNCERTAINTY; TECHNOLOGY; GENERATION AB In the face of unprecedented challenges of upcoming fossil fuel shortage and reliability and security of the grid, there is an increasing interest in adopting distributed, renewable, energy resources, such as micro grids (MGs), and engaging flexible electric loads in power system operations to potentially drive a paradigm shift in energy production and consumption patterns. Prior work on MG dispatch has leveraged decentralized technologies like combined heat and power (CHP) and heat pumps to promote efficiency and economic gains; however, the flexibility of demand has yet to be fully exploited in cooperation with the grid to offer added benefits and ancillary services. The object of the study is to develop microgrid optimal dispatch with demand response (MOD-DR), which fills in the gap by coordinating both the demand and supply sides in a renewable-integrated, storage-augmented, DR-enabled MG to achieve economically viable and system-wide resilient solutions. The key contribution of this paper is the formulation of a multi-objective optimization with prevailing constraints and utility trade-off based on the model of a large-scale MG with flexible loads, which leads to the derivation of strategies that incorporate uncertainty in scheduling. Evaluation using real datasets is conducted to analyze the uncertainty effects and demand response potentials, demonstrating in a campus prototype a 17.5% peak load reduction and 8.8% cost savings for MOD-DR compared to the non-trivial baseline, which is on par with the Oracle for perfect predictions. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Jin, Ming; Spanos, Costas] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Jin, Ming; Feng, Wei; Liu, Ping; Marnay, Chris] Lawrence Berkeley Natl Lab, Energy Technol Area, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Jin, M (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM jinming@berkeley.edu; WeiFeng@lbl.gov; PingLiu@lbl.gov; ChrisMarnay@lbl.gov; spanos@berkeley.edu FU Shenzhen Institute of Building Research; Energy Foundation FX This manuscript has been authored by authors at Lawrence Berkeley National Laboratory with the U.S. Department of Energy. This work is also supported by Shenzhen Institute of Building Research and the Energy Foundation. The authors would also like to thank Cecilia Han Springer and the reviewers for their constructive feedback on improving the manuscript. NR 70 TC 0 Z9 0 U1 19 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD FEB 1 PY 2017 VL 187 BP 758 EP 776 DI 10.1016/j.apenergy.2016.11.093 PG 19 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EI5YC UT WOS:000392571200059 ER PT J AU Chard, K Caton, S Kugler, K Kugler, K Rana, O Katz, DS AF Chard, Kyle Caton, Simon Kugler, Kai Kugler, Kai Rana, Omer Katz, Daniel S. TI A social content delivery network for e-Science SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE Social Cloud; social resource allocation; social data sharing ID INFRASTRUCTURES; TRUST AB We are in the midst of a scientific data explosion in which the rate of data growth is rapidly increasing. While large-scale research projects have developed sophisticated data distribution networks to share their data with researchers globally, there is no such support for the many millions of research projects generating data of interest to much smaller audiences (as exemplified by the long tail scientist). In data-oriented research, every aspect of the research process is influenced by data access. However, sharing and accessing data efficiently as well as lowering access barriers are difficult. In the absence of dedicated large-scale storage, many have noted that there is an enormous storage capacity available via connected peers, none more so than the storage resources of many research groups. With widespread usage of the content delivery network model for disseminating web content, we believe a similar model can be applied to distributing, sharing, and accessing long tail research data in an e-Science context. We describe the vision and architecture of a social content delivery network - a model that leverages the social networks of researchers to automatically share and replicate data on peers' resources based upon shared interests and trust. Using this model, we describe a simulator and investigate how aspects such as user activity, geographic distribution, trust, and replica selection algorithms affect data access and storage performance. From these results, we show that socially informed replication strategies are comparable with more general strategies in terms of availability and outperform them in terms of spatial efficiency. Copyright (C) 2016 John Wiley & Sons, Ltd. C1 [Chard, Kyle; Katz, Daniel S.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Chard, Kyle; Katz, Daniel S.] Argonne Natl Lab, Chicago, IL 60611 USA. [Caton, Simon; Kugler, Kai] Karlsruhe Inst Technol, Karlsruhe Serv Res Inst, Karlsruhe, Germany. [Caton, Simon] Natl Coll Ireland, Dublin, Ireland. [Rana, Omer] Cardiff Univ, Sch Comp Sci & Informat, Cardiff, S Glam, Wales. [Katz, Daniel S.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL USA. RP Chard, K (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA.; Chard, K (reprint author), Argonne Natl Lab, Chicago, IL 60611 USA. EM chard@uchicago.edu FU National Science Foundation FX The work by Katz was supported by the National Science Foundation while working at the Foundation; any opinion, finding, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. NR 42 TC 0 Z9 0 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD FEB PY 2017 VL 29 IS 4 AR e3854 DI 10.1002/cpe.3854 PG 26 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA EH7IR UT WOS:000391946900016 ER PT J AU Mittal, S AF Mittal, Sparsh TI A survey of techniques for designing and managing CPU register file SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE review; classification; CPU; register file; heterogeneous bank design; power management; soft-error resilience ID MAIN MEMORY-SYSTEMS; SUPERSCALAR PROCESSORS; PHYSICAL REGISTERS; POWER; ENERGY; PRESSURE; RELEASE; MICROPROCESSORS; VULNERABILITY; DEALLOCATION AB Processor register file (RF) is an important microarchitectural component used for storing operands and results of instructions. The design and operation of RF have crucial impact on the performance, energy efficiency, and reliability of the processor, and hence, several techniques have been recently proposed to manage RF in modern processors. In this paper, we present a survey of techniques for architecting and managing CPU register file. We classify the techniques across several parameters to underscore their similarities and differences. We hope that this paper will provide insights to researchers into working of RF and inspire even more efforts towards optimization of RF in next-generation computing systems. Copyright (C) 2016 John Wiley & Sons, Ltd. C1 [Mittal, Sparsh] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. RP Mittal, S (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. EM mittals@ornl.gov OI Mittal, Sparsh/0000-0002-2908-993X FU US Department of Energy, Office of Science, Advanced Scientific Computing Research FX This material is based upon work supported by US Department of Energy, Office of Science, Advanced Scientific Computing Research. NR 76 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD FEB PY 2017 VL 29 IS 4 AR e3906 DI 10.1002/cpe.3906 PG 21 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA EH7IR UT WOS:000391946900024 ER PT J AU Sun, KY Hong, TZ AF Sun, Kaiyu Hong, Tianzhen TI A simulation approach to estimate energy savings potential of occupant behavior measures SO ENERGY AND BUILDINGS LA English DT Article DE Occupant behavior; Behavior measure; Building performance simulation; Energy savings; Behavior modeling; EnergyPlus ID REFRIGERANT FLOW SYSTEMS; OFFICE BUILDINGS; CONSUMPTION; PERFORMANCE; COMFORT; MODEL; TECHNOLOGIES; SATISFACTION; PATTERNS; BLINDS AB Occupant behavior in buildings is a leading factor influencing energy use in buildings. Low-cost behavioral solutions have demonstrated significant potential energy savings. Estimating the behavioral savings potential is important for a more effective design of behavior change interventions, which in turn will support more effective energy-efficiency policies. This study introduces a simulation approach to estimate the energy savings potential of occupant behavior measures. First it defines five typical occupant behavior measures in office buildings, then simulates and analyzes their individual and integrated impact on energy use in buildings. The energy performance of the five behavior measures was evaluated using EnergyPlus simulation for a real office building across four typical U.S. climates and two vintages. The Occupancy Simulator was used to simulate the occupant movement in each zone with inputs from the site survey of the case building. Based on the simulation results, the occupant behavior measures can achieve overall site energy savings as high as 22.9% for individual measures and up to 41.0% for integrated measures. Although energy savings of behavior measures would vary depending upon many factors, the presented simulation approach is robust and can be adopted for other studies aiming to quantify occupant behavior impact on building performance. (C) 2016 Elsevier B.V. All rights reserved. C1 [Sun, Kaiyu; Hong, Tianzhen] Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, One Cyclotron Rd, Berkeley, CA 94720 USA. RP Hong, TZ (reprint author), Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, One Cyclotron Rd, Berkeley, CA 94720 USA. EM thong@lbl.gov FU Assistant Secretary for Energy Efficiency and Renewable Energy of the U.S. DOE through the U.S.-China joint program of Clean Energy Research Center on Building Energy Efficiency [DE-AC02-05CH11231] FX This study is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy of the U.S. DOE under Contract No. DE-AC02-05CH11231 through the U.S.-China joint program of Clean Energy Research Center on Building Energy Efficiency. Authors appreciated Zheng O'Neill of the University of Alabama for providing the energy model of the actual office building. This work is also part of the research activities of IEA EBC Annex-66, definition and simulation of occupant behavior in buildings. Authors thank Yixing Chen and Xuan Luo for assistance on the use of the Occupancy Simulator. NR 75 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD FEB 1 PY 2017 VL 136 BP 43 EP 62 DI 10.1016/j.enbuild.2016.12.010 PG 20 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA EI2XV UT WOS:000392354100005 ER PT J AU Zhang, L Zhang, RP Zhang, Y Hong, TZ Meng, QL Feng, YS AF Zhang, Lei Zhang, Rongpeng Zhang, Yu Hong, Tianzhen Meng, Qinglin Feng, Yanshan TI The impact of evaporation from porous tile on roof thermal performance: A case study of Guangzhou's climatic conditions SO ENERGY AND BUILDINGS LA English DT Article DE Passive techniques; Evaporative cooling; Porous building material; Roof thermal performance ID BUILDING ENVELOPE; SURFACE-TEMPERATURE; COUPLED HEAT; FLAT ROOFS; SIMULATION; WALLS; VALIDATION; EQUATION; AIR AB The evaporative-cooling roof is a popular passive energy conservation technique. This article presents a novel approach for modelling and analysing the influence of evaporation on roof thermal performance. A multivariate nonlinear model was developed for the prediction of the evaporation rate from porous tile. A computer program was then developed based on the one-dimensional roof unsteady heat transfer theory. Finally, the computer program and hourly weather data of Guangzhou, China, were used to analyse the impacts of evaporation (including the evaporation start time and water-application frequency) and slope orientation on roof thermal performance. Evaporation beginning at 11:00 can reduce the external surface temperatures of a horizontal roof and 30 degrees-inclined east-sloping and west-sloping roofs by up to 11.3, 10.7, and 9.8 degrees C, respectively, from those of a non-evaporative roof. This, in turn, can reduce the peak-hour (16:00-20:00) internal surface heat flux. Additionally, with the horizontal roof, the reduction in the peak-hour heat flux can be doubled if the evaporative layer is frequently replenished with water. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zhang, Lei; Meng, Qinglin; Feng, Yanshan] South China Univ Technol, Guangzhou Municipal Key Lab Landscape Architectur, Sch Architecture, State Key Lab Subtrop Bldg Sci,Bldg Energy & Envi, Wushan Rd, Guangzhou 510641, Guangdong, Peoples R China. [Zhang, Rongpeng; Zhang, Yu; Hong, Tianzhen] Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, Berkeley, CA 94720 USA. [Zhang, Yu] South China Univ Technol, Sch Chem & Chem Engn, Wushan Rd, Guangzhou 510641, Guangdong, Peoples R China. RP Zhang, L (reprint author), South China Univ Technol, Guangzhou Municipal Key Lab Landscape Architectur, Sch Architecture, State Key Lab Subtrop Bldg Sci,Bldg Energy & Envi, Wushan Rd, Guangzhou 510641, Guangdong, Peoples R China. EM arzhang@scut.edu.cn FU National Natural Science Foundation of China [51308223, 51678243]; Guangdong Natural Science Foundation [2016A030313506]; State Key Lab of Subtropical Building Science, South China University of Technology [2015ZC14] FX This research work was funded by the National Natural Science Foundation of China (No. 51308223, 51678243), Guangdong Natural Science Foundation (No. 2016A030313506) and State Key Lab of Subtropical Building Science, South China University of Technology (No. 2015ZC14). NR 40 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD FEB 1 PY 2017 VL 136 BP 161 EP 172 DI 10.1016/j.enbuild.2016.12.012 PG 12 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA EI2XV UT WOS:000392354100014 ER PT J AU Kelbe, D van Aardt, J Romanczyk, P van Leeuwen, M Cawse-Nicholson, K AF Kelbe, David van Aardt, Jan Romanczyk, Paul van Leeuwen, Martin Cawse-Nicholson, Kerry TI Multiview Marker-Free Registration of Forest Terrestrial Laser Scanner Data With Embedded Confidence Metrics SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Forestry; image registration; laser radar ID RANGE-IMAGE REGISTRATION; AUTOMATIC REGISTRATION; POINT-CLOUDS; LIDAR; INVENTORY; SURFACES; SCENES; TREES; ATTRIBUTES; MODELS AB Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retroreflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in order to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. This paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm. C1 [Kelbe, David; van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin; Cawse-Nicholson, Kerry] Rochester Inst Technol, Chester F Carlson Ctr Imaging Sci, Rochester, NY 14623 USA. [Kelbe, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Romanczyk, Paul] Aerosp Corp, El Segundo, CA 90009 USA. [van Leeuwen, Martin] UCL, London WC1E 6BT, England. [Cawse-Nicholson, Kerry] Jet Prop Lab, Pasadena, CA 91109 USA. RP Kelbe, D (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM dave.kelbe@gmail.com FU National Science Foundation [DGE-1102937]; National Aeronautics and Space Administration [NNX12AQ24G]; Chester F. Carlson Center for Imaging Science at the Rochester Institute of Technology FX This work was supported in part by the National Science Foundation Graduate Research Fellowship under Grant DGE-1102937, in part by the National Aeronautics and Space Administration under Grant NNX12AQ24G, and in part by the Chester F. Carlson Center for Imaging Science at the Rochester Institute of Technology. (Corresponding author: David Kelbe.) NR 56 TC 0 Z9 0 U1 14 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2017 VL 55 IS 2 BP 729 EP 741 DI 10.1109/TGRS.2016.2614251 PG 13 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA EI3LI UT WOS:000392391800009 ER PT J AU Chen, HM Zhou, H Zhang, QC Chen, YK AF Chen, Hanming Zhou, Hui Zhang, Qingchen Chen, Yangkang TI Modeling Elastic Wave Propagation Using K-Space Operator-Based Temporal High-Order Staggered-Grid Finite-Difference Method SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Extrapolation; finite-difference (FD) method; modeling; seismic waves ID HETEROGENEOUS MEDIA; TIME-DOMAIN; ACOUSTIC APPROXIMATION; HYPERBOLIC EQUATIONS; EXTRAPOLATION; 4TH-ORDER; ACCURACY; SCHEMES; FORMULATION; SEISMOGRAMS AB The traditional high-order staggered-grid finite-difference (SGFD) method has high-order accuracy in space, but only the second-order accuracy in time, which makes the traditional SGFD method suffer from a large temporal dispersion error during long-distance wave propagation. This paper develops temporal fourth-and sixth-order and spatial arbitrary even-order SGFD schemes to model isotropic elastic wave propagation. The temporal high-order SGFD schemes have smaller temporal dispersion than the traditional temporal second-order scheme, and thus allow larger time steps to attain a similar accuracy. The developed temporal high-order SGFD schemes are applied to simulate a quasi-stress-velocity wave equation (QWE) that is derived in the framework of a k-space approach. A split QWE (SQWE) is further developed, and numerical simulation of SQWE results in separated P (compressional)-wave and S (shear)-wave. Theoretical computational cost analysis verifies that the numerical simulation of QWE using the temporal fourt-hand sixth-order SGFD schemes is more efficient than the numerical simulation of the traditional stress-velocity wave equation using the traditional temporal second-order SGFD scheme in 2-D. In 3-D, the temporal fourth-order SGFD scheme still runs faster than the traditional temporal second-order scheme; however, the temporal sixth-order scheme is more efficient only when a longer stencil length than 12 is adopted. Numerical examples confirm the correctness of the developed elastic wave modeling schemes. C1 [Chen, Hanming; Zhou, Hui; Zhang, Qingchen] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China. [Chen, Hanming; Zhou, Hui; Zhang, Qingchen] China Univ Petr, CNPC Key Lab Geophys Explorat, Beijing 102249, Peoples R China. [Chen, Yangkang] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Zhou, H (reprint author), China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China.; Zhou, H (reprint author), China Univ Petr, CNPC Key Lab Geophys Explorat, Beijing 102249, Peoples R China. EM huizhou@cup.edu.cn; chenyk1990@gmail.com FU 973 Program of China [2013CB228603]; National Science and Technology Program [2016ZX05010-001]; National Natural Science Foundation of China [41174119, 41630314]; Research of Novel Method and Technology of Geophysical Prospecting [CNPC 2016-3302] FX This work was supported in part by the 973 Program of China under Grant 2013CB228603, in part by the National Science and Technology Program under Grant 2016ZX05010-001, in part by the National Natural Science Foundation of China under Grant 41174119 and Grant 41630314, and in part by the Research of Novel Method and Technology of Geophysical Prospecting under Grant CNPC 2016-3302. (Corresponding author: Hui Zhou.) NR 44 TC 1 Z9 1 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD FEB PY 2017 VL 55 IS 2 BP 801 EP 815 DI 10.1109/TGRS.2016.2615330 PG 15 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA EI3LI UT WOS:000392391800015 ER PT J AU Zheng, TY Olson, DG Murphy, SJ Shao, XJ Tian, L Lynd, LR AF Zheng, Tianyong Olson, Daniel G. Murphy, Sean J. Shao, Xiongjun Tian, Liang Lynd, Lee R. TI Both adhE and a Separate NADPH-Dependent Alcohol Dehydrogenase Gene, adhA, Are Necessary for High Ethanol Production in Thermoanaerobacterium saccharolyticum SO JOURNAL OF BACTERIOLOGY LA English DT Article DE AdhA; Thermoanaerobacterium saccharolyticum; alcohol dehydrogenase; biofuel; ethanol ID ARCHAEON PYROCOCCUS-FURIOSUS; PYRUVATE-FORMATE-LYASE; ACETIC-ACID BACTERIA; CLOSTRIDIUM-THERMOCELLUM; ESCHERICHIA-COLI; CORYNEBACTERIUM-GLUTAMICUM; BIFUNCTIONAL ALCOHOL; BROCKII; JW/SL-YS485; EXPRESSION AB Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at about 90% of the theoretical maximum yield (2 ethanol molecules per glucose equivalent) and a titer of 70 g/liter. Its ethanol-producing ability has drawn attention to its metabolic pathways, which could potentially be transferred to other organisms of interest. Here, we report that the iron-containing AdhA is important for ethanol production in the high-ethanol strain of T. saccharolyticum (LL1049). A single-gene deletion of adhA in LL1049 reduced ethanol production by similar to 50%, whereas multiple gene deletions of all annotated alcohol dehydrogenase genes except adhA and adhE did not affect ethanol production. Deletion of adhA in wild-type T. saccharolyticum reduced NADPH-linked alcohol dehydrogenase (ADH) activity (acetaldehyde-reducing direction) by 93%. IMPORTANCE In this study, we set out to identify the alcohol dehydrogenases necessary for high ethanol production in T. saccharolyticum. Based on previous work, we had assumed that adhE was the primary alcohol dehydrogenase gene. Here, we show that both adhA and adhE are needed for high ethanol yield in the engineered strain LL1049. This is the first report showing adhA is important for ethanol production in a native adhA host, which has important implications for achieving higher ethanol yields in other microorganisms. C1 [Zheng, Tianyong; Lynd, Lee R.] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA. [Olson, Daniel G.; Murphy, Sean J.; Shao, Xiongjun; Tian, Liang; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Zheng, Tianyong; Olson, Daniel G.; Murphy, Sean J.; Shao, Xiongjun; Tian, Liang; Lynd, Lee R.] BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Lynd, LR (reprint author), Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA.; Lynd, LR (reprint author), Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA.; Lynd, LR (reprint author), BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. EM Lee.R.Lynd@Dartmouth.edu FU Office of Biological and Environmental Research in the DOE Office of Science; U.S. Department of Energy [DE-AC05-00OR22725]; Dartmouth College FX The BioEnergy Science Center is a U.S. Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This research was supported under U.S. Department of Energy contract no. DE-AC05-00OR22725 with Dartmouth College. NR 45 TC 0 Z9 0 U1 2 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD FEB PY 2017 VL 199 IS 3 AR UNSP e00542 DI 10.1128/JB.00542-16 PG 10 WC Microbiology SC Microbiology GA EI4SS UT WOS:000392484200002 ER PT J AU Carter, FW Hertel, SA Rooks, MJ McClintock, PVE McKinsey, DN Prober, DE AF Carter, F. W. Hertel, S. A. Rooks, M. J. McClintock, P. V. E. McKinsey, D. N. Prober, D. E. TI Calorimetric Observation of Single Excimers in a 100-mK He Bath SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Helium excimer detection; Superconducting detector; Transition edge sensor; Superfluid helium ID VACUUM-ULTRAVIOLET; SUPERFLUID HE-4; HELIUM; SPECTROSCOPY; SENSORS AB We report the first calorimetric detection of individual excimers within a bath of superfluid . The detector used in this work is a single superconducting titanium transition edge sensor (TES) with an energy resolution of , immersed directly in the helium bath. excimers are produced in the surrounding bath using an external gamma-ray source. These excimers exist either as short-lived singlet or long-lived triplet states. We demonstrate detection (and discrimination) of both states: In the singlet case the calorimeter records the absorption of a prompt photon, and in the triplet case the calorimeter records a direct interaction of the molecule with the TES surface, which deposits a distinct fraction of the , released upon decay, into the surface. We also briefly discuss the detector fabrication and characterization. C1 [Carter, F. W.] Argonne Natl Lab, High Energy Phys, Lemont, IL 60439 USA. [Carter, F. W.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Carter, F. W.; Hertel, S. A.; McKinsey, D. N.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Hertel, S. A.; McKinsey, D. N.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hertel, S. A.; McKinsey, D. N.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rooks, M. J.] Yale Inst Nanosci & Quantum Engn, New Haven, CT 06520 USA. [McClintock, P. V. E.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Prober, D. E.] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA. RP Carter, FW (reprint author), Argonne Natl Lab, High Energy Phys, Lemont, IL 60439 USA.; Carter, FW (reprint author), Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.; Carter, FW (reprint author), Yale Univ, Dept Phys, New Haven, CT 06511 USA. EM faustin.carter@gmail.com FU National Science Foundation [NSF DMR-1007974]; Engineering and Physical Sciences Research Council (UK) [EP/H04762X/1] FX We would like to thank Prof. M. Devoret for the loan of a dilution refrigerator; J. Cushman for drafting expertise; C. Matulis for circuit-board design; Dr. L. Frunzio for fabrication advice; Prof. R. Schoelkopf and Prof. M. Hatridge for cryogenics expertise; Dr. E. Bernard, Dr. C. McKitterick, Dr. Z. Leghtas, and S. Touzard for helpful discussions; and the Gibbs Machine Shop for making experimental hardware. Facilities use was supported by YINQE and NSF MRSEC DMR-1119826. We also acknowledge support from the National Science Foundation under NSF DMR-1007974 and the Engineering and Physical Sciences Research Council (UK) under grant EP/H04762X/1. NR 25 TC 1 Z9 1 U1 6 U2 6 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 EI 1573-7357 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD FEB PY 2017 VL 186 IS 3-4 BP 183 EP 196 DI 10.1007/s10909-016-1666-x PG 14 WC Physics, Applied; Physics, Condensed Matter SC Physics GA EI3YQ UT WOS:000392429500001 ER PT J AU Levin, I Krayzman, V Vanderah, TA Tomczyk, M Wu, H Tucker, MG Playford, HY Woicik, JC Dennis, CL Vilarinho, PM AF Levin, I. Krayzman, V. Vanderah, T. A. Tomczyk, M. Wu, H. Tucker, M. G. Playford, H. Y. Woicik, J. C. Dennis, C. L. Vilarinho, P. M. TI Oxygen-storage behavior and local structure in Ti-substituted YMnO3 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Hexagonal manganates; Oxygen storage; Redox; Diffraction; Local structure ID CRYSTAL-STRUCTURE; FERROELECTRICITY AB Hexagonal manganates RMnO3 (R=Y, Ho, Dy) have been recently shown to exhibit oxygen-storage capacities promising for three-way catalysts, air-separation, and related technologies. Here, we demonstrate that Ti substitution for Mn can be used to chemically tune the oxygen-breathing properties of these materials towards practical applications. Specifically, Y(Mn1-xTix)O-3 solid solutions exhibit facile oxygen absorption/desorption via reversible Ti3+<-> Ti4+ and Mn3+<-> Mn4+ reactions already in ambient air at approximate to 400 degrees C and approximate to 250 degrees C, respectively. On cooling, the oxidation of both cations is accompanied by oxygen uptake yielding a formula YMn1-x-y3+Mny4+Tix4+O3+delta. The presence of Ti promotes the oxidation of Mn3+ to Mn4+, which is almost negligible for YMnO3 in air, thereby increasing the uptake of oxygen beyond that required for a given Ti4+ concentration. The reversibility of the redox reactions is limited by sluggish kinetics; however, the oxidation process continues, if slowly, even at room temperature. The extra oxygen atoms are accommodated by the large interstices within a triangular lattice formed by the [MnO5] trigonal bipyramids. According to bond distances from Rietveld refinements using the neutron diffraction data, the YMnO3 structure features under-bonded Mn and even more severely under-bonded oxygen atoms that form the trigonal bases of the [MnO5] bipyramids. The tensile bond strain around the 5-fold coordinated Mn site and the strong preference of Ti4+(and Mn4+) for higher coordination numbers likely provide driving forces for the oxidation reaction. Reverse Monte Carlo refinements of the local atomic displacements using neutron total scattering revealed how the excess oxygen atoms are accommodated in the structure by correlated local displacements of the host atoms. Large displacements of the under-bonded host oxygen atoms play a key part in this lattice-relaxation process, facilitating reversible exchange of significant amounts of oxygen with atmosphere. C1 [Levin, I.; Krayzman, V.; Vanderah, T. A.; Wu, H.; Woicik, J. C.; Dennis, C. L.] NIST, Gaithersburg, MD 20899 USA. [Tomczyk, M.; Vilarinho, P. M.] Univ Aveiro, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal. [Tucker, M. G.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA. [Playford, H. Y.] Rutherford Appleton Lab, ISIS Facil, Didcot, Oxon, England. RP Levin, I (reprint author), NIST, Gaithersburg, MD 20899 USA. EM igor.levin@nist.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Portions of this research were carried out at the National Synchrotron Light Source (NIST beamline X23A2), Brookhaven National Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-98CH10886. We thank the STFC (UK) for access to the ISIS facility. The neutron total-scattering data for pure YMnO3 were collected as a part of Prof. Martin Dove's beam time (proposal RB1410591) on the Polaris diffractometer at ISIS; a full analysis of these data will be published in a further article. NR 19 TC 0 Z9 0 U1 12 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD FEB PY 2017 VL 246 BP 29 EP 41 DI 10.1016/j.jssc.2016.10.029 PG 13 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA EI3BD UT WOS:000392363800005 ER PT J AU Tumurugoti, P Clark, BM Edwards, DJ Amoroso, J Sundaram, SK AF Tumurugoti, P. Clark, B. M. Edwards, D. J. Amoroso, Jake Sundaram, S. K. TI Cesium incorporation in hollandite-rich multiphasic ceramic waste forms SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Ceramic waste forms; Hollandite; Melt-processing; SPS; Cs partitioning; Microstructure ID SYNROC-TYPE HOLLANDITES; NUCLEAR-WASTE; STRUCTURAL-ANALYSIS; RADIOACTIVE CESIUM; BARIUM HOLLANDITE; IMMOBILIZATION; PHASE; CHEMISTRY; SUBSTITUTION; DIFFRACTION AB Hollandite-rich multiphase waste form compositions processed by melt-solidification and spark plasma sintering (SPS) were characterized, compared, and validated for nuclear waste incorporation. Phase identification by x-ray diffraction (XRD) and electron back-scattered diffraction (EBSD) confirmed hollandite as the major phase present in these samples along with perovskite, pyrochlore and zirconolite. Distribution of selected elements observed by wavelength dispersive spectroscopy (WDS) maps indicated that Cs formed a secondary phase during SPS processing, which was considered undesirable. On the other hand, Cs partitioned into the hollandite phase in melt-processed samples. Further analysis of hollandite structure in melt-processed composition by selected area electron diffraction (SAED) revealed ordered arrangement of tunnel ions (Ba/ Cs) and vacancies, suggesting efficient Cs incorporation into the lattice. C1 [Tumurugoti, P.; Clark, B. M.; Sundaram, S. K.] Alfred Univ, New York State Coll Ceram, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA. [Edwards, D. J.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Amoroso, Jake] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Tumurugoti, P (reprint author), Alfred Univ, New York State Coll Ceram, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA. FU Department of Energy (DOE), Nuclear Energy University Program (NEUP); National Science Foundation Materials Research Science and Engineering Centers (MRSEC) program [DMR 1120296]; NEUP fellowship; Kyocera Corporation FX The authors acknowledge the financial support from the Department of Energy (DOE), Nuclear Energy University Program (NEUP). This work made use of the electron microscopy facility of the Cornell Center for Materials Research (CCMR) with support from the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) program (DMR 1120296). Acknowledgements are also due to Gerry Wynick for help with WDS work. BMC is supported by the NEUP fellowship. SKS acknowledges support from the Kyocera Corporation in the form of Inamori Professorship. NR 35 TC 0 Z9 0 U1 9 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD FEB PY 2017 VL 246 BP 107 EP 112 DI 10.1016/j.jssc.2016.11.007 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA EI3BD UT WOS:000392363800015 ER PT J AU Nikolo, M Singleton, J Solenov, D Jiang, JY Weiss, JD Hellstrom, EE AF Nikolo, Martin Singleton, John Solenov, Dmitry Jiang, Jianyi Weiss, Jeremy D. Hellstrom, Eric E. TI Upper Critical and Irreversibility Fields in Ba(Fe0.95Ni0.05)(2)As-2 and Ba(Fe0.94Ni0.06)(2)As-2 Pnictide Bulk Superconductors SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article DE Upper critical magnetic field; Irreversibility magnetic field; Superconductors; Pnictides; Radio frequency proximity detector oscillator (PDO) measurement ID QUASI-2-DIMENSIONAL ORGANIC SUPERCONDUCTOR; LARKIN-OVCHINNIKOV STATE; HIGH MAGNETIC-FIELDS; ACTIVATED FLUX-FLOW; MAGNETOTRANSPORT PROPERTIES; PURITY DEPENDENCE; EXCHANGE FIELD; ELECTRON-SPIN; TEMPERATURE; CECOIN5 AB A comprehensive study of upper critical and irreversibility magnetic fields in Ba(Fe0.95Ni0.05)(2)As-2(large grain and small grain samples) and Ba(Fe0.94Ni0.06)(2)As-2, polycrystalline bulk pnictide superconductors was made in pulsed fields of up to 65 T. The full magnetic field-temperature (H - T) phase diagrams, starting at 1.5 K, were obtained. The higher temperature, upper critical field H (c2) data are well described by the one-band Werthamer, Helfand, and Hohenberg (WHH) model. The large values of the Maki parameter alpha indicate that the Zeeman pair breaking dominates over the orbital pair breaking and spin-paramagnetic pair-breaking effect is significant in these materials. At low temperatures, the experimental data depart from the fitted WHH curves, suggesting an emergence of a new phase that could be attributed to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. Possible multi-band structure of these materials is lumped into effective parameters of the single-band model. C1 [Nikolo, Martin; Solenov, Dmitry] St Louis Univ, Dept Phys, St Louis, MO 63103 USA. [Singleton, John] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Jiang, Jianyi; Weiss, Jeremy D.; Hellstrom, Eric E.] Florida State Univ, Ctr Appl Superconduct, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Nikolo, M (reprint author), St Louis Univ, Dept Phys, St Louis, MO 63103 USA. EM nikolom@slu.edu RI Jiang, Jianyi/F-2549-2017 OI Jiang, Jianyi/0000-0002-1094-2013 FU National Science Foundation [DMR-1157490]; Department of Energy; State of Florida FX A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the Department of Energy and the State of Florida. NR 63 TC 1 Z9 1 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 EI 1557-1947 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD FEB PY 2017 VL 30 IS 2 BP 331 EP 341 DI 10.1007/s10948-016-3726-5 PG 11 WC Physics, Applied; Physics, Condensed Matter SC Physics GA EI2QY UT WOS:000392334000010 ER PT J AU Susa, AC Xia, ZJ Tang, HYH Tainer, JA Williams, ER AF Susa, Anna C. Xia, Zijie Tang, Henry Y. H. Tainer, John A. Williams, Evan R. TI Charging of Proteins in Native Mass Spectrometry SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Native mass spectrometry; ESI; Electrospray; Native ESI; Native mass spec; Native MS; Native electrospray; Electrospray ionization; Ammonium; Charging; Salts; Rayleigh limit; Charged residue mechanism; Gas-phase basicity; Apparent gas-phase basicity; Proton transfer; Combined charged residue-field emission model; Ion mobility; Circular dichroism; Mechanism; Charging mechanism; Protein ion charging ID PROTON-TRANSFER REACTIONS; ELECTROSPRAY DROPLET EXPOSURE; ION-MOLECULE REACTIONS; CYTOCHROME-C IONS; GAS-PHASE; STATE DISTRIBUTIONS; CONFORMATIONAL-CHANGES; MULTIPROTEIN COMPLEXES; TRANSFER REACTIVITY; SOLUTION ADDITIVES AB Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo proton transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism. C1 [Susa, Anna C.; Xia, Zijie; Williams, Evan R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Tang, Henry Y. H.; Tainer, John A.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Tainer, John A.] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA. RP Williams, ER (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM erw@berkeley.edu FU National Institutes of Health [R01GM097357]; Robert A. Welch Chemistry Chair; Cancer Prevention and Research Institute of Texas; University of Texas System Science and Technology Acquisition and Retention FX The authors thank the National Institutes of Health (grant no. R01GM097357) for financial support and the Sandler-Moore Mass Spectrometry Core Facility at UCSF for use of the Synapt G2. J.A.T. is partly supported by a Robert A. Welch Chemistry Chair, the Cancer Prevention and Research Institute of Texas, and the University of Texas System Science and Technology Acquisition and Retention. The authors also thank the Department of Energy, Office of Basic Energy Sciences, Integrated Diffraction Analysis Technologies (IDAT) program at Lawrence Berkeley National Lab for use of the JASCO 815 spectropolarimeter, and Dr. Catherine Going for helpful discussions. NR 75 TC 0 Z9 0 U1 12 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD FEB PY 2017 VL 28 IS 2 BP 332 EP 340 DI 10.1007/s13361-016-1517-7 PG 9 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA EI2LU UT WOS:000392319600015 PM 27734326 ER PT J AU Turner, TJ Shade, PA Bernier, JV Li, SF Schuren, JC Kenesei, P Suter, RM Almer, J AF Turner, Todd J. Shade, Paul A. Bernier, Joel V. Li, Shiu Fai Schuren, Jay C. Kenesei, Peter Suter, Robert M. Almer, Jonathan TI Crystal Plasticity Model Validation Using Combined High-Energy Diffraction Microscopy Data for a Ti-7Al Specimen SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID X-RAY-DIFFRACTION; CHANNEL DIE COMPRESSION; POLYCRYSTAL PLASTICITY; MICROMECHANICAL FIELDS; LOCALIZED DEFORMATION; ALPHA-TITANIUM; SINGLE-GRAIN; ORIENTATION; TEXTURE; SIMULATIONS AB High-Energy Diffraction Microscopy (HEDM) is a 3-d X-ray characterization method that is uniquely suited to measuring the evolving micro-mechanical state and microstructure of polycrystalline materials during in situ processing. The near-field and far-field configurations provide complementary information; orientation maps computed from the near-field measurements provide grain morphologies, while the high angular resolution of the far-field measurements provides intergranular strain tensors. The ability to measure these data during deformation in situ makes HEDM an ideal tool for validating micro-mechanical deformation models that make their predictions at the scale of individual grains. Crystal Plasticity Finite Element Models (CPFEM) are one such class of micro-mechanical models. While there have been extensive studies validating homogenized CPFEM response at a macroscopic level, a lack of detailed data measured at the level of the microstructure has hindered more stringent model validation efforts. We utilize an HEDM dataset from an alpha-titanium alloy (Ti-7Al), collected at the Advanced Photon Source, Argonne National Laboratory, under in situ tensile deformation. The initial microstructure of the central slab of the gage section, measured via near-field HEDM, is used to inform a CPFEM model. The predicted intergranular stresses for 39 internal grains are then directly compared to data from 4 far-field measurements taken between similar to 4 and similar to 80 pct of the macroscopic yield strength. The evolution of the elastic strain state from the CPFEM model and far-field HEDM measurements up to incipient yield are shown to be in good agreement, while residual stress at the individual grain level is found to influence the intergranular stress state even upon loading. Implications for application of such an integrated computational/experimental approach to phenomena such as fatigue are discussed. C1 [Turner, Todd J.; Shade, Paul A.; Schuren, Jay C.] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Bernier, Joel V.; Li, Shiu Fai] Lawrence Livermore Natl Lab, Engn Directorate, Livermore, CA 94550 USA. [Schuren, Jay C.] Nutonian Inc, Somerville, MA 02144 USA. [Kenesei, Peter; Almer, Jonathan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Suter, Robert M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Shade, PA (reprint author), Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. EM Paul.Shade.1@us.af.mil RI Shade, Paul/H-6459-2011 FU Materials & Manufacturing Directorate of the U.S. Air Force Research Laboratory; U.S. DOE [DEAC02-06CH11357] FX The authors would like to thank the staff of the APS-1-ID-E beamline for the incredible experimental support. In addition, we would like to thank Dr. Nathan Barton (Lawrence Livermore National Laboratory). Dr. Barton is the Leonardo DiCaprio of the Crystal Plasticity field-often turning in great performances yet seldom recognized. The authors also acknowledge support from the Materials & Manufacturing Directorate of the U.S. Air Force Research Laboratory. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DEAC02-06CH11357. NR 58 TC 0 Z9 0 U1 9 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2017 VL 48A IS 2 BP 627 EP 647 DI 10.1007/s11661-016-3868-x PG 21 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EI2CL UT WOS:000392294000011 ER PT J AU Zeng, ZT Natesan, K Cai, ZH Rink, DL AF Zeng, Zuotao Natesan, Ken Cai, Zhonghou Rink, David L. TI Corrosion Performance of Fe-Based Alloys in Simulated Oxy-Fuel Environment SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article ID PULVERIZED COAL COMBUSTION; FIRESIDE CORROSION; ASH; TEMPERATURE; BEHAVIOR; DEGRADATION; OXIDATION; BOILERS; SULFUR; IMPACT AB The long-term corrosion of Fe-based alloys in simulated oxy-fuel environment at 1023 K (750 A degrees C) was studied. Detailed results are presented on weight change, scale thickness, internal penetration, microstructural characteristics of the corrosion products, and the cracking of scales for the alloys after exposure at 1023 K (750 A degrees C) for up to 3600 hours. An incubation period during which the corrosion rate was low was observed for the alloys. After the incubation period, the corrosion accelerated, and the corrosion process followed linear kinetics. Effects of alloy, CaO-containing ash, and gas composition on the corrosion rate were also studied. In addition, synchrotron nanobeam X-ray analysis was employed to determine the phase and chemical composition of the oxide layers on the alloy surface. Results from these studies are being used to address the long-term corrosion performance of Fe-based alloys in various coal-ash combustion environments and to develop methods to mitigate high-temperature ash corrosion. (C) The Minerals, Metals & Materials Society and ASM International 2016 C1 [Zeng, Zuotao; Natesan, Ken; Rink, David L.] Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. [Cai, Zhonghou] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. RP Zeng, ZT (reprint author), Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. EM zeng@anl.gov FU U.S. Department of Energy, Office of Fossil Energy, Advanced Research Materials Program, Work Breakdown Structure Element ANL-4 [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Fossil Energy, Advanced Research Materials Program, Work Breakdown Structure Element ANL-4, under Contract DE-AC02-06CH11357. Use of the Advanced Photon Source, the Center for Nanoscale Materials, and the Electron Microscopy Center for Materials Research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 41 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 EI 1543-1916 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD FEB PY 2017 VL 48 IS 1 BP 642 EP 654 DI 10.1007/s11663-016-0796-5 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EI2CZ UT WOS:000392295500062 ER PT J AU Kitagawa, Y Ohkura, N Kidani, Y Vandenbon, A Hirota, K Kawakami, R Yasuda, K Motooka, D Nakamura, S Kondo, M Taniuchi, I Kohwi-Shigematsu, T Sakaguchi, S AF Kitagawa, Yohko Ohkura, Naganari Kidani, Yujiro Vandenbon, Alexis Hirota, Keiji Kawakami, Ryoji Yasuda, Keiko Motooka, Daisuke Nakamura, Shota Kondo, Motonari Taniuchi, Ichiro Kohwi-Shigematsu, Terumi Sakaguchi, Shimon TI Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment SO NATURE IMMUNOLOGY LA English DT Article ID GENE-EXPRESSION; SELF-TOLERANCE; TRANSCRIPTION FACTORS; EPIGENETIC CHANGES; FOXP3 EXPRESSION; CHROMATIN; DIFFERENTIATION; DISEASE; THYMUS; SATB1 AB Most Foxp3(+) regulatory T (T-reg) cells develop in the thymus as a functionally mature T cell subpopulation specialized for immune suppression. Their cell fate appears to be determined before Foxp3 expression; yet molecular events that prime Foxp3(-) Treg precursor cells are largely obscure. We found that Treg cell-specific super-enhancers (T-reg-SEs), which were associated with Foxp3 and other Treg cell signature genes, began to be activated in Treg precursor cells. T cell-specific deficiency of the genome organizer Satb1 impaired T-reg-SE activation and the subsequent expression of Treg signature genes, causing severe autoimmunity due to Treg cell deficiency. These results suggest that Satb1-dependent T-reg-SE activation is crucial for Treg cell lineage specification in the thymus and that its perturbation is causative of autoimmune and other immunological diseases. C1 [Kitagawa, Yohko; Ohkura, Naganari; Kidani, Yujiro; Hirota, Keiji; Kawakami, Ryoji; Yasuda, Keiko; Sakaguchi, Shimon] Osaka Univ, WPI Immunol Frontier Res Ctr, Dept Expt Immunol, Suita, Osaka, Japan. [Kitagawa, Yohko; Yasuda, Keiko; Sakaguchi, Shimon] Kyoto Univ, Inst Frontier Life & Med Sci, Dept Regenerat Sci & Engn, Lab Expt Immunol, Kyoto, Japan. [Vandenbon, Alexis] Osaka Univ, Immunogenom Res Unit, WPI Immunol Frontier Res Ctr, Suita, Osaka, Japan. [Hirota, Keiji] Kyoto Univ, Inst Frontier Life & Med Sci, Dept Regenerat Sci & Engn, Lab Integrat Biol Sci, Kyoto, Japan. [Motooka, Daisuke; Nakamura, Shota] Osaka Univ, Microbial Dis Res Inst, Genome Informat Res Ctr, Suita, Osaka, Japan. [Kondo, Motonari] Toho Univ, Sch Med, Dept Mol Immunol, Tokyo, Japan. [Taniuchi, Ichiro] RIKEN, Ctr Integrat Med Sci, Lab Transcript Regulat, Yokohama, Kanagawa, Japan. [Kohwi-Shigematsu, Terumi] Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA USA. RP Sakaguchi, S (reprint author), Osaka Univ, WPI Immunol Frontier Res Ctr, Dept Expt Immunol, Suita, Osaka, Japan.; Sakaguchi, S (reprint author), Kyoto Univ, Inst Frontier Life & Med Sci, Dept Regenerat Sci & Engn, Lab Expt Immunol, Kyoto, Japan. EM shimon@ifrec.osaka-u.ac.jp RI Vandenbon, Alexis/A-8430-2017 FU JSPS [261560, 15H04744]; Japan Science and Technology Agency FX We thank Y. Nakamura for DNA sequencing support and assistance with RNA-seq experiments, S. Kojo for providing technical advice regarding ChIP-seq experiments, and K. Chen for reading the manuscript. Bioinformatics analyses were conducted using the computer system at the Genome Information Research Center of the Research Institute for Microbial Diseases at Osaka University. This work was supported by Grants-in-Aid for Japanese Society for the Promotion of Science (JSPS) Fellows 261560 from the JSPS to Y.K. and Core Research for Evolutional Science and Technology from the Japan Science and Technology Agency to S.S. and JSPS Grants-in-Aid for Scientific Research B 15H04744 to N.O. NR 41 TC 3 Z9 3 U1 3 U2 3 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1529-2908 EI 1529-2916 J9 NAT IMMUNOL JI Nat. Immunol. PD FEB PY 2017 VL 18 IS 2 BP 173 EP 183 DI 10.1038/ni.3646 PG 11 WC Immunology SC Immunology GA EI3AE UT WOS:000392360900011 PM 27992401 ER PT J AU Pillai, MRA Knapp, FF AF Pillai, Maroor Raghavan Ambikalmajan Knapp, Furn F. (Russ), Jr. TI Preferred use of curie (ci) rather than becquerel (Bq) in nuclear medicine practice SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Letter C1 [Pillai, Maroor Raghavan Ambikalmajan] Mol Grp Co, Ernakulam 682508, Kerala, India. [Knapp, Furn F. (Russ), Jr.] Oak Ridge Natl Lab, Med Radioisotope Program, Nucl Secur & Isotope Div, Oak Ridge, TN 37830 USA. RP Pillai, MRA (reprint author), Mol Grp Co, Ernakulam 682508, Kerala, India. NR 5 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 EI 1872-9614 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD FEB PY 2017 VL 45 BP 51 EP 51 DI 10.1016/j.nucmedbio.2016.10.003 PG 1 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA EI3CI UT WOS:000392366900008 PM 27838153 ER PT J AU Lu, F Lin, KK Chorin, AJ AF Lu, Fei Lin, Kevin K. Chorin, Alexandre J. TI Data-based stochastic model reduction for the Kuramoto-Sivashinsky equation SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article DE Stochastic parametrization; NARMAX; Kuramoto-Sivashinsky equation; Approximate inertial manifold ID INERTIAL MANIFOLDS; NONLINEAR DYNAMICS; OPTIMAL PREDICTION; SYSTEMS; PARAMETERIZATION; PARAMETRIZATION; IDENTIFICATION; UNCERTAINTY; CHAOS; ARMAX AB The problem of constructing data-based, predictive, reduced models for the Kuramoto-Sivashinsky equation is considered, under circumstances where one has observation data only for a small subset of the dynamical variables. Accurate prediction is achieved by developing a discrete-time stochastic reduced system, based on a NARMAX (Nonlinear Autoregressive Moving Average with eXogenous input) representation. The practical issue, with the NARMAX representation as with any other, is to identify an efficient structure, i.e., one with a small number of terms and coefficients. This is accomplished here by estimating coefficients for an approximate inertial form. The broader significance of the results is discussed. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lu, Fei; Chorin, Alexandre J.] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Lu, Fei; Chorin, Alexandre J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Lin, Kevin K.] Univ Arizona, Sch Math, Tucson, AZ 85721 USA. RP Lu, F (reprint author), Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA.; Lu, F (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM feilu@berkeley.edu; klin@math.arizona.edu; chorin@math.berkeley.edu FU National Science Foundation [DMS-1217065, DMS-1418775, DMS-1419044]; U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX The authors thank the anonymous referee, Prof. Panos Stinis, and Prof. Robert Miller for their helpful suggestions. KL is supported in part by the National Science Foundation under grants DMS-1217065 and DMS-1418775, and thanks the Mathematics Group at Lawrence Berkeley National Laboratory for facilitating this collaboration. AJC and FL are supported in part by the Director, Office of Science, Computational and Technology Research, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231, and by the National Science Foundation under grants DMS-1217065 and DMS-1419044. NR 50 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 EI 1872-8022 J9 PHYSICA D JI Physica D PD FEB 1 PY 2017 VL 340 BP 46 EP 57 DI 10.1016/j.physd.2016.09.007 PG 12 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA EI2YQ UT WOS:000392356500006 ER PT J AU Bragg, AD Kurien, S Clark, TT AF Bragg, Andrew D. Kurien, Susan Clark, Timothy T. TI Model of non-stationary, inhomogeneous turbulence SO THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS LA English DT Article DE Turbulence modeling; Inhomogeneous turbulence; Two-point modeling; Turbulent mixing; Non-stationary turbulence ID ISOTROPIC TURBULENCE; HOMOGENEOUS TURBULENCE; ENERGY-TRANSFER; MIXING LAYER; DYNAMICS; CLOSURE; FLOWS; SHEAR AB We compare results from a spectral model for non-stationary, inhomogeneous turbulence (Besnard et al. in Theor Comp Fluid Dyn 8:1-35, 1996) with direct numerical simulation (DNS) data of a shear-free mixing layer (SFML) (Tordella et al. in Phys Rev E 77:016309, 2008). The SFML is used as a test case in which the efficacy of the model closure for the physical-space transport of the fluid velocity field can be tested in a flow with inhomogeneity, without the additional complexity of mean-flow coupling. The model is able to capture certain features of the SFML quite well for intermediate to long times, including the evolution of the mixing-layer width and turbulent kinetic energy. At short-times, and for more sensitive statistics such as the generation of the velocity field anisotropy, the model is less accurate. We propose two possible causes for the discrepancies. The first is the local approximation to the pressure-transport and the second is the a priori spherical averaging used to reduce the dimensionality of the solution space of the model, from wavevector to wavenumber space. DNS data are then used to gauge the relative importance of both possible deficiencies in the model. C1 [Bragg, Andrew D.; Kurien, Susan] Los Alamos Natl Lab, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. [Clark, Timothy T.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. RP Bragg, AD (reprint author), Los Alamos Natl Lab, Appl Math & Plasma Phys Grp, Los Alamos, NM 87545 USA. EM adbragg265@gmail.com FU Mix and Burn project, ASC Physics and Engineering Models Program; U.S. DOE [DE-AC52-06NA25396]; Los Alamos National Laboratory [325696] FX The authors would like to thank Daniela Tordella and Michele Lovieno for kindly providing us with the data from their paper Tordella et al., Phys. Rev. E, vol. 77, 016309, 2008. We would also like to thank Robert Rubinstein for reading through the paper and providing helpful feedback, and an anonymous referee for point out an issue regarding the initial condition used in the SFML that we had previously overlooked. ADB and SK acknowledge support from the Mix and Burn project, ASC Physics and Engineering Models Program. Work at the Los Alamos National Laboratory, through the ASC Program, was performed under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396. TTC was supported by a Los Alamos National Laboratory subcontract to the University of New Mexico, No. 325696. NR 27 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0935-4964 EI 1432-2250 J9 THEOR COMP FLUID DYN JI Theor. Comput. Fluid Dyn. PD FEB PY 2017 VL 31 IS 1 BP 51 EP 66 DI 10.1007/s00162-016-0401-1 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA EI2NF UT WOS:000392323500003 ER PT J AU Dong, Z Wu, F Zhao, P Lee, SC Zhang, L Seo, P Zhang, L AF Dong, Z. Wu, F. Zhao, P. Lee, S. -C. Zhang, L. Seo, P. Zhang, L. TI APPLICATION OF PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL (PBPK) TO PREDICT PH-DEPENDENT DRUG-DRUG INTERACTION (DDI) FORWEAK BASE DRUGS (WBDS) SO CLINICAL PHARMACOLOGY & THERAPEUTICS LA English DT Meeting Abstract CT Annual Meeting of the American-Society-for-Clinical-Pharmacology-and-Therapeutics (ASCPT) CY MAR 15-18, 2017 CL Washington, DC SP Amer Soc Clin Pharmacol & Therapeut C1 [Dong, Z.] ORISE, Oak Ridge, TN USA. [Wu, F.; Seo, P.] US FDA, Off New Drug Prod, Off Pharmaceut Qual, Ctr Drug Evaluat & Res, Silver Spring, MD USA. [Zhao, P.; Lee, S. -C.; Zhang, L.] US FDA, Off Clin Pharmacol, Off Translat Sci, Ctr Drug Evaluat & Res, Silver Spring, MD USA. [Zhang, L.] US FDA, Off Policy Pharmaceut Qual, Off Pharmaceut Qual, Ctr Drug Evaluat & Res, Silver Spring, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0009-9236 EI 1532-6535 J9 CLIN PHARMACOL THER JI Clin. Pharmacol. Ther. PD FEB PY 2017 VL 101 IS S1 MA PI-028 BP S27 EP S27 PG 1 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA EH7EM UT WOS:000391935700080 ER PT J AU Pryor, KH AF Pryor, Kathryn H. TI MEMBERSHIP TRENDS IN THE HEALTH PHYSICS SOCIETY: HOW DID WE GET HERE AND WHERE ARE WE GOING? SO HEALTH PHYSICS LA English DT Article DE National Council on Radiation Protection and Measurements; health physics; radiation safety; radiation protection AB The Health Physics Society (HPS), formed in 1956, is a scientific organization of professionals who specialize in radiation safety. Itsmission is to support itsmembers in the practice of their profession and to promote excellence in the science and practice of radiation safety. HPS has been a diverse body since its beginnings, encompassing professionals from different disciplines with an interest in radiation safety issues. At that time, health physics was just beginning to emerge as a distinct discipline, initially spurred by the development of the atomic bomb and amplified by the commercial use of nuclear power, and there was a need for a professional group to discuss issues and share ideas and experiences in the field. Over the following years, both the field of health physics and the ranks of the HPS membership experienced a steady increase in numbers and interest. HPS continued to grow in numbers and thrive through the mid-1990s but then began to retract. Concern regarding the "graying" of HPS was being discussed as far back as the late 1990s, yet despite efforts to broaden the base of membership through additional membership criteria, the numbers of Plenary (now referred to as Full) members have continued to shrink. The "graying" of HPS is real-although age demographic data are only available for about the past 15 y (and are provided voluntarily), the shift in age distribution over this timeframe is clear. A recent survey indicated that over 50% of HPS members are over 50 y of age, and over half of the respondents plan to retire within 10 y. As members age, they convert to Emeritus membership or drop their membership altogether, with some members unable to continue for financial or health-related reasons. There is now an age gap-members in their 30s and early 40s are missing from the mix. Potential causes for declining membership may include smaller enrollments in academic programs, reduced employment opportunities, and societal factors. There appears to be reduced employer support for participation in professional activities and travel to conferences. Societal factors include easy access to professional information through the internet, balancing of family commitments, other volunteer opportunities, and a general decline in joining professional groups. So, what is the fate of HPS? We are not alone-other professional groups are experiencing the same overall trends in membership to differing degrees. A number of initiatives have been launched or are being considered by HPS in an effort to offset this trend. C1 [Pryor, Kathryn H.] Pacific Northwest Natl Lab, 902 Battelle Blvd,POB 999,MSIN K1-68, Richland, WA 99352 USA. RP Pryor, KH (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd,POB 999,MSIN K1-68, Richland, WA 99352 USA. EM kathy.pryor@pnnl.govj NR 11 TC 0 Z9 0 U1 2 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2017 VL 112 IS 2 BP 131 EP 138 DI 10.1097/HP.0000000000000610 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA EH8GF UT WOS:000392009300005 PM 28027151 ER PT J AU Hertel, NE AF Hertel, Nolan E. TI DEVELOPING A RADIATION PROTECTION HUB SO HEALTH PHYSICS LA English DT Article DE National Council on Radiation Protection and Measurements; education; radiation protection; safety standards AB The Where are the Radiation Professionals (WARP)? statement issued by the National Council on Radiation Protection and Measurements estimates that in 10 y, there will be a human capital crisis across the radiation safety community. The ability to respond to this shortage will be amplified by the fact that many radiation protection (health physics) academic programs will find it difficult to justify their continued existence since they are low-volume programs, both in terms of enrollment and research funding, compared to the research funding return and visibility of more highly subscribed and highly funded academic disciplines. In addition, across the national laboratory complex, radiation protection research groups have been disbanded or dramatically reduced in size. The loss of both of these national resources is being accelerated by low and uncertain government funding priorities. The most effective solution to this problem would be to forma consortium that would bring together the radiation protection research, academic, and training communities. The goal of such a consortium would be to engage in research, education, and training of the next generation of radiation protection professionals. Furthermore, the consortium could bring together the strengths of different universities, national laboratory programs, and other entities in a strategic manner to accomplish a multifaceted research, educational, and training agenda. This vision would forge a working and funded relationship between major research universities, national laboratories, 4-y degree institutions, technical colleges, and other partners. C1 [Hertel, Nolan E.] Oak Ridge Natl Lab, Ctr Radiat Protect Knowledge, Oak Ridge, TN 37831 USA. [Hertel, Nolan E.] Georgia Inst Technol, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA. RP Hertel, NE (reprint author), Oak Ridge Natl Lab, Ctr Radiat Protect Knowledge, Oak Ridge, TN 37831 USA. EM hertelne@ornl.gov FU U.S. Department of Energy [DE-AC0500OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 1 TC 0 Z9 0 U1 2 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2017 VL 112 IS 2 BP 172 EP 175 DI 10.1097/HP.0000000000000621 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA EH8GF UT WOS:000392009300011 PM 28027157 ER PT J AU Dewji, SA AF Dewji, Shaheen Azim TI CRITICAL ISSUES IN RADIATION PROTECTION KNOWLEDGE MANAGEMENT FOR PRESERVING RADIATION PROTECTION RESEARCH AND DEVELOPMENT CAPABILITIES SO HEALTH PHYSICS LA English DT Article DE National Council on Radiation Protection and Measurements; education; radiation protection; risk communication AB As a hub of domestic radiation protection capabilities, Oak Ridge National Laboratory's Center for Radiation Protection Knowledge has a mandate to develop and actuate a formal knowledge management (KM) effort. This KM approach exceeds recruitment and training efforts but focuses on formalized strategies for knowledge transfer from outgoing subject matter experts in radiation protection to incoming generations. It is envisioned that such an effort will provide one avenue for preserving domestic capabilities to support stakeholder needs in the federal government and the nuclear industry while continuing to lead and innovate in research and development on a global scale. However, in the absence of broader coordination within the United States, preservation of radiation protection knowledge continues to be in jeopardy in the absence of a dedicated KM effort. C1 [Dewji, Shaheen Azim] Oak Ridge Natl Lab, 1 Bethel Valley Rd,MS 6335, Oak Ridge, TN 37831 USA. RP Dewji, SA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,MS 6335, Oak Ridge, TN 37831 USA. EM dewjisa@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 11 TC 0 Z9 0 U1 4 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2017 VL 112 IS 2 BP 199 EP 206 DI 10.1097/HP.0000000000000603 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA EH8GF UT WOS:000392009300016 PM 28027162 ER PT J AU Ayers, J Weerasooriya, T Ghoshal, A Pecora, C Gunnarsson, A Sanborn, B Turney, P AF Ayers, James Weerasooriya, Tusit Ghoshal, Anindya Pecora, Collin Gunnarsson, Allan Sanborn, Brett Turney, Peter TI Feasibility of component state awareness of high strain rate events using fiber Bragg grating sensors SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING LA English DT Article DE Material state awareness; Impact monitoring; High strain events; Fiber optic sensors AB Strategically located Fiber Bragg Grating (FBG) Sensors have been proposed as an in situ method to increase the signal to noise ratio (SNR) for metallic and composite components. This paper presents a systematic study that investigates the viability of FBG Sensors under high strain rate loading by initially measuring 1D strains in a compression Hopkinson bar experiment, followed by 2D full-field strain-tensor in impact and blast experiments on plates. Specifically, high strain rates from commercialized FBG Sensors are compared to traditional resistive and semi-conductor based strain gages under various levels of 1D high strain rate loading. In the projectile-plate impact experiments, full-field back-surface strain measured using FBG Sensor arrays are compared with that measured from 3D surface Digital Image Correlation (3D-sDIC) strain measuring technique. Finally, strains in welded steel plates subjected to high explosive discharge are monitored with mounted FBG Sensors on the back surface. From this study, potential improvements in the SNR of FBG Sensors are recommended, and the survivability of these sensors under more complex, dynamic loading is evaluated. Published by Elsevier Ltd. C1 [Ayers, James; Weerasooriya, Tusit; Ghoshal, Anindya; Pecora, Collin; Gunnarsson, Allan] US Army Res Lab, Aberdeen Proving Ground, MD 21005 USA. [Sanborn, Brett] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Turney, Peter] Aberdeen Test Ctr, Aberdeen Proving Ground, MD USA. RP Ghoshal, A (reprint author), US Army Res Lab, Aberdeen Proving Ground, MD 21005 USA. EM anindya.ghoshal.civ@mail.mil NR 23 TC 0 Z9 0 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-743X EI 1879-3509 J9 INT J IMPACT ENG JI Int. J. Impact Eng. PD FEB PY 2017 VL 100 BP 166 EP 174 DI 10.1016/j.ijimpeng.2016.10.012 PG 9 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA EH6QB UT WOS:000391897900016 ER PT J AU Zhang, ZF Strickland, CE Link, SO AF Zhang, Zhuanfang Fred Strickland, Christopher E. Link, Steven O. TI Design and performance evaluation of a 1000-year evapotranspiration-capillary surface barrier SO JOURNAL OF ENVIRONMENTAL MANAGEMENT LA English DT Article DE Surface cover; Nuclear waste; Infiltration control; Waste isolation ID WATER-BALANCE; SEMIARID REGIONS; FINAL COVERS; USA AB Surface barrier technology is used to isolate radioactive waste and to reduce or eliminate recharge water to the waste zone for 1000 years or longer. However, the design and evaluation of such a barrier is challenging because of the extremely long design life. After establishing a set of design and performance objectives, a package of design solutions was developed for 1000-year surface barriers over nuclear waste sites. The Prototype Hanford Barrier (PHB) was then constructed in 1994 in the field over an . existing waste site as a demonstration. The barrier was tested to evaluate surface-barrier design and performance at the field scale under conditions of enhanced and natural precipitation and of no vegetation. The monitoring data demonstrate that the barrier satisfied nearly all objectives in the past two decades. The PHB far exceeded the Resource Conservation and Recovery Act criteria, functioned in Han ford's semiarid climate, limited drainage to well below the 0.5 mm yr(-1) performance criterion, limited runoff, and minimized erosion and bio-intrusion. Given the two-decade record of successful performance and consideration of the processes and mechanisms that could affect barrier stability and hydrology in the future, the results suggest the PHB is very likely to perform for its 1000-year design life. This conclusion is based on two assumptions: (1) the exposed subgrade receives protection against erosion and (2) institutional controls prevent inadvertent human activity at the barrier. The PHB design can serve as the basis for site-specific barriers over waste sites containing underground nuclear waste, uranium mine tailings, and hazardous mine waste. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zhang, Zhuanfang Fred; Strickland, Christopher E.] Pacific Northwest Natl Lab, Earth Syst Sci Div, Hydrol Grp, Richland, WA 99352 USA. [Link, Steven O.] Confederated Tribes Umatilla Indian Reservat, Dept Nat Resources, Energy & Environm Sci Program, 46411 Timine Way, Pendleton, OR 97801 USA. RP Zhang, ZF (reprint author), Pacific Northwest Natl Lab, Earth Syst Sci Div, Hydrol Grp, Richland, WA 99352 USA. EM fred.zhang@pnnl.gov OI Zhang, Fred/0000-0001-8676-6426 FU U.S. Department of Energy Richland Operations Office under the Deep Vadose Zone Project; U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX Funding for this research was provided by the U.S. Department of Energy Richland Operations Office under the Deep Vadose Zone Project. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. The author, Dr. Z. F. Zhang, managed a portion of the test period and prepared this manuscript. Numerous other individuals contributed to the Hanford Barrier program during its existence. Their contributions range from design and engineering to field monitoring support and analysis. Key individuals include Dr. Glendon W. Gee of PNNL, the principal scientist for design and installation of the barrier, Dr. Andy L Ward of PNNL, who managed the test and data collection for most of the test period, and Dr. Kevin D. Leary of the Department of Energy, who directed monitoring activities and is the inspiration behind the controlled burn and subsequent natural recovery monitoring. The data in this paper belong to the U.S. Department of Energy and the author has permission from the data owner to use this data. NR 71 TC 0 Z9 0 U1 12 U2 12 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0301-4797 EI 1095-8630 J9 J ENVIRON MANAGE JI J. Environ. Manage. PD FEB 1 PY 2017 VL 187 BP 31 EP 42 DI 10.1016/j.jenvman.2016.11.007 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA EH8QN UT WOS:000392037500005 PM 27870996 ER PT J AU Gross, C Hagy, JD AF Gross, Catharine Hagy, James D., III TI Attributes of successful actions to restore lakes and estuaries degraded by nutrient pollution SO JOURNAL OF ENVIRONMENTAL MANAGEMENT LA English DT Article DE Watershed partnership; Multiple correspondence analysis; Ecological restoration; Nutrient pollution; Watershed management ID COLLABORATIVE WATERSHED MANAGEMENT; BOSTON HARBOR; TAMPA BAY; VENICE LAGOON; MORETON BAY; KANEOHE BAY; COASTAL EUTROPHICATION; AUSTRALIA IMPLICATIONS; ECOSYSTEM RESPONSES; LARGE DECREASES AB As more success is achieved in restoring lakes and estuaries from the impacts of nutrient pollution, there is increased opportunity to evaluate the scientific, social, and policy factors associated with achieving restoration goals. We examined case studies where deliberate actions to reduce nutrient pollution and restore ecosystems resulted in ecological recovery. Prospective cases were identified from scientific literature and technical documents for lakes and estuaries with: (1) scientific evidence of nutrient pollution; (2) restoration actions taken to mitigate nutrient pollution; and (3) documented ecological improvement. Using these criteria, we identified 9 estuaries and 7 lakes spanning countries, climatic regions, physical types, depths, and watershed areas. Among 16 case studies ultimately included, 8 achieved improvements short of stated restoration goals. Five more were successful initially, but condition subsequently declined. Three of the case studies achieved their goals fully and are currently managing to maintain the restored condition. We examined each case to identify both common attributes of nutrient management, grouped into 'themes', and variations on those attributes, which were coded into categorical variables based on thorough review of documents associated with each case. The themes and variables were organized into a broad conceptual model illustrating how they relate to each other and to nutrient management outcomes. We then explored relationships among the themes and variables using multiple correspondence analysis (MCA). Results of the MCA suggested that the attributes most associated with achieving restoration goals include: (1) leadership by a dedicated watershed management agency; (2) governance through a bottom-up collaborative process; (3) a strategy that set numeric targets based on a specific ecological goal; and (4) actions to reduce nutrient loads from all sources. While our study did not provide a comprehensive road map to successful nutrient management, it suggested attributes that could be emulated in future efforts. The quantitative approach that was applied could be used to provide ongoing analysis as new examples of nutrient management success emerge. Published by Elsevier Ltd. C1 [Gross, Catharine] US EPA, ORISE Res Participat Program, Natl Hlth & Environm Effects Res Lab, Gulf Ecol Div, 1 Sabine Isl Dr, Gulf Breeze, FL 32561 USA. [Hagy, James D., III] US EPA, Natl Hlth & Environm Effects Res Lab, Gulf Ecol Div, 1 Sabine Isl Dr, Gulf Breeze, FL 32561 USA. RP Hagy, JD (reprint author), US EPA, Natl Hlth & Environm Effects Res Lab, Gulf Ecol Div, 1 Sabine Isl Dr, Gulf Breeze, FL 32561 USA. EM hagy.jim@epa.gov FU US EPA Office of Research and Development's Safe and Sustainable Water Research Program FX The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. This research was supported by the US EPA Office of Research and Development's Safe and Sustainable Water Research Program. Helpful comments on early drafts were provided by W. Nelson, C. Brown, L Ruiz-Green, B. Blackwell, M. Murrell, S. Bricker and two anonymous reviewers. Symbols used in the graphical abstract were provided courtesy of the Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/symbols/). NR 149 TC 0 Z9 0 U1 25 U2 25 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0301-4797 EI 1095-8630 J9 J ENVIRON MANAGE JI J. Environ. Manage. PD FEB 1 PY 2017 VL 187 BP 122 EP 136 DI 10.1016/j.jenvman.2016.11.018 PG 15 WC Environmental Sciences SC Environmental Sciences & Ecology GA EH8QN UT WOS:000392037500015 PM 27886584 ER PT J AU Hong, EM Shelton, D Pachepsky, YA Nam, WH Coppock, C Muirhead, R AF Hong, Eun-Mi Shelton, Daniel Pachepsky, Yakov A. Nam, Won-Ho Coppock, Cary Muirhead, Richard TI Modeling the interannual variability of microbial quality metrics of irrigation water in a Pennsylvania stream SO JOURNAL OF ENVIRONMENTAL MANAGEMENT LA English DT Article DE Food Safety Modernization Act; Irrigation water; Microbial quality; Water quality metrics ID GENERIC ESCHERICHIA-COLI; FECAL INDICATOR ORGANISMS; CLIMATE-CHANGE; SALMONELLA SPP.; ASSESSMENT-TOOL; MODIFIED SWAT; SOIL; PRODUCE; PATHOGENS; BACTERIA AB Knowledge of the microbial quality of irrigation waters is extremely limited. For this reason, the US FDA has promulgated the Produce Rule, mandating the testing of irrigation water sources for many farms. The rule requires the collection and analysis of at least 20 water samples over two to four years to adequately evaluate the quality of water intended for produce irrigation. The objective of this work was to evaluate the effect of interannual weather variability on surface water microbial quality. We used the Soil and Water Assessment Tool model to simulate E. coli concentrations in the Little Cove Creek; this is a perennial creek located in an agricultural watershed in south-eastern Pennsylvania. The model performance was evaluated using the US FDA regulatory microbial water quality metrics of geometric mean (GM) and the Statistical threshold value (STV). Using the 90-year time series of weather observations, we simulated and randomly sampled the time series of E. coli concentrations. We found that weather conditions of a specific year may strongly affect the evaluation of microbial quality and that the long-term assessment of microbial water quality may be quite different from the evaluation based on short-term observations. The variations in microbial concentrations and water quality metrics were affected by location, wetness of the hydrological years, and seasonality, with 15.7-70.1% of samples exceeding the regulatory threshold. The results of this work demonstrate the value of using modeling to design and evaluate monitoring protocols to assess the microbial quality of water used for produce irrigation. (C) 2016 Elsevier B.V. All rights reserved. C1 [Hong, Eun-Mi; Shelton, Daniel; Pachepsky, Yakov A.; Coppock, Cary] USDA ARS, Environm Microbial & Food Safety Lab, 10300 Baltimore Ave,BARC East Bldg 173, Beltsville, MD 20705 USA. [Hong, Eun-Mi] Oak Ridge Inst Sci & Engn, ARS Res Participat Program, MS 36 POB 117, Oak Ridge, TN 37831 USA. [Nam, Won-Ho] Hankyong Natl Univ, Dept Bioresources & Rural Syst Engn, Anseong 17579, Gyeonggi, South Korea. [Muirhead, Richard] AgResearch Ltd, Invermay Res Ctr, Farm Syst & Environm, Private Bag 50034, Mosgiel 9053, New Zealand. RP Hong, EM (reprint author), USDA ARS, Environm Microbial & Food Safety Lab, 10300 Baltimore Ave,BARC East Bldg 173, Beltsville, MD 20705 USA. EM Eunmi.Hong@ars.usda.gov OI NAM, WONHO/0000-0002-9671-6569; Muirhead, Richard/0000-0002-0913-561X FU DOE [DE-AC05-06OR23100] FX This research was supported in part by an appointment to the Agricultural Research Service (ARS) Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-AC05-06OR23100. NR 54 TC 0 Z9 0 U1 11 U2 11 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0301-4797 EI 1095-8630 J9 J ENVIRON MANAGE JI J. Environ. Manage. PD FEB 1 PY 2017 VL 187 BP 253 EP 264 DI 10.1016/j.jenvman.2016.11.054 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA EH8QN UT WOS:000392037500027 PM 27912136 ER PT J AU Oxley, MP Lupini, AR Pennycook, SJ AF Oxley, Mark P. Lupini, Andrew R. Pennycook, Stephen J. TI Ultra-high resolution electron microscopy SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review DE scanning transmission electron microscopy; aberration correction; electron scattering; delocalization of inelastic scattering; image simulation ID THERMAL DIFFUSE-SCATTERING; HIGH-ENERGY ELECTRONS; ABERRATION-CORRECTED STEM; INNER-SHELL IONIZATION; FIELD-EMISSION GUN; CORE-LOSS SPECTROSCOPY; COMA-FREE ALIGNMENT; Z-CONTRAST STEM; ATOMIC-RESOLUTION; DARK-FIELD AB The last two decades have seen dramatic advances in the resolution of the electron microscope brought about by the successful correction of lens aberrations that previously limited resolution for most of its history. We briefly review these advances, the achievement of sub-Angstrom resolution and the ability to identify individual atoms, their bonding configurations and even their dynamics and diffusion pathways. We then present a review of the basic physics of electron scattering, lens aberrations and their correction, and an approximate imaging theory for thin crystals which provides physical insight into the various different imaging modes. Then we proceed to describe a more exact imaging theory starting from Yoshioka's formulation and covering full image simulation methods using Bloch waves, the multislice formulation and the frozen phonon/quantum excitation of phonons models. Delocalization of inelastic scattering has become an important limiting factor at atomic resolution. We therefore discuss this issue extensively, showing how the full-width-half-maximum is the appropriate measure for predicting image contrast, but the diameter containing 50% of the excitation is an important measure of the range of the interaction. These two measures can differ by a factor of 5, are not a simple function of binding energy, and full image simulations are required to match to experiment. The Z-dependence of annular dark field images is also discussed extensively, both for single atoms and for crystals, and we show that temporal incoherence must be included accurately if atomic species are to be identified through matching experimental intensities to simulations. Finally we mention a few promising directions for future investigation. C1 [Oxley, Mark P.; Lupini, Andrew R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Pennycook, Stephen J.] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore. RP Pennycook, SJ (reprint author), Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore. EM steve.pennycook@nus.edu.sg FU Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy FX This research was supported by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy (MPO, ARL). NR 349 TC 0 Z9 0 U1 41 U2 41 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD FEB PY 2017 VL 80 IS 2 AR 026101 DI 10.1088/1361-6633/80/2/026101 PG 64 WC Physics, Multidisciplinary SC Physics GA EH2CO UT WOS:000391575200001 PM 28008874 ER PT J AU Zuo, L Chen, XM Yu, SF Lu, M AF Zuo, Lei Chen, Xiaoming Yu, Shifeng Lu, Ming TI Design and fabrication of a differential scanning nanocalorimeter SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING LA English DT Article DE nanocalorimeter; silicon carbide; platinum; heater; sputtering ID DRUG DESIGN; CALORIMETRY; THERMODYNAMICS; SILICON; FILMS; MEMS; MICROBOLOMETERS; RECOGNITION; STABILITY; GERMANIUM AB This paper describes the design, fabrication, and characterization of a differential scanning nanocalorimeter that significantly reduces the sample volume to microliters and can potentially improve the temperature sensitivity to 10 mu K. The nanocalorimeter consists of a polymeric freestanding membrane, four high-sensitive low-noise thermistors based on silicon carbide (SiC), and a platinum heater and temperature sensor. With the integrated heater and sensors, temperature scanning and power compensation can be achieved for calorimetric measurement. Temperature sensing SiC film was prepared by using sintered SiC target and DC magnetron sputtering under different gas pressures and sputtering power. The SiC sensing material is characterized through the measurement of current-voltage curves and noise levels. The thermal performance of a fabricated nanocalorimeter is studied in simulation and experiment. The experiment results show the device has excellent thermal isolation to hold thermal energy. The noise test together with the simulation show the device is promising for micro 10 mu K temperature sensitivity and nanowatt resolution which will lead to low-volume ultra-sensitive nanocalorimetry for biological processes, such as protein folding and ligand binding. C1 [Zuo, Lei; Yu, Shifeng] Virginia Tech, Dept Mech Engn, Balcksburg, VA 24061 USA. [Chen, Xiaoming] SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. [Lu, Ming] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Zuo, L (reprint author), Virginia Tech, Dept Mech Engn, Balcksburg, VA 24061 USA. EM leizuo@vt.edu FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; NSF (IDBR) [1530508]; Abbvie Inc. FX The fabrication was carried out at the Center for Functional Nanomaterials (CFN) of Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors wish to thank the research funding support from NSF (IDBR #1530508) and Abbvie Inc. We would like to thank Shifeng Yu for his support in the preparation of the paper. We wish to thank Dr Fernando Camino and Mr Don Elliott of CFN for their help. The authors wish to thank Dr Dax Fu of the Biology Department at Brookhaven National Laboratory for many useful discussions, and Prof Dmitry Donetsky of the Electrical and Computer Engineering Department at Stony Brook University for kindly providing some measurement instruments. NR 31 TC 0 Z9 0 U1 9 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0960-1317 EI 1361-6439 J9 J MICROMECH MICROENG JI J. Micromech. Microeng. PD FEB PY 2017 VL 27 IS 2 AR 025006 DI 10.1088/1361-6439/27/2/025006 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA EH3LE UT WOS:000391672300002 ER PT J AU Beidler, MT Cassak, PA Jardin, SC Ferraro, NM AF Beidler, M. T. Cassak, P. A. Jardin, S. C. Ferraro, N. M. TI Local properties of magnetic reconnection in nonlinear resistive- and extended-magnetohydrodynamic toroidal simulations of the sawtooth crash SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE fusion; magnetic reconnection; sawteeth ID HIGH-TEMPERATURE PLASMAS; DAYSIDE RECONNECTION; FINITE-ELEMENT; TOKAMAK; SAWTEETH; STABILIZATION; OSCILLATIONS; MAGNETOPAUSE; DISRUPTIONS; INSTABILITY AB We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C-1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m, n)=(1,1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibit a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. This study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation. C1 [Beidler, M. T.; Cassak, P. A.] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA. [Jardin, S. C.; Ferraro, N. M.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Beidler, M. T.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Beidler, MT (reprint author), West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA.; Beidler, MT (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM beidler@wisc.edu OI Beidler, Matthew/0000-0002-7385-3886 FU West Virginia University Program; West Virginia University Provost Fellowship; NASA [NNX10AN08A, NNX16AF75G, NNX16AG76G]; NSF [AGS-0953463]; U S DOE FES Award [DE-AC02-09CH11466]; SciDAC Center for Extended MHD modeling FX The authors gratefully acknowledge support from the West Virginia University Program to Stimulate Competitive Research (PSCoR) program (MTB), the West Virginia University Provost Fellowship (MTB), NASA Grants NNX10AN08A, NNX16AF75G, NNX16AG76G (PAC), NSF Grant AGS-0953463 (PAC), U S DOE FES Award No. DE-AC02-09CH11466 (SCJ and NMF), and the SciDAC Center for Extended MHD modeling (SCJ and NMF). MTB would like to thank B N Rogers, C M Komar, I Krebs, and K Malakit. NR 65 TC 0 Z9 0 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB 1 PY 2017 VL 59 IS 2 AR 025007 DI 10.1088/1361-6587/59/2/025007 PG 16 WC Physics, Fluids & Plasmas SC Physics GA EH0GT UT WOS:000391442800001 ER PT J AU Liu, C Brennan, DP Boozer, AH Bhattacharjee, A AF Liu, Chang Brennan, Dylan P. Boozer, Allen H. Bhattacharjee, Amitava TI Adjoint method and runaway electron avalanche SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE runaway electron; magnetic fusion; adjoint method; tokamak disruption ID SYNCHROTRON-RADIATION; GROWTH-RATE; PLASMA; ACCELERATION; TOKAMAKS AB The adjoint method for the study of runaway electron dynamics in momentum space Liu et al (2016 Phys. Plasmas 23 010702) is rederived using the Green's function method, for both the runaway probability function (RPF) and the expected loss time (ELT). The RPF and ELT obtained using the adjoint method are presented, both with and without the synchrotron radiation reaction force. The adjoint method is then applied to study the runaway electron avalanche. Both the critical electric field and the growth rate for the avalanche are calculated using this fast and novel approach. C1 [Liu, Chang; Brennan, Dylan P.; Bhattacharjee, Amitava] Princeton Univ, Princeton, NJ 08544 USA. [Liu, Chang; Bhattacharjee, Amitava] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Boozer, Allen H.] Columbia Univ, New York, NY 10027 USA. RP Liu, C (reprint author), Princeton Univ, Princeton, NJ 08544 USA.; Liu, C (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM cliu@pppl.gov FU US Department of Energy [DE-AC02-09CH-11466, DE-FG02-03ER54696] FX We thank D del-Castillo-Negrete, O Embreus, I Fernandez-Gomez, N Fisch, T Fulop, P Helander, E Hirvijoki, J Krommes, G Papp, A Stahl, G Zhang and Y Zhou for useful discussions. The numerical calculations are conducted on the PPPL Beowulf cluster. This work is supported by the US Department of Energy under Contract DE-AC02-09CH-11466 and DE-FG02-03ER54696. NR 41 TC 0 Z9 0 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB 1 PY 2017 VL 59 IS 2 AR 024003 DI 10.1088/1361-6587/59/2/024003 PG 10 WC Physics, Fluids & Plasmas SC Physics GA EH1ZZ UT WOS:000391568300001 ER PT J AU Reichhardt, C Reichhardt, CJO AF Reichhardt, C. Reichhardt, C. J. Olson TI Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review DE nonequilibrium phase transitions; depinning; dynamic phases ID CHARGE-DENSITY WAVES; FLUX-LINE-LATTICE; SUPERCONDUCTING VORTEX AVALANCHES; MAGNETIC-BUBBLE ARRAYS; CURRENT-VOLTAGE CHARACTERISTICS; JOSEPHSON-JUNCTION ARRAYS; PERIODIC PINNING ARRAYS; FREE-ENERGY DIFFERENCES; REAL-SPACE OBSERVATION; MOVING GLASS PHASE AB We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena. C1 [Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM reichhardt@lanl.gov; cjrx@lanl.gov FU NNSA of the US. DoE at LANL [DE-AC52-06NA25396] FX We thank the following people for discussions: Clemens Bechinger, Shobo Bhattacharya, Alan Bishop, Karen Dahmen, Roel Dullens, Thierry Giamarchi, John Goree, David Grier, Matt Hastings, Boldizar Janko, Wai Kwok, Andras Libal, Shi-Zeng Lin, Andrea Liu, Cristina Marchetti, Jose Martin, Danielle McDermott, Victor Moshchalkov, Satoshi Okuma, David Pine, Dipanjan Ray, Ido Regev, Ivan Schuller, Alejandro Silhanek, Gabe Spalding, Pietro Tierno, Eric Weeks, and Zhili Xiao. This work was carried out under the auspices of the NNSA of the US. DoE at LANL under Contract No. DE-AC52-06NA25396. NR 363 TC 3 Z9 3 U1 26 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD FEB PY 2017 VL 80 IS 2 AR 026501 DI 10.1088/1361-6633/80/2/026501 PG 57 WC Physics, Multidisciplinary SC Physics GA EH3FG UT WOS:000391656800001 PM 27997373 ER PT J AU Kelly, JE Peko, D AF Kelly, John E. Peko, Damian TI Foreword SO ANNALS OF NUCLEAR ENERGY LA English DT Editorial Material C1 [Kelly, John E.; Peko, Damian] US DOE, Washington, DC 20585 USA. RP Kelly, JE (reprint author), US DOE, Washington, DC 20585 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD FEB PY 2017 VL 100 BP 2 EP 2 DI 10.1016/j.anucene.2016.12.012 PN 1 PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EG0RZ UT WOS:000390741200002 ER PT J AU Podder, J Lin, J Sun, W Botis, SM Tse, J Chen, N Hu, Y Li, D Seaman, J Pan, Y AF Podder, J. Lin, J. Sun, W. Botis, S. M. Tse, J. Chen, N. Hu, Y. Li, D. Seaman, J. Pan, Y. TI Iodate in calcite and vaterite: Insights from synchrotron X-ray absorption spectroscopy and first-principles calculations SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Radionuclides; Calcite; Vaterite; Iodate; Synchrotron XAS; First-principles calculations ID CRYSTALLINE IODIC ACID; I-127 SPECIATION; HANFORD SITE; CARBONATE; MODEL; GROUNDWATER; RESONANCE; DENSITY; CACO3; DIFFUSION AB Calcium carbonates such as calcite are the dominant hosts of inorganic iodine in nature and are potentially important for the retention and removal of radioactive iodine isotopes (I-129 and I-131) in contaminated water. However, little is known about the structural environment of iodine in carbonates. In this study, iodate (IO3-) doped calcite and vaterite have been synthesized using the gel-diffusion method at three NaIO3 concentrations (0.002; 0.004; 0.008 M) and a pH value of 9.0, under ambient temperature and pressure. Inductively coupled plasma mass spectrometry (ICP-MS) analyses show that iodine is preferentially incorporated into calcite over vaterite. Synchrotron iodine K-edge X-ray absorption near-edge structure (XANES) spectra confirm that IO3- is the dominant iodine species in synthetic calcite and vaterite. Analyses of iodine Kedge extended X-ray absorption fine structure (EXAFS) data, complemented by periodic first-principles calculations at the density functional theory (DFT) levels, demonstrate that the I5+ ion of the IO3- group in calcite and vaterite is bonded by three and two additional O atoms (i.e., coordination numbers = 6 and 5), respectively, and is incorporated via the charged coupled substitution I5+ + Na+ <-> C4+ + Ca2+, with the Na+ cation at a nearest Ca2+ site being the most energetically favorable configuration. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Podder, J.; Lin, J.; Sun, W.; Botis, S. M.; Pan, Y.] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada. [Tse, J.] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. [Chen, N.; Hu, Y.] Univ Saskatchewan, Canadian Light Source, Saskatoon, SK S7N 5E2, Canada. [Li, D.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Seaman, J.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Pan, Y (reprint author), Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada. EM yuanming.pan@usask.ca FU Sylvia Fedoruk Canadian Centre for Nuclear Innovation; U. S. Department of Energy [DE-FC09-07SR22506] FX We thank Drs. Jean-Francois Boily, Frank Heberling, and two anonymous reviewers for incisive criticisms and helpful suggestions. We also thank the Sylvia Fedoruk Canadian Centre for Nuclear Innovation for financial support, Canadian Light Source for access to synchrotron XAS experiments, WestGrid Computing Facilities of Compute Canada for providing resources for DFT calculations, and Dr. Jianfeng Zhu for assistance with 23Na MAS NMR analyses. JCS's participation in this study was supported by the U. S. Department of Energy under Award Numbers DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 59 TC 0 Z9 0 U1 15 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 1 PY 2017 VL 198 BP 218 EP 228 DI 10.1016/j.gca.2016.11.032 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EG4BH UT WOS:000390987900014 ER PT J AU Johannesson, KH Palmore, CD Fackrell, J Prouty, NG Swarzenski, PW Chevis, DA Telfeyan, K White, CD Burdige, DJ AF Johannesson, Karen H. Palmore, C. Dianne Fackrell, Joseph Prouty, Nancy G. Swarzenski, Peter W. Chevis, Darren A. Telfeyan, Katherine White, Christopher D. Burdige, David J. TI Rare earth element behavior during groundwater-seawater mixing along the Kona Coast of Hawaii SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Rare earth elements; Submarine groundwater discharge; Coastal Ocean; Subterranean estuary; Hawaii ID OCEAN EUMELI SITE; NEODYMIUM ISOTOPES; NATURAL-WATERS; SUBTERRANEAN ESTUARY; TRACE-METALS; RIVER WATER; PORE WATERS; SEA-WATER; SOLUTION COMPLEXATION; GADOLINIUM ANOMALIES AB Groundwater and seawater samples were collected from nearshore wells and offshore along the Kona Coast of the Big Island of Hawaii to investigate rare earth element (REE) behavior in local subterranean estuaries. Previous investigations showed that submarine groundwater discharge (SGD) is the predominant flux of terrestrial waters to the coastal ocean along the arid Kona Coast of Hawaii. Groundwater and seawater samples were filtered through 0.45 mu m and 0.02 mu m pore-size filters to evaluate the importance of colloidal and soluble (i.e., truly dissolved ionic species and/or low molecular weight [LMW] colloids) fractions of the REEs in the local subterranean estuaries. Mixing experiments using groundwater collected immediately down gradient from a wastewater treatment facility (WWTF) proximal to the Kaloko-Hanokohau National Historic Park, and more "pristine" groundwater from a well constructed in a lava tube at Kiholo Bay, were conducted with local seawater to study the effect of solution composition (i.e., pH, salinity) on the concentrations and fractionation behavior of the REEs as groundwater mixes with seawater in Kona Coast subterranean estuaries. The mixed waters were also filtered through 0.45 or 0.02 mu m filters to ascertain the behavior of colloidal and soluble fractions of the REEs across the salinity gradient in each mixing experiment. Concentrations of the REEs were statistically identical (two-tailed Student t-test, 95% confidence) between the sequentially filtered sample aliquots, indicating that the REEs occur as dissolved ionic species and/or LMW colloids in Kona Coast groundwaters. The mixing experiments revealed that the REEs are released to solution from suspended particles or colloids when Kona Coast groundwater waters mix with local seawater. The order of release that accompanies increasing pH and salinity follows light REE (LREE) > middle REE (MREE) > heavy REE (HREE). Release of REEs in the mixing experiments is driven by decreases in the free metal ion activity in solution and the concomitant increase in the amount of each REE that occurs in solution as dicarbonato complexes [i. e., Ln(CO3)(2)(-)] as pH increases across the salinity gradient. Input-normalized REE patterns of Kona Coast groundwater and coastal seawater are nearly identical and relatively flat compared to North Pacific seawater, indicating that SGD is the chief source of these trace elements to the ocean along the Kona Coast. Additionally, REE concentrations of the coastal seawater are between 10 and 50 times higher than previously reported open-ocean seawater values from the North Pacific, further demonstrating the importance of SGD fluxes of REEs to these coastal waters. Taken together, these observations indicate that large-scale removal of REEs, which characterizes the behavior of REEs in the low salinity reaches of many surface estuaries, is not a feature of the subterranean estuary along the Kona Coast. A large positive gadolinium (Gd) anomaly characterizes groundwater from the vicinity of the WWTF. The positive Gd anomaly can be traced to the coastal ocean, providing further evidence of the impact of SGD on the coastal waters. Estimates of the SGD fluxes of the REEs to the coastal ocean along the Kona Coast (i.e., 1.3-2.6 mmol Nd day(-1)) are similar to recent estimates of SGD fluxes of REEs along Florida's east coast and to Rhode Island Sound, all of which points to the importance of SGD as significant flux of REEs to the coastal ocean. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Johannesson, Karen H.; Palmore, C. Dianne; Chevis, Darren A.; Telfeyan, Katherine; White, Christopher D.] Tulane Univ, Dept Earth & Environm Sci, New Orleans, LA 70118 USA. [Fackrell, Joseph] Univ Hawaii Manoa, Dept Geol & Geophys, Honolulu, HI 96822 USA. [Prouty, Nancy G.; Swarzenski, Peter W.] US Geol Survey, Pacific Coastal & Marine Sci Ctr, Santa Cruz, CA 95060 USA. [Swarzenski, Peter W.] IAEA, MC-98000 Monaco, Monaco. [Telfeyan, Katherine] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Burdige, David J.] Old Dominion Univ, Dept Ocean Earth & Atmospher Sci, Norfolk, VA 23529 USA. RP Johannesson, KH (reprint author), Tulane Univ, Dept Earth & Environm Sci, New Orleans, LA 70118 USA. EM kjohanne@tulane.edu FU NSF [OCE-0825920, OCE-0825895]; USGS Natural Resources Preservation Program (NRPP); Park Oriented Biological Support (POBS) Award FX This project was supported by NSF grants OCE-0825920 to Johannesson and OCE-0825895 to Burdige, as well as USGS Natural Resources Preservation Program (NRPP) and Park Oriented Biological Support (POBS) Award to Prouty. The authors wish to thank C. H. Conaway at the U. S. Geological Survey in Menlo Park, California, for the ion chromatography analyses of the anion concentrations, and D. Gross and S. Beavers (NPS) for logistical support. The lead author is indebted to Michael and Mathilda Cochran for endowing the Cochran Family Professorship in Earth and Environmental Sciences at Tulane University. We thank two anonymous reviewers and the associate editor Jerome Gaillardet whose comments greatly improved this paper. This paper is dedicated to the memory of Lutetium Johannesson. NR 187 TC 0 Z9 0 U1 35 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 1 PY 2017 VL 198 BP 229 EP 258 DI 10.1016/j.gca.2016.11.009 PG 30 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EG4BH UT WOS:000390987900015 ER PT J AU Zwirglmaier, K Straub, D Groth, KM AF Zwirglmaier, Kilian Straub, Daniel Groth, Katrina M. TI Capturing cognitive causal paths in human reliability analysis with Bayesian network models SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE HRA; Bayesian networks; Bayesian updating; Cognitive factors; Causal paths ID METHODOLOGY; UNCERTAINTY; JUDGMENT; SYSTEMS AB In the last decade, Bayesian networks (BNs) have been identified as a powerful tool for human reliability analysis (HRA), with multiple advantages over traditional HRA methods. In this paper we illustrate how BNs can be used to include additional, qualitative causal paths to provide traceability. The proposed framework provides the foundation to resolve several needs frequently expressed by the HRA community. First, the developed extended BN structure reflects the causal paths found in cognitive psychology literature, thereby addressing the need for causal traceability and strong scientific basis in HRA. Secondly, the use of node reduction algorithms allows the BN to be condensed to a level of detail at which quantification is as straightforward as the techniques used in existing HRA. We illustrate the framework by developing a BN version of the critical data misperceived crew failure mode in the IDHEAS HRA method, which is currently under development at the US NRG [45]. We illustrate how the model could be quantified with a combination of expert-probabilities and information from operator performance databases such as SACADA. This paper lays the foundations necessary to expand the cognitive and quantitative foundations of HRA. C1 [Zwirglmaier, Kilian; Straub, Daniel] Tech Univ Munich, Engn Risk Anal Grp, D-80290 Munich, Germany. [Groth, Katrina M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Zwirglmaier, K (reprint author), Tech Univ Munich, Engn Risk Anal Grp, D-80290 Munich, Germany. FU INL; SNL; NRC; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge the support from the survey respondents as well as April Whaley (INL), Stacey Hendrickson (SNL), Susan Stevens-Adams (SNL), and the NRC (especially Jing Xing).; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 45 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 EI 1879-0836 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD FEB PY 2017 VL 158 BP 117 EP 129 DI 10.1016/j.ress.2016.10.010 PG 13 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA EG5IS UT WOS:000391078100012 ER PT J AU Posada-Perez, S Vines, F Valero, R Rodriguez, JA Illas, F AF Posada-Perez, Sergio Vines, Francesc Valero, Rosendo Rodriguez, Jose A. Illas, Francesc TI Adsorption and dissociation of molecular hydrogen on orthorhombic beta-Mo2C and cubic delta-MoC (001) surfaces SO SURFACE SCIENCE LA English DT Article DE Density functional calculations; Molybdenum carbides; H-2 dissociation; Ab initio thermodynamics; IR spectroscopy; Core level shifts ID DENSITY-FUNCTIONAL THEORY; GAS-SHIFT REACTION; TRANSITION-METAL CARBIDES; AUGMENTED-WAVE METHOD; MOLYBDENUM CARBIDE; CHARGE POLARIZATION; BINDING-ENERGIES; MO2C CATALYST; HIGH COVERAGE; CO2 AB Molybdenum carbides are increasingly used in heterogeneously catalyzed hydrogenation reactions, which imply the adsorption and dissociation of molecular hydrogen. Here a systematic density functional theory based study, including or excluding dispersion terms, concerning the interaction and stability of H-2 with cubic delta-MoC(001) and orthorhombic beta-Mo2C(001) surfaces, is presented. In the latter case the two possible C or Mo terminations are considered. In addition, different situations for the H covered surfaces are examined. Computational results including dispersive forces predict an essentially spontaneous dissociation of H-2 on beta-Mo2C(001) independently of the surface termination, whereas on delta-MoC(001) molecular hydrogen dissociation implies a small but noticeable energy barrier. Furthermore, the ab initio thermodynamics formalism has been used to compare the stability of different H coverages. Finally, core level binding energies and vibrational frequencies are presented with the aim to assist the interpretation of yet unavailable data from X-ray photoelectron and infrared spectroscopies. C1 [Posada-Perez, Sergio; Vines, Francesc; Valero, Rosendo; Illas, Francesc] Univ Barcelona, Dept Ciencia Mat & Quim Fis, Marti & Franques 1, Barcelona 08028, Spain. [Posada-Perez, Sergio; Vines, Francesc; Valero, Rosendo; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, Marti & Franques 1, Barcelona 08028, Spain. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Vines, F (reprint author), Univ Barcelona, Dept Ciencia Mat & Quim Fis, Marti & Franques 1, Barcelona 08028, Spain.; Vines, F (reprint author), Univ Barcelona, Inst Quim Teor & Computac IQTCUB, Marti & Franques 1, Barcelona 08028, Spain. EM francesc.vines@ub.edu RI Valero, Rosendo/J-3724-2013 OI Valero, Rosendo/0000-0002-4617-0721 FU U.S. Department of Energy [DE-SC0012704]; Spanish MINECO/FEDER grant [CTQ2015-64618-R]; Generalitat de Catalunya [2014SGR97]; European Union [676580]; Spanish MEC predoctoral grant [CTQ2012-30751]; MINECO [RYC-2012-10129]; ICREA Academia Award for Excellence in University Research; Red Espanola de Supercomputacion (RES); Generalitat de Catalunya (XRQTC); NOMAD Center of Excellence Project FX This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The research carried out at the Universitat de Barcelona was supported by the Spanish MINECO/FEDER grant CTQ2015-64618-R, and, in part, by Generalitat de Catalunya (grants 2014SGR97 and XRQTC) and from the NOMAD Center of Excellence Project; the latter project has received funding from the European Union Horizon 2020 Research and Innovation Programme under grant agreement No. 676580. S.P.P. acknowledges financial support from Spanish MEC predoctoral grant associated to CTQ2012-30751. F.V. thanks the MINECO for his postdoctoral Ramon y Cajal (RyC) research contract (RYC-2012-10129) and F.I. acknowledges additional support from the 2015 ICREA Academia Award for Excellence in University Research. Computational time at the MARENOSTRUM supercomputer has been provided by the Barcelona Supercomputing Centre (BSC) through a grant from Red Espanola de Supercomputacion (RES). NR 65 TC 0 Z9 0 U1 34 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD FEB PY 2017 VL 656 BP 24 EP 32 DI 10.1016/j.susc.2016.10.001 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA EG3UD UT WOS:000390969300004 ER PT J AU Tuttle, BR Pantelides, ST AF Tuttle, Blair R. Pantelides, Sokrates T. TI The properties of isolated dangling bonds on hydrogenated 2H-SiC surfaces SO SURFACE SCIENCE LA English DT Article DE SiC; Surfaces; Defects; Theory ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; INTERFACE; DEFECTS; PASSIVATION; OXIDATION; 1ST-PRINCIPLES; SEMICONDUCTORS; TEMPERATURE AB Using state-of-the-art electronic structure methods, we calculate the properties of silicon and carbon dangling bonds at several hydrogenated SiC surfaces including polar and non-polar cases. Generally, carbon defect levels are in the lower portion of the SiC band gap whereas silicon defect levels are in the upper portion. Additionally, surface work functions and hydrogen desorption energies are calculated and compared with experimental data. Carbon dangling bonds with hetero-polar back-bonding appear consistent with constraints derived from experiments on device quality nano-porous SiC. Finally, we make superhyperfine predictions which may help identify back bonded atoms involved in defect complexes. C1 [Tuttle, Blair R.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Tuttle, Blair R.] Penn State Behrend, Dept Phys, Erie, PA 16563 USA. RP Tuttle, BR (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM brt10@psu.edu FU National Science Foundation [DMR-0513048, ECCS01508898]; McMinn Foundation at Vanderbilt University FX This work was supported in part by the National Science Foundation under grant DMR-0513048 and ECCS01508898. Also, S.T. acknowledges support from the McMinn Foundation at Vanderbilt University. Calculations were performed on the Penn State Lion X supercomputers. NR 60 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD FEB PY 2017 VL 656 BP 109 EP 114 DI 10.1016/j.susc.2016.10.009 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA EG3UD UT WOS:000390969300016 ER PT J AU Zoino, A Alfonsi, A Rabiti, C Szilard, RH Giannetti, F Caruso, G AF Zoino, A. Alfonsi, A. Rabiti, C. Szilard, R. H. Giannetti, F. Caruso, G. TI Performance-based ECCS cladding acceptance criteria: A new simulation approach SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE LOCA; ECCS; Acceptance criteria; Cladding design; RAVEN; PHISICS; RELAP5-3D ID ACCIDENT; FUEL AB The U.S. Nuclear Regulatory Commission is currently proposing rulemaking to revise the Loss Of Coolant Accident (LOCA) and therefore the Emergency Core Cooling System (ECCS) acceptance criteria, to include the effects of higher burnup on cladding performance as well as to address other technical issues. As motivated by the new rule, the need to use advanced cladding designs may be a result. A loss of operational margin may result due to the more restrictive cladding embrittlement criteria. Initial and future compliance with the rule may significantly increase vendor workload and licensee cost, as a spectrum of fuel rod initial burnup states may need to be analyzed to demonstrate compliance. Consequently, there will be an increased focus on licensee decision making related to LOCA analysis to minimize cost and impact, and to manage margin. The study here presented has been part of a big project used to investigate technical issues and approaches for future industrial applications within the Risk-Informed Safety Margin Characterization (RISMC) Pathway. Specifically, the primary aim of this study is to lay out a roadmap to demonstrate the application of the new methodology. The present analysis shows a simplified version of the methodology of an industrial application on the Core Design and the Multi-Cycle Analysis. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zoino, A.; Giannetti, F.; Caruso, G.] Sapienza Univ Rome, Dept Astronaut Elect & Energy Engn, Nucl Sect, Cso Vittorio Emanuele II 244, I-00186 Rome, Italy. [Alfonsi, A.; Rabiti, C.; Szilard, R. H.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. RP Caruso, G (reprint author), Sapienza Univ Rome, Dept Astronaut Elect & Energy Engn, Nucl Sect, Cso Vittorio Emanuele II 244, I-00186 Rome, Italy. EM angelo@zoino.it; andrea.alfonsi@inl.gov; cristian.rabiti@inl.gov; ronaldo.szilard@inl.gov; fabio.giannetti@uniroma1.it; gianfranco.caruso@uniroma1.it FU DOE, Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported by the DOE, Assistant Secretary for the Office of Nuclear Energy, under DOE Idaho Operations Office contract DE-AC07-05ID14517. The authors of this paper would like to thank the INL Thermal-Hydraulics Analysis Team (Dr. Hongbin Zhang, Dr. Paul D Bayless, Dr. Haihua Zhao) for performing the LOCA Analysis and for providing us ECR and PCT results. In addition, a dutiful thanks goes to Dr. Curtis Smith, team leader of part of the activity. NR 24 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD FEB PY 2017 VL 100 BP 204 EP 216 DI 10.1016/j.anucene.2016.09.044 PN 2 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EG0UC UT WOS:000390746700018 ER PT J AU Yang, ZJ Linghu, RF Gao, QH Xiong, HN Xu, ZJ Tang, L Jia, GZ AF Yang Ze-Jin Linghu Rong-Feng Gao Qing-He Xiong Heng-Na Xu Zhi-Jun Tang Ling Jia Guo-Zhu TI Structural evolution of (Ti0.5V0.5)(n+1)GeCn (n=1-4) under pressure from first principles SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Elasticity; Electronic structure; First principles ID AL-C SYSTEM; MAX-PHASE COMPOUNDS; MECHANICAL-PROPERTIES; AB-INITIO; ELASTIC PROPERTIES; SOLID-SOLUTIONS; THIN-FILMS; STABILITY; COMPOUND; TI5AL2C3 AB The elastic properties and structural evolution of (Ti0.5V0.5)(n+1)GeCn (n = 1-4) are studied under pressure from first principles. Many general evolution trends are concluded for the six structures, including the lattice parameters (a, c), elastic constants (c(ij)) and the degree of the isotropy (A, A(1), A(2)), and the axial shrinkage tendency. The (Ti0.5V0.5)(2)GeC behaves the largest compressive anisotropy in (c/a)/(c(0)/a(0)) but (Ti0.5V0.5)(5)GeC4 behaves opposite compressive anisotropy which shows a value below 1 between 0 and 40 GPa, whereas (Ti0.5V0.5)(4)GeC3 exists a softening behavior between 20 and 40 GPa. The lowest volume contraction of (Ti0.5V0.5)(4)GeC3 is confirmed by the density of states, together with the observation of its minimum c(12) and c(13) among the same type of compounds. The density of states analysis observed the smaller contribution of Ti at Fermi level with respect to that of V. A common phenomenon is observed from the six structures, namely, for any considered heavy atoms including Ti or V, once the heavy atom is surrounded by one C layer and one Ge layer, its density of states contribution at Fermi level is larger than that of atom surrounded by two C layers originating mainly from the electronegativity difference of C and Ge. The bond length of C/Ge-Ti is always slightly longer than that of C/Ge-V except for (Ti0.5V0.5)(2)GeC which shows totally equivalent length. A smaller shear modulus of (Ti0.5V0.5)(2)GeC is observed relative to its two end members. The electron density difference analysis reveals the diverse charge transfer directions and bonding features in these compounds. (C) 2016 Elsevier B.V. All rights reserved. C1 [Yang Ze-Jin; Xiong Heng-Na; Xu Zhi-Jun; Tang Ling] Zhejiang Univ Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China. [Yang Ze-Jin; Tang Ling] Iowa State Univ, Dept Energy, Ames Lab, Ames, IA 50011 USA. [Yang Ze-Jin; Tang Ling] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Linghu Rong-Feng] Guizhou Educ Univ, Sch Phys & Elect Sci, Guiyang 550018, Peoples R China. [Gao Qing-He] Northeastern Univ, Coll Sci, Shenyang 110004, Peoples R China. [Gao Qing-He] Liaoning Univ Tradit Chinese Med, Informat Engn Coll, Shenyang 110847, Peoples R China. [Jia Guo-Zhu] Sichuan Normal Univ, Coll Phys & Elect Engn, Chengdu 610068, Peoples R China. RP Yang, ZJ (reprint author), Zhejiang Univ Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China. EM zejinyang@zjut.edu.cn; linghu@gznu.edu.cn FU China Scholarship Council; Natural Science Foundation (NSF) of China [11304279, 11364007, 11347220, 11404287]; NSF of Zhejiang Province [LY16A040013, LQ14A04003]; Science and Technology Foundation (STF) from Ministry of Education of Liaoning Province [L2015333]; Science and Technology Foundation (STF) from Ministry of Education of Guizhou Province [J [2013]2242] FX Yang Ze-jin and Tang Ling acknowledge the financial support from China Scholarship Council and the hospitality of Iowa State University. Projects supported by the Natural Science Foundation (NSF) of China (Grant Nos: 11304279, 11364007, 11347220, 11404287), NSF of Zhejiang Province (LY16A040013 and LQ14A04003), Science and Technology Foundation (STF) from Ministry of Education of Liaoning Province (L2015333) and Guizhou Province (J [2013]2242). NR 40 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD FEB 1 PY 2017 VL 127 BP 251 EP 260 DI 10.1016/j.commatsci.2016.10.036 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA EF7HC UT WOS:000390499700029 ER PT J AU O'Bryhim, JR Parsons, ECM Lance, SL AF O'Bryhim, Jason R. Parsons, E. C. M. Lance, Stacey L. TI Forensic species identification of elasmobranch products sold in Costa Rican markets SO FISHERIES RESEARCH LA English DT Article DE Sharks; Conservation; DNA barcoding; Species diversity; Rays ID GULF-OF-MEXICO; GENETIC IDENTIFICATION; NORTHWEST ATLANTIC; MOLECULAR-GENETICS; SHARK POPULATIONS; PELAGIC SHARKS; BODY PARTS; RED-SEA; CONSERVATION; FISHERIES AB One barrier to establishing catch limits to help protect shark populations is a lack of accurate species specific extraction rates. This is due to many species looking similar, distinguishing characteristics (fins and head) of sharks commonly being removed, or sharks being grouped together in fisheries data. For this study, we collected elasmobranch (shark and ray) tissue samples from the central markets in San Jose (10 fish vendors or pescadarias) and Heredia (5 pescadarias) from June 2013 to September 2014. We used DNA barcoding techniques to amplify approximately 1050 bp of the NADH dehydrogenase subunit 2 (NADH2) gene (n = 833). We found that at least nine species of shark (Alopias pelagicus, Carcharhinus falciformis, C. limbatus, C. obscurus, Mustelus lunulatus, Nasolamia velox, Rhizoprionodon longurio, Sphyrna lewini, S. zygaena) and one ray (Dasyatis longa) are being sold in local markets, with C. falciformis representing 87.3% of shark samples tested (n = 637) and D. longa representing 100% of ray samples tested (n = 85). Our results suggest that C. falciformis continues to be under intense fishing pressure in the waters around Costa Rica despite recent concern over continued population declines. Although the number of Endangered S. lewini (4%) being sold in the markets is much less than for C. falciformis (87.3%), the numbers are still concerning given their current conservation status. (C) 2016 Elsevier B.V. All rights reserved. C1 [O'Bryhim, Jason R.; Parsons, E. C. M.] George Mason Univ, Dept Environm Sci & Policy, Fairfax, VA 22030 USA. [O'Bryhim, Jason R.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP O'Bryhim, JR (reprint author), Savannah River Ecol Lab, Savannah River Site,Bldg 737-A, Aiken, SC 29802 USA. EM jobryhim@gmail.com OI Lance, Stacey/0000-0003-2686-1733 FU Savannah River Ecology Laboratory; George Mason University; Explorers Club Washington Group; U.S. Department of Energy [DE-FC09-07SR22506] FX We would like to thank everyone in Costa Rica who helped make this research possible including: Dr. Ted Bradley, Randall Arauz, Maike Heidemeyer, Andy Bystrom, Taylor Clarke, Dr. Ingo Wehrtmann, PRETOMA, the University of Costa Rica, and the vendors who were willing to participate in this research. We also would like to thank the Rufford Foundation for being the main funding agency of this research as well as the Savannah River Ecology Laboratory, George Mason University, and the Explorers Club Washington Group. This research was also partially supported by the U.S. Department of Energy under Award Numbers DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 42 TC 0 Z9 0 U1 32 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-7836 EI 1872-6763 J9 FISH RES JI Fish Res. PD FEB PY 2017 VL 186 BP 144 EP 150 DI 10.1016/j.fishres.2016.08.020 PN 1 PG 7 WC Fisheries SC Fisheries GA EF7FG UT WOS:000390494900015 ER PT J AU Patterson, GW Stickle, AM Turner, FS Jensen, JR Bussey, DBJ Spudis, P Espiritu, RC Schulze, RC Yocky, DA Wahl, DE Zimmerman, M Cahill, JTS Nolan, M Carter, L Neish, CD Raney, RK Thomson, BJ Kirk, R Thompson, TW Tise, BL Erteza, IA Jakowatz, CV AF Patterson, G. W. Stickle, A. M. Turner, F. S. Jensen, J. R. Bussey, D. B. J. Spudis, P. Espiritu, R. C. Schulze, R. C. Yocky, D. A. Wahl, D. E. Zimmerman, M. Cahill, J. T. S. Nolan, M. Carter, L. Neish, C. D. Raney, R. K. Thomson, B. J. Kirk, R. Thompson, T. W. Tise, B. L. Erteza, I. A. Jakowatz, C. V. TI Bistatic radar observations of the Moon using Mini-RF on LRO and the Arecibo Observatory SO ICARUS LA English DT Article DE Moon; Radar observations; Ices; Regoliths; Impact processes ID LUNAR SOUTH-POLE; BIDIRECTIONAL REFLECTANCE SPECTROSCOPY; ICY GALILEAN SATELLITES; REMOTE-SENSING DATA; COHERENT-BACKSCATTER; WATER ICE; REGOLITH PROPERTIES; PHASE-ANGLE; CRATERS; DEPOSITS AB The Miniature Radio Frequency (Mini-RF) instrument aboard NASA's Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) that operated in concert with the Arecibo Observatory to collect bistatic radar data of the lunar nearside from 2012 to 2015. The purpose of this bistatic campaign was to characterize the radar scattering properties of the surface and near-surface, as a function of bistatic angle, for a variety of lunar terrains and search for a coherent bacicscatter opposition effect indicative of the presence of water ice. A variety of lunar terrain types were sampled over a range of incidence and bistatic angles; including mare, highland, pyroclastic, crater ejecta, and crater floor materials. Responses consistent with an opposition effect were observed for the ejecta of several Copernican-aged craters and the floor of the south-polar crater Cabeus. The responses of ejecta material varied by crater in a manner that suggests a relationship with crater age. The response for Cabeus was observed within the portion of its floor that is not in permanent shadow. The character of the response differs from that of crater ejecta and appears unique with respect to all other lunar terrains observed. Analysis of data for this region suggests that the unique nature of the response may indicate the presence of near-surface deposits of water ice. (C) 2016 Elsevier Inc. All rights reserved. C1 [Patterson, G. W.; Stickle, A. M.; Turner, F. S.; Jensen, J. R.; Bussey, D. B. J.; Espiritu, R. C.; Schulze, R. C.; Zimmerman, M.; Cahill, J. T. S.; Raney, R. K.] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. [Spudis, P.] Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. [Yocky, D. A.; Wahl, D. E.; Tise, B. L.; Erteza, I. A.; Jakowatz, C. V.] Sandia Natl Labs, Albuquerque, NM 87815 USA. [Nolan, M.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Carter, L.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Neish, C. D.] Univ Western Ontario, 1151 Richmond St, London, ON N6A 5B7, Canada. [Thomson, B. J.] Boston Univ, Ctr Remote Sensing, 725 Commonwealth Ave, Boston, MA 02215 USA. [Kirk, R.] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA. [Thompson, T. W.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. RP Patterson, GW (reprint author), Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. EM Wes.Patterson@jhuapl.edu FU LRO project; NASA FX We thank the LRO project and LROC team for their efforts and flexibility in accommodating the non-trivial operations involved in the Mini-RF bistatic campaign. We also thank the Mini-RF team for their efforts in processing and calibrating the data into the form presented here. The authors would also like to thank Paul Lucey and an anonymous reviewer, whose insightful comments helped to improve the manuscript. This work was supported by the LRO project, under contract with NASA. NR 93 TC 2 Z9 2 U1 5 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD FEB PY 2017 VL 283 SI SI BP 2 EP 19 DI 10.1016/j.icarus.2016.05.017 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF8XX UT WOS:000390616400002 ER PT J AU Ebrahim, S Labeb, M Abdel-Fattah, T Soliman, M AF Ebrahim, Shaker Labeb, Mohamed Abdel-Fattah, Tarek Soliman, Moataz TI CdTe quantum dots capped with different stabilizing agents for sensing of ochratoxin A SO JOURNAL OF LUMINESCENCE LA English DT Article DE CdTe; Quantum dots; Optical densor; Photoluminescence; Ochratoxin A ID BOVINE SERUM-ALBUMIN; BIOLOGICAL APPLICATIONS; CHEMICAL-ANALYSIS; NANOPARTICLES; NANOCRYSTALS; IMMUNOASSAY; MYCOTOXINS; ACID; PH AB Cadmium telluride (CdTe) quantum dots (QDs) were prepared from aqueous solution with different capping agents of thioglycolic acid (TGA) and L-cysteine. Photoluminance spectra of CdTe QDs were used as a property of optical sensor for ochratoxin A (OTA) in the concentration range of ng/mL. It was found that L-cysteine capped CdTe QDs have linear response to OTA concentration in the range from 0.5 to 10 ng/mL. By applying Stern-Volmer relationship, it was found that a very good linearity (R-2=0.99) is observed in the concentration range from 0.5 to 10 ng/ml, K-sv was 3.48 x 10(4) L g(-1) and the minimum of detection was 0.5 ng/ml. TGA capped CdTe QDs have a fair of linearity of R-2 equals to 0.8929 in the concentration range from 5 to 30 ng/ml of OTA and Ksv was 1.4 x 10(5) L g(-1) with the minimum of detection of 5 ng/ml. The mechanism of the effect of pH on the fluorescence of CdTe QDs was proposed and the low fluorescence intensity of CdTe QDs in acidic media was attributed to protonation of the surface binding thiolates and consequently the dissociation of CdTe QDs. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ebrahim, Shaker; Labeb, Mohamed; Soliman, Moataz] Univ Alexandria, Inst Grad Studies & Res, Dept Mat Sci, Alexandria 21526, Egypt. [Abdel-Fattah, Tarek] Christopher Newport Univ, Thomas Jefferson Natl Accelerator Facil, Appl Res Ctr, Newport News, VA 23606 USA. [Abdel-Fattah, Tarek] Christopher Newport Univ, Dept Mol Biol & Chem, Newport News, VA 23606 USA. RP Ebrahim, S (reprint author), Univ Alexandria, Inst Grad Studies & Res, Dept Mat Sci, Alexandria 21526, Egypt. EM shaker.ebrahim@alexu.edu.eg NR 49 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 EI 1872-7883 J9 J LUMIN JI J. Lumines. PD FEB PY 2017 VL 182 BP 154 EP 159 DI 10.1016/j.jlumin.2016.09.038 PG 6 WC Optics SC Optics GA EF7LE UT WOS:000390510300023 ER PT J AU Cushman, JS Dally, A Davis, CJ Ejzak, L Lenz, D Lim, KE Heeger, KM Maruyama, RH Nucciotti, A Sangiorgio, S Wise, T AF Cushman, Jeremy S. Dally, Adam Davis, Christopher J. Ejzak, Larissa Lenz, Daniel Lim, Kyungeun E. Heeger, Karsten M. Maruyama, Reina H. Nucciotti, Angelo Sangiorgio, Samuele Wise, Thomas TI The detector calibration system for the CUORE cryogenic bolometer array SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutrino physics; Cryogenics; Calibration; Low background; Bolometers AB The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of Te-130 and other rare events. The CUORE detector consists of 988 TeO2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments. (C) 2016 Elsevier B.V. All rights reserved. C1 [Cushman, Jeremy S.; Davis, Christopher J.; Lim, Kyungeun E.; Heeger, Karsten M.; Maruyama, Reina H.; Wise, Thomas] Yale Univ, Dept Phys, Wright Lab, New Haven, CT 06520 USA. [Dally, Adam; Ejzak, Larissa; Lenz, Daniel; Sangiorgio, Samuele; Wise, Thomas] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Nucciotti, Angelo] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Nucciotti, Angelo] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Ejzak, Larissa] Res Sq, Durham, NC 27701 USA. [Sangiorgio, Samuele] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Cushman, JS (reprint author), Yale Univ, Dept Phys, Wright Lab, New Haven, CT 06520 USA. EM jeremy.cushman@yale.edu; karsten.heeger@yale.edu RI Maruyama, Reina/A-1064-2013 OI Maruyama, Reina/0000-0003-2794-512X FU Istituto Nazionale di Fisica Nucleare; Alfred P. Sloan Foundation; University of Wisconsin Foundation; Yale University; US Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC-0012654] FX This work was supported by the Istituto Nazionale di Fisica Nucleare, the Alfred P. Sloan Foundation, the University of Wisconsin Foundation, and Yale University. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0012654. NR 18 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2017 VL 844 BP 32 EP 44 DI 10.1016/j.nima.2016.11.020 PG 13 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA EF8PC UT WOS:000390590200007 ER PT J AU Meisel, Z del Santo, M Crawford, HL Cyburt, RH Grinyer, GF Langer, C Montes, F Schatz, H Smith, K AF Meisel, Z. del Santo, M. Crawford, H. L. Cyburt, R. H. Grinyer, G. F. Langer, C. Montes, F. Schatz, H. Smith, K. TI beta-particle energy-summing correction for beta-delayed proton emission measurements SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE beta-delayed proton emission; GEANT4; DSSD ID FRAGMENT SEPARATOR; DECAY; MASS; BEAMS; RAYS AB A common approach to studying beta-delayed proton emission is to measure the energy of the emitted proton and corresponding nuclear recoil in a double-sided silicon-strip detector (DSSD) after implanting the beta-delayed proton-emitting (beta p) nucleus. However, in order to extract the proton-decay energy, the measured energy must be corrected for the additional energy implanted in the DSSD by the beta-particle emitted from the beta p nucleus, an effect referred to here as beta-summing. We present an approach to determine an accurate correction for beta-summing. Our method relies on the determination of the mean implantation depth of the beta p nucleus within the DSSD by analyzing the shape of the total (proton + recoil + beta) decay energy distribution shape. We validate this approach with other mean implantation depth measurement techniques that take advantage of energy deposition within DSSDs upstream and downstream of the implantation DSSD. C1 [Meisel, Z.] Ohio Univ, Dept Phys & Astron, Inst Nucl & Particle Phys, Athens, OH 45701 USA. [Meisel, Z.; del Santo, M.; Cyburt, R. H.; Langer, C.; Montes, F.; Schatz, H.; Smith, K.] Ctr Evolut Elements, Joint Inst Nucl Astrophys, Athens, OH USA. [del Santo, M.; Cyburt, R. H.; Montes, F.; Schatz, H.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Crawford, H. L.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Grinyer, G. F.] CEA, CNRS, IN2P3, GANIL,DRF, Bvd Henri Becquerel, F-14076 Caen, France. [Langer, C.] Goethe Univ Frankfurt Main, Inst Appl Phys, D-60438 Frankfurt, Germany. [Schatz, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Smith, K.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Meisel, Z (reprint author), Ohio Univ, Dept Phys & Astron, Inst Nucl & Particle Phys, Athens, OH 45701 USA. EM meisel@ohio.edu FU National Science Foundation [PHY-0822648, PHY-1430152] FX Z.M. thanks Lawrence T.D. Fischer for many useful discussions. This material is based upon work supported by the National Science Foundation under Grants Nos. PHY-0822648 and PHY-1430152. NR 31 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2017 VL 844 BP 45 EP 52 DI 10.1016/j.nima.2016.11.019 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA EF8PC UT WOS:000390590200008 ER PT J AU Bane, K Stupakov, G Antipov, S Fedurin, M Kusche, K Swinson, C Xiang, D AF Bane, Karl Stupakov, Gennady Antipov, Sergey Fedurin, Mikhail Kusche, Karl Swinson, Christina Xiang, Dao TI Measurements of terahertz radiation generated using a metallic, corrugated pipe SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Wakefields; Terahertz; Radiation; Corrugated pipe AB A method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhaven's Accelerator Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 mu m. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam compared to the wavelength of the radiation, but with short rise time, to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation. For the THz pulse we obtain and compare with calculations: the central frequency, the bandwidth, and the spectral power-compared to a diffraction radiation background signal. C1 [Bane, Karl; Stupakov, Gennady] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Antipov, Sergey] Euclid Techlabs LLC, Bolingbrook, IL 60440 USA. [Fedurin, Mikhail; Kusche, Karl; Swinson, Christina] Brookhaven Natl Lab, Upton, NY USA. [Xiang, Dao] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. RP Bane, K (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM kbane@slac.stanford.edu FU US DOE SBIR program [DE-SC0009571]; Department of Energy [DE-AC02-76SF00515] FX We thank: Makino Machine Tools for machining TPIPE for us free of charge; G. Bowden, the engineer on the TPIPE project, for his careful work; the Accelerator Test Facility staff at BNL for engineering support during the experiment; the UCLA PBPL group for letting us use their interferometer set-up; A. Fisher for helpful discussions, drawing on his experience in interferometry analysis. Euclid Beamlabs LLC acknowledges support from US DOE SBIR program grant No. DE-SC0009571. Work was partially supported by Department of Energy contract DE-AC02-76SF00515. NR 14 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2017 VL 844 BP 121 EP 128 DI 10.1016/j.nima.2016.11.041 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA EF8PC UT WOS:000390590200019 ER PT J AU MacGahan, CJ Kupinski, MA Brubaker, EM Hilton, NR Marleau, PA AF MacGahan, Christopher J. Kupinski, Matthew A. Brubaker, Erik M. Hilton, Nathan R. Marleau, Peter A. TI Linear models to perform treaty verification tasks for enhanced information security SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Arms control treaty verification; Information barrier; Discrimination algorithms; Neutron imaging ID OBSERVERS AB Linear mathematical models were applied to binary-discrimination tasks relevant to arms control verification measurements in which a host party wishes to convince a monitoring party that an item is or is not treaty accountable. These models process data in list-mode format and can compensate for the presence of variability in the source, such as uncertain object orientation and location. The Hotelling observer applies an optimal set of weights to binned detector data, yielding a test statistic that is thresholded to make a decision. The channelized Hotelling observer applies a channelizing matrix to the vectorized data, resulting in a lower dimensional vector available to the monitor to make decisions. We demonstrate how incorporating additional terms in this channelizing-matrix optimization offers benefits for treaty verification. We present two methods to increase shared information and trust between the host and monitor. The first method penalizes individual channel performance in order to maximize the information available to the monitor while maintaining optimal performance. Second, we present a method that penalizes predefined sensitive information while maintaining the capability to discriminate between binary choices. Data used in this study was generated using Monte Carlo simulations for fission neutrons, accomplished with the GEANT4 toolkit. Custom models for plutonium inspection objects were measured in simulation by a radiation imaging system. Model performance was evaluated and presented using the area under the receiver operating characteristic curve. C1 [MacGahan, Christopher J.; Kupinski, Matthew A.] Univ Arizona, Ctr Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA. [MacGahan, Christopher J.; Brubaker, Erik M.; Hilton, Nathan R.; Marleau, Peter A.] Sandia Natl Labs, Livermore, CA 94551 USA. RP MacGahan, CJ (reprint author), Univ Arizona, Ctr Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA. EM cmacgahan@optics.arizona.edu FU Office of Defense Nuclear Nonproliferation Research and Development, Nuclear Weapon and Material Security Team; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported by the Office of Defense Nuclear Nonproliferation Research and Development, Nuclear Weapon and Material Security Team. Sandia National Laboratories is a multimission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Internal report number SAND2016-11999J. NR 31 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2017 VL 844 BP 147 EP 157 DI 10.1016/j.nima.2016.11.010 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA EF8PC UT WOS:000390590200023 ER PT J AU Wright, AM Qu, ZS Caneses, JF Hole, MJ AF Wright, A. M. Qu, Z. S. Caneses, J. F. Hole, M. J. TI An experimentally constrained MHD model for a collisional, rotating plasma column SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE equilibrium; magnetohydrodynamics; pinched magnetic field ID VACUUM-ARC CENTRIFUGE; FIELD; PHYSICS AB A steady-state single fluid MHD model which describes the equilibrium of plasma parameters in a collisional, rotating plasma column with temperature gradients and a non-uniform externally applied magnetic field is developed. Two novel methods of simplifying the governing equations are introduced. Specifically, a 'radial transport constraint' and an ordering argument are applied. The reduced system is subsequently solved to yield the equilibrium of macroscopic plasma parameters in the bulk region of the plasma. The model is benchmarked by comparing these solutions to experimental measurements of axial velocity and density for a hydrogen plasma in the converging-field experiment MAGPIE and overall a good agreement is observed. The plasma equilibrium is determined by the interaction of a density gradient, due to a temperature gradient, with an electric field. The magnetic field and temperature gradient are identified as key parameters in determining the flow profile, which may be important considerations in other applications. C1 [Wright, A. M.; Qu, Z. S.; Hole, M. J.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 2601, Australia. [Caneses, J. F.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Wright, AM (reprint author), Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 2601, Australia. EM u5018015@anu.edu.au FU AINSE; AINSE Ltd (Award - PGRA); China Scholarship Council; Australian ARC project [DP1093797, FT0991899]; NCRIS scheme of the Australian Government FX This research is supported by the AINSE honours scholarship program, of which one of the authors (AMW) was a recipient. One of the authors (ZSQ) would like to thank AINSE Ltd (Award - PGRA) and the China Scholarship Council for providing financial assistance. This work was supported by Australian ARC project DP1093797 and FT0991899. MAGPIE construction and operation was funded under the NCRIS scheme of the Australian Government. NR 25 TC 0 Z9 0 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB 1 PY 2017 VL 59 IS 2 AR 025003 DI 10.1088/1361-6587/59/2/025003 PG 11 WC Physics, Fluids & Plasmas SC Physics GA EG1NT UT WOS:000390800200002 ER PT J AU Wu, B Hao, BL White, R Wang, JF Zang, Q Han, XF Hu, CD AF Wu, Bin Hao, Baolong White, Roscoe Wang, Jinfang Zang, Qing Han, Xiaofeng Hu, Chundong TI Calculation of prompt loss and toroidal field ripple loss under neutral beam injection on EAST SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE neutral beam heating; toroidal field ripple; fast ion loss ID TOKAMAKS; PARTICLES; TRANSPORT; TFTR AB Neutral beam injection is a major auxiliary heating method in the EAST experimental campaign. This paper gives detailed calculations of beam loss with different plasma equilibria using the guiding center code ORBIT and NUBEAM/TRANSP. Increasing plasma current can dramatically lower the beam ion prompt loss and ripple loss. Countercurrent beam injection gives a much larger prompt loss fraction than co-injection, and ripple-induced collisionless stochastic diffusion is the dominant loss channel. C1 [Wu, Bin; Hao, Baolong; Wang, Jinfang; Zang, Qing; Han, Xiaofeng; Hu, Chundong] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Hao, Baolong; Hu, Chundong] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Hao, Baolong; White, Roscoe] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hao, BL (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China.; Hao, BL (reprint author), Univ Sci & Technol China, Hefei 230026, Peoples R China.; Hao, BL (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM blhao@ipp.ac.cn FU National Magnetic Confinement Fusion Science Program of China [2013GB101001]; International Science & Technology Cooperation Program of China [2014DFG61950]; National Natural Science Foundation of China [11628509, 11405212] FX The authors wish to thank M A Van Zeeland for help with NUBEAM and useful discussions, and are also grateful for the support of the EAST Contributors, especially Yuntao Song, Youjun Hu, Juan Huang, Guoqiang Li, Siye Ding, and Zhengping Luo. This work was supported by the National Magnetic Confinement Fusion Science Program of China (Contract No. 2013GB101001), the International Science & Technology Cooperation Program of China (Contract No. 2014DFG61950), and the National Natural Science Foundation of China (Contract Nos. 11628509 and 11405212). NR 17 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB 1 PY 2017 VL 59 IS 2 AR 025004 DI 10.1088/1361-6587/59/2/025004 PG 11 WC Physics, Fluids & Plasmas SC Physics GA EG1NT UT WOS:000390800200003 ER PT J AU Eisenbach, M Larkin, J Lutjens, J Rennich, S Rogers, JH AF Eisenbach, Markus Larkin, Jeff Lutjens, Justin Rennich, Steven Rogers, James H. TI GPU acceleration of the Locally Selfconsistent Multiple Scattering code for first principles calculation of the ground state and statistical physics of materials SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE First-principles; Monte-Carlo; Phase transitions AB The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn-Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. We present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of 0(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPU5 with a block matrix inversion algorithm that only uses accelerator memory. Using the Cray XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code. (C) 2016 Elsevier B.V. All rights reserved. C1 [Eisenbach, Markus; Rogers, James H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Larkin, Jeff; Lutjens, Justin; Rennich, Steven] NVIDIA Corp, Santa Clara, CA 95050 USA. RP Eisenbach, M (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM eisenbachm@ornl.gov FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Material Sciences and Engineering Division; Office of Advanced Scientific Computing; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This work has been sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Material Sciences and Engineering Division (basic theory and applications) and by the Office of Advanced Scientific Computing (software optimization and performance measurements). This research used resources of the Oak Ridge Leadership Computing Facility, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC05-00OR22725. NR 18 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB PY 2017 VL 211 SI SI BP 2 EP 7 DI 10.1016/j.cpc.2016.07.013 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EF2UO UT WOS:000390181300002 ER PT J AU Jia, WL Wang, J Chi, XB Wang, LW AF Jia, Weile Wang, Jue Chi, Xuebin Wang, Lin-Wang TI GPU implementation of the linear scaling three dimensional fragment method for large scale electronic structure calculations SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Electronic structure calculations; LS3DF; GPU ID MOLECULAR-DYNAMICS AB LS3DF, namely linear scaling three-dimensional fragment method, is an efficient linear scaling ab initio total energy electronic structure calculation code based on a divide-and-conquer strategy. In this paper, we present our GPU implementation of the LS3DF code. Our test results show that the GPU code can calculate systems with about ten thousand atoms fully self-consistently in the order of 10 min using thousands of computing nodes. This makes the electronic structure calculations of 10,000-atom nanosystems routine work. This speed is 4.5-6 times faster than the CPU calculations using the same nuinber of nodes on the Titan machine in the Oak Ridge leadership computing facility (OLCF). Such speedup is achieved by (a) carefully re-designing of the computationally heavy kernels; (b) redesign of the communication pattern for heterogeneous supercomputers. (C) 2016 Elsevier B.V. All rights reserved. C1 [Jia, Weile; Wang, Jue; Chi, Xuebin] Chinese Acad Sci, Supercomp Ctr, Comp Network Informat Ctr, Beijing, Peoples R China. [Jia, Weile] Univ Chinese Acad Sci, Beijing, Peoples R China. [Wang, Lin-Wang] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. RP Wang, LW (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. EM jiawl@sccas.cn; wangjue@sccas.cn; chi@sccas.cn; lwwang@lbl.gov FU China Scholarship Council [201404910432]; U.S. Department of Energy, SC/BES/MSED [DE-AC02-05CH11231]; Hi-Tech Research and Development Program (863) of China [2015AA01A303]; Natural Science Foundation of China [61303050]; Youth Innovation Promotion Association, CAS [2015375]; Office of Science of the DOE [DE-AC05-00OR22725] FX W.J. is supported by the China Scholarship Council under No. 201404910432. L.W.W is supported by the U.S. Department of Energy, SC/BES/MSED under the Contract No. DE-AC02-05CH11231 through the Material Theory project. Jue Wang is supported by the Hi-Tech Research and Development Program (863) of China No. 2015AA01A303, Natural Science Foundation of China under Grant No. 61303050, and the Youth Innovation Promotion Association, CAS(2015375). We used the computational resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the DOE under Contract No. DE-AC05-00OR22725, with computational time allocated by the Innovative and Novel Computational Impact on Theory and Experiment project. NR 15 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB PY 2017 VL 211 SI SI BP 8 EP 15 DI 10.1016/j.cpc.2016.07.003 PG 8 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EF2UO UT WOS:000390181300003 ER PT J AU Lask, K Gadgil, A AF Lask, Kathleen Gadgil, Ashok TI Performance and emissions characteristics of a lighting cone for charcoal stoves SO ENERGY FOR SUSTAINABLE DEVELOPMENT LA English DT Article DE Haiti; Cookstove; Charcoal; Lighting cone; Carbon monoxide; Ultrafine particulates AB A lighting cone is a simple metal cone placed on the charcoal bed during ignition to increase draft. Many traditional charcoal-burning stoves are difficult to light due to poor draft through the fuel bed, so lighting cones are used as an inexpensive accessory to help with charcoal ignition. The goal of this work was to determine the validity of using a lighting cone to decrease the ignition time of traditional Haitian charcoal stoves, and evaluate its impact on stove emissions and fuel consumption during the typically inefficient and slow ignition phase. We found that the lighting cone successfully reduced ignition time by over 50%. Due to a more efficient, shorter ignition stage, charcoal consumption during ignition was reduced by over 40% and carbon monoxide was reduced by over 50%. This suggests that lighting cones are a viable and beneficial accessory for aiding ignition in shallow-bed charcoal stoves. (C) 2016 International Energy Initiative. Published by Elsevier Inc. All rights reserved. C1 Univ Calif Berkeley, Berkeley, CA 94720 USA. [Lask, Kathleen] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd Mailstop 90R2121, Berkeley, CA 94720 USA. RP Lask, K (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd Mailstop 90R2121, Berkeley, CA 94720 USA. EM klask@berkeley.edu FU National Science Foundation through a Graduate Research Fellowship; Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program; Rudd Chair funds; DOE [DE-AC02-05CH11231]; DOE's Biomass Energy Technologies Office FX This project was supported by the National Science Foundation through a Graduate Research Fellowship and by the Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program for Ms. Lask, and Rudd Chair funds for Prof. Gadgil. We sincerely thank Crispin Pemberton-Pigott and Peter Coughlin for providing field data and advice in the early stages of the project, as well International Lifeline Fund, especially Christine Roy, for its collaboration with the observations in Haiti. Special thanks go to Sharon Chen and Arjun Kaul for their assistance with experimental work. This work was performed at the Lawrence Berkeley National Laboratory, operated by the University of California, under DOE Contract DE-AC02-05CH11231. We gratefully acknowledge the partial support for this work from DOE's Biomass Energy Technologies Office. NR 14 TC 0 Z9 0 U1 29 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0973-0826 J9 ENERGY SUSTAIN DEV JI Energy Sustain Dev. PD FEB PY 2017 VL 36 BP 64 EP 67 DI 10.1016/j.esd.2016.03.001 PG 4 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA EF6LU UT WOS:000390443300008 ER PT J AU Wan, LP Cao, Q Wang, FY Oral, S AF Wan, Lipeng Cao, Qing Wang, Feiyi Oral, Sarp TI Optimizing checkpoint data placement with guaranteed burst buffer endurance in large-scale hierarchical storage systems SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Fault tolerance; Checkpoint; Hierarchical storage systems; Burst buffer; Solid-state drive ID INTERVAL AB Non-volatile devices, such as SSDs, will be an integral part of the deepening storage hierarchy on large-scale HPC systems. These devices can be on the compute nodes as part of a distributed burst buffer service or they can be external. Wherever they are located in the hierarchy, one critical design issue is the SSD endurance under the write-heavy workloads, such as the checkpoint I/O for scientific applications. For these environments, it is widely assumed that checkpoint operations can occur once every 60 min and for each checkpoint step as much as half of the system memory can be written out. Unfortunately, for largescale HPC applications, the burst buffer SSDs can be worn out much more quickly given the extensive amount of data written at every checkpoint step. One possible solution is to control the amount of data written by reducing the checkpoint frequency. However, a direct effect caused by reduced checkpoint frequency is the increased vulnerability window of system failures and therefore potentially wasted computation time, especially for large-scale compute jobs. In this paper, we propose a new checkpoint placement optimization model which collaboratively utilizes both the burst buffer and the parallel file system to store the checkpoints, with design goals of maximizing computation efficiency while guaranteeing the SSD endurance requirements. Moreover, we present an adaptive algorithm which can dynamically adjust the checkpoint placement based on the system's dynamic runtime characteristics and continuously optimize the burst buffer utilization. The evaluation results show that by using our adaptive checkpoint placement algorithm we can guarantee the burst buffer endurance with at most 5% performance degradation per application and less than 3% for the entire system. (C) 2016 Elsevier Inc. All rights reserved. C1 [Wan, Lipeng] Univ Tennessee, Comp Sci Major, Knoxville, TN 37996 USA. [Cao, Qing] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN USA. [Wang, Feiyi] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Oral, Sarp] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN USA. RP Wan, LP (reprint author), Univ Tennessee, Comp Sci Major, Knoxville, TN 37996 USA. EM lwan1@vols.utk.edu; cao@utk.edu; fwang2@ornl.gov; oralhs@ornl.gov FU Office of Science of the Department of Energy [DE-AC05-00OR22725]; NSF [0953238] FX We would like to thank the reviewers for their insightful and inspiring comments. This research used resources of the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. This work was also supported by NSF grant 0953238. NR 41 TC 0 Z9 0 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 EI 1096-0848 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD FEB PY 2017 VL 100 BP 16 EP 29 DI 10.1016/j.jpdc.2016.10.002 PG 14 WC Computer Science, Theory & Methods SC Computer Science GA EF1JY UT WOS:000390082300002 ER PT J AU Pickard, BR Nash, M Baynes, J Mehaffey, M AF Pickard, Brian R. Nash, Maliha Baynes, Jeremy Mehaffey, Megan TI Planning for community resilience to future United States domestic water demand SO LANDSCAPE AND URBAN PLANNING LA English DT Article DE Water demand; Climate; Sustainability; Resilience ID CLIMATE-CHANGE; RESOURCES; ECOREGIONS; WITHDRAWAL; SCENARIOS AB Costs of repairing and expanding aging infrastructure and competing demands for water from other sectors such as industry and agriculture are stretching water managers' abilities to meet essential domestic drinking water needs for future generations. Using Bayesian statistical modeling on past and present water use, we project domestic water demand in the context of four climate scenarios developed by the Intergovernmental Panel on Climate Change as part of the their Special Report on Emission Scenarios (SRES). We compare 2010 demand to projections of domestic water demand for the years 2030, 2060 and 2090 for the four SRES scenarios. Results indicate that the number of counties exceeding fifty percent or greater demand over 2010 levels increases through 2090 for two of the scenarios and plateaus around 2050 for the other two. Counties experiencing the largest increases in water demand are concentrated in the states of California, Texas, and isolated portions of the Mid-West, Southeast, and Mid-Atlantic. Closer examination of the spatial distribution of high demand counties reveals that they are typically found near or adjacent to metropolitan centers, potentially placing greater stress on already taxed systems. Identifying these counties allows for targeted adaptive management and policies, economic incentives, and legislation to be focused towards locations that are potentially the most vulnerable. Published by Elsevier B.V. C1 [Pickard, Brian R.; Baynes, Jeremy] US EPA, Off Res & Dev, Oak Ridge Inst Sci & Educ, Durham, NC USA. [Nash, Maliha; Mehaffey, Megan] US EPA, Off Res & Dev, Natl Exposure Res Lab, Durham, NC 27709 USA. RP Mehaffey, M (reprint author), US EPA, Off Res & Dev, Natl Exposure Res Lab, Durham, NC 27709 USA. EM mehaffey.megan@epa.gov FU U.S. Environmental Protection Agency (EPA), Office of Research and Development FX This project was supported in part by an appointment to the Research Participation Program for the U.S. Environmental Protection Agency (EPA), Office of Research and Development, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the EPA. The authors would like to thank the two anonymous reviewers for their critical review of this manuscript. NR 31 TC 0 Z9 0 U1 53 U2 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-2046 EI 1872-6062 J9 LANDSCAPE URBAN PLAN JI Landsc. Urban Plan. PD FEB PY 2017 VL 158 BP 75 EP 86 DI 10.1016/j.landurbplan.2016.07.014 PG 12 WC Ecology; Environmental Studies; Geography; Geography, Physical; Urban Studies SC Environmental Sciences & Ecology; Geography; Physical Geography; Urban Studies GA EF1HO UT WOS:000390076100007 ER PT J AU Michael, CA Zhao, F Blackwell, B Vos, MFJ Brotankova, J Haskey, SR Seiwald, B Howard, J AF Michael, C. A. Zhao, F. Blackwell, B. Vos, M. F. J. Brotankova, J. Haskey, S. R. Seiwald, B. Howard, J. TI Influence of magnetic configuration on edge turbulence and transport in the H-1 Heliac SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE turbulence; transport; edge plasma; magnetic configuration; rotational transform; stellarator ID TJ-II; PLASMA; STELLARATOR; FLUCTUATIONS; CONFINEMENT; TRANSITIONS; W7-AS; CORE AB The role of the rotational transform (i) profile on fluctuations and transport is investigated in the H-1 Heliac by means of dynamic (i.e. changing during a shot) and static (fixed during a shot) scans of rotational transform through a range of values where the electron density drops markedly and which correspond to having the point of i(min) located near r/a = 0.75 in a region of magnetic well (such that the surface averaged magnetic field strength increases with radius). The gap is near the i = 4 3 resonance, but as the resonance is not in the plasma for more than half the gap it is not clear that this is relevant. Although this drop is clearly driven by the variation of helical current, under particular circumstances, similar density changes occur spontaneously. Plasma currents are measured throughout the scan and are found to slightly affect the rotational transform profile, and reverse about the configuration of minimum confinement, while induced currents through a toroidal loop voltage in the dynamical scans are not found to be significant. The confinement and fluctuation properties are studied by means of 2D movable Langmuir probes. Large near edge-localised dithering quasi-coherent fluctuations at similar to 6 kHz develop in a strong density gradient region with low magnetic shear as i is scanned up to a point where the density collapses in the outer region. This dithering corresponds to an m = 3 mode comprising of standing and propagating components. The net and fluctuation-induced transport components are measured near the plasma edge in a similar discharge, and it is found that fluctuation-induced transport driven by these low frequency coherent modes dominates the particle balance during the low density phase but is only a small component of the net flux when the density is higher. C1 [Michael, C. A.; Zhao, F.; Blackwell, B.; Vos, M. F. J.; Brotankova, J.; Haskey, S. R.; Seiwald, B.; Howard, J.] Australian Natl Univ, Canberra, ACT 2601, Australia. [Vos, M. F. J.] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands. [Brotankova, J.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia. [Haskey, S. R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Michael, CA (reprint author), Australian Natl Univ, Canberra, ACT 2601, Australia. EM clive.michael@anu.edu.au OI Haskey, Shaun/0000-0002-9978-6597 FU Education Investment Fund under the Super Science Initiative of the Australian Government; National Collaborative Research Infrastructure Strategy (NCRIS); Australian Research Council Discovery grant [DP120103153] FX This work was supported in part by the Education Investment Fund under the Super Science Initiative of the Australian Government, the National Collaborative Research Infrastructure Strategy (NCRIS) and by the Australian Research Council Discovery grant number DP120103153. The authors also gratefully acknowledge technical support provided by Mark Gwenyth and Michael Blacksell. NR 32 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB 1 PY 2017 VL 59 IS 2 AR 024001 DI 10.1088/1361-6587/59/2/024001 PG 11 WC Physics, Fluids & Plasmas SC Physics GA EF5IZ UT WOS:000390365200001 ER PT J AU Kong, LB Hasanbeigi, A Price, L Liu, HB AF Kong, Lingbo Hasanbeigi, Ali Price, Lynn Liu, Huanbin TI Energy conservation and CO2 mitigation potentials in the Chinese pulp and paper industry SO RESOURCES CONSERVATION AND RECYCLING LA English DT Article DE Energy conservation; CO2 mitigation; Conservation supply curve; Pulp and paper industry ID CARBON-DIOXIDE EMISSIONS; EFFICIENCY IMPROVEMENT; CEMENT INDUSTRY; REDUCTION OPPORTUNITIES; MODEL; IRON AB China's paper production accounted for nearly a quarter of the world's total paper production in 2010. In this study, 23 energy saving technologies applicable to the pulping and papermaking process in China are identified and analyzed. The conservation supply curve (CSC) method is employed to assess the technical and economic aspects of energy conservation. The fuel CSC for Chinese pulp and paper industry shows the cost-effective and technical fuel conservation potential is 180 PJ and 254 PJ, accounting for 27% and 38% of total fuel used in 2010, respectively. The CO2 mitigation potential related to the cost-effective fuel efficiency is 17 Mt CO2 and the technical potential is 24 Mt CO2. The electricity CSC shows the technical electricity conservation potential is 2316 GWh, representing 4% of total electricity consumption. All of the electricity efficiency measures are shown to be cost-effective in this study. The CO2 mitigation resulted from electricity efficiency is around 2 Mt CO2. In addition, sensitivity analyses for the parameters of penetration rate, discount rate, and energy price are conducted to assess their influence on the final results. (C) 2015 Elsevier B.V. All rights reserved. C1 [Kong, Lingbo] Tianjin Univ Sci & Technol, Tianjin Key Lab Pulp & Paper, Tianjin 300457, Peoples R China. [Kong, Lingbo; Liu, Huanbin] South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Guangdong, Peoples R China. [Kong, Lingbo; Hasanbeigi, Ali; Price, Lynn] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Kong, LB (reprint author), Tianjin Univ Sci & Technol, Tianjin Key Lab Pulp & Paper, Tianjin 300457, Peoples R China. EM lingbo.kung@gmail.com; ahasanbeigi@lbl.gov; lkprice@lbl.gov; hbliu@scut.edu.cn RI Kong, Lingbo/E-1209-2013 OI Kong, Lingbo/0000-0002-6067-3763 FU China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy [DE-AC02-05CH11231]; Open Foundation of the State Key Laboratory of Pulp and Paper Engineering in South China University of Technology [201422] FX This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, the Open Foundation of the State Key Laboratory of Pulp and Paper Engineering in South China University of Technology (201422). The authors would like to thank Tobias Fleiter of Fraunhofer Institute for Systems and Innovation Research (ISI) and the anonymous reviewers for their feedback and comments on this work. We are also grateful to Nan Wishner for helping us edit this paper. NR 31 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-3449 EI 1879-0658 J9 RESOUR CONSERV RECY JI Resour. Conserv. Recycl. PD FEB PY 2017 VL 117 SI SI BP 74 EP 84 DI 10.1016/j.resconrec.2015.05.001 PN A PG 11 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EF1GP UT WOS:000390073600008 ER PT J AU Zhang, WL Nguyen, NA Murray, R Mackay, ME AF Zhang, Wenluan Nguyen, Ngoc A. Murray, Roy Mackay, Michael E. TI Device performance enhancement of polymer solar cells by nanoparticle self-assembly SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Polymer:fullerene solar cells; Nanoparticle self-assembly; Depletion flocculation; Spin coating; Neutron scattering ID ORGANIC PHOTOVOLTAIC CELLS; POLY(3-HEXYLTHIOPHENE); MORPHOLOGY; SCATTERING; NEUTRON; BLENDS; FILMS AB We show that it is possible to assemble a sparse mono-layer of Fe3O4 nanoparticles (NPs) at cathode interface of a polymer solar cell based on poly(3-hexylthiophene): [6,6]-phenyl-C-60-butyric acid methyl ester (P3HT: PCBM) through the synergic effect of strong convective outflow, surface energy, Fe3O4 NPs concentration and active layer thickness. When the distance between those Fe3O4 NPs is smaller than the size of P3HT, the P3HT is excluded from the inter-particle space, and fullerene molecules fill in the space to build electron transport pathways improving charge transport and collection near cathode interface proved by transmission electron microscopy and X-ray photoelectron spectroscopy. The power conversion efficiency of the devices is improved up to 20%. The bulk morphology of light absorbing layers is not affected by the addition of Fe3O4 NPs as demonstrated by neutron and X-ray scattering results. C1 [Zhang, Wenluan; Nguyen, Ngoc A.; Mackay, Michael E.] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. [Murray, Roy] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Mackay, Michael E.] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA. [Nguyen, Ngoc A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zhang, WL; Mackay, ME (reprint author), Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA.; Mackay, ME (reprint author), Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA. EM jasonzwl@udel.edu; mem@udel.edu RI Zhang, Wenluan/E-1874-2017; Nguyen, Ngoc/E-5139-2017 OI Zhang, Wenluan/0000-0001-5651-7314; Nguyen, Ngoc/0000-0002-0278-406X FU NIST Award through the Center for Neutron Science at the University of Delaware [70NANB10H256]; National Institute of Standards and Technology, U.S. Department of Commerce FX This work was supported by NIST Award 70NANB10H256 through the Center for Neutron Science at the University of Delaware. The authors acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. The authors also thank Prof. David Martin for usage of the UV-vis spectrometer and Prof. Xinqiao Jia for the photoluminescence spectrometer. Mr. Frank Kriss' help on ultramicrotomy and Prof. Chaoying Ni's help on carbon coater are greatly appreciated. NR 35 TC 0 Z9 0 U1 32 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD FEB PY 2017 VL 160 BP 126 EP 133 DI 10.1016/j.solmat.2016.10.030 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA EF1GG UT WOS:000390072700017 ER PT J AU Schwartz, C Nordlund, D Sokaras, D Contreras, M Weng, TC Mansfield, L Hurst, KE Dameron, A Ramanathan, K Prendergast, D Christensen, ST AF Schwartz, Craig Nordlund, Dennis Sokaras, Dimosthenis Contreras, Miguel Weng, Tsu-Chien Mansfield, Lorelle Hurst, Katherine E. Dameron, Arrelaine Ramanathan, Kannan Prendergast, David Christensen, Steven T. TI Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS) SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Copper-indium-gallium-selenide; CIGS; XAS; Chemical bath deposition; Surface analysis ID CU(IN,GA)SE-2-BASED SOLAR-CELLS; THIN-FILM; ELECTRONIC-STRUCTURE; BUFFER LAYERS; CDS; INTERFACE; ALCOHOLS; EXCITATION; OXIDATION; SPECTRA AB The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effects of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry, is found in CIGS solar cells with excellent power conversion efficiency (< 19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide. C1 [Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; Weng, Tsu-Chien] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Schwartz, Craig; Prendergast, David] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Contreras, Miguel; Mansfield, Lorelle; Hurst, Katherine E.; Dameron, Arrelaine; Ramanathan, Kannan; Christensen, Steven T.] Natl Renewable Energy Lab, 15013 Denver W Pkwy, Golden, CO 80401 USA. [Weng, Tsu-Chien] Ctr High Pressure Sci & Technol Adv Res, 6-408,1690 Cailun Rd, Shanghai 201203, Peoples R China. RP Christensen, ST (reprint author), Natl Renewable Energy Lab, 15013 Denver W Pkwy, Golden, CO 80401 USA. FU U.S. Department of Energy [DE-AC02-76SF00515, DE-AC02-05CH11231, DE-AC36-08-GO28308]; National Renewable Energy Laboratory; U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Solar Energy Technology Office BRIDGE Program FX The Stanford Synchrotron Radiation Lightsource and Molecular Foundry are National User Facilities operated by Stanford University and the University of California Berkeley for the U.S. Department of Energy, grants DE-AC02-76SF00515 and DE-AC02-05CH11231 respectively. The Molecular Foundry portion of this work was performed under a user proposal. The work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The project was supported by U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Solar Energy Technology Office BRIDGE Program. We would like to thank Erik Nelson and Matthew Lattimer for their excellent beamline support. NR 41 TC 0 Z9 0 U1 34 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD FEB PY 2017 VL 160 BP 390 EP 397 DI 10.1016/j.solmat.2016.11.003 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA EF1GG UT WOS:000390072700048 ER PT J AU Ye, LY Li, P Jaroszynski, J Schwartz, J Shen, TM AF Ye, Liyang Li, Pei Jaroszynski, Jan Schwartz, Justin Shen, Tengming TI Strain control of composite superconductors to prevent degradation of superconducting magnets due to a quench: I. Ag/Bi2Sr2CaCu2Ox multifilament round wires SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE superconducting magnet; quench protection; Bi-2212 ID BI-2212/AG WIRES; 30 T; FIELD AB The critical current of many practical superconductors is sensitive to strain, and this sensitivity is exacerbated during a quench that induces a peak local strain which can be fatal to superconducting magnets. Here, a new method is introduced to quantify the influence of the conductor stress and strain state during normal operation on the margin to degradation during a quench, as measured by the maximum allowable hot spot temperature T-allowable, for composite wires within superconducting magnets. The first conductor examined is Ag-sheathed Bi2Sr2CaCu2Ox round wire carrying high engineering critical current density, J(E), of 550 A mm(-2) at 4.2 K and 15 T. The critical axial tensile stress of this conductor is determined to be 150 MPa and, in the absence of Lorentz forces, T-allowable is greater than 450 K. With increasing axial tensile stress, sa, however, T-allowable decreases nonlinearly, dropping to 280 K for sigma(a) = 120 MPa and to 160 K for sigma(a) = 145 MPa. T-allowable(sigma(a)) is shown to be nonlinear and independent of magnetic field from 15 to 30 T. T-allowable(sigma(a)) dictates the balance between magnetic field generation, which increases with the magnet operating current and stress, and the safety margin, which decreases with decreasing T-allowable, and therefore has important engineering value. It is also shown that T-allowable(sigma(a)) can be predicted accurately by a general strain model, showing that strain control is the key to preventing degradation of superconductors during a quench. C1 [Ye, Liyang; Li, Pei; Shen, Tengming] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Ye, Liyang; Shen, Tengming] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ye, Liyang; Schwartz, Justin] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Jaroszynski, Jan] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Shen, TM (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.; Shen, TM (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM tshen@lbl.gov RI Schwartz, Justin/D-4124-2009 OI Schwartz, Justin/0000-0002-7590-240X FU Office of High Energy Physics of the US Department of Energy (DOE) through a US DOE Early Career Award; US DOE through Fermi Research Alliance [DE-AC02-07CH11359]; National Science Foundation [DMR-1157490]; State of Florida FX This work was funded by the Office of High Energy Physics of the US Department of Energy (DOE) through a US DOE Early Career Award. The work at Fermilab is supported by US DOE through Fermi Research Alliance (DE-AC02-07CH11359), and at the NHMFL by the National Science Foundation (DMR-1157490) and the State of Florida. We greatly appreciated Daniel Assell, Ryan Mahoney, and NHMFL staff for technical support. NR 26 TC 0 Z9 0 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD FEB PY 2017 VL 30 IS 2 AR 025005 DI 10.1088/0953-2048/30/2/025005 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA EF5CG UT WOS:000390347700001 ER PT J AU Ren, HJ Hou, ZM Han, X Zhou, R AF Ren, Hejun Hou, Zhimin Han, Xiao Zhou, Rui TI Highly reductive radical CO2 center dot- deriving from a system with SO4 center dot- and formate anion: Implication for reduction of Cr(VI) from wastewater SO CHEMICAL ENGINEERING JOURNAL LA English DT Article DE Carbon dioxide anion radical; Advanced reduction process; Cr(VI) reduction; Mechanism; Persulfate; Formate ID THERMALLY ACTIVATED PERSULFATE; ZERO-VALENT IRON; AQUEOUS-SOLUTION; INORGANIC RADICALS; HEATED PERSULFATE; DEGRADATION; OXIDATION; REMOVAL; KINETICS; DIOXIDE AB An advanced reduction process (ARP) was established for the highly reductive radical COT produced by thermally activated persulfate (TAP) system in the presence of formate anions (FA). A series of control tests suggested that FA converted a strong oxidative condition into a reductive one, with CO2 center dot- as the predominant radical for Cr(VI) reduction initiated by SO4 center dot- in the presence of FA. This mechanism was confirmed by electron spin resonance experiment. The ability of the system to reduce Cr(VI) mainly depended on, the dosage ratio of FA and persulfate (PS), and the system maintained a strong reductive condition at ratios of FA to PS equal to or higher than one. Moreover, the rate of reaction increased with increasing PS dosage and reaction temperature, but decreased with increasing pH. The reduction efficiency of Cr(VI) reached more than 99% within 240 min for an initial Cr(VI) concentration of 50 mg.L-1 under the condition of [FA](0) = 30 mM, [PS](0) = 30 mM, T= 70 degrees C, and unadjusted pH. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ren, Hejun; Hou, Zhimin; Zhou, Rui] Jilin Univ, Coll Environm & Resources, Minist Educ, Key Lab Groundwater Resources & Environm, 2519 Jiefang Rd, Changchun 130021, Peoples R China. [Han, Xiao] Jilin Univ, Coll Math, 2699 Qianjin St, Changchun 130012, Peoples R China. [Zhou, Rui] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhou, R (reprint author), Jilin Univ, Coll Environm & Resources, Minist Educ, Key Lab Groundwater Resources & Environm, 2519 Jiefang Rd, Changchun 130021, Peoples R China. EM zhour@jlu.edu.cn FU National Nature Science Foundation of China [41302184]; Scientific Frontier and Interdisciplinary Research Project of Jilin University; Outstanding Youth Cultivation Plan of Jilin University; Key Laboratory of Ground-water Resources and Environment of Ministry of Education (Jilin University) FX This work was supported by the National Nature Science Foundation of China (Grant No. 41302184), Scientific Frontier and Interdisciplinary Research Project of Jilin University, Outstanding Youth Cultivation Plan of Jilin University, and Key Laboratory of Ground-water Resources and Environment of Ministry of Education (Jilin University). NR 49 TC 0 Z9 0 U1 20 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1385-8947 EI 1873-3212 J9 CHEM ENG J JI Chem. Eng. J. PD FEB 1 PY 2017 VL 309 BP 638 EP 645 DI 10.1016/j.cej.2016.10.071 PG 8 WC Engineering, Environmental; Engineering, Chemical SC Engineering GA ED9BY UT WOS:000389166400066 ER PT J AU Ritter, C Provino, A Manfrinetti, P Pathak, AK AF Ritter, C. Provino, A. Manfrinetti, P. Pathak, A. K. TI Tetragonal to triclinic structural transition in the prototypical CeScSi induced by a two-step magnetic ordering: a temperature-dependent neutron diffraction study of CeScSi, CeScGe and LaScSi SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE rare earth ternary compounds; cerium intermetallics; neutron diffraction; magnetic structure; magnetostructural transition ID ND AB An investigation on the ground state magnetism of CeScSi, CeScGe (tetragonal CeScSi-type, tI12, space group I4/mmm) by temperature-dependent powder neutron diffraction has been carried out, as debated and controversial data regarding the low temperature magnetic behaviours of these two compounds were reported. Our studies reveal that, while cooling, long-range magnetic ordering in CeScSi and CeScGe takes place by a two-step process. A first transition leads to a magnetic structure with the Ce moments aligned ferromagnetically onto two neighbouring tetragonal basal a-b planes of the CeScSi-type structure; the double layers are then antiferromagnetically coupled to each other along the c-axis. The transition temperature associated with the first ordering is T-N similar to 26 K and T-N similar to 48 K for the silicide and the germanide, respectively. Here the spin directions are rigorously confined to the basal plane, with values of the Ce magnetic moments of mu(Ce) = 0.8-1.0 mu(B). A second magnetic transition, which takes place at slightly lower temperatures, results in a canting of the ordered magnetic moments out of the basal plane which is accompanied by an increase of the magnetic moment value of Ce to mu(Ce) = 1.4-1.5 mu(B). Interestingly, the second magnetic transition leads to a structural distortion in both compounds from the higher-symmetry tetragonal space group I4/mmm to the lower-symmetry and triclinic I-1 (non-standard triclinic). Magnetic symmetry analysis shows that the canted structure would not be allowed in the I4/mmm space group; this result further confirms the structural transition. The transition temperatures TS from I4/mmm to I-1 are about 22 K in CeScSi and 36 K in CeScGe, i.e. well below the temperature of the first onset of antiferromagnetic order observed in this work (or below the ordering temperature, previously reported as either TC or TN). This result, along with the synchronism of the magnetic and structural transitions, suggests a magnetostructural origin of this structural distortion. We have also carried out powder neutron diffraction for LaScSi as a non-magneticallyordering reference compound and compared the results with those of CeScSi and CeScGe compounds. C1 [Ritter, C.] Inst Laue Langevin, BP 156, F-38042 Grenoble, France. [Provino, A.; Manfrinetti, P.] Univ Genoa, Dept Chem, Via Dodecanesco 31, I-16146 Genoa, Italy. [Provino, A.; Manfrinetti, P.] Inst SPIN CNR, Corso Perrone 24, I-16152 Genoa, Italy. [Pathak, A. K.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RP Ritter, C (reprint author), Inst Laue Langevin, BP 156, F-38042 Grenoble, France. EM ritter@ill.fr FU Office of Basic Energy Sciences, Division of Material Sciences and Engineering of the U.S. Department of Energy [DE-AC02-07CH11358]; Iowa State University; University of Genova, Italy FX A part of work at Ames Laboratory was supported by the Office of Basic Energy Sciences, Division of Material Sciences and Engineering of the U.S. Department of Energy under contract No. DE-AC02-07CH11358 with Iowa State University. A. Provino thanks the University of Genova, Italy, for supporting her research leave at the Ames Laboratory in 2016. NR 16 TC 0 Z9 0 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD FEB 1 PY 2017 VL 29 IS 4 AR 045802 DI 10.1088/1361-648X/29/4/045802 PG 8 WC Physics, Condensed Matter SC Physics GA ED9ZV UT WOS:000389233600001 PM 27882901 ER PT J AU Zhong, W Jiang, T Jafari, T Poyraz, AS Wu, W Kriz, DA Du, SC Biswas, S Pettes, MT Suib, SL AF Zhong, Wei Jiang, Ting Jafari, Tahereh Poyraz, Altug S. Wu, Wei Kriz, David A. Du, Shoucheng Biswas, Sourav Pettes, Michael Thompson Suib, Steven L. TI Modified inverse micelle synthesis for mesoporous alumina with a high D4 siloxane adsorption capacity SO MICROPOROUS AND MESOPOROUS MATERIALS LA English DT Article DE Mesoporous alumina (MA); Reaction times; Surfactant chain lengths; Calcination temperatures and hold times; Textural properties; D4 siloxane; Adsorption ID ACTIVATED CARBON; VISIBLE-LIGHT; TRIBLOCK COPOLYMER; MANGANESE OXIDES; ACID SITES; REMOVAL; BIOGAS; CRYSTALLINE; OXIDATION; SILICA AB In this work, mesoporous aluminas (MAs) with uniform and monomodal pores were fabricated via a modified inverse micelle synthesis method, using a non-polar solvent (to minimize the effect of water content) and short reaction time (for a fast evaporation process). The effects of reaction times (4-8 h), surfactant chain lengths (non-ionic surfactants), and calcination temperatures and hold times (450 -600 degrees C; 1-4 h) on the textural properties of MA were studied. The targeted pore sizes of MA were obtained in the range of 3.1-5.4 nm by adjusting the surfactant and reaction time. The surface area and pore volume were controlled by the calcination temperature and hold time while maintaining the thermal stability of the materials. The tuned MA of the large mesopore volume achieved 168 mg/g octamethylcyclotetrasiloxane (D4 siloxane) adsorption capacity, a 32% improvement compared to commercially activated alumina. After three adsorption recycles, the synthesized MA still maintained approximate 85% of its original adsorption capacity, demonstrating a sustainable adsorption performance and high potential for related industrial applications. (C) 2016 Elsevier Inc. All rights reserved. C1 [Zhong, Wei; Jafari, Tahereh; Wu, Wei; Du, Shoucheng; Pettes, Michael Thompson; Suib, Steven L.] Univ Connecticut, Inst Mat Sci, U-3136,97 North Eagleville Rd, Storrs, CT 06269 USA. [Jiang, Ting; Suib, Steven L.] Univ Connecticut, Dept Biomol & Chem Engn, U-3222,191 Auditorium Rd, Storrs, CT 06269 USA. [Poyraz, Altug S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Wu, Wei; Pettes, Michael Thompson] Univ Connecticut, Dept Mech Engn, U-3139,197 Auditorium Rd, Storrs, CT 06269 USA. [Kriz, David A.; Biswas, Sourav; Suib, Steven L.] Univ Connecticut, Dept Chem, U-3060,55 North Eagleville Rd, Storrs, CT 06269 USA. RP Suib, SL (reprint author), Univ Connecticut, Dept Chem, U-3060,55 North Eagleville Rd, Storrs, CT 06269 USA. EM steven.suib@uconn.edu OI Pettes, Michael/0000-0001-6862-6841; Suib, Steven/0000-0003-3073-311X FU Center of Energy Innovation; UCONN Fraunhofer Center FX The authors would like to acknowledge the support by Center of Energy Innovation and the UCONN Fraunhofer Center. The authors thank the UCONN-FEI Center for Advanced Microscopy and Materials Analysis. The authors thank Dr.You-Jun Fu for GC/MSD training, Drs. Marcus V. Giotto, Nicholas Eddy for NMR testing, and Dr. Francis Galasso, Dr. Ben Liu, Curtis Guild, Chris Monteleo for helpful discussions. NR 53 TC 0 Z9 0 U1 16 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-1811 EI 1873-3093 J9 MICROPOR MESOPOR MAT JI Microporous Mesoporous Mat. PD FEB PY 2017 VL 239 BP 328 EP 335 DI 10.1016/j.micromeso.2016.10.028 PG 8 WC Chemistry, Applied; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EE0QP UT WOS:000389284300037 ER PT J AU Fernandez, AG Gomez-Vidal, JC AF Fernandez, Angel G. Gomez-Vidal, Judith C. TI Thermophysical properties of low cost lithium nitrate salts produced in northern Chile for thermal energy storage SO RENEWABLE ENERGY LA English DT Article DE Molten salts; Lithium nitrate; Thermal energy storage; Concentrated solar power ID CSP PLANTS; STAINLESS-STEELS; CORROSION; STABILITY AB In recent years, lithium containing salts have been studied for thermal energy storage (TES) applications because of their excellent thermophysical properties. In solar power plants, lithium is seen as a way to improve the properties of state-of-the art molten salts used today. Lithium nitrate is a good candidate for sensible heat storage, because of its ability to increase the salt mixture's working temperature range. In the present research, thermophysical properties characterization of lithium nitrate containing salts, produced in Chile, have been carried out. Corrosion evaluations at 390 degrees and 565 degrees C for 1000 h were performed for low chromium steel T22 and stainless steels (AISI 430 and AISI 316), respectively. Chemical composition of the salts including identification of corrosion products and impurities was determined and an estimation of the Chilean production costs is reported. The study shows a loss of thermal properties after the corrosion tests. The heat capacity was reduced, possibly caused by the formation of oxides at high temperatures. The partial thermal decomposition of the salt was probably produced by the incorporation of corrosion products from the steel. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Fernandez, Angel G.] Univ Antofagasta, Energy Dev Ctr, Av Univ Antofagasta 02800, Antofagasta, Chile. [Fernandez, Angel G.; Gomez-Vidal, Judith C.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Fernandez, AG (reprint author), Univ Antofagasta, Energy Dev Ctr, Av Univ Antofagasta 02800, Antofagasta, Chile. EM angel.fernandez@uantof.cl RI FONDAP, SERC Chile/A-9133-2016; OI Fernandez Diaz, Angel/0000-0003-3866-8674 FU CONICYT/FONDAP "Solar Energy Research Center" SERC-Chile [15110019]; Fondecyt [3140014]; Education Ministry of Chile [PMI ANT 1201]; U.S. Department of Energy [DE-AC36-08-GO28308] FX The authors would like to acknowledge the financial support provided by CONICYT/FONDAP 15110019 "Solar Energy Research Center" SERC-Chile, Fondecyt Postdoctoral grant no 3140014 and the Education Ministry of Chile Grant PMI ANT 1201. The work at NREL was financially supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. NR 17 TC 0 Z9 0 U1 24 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD FEB PY 2017 VL 101 BP 120 EP 125 DI 10.1016/j.renene.2016.08.052 PG 6 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA ED3VD UT WOS:000388775700013 ER PT J AU Chen, GQ Feng, ZL Chen, J Liu, L Li, H Liu, Q Zhang, S Cao, X Zhang, G Shi, QY AF Chen, Gaoqiang Feng, Zhili Chen, Jian Liu, Lei Li, Han Liu, Qu Zhang, Shuai Cao, Xiong Zhang, Gong Shi, Qingyu TI Analytical approach for describing the collapse of surface asperities under compressive stress during rapid solid state bonding SO SCRIPTA MATERIALIA LA English DT Article DE Solid state bonding; Surface asperities; Plastic deformation; Strain rate ID ALUMINUM-ALLOY; FRICTION; MODEL; TEMPERATURE; PREDICTION; EXTRUSION; MECHANISMS; SIMULATION; GENERATION; SHRINKAGE AB Many material manufacturing technologies, such as friction stir welding, rely on rapid solid state bonding to join metal surfaces. In this letter, a differential equation is developed to formulate the growing of the interfacial bonded area owing to the collapse of surface asperities under compressive stress during rapid solid state bonding of metal surfaces. The effect of pressure, temperature and bonding time on the growing of bonded area is discussed. The proposed approach is verified by experimental data. (C) 2016 Acta Materialia Inc Published by Elsevier Ltd. All rights reserved. C1 [Chen, Gaoqiang; Liu, Lei; Li, Han; Liu, Qu; Zhang, Shuai; Cao, Xiong; Zhang, Gong; Shi, Qingyu] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol, Beijing 100084, Peoples R China. [Chen, Gaoqiang; Liu, Lei; Li, Han; Liu, Qu; Zhang, Shuai; Cao, Xiong; Zhang, Gong; Shi, Qingyu] Tsinghua Univ, Dept Mech Engn, Key Lab Adv Mat Proc Technol, Beijing 100084, Peoples R China. [Chen, Gaoqiang; Feng, Zhili; Chen, Jian] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Shi, QY (reprint author), Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol, Beijing 100084, Peoples R China.; Shi, QY (reprint author), Tsinghua Univ, Dept Mech Engn, Key Lab Adv Mat Proc Technol, Beijing 100084, Peoples R China. EM shqy@tsinghua.edu.cn FU National Natural Science Foundation of China [51375259]; National Science and Technology Major Project of the Ministry of Science and Technology of China [2012ZX04012-011]; China Scholarship Council [20130620105] FX The work was supported by the National Natural Science Foundation of China (grant no. 51375259) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (no. 2012ZX04012-011). Besides, Gaoqiang Chen was supported by the China Scholarship Council (file no. 20130620105) for 2-year study at Oak Ridge National Laboratory (Oak Ridge, TN, USA). NR 41 TC 0 Z9 0 U1 12 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD FEB PY 2017 VL 128 BP 41 EP 44 DI 10.1016/j.scriptamat.2016.10.015 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA ED3YD UT WOS:000388783500010 ER PT J AU Joost, WJ Krajewski, PE AF Joost, William J. Krajewski, Paul E. TI Towards magnesium alloys for high-volume automotive applications SO SCRIPTA MATERIALIA LA English DT Article DE Magnesium; Automotive; Lightweighting ID RARE-EARTH-ELEMENTS; DIE-CAST MAGNESIUM; MG-BASED ALLOYS; TENSILE PROPERTIES; MECHANICAL-PROPERTIES; TEXTURE DEVELOPMENT; FATIGUE BEHAVIOR; STRAIN RATES; WIDE-RANGE; STRENGTH AB Reducing vehicle weight is an important approach for increasing fuel economy, addressing regulatory requirements, and meeting consumer needs. Magnesium alloys are among the lightest structural metals and offer tremendous weight saving potential; however, many technical and commercial barriers limit their use in today's cars and trucks. Following a brief review of historical trends in vehicle weight and automotive magnesium, we describe key barriers to wider adoption of magnesium in high-volume vehicle applications. A discussion of manufacturing and processing, in-service performance, and cost requirements identifies specific development needs and opportunities while framing promising paths forward. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Joost, William J.] US DOE, Vehicle Technol Off, Washington, DC 20585 USA. [Krajewski, Paul E.] Gen Motors Global Res & Dev, Warren, MI 48090 USA. RP Joost, WJ (reprint author), US DOE, Vehicle Technol Off, Washington, DC 20585 USA. EM william.joost@ee.doe.gov NR 80 TC 0 Z9 0 U1 31 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD FEB PY 2017 VL 128 BP 107 EP 112 DI 10.1016/j.scriptamat.2016.07.035 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA ED3YD UT WOS:000388783500025 ER PT J AU Kestell, JD Zhong, JQ Shete, M Waluyo, I Sadowski, JT Stacchiola, DJ Tsapatsis, M Boscoboinik, JA AF Kestell, John D. Zhong, Jian-Qiang Shete, Meera Waluyo, Iradwikanari Sadowski, Jerzy T. Stacchiola, Dario J. Tsapatsis, Michael Boscoboinik, J. Anibal TI Studying two-dimensional zeolites with the tools of surface science: MFI nanosheets on Au(111) SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 250th National Meeting and Exposition of the American-Chemical-Society (ACS) CY AUG 16-20, 2015 CL Boston, MA SP Amer Chem Soc, Div Catalysis Sci & Technol DE Zeolites; Surface science; X-ray photoelectron spectroscopy; Infrared reflection absorption spectroscopy ID AQUEOUS-SOLUTION; ADSORPTION; ALCOHOLS; SILICALITE-1; SILICATES; CHEMISTRY; METHANOL; ZSM-5; IR AB While surface science has provided fundamental insights into a variety a materials, the most used catalysts in the industry, namely zeolites, still remain a challenge. The recent preparation of two-dimensional versions of MFI zeolite frameworks and the possibility of their deposition on electrically conductive supports provides for the first time a viable strategy to perform detailed studies on industrially relevant zeolites using the vast toolkit of surface science. In this work we demonstrate the use of infrared reflection absorption spectroscopy (IRRAS) and synchrotron-based X-ray photoelectron spectroscopy (XPS) to study these materials. Furthermore, polarization modulation IRRAS is used to study the adsorption of methanol and its effect in phonon vibrations of the zeolite framework. The possibility of using surface science methods, in particular under ambient pressure conditions, for the study of well-defined zeolites and other microporous structures opens new avenues to understand structural and mechanistic aspects of these materials as catalysts, adsorbents and molecular sieves. Published by Elsevier B.V. C1 [Kestell, John D.; Zhong, Jian-Qiang; Sadowski, Jerzy T.; Stacchiola, Dario J.; Boscoboinik, J. Anibal] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Waluyo, Iradwikanari] Brookhaven Natl Lab, Photon Sci Div, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Shete, Meera; Tsapatsis, Michael] Univ Minnesota, Dept Chem Engn, Minneapolis, MN 55455 USA. RP Boscoboinik, JA (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM jboscoboinik@bnl.gov OI Sadowski, Jerzy/0000-0002-4365-7796 NR 35 TC 0 Z9 0 U1 30 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD FEB 1 PY 2017 VL 280 BP 283 EP 288 DI 10.1016/j.cattod.2016.07.015 PN 2 PG 6 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA ED8CH UT WOS:000389099000011 ER PT J AU Schoneman, JD Allen, MS Kuether, RJ AF Schoneman, Joseph D. Allen, Matthew S. Kuether, Robert J. TI Relationships between nonlinear normal modes and response to random inputs SO MECHANICAL SYSTEMS AND SIGNAL PROCESSING LA English DT Article DE Nonlinear normal modes; Geometric nonlinearity; Random response AB The ability to model nonlinear structures subject to random excitation is of key importance in designing hypersonic aircraft and other advanced aerospace vehicles. When a structure is linear, superposition can be used to construct its response to a known spectrum in terms of its linear modes. Superposition does not hold for a nonlinear system, but several works have shown that a system's dynamics can still be understood qualitatively in terms of its nonlinear normal modes (NNMs). This work investigates the connection between a structure's undamped nonlinear normal modes and the spectrum of its response to high amplitude random forcing. Two examples are investigated: a spring-mass system and a clamped-clamped beam modeled within a geometrically nonlinear finite element package. In both cases, an intimate connection is observed between the smeared peaks in the response spectrum and the frequency-energy dependence of the nonlinear normal modes. In order to understand the role of coupling between the underlying linear modes, reduced order models with and without modal coupling terms are used to separate the effect of each NNM's backbone from the nonlinear couplings that give rise to internal resonances. In the cases shown here, uncoupled, single-degree-of-freedom nonlinear models are found to predict major features in the response with reasonable accuracy; a highly inexpensive approximation such as this could be useful in design and optimization studies. More importantly, the results show that a reduced order model can be expected to give accurate results only if it is also capable of accurately predicting the frequency-energy dependence of the nonlinear modes that are excited. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Schoneman, Joseph D.; Allen, Matthew S.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Kuether, Robert J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Schoneman, Joseph D.] 534 Engn Res Bldg,1500 Engn Dr, Madison, WI 53706 USA. [Allen, Matthew S.] 535 Engn Res Bldg,1500 Engn Dr, Madison, WI 53706 USA. RP Schoneman, JD (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM schoneman@wisc.edu; msallen@engr.wisc.edu; rjkueth@sandia.gov FU Air Force Office of Scientific Research, under Multi-Scale Structural Mechanics and Prognosis program [FA9550-11-1-0035]; National Science Foundation [CMMI-0969224, DGE-1256259] FX This work was supported by the Air Force Office of Scientific Research, Award # FA9550-11-1-0035, under the Multi-Scale Structural Mechanics and Prognosis program managed by Dr. David Stargel. Also, the authors would like to thank Joseph Hollkamp and other collaborators in the Structural Sciences Center at the Air Force Research Laboratory for many helpful suggestions and discussions. Additional support came from the National Science Foundation under Grant nos. CMMI-0969224 and DGE-1256259 with the associated REU supplements. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. NR 24 TC 0 Z9 0 U1 7 U2 7 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0888-3270 J9 MECH SYST SIGNAL PR JI Mech. Syst. Signal Proc. PD FEB 1 PY 2017 VL 84 BP 184 EP 199 DI 10.1016/j.ymssp.2016.07.010 PN A PG 16 WC Engineering, Mechanical SC Engineering GA ED3YZ UT WOS:000388785700011 ER PT J AU Tian, M McCormick, RL Ratcliff, MA Luecke, J Yanowitz, J Glaude, PA Cuijpers, M Boot, MD AF Tian, Miao McCormick, Robert L. Ratcliff, Matthew A. Luecke, Jon Yanowitz, Janet Glaude, Pierre-Alexandre Cuijpers, Michel Boot, Michael D. TI Performance of lignin derived compounds as octane boosters SO FUEL LA English DT Article DE Lignin; Knock; Constant volume autoignition; Anisole; Guaiacol; Octane boosters ID IGNITION QUALITY TESTER; DUTY DIESEL-ENGINE; FAST PYROLYSIS; KRAFT LIGNIN; CATALYTIC HYDRODEOXYGENATION; MODEL COMPOUNDS; N-HEPTANE; DEPOLYMERIZATION; BIOMASS; CHEMICALS AB The performance of spark ignition engines is highly dependent on fuel anti-knock quality, which in turn is governed by autoignition chemistry. In this study, we explore this chemistry for various aromatic oxygenates (i.e., anisole, 4-methyl anisole, 4-propyl anisole, guaiacol, 4-methyl guaiacol, 4-ethyl guaiacol) that can be produced from lignin, a low value residual biomass stream that is generated in paper pulping and cellulosic ethanol plants. All compounds share the same benzene ring, but have distinct oxygen functionalities and degrees of alkylation. The objective of this study is to ascertain what the impact is of said side groups on anti-knock quality and, by proxy, on fuel economy in a modern Volvo T5 spark ignition engine. To better comprehend the variation in behavior amongst the fuels, further experiments have been conducted in a constant volume autoignition device. The results demonstrate that alkylation has a negligible impact on anti-knock quality, while the addition of functional oxygen groups manifests as a deterioration in anti-knock quality. (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Tian, Miao; Cuijpers, Michel; Boot, Michael D.] Eindhoven Univ Technol, Multiphase & React Flows, POB 513, NL-5600 MB Eindhoven, Netherlands. [McCormick, Robert L.; Ratcliff, Matthew A.; Luecke, Jon] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yanowitz, Janet] EcoEngineering Inc, Boulder, CO 80304 USA. [Glaude, Pierre-Alexandre] Univ Lorraine, CNRS, ENSIC, LRGP, 1 Rue Grandville, F-54000 Nancy, France. RP Tian, M (reprint author), Eindhoven Univ Technol, Multiphase & React Flows, POB 513, NL-5600 MB Eindhoven, Netherlands. EM m.tian@tue.nl; Robert.McCormick@nrel.gov; Matthew.Ratcliff@nrel.gov; Jon.Luecke@nrel.gov; ecoeng.yano@gmail.com; pierre-alexandre.glaude@univ-lorraine.fr; M.C.M.Cuijpers@tue.nl; m.d.boot@tue.nl FU U.S. Department of Energy - Vehicles Technologies Office [DE347AC36-99GO10337]; National Renewable Energy Laboratory; SER-Brabant (New Energy House project); Chinese Scholarship Council (CSC) FX The authors would like to thank Lisa Fouts, Earl Christensen from the National Renewable Energy Laboratory for their help with the experimental work. Financial support for the National Renewable Energy Laboratory employees was provided by the U.S. Department of Energy - Vehicles Technologies Office, under Contract No. DE347AC36-99GO10337 with the National Renewable Energy Laboratory. The authors also gratefully acknowledge SER-Brabant (New Energy House project) and the Chinese Scholarship Council (CSC) for their financial support and, finally, Volvo Car Corporation for technical support regarding the engine tests. NR 65 TC 0 Z9 0 U1 30 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD FEB 1 PY 2017 VL 189 BP 284 EP 292 DI 10.1016/j.fuel.2016.10.084 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EC0FZ UT WOS:000387775500027 ER PT J AU Solano, ER Vianello, N Delabie, E Hillesheim, JC Buratti, P Refy, D Balboa, I Boboc, A Coelho, R Sieglin, B Silburn, S Drewelow, P Devaux, S Dodt, D Figueiredo, A Frassinetti, L Marsen, S Meneses, L Maggi, CF Morris, J Gerasimov, S Baruzzo, M Stamp, M Grist, D Nunes, I Rimini, F Schmuck, S Lupelli, I Silva, C AF Solano, Emilia R. Vianello, N. Delabie, E. Hillesheim, J. C. Buratti, P. Refy, D. Balboa, I. Boboc, A. Coelho, R. Sieglin, B. Silburn, S. Drewelow, P. Devaux, S. Dodt, D. Figueiredo, A. Frassinetti, L. Marsen, S. Meneses, L. Maggi, C. F. Morris, J. Gerasimov, S. Baruzzo, M. Stamp, M. Grist, D. Nunes, I. Rimini, F. Schmuck, S. Lupelli, I. Silva, C. CA JET Contributors TI Axisymmetric oscillations at L-H transitions in JET: M-mode SO NUCLEAR FUSION LA English DT Article DE H-mode; L-H transition; MHD; pedestal ID TOKAMAK; PLASMAS; BARRIER AB L to H transition studies at JET have revealed an n = 0, m = 1 magnetic oscillation starting immediately at the L to H transition (called M-mode for brevity). While the magnetic oscillation is present a weak ELM-less H-mode regime is obtained, with a clear increase of density and a weak electron temperature pedestal. It is an intermediate state between L and H-mode. In ICRH heated plasmas or low density NBI plasmas the magnetic mode and the pedestal can remain steady (with small oscillations) for the duration of the heating phase, of order 10 s or more. The axisymmetric magnetic oscillation has period similar to 0.5-2 ms, and poloidal mode number m = 1: it looks like a pedestal localised up/down oscillation, although it is clearly a natural oscillation of the plasma, not driven by the position control system. Electron cyclotron emission, interferometry, reflectometry and fast Li beam measurements locate the mode in the pedestal region. Da, fast infrared camera and Langmuir probe measurements show that the mode modulates heat and particle fluxes to the target. The mode frequency appears to scale with the poloidal Alfven velocity, and not with sound speed (i.e. it is not a geodesic acoustic mode). A heuristic model is proposed for the frequency scaling of the mode. We discuss the relationship between the M-mode and other related observations near the L-H transition. C1 Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England. [Solano, Emilia R.] CIEMAT, Lab Nacl Fus, Madrid, Spain. [Vianello, N.] EPFL SPC, Lausanne, Switzerland. [Delabie, E.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Hillesheim, J. C.; Balboa, I.; Boboc, A.; Silburn, S.; Maggi, C. F.; Morris, J.; Gerasimov, S.; Stamp, M.; Grist, D.; Rimini, F.; Schmuck, S.; Lupelli, I.] Culham Sci Ctr, CCFE, Abingdon, Oxon, England. [Buratti, P.] UK Unita Tecn Fus ENEA CR Frascati, Rome, Italy. [Refy, D.] Wigner Res Ctr Phys, Budapest, Hungary. [Coelho, R.; Figueiredo, A.; Meneses, L.; Nunes, I.; Silva, C.] IST, Inst Plasmas & Fusao Nucl, Lisbon, Portugal. [Devaux, S.] Univ Lorraine, CNRS, Inst Jean Lamour, Vandoeuvre Les Nancy, France. [Sieglin, B.; Dodt, D.] Max Plank Inst Plasmaphys, Garching, Germany. [Frassinetti, L.] KTH Royal Inst Technol, Div Fus Plasma Phys, Stockholm, Sweden. [Drewelow, P.] Max Plank Inst Plasmaphys, Greifswald, Germany. [Vianello, N.; Baruzzo, M.] RFX, Corso Stati Uniti 4, Padua, Italy. RP Solano, ER (reprint author), CIEMAT, Lab Nacl Fus, Madrid, Spain. EM Emilia.Solano@ciemat.es RI Gerasimov, Sergei/O-4881-2015; Solano, Emilia/A-1212-2009; Nunes, Isabel/D-1627-2017; OI Gerasimov, Sergei/0000-0002-6249-2931; Solano, Emilia/0000-0002-4815-3407; Nunes, Isabel/0000-0003-0542-1982 FU Spanish Ministerio de Economia y Competitividad (MINECO) [ENE2014-52174-P]; EURATOM research and training programme [633053] FX Ernesto Lerche, Dirk van Eester, Philipe Jacquet, George Sips and Giuseppe Calabro have provided us with opportunities to study the M-mode in their experiments, and/or helped us obtain useful plasmas. Agatha Czarneka and Dirk van Eester did some early data analysis to show the mode had no special characteristics due to impurities or RF effects. We have had interesting discussions with Jon Graves, Xavier Garbet, Gregori Birkenmeier, Garrard Conway, Teresa Estrada, GuoShen Xu, Tom Osborne, both about the nature of GAMs and LCOs and similarities/differences in similar modes in other devices. This work is funded in part by the Spanish Ministerio de Economia y Competitividad (MINECO) under grant ENE2014-52174-P.; This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the EURATOM research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 41 TC 0 Z9 0 U1 41 U2 41 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2017 VL 57 IS 2 SI SI AR 022021 DI 10.1088/0029-5515/57/2/022021 PG 12 WC Physics, Fluids & Plasmas SC Physics GA EA3GX UT WOS:000386491100001 ER PT J AU Prodinger, S Derewinski, MA Wang, YL Washton, NM Walter, ED Szanyi, J Gao, F Wang, Y Peden, CHF AF Prodinger, Sebastian Derewinski, Miroslaw A. Wang, Yilin Washton, Nancy M. Walter, Eric D. Szanyi, Janos Gao, Feng Wang, Yong Peden, Charles H. F. TI Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Selective catalytic reduction; Cu/SSZ-13; Zeolite synthesis; Particle size; Hydrothermal aging ID MULTIPLE ALUMINUM ENVIRONMENTS; SOLID-STATE NMR; MQ MAS NMR; ZEOLITE-BETA; HYDROTHERMAL STABILITY; NH3-SCR CATALYSTS; SSZ-13 ZEOLITE; AL-27 MAS; EXCHANGED SSZ-13; HIGH-FIELD AB For the first time, sub-micron Cu/SSZ-13, obtained by modifying an existing synthesis procedure, was shown to be an effective and stable catalyst for selective catalytic reduction of NO. Characterization of the materials with X-ray diffraction, N-2-physisorption and Al-27 MAS NMR shows that hydrothermal aging, which simulates SCR reaction conditions, is more destructive for smaller particles in a sodium form. After Cu exchange, however, the catalytic performance and hydrothermal stability for Cu/SSZ-13 is independent of the particle size. In particular, a clear positive correlation is found between remaining tetrahedral framework Al and isolated Cu-ion concentrations in aged Cu/SSZ-13 catalysts of comparable Al and Cu contents. This indicates that (1) isolated Cu-ion and paired framework Al configurations display remarkable hydrothermal stabilities; and (2) paired-Al contents can be varied via modifying the synthesis procedures, which appear to have a more critical influence on stabilizing isolated Cu-ions during harsh hydrothermal aging than the particle size. This study is of high interest for applications in vehicular DeNOx technologies where high loadings of active species on wash coats can be achieved by using sub-micron Cu/SSZ-13. (C) 2016 Elsevier B.V. All rights reserved. C1 [Prodinger, Sebastian; Derewinski, Miroslaw A.; Wang, Yilin; Szanyi, Janos; Gao, Feng; Wang, Yong; Peden, Charles H. F.] Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. [Washton, Nancy M.; Walter, Eric D.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. [Wang, Yong] Washington State Univ, Sch Chem & Biol Engn, Pullman, WA 99364 USA. RP Derewinski, MA; Gao, F (reprint author), Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. EM miroslaw.derewinski@pnnl.gov; feng.gao@pnnl.gov OI Prodinger, Sebastian/0000-0001-8749-0476 FU US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office; Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under the Laboratory Directed Research & Development Program at PNN; DOE's Office of Biological and Environmental Research; Pacific Northwest National Laboratory (PNNL) FX The authors would like to thank B. W. Arey and J. J. Ditto for performing electron microscope imaging and M. Neukamm for performing MS measurements. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. S. P and M. A. D also acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under the Laboratory Directed Research & Development Program at PNNL. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle. NR 44 TC 0 Z9 0 U1 146 U2 146 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD FEB PY 2017 VL 201 BP 461 EP 469 DI 10.1016/j.apcatb.2016.08.053 PG 9 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA DY9RJ UT WOS:000385472500046 ER PT J AU Chen, X Burrell, KH Osborne, TH Solomon, WM Barada, K Garofalo, AM Groebner, RJ Luhmann, NC McKee, GR Muscatello, CM Ono, M Petty, CC Porkolab, M Rhodes, TL Rost, JC Snyder, PB Staebler, GM Tobias, BJ Yan, Z AF Chen, Xi Burrell, K. H. Osborne, T. H. Solomon, W. M. Barada, K. Garofalo, A. M. Groebner, R. J. Luhmann, N. C. McKee, G. R. Muscatello, C. M. Ono, M. Petty, C. C. Porkolab, M. Rhodes, T. L. Rost, J. C. Snyder, P. B. Staebler, G. M. Tobias, B. J. Yan, Z. CA DIII-D Team TI Stationary QH-mode plasmas with high and wide pedestal at low rotation on DIII-D SO NUCLEAR FUSION LA English DT Article DE QH-mode; low rotation; E x B shear; EHO; ELM-free; turbulence; pedestal transport ID QUIESCENT H-MODE; ASDEX UPGRADE; D TOKAMAK; REGIME; JT-60U AB A stationary, quiescent H-mode (QH-mode) regime with a wide pedestal and improved confinement at low rotation has been discovered on DIII-D with reactor relevant edge parameters and no ELMs. As the injected neutral beam torque is ramped down and the edge E x B rotation shear reduces, the transition from standard QH to the wide pedestal QH-mode occurs. At the transition, the coherent edge harmonic oscillations (EHO) that usually regulate the standard QH edge cease and broadband edge MHD modes appear along with a rapid increase in the pedestal pressure height (by <= 60%) and width (by <= 50%). We posit that the enhanced edge turbulence-driven transport, enabled by the lower edge E x B flow shear due to lower torque reduces the pedestal gradient and, combined with the high edge instability limit provided by the balanced double-null plasma shape, permits the development of a broader and thus higher pedestal that is turbulence-transport-limited. Even with the significantly enhanced pedestal pressure, the edge operating point is below the peeling ballooning mode stability boundary and thus without ELMs. Improved transport in the outer core region (0.8 <= rho <= 0.9) owing to increased E x B flow shear in that region and the enhanced pedestal boost the overall confinement by up to 45%. These findings advance the physics basis for developing stationary ELM-free high-confinement operation at low rotation for future burning plasma where similar collisionality and rotation levels are expected. C1 [Chen, Xi; Burrell, K. H.; Osborne, T. H.; Garofalo, A. M.; Groebner, R. J.; Muscatello, C. M.; Petty, C. C.; Snyder, P. B.; Staebler, G. M.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Solomon, W. M.; Tobias, B. J.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Barada, K.; Rhodes, T. L.] Univ Calif Los Angeles, POB 957099, Los Angeles, CA 90095 USA. [Luhmann, N. C.] Univ Calif Davis, 347 Mem Un, Davis, CA 53706 USA. [McKee, G. R.; Yan, Z.] Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA. [Ono, M.] Grad Univ Adv Studies SOKENDAI, Hayama, Kanagawa, Japan. [Porkolab, M.; Rost, J. C.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Chen, X (reprint author), Gen Atom, POB 85608, San Diego, CA 92186 USA. EM chenxi@fusion.gat.com OI Barada, Kshitish/0000-0001-7724-8491 FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FC02-04ER54698, DE-FG03-95ER54309, DE-FC02-06ER54873, DE-AC02-09CH11466, DE-FG02-08ER54984, DE-FG02-99ER54531, DE-FG02-08ER54999, DE-FG02-94ER54235] FX This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698 [1], DE-FG03-95ER54309 [1], DE-FC02-06ER54873 [1], DE-AC02-09CH11466 [2], DE-FG02-08ER54984 [3], DE-FG02-99ER54531 [4], DE-FG02-08ER54999 [5], and DE-FG02-94ER54235 [7]. The TGLF calculations is done using OMFIT interface [36]. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 31 TC 0 Z9 0 U1 11 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2017 VL 57 IS 2 SI SI AR 022007 DI 10.1088/0029-5515/57/2/022007 PG 13 WC Physics, Fluids & Plasmas SC Physics GA DZ2JN UT WOS:000385668200006 ER PT J AU Ding, S Xu, GS Wang, Q Solomon, WM Zhao, Y Gong, X Garofalo, AM Holcomb, CT McKee, G Yan, Z Wang, HQ Qian, J Wan, BN AF Ding, S. Xu, G. S. Wang, Q. Solomon, W. M. Zhao, Y. Gong, X. Garofalo, A. M. Holcomb, C. T. McKee, G. Yan, Z. Wang, H. Q. Qian, J. Wan, B. N. TI Scenario development for high beta(p) low torque plasma with q(min) above 2 and large-radius internal transport barrier in DIII-D SO NUCLEAR FUSION LA English DT Article DE internal transport barrie; high poloidal beta; low torque; high minimum safty factor ID REVERSED SHEAR PLASMAS; JT-60U; JET AB A recent experiment on DIII-D, which was conducted by the joint research team from DIII-D and EAST, has extended the previous high beta(p), high q(min) regime, which has been tested in the 2013 DIII-D/EAST joint experiment, to inductive operation at higher plasma current (I-p = 0.8 MA) and significantly higher normalized fusion performance (G= H-89 beta(N)/q(95)(2)= 0.16). The experiment aims at exploring high performance scenario with q(min)> 2 and reduced torque for long pulse operation, which can be potentially extrapolated to EAST. The effort was largely motivated by the interest in developing a feasible scenario for long-pulse high performance operation with low torque on EAST. Very high confinement, H-89 = 3.5 or H-98,(y2) = 2.1 with beta(N) similar to 3.0, has been achieved transiently in this experiment together with q(min)> 2 and reduced NBI torque (3 similar to 5 N m). The excellent confinement is associated with the spontaneous formation of an internal transport barrier (ITB) in plasmas with I-p = 0.8 MA at large minor radius (normalized rho similar to 0.7) in all channels (n(e), T-e, T-i, V-phi, especially strong in the T-e channel). Fluctuation measurements show a significant reduction in the fluctuation levels, including AE modes and broadband turbulence, at the location where an ITB forms. Linear gyrokinetic simulations also support the decrease of the growth rate of the most unstable mode during strong ITB formation. The simulation implies that strong suppression of turbulence and a positive feedback loop may be active in this process and is responsible for the spontaneous formation of large-radius ITB. In an unstable ITB phase, an ELM crash is observed to have a positive effect on transient formation of large-radius ITB. The formation of this kind of ITB is found to have a shielding (protecting) effect on the core plasma while isolating the perturbation due to ELM crash. C1 [Ding, S.; Xu, G. S.; Gong, X.; Qian, J.; Wan, B. N.] Chinese Acad Sci, Inst Plasma Phys, POB 1126, Hefei 230031, Anhui, Peoples R China. [Wang, Q.] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China. [Solomon, W. M.; Garofalo, A. M.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Zhao, Y.] Soochow Univ, Suzhou 215006, Jiangsu, Peoples R China. [Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [McKee, G.; Yan, Z.] Univ Wisconsin, Madison, WI 53706 USA. [Wang, H. Q.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Xu, GS (reprint author), Chinese Acad Sci, Inst Plasma Phys, POB 1126, Hefei 230031, Anhui, Peoples R China. EM gsxu@ipp.ac.cn FU National Natual Science Foundation of China [11575248, 11305209]; National Magnetic Confinement Fusion Science Program of China [2015GB103001, 2015GB102004, 2015GB101000]; Youth Innovation Promotion Association Chinese Academy of Sciences [2016384]; U.S. Department of Energy Office of Sciences [DE-FC02-04ER54698] FX This work is supported by National Natual Science Foundation of China under Grant Nos. 11575248 and 11305209. This work is sponsored in part by National Magnetic Confinement Fusion Science Program of China under Contract Nos. 2015GB103001, 2015GB102004 and 2015GB101000. This work is also sponsored in part by Youth Innovation Promotion Association Chinese Academy of Sciences (2016384). This work is supported by the U.S. Department of Energy Office of Sciences under DE-FC02-04ER54698. NR 17 TC 0 Z9 0 U1 21 U2 21 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2017 VL 57 IS 2 SI SI AR 022016 DI 10.1088/0029-5515/57/2/022016 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DZ2JN UT WOS:000385668200015 ER PT J AU Thome, KE Bongard, MW Barr, JL Bodner, GM Burke, MG Fonck, RJ Kriete, DM Perry, JM Reusch, JA Schlossberg, DJ AF Thome, K. E. Bongard, M. W. Barr, J. L. Bodner, G. M. Burke, M. G. Fonck, R. J. Kriete, D. M. Perry, J. M. Reusch, J. A. Schlossberg, D. J. TI H-mode plasmas at very low aspect ratio on the Pegasus Toroidal Experiment SO NUCLEAR FUSION LA English DT Article DE H-mode; spherical tokamaks; equilibrium reconstructions; energy confinement; ELM; ELM dynamics ID MAST SPHERICAL TOKAMAK; GAS FUELING LOCATION; POWER THRESHOLD; HIGH-BETA; DIII-D; CONFINEMENT; PERFORMANCE; DISCHARGES; TRANSITION; PHYSICS AB H-mode is obtained at A similar to 1.2 in the Pegasus Toroidal Experiment via Ohmic heating, highfield- side fueling, and low edge recycling in both limited and diverted magnetic topologies. These H-mode plasmas show the formation of edge current and pressure pedestals and a doubling of the energy confinement time to H-98y,H-2 similar to 1. The L-H power threshold P-LH increases with density, and there is no P-LH minimum observed in the attainable density space. The power threshold is equivalent in limited and diverted plasmas, consistent with the FM3 model. However, the measured PLH is similar to 15x higher than that predicted by conventional International Tokamak Physics Activity (ITPA) scalings, and P-LH/P-ITPA08 increases as A -> 1. Small ELMs are present at low input power P-IN similar to P-LH, with toroidal mode number n <= 4. At P-IN >> P-LH, they transition to large ELMs with intermediate 5< n< 15. The dominant-n component of a large ELM grows exponentially, while other components evolve nonlinearly and can damp prior to the crash. Direct measurements of the current profile in the pedestal region show that both ELM types exhibit a generation of a current-hole, followed by a pedestal recovery. Large ELMs are shown to further expel a current-carrying filament. Small ELM suppression via injection of low levels of helical current into the edge plasma region is also indicated. C1 [Thome, K. E.; Bongard, M. W.; Barr, J. L.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Kriete, D. M.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.] Univ Wisconsin, Dept Engn Phys, 1500 Engn Dr, Madison, WI 53706 USA. [Thome, K. E.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Thome, KE (reprint author), Univ Wisconsin, Dept Engn Phys, 1500 Engn Dr, Madison, WI 53706 USA.; Thome, KE (reprint author), Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. EM thomek@fusion.gat.com FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FG02-96ER54375] FX The authors thank B.T. Lewicki, B.A. Kujak-Ford, and G.R. Winz for their technical assistance. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-96ER54375. Data from this publication are publicly available in openly-documented, machine-readable formats [51]. NR 50 TC 0 Z9 0 U1 13 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2017 VL 57 IS 2 SI SI AR 022018 DI 10.1088/0029-5515/57/2/022018 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DZ2JN UT WOS:000385668200017 ER PT J AU Railsback, S Ayllon, D Berger, U Grimm, V Lytinen, S Sheppard, C Thiele, J AF Railsback, Steven Ayllon, Daniel Berger, Uta Grimm, Volker Lytinen, Steven Sheppard, Colin Thiele, Jan TI Improving Execution Speed of Models Implemented in NetLogo SO JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION LA English DT Article DE Agent-Based Modeling; Computational Efficiency; Execution Speed; Individual-Based Modeling; NetLogo; Modeling Platforms ID COFFEE FARMS; PEST-CONTROL; POPULATIONS AB NetLogo has become a standard platform for agent-based simulation, yet there appears to be widespread belief that it is not suitable for large and complex models due to slow execution. Our experience does not support that belief. NetLogo programs often do run very slowly when written to minimize code length and maximize clarity, but relatively simple and easily tested changes can almost always produce major increases in execution speed. We recommend a five-step process for quantifying execution speed, identifying slow parts of code, and writing faster code. Avoiding or improving agent filtering statements can often produce dramatic speed improvements. For models with extensive initialization methods, reorganizing the setup procedure can reduce the initialization effort in simulation experiments. Programming the same behavior in a different way can sometimes provide order-of-magnitude speed increases. For models in which most agents do nothing on most time steps, discrete event simulation-facilitated by the time extension to NetLogo-can dramatically increase speed. NetLogo's BehaviorSpace tool makes it very easy to conduct multiple-model-run experiments in parallel on either desktop or high performance cluster computers, so even quite slow models can be executed thousands of times. NetLogo also is supported by efficient analysis tools, such as BehaviorSearch and RNetLogo, that can reduce the number of model runs and the effort to set them up for (e.g.) parameterization and sensitivity analysis. C1 [Railsback, Steven] Lang Railsback & Associates, 250 Calif Ave, Arcata, CA 95521 USA. [Ayllon, Daniel; Grimm, Volker] UFZ Helmholtz Ctr Environm Res, Dept Ecol Modelling, Permoserstr 15, D-04318 Leipzig, Germany. [Berger, Uta] Tech Univ Dresden, Inst Forest Growth & Comp Sci, Postfach 1117, D-01735 Tharandt, Germany. [Lytinen, Steven] Depaul Univ, Sch Comp, 243 S Wabash, Chicago, IL 60604 USA. [Sheppard, Colin] Lawrence Berkeley Natl Lab, Int Energy Studies Grp, 1 Cyclotron Rd,MS 90R2121, Berkeley, CA 94720 USA. [Thiele, Jan] Univ Gottingen, Dept Ecoinformat Biometr & Forest Growth, Busgen Inst, Busgenweg 4, DE-37077 Gottingen, Germany. RP Railsback, S (reprint author), Lang Railsback & Associates, 250 Calif Ave, Arcata, CA 95521 USA. EM steve@langrailsback.com NR 22 TC 0 Z9 0 U1 1 U2 1 PU J A S S S PI GUILDFORD PA UNIV SURREY, DEPT SOCIOLOGY, GUILDFORD GU2 7XH, SURREY, ENGLAND SN 1460-7425 J9 JASSS-J ARTIF SOC S JI JASSS PD JAN 31 PY 2017 VL 20 IS 1 AR 3 DI 10.18564/jasss.3282 PG 15 WC Social Sciences, Interdisciplinary SC Social Sciences - Other Topics GA EP1TV UT WOS:000397168100003 ER PT J AU St John, PC Crowley, MF Bomble, YJ AF St John, Peter C. Crowley, Michael F. Bomble, Yannick J. TI Efficient estimation of the maximum metabolic productivity of batch systems SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Flux balance analysis; Dynamic optimizations; Elementary flux modes; Actinobacillus succinogenes; Escherichia coli ID SUCCINIC ACID PRODUCTION; ELEMENTARY FLUX MODES; ESCHERICHIA-COLI; ACTINOBACILLUS-SUCCINOGENES; BIOCHEMICAL NETWORKS; DYNAMIC CONTROL; OPTIMIZATION; YIELD; RECONSTRUCTION; PATHWAYS AB Background: Production of chemicals from engineered organisms in a batch culture involves an inherent tradeoff between productivity, yield, and titer. Existing strategies for strain design typically focus on designing mutations that achieve the highest yield possible while maintaining growth viability. While these methods are computationally tractable, an optimum productivity could be achieved by a dynamic strategy in which the intracellular division of resources is permitted to change with time. New methods for the design and implementation of dynamic microbial processes, both computational and experimental, have therefore been explored to maximize productivity. However, solving for the optimal metabolic behavior under the assumption that all fluxes in the cell are free to vary is a challenging numerical task. Previous studies have therefore typically focused on simpler strategies that are more feasible to implement in practice, such as the time-dependent control of a single flux or control variable. Results: This work presents an efficient method for the calculation of a maximum theoretical productivity of a batch culture system using a dynamic optimization framework. The proposed method follows traditional assumptions of dynamic flux balance analysis: first, that internal metabolite fluxes are governed by a pseudo-steady state, and secondly that external metabolite fluxes are dynamically bounded. The optimization is achieved via collocation on finite elements, and accounts explicitly for an arbitrary number of flux changes. The method can be further extended to calculate the complete Pareto surface of productivity as a function of yield. We apply this method to succinate production in two engineered microbial hosts, Escherichia coli and Actinobacillus succinogenes, and demonstrate that maximum productivities can be more than doubled under dynamic control regimes. Conclusions: The maximum theoretical yield is a measure that is well established in the metabolic engineering literature and whose use helps guide strain and pathway selection. We present a robust, efficient method to calculate the maximum theoretical productivity: a metric that will similarly help guide and evaluate the development of dynamic microbial bioconversions. Our results demonstrate that nearly optimal yields and productivities can be achieved with only two discrete flux stages, indicating that near-theoretical productivities might be achievable in practice. C1 [St John, Peter C.; Crowley, Michael F.; Bomble, Yannick J.] Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver W Pkwy, Golden, CO 80401 USA. RP Bomble, YJ (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver W Pkwy, Golden, CO 80401 USA. EM yannick.bomble@nrel.gov FU US Department of Energy's Bioenergy Technologies Office (DOE-BETO) [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was funded by the US Department of Energy's Bioenergy Technologies Office (DOE-BETO), ContractNo. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 50 TC 0 Z9 0 U1 1 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD JAN 31 PY 2017 VL 10 AR 28 DI 10.1186/s13068-017-0709-0 PG 13 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EK3RJ UT WOS:000393843300006 PM 28163785 ER PT J AU Li, HK Urban, E Noel, C Chuang, A Xia, Y Ransford, A Hemmerling, B Wang, Y Li, TC Haffner, H Zhang, X AF Li, Hao-Kun Urban, Erik Noel, Crystal Chuang, Alexander Xia, Yang Ransford, Anthony Hemmerling, Boerge Wang, Yuan Li, Tongcang Haffner, Hartmut Zhang, Xiang TI Realization of Translational Symmetry in Trapped Cold Ion Rings SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUADRUPOLE STORAGE-RING; QUANTUM GASES AB We crystallize up to 15 40Ca(+) ions in a ring with a microfabricated silicon surface Paul trap. Delocalization of the Doppler laser-cooled ions shows that the translational symmetry of the ion ring is preserved at millikelvin temperatures. By characterizing the collective motion of the ion crystals, we identify homogeneous electric fields as the dominant symmetry-breaking mechanism at this energy scale. With increasing ion numbers, such detrimental effects are reduced. We predict that, with only a ten-ion ring, uncompensated homogeneous fields will not break the translational symmetry of the rotational ground state. This experiment opens a door towards studying quantum many-body physics with translational symmetry at the single-particle level. C1 [Li, Hao-Kun; Xia, Yang; Wang, Yuan; Li, Tongcang; Zhang, Xiang] Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Urban, Erik; Noel, Crystal; Chuang, Alexander; Ransford, Anthony; Hemmerling, Boerge; Haffner, Hartmut] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wang, Yuan; Haffner, Hartmut; Zhang, Xiang] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA.; Haffner, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Haffner, H; Zhang, X (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM hhaeffner@berkeley.edu; xiang@berkeley.edu RI Wang, Yuan/F-7211-2011 FU W. M. Keck Foundation; U.S. Department of Energy [DE-AC02-05-CH11231]; NSF [1106400] FX The design and characterization of this work is supported by the W. M. Keck Foundation; the fabrication is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231. E. U. acknowledges support by the NSF Graduate Research Fellowship under Grant No. 1106400. The authors thank Norman Yao for helpful discussions. NR 29 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 31 PY 2017 VL 118 IS 5 AR 053001 DI 10.1103/PhysRevLett.118.053001 PG 5 WC Physics, Multidisciplinary SC Physics GA EO0UQ UT WOS:000396414200005 ER PT J AU Nanut, T Zupanc, A Adachi, I Aihara, H Al Said, S Asner, DM Aulchenko, V Aushev, T Ayad, R Babu, V Badhrees, I Bakich, AM Bansal, V Behera, P Bhardwaj, V Biswal, J Bondar, A Bozek, A Bracko, M Browder, TE Cervenkov, D Chekelian, V Chen, A Cheon, BG Chistov, R Cho, K Choi, SK Choi, Y Cinabro, D Dash, N Di Carlo, S Dolezal, Z Dutta, D Eidelman, S Farhat, H Fast, JE Ferber, T Fulsom, BG Gaur, V Gabyshev, N Garmash, A Gillard, R Goldenzweig, P Golob, B Hayasaka, K Hayashii, H Hou, WS Iijima, T Inami, K Inguglia, G Ishikawa, A Iwasaki, Y Jacobs, WW Jaegle, I Joffe, D Joo, KK Julius, T Kaliyar, AB Kang, KH Kawasaki, T Kim, DY Kim, JB Kim, KT Kim, MJ Kim, SH Kinoshita, K Kodys, P Korpar, S Krokovny, P Kuhr, T Kulasiri, R Kuzmin, A Kwon, YJ Lange, JS Lee, IS Li, CH Li, L Li, Y Gioi, LL Libby, J Liventsev, D Lubej, M Masuda, M Matsuda, T Matvienko, D Miyabayashi, K Miyata, H Mizuk, R Mohanty, GB Moon, HK Nakao, M Nath, KJ Nayak, M Nisar, NK Nishida, S Ogawa, S Okuno, S Pakhlov, P Pakhlova, G Pal, B Park, CS Park, CW Park, H Paul, S Pedlar, TK Pesantez, L Pestotnik, R Petric, M Piilonen, LE Prasanth, K Pulvermacher, C Rauch, J Ritter, M Rostomyan, A Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Savinov, V Schulter, T Schneider, O Schnell, G Schwanda, C Schwartz, AJ Seino, Y Senyo, K Seon, O Sevior, ME Shebalin, V Shen, CP Shibata, TA Shiu, JG Shwartz, B Solovieva, E Stanic, S Staric, M Strube, JF Stypula, J Sumiyoshi, T Takizawa, M Tamponi, U Tenchini, F Trabelsi, K Uchida, M Uno, S Ushiroda, Y Varner, G Vinokurova, A Vorobyev, V Vossen, A Wang, CH Wang, MZ Wang, P Watanabe, Y Widmann, E Won, E Yamaoka, J Yamashita, Y Yelton, J Zhang, ZP Zhilich, V Zhukova, V Zhulanov, V AF Nanut, T. Zupanc, A. Adachi, I. Aihara, H. Al Said, S. Asner, D. M. Aulchenko, V. Aushev, T. Ayad, R. Babu, V. Badhrees, I. Bakich, A. M. Bansal, V. Behera, P. Bhardwaj, V. Biswal, J. Bondar, A. Bozek, A. Bracko, M. Browder, T. E. Cervenkov, D. Chekelian, V. Chen, A. Cheon, B. G. Chistov, R. Cho, K. Choi, S. -K. Choi, Y. Cinabro, D. Dash, N. Di Carlo, S. Dolezal, Z. Dutta, D. Eidelman, S. Farhat, H. Fast, J. E. Ferber, T. Fulsom, B. G. Gaur, V. Gabyshev, N. Garmash, A. Gillard, R. Goldenzweig, P. Golob, B. Hayasaka, K. Hayashii, H. Hou, W. -S. Iijima, T. Inami, K. Inguglia, G. Ishikawa, A. Iwasaki, Y. Jacobs, W. W. Jaegle, I. Joffe, D. Joo, K. K. Julius, T. Kaliyar, A. B. Kang, K. H. Kawasaki, T. Kim, D. Y. Kim, J. B. Kim, K. T. Kim, M. J. Kim, S. H. Kinoshita, K. Kodys, P. Korpar, S. Krokovny, P. Kuhr, T. Kulasiri, R. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, I. S. Li, C. H. Li, L. Li, Y. Gioi, L. Li Libby, J. Liventsev, D. Lubej, M. Masuda, M. Matsuda, T. Matvienko, D. Miyabayashi, K. Miyata, H. Mizuk, R. Mohanty, G. B. Moon, H. K. Nakao, M. Nath, K. J. Nayak, M. Nisar, N. K. Nishida, S. Ogawa, S. Okuno, S. Pakhlov, P. Pakhlova, G. Pal, B. Park, C. -S. Park, C. W. Park, H. Paul, S. Pedlar, T. K. Pesantez, L. Pestotnik, R. Petric, M. Piilonen, L. E. Prasanth, K. Pulvermacher, C. Rauch, J. Ritter, M. Rostomyan, A. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schulter, T. Schneider, O. Schnell, G. Schwanda, C. Schwartz, A. J. Seino, Y. Senyo, K. Seon, O. Sevior, M. E. Shebalin, V. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Solovieva, E. Stanic, S. Staric, M. Strube, J. F. Stypula, J. Sumiyoshi, T. Takizawa, M. Tamponi, U. Tenchini, F. Trabelsi, K. Uchida, M. Uno, S. Ushiroda, Y. Varner, G. Vinokurova, A. Vorobyev, V. Vossen, A. Wang, C. H. Wang, M. -Z. Wang, P. Watanabe, Y. Widmann, E. Won, E. Yamaoka, J. Yamashita, Y. Yelton, J. Zhang, Z. P. Zhilich, V. Zhukova, V. Zhulanov, V. CA Belle Collaboration TI Observation of D-0 -> rho(0)gamma and Search for CP Violation in Radiative Charm Decays SO PHYSICAL REVIEW LETTERS LA English DT Article ID ASYMMETRY; PACKAGE; MESONS; ENERGY; BELLE; MU+MU AB We report the first observation of the radiative charm decay D-0 -> rho(0)gamma and the first search for CP violation in decays D-0 -> rho(0)gamma, phi gamma, and (K) over bar (*0)(892)gamma, using a data sample of 943 fb(-1) collected with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. The branching fraction is measured to be B(D-0 -> rho(0)gamma) = (1.77 +/- 0.30 +/- 0.07) x 10(-5), where the first uncertainty is statistical and the second is systematic. The obtained CP asymmetries A(CP)(D-0 ->rho(0)gamma) = +0.056 +/- 0.152 +/- 0.006, A(CP)(D-0 -> phi gamma) = -0.094 +/- 0.066 +/- 0.001, and A(CP)(D-0 -> (K) over bar (*0) gamma = -0.003 +/- 0.020 +/- 0.000 are consistent with no CP violation. We also present an improved measurement of the branching fractions B(D-0 -> phi gamma) = (2.76 +/- 0.19 +/- 0.10) x 10(-5) and B(D-0 -> (K) over bar (*0) gamma = (4.66 +/- 0.21 +/- 0.21) x 10(-4). C1 [Nisar, N. K.] Aligarh Muslim Univ, Aligarh 202002, Uttar Pradesh, India. [Schnell, G.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China. [Pesantez, L.] Univ Bonn, D-53115 Bonn, Germany. [Aulchenko, V.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Cervenkov, D.; Dolezal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Joo, K. K.] Chonnam Natl Univ, Kwangju 660701, South Korea. [Kinoshita, K.; Pal, B.; Sandilya, S.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Inguglia, G.; Rostomyan, A.] DESY, D-22607 Hamburg, Germany. [Jaegle, I.; Yelton, J.] Univ Florida, Gainesville, FL 32611 USA. [Lange, J. S.] Justus Liebig Univ Giessen, D-35392 Giessen, Germany. [Adachi, I.; Bondar, A.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Uno, S.; Ushiroda, Y.] Grad Univ Adv Studies, SOKENDAI, Hayama 2400193, Japan. [Choi, S. -K.] Gyeongsang Natl Univ, Chinju 660701, South Korea. [Cheon, B. G.; Kim, S. H.; Lee, I. S.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nayak, M.; Nishida, S.; Pulvermacher, C.; Sakai, Y.; Santelj, L.; Trabelsi, K.; Uno, S.; Ushiroda, Y.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Takizawa, M.] High Energy Accelerator Res Org KEK, KEK Theory Ctr, J PARC Branch, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Basque Fdn Sci, IKERBASQUE, Bilbao 48013, Spain. [Bhardwaj, V.] Indian Inst Sci Educ & Res Mohali, Sas Nagar 140306, India. [Dash, N.] Indian Inst Technol Bhubaneswar, Satya Nagar 751007, India. [Nath, K. J.] Indian Inst Technol, Gauhati 781039, Assam, India. [Behera, P.; Kaliyar, A. B.; Libby, J.; Prasanth, K.] Indian Inst Technol Madras, Madras 600036, Tamil Nadu, India. [Jacobs, W. W.; Vossen, A.] Indiana Univ, Bloomington, IN 47408 USA. [Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Nanut, T.; Zupanc, A.; Biswal, J.; Bracko, M.; Golob, B.; Korpar, S.; Lubej, M.; Pestotnik, R.; Petric, M.; Staric, M.] J Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Goldenzweig, P.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Joffe, D.; Kulasiri, R.] Kennesaw State Univ, Kennesaw, GA 30144 USA. [Badhrees, I.] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. [Al Said, S.] King Abdulaziz Univ, Dept Phys, Fac Sci, Jeddah 21589, Saudi Arabia. [Cho, K.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Kim, J. B.; Kim, K. T.; Moon, H. K.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Kang, K. H.; Kim, M. J.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Chistov, R.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia. [Zupanc, A.; Golob, B.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Kuhr, T.; Ritter, M.; Schulter, T.] Ludwig Maximilians Univ Munchen, D-80539 Munich, Germany. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, Maribor 2000, Slovenia. [Chekelian, V.; Gioi, L. Li] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Li, C. H.; Sevior, M. E.; Tenchini, F.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Matsuda, T.] Miyazaki Univ, Miyazaki 8892192, Japan. [Chistov, R.; Mizuk, R.; Pakhlov, P.; Zhukova, V.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Aushev, T.; Mizuk, R.; Pakhlova, G.; Solovieva, E.] Moscow Inst Phys & Technol, Dubna 141700, Moscow Region, Russia. [Bondar, A.; Iijima, T.; Inami, K.; Sato, Y.; Seon, O.] Nagoya Univ, Sch Sci, Nagoya, Aichi 4648602, Japan. [Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Hou, W. -S.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Stypula, J.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Hayasaka, K.; Kawasaki, T.; Miyata, H.; Seino, Y.] Niigata Univ, Niigata 9502181, Japan. [Stanic, S.] Univ Nova Gorica, Nova Gorica 5000, Slovenia. [Aulchenko, V.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Matvienko, D.; Shebalin, V.; Shwartz, B.; Vinokurova, A.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Asner, D. M.; Bansal, V.; Fast, J. E.; Fulsom, B. G.; Strube, J. F.; Yamaoka, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Takizawa, M.] RIKEN, Theoret Res Div, Nishina Ctr, Saitama 3510198, Japan. [Li, L.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Takizawa, M.] Showa Pharmaceut Univ, Tokyo 1948543, Japan. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Widmann, E.] Stefan Meyer Inst Subatom Phys, A-1090 Vienna, Austria. [Choi, Y.; Park, C. W.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Al Said, S.; Ayad, R.; Badhrees, I.] Univ Tabuk, Dept Phys, Fac Sci, Tabuk 71451, Saudi Arabia. [Babu, V.; Dutta, D.; Gaur, V.; Mohanty, G. B.; Nisar, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Paul, S.; Rauch, J.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Ishikawa, A.; Sanuki, T.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Masuda, M.] Univ Tokyo, Earthquake Res, Tokyo 1130032, Japan. [Aihara, H.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Tamponi, U.] Univ Turin, I-10124 Turin, Italy. [Li, Y.; Liventsev, D.; Piilonen, L. E.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Cinabro, D.; Di Carlo, S.; Farhat, H.; Gillard, R.; Nayak, M.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kwon, Y. -J.; Park, C. -S.] Yonsei Univ, Seoul 120749, South Korea. RP Nanut, T (reprint author), J Stefan Inst, Ljubljana 1000, Slovenia. FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Austrian Science Fund; National Natural Science Foundation of China; Chinese Academy of Science Center for Excellence in Particle Physics; Ministry of Education, Youth and Sports of the Czech Republic; Carl Zeiss Foundation; Deutsche Forschungsgemeinschaft; Excellence Cluster Universe; VolkswagenStiftung; the Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; WCU program of the Ministry of Education, National Research Foundation (NRF) of Korea; Brain Korea 21-Plus program and Radiation Science Research Institute; Polish Ministry of Science and Higher Education; National Science Center; Ministry of Education and Science of the Russian Federation; Russian Foundation for Basic Research; Slovenian Research Agency; Ikerbasque, Basque Foundation for Science and the Euskal Herriko Unibertsitatea (UPV/EHU) (Spain); Swiss National Science Foundation; Ministry of Education; Ministry of Science and Technology of Taiwan; DOE; NSF (USA) FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET5 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council; Austrian Science Fund; the National Natural Science Foundation of China; the Chinese Academy of Science Center for Excellence in Particle Physics; the Ministry of Education, Youth and Sports of the Czech Republic; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the WCU program of the Ministry of Education, National Research Foundation (NRF) of Korea; the Brain Korea 21-Plus program and Radiation Science Research Institute; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science and the Euskal Herriko Unibertsitatea (UPV/EHU) (Spain); the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and DOE and NSF (USA). NR 36 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 31 PY 2017 VL 118 IS 5 AR 051801 DI 10.1103/PhysRevLett.118.051801 PG 8 WC Physics, Multidisciplinary SC Physics GA EO0UQ UT WOS:000396414200003 PM 28211706 ER PT J AU Parker, JJ Wiedenhover, I Cottle, PD Baker, J McPherson, D Riley, MA Santiago-Gonzalez, D Volya, A Bader, VM Baugher, T Bazin, D Gade, A Ginter, T Iwasaki, H Loelius, C Morse, C Recchia, F Smalley, D Stroberg, SR Whitmore, K Weisshaar, D Lemasson, A Crawford, HL Macchiavelli, AO Wimmer, K AF Parker, J. J. Wiedenhover, I. Cottle, P. D. Baker, J. McPherson, D. Riley, M. A. Santiago-Gonzalez, D. Volya, A. Bader, V. M. Baugher, T. Bazin, D. Gade, A. Ginter, T. Iwasaki, H. Loelius, C. Morse, C. Recchia, F. Smalley, D. Stroberg, S. R. Whitmore, K. Weisshaar, D. Lemasson, A. Crawford, H. L. Macchiavelli, A. O. Wimmer, K. TI Isomeric Character of the Lowest Observed 4(+) State in S-44 SO PHYSICAL REVIEW LETTERS LA English DT Article ID ISOTOPES AB Previous experiments observed a 4(+) state in the N = 28 nucleus S-44 and suggested that this state may exhibit a hindered E2-decay rate, inconsistent with being a member of the collective ground state band. We populate this state via two-proton knockout from a beam of exotic Ar-46 projectiles and measure its lifetime using the recoil distance method with the GRETINA gamma-ray spectrometer. The result, 76(14)(stat)(20)(syst) ps, implies a hindered transition of B(E2; 4(+) -> 2(1)(+)) = 0.61(19) single-particle or Weisskopf units strength and supports the interpretation of the 4(+) state as a K = 4 isomer, the first example of a high-K isomer in a nucleus of such low mass. C1 [Parker, J. J.; Wiedenhover, I.; Cottle, P. D.; Baker, J.; McPherson, D.; Riley, M. A.; Santiago-Gonzalez, D.; Volya, A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Bader, V. M.; Baugher, T.; Bazin, D.; Gade, A.; Ginter, T.; Iwasaki, H.; Loelius, C.; Morse, C.; Recchia, F.; Smalley, D.; Stroberg, S. R.; Whitmore, K.; Weisshaar, D.; Wimmer, K.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Bader, V. M.; Baugher, T.; Gade, A.; Iwasaki, H.; Loelius, C.; Morse, C.; Stroberg, S. R.; Whitmore, K.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Lemasson, A.] CEA DSM CNRS IN2P3, GANIL, Caen, France. [Crawford, H. L.; Macchiavelli, A. O.] Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Wimmer, K.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Santiago-Gonzalez, D.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Stroberg, S. R.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Wimmer, K.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. RP Parker, JJ (reprint author), Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. RI Gade, Alexandra/A-6850-2008 OI Gade, Alexandra/0000-0001-8825-0976 FU National Science Foundation (NSF) [PHY-1064819, PHY-1401574]; Department of Energy (DOE) National Nuclear Security Administration [DE-NA0000979]; U.S. DOE Office of Science; NSF [PHY-1102511]; DOE [DE-AC02-05CH11231] FX This work is supported in part by the National Science Foundation (NSF) under Grants No. PHY-1064819 and No. PHY-1401574, by the Department of Energy (DOE) National Nuclear Security Administration under Award No. DE-NA0000979. GRETINA was funded by the U.S. DOE Office of Science. Operation of the array at NSCL was supported by the NSF under Cooperative Agreement No. PHY-1102511 and by the DOE under Contract No. DE-AC02-05CH11231. NR 18 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 31 PY 2017 VL 118 IS 5 AR 052501 DI 10.1103/PhysRevLett.118.052501 PG 5 WC Physics, Multidisciplinary SC Physics GA EO0UQ UT WOS:000396414200004 PM 28211717 ER PT J AU Lou, HY Zhao, WT Hanson, L Zeng, CN Cui, Y Cui, BX AF Lou, Hsin-Ya Zhao, Wenting Hanson, Lindsey Zeng, Connie Cui, Yi Cui, Bianxiao TI Dual-Functional Lipid Coating for the Nanopillar-Based Capture of Circulating Tumor Cells with High Purity and Efficiency SO LANGMUIR LA English DT Article ID CANCER PATIENTS; CLINICAL-APPLICATIONS; NANOWIRE ARRAYS; PROSTATE-CANCER; ADHESION; MEMBRANES; NANOSTRUCTURES; SURFACES; SURVIVAL; CLUSTERS AB Clinical studies of circulating tumor cells (CTC) have stringent demands for high capture purity and high capture efficiency. Nanostructured surfaces have been shown to significantly increase the capture efficiency yet suffer from low capture purity. Here we introduce a dual-functional lipid coating on nanostructured surfaces. The lipid coating serves both as an effective passivation layer that helps prevent nonspecific cell adhesion and as a functionalized layer for antibody-based specific cell capture. In addition, the fluidity of lipid bilayers enables antibody clustering that enhances the cell surface interaction for efficient cell capture. As a result, the lipid-coating method helps promote both the capture efficiency and capture purity of nanostructure-based CTC capture. C1 [Lou, Hsin-Ya; Hanson, Lindsey; Zeng, Connie; Cui, Bianxiao] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Zhao, Wenting; Cui, Yi] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Cui, Yi] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Hanson, Lindsey] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Cui, BX (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM bcui@stanford.edu RI ZHAO, Wenting/M-8613-2016 OI ZHAO, Wenting/0000-0002-6143-5185 FU NSF (CAREER award) [1055112]; NIH [NS057906]; Searle Scholar award; Packard Science and Engineering Fellowship; CCNE-T pilot grant; Studying Abroad Scholarship FX The fabrication and characterization of nanopillar substrates were conducted at the Stanford Nanofabrication Facility and Stanford Nano Shared Facility. The MCF-7 cell line and MDA-MB-231 cell line were gifts from the Snyder laboratory and Jeffery laboratory at Stanford University, respectively. The human blood sample was from the Stanford Blood Center. This work was supported by the NSF (CAREER award no. 1055112), the NIH (grant no. NS057906), a Searle Scholar award, a Packard Science and Engineering Fellowship (to B.C.), a CCNE-T pilot grant (to B.C. and Y.C.), and a Studying Abroad Scholarship (to H.-Y.L.). NR 49 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JAN 31 PY 2017 VL 33 IS 4 BP 1097 EP 1104 DI 10.1021/acs.langmuir.6b03903 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EJ5PH UT WOS:000393269700032 PM 28059522 ER PT J AU Knapik, JJ Jean, RT Austin, KG Steelman, RA Farina, EK Lieberman, HR AF Knapik, Joseph J. Jean, Rosenie T. Austin, Krista G. Steelman, Ryan A. Farina, Emily K. Lieberman, Harris R. TI Demographic factors associated with dietary supplement prescriptions filled by United States Military Service Members 2005-2013 SO BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE LA English DT Article DE Multivitamins; Vitamins; Minerals; Iron; Zinc; Replacement preparations; Sodium/potassium compounds; Antacids; Absorbents ID NUTRITION EXAMINATION SURVEY; TREATMENT FACILITIES 2007; VITAMIN-D DEFICIENCY; ROUTINE IRON SUPPLEMENTATION; ACUTE PHOSPHATE NEPHROPATHY; CLINICAL-TRIAL DATA; CARDIOVASCULAR-DISEASE; NATIONAL-HEALTH; RENAL-FAILURE; PRIMARY PREVENTION AB Background: Dietary supplements (DSs) can be purchased over-the-counter but may also be prescribed by medical personnel for specific therapeutic reasons. Few studies have examined this latter source of DSs despite the fact that 79% of physicians and 82% of nurses have recommended DSs to their patients. This investigation examined demographic factors associated with temporal trends in oral DS prescriptions filled by all United States (US) service members (SMs) from 2005 to 2013 (n = 1,427,080 +/- 22,139, mean +/- standard deviation per year). Methods: The Food and Drug Administration National Drug Code database and the formularies of the US Defense Health Agency's Pharmacoeconomic Center were queried to identify DSs available to SMs. The number of these DS prescriptions filled by all SMs from 2005 through 2013 was then obtained from the US Department of Defense Pharmacy Data Transaction System. Data were grouped by American Hospital Formulary System (AHFS) pharmacologic-therapeutic classifications and examined over time. Denominators (number of SMs each year) were obtained from the Defense Health Agency. Results: Major findings included 1) generally greater prevalence of prescriptions filled by women and older SMs for most AHFS categories; 2) a temporal decline in total prescriptions filled by Marine Corps personnel accounted for by a decline in the prevalence of zinc preparations filled by younger male Marines; 3) a temporal decline in the prevalence of iron preparations filled by women; 4) a temporal increase in the prevalence of prescriptions for replacement preparations filled by women accounted for largely by more prescriptions for calcium compounds; and 5) a temporal decline in the prevalence of prescriptions filled for cathartics/laxatives in older SMs accounted for largely by a decline in prescriptions for sodium/potassium compounds. Conclusions: These temporal trends may be associated with the greater health care utilization of women and older SMs as well as the perceptions of prescribers and/or patients on appropriate roles of these substances in medicine and public health. C1 [Knapik, Joseph J.; Austin, Krista G.; Farina, Emily K.; Lieberman, Harris R.] US Army, Environm Med Res Inst, Natick, MA 01760 USA. [Knapik, Joseph J.] US Army, Publ Hlth Ctr, Aberdeen Proving Ground, MD 21005 USA. [Knapik, Joseph J.; Austin, Krista G.; Farina, Emily K.] Oak Ridge Inst Sci & Educ, Belcamp, MD 21017 USA. [Jean, Rosenie T.] Off US Army Surg Gen Pharmacovigilance Ctr, Falls Church, VA USA. [Steelman, Ryan A.] Def Hlth Agcy, Falls Church, VA USA. [Knapik, Joseph J.] USARIEM, 10 Gen Greene Ave, Natick, MA 01760 USA. RP Knapik, JJ (reprint author), US Army, Environm Med Res Inst, Natick, MA 01760 USA.; Knapik, JJ (reprint author), US Army, Publ Hlth Ctr, Aberdeen Proving Ground, MD 21005 USA.; Knapik, JJ (reprint author), Oak Ridge Inst Sci & Educ, Belcamp, MD 21017 USA.; Knapik, JJ (reprint author), USARIEM, 10 Gen Greene Ave, Natick, MA 01760 USA. EM joseph.j.knapik.ctr@mail.mil FU Center Alliance for Nutrition and Dietary Supplement Research FX This research was supported in part by an appointment to the Knowledge Preservation Program at the US Army Research Institute of Environmental Medicine (USARIEM) and the Army Public Health Center (APHC) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and USARIEM and APHC. Funding was also provided by the Center Alliance for Nutrition and Dietary Supplement Research. NR 76 TC 0 Z9 0 U1 1 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1472-6882 J9 BMC COMPLEM ALTERN M JI BMC Complement. Altern. Med. PD JAN 31 PY 2017 VL 17 AR 84 DI 10.1186/s12906-017-1590-x PG 14 WC Integrative & Complementary Medicine SC Integrative & Complementary Medicine GA EJ1VR UT WOS:000392998800005 PM 28148262 ER PT J AU Chen, ZG Chen, RY Zhong, RD Schneeloch, J Zhang, C Huang, Y Qu, FM Yu, R Li, Q Gu, GD Wang, NL AF Chen, Zhi-Guo Chen, R. Y. Zhong, R. D. Schneeloch, John Zhang, C. Huang, Y. Qu, Fanming Yu, Rui Li, Q. Gu, G. D. Wang, N. L. TI Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE band inversion; Dirac fermions; topological insulators; Landau levels; Zeeman splitting ID HGTE QUANTUM-WELLS; SEMIMETAL CD3AS2; ULTRAHIGH MOBILITY; PHASE; DISCOVERY; INSULATOR; SURFACE; ARCS; TAAS; MAGNETORESISTANCE AB Three-dimensional topological insulators (3D TIs) represent states of quantum matters in which surface states are protected by time-reversal symmetry and an inversion occurs between bulk conduction and valence bands. However, the bulk-band inversion, which is intimately tied to the topologically nontrivial nature of 3D Tis, has rarely been investigated by experiments. Besides, 3D massive Dirac fermions with nearly linear band dispersions were seldom observed in TIs. Recently, a van der Waals crystal, ZrTe5, was theoretically predicted to be a TI. Here, we report an infrared transmission study of a high-mobility [similar to 33,000 cm(2)/(V.s)] multilayer ZrTe5 flake at magnetic fields (B) up to 35 T. Our observation of a linear relationship between the zero-magnetic-field optical absorption and the photon energy, a bandgap of similar to 10 meV and a root B dependence of the Landau level (LL) transition energies at low magnetic fields demonstrates 3D massive Dirac fermions with nearly linear band dispersions in this system. More importantly, the reemergence of the intra-LL transitions at magnetic fields higher than 17 T reveals the energy cross between the two zeroth LLs, which reflects the inversion between the bulk conduction and valence bands. Our results not only provide spectroscopic evidence for the TI state in ZrTe5 but also open up a new avenue for fundamental studies of Dirac fermions in van der Waals materials. C1 [Chen, Zhi-Guo; Qu, Fanming] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Chen, Zhi-Guo; Qu, Fanming] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Chen, R. Y.; Wang, N. L.] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. [Zhong, R. D.; Schneeloch, John; Zhang, C.; Li, Q.; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Huang, Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Qu, Fanming] Delft Univ Technol, QuTech, NL-2600 GA Delft, Netherlands. [Yu, Rui] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China. [Wang, N. L.] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. RP Chen, ZG (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.; Chen, ZG (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China.; Wang, NL (reprint author), Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China.; Wang, NL (reprint author), Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. EM zgchen@iphy.ac.cn; nlwang@pku.edu.cn RI Chen, Zhiguo/B-9192-2015; Zhong, Ruidan/D-5296-2013 OI Chen, Zhiguo/0000-0002-8242-4784; Zhong, Ruidan/0000-0003-1652-9454 FU Hundred Talents Program of Chinese Academy of Sciences; National Key Research and Development Program of China [2016YFA0300600]; European Research Council (ERC ARG MOMB Grant) [320590]; National Science Foundation of China [11120101003, 11327806]; 973 project of the Ministry of Science and Technology of China [2012CB821403]; National Science Foundation [DMR-1157490]; State of Florida; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy [DE-SC00112704] FX We thank X. C. Xie, F. Wang, Z. Fang, M. Orlita, M. Potemski, H. M. Weng, L. Wang, C. Fang, and X. Dai for very helpful discussions. We acknowledge support from the Hundred Talents Program of Chinese Academy of Sciences, the National Key Research and Development Program of China (Project 2016YFA0300600), the European Research Council (ERC ARG MOMB Grant 320590), the National Science Foundation of China (Grants 11120101003 and 11327806), and the 973 project of the Ministry of Science and Technology of China (Grant 2012CB821403). A portion of this work was performed in National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement DMR-1157490 and the State of Florida. Work at Brookhaven was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy, through Contract DE-SC00112704. NR 51 TC 0 Z9 0 U1 15 U2 15 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 31 PY 2017 VL 114 IS 5 BP 816 EP 821 DI 10.1073/pnas.1613110114 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ4OI UT WOS:000393196300038 PM 28096330 ER PT J AU Muhleip, AW Dewar, CE Schnaufer, A Kuhlbrandta, W Davies, KM AF Muehleip, Alexander W. Dewar, Caroline E. Schnaufer, Achim Kuehlbrandta, Werner Davies, Karen M. TI In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE mitochondrial ATP synthase; electron cryotomography; subtomogram averaging; trypanosome; rotary catalysis ID ELECTRON-MICROSCOPY; RESPIRATORY-CHAIN; ROTARY CATALYSIS; CRYOELECTRON TOMOGRAPHY; MITOCHONDRIAL-MEMBRANE; F1FO-ATP SYNTHASE; CRYSTAL-STRUCTURE; ARGININE FINGER; CRISTAE; BRUCEI AB We used electron cryotomography and subtomogram averaging to determine the in situ structures of mitochondrial ATP synthase dimers from two organisms belonging to the phylum euglenozoa: Trypanosoma brucei, a lethal human parasite, and Euglena gracilis, a photosynthetic protist. At a resolution of 32.5 angstrom and 27.5 angstrom, respectively, the two structures clearly exhibit a noncanonical F-1 head, in which the catalytic (alpha beta)(3) assembly forms a triangular pyramid rather than the pseudo-sixfold ring arrangement typical of all other ATP synthases investigated so far. Fitting of known X-ray structures reveals that this unusual geometry results from a phylum- specific cleavage of the a subunit, in which the C-terminal alpha(C) fragments are displaced by similar to 20 angstrom rotated by similar to 30 degrees from their expected positions. In this location, the aC fragment is unable to form the conserved catalytic interface that was thought to be essential for ATP synthesis, and cannot convert.-subunit rotation into the conformational changes implicit in rotary catalysis. The new arrangement of catalytic subunits suggests that the mechanism of ATP generation by rotary ATPases is less strictly conserved than has been generally assumed. The ATP synthases of these organisms present a unique model system for discerning the individual contributions of the alpha and beta subunits to the fundamental process of ATP synthesis. C1 [Muehleip, Alexander W.; Kuehlbrandta, Werner; Davies, Karen M.] Max Planck Inst Biophys, Dept Biol Struct, D-60438 Frankfurt, Germany. [Dewar, Caroline E.; Schnaufer, Achim] Univ Edinburgh, Inst Immunol & Infect Res, Edinburgh EH9 3FL, Midlothian, Scotland. [Dewar, Caroline E.; Schnaufer, Achim] Univ Edinburgh, Ctr Immun Infect & Evolut, Edinburgh EH9 3FL, Midlothian, Scotland. [Davies, Karen M.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA. RP Kuhlbrandta, W; Davies, KM (reprint author), Max Planck Inst Biophys, Dept Biol Struct, D-60438 Frankfurt, Germany.; Davies, KM (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA. EM werner.kuehlbrandt@biophys.mpg.de; KMDavies@lbl.gov OI Muhleip, Alexander/0000-0002-1877-2282; Davies, Karen/0000-0002-3207-9337 FU Max Planck Society; German Research Foundation-Cluster of Excellence Frankfurt, "Macromolecular Complexes"; UK Medical Research Council [G0600129] FX We thank Deryck Mills for maintaining the EM facility and Ozkan Yildiz and Juan Francisco Castillo Hernandez for maintaining the computer system. This work was funded by the Max Planck Society (W.K.); the German Research Foundation-funded Cluster of Excellence Frankfurt, "Macromolecular Complexes" (K.M.D.); and UK Medical Research Council Grant G0600129 (to A.S.). NR 60 TC 0 Z9 0 U1 4 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 31 PY 2017 VL 114 IS 5 BP 992 EP 997 DI 10.1073/pnas.1612386114 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ4OI UT WOS:000393196300068 PM 28096380 ER PT J AU Mizrachi, E Verbeke, L Christie, N Fierro, AC Mansfield, SD Davis, MF Gjersing, E Tuskan, GA Van Montagu, M Van de Peer, Y Marchal, K Myburg, AA AF Mizrachi, Eshchar Verbeke, Lieven Christie, Nanette Fierro, Ana C. Mansfield, Shawn D. Davis, Mark F. Gjersing, Erica Tuskan, Gerald A. Van Montagu, Marc Van de Peer, Yves Marchal, Kathleen Myburg, Alexander A. TI Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE systems genetics; lignocellulosic biomass; cell wall; bioenergy; network-based data integration ID CELLULOSE MICROFIBRIL ORIENTATION; LOCUS QTL ANALYSIS; POPULUS-TRICHOCARPA; EUCALYPTUS-GRANDIS; NATURAL-POPULATIONS; COMPLEX TRAITS; WOOD FORMATION; BIOSYNTHESIS; GENOME; ARABIDOPSIS AB As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We have applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. A more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy. C1 [Mizrachi, Eshchar; Christie, Nanette; Marchal, Kathleen; Myburg, Alexander A.] Univ Pretoria, Forestry & Agr Biotechnol Inst, Dept Genet, ZA-0028 Pretoria, South Africa. [Mizrachi, Eshchar; Christie, Nanette; Van de Peer, Yves; Myburg, Alexander A.] Univ Pretoria, Genom Res Inst, ZA-0028 Pretoria, South Africa. [Verbeke, Lieven; Fierro, Ana C.; Marchal, Kathleen] Univ Ghent, iMinds, Dept Informat Technol, B-9052 Ghent, Belgium. [Verbeke, Lieven; Fierro, Ana C.; Van Montagu, Marc; Van de Peer, Yves; Marchal, Kathleen] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium. [Mansfield, Shawn D.] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Davis, Mark F.; Gjersing, Erica] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Tuskan, Gerald A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Van Montagu, Marc; Van de Peer, Yves] VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. RP Mizrachi, E; Marchal, K; Myburg, AA (reprint author), Univ Pretoria, Forestry & Agr Biotechnol Inst, Dept Genet, ZA-0028 Pretoria, South Africa.; Mizrachi, E; Myburg, AA (reprint author), Univ Pretoria, Genom Res Inst, ZA-0028 Pretoria, South Africa.; Marchal, K (reprint author), Univ Ghent, iMinds, Dept Informat Technol, B-9052 Ghent, Belgium.; Van Montagu, M; Marchal, K (reprint author), Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium.; Van Montagu, M (reprint author), VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. EM eshchar.mizrachi@fabi.up.ac.za; mamon@psb.ugent.be; kathleen.marchal@intec.ugent.be; zander.myburg@fabi.up.ac.za FU Department of Science and Technology (Strategic Grant for the Eucalyptus Genomics Platform); National Research Foundation of South Africa (Bioinformatics and Functional Genomics Programme) [86936, 97911]; Sappi South Africa; Technology and Human Resources for Industry Programme through the Forest Molecular Genetics Programme at the University of Pretoria [80118]; Ghent University Multidisciplinary Research Partnership from nucleotides to networks [01MR0410W]; European Union (FP7) under ERC Advanced Grant [322739-DOUBLEUP]; Fonds Wetenschappelijk Onderzoek - Vlaanderen [3G042813, G.0A53.15N]; Fonds Wetenschappelijk Onderzoek - Vlaanderen (SBO-NEMOA); BioEnergy Science Center, a US Department of Energy Bioenergy Research Center; Office of Biological and Environmental Research on the Department of Energy Office of Science FX This work was supported by the Department of Science and Technology (Strategic Grant for the Eucalyptus Genomics Platform) and National Research Foundation of South Africa (Bioinformatics and Functional Genomics Programme, Grants 86936 and 97911 to A.A.M.), Sappi South Africa and the Technology and Human Resources for Industry Programme (Grant 80118) through the Forest Molecular Genetics Programme at the University of Pretoria (to A.A.M.), Ghent University Multidisciplinary Research Partnership from nucleotides to networks (Project 01MR0410W to Y.V.d.P. and K.M.), the European Union (FP7/2007-2013) under ERC Advanced Grant Agreement 322739-DOUBLEUP (to Y.V.d.P.), the Fonds Wetenschappelijk Onderzoek - Vlaanderen (Projects 3G042813, G.0A53.15N, and SBO-NEMOA to K.M.), and the BioEnergy Science Center, a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research on the Department of Energy Office of Science (G.A.T.). Finally, the authors acknowledge Sappi Forest Research for the plantmaterials and growth and wood property data used in the study. NR 63 TC 0 Z9 0 U1 10 U2 10 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 31 PY 2017 VL 114 IS 5 BP 1195 EP 1200 DI 10.1073/pnas.1620119114 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ4OI UT WOS:000393196300102 PM 28096391 ER PT J AU Petousis, I Mrdjenovich, D Ballouz, E Liu, M Winston, D Chen, W Graf, T Schladt, TD Persson, KA Prinz, FB AF Petousis, Ioannis Mrdjenovich, David Ballouz, Eric Liu, Miao Winston, Donald Chen, Wei Graf, Tanja Schladt, Thomas D. Persson, Kristin A. Prinz, Fritz B. TI High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials SO SCIENTIFIC DATA LA English DT Article; Data Paper ID FUNCTIONAL PERTURBATION-THEORY; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; EFFECTIVE CHARGES; SPECTRA; TRANSITION; CONSTANTS; METALS; DICHALCOGENIDES AB Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds. C1 [Petousis, Ioannis; Prinz, Fritz B.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Mrdjenovich, David; Persson, Kristin A.] Dept Mat Sci & Engn, Hearst Min Mem Bldg, Berkeley, CA 94720 USA. [Ballouz, Eric; Prinz, Fritz B.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Liu, Miao; Winston, Donald; Chen, Wei] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Chen, Wei] IIT, Dept Mech Mat & Aerosp Engn, Chicago, IL 60616 USA. [Graf, Tanja; Schladt, Thomas D.] Volkswagen Grp Res, Berliner Ring 2, D-38840 Wolfsburg, Germany. RP Petousis, I (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM ioannis.petousis@gmail.com RI Chen, Wei/B-3045-2012; OI Chen, Wei/0000-0002-1135-7721; Liu, Miao/0000-0002-1843-9519 FU Volkswagen Group; Materials Project Center, under the Department of Energy, Basic Energy Sciences Grant [EDCBEE]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported financially by the Volkswagen Group. K.A.P., W.C., D.W., M.L. and D.M. gratefully acknowledge support from the Materials Project Center, under the Department of Energy, Basic Energy Sciences Grant No EDCBEE. The calculations were performed using the computational resources of the National Energy Research Scientific Computing Center, which is supported under the Office of Science of the U.S. Department of Energy under Contract No DE-AC02-05CH11231. NR 60 TC 0 Z9 0 U1 3 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2052-4463 J9 SCI DATA JI Sci. Data PD JAN 31 PY 2017 VL 4 AR 160134 DI 10.1038/sdata.2016.134 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ1FD UT WOS:000392955000002 PM 28140408 ER PT J AU Kirker, G Zelinka, S Gleber, SC Vine, D Finney, L Chen, S Hong, YP Uyarte, O Vogt, S Jellison, J Goodell, B Jakes, JE AF Kirker, Grant Zelinka, Sam Gleber, Sophie-Charlotte Vine, David Finney, Lydia Chen, Si Hong, Young Pyo Uyarte, Omar Vogt, Stefan Jellison, Jody Goodell, Barry Jakes, Joseph E. TI Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction SO SCIENTIFIC REPORTS LA English DT Article ID WHITE-ROT FUNGI; WOOD CELL-WALLS; BROWN-ROT; DECAY FUNGI; BIODEGRADATION; IRON; MECHANISMS; PLANTS; ACCUMULATION; MICROPROBE AB The role of ions in the fungal decay process of lignocellulose biomaterials, and more broadly fungal metabolism, has implications for diverse research disciplines ranging from plant pathology and forest ecology, to carbon sequestration. Despite the importance of ions in fungal decay mechanisms, the spatial distribution and quantification of ions in lignocellulosic cell walls and fungal hyphae during decay is not known. Here we employ synchrotron-based X-ray fluorescence microscopy (XFM) to map and quantify physiologically relevant ions, such as K, Ca, Mn, Fe, and Zn, in wood being decayed by the model brown rot fungus Serpula lacrymans. Two-dimensional XFM maps were obtained to study the ion spatial distributions from mm to submicron length scales in wood, fungal hyphae with the dried extracellular matrix (ECM) from the fungus, and Ca oxalate crystals. Three-dimensional ion volume reconstructions were also acquired of wood cell walls and hyphae with ECM. Results show that the fungus actively transports some ions, such as Fe, into the wood and controls the distribution of ions at both the bulk wood and cell wall length scales. These measurements provide new insights into the movement of ions during decay and illustrate how synchrotron-based XFM is uniquely suited study these ions. C1 [Kirker, Grant] US Forest Serv, Durabil & Wood Protect Res, USDA, Forest Prod Lab, Madison, WI USA. [Zelinka, Sam] US Forest Serv, Bldg & Fire Sci, USDA, Forest Prod Lab, Madison, WI USA. [Gleber, Sophie-Charlotte; Vine, David; Finney, Lydia; Chen, Si; Vogt, Stefan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Hong, Young Pyo] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. [Uyarte, Omar] Univ Sao Paulo, Escola Engn Lorena, Dept Biotecnol, Sao Paulo, Brazil. [Uyarte, Omar] CMPC Celulosa, Ctr I D, Santiago, Chile. [Jellison, Jody] Univ Massachusetts, Ctr Agr Food & Environm, Amherst, MA 01003 USA. [Goodell, Barry] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Jakes, Joseph E.] US Forest Serv, Forest Biopolymers Sci & Engn, USDA, Forest Prod Lab, Madison, WI 53705 USA. RP Jakes, JE (reprint author), US Forest Serv, Forest Biopolymers Sci & Engn, USDA, Forest Prod Lab, Madison, WI 53705 USA. EM jjakes@fs.fs.us FU US Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-Eng-38]; USDA PECASE awards; USDA Hatch Multistate Project [S-1041 VA-136288]; FAPESP/BEPE Project [2013-04481-3] FX The use of Advanced Photon Source facilities was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract number W-31-109-Eng-38. JEJ acknowledge funding from 2011 USDA PECASE awards. BG acknowledges support from USDA Hatch Multistate Project S-1041 VA-136288. OU acknowledge support from FAPESP/BEPE Project No 2013-04481-3. NR 44 TC 0 Z9 0 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 31 PY 2017 VL 7 AR 41798 DI 10.1038/srep41798 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ2ZV UT WOS:000393081000001 PM 28139778 ER PT J AU Knapen, S Redigolo, D AF Knapen, Simon Redigolo, Diego TI Gauge mediation at the LHC: status and prospects SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID HIGGS-BOSON MASSES; DYNAMICAL SUPERSYMMETRY BREAKING; SPLIT SUPERSYMMETRY; MODEL; MSSM; PARTICLE AB We show that the predictivity of general gauge mediation (GGM) with TeV-scale stops is greatly increased once the Higgs mass constraint is imposed. The most notable results are a strong lower bound on the mass of the gluino and right-handed squarks, and an upper bound on the Higgsino mass. If the mu-parameter is positive, the wino mass is also bounded from above. These constraints relax significantly for high messenger scales and as such long-lived NLSPs are favored in GGM. We identify a small set of most promising topologies for the neutralino/sneutrino NLSP scenarios and estimate the impact of the current bounds and the sensitivity of the high luminosity LHC. The stau, stop and sbottom NLSP scenarios can be robustly excluded at the high luminosity LHC. C1 [Knapen, Simon] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA. [Knapen, Simon] Lawrence Berkeley Natl Lab, Div Phys, Theory Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Redigolo, Diego] Univ Paris 06, CNRS, UMR 7589, Lab Phys Theor & Hautes Energies, 4 Pl Jussieu, F-75005 Paris, France. RP Knapen, S (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA.; Knapen, S (reprint author), Lawrence Berkeley Natl Lab, Div Phys, Theory Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM smknapen@lbl.gov; dredigol@lpthe.jussieu.fr FU LDRD Program of LBNL under U.S. Department of Energy [DE-AC02-05CH11231]; ERC grant Higgs at LHC FX We are grateful to David Shih for the fruitful collaboration during the early stages of this work and for useful discussions later on. We further thank Patrick Draper, Alberto Mariotti, Michele Papucci, Filippo Sala and Giovanni Villadoro for useful discussions. We are grateful to Marcin Badziak, Lorenzo Calibbi, Alberto Mariotti, David Shih and Robert Ziegler for comments on the manuscript. The work of SK is supported by the LDRD Program of LBNL under U.S. Department of Energy Contract No. DE-AC02-05CH11231. The work of DR is supported by the ERC grant Higgs at LHC. NR 127 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JAN 30 PY 2017 IS 1 AR 135 DI 10.1007/JHEP01(2017)135 PG 38 WC Physics, Particles & Fields SC Physics GA EK7WK UT WOS:000394135700010 ER PT J AU Prelovsek, S Skerbis, U Lang, CB AF Prelovsek, S. Skerbis, U. Lang, C. B. TI Lattice operators for scattering of particles with spin SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Lattice QCD; Lattice Quantum Field Theory AB We construct operators for simulating the scattering of two hadrons with spin on the lattice. Three methods are shown to give the consistent operators for PN, PV, V N and NN scattering, where P, V and N denote pseudoscalar, vector and nucleon. Explicit expressions for operators are given for all irreducible representations at lowest two relative momenta. Each hadron has a good helicity in the first method. The hadrons are in a certain partial wave L with total spin S in the second method. These enable the physics interpretations of the operators obtained from the general projection method. The correct transformation properties of the operators in all three methods are proven. The total momentum of two hadrons is restricted to zero since parity is a good quantum number in this case. C1 [Prelovsek, S.] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia. [Prelovsek, S.; Skerbis, U.] Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia. [Prelovsek, S.] Jefferson Lab, Ctr Theory, 12000 Jefferson Ave, Newport News, VA 23606 USA. [Lang, C. B.] Graz Univ, Inst Phys, Univ Pl 3, A-8010 Graz, Austria. RP Prelovsek, S (reprint author), Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia.; Prelovsek, S (reprint author), Jozef Stefan Inst, Jamova 39, Ljubljana 1000, Slovenia.; Prelovsek, S (reprint author), Jefferson Lab, Ctr Theory, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM sasa.prelovsek@ijs.si; ursa.skerbis@ijs.si; christian.lang@uni-graz.at FU Slovenian Research Agency ARKS; Austrian science Found [FWF:I1313-N27]; U.S. Department of Energy [DE-AC05-060R23177] FX We want to thank kindly R. Briceflo, J. Dudek, R. Edwards, A. Nicholson, M. Padmanath and A. Walker-Loud for valuable discussions. We are especially grateful to M. Padmanath for insightful discussions on the construction of PN interpolators. This work is supported in part by the Slovenian Research Agency ARKS, and by the Austrian science Found project FWF:I1313-N27. S.P. acknowledges support from U.S. Department of Energy Contract No. DE-AC05-060R23177, under which Jefferson Science Associates, LLC, manages and operates Jefferson Laboratory. NR 28 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JAN 30 PY 2017 IS 1 AR 129 DI 10.1007/JHEP01(2017)129 PG 28 WC Physics, Particles & Fields SC Physics GA EK7WK UT WOS:000394135700004 ER PT J AU Gao, QH Du, A Yang, ZJ AF Gao, Qing-He Du, An Yang, Ze-Jin TI Structural inheritance and difference between Ti2AlC, Ti3AlC2 and Ti5Al2C3 under pressure from first principles SO MODERN PHYSICS LETTERS B LA English DT Article DE First principles; high pressure; nanolaminate ID ELASTIC PROPERTIES; MAX PHASES; AB-INITIO; M=TI; CR AB The structural inheritance and difference between Ti2AlC, Ti3AlC2 and Ti5Al2C3 under pressure from first principles are studied. The results indicate that the lattice parameter a are almost the same within Ti2AlC, Ti3AlC2 and Ti5Al2C3, and the value of c in Ti5Al2C3 is the sum of Ti2AlC and Ti3AlC2 which is revealed by the covalently bonded chain in the electron density difference: Al Ti C Ti Al for Ti2AlC, Al-Ti-2-C Ti-1-C-Ti-2-Al for Ti3AlC2 and Al-Ti-3-C-2-Ti-3-Al-Ti-2-Ci-Ti-1-C-1-Ti-2-Al for Ti5Al2C3. The calculated axial compressibilities, volumetric shrinkage, elastic constant c(11), c(33)/c(11) ratio, bulk modulus, shear modulus, and Young's modulus of Ti5Al2C3 are within the range of the end members (Ti2AlC and Ti3AlC2) in a wide pressure range of 0-100 GPa. Only Ti2AlC is isotropic crystal at about 50 GPa within the Ti Al C compounds. All of the Ti 3d density of states curves of the three compounds move from lower energy to higher energy level with pressure increasing. The similarities of respective bond length, bond overlap population (Ti C, Ti Al and Ti Ti), atom Mulliken charges under pressure as well as the electron density difference for the three compounds are discovered. Among the Ti Al C ternary compounds, Ti Ti bond behaves least compressibility, whereas the Ti Al bond is softer than that of Ti C bonds, which can also been confirmed by the density of states and electron density difference. Bond overlap populations of Ti-Ti, Ti C and Ti Al indicate that the ionicity interaction becomes more and more stronger in the three structures as the pressure increasing. Mulliken charges of Ti-1, Ti-2, Ti-3, C and Al are 0.65, 0.42, 0.39, 0.73, 0.04 at 0 GPa, respectively, which are consistent with the Pauling scale. C1 [Gao, Qing-He; Du, An] Northeastern Univ, Coll Sci, Shenyang 110004, Peoples R China. [Gao, Qing-He] Liaoning Univ Tradit Chinese Med, Informat Engn Coll, Shenyang 110847, Peoples R China. [Yang, Ze-Jin] Zhejiang Univ Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China. [Yang, Ze-Jin] Iowa State Univ, Ames Lab, Dept Energy, Ames, IA 50011 USA. [Yang, Ze-Jin] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Du, A (reprint author), Northeastern Univ, Coll Sci, Shenyang 110004, Peoples R China.; Yang, ZJ (reprint author), Zhejiang Univ Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China.; Yang, ZJ (reprint author), Iowa State Univ, Ames Lab, Dept Energy, Ames, IA 50011 USA.; Yang, ZJ (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM andu@dbu.edu.cn; zejinyang@zjutedu.cn FU China Scholarship Council; Ames Lab at Department of Energy; Iowa State University of United States; Natural Science Foundation of China [11304279, 11364007, 11347220, 11404287]; Natural Science Foundation of Zhejiang Province, China [LY16A040013, LQ14A04003]; Science and Technology Foundation from Ministry of Education of Liaoning Province [L2015333] FX Yang Ze-Jin acknowledges the financial support from the China Scholarship Council and the hospitality of Ames Lab at Department of Energy and Iowa State University of United States. Projects supported by the Natural Science Foundation of China (Grant Nos. 11304279, 11364007, 11347220 and 11404287), Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY16A040013 and LQ14A04003), Science and Technology Foundation from Ministry of Education of Liaoning Province (Grant No. L2015333). NR 27 TC 0 Z9 0 U1 2 U2 2 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9849 EI 1793-6640 J9 MOD PHYS LETT B JI Mod. Phys. Lett. B PD JAN 30 PY 2017 VL 31 IS 3 AR 1750016 DI 10.1142/S0217984917500166 PG 18 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA EM2DF UT WOS:000395125900005 ER PT J AU Kovchegov, YV Pitonyak, D Sievert, MD AF Kovchegov, Yuri V. Pitonyak, Daniel Sievert, Matthew D. TI Small-x Asymptotics of the Quark Helicity Distribution SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRUCTURE-FUNCTION G(1); COLOR GLASS CONDENSATE; BFKL POMERON; FLAVOR EXCHANGE; SCATTERING; SPIN; PROTON; QCD; UNCERTAINTIES; REGGEON AB We construct a numerical solution of the small-x evolution equations derived in our recent work [J. High Energy Phys. 01 (2016) 072.] for the (anti) quark transverse momentum dependent helicity TMDs and parton distribution functions (PDFs) as well as the g(1) structure function. We focus on the case of large N-c, where one finds a closed set of equations. Employing the extracted intercept, we are able to predict directly from theory the behavior of the quark helicity PDFs at small x, which should have important phenomenological consequences. We also give an estimate of how much of the proton's spin carried by the quarks may be at small x and what impact this has on the spin puzzle. C1 [Kovchegov, Yuri V.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Pitonyak, Daniel] Penn State Univ Berks, Div Sci, Reading, PA 19610 USA. [Pitonyak, Daniel] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Sievert, Matthew D.] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. [Sievert, Matthew D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Kovchegov, YV (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA.; Pitonyak, D (reprint author), Penn State Univ Berks, Div Sci, Reading, PA 19610 USA.; Pitonyak, D (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.; Sievert, MD (reprint author), Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA.; Sievert, MD (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM kovchegov.1@osu.edu; dap67@psu.edu; sievertmd@lanl.gov OI Sievert, Matthew/0000-0002-6018-269X FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC0004286]; DOE [DE-SC0012704]; RIKEN BNL Research Center; EIC program development fund from BNL; U.S. Department of Energy, Office of Science under DOE Early Career Program; TMD Topical Collaboration FX We thank S. Mukherjee for useful discussions on analyzing the numerical results. We thank R. Sassot and W. Vogelsang for providing us with the parameters and FORTRAN code of the DSSV14 fit. We are also grateful to R. Furnstahl, A. Metz, B. Schenke, and J. Stapleton for useful conversations. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0004286 (YK) and within the framework of the TMD Topical Collaboration (DP) and DOE Contract No. DE-SC0012704 (MS). DP also received support from the RIKEN BNL Research Center. MS received additional support from an EIC program development fund from BNL and from the U.S. Department of Energy, Office of Science under the DOE Early Career Program. NR 42 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 30 PY 2017 VL 118 IS 5 AR 052001 DI 10.1103/PhysRevLett.118.052001 PG 5 WC Physics, Multidisciplinary SC Physics GA EO0UL UT WOS:000396413600002 PM 28211705 ER PT J AU Lokareddy, RK Sankhala, RS Roy, A Afonine, PV Motwani, T Teschke, CM Parent, KN Cingolani, G AF Lokareddy, Ravi K. Sankhala, Rajeshwer S. Roy, Ankoor Afonine, Pavel V. Motwani, Tina Teschke, Carolyn M. Parent, Kristin N. Cingolani, Gino TI Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation SO Nature Communications LA English DT Article ID P22 COAT PROTEIN; BACTERIOPHAGE P22; CONFORMATIONAL-CHANGES; SCAFFOLDING PROTEIN; VERTEX STRUCTURE; SMALL TERMINASE; TAIL MACHINE; MECHANISM; MOTOR; ARCHITECTURE AB Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or 'procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinity for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of 'Headful Packaging' is a DNA-dependent symmetrization of portal protein. C1 [Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Cingolani, Gino] Thomas Jefferson Univ, Dept Biochem & Mol Biol, 233 South 10th St, Philadelphia, PA 19107 USA. [Roy, Ankoor] Rutgers State Univ, Dept Biochem & Mol Biol, 683 Hoes Lane, Piscataway, NJ 08854 USA. [Afonine, Pavel V.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Motwani, Tina; Teschke, Carolyn M.] Univ Connecticut, Dept Chem, Dept Mol & Cell Biol, 91N Eagleville Rd, Storrs, CT 06269 USA. [Parent, Kristin N.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Cingolani, Gino] CNR, Inst Biomembranes & Bioenerget, Via Amendola 165-A, I-70126 Bari, Italy. RP Cingolani, G (reprint author), Thomas Jefferson Univ, Dept Biochem & Mol Biol, 233 South 10th St, Philadelphia, PA 19107 USA.; Cingolani, G (reprint author), CNR, Inst Biomembranes & Bioenerget, Via Amendola 165-A, I-70126 Bari, Italy. EM gino.cingolani@jefferson.edu FU NIH [R01 GM100888, GM076661]; AAAS Marion Milligan Mason Award for Women in the Chemical Sciences; NCI [P30 CA56036, S10 OD017987] FX This work was supported by NIH grant R01 GM100888 to G.C. and GM076661 to C.M.T. KNP was supported by the AAAS Marion Milligan Mason Award for Women in the Chemical Sciences. The Sidney Kimmel Cancer Center X-ray Crystallography and Molecular Interaction Facility is supported in part by NCI grants P30 CA56036 and S10 OD017987. NR 70 TC 0 Z9 0 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN 30 PY 2017 VL 8 AR 14310 DI 10.1038/ncomms14310 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI9FB UT WOS:000392811900001 PM 28134243 ER PT J AU Qi, SQ Li, ZC Schulze-Gahmen, U Stjepanovic, G Zhou, Q Hurley, JH AF Qi, Shiqian Li, Zichong Schulze-Gahmen, Ursula Stjepanovic, Goran Zhou, Qiang Hurley, James H. TI Structural basis for ELL2 and AFF4 activation of HIV-1 proviral transcription SO Nature Communications LA English DT Article ID BET BROMODOMAIN INHIBITION; P-TEFB; ELONGATION COMPLEX; 7SK SNRNP; TAT; LATENCY; LEUKEMIA; BINDING; TRANSACTIVATION; REACTIVATION AB The intrinsically disordered scaffold proteins AFF1/4 and the transcription elongation factors ELL1/2 are core components of the super elongation complex required for HIV-1 proviral transcription. Here we report the 2.0-angstrom resolution crystal structure of the human ELL2 C-terminal domain bound to its 50-residue binding site on AFF4, the ELLBow. The ELL2 domain has the same arch-shaped fold as the tight junction protein occludin. The ELLBow consists of an N-terminal helix followed by an extended hairpin that we refer to as the elbow joint, and occupies most of the concave surface of ELL2. This surface is important for the ability of ELL2 to promote HIV-1 Tat-mediated proviral transcription. The AFF4-ELL2 interface is imperfectly packed, leaving a cavity suggestive of a potential binding site for transcription-promoting small molecules. C1 [Qi, Shiqian] Sichuan Univ, West China Hosp, Dept Urol, State Key Lab Biotherapy, Chengdu 610041, Peoples R China. [Qi, Shiqian] Natl Collaborat Innovat Ctr, Chengdu 610041, Peoples R China. [Qi, Shiqian; Li, Zichong; Schulze-Gahmen, Ursula; Stjepanovic, Goran; Zhou, Qiang; Hurley, James H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Qi, Shiqian; Li, Zichong; Schulze-Gahmen, Ursula; Stjepanovic, Goran; Zhou, Qiang; Hurley, James H.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Stjepanovic, Goran; Hurley, James H.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. RP Hurley, JH (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.; Hurley, JH (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.; Hurley, JH (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. EM jimhurley@berkeley.edu FU NIH [P50GM082250, S10 OD016268, P41GM103393]; NIAID [R01 AI041757, R01 AI095057]; NSFC [81671388]; U.C. Office of the President, Multicampus Research Programs and Initiatives [MR-15-328599]; Program for Breakthrough Biomedical Research - Sandler Foundation; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S.D.O.E. [DE-AC02-76SF00515]; DOE Office of Biological and Environmental Research FX We thank Xuefeng Ren, James Holton and George Meigs for assistance with data collection and Bo Wan for the construction of the HeLa-based ELL2-KO cell line. This work was supported by NIH grants P50GM082250 (J.H.H.), and NIAID R01 AI041757 and R01 AI095057 (Q.Z.), and NSFC grant 81671388 (Q.S.). The Minstrel crystal farm was purchased with support from the NIH, S10 OD016268. Beamline 8.3.1 at the Advanced Light Source, LBNL, is supported by the U.C. Office of the President, Multicampus Research Programs and Initiatives grant MR-15-328599 and the Program for Breakthrough Biomedical Research, which is partially funded by the Sandler Foundation. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Stanford Synchrotron Radiation Lightsource is supported by the U.S.D.O.E. under contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by NIH grant P41GM103393. NR 30 TC 0 Z9 0 U1 3 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN 30 PY 2017 VL 8 AR 14076 DI 10.1038/ncomms14076 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI9VM UT WOS:000392857500001 PM 28134250 ER PT J AU Liu, CW Bramer, L Webb-Robertson, BJ Waugh, K Rewers, MJ Zhang, QB AF Liu, Chih-Wei Bramer, Lisa Webb-Robertson, Bobbie-Jo Waugh, Kathleen Rewers, Marian J. Zhang, Qibin TI Temporal profiles of plasma proteome during childhood development SO JOURNAL OF PROTEOMICS LA English DT Article DE Human plasma proteome; Childhood development; Pediatric proteome; Temporal proteome profiling; Tandem mass tags; TMT10 ID ANTI-MULLERIAN HORMONE; GROWTH-FACTOR-I; BIOMARKER DISCOVERY; MASS-SPECTROMETRY; QUANTITATIVE PROTEOMICS; IDENTIFICATION RATES; CLINICAL UTILITY; QUANTIFICATION; CHROMATOGRAPHY; QUADRUPOLE AB Human blood plasma proteome reflects physiological changes associated with a child's development as well as development of disease states. While age-specific normative values are available for proteins routinely measured in clinical practice, there is paucity of comprehensive longitudinal data regarding changes in human plasma proteome during childhood. We applied TMT-10plex isobaric labeling-based quantitative proteomics to longitudinally profile the plasma proteome in 10 healthy children during their development, each with 9 serial time points from 9 months to 15 years of age. In total, 1828 protein groups were identified at peptide and protein level false discovery rate of 1% and with at least two razor and unique peptides. The longitudinal expression profiles of 1747 protein groups were statistically modeled and their temporal changes were categorized into 7 different patterns. The patterns and relative abundance of proteins obtained by LC-MS were also verified with ELISA. To our knowledge, this study represents the most comprehensive longitudinal profiling of human plasma proteome to date. The temporal profiles of plasma proteome obtained in this study provide a comprehensive resource and reference for biomarker studies in childhood diseases. Biological significance: A pediatric plasma proteome database with longitudinal expression patterns of 1747 proteins from neonate to adolescence was provided to the research community. 970 plasma proteins had age dependent expression trends, which demonstrated the importance of longitudinal profiling study to identify the potential biomarkers specific to childhood diseases, and the requirement of strictly age-matched clinical samples in a cross-sectional study in pediatric population. (C) 2016 Elsevier B.V. All rights reserved. C1 [Liu, Chih-Wei; Zhang, Qibin] Univ North Carolina Greensboro, Ctr Translat Biomed Res, North Carolina Res Campus, Kannapolis, NC USA. [Bramer, Lisa; Webb-Robertson, Bobbie-Jo] Pacific Northwest Natl Lab, Appl Stat & Computat Modeling, Richland, WA USA. [Waugh, Kathleen; Rewers, Marian J.] Univ Colorado, Sch Med, Barbara Davis Ctr Diabet, 1775 Aurora Court, Aurora, CO 80045 USA. [Zhang, Qibin] Univ North Carolina Greensboro, Dept Chem & Biochem, Greensboro, NC USA. RP Rewers, MJ (reprint author), Univ Colorado, Sch Med, Barbara Davis Ctr Diabet, 1775 Aurora Court, Aurora, CO 80045 USA.; Zhang, QB (reprint author), UNCG Ctr Translat Biomed Res, 500 Laureate Way Suite 4226, Kannapolis, NC 28081 USA. EM Marian.Rewers@ucdenver.edu; q_zhang2@uncg.edu FU National Institutes of Health [DK099174, DK32493, DK32083, DK050979, DK57516]; Juvenile Diabetes Research Foundation [17-2013-535] FX The authors gratefully thank Athena Schepmoes for preparation of proteomic samples. The work was supported by National Institutes of Health grants DK099174, DK32493, DK32083, DK050979, DK57516, and by the Juvenile Diabetes Research Foundation grant 17-2013-535. NR 45 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1874-3919 EI 1876-7737 J9 J PROTEOMICS JI J. Proteomics PD JAN 30 PY 2017 VL 152 BP 321 EP 328 DI 10.1016/j.jprot.2016.11.016 PG 8 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA EI5SL UT WOS:000392554900031 PM 27890796 ER PT J AU Singh, N Niklas, J Poluektov, O Van Heuvelen, KM Mukherjee, A AF Singh, Nirupama Niklas, Jens Poluektov, Oleg Van Heuvelen, Katherine M. Mukherjee, Anusree TI Mononuclear nickel (II) and copper (II) coordination complexes supported by bispicen ligand derivatives: Experimental and computational studies SO INORGANICA CHIMICA ACTA LA English DT Article DE Transition metals; UV-vis spectroscopy; Nickel; Copper; EPR spectroscopy ID TETRADENTATE PYRIDYL LIGANDS; SCHIFF-BASE LIGAND; CATALYTIC-ACTIVITY; CRYSTAL-STRUCTURE; CU(II) COMPLEXES; TERT-BUTYLHYDROPEROXIDE; ELECTRONIC-PROPERTIES; BINUCLEAR COPPER(II); TRANSITION-METALS; OXIDATION AB The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N'-dimethyl-N,N'-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visible region. Magnetic parameters obtained from EPR spectroscopy together with other structural data suggest that the Ni(II) complexes are in a pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce. (C) 2016 Elsevier B.V. All rights reserved. C1 [Singh, Nirupama; Mukherjee, Anusree] Univ Alabama, Dept Chem, 301 Sparkman Dr, Huntsville, AL 35899 USA. [Niklas, Jens; Poluektov, Oleg] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Van Heuvelen, Katherine M.] Harvey Mudd Coll, Dept Chem, 301 Platt Blvd, Claremont, CA 91711 USA. RP Mukherjee, A (reprint author), Univ Alabama, Dept Chem, 301 Sparkman Dr, Huntsville, AL 35899 USA.; Van Heuvelen, KM (reprint author), Harvey Mudd Coll, Dept Chem, 301 Platt Blvd, Claremont, CA 91711 USA. EM vanheuvelen@g.hmc.edu; anusree.mukherjee@uah.edu RI Niklas, Jens/I-8598-2016 OI Niklas, Jens/0000-0002-6462-2680 FU University of Alabama in Huntsville; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]; National Science Foundation [ACI-1053575] FX This work was supported by grant from the University of Alabama in Huntsville. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under contract number DE-AC02-06CH11357 at Argonne National Laboratory. X-ray structural data was collected and analyzed by Dr. John Bacsa at Emory University - X-ray Crystallography Facility, Atwood Chemistry Center, 163 Emory University, Atlanta. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. We sincerely thank Auburn University for allowing us to measure magnetic susceptibility data. NR 68 TC 0 Z9 0 U1 25 U2 25 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 EI 1873-3255 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD JAN 30 PY 2017 VL 455 BP 221 EP 230 DI 10.1016/j.ica.2016.09.001 PN 1 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA ED9CF UT WOS:000389167100027 ER PT J AU Ge, QH Mao, YZ White, AF Epifanovsky, E Closser, KD Head-Gordon, M AF Ge, Qinghui Mao, Yuezhi White, Alec F. Epifanovsky, Evgeny Closser, Kristina D. Head-Gordon, Martin TI Simulating the absorption spectra of helium clusters (N=70, 150, 231, 300) using a charge transfer correction to superposition of fragment single excitations SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID LOCALIZED MOLECULAR-ORBITALS; DENSITY-FUNCTIONAL THEORY; ENERGY DECOMPOSITION ANALYSIS; CONSISTENT-FIELD METHOD; INTEGRAL MONTE-CARLO; EXCITED-STATES; CONFIGURATION-INTERACTION; LIQUID-HELIUM; BASIS-SET; DROPLETS AB Simulations of the n = 2 absorption spectra of HeN (N = 70, 150, 231, 300) clusters are reported, with nuclear configurations sampled by path integral molecular dynamics. The electronic structure is treated by a new approach, ALMO-CIS+CT, which is a formulation of configuration interaction singles (CIS) based on absolutely localized molecular orbitals (ALMOs). The method generalizes the previously reported ALMO-CIS model [K. D. Closser et al. J. Chem. Theory Comput. 11, 5791 (2015)] to include spatially localized charge transfer (CT) effects. It is designed to recover large numbers of excited states in atomic and molecular clusters, such as the entire n = 2 Rydberg band in helium clusters. ALMO-CIS+ CT is shown to recover most of the error caused by neglecting charge transfer in ALMO-CIS and has comparable accuracy to standard CIS for helium clusters. For the n = 2 band, CT stabilizes states towards the blue edge by up to 0.5 eV. ALMO-CIS+ CT retains the formal cubic scaling of ALMO-CIS with respect to system size. With improvements to the implementation over that originally reported for ALMO-CIS, ALMO-CIS+ CT is able to treat helium clusters with hundreds of atoms using modest computing resources. A detailed simulation of the absorption spectra associated with the 2s and 2p bands of helium clusters up to 300 atoms is reported, using path integral molecular dynamics with a spherical boundary condition to generate atomic configurations at 3 K. The main features of experimentally reported fluorescence excitation spectra for helium clusters are reproduced. Published by AIP Publishing. C1 [Ge, Qinghui; Mao, Yuezhi; White, Alec F.; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Ge, Qinghui; White, Alec F.; Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. [Epifanovsky, Evgeny] Q Chem Inc, 6601 Owens Dr,Suite 105, Pleasanton, CA 94588 USA. [Closser, Kristina D.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Ge, QH (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA.; Ge, QH (reprint author), Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Professor Ryan Steele for the original implementation of PIMD in the Q-Chem package. NR 60 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2017 VL 146 IS 4 AR 044111 DI 10.1063/1.4973611 PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL3LI UT WOS:000394520200015 ER PT J AU Welch, PM AF Welch, P. M. TI Examining the role of fluctuations in the early stages of homogenous polymer crystallization with simulation and statistical learning SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; SEMICRYSTALLINE POLYMERS; CRYSTAL NUCLEATION; MELT; POLYETHYLENE; MODEL; FLOW AB We propose a relationship between the dynamics in the amorphous and crystalline domains during polymer crystallization: the fluctuations of ordering-rate about a material-specific value in the amorphous phase drive those fluctuations associated with the increase in percent crystallinity. This suggests a differential equation that satisfies the three experimentally observed time regimes for the rate of crystal growth. To test this postulated expression, we applied a suite of statistical learning tools to molecular dynamics simulations to extract the relevant phenomenology. This study shows that the proposed relationship holds in the early time regime. It illustrates the effectiveness of soft computing tools in the analysis of coarse-grained simulations in which patterns exist, but may not easily yield to strict quantitative evaluation. This ability assists us in characterizing the critical early time molecular arrangement during the primary nucleation phase of polymer melt crystallization. In addition to supporting the validity of the proposed kinetics expression, the simulations show that (i) the classical nucleation and growth mechanism is active in the early stages of ordering; (ii) the number of nuclei and their masses grow linearly during this early time regime; and (iii) a fixed inter-nuclei distance is established. Published by AIP Publishing. C1 [Welch, P. M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Welch, PM (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. FU DOE/DOD Joint Munitions Program; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX Support for this work was provided by the DOE/DOD Joint Munitions Program. This work was also carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 40 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2017 VL 146 IS 4 AR 044901 DI 10.1063/1.4973346 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL3LI UT WOS:000394520200043 PM 28147554 ER PT J AU White, AF Head-Gordon, M McCurdy, CW AF White, Alec F. Head-Gordon, Martin McCurdy, C. William TI Stabilizing potentials in bound state analytic continuation methods for electronic resonances in polyatomic molecules SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GAUSSIAN-BASIS SETS; COUPLING-CONSTANT; SHAPE RESONANCE; ENERGIES; COLLISIONS; WIDTHS; GRAPHS; N-2; EXCITATION; SCATTERING AB The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. We critically evaluate a recently proposed analytic continuation method based on low order (type III) Pade approximants as well as an analytic continuation method based on high order (type II) Pade approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the (2)Pi(g) shape resonance of N-2(-) which has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances. Published by AIP Publishing. C1 [White, Alec F.; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [White, Alec F.; Head-Gordon, Martin; McCurdy, C. William] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [McCurdy, C. William] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Head-Gordon, M (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu; cwmccurdy@ucdavis.edu FU U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program; U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program. Work at LBNL was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 56 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2017 VL 146 IS 4 AR 044112 DI 10.1063/1.4974761 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL3LI UT WOS:000394520200016 PM 28147521 ER PT J AU White, AD Knight, C Hocky, GM Voth, GA AF White, Andrew D. Knight, Chris Hocky, Glen M. Voth, Gregory A. TI Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; WATER; SIMULATIONS; MODELS; PROTON; TEMPERATURE; DEPENDENCE; SOLVATION; GROTTHUSS; DIFFUSION AB Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD. Published by AIP Publishing. C1 [White, Andrew D.; Hocky, Glen M.; Voth, Gregory A.] Univ Chicago, James Franck Inst, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. [White, Andrew D.; Hocky, Glen M.; Voth, Gregory A.] Univ Chicago, Inst Biophys Dynam, 5735 S Ellis Ave, Chicago, IL 60637 USA. [White, Andrew D.] Univ Rochester, Dept Chem Engn, Rochester, NY 14627 USA. [Knight, Chris] Argonne Natl Lab, Leadership Comp Facil, 9700 South Cass Ave, Argonne, IL 60439 USA. RP White, AD (reprint author), Univ Chicago, James Franck Inst, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA.; White, AD (reprint author), Univ Chicago, Inst Biophys Dynam, 5735 S Ellis Ave, Chicago, IL 60637 USA.; White, AD (reprint author), Univ Rochester, Dept Chem Engn, Rochester, NY 14627 USA. OI Knight, Christopher/0000-0001-8432-0658; Hocky, Glen/0000-0002-5637-0698 FU Office of Naval Research (ONR) [N00014-15-1-2493]; University of Chicago National Science Foundation MRSEC [DMR-1420709]; DOE Office of Science [DE-AC02-06CH11357]; National Science Foundation [ACI-1053575] FX This research was supported by the Office of Naval Research (ONR Grant No. N00014-15-1-2493). G.M.H. was supported as a Kadanoff-Rice postdoctoral scholar sponsored by the University of Chicago National Science Foundation MRSEC (Grant No. DMR-1420709). The computational resources in this work were provided in part by a grant of computer time from the U.S. Department of Defense (DOD) High Performance Computing Modernization Program at the Engineer Research and Development Center (ERDC) and Navy DOD Supercomputing Resource Centers and in part by the University of Chicago Research Computing Center (RCC). This research also used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract No. DE-AC02-06CH11357. This research was also performed in part on the Stampede supercomputer at the Texas Advanced Computing Center (TACC), with resources provided by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI-1053575. NR 42 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 28 PY 2017 VL 146 IS 4 AR 041102 DI 10.1063/1.4974837 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL3LI UT WOS:000394520200003 PM 28147531 ER PT J AU Yue, C Bortnik, J Chen, LJ Ma, QL Thorne, RM Reeves, GD Spence, HE AF Yue, Chao Bortnik, Jacob Chen, Lunjin Ma, Qianli Thorne, Richard M. Reeves, Geoffrey D. Spence, Harlan E. TI Transitional behavior of different energy protons based on Van Allen Probes observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE transition in drift behavior; UBK method ID PLASMA SHEET ACCESS; GEOSYNCHRONOUS ORBIT; INNER MAGNETOSPHERE AB Understanding the dynamical behavior of similar to 1eV to 50keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. Here we statistically analyze similar to 1eV to 50keV hydrogen (H+) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H+ dynamics under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H+ behaviors within different energy ranges, which is consistent with previous theory predictions. Using simple electric and magnetic field models in UBK coordinates, we have further constrained the source regions of different energy ions and their drift directions. C1 [Yue, Chao; Bortnik, Jacob; Ma, Qianli; Thorne, Richard M.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Yue, Chao] Univ Corp Atmospher Res, Boulder, CO 80307 USA. [Chen, Lunjin] Univ Texas Dallas, Dept Phys, Dallas, TX USA. [Reeves, Geoffrey D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Reeves, Geoffrey D.] New Mexico Consortium, Div Space Sci, Los Alamos, NM USA. [Spence, Harlan E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. RP Yue, C (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA.; Yue, C (reprint author), Univ Corp Atmospher Res, Boulder, CO 80307 USA. EM yuechao@atmos.ucla.edu OI Ma, Qianli/0000-0001-5452-4756; Yue, Chao/0000-0001-9720-5210; Spence, Harlan/0000-0002-2526-2205; Reeves, Geoffrey/0000-0002-7985-8098 FU NASA Living With a Star Jack Eddy Postdoctoral Fellowship Program; NASA LWS grant [NNX13AI61G]; NASA [NAS5-01072] FX This work was supported by the NASA Living With a Star Jack Eddy Postdoctoral Fellowship Program, administered by the UCAR Visiting Scientist Programs. Jacob Bortnik and Lunjin Chen gratefully acknowledge support from NASA LWS grant NNX13AI61G. We acknowledge the use of Van Allen Probes data of the Level-3 HOPE omnidimensional data obtained from the RBSP-ECT website (rbsp- ect.lanl.gov/data_pub/rbspb/hope/level3/PA/), made publicly available through NASA prime contract NAS5-01072. We thank the Space Physics Data Facility at the NASA Goddard Space Flight Center for providing the OMNI data (ftp://spdf.gsfc.nasa.gov/pub/data/omni/omni_c-daweb/) We also acknowledge Yongfu Wang for helpful discussion on the UBK method. NR 23 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 28 PY 2017 VL 44 IS 2 BP 625 EP 633 DI 10.1002/2016GL071324 PG 9 WC Geosciences, Multidisciplinary SC Geology GA EM9SY UT WOS:000395652600003 ER PT J AU Patricola, CM Saravanan, R Chang, P AF Patricola, Christina M. Saravanan, R. Chang, Ping TI A teleconnection between Atlantic sea surface temperature and eastern and central North Pacific tropical cyclones SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE tropical cyclones; Atlantic SST; ENSO; teleconnections; seasonal prediction; internal atmospheric variability ID NINO-SOUTHERN-OSCILLATION; EL-NINO; HURRICANE ACTIVITY; INTERANNUAL VARIABILITY; MERIDIONAL MODE; ENSO; FREQUENCY; IMPACT AB The El Nino-Southern Oscillation (ENSO) is a major source of seasonal tropical cyclone (TC) predictability in both local and remote ocean basins. Unusually warm eastern-central equatorial Pacific sea surface temperature (SST) during El Nino tends to enhance eastern and central North Pacific (ECNP) TCs and suppress Atlantic TCs. Here we demonstrate that Atlantic SST variability likewise influences remote TC activity in the eastern-central Pacific through a Walker Circulation-type response analogous to the ENSO-Atlantic TC teleconnection, using observations and 27km resolution tropical channel model (TCM) simulations. Observed and simulated ECNP TC activity is reduced during the positive Atlantic Meridional Mode (AMM), which is characterized by warm northern and cool southern tropical Atlantic SST anomalies, and vice versa during the negative AMM. Large ensembles of TCM simulations indicate that SST variability, rather than internal atmospheric variability, drives extreme ECNP hurricane seasons. C1 [Patricola, Christina M.; Saravanan, R.; Chang, Ping] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Patricola, Christina M.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. [Chang, Ping] Texas A&M Univ, Dept Oceanog, College Stn, TX 77843 USA. [Chang, Ping] Ocean Univ China, Phys Oceanog Lab, Qingdao Collaborat Innovat Ctr Marine Sci & Techn, Qingdao, Peoples R China. RP Patricola, CM (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA.; Patricola, CM (reprint author), Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. EM cmpatricola@lbl.gov FU U.S. National Science Foundation [1347808]; National Science Foundation [ACI-1053575]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program [DE-AC02-05CH11231] FX This research was supported by U.S. National Science Foundation grant 1347808 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant ACI-1053575. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program, under award number DE-AC02-05CH11231. High-performance computing resources provided by the Texas Advanced Computing Center (TACC) at the University of Texas at Austin and by Texas A&M Supercomputing. HURDAT2 was provided by Atlantic Oceanographic and Meteorological Laboratory (AOML)/NOAA Hurricane Research Division. AMM index was calculated by Daniel Vimont at University of Wisconsin-Madison and provided by NOAA Earth System Research Laboratory (ESRL). Nino 3.4 index was provided by NOAA CPC. NCEP-II was obtained from NOAA National Operational Model Archive and Distribution System (NOMADS). Climate model output was available by request to C.M.P. We thank Jim Kossin and one anonymous reviewer for insightful comments that improved the manuscript. NR 46 TC 0 Z9 0 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JAN 28 PY 2017 VL 44 IS 2 BP 1167 EP 1174 DI 10.1002/2016GL071965 PG 8 WC Geosciences, Multidisciplinary SC Geology GA EM9SY UT WOS:000395652600066 ER PT J AU Feng, J Karkare, S Nasiatka, J Schubert, S Smedley, J Padmore, H AF Feng, Jun Karkare, Siddharth Nasiatka, James Schubert, Susanne Smedley, John Padmore, Howard TI Near atomically smooth alkali antimonide photocathode thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HIGH SENSITIVITY; ENERGY; LASER AB Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. We calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications. Published by AIP Publishing. C1 [Feng, Jun; Karkare, Siddharth; Nasiatka, James; Schubert, Susanne; Padmore, Howard] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Smedley, John] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Feng, J (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM fjun@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231, KC0407-ALSJNT-I0013, DE-SC0005713] FX This work was performed at LBNL under the auspices of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract Nos. DE-AC02-05CH11231, KC0407-ALSJNT-I0013, and DE-SC0005713. NR 26 TC 2 Z9 2 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 28 PY 2017 VL 121 IS 4 AR 044904 DI 10.1063/1.4974363 PG 5 WC Physics, Applied SC Physics GA EJ8MP UT WOS:000393480100035 ER PT J AU Guthrey, H Moseley, J Colegrove, E Burst, J Albin, D Metzger, WK Al-Jassim, M AF Guthrey, Harvey Moseley, John Colegrove, Eric Burst, James Albin, David Metzger, Wyatt K. Al-Jassim, Mowafak TI Spatial luminescence imaging of dopant incorporation in CdTe Films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHOTO-LUMINESCENCE; CADMIUM TELLURIDE; CU; PHOSPHORUS; ACCEPTOR; DEFECTS; STATES; AG AB State-of-the-art cathodoluminescence (CL) spectrum imaging with spectrum-per-pixel CL emission mapping is applied to spatially profile how dopant elements are incorporated into Cadmium telluride (CdTe). Emission spectra and intensity monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on computational modeling. Our results show that grain boundaries play a role in incorporating dopants in CdTe exposed to copper, phosphorus, and intrinsic point defects in CdTe. The image analysis provides critical, unique feedback to understand dopant incorporation and activation in the inhomogeneous CdTe material, which has struggled to reach high levels of hole density. Published by AIP Publishing. C1 [Guthrey, Harvey; Moseley, John; Colegrove, Eric; Burst, James; Albin, David; Metzger, Wyatt K.; Al-Jassim, Mowafak] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Guthrey, H (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM harvey.guthrey@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 29 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 28 PY 2017 VL 121 IS 4 AR 045304 DI 10.1063/1.4974459 PG 7 WC Physics, Applied SC Physics GA EJ8MP UT WOS:000393480100056 ER PT J AU Jafari, A Sergueev, I Bessas, D Klobes, B Roschin, BS Asadchikov, VE Alexeev, P Hartwig, J Chumakov, AI Wille, HC Hermann, RP AF Jafari, A. Sergueev, I. Bessas, D. Klobes, B. Roschin, B. S. Asadchikov, V. E. Alexeev, P. Hartwig, J. Chumakov, A. I. Wille, H. -C. Hermann, R. P. TI Rocking curve imaging of high quality sapphire crystals in backscattering geometry SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HARD X-RAYS; SYNCHROTRON-RADIATION; SCATTERING; NUCLEAR; RESOLUTION; MONOCHROMATOR; GROWTH; PRESSURE AB We report on the characterization of high quality sapphire single crystals suitable for high-resolution X-ray optics at high energy. Investigations using rocking curve imaging reveal the crystals to be of uniformly good quality at the level of similar to 10(-4) in lattice parameter variations, delta d/d. However, investigations using backscattering rocking curve imaging with a lattice spacing resolution of delta d/d similar to 5 x 10(-8) show very diverse quality maps for all crystals. Our results highlight nearly ideal areas with an edge length of 0.2-0.5mm in most crystals, but a comparison of the back reflection peak positions shows that even neighboring ideal areas exhibit a relative difference in the lattice parameters on the order of delta d/d - 10-20 x 10(-8); this is several times larger than the rocking curve width. Stress-strain analysis suggests that an extremely stringent limit on the strain at a level of similar to 100 kPa in the growth process is required in order to produce crystals with large areas of the quality required for X-ray optics at high energy. Published by AIP Publishing. C1 [Jafari, A.; Klobes, B.; Alexeev, P.; Hermann, R. P.] Forschungszentrum Julich, JCNS, D-52425 Julich, Germany. [Jafari, A.; Klobes, B.; Alexeev, P.; Hermann, R. P.] Forschungszentrum Julich, PGI, JARA FIT, D-52425 Julich, Germany. [Jafari, A.; Bessas, D.; Hartwig, J.; Chumakov, A. I.] ESRF European Synchrotron, CS40220, F-38043 Grenoble 9, France. [Jafari, A.; Hermann, R. P.] Univ Liege, Fac Sci, B-4000 Liege, Belgium. [Sergueev, I.; Alexeev, P.; Wille, H. -C.] DESY, D-22607 Hamburg, Germany. [Roschin, B. S.; Asadchikov, V. E.] RAS, Shubnikov Inst Crystallog, Leninskii Pr T 59, Moscow 119333, Russia. [Asadchikov, V. E.] Lomonosov Moscow State Univ, Fac Phys, GSP 1,1-2 Leninskiye Gory, Moscow 119991, Russia. [Hartwig, J.] Univ Johannesburg, Fac Sci, Dept Phys, Johannesburg, South Africa. [Hermann, R. P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Bessas, D.] Delft Univ Technol, Fundamental Aspects Mat & Energy, Dept Radiat Sci & Technol, Mekelweg 15, NL-2629 JB Delft, Netherlands. RP Hermann, RP (reprint author), Forschungszentrum Julich, JCNS, D-52425 Julich, Germany.; Hermann, RP (reprint author), Forschungszentrum Julich, PGI, JARA FIT, D-52425 Julich, Germany.; Hermann, RP (reprint author), Univ Liege, Fac Sci, B-4000 Liege, Belgium.; Hermann, RP (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM hermannrp@ornl.gov FU Helmholtz association of German Research Centers; Russian Academy of Science [HRJRG-402]; DFG [SFB-917]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Foundation for Fundamental Research on Matter (FOM) (The Netherlands) [IPP-I28]; BASF New Business FX We are grateful to the Helmholtz association of German Research Centers and the Russian Academy of Science for supporting the projects HRJRG-402 "Sapphire ultra optics for synchrotron radiation" and DFG SFB-917 "nanoswitches." R.P.H. acknowledges support from the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. D.B. acknowledges financial support from the Industrial Partnership Program (IPP-I28) of Foundation for Fundamental Research on Matter (FOM) (The Netherlands) and BASF New Business. We acknowledge the ESRF, ANKA, and DESY for provision of synchrotron radiation beamtimes. We are also immensely grateful to Andreas N. Danilewsky for all the help provided and John Budai and Ben Larson for helpful comments. NR 47 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 28 PY 2017 VL 121 IS 4 AR 044901 DI 10.1063/1.4974106 PG 9 WC Physics, Applied SC Physics GA EJ8MP UT WOS:000393480100032 ER PT J AU Rittman, DR Turner, KM Park, S Fuentes, AF Yan, JY Ewing, RC Mao, WL AF Rittman, Dylan R. Turner, Katlyn M. Park, Sulgiye Fuentes, Antonio F. Yan, Jinyuan Ewing, Rodney C. Mao, Wendy L. TI High-pressure behavior of A(2)B(2)O(7) pyrochlore (A=Eu, Dy; B=Ti, Zr) SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID X-RAY-DIFFRACTION; INDUCED PHASE-TRANSFORMATION; RARE-EARTH TITANATES; RAMAN-SPECTROSCOPY; FLUORITE STRUCTURE; COMPLEX OXIDES; RE2TI2O7 RE; DISORDER; GD; CONDUCTIVITY AB In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A(2)B(2)O(7) pyrochlore (A = Eu, Dy; B = Ti, Zr) up to similar to 50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at similar to 41 GPa for B = Ti and similar to 16 GPa B = Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. These results were consistent with previous work in which the radius-ratio of the A-and B-site cations determined the energetics of disordering, and compositions with more similarly sized A-and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu2Zr2O7 as compared with the initially defect-fluorite structured Dy2Zr2O7. Published by AIP Publishing. C1 [Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Ewing, Rodney C.; Mao, Wendy L.] Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA. [Fuentes, Antonio F.] Cinvestav Unidad Saltillo, Apartado Postal 663, Saltillo 25000, Coahuila, Mexico. [Yan, Jinyuan] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Mao, Wendy L.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. RP Rittman, DR (reprint author), Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA. EM drittman@stanford.edu RI FUENTES, ANTONIO/A-3650-2008 OI FUENTES, ANTONIO/0000-0003-3550-4228 FU "Materials Science of Actinides," an Energy Frontier Research Center - U.S. Department of Energy (DOE) Office of Science, Basic Energy Sciences [DE-SC0001089]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775]; NSF; DOE Office of Science by ANL [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231]; McGee Research Grant program through Stanford University FX This work was supported as part of "Materials Science of Actinides," an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE) Office of Science, Basic Energy Sciences (Grant No. DE-SC0001089). X-ray diffraction data were collected at beamlines HPCAT (Sector 16), APS, ANL, and 12.2.2, ALS, LBNL. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. The APS is a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by ANL under Contract No. DE-AC02-06CH11357. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under Contract No. DE-AC02-05CH11231. Travel was partially supported by the McGee Research Grant program through Stanford University. NR 45 TC 0 Z9 0 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 28 PY 2017 VL 121 IS 4 AR 045902 DI 10.1063/1.4974871 PG 6 WC Physics, Applied SC Physics GA EJ8MP UT WOS:000393480100066 ER PT J AU Teeter, G Harvey, SP Johnston, S AF Teeter, G. Harvey, S. P. Johnston, S. TI Controlling metastable native point-defect populations in Cu(In,Ga)Se-2 and Cu2ZnSnSe4 materials and solar cells through voltage-bias annealing SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FORMATION ENERGIES; DETAILED BALANCE; GAAS; FILMS; 1ST-PRINCIPLES; SEMICONDUCTOR; COMPLEXES; ALLOYS; BULK; NONSTOICHIOMETRY AB This contribution describes the influence of low-temperature annealing with and without applied voltage bias on thin-film Cu2ZnSnSe4 (CZTSe), Cu(In, Ga) Se-2 (CIGS), and CdS material properties and solar cell performance. To quantify the effects of cation disorder on CZTSe device performance, completed devices were annealed under open-circuit conditions at various temperatures from 110 degrees C to 215 degrees C and subsequently quenched. Measurements on these devices document systematic, reversible changes in solar-cell performance consistent with a reduction in CZTSe band tails at lower annealing temperatures. CIGS and CZTSe solar cells were also annealed at various temperatures (200 degrees C for CIGS and 110 degrees C-215 degrees C for CZTSe) and subsequently quenched with continuously applied voltage bias to explore the effects of non-equilibrium annealing conditions. For both absorbers, large reversible changes in device characteristics correlated with the magnitude and sign of the applied voltage bias were observed. For CZTSe devices, the voltage-bias annealing (VBA) produced reversible changes in open-circuit voltage (V-OC) from 289 meV to 446 meV. For CIGS solar cells, even larger changes were observed in device performance: photovoltaic (PV) conversion efficiency of the CIGS device varied from below 3% to above 15%, with corresponding changes in CIGS hole density of about three orders of magnitude. Findings from these VBA experiments are interpreted in terms of changes to the metastable point-defect populations that control key properties in the absorber layers, and in the CdS buffer layer. Computational device modeling was performed to assess the impacts of cation disorder on the CZTSe V-OC deficit, and to elucidate the effects of VBA treatments on metastable point defect populations in CZTSe, CIGS, and CdS. Results indicate that band tails impose important limitations on CZTSe device performance. Device modeling results also indicate that non-equilibrium processing conditions including the effects of voltage bias can dramatically alter point-defect-mediated opto-electronic properties of semiconductors. Implications for optimization of PV materials and connections to long-term stability of PV devices are discussed. Published by AIP Publishing. C1 [Teeter, G.; Harvey, S. P.; Johnston, S.] Natl Renewable Energy Lab, Golden, CO 80403 USA. RP Teeter, G (reprint author), Natl Renewable Energy Lab, Golden, CO 80403 USA. EM glenn.teeter@nrel.gov OI Teeter, Glenn/0000-0001-8202-8477 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. DOE Office of Energy Efficiency and Renewable Energy/Solar Energy Technologies Office FX The authors thank K. Alberi and M. A. Scarpulla for helpful discussions. I. Repins and C. Beall supplied the CZTSe devices used in this study; M. Contreras and J. Carapella provided CIGS devices. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding was provided by the U.S. DOE Office of Energy Efficiency and Renewable Energy/Solar Energy Technologies Office. NR 96 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 28 PY 2017 VL 121 IS 4 AR 043102 DI 10.1063/1.4973959 PG 20 WC Physics, Applied SC Physics GA EJ8MP UT WOS:000393480100002 ER PT J AU Parab, ND Guo, ZR Hudspeth, M Claus, B Lim, BH Sun, T Xiao, XH Fezzaa, K Chen, WNW AF Parab, Niranjan D. Guo, Zherui Hudspeth, Matthew Claus, Benjamin Lim, Boon Him Sun, Tao Xiao, Xianghui Fezzaa, Kamel Chen, Weinong W. TI In situ observation of fracture processes in high-strength concretes and limestone using high-speed X-ray phase-contrast imaging SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE fracture of geomaterials; high-strength concrete; limestone; high-speed synchrotron X-ray imaging; Kolsky bar ID REACTIVE POWDER CONCRETE; COMPRESSIVE BEHAVIOR; DYNAMIC COMPRESSION; INDIANA LIMESTONE; ACOUSTIC-EMISSION; SYNCHROTRON; COMPACTION; RATES AB The mechanical properties and fracture mechanisms of geomaterials and construction materials such as concrete are reported to be dependent on the loading rates. However, the in situ cracking inside such specimens cannot be visualized using traditional optical imaging methods since the materials are opaque. In this study, the in situ sub-surface failure/damage mechanisms in Cor-Tuf (a reactive powder concrete), a high-strength concrete (HSC) and Indiana limestone under dynamic loading were investigated using high-speed synchrotron X-ray phase-contrast imaging. Dynamic compressive loading was applied using a modified Kolsky bar and fracture images were recorded using a synchronized high-speed synchrotron X-ray imaging set-up. Three-dimensional synchrotron X-ray tomography was also performed to record the microstructure of the specimens before dynamic loading. In the Cor-Tuf and HSC specimens, two different modes of cracking were observed: straight cracking or angular cracking with respect to the direction of loading. In limestone, cracks followed the grain boundaries and voids, ultimately fracturing the specimen. Cracks in HSC were more tortuous than the cracks in Cor-Tuf specimens. The effects of the microstructure on the observed cracking behaviour are discussed. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. C1 [Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew; Claus, Benjamin; Lim, Boon Him; Chen, Weinong W.] Purdue Univ, Sch Aeronaut & Astronaut, 701 West Stadium Ave, W Lafayette, IN 47907 USA. [Chen, Weinong W.] Purdue Univ, Sch Mat Engn, 701 West Stadium Ave, W Lafayette, IN 47907 USA. [Sun, Tao; Xiao, Xianghui; Fezzaa, Kamel] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Chen, WNW (reprint author), Purdue Univ, Sch Aeronaut & Astronaut, 701 West Stadium Ave, W Lafayette, IN 47907 USA.; Chen, WNW (reprint author), Purdue Univ, Sch Mat Engn, 701 West Stadium Ave, W Lafayette, IN 47907 USA. EM wchen@purdue.edu FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; ONR grant [N00014-14-1-0628] FX This research used the resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. N.D.P. and W.W.C. were supported by an ONR grant to Purdue University (grant no. N00014-14-1-0628). NR 42 TC 1 Z9 1 U1 6 U2 6 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X EI 1471-2962 J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD JAN 28 PY 2017 VL 375 IS 2085 AR 20160178 DI 10.1098/rsta.2016.0178 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG6GU UT WOS:000391143400010 ER PT J AU Kankanamalage, ACG Yunjeong, KB Rathnayake, AD Damalanka, VC Weerawarna, PM Doyle, ST Alsoudi, AF Dissanayake, DMP Lushington, GH Mehzabeen, N Battaile, KP Lovell, S Chang, KO Groutas, WC AF Kankanamalage, Anushka C. Galasiti Yunjeong, Kim Rathnayake, Athri D. Damalanka, Vishnu C. Weerawarna, Pathum M. Doyle, Sean T. Alsoudi, Amer F. Dissanayake, D. M. Padmasankha Lushington, Gerald H. Mehzabeen, Nurjahan Battaile, Kevin P. Lovell, Scott Chang, Kyeong-Ok Groutas, William C. TI Structure-based exploration and exploitation of the S-4 subsite of norovirus 3CL protease in the design of potent and permeable inhibitors SO EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY LA English DT Article DE Norovirus; 3CL protease; S4 subsite; Optimization ID TRANSITION-STATE INHIBITORS; DATA QUALITY; MACROMOLECULAR CRYSTALLOGRAPHY; SUBSTRATE-SPECIFICITY; NORWALK-VIRUS; GASTROENTERITIS; THERAPEUTICS; DISCOVERY; FOODBORNE; TARGETS AB Human noroviruses are the primary cause of epidemic and sporadic acute gastroenteritis. The worldwide high morbidity and mortality associated with norovirus infections, particularly among the elderly, immunocompromised patients and children, constitute a serious public health concern. There are currently no approved human vaccines or norovirus-specific small-molecule therapeutics or prophylactics. Norovirus 3CL protease has recently emerged as a potential therapeutic target for the development of anti-norovirus agents. We hypothesized that the S4 subsite of the enzyme may provide an effective means of designing potent and cell permeable inhibitors of the enzyme. We report herein the structure-guided exploration and exploitation of the S4 subsite of norovirus 3CL protease in the design and synthesis of effective inhibitors of the protease. C1 [Kankanamalage, Anushka C. Galasiti; Rathnayake, Athri D.; Damalanka, Vishnu C.; Weerawarna, Pathum M.; Doyle, Sean T.; Alsoudi, Amer F.; Dissanayake, D. M. Padmasankha; Groutas, William C.] Wichita State Univ, Dept Chem, Wichita, KS 67260 USA. [Yunjeong, Kim; Chang, Kyeong-Ok] Kansas State Univ, Coll Vet Med, Dept Diagnost Med & Pathobiol, Manhattan, KS 66506 USA. [Lushington, Gerald H.] Lis Consulting, Lawrence, KS 66046 USA. [Mehzabeen, Nurjahan; Lovell, Scott] Univ Kansas, Prot Struct Lab, Lawrence, KS 66047 USA. [Battaile, Kevin P.] APS Argonne Natl Lab, Hauptman Woodward Med Res Inst, IMCA CAT, Argonne, IL 60439 USA. RP Groutas, WC (reprint author), Wichita State Univ, Dept Chem, Wichita, KS 67260 USA.; Chang, KO (reprint author), Kansas State Univ, Coll Vet Med, Dept Diagnost Med & Pathobiol, Manhattan, KS 66506 USA. EM kchang@vet.ksu.edu; bill.groutas@wichita.edu FU National Institutes of Health [AI109039]; National Institute of General Medical Sciences from the National Institutes of Health [P30GM110761]; companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman Woodward Medical Research Institute; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DEACO2-06CH11357] FX The generous financial support of this work by the National Institutes of Health (AI109039) is gratefully acknowledged. Use of the University of Kansas Protein Structure Laboratory was supported by a grant from the National Institute of General Medical Sciences (P30GM110761) from the National Institutes of Health. Use of the IMCA-CAT beamline 17 -ID at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman Woodward Medical Research Institute. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DEACO2-06CH11357. NR 48 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 0223-5234 EI 1768-3254 J9 EUR J MED CHEM JI Eur. J. Med. Chem. PD JAN 27 PY 2017 VL 126 BP 502 EP 516 DI 10.1016/j.ejmech.2016.11.027 PG 15 WC Chemistry, Medicinal SC Pharmacology & Pharmacy GA EO6LP UT WOS:000396804600040 ER PT J AU Ma, D Stoica, AD Wang, ZQ Beese, AM AF Ma, Dong Stoica, Alexandru D. Wang, Zhuqing Beese, Allison M. TI Crystallographic texture in an additively manufactured nickel -base superalloy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Texture; Inconel 625; Superalloy; Additive manufacturing; Neutron diffraction ID MICROSTRUCTURAL EVOLUTION; DEPOSITION; TIME AB Laser-based directed energy deposition was used to additively manufacture a wall out of pre-alloyed powder of a nickel-base superalloy Inconel 625. The crystallographic texture of the wall has been characterized using neutron diffraction and electron backscatter diffraction. The measured pole figures show a strong Goss texture component ({011} < 100 >) plus a comparatively much weaker cube component ({001). < 100 >), both indicating that the < 100 >-direction of the majority of grains lies along the laser-scanning direction (or the length direction). The origin of the Goss texture is hypothesized to be a result of the preferential < 100 >-oriented dendrite solidification driven by the laser-induced heat flow, which is affected by the combined effect of laser power, absorption of powder, and laser scanning speed. The texture-induced mechanical softening is also presented. This study aids in understanding the processing-structure-property relationship in additive manufacturing. C1 [Ma, Dong; Stoica, Alexandru D.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Wang, Zhuqing; Beese, Allison M.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Ma, D (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA.; Beese, AM (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM dongma@ornl.gov; amb961@psu.edu FU National Science Foundation [CMMI-1402978]; Oak Ridge Associated Universities Ralph E. Powe Junior Faculty Enhancement Award; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors gratefully acknowledge the financial support of the National Science Foundation through Award no. CMMI-1402978. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. AMB acknowledges funding from the Oak Ridge Associated Universities Ralph E. Powe Junior Faculty Enhancement Award. AM-IN625 samples were fabricated at Penn State's Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D). A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We thank Matthew Frost for technical support. NR 20 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 27 PY 2017 VL 684 BP 47 EP 53 DI 10.1016/j.msea.2016.12.028 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA EK5AC UT WOS:000393938300005 ER PT J AU Gan, W Bong, HJ Lim, H Boger, RK Barlat, F Wagoner, RH AF Gan, Wei Bong, Hyuk Jong Lim, Hojun Boger, R. K. Barlat, F. Wagoner, R. H. TI Mechanism of the Bauschinger effect in Al-Ge-Si alloys SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Al-Ge-Si; Bauschinger effect; Precipitate; Orowan bypass; Super-Dislocation model ID WORK-HARDENING BEHAVIOR; PLANE-STRAIN DEFORMATION; ALUMINUM SINGLE-CRYSTALS; IF STEEL; PLASTIC ANISOTROPY; INTERNAL-STRESSES; AL-(SI,GE) ALLOYS; HARDENING/SOFTENING BEHAVIOR; DISLOCATION DENSITIES; METALLIC MATERIALS AB Wrought Al-Ge-Si alloys were designed and produced to ensure dislocation bypass strengthening ("hard pin" precipitates) without significant precipitate cutting/shearing ("soft pin" precipitates). These unusual alloys were processed from the melt, solution heat treated and aged. Aging curves at temperatures of 120, 160, 200 and 240 degrees C were established and the corresponding precipitate spacings, sizes, and morphologies were measured using TEM. The role of non-shearable precipitates in determining the magnitude of Bauschinger was revealed using large-strain compression/tension tests. The effect of precipitates on the Bauschinger response was stronger than that of grain boundaries, even for these dilute alloys. The Bauschinger effect increases dramatically from the under-aged to the peak aged condition and remains constant or decreases slowly through over-aging. This is consistent with reported behavior for Al-Cu alloys (maximum effect at peak aging) and for other Al alloys (increasing through over-aging) such as Al-Cu-Li, Al 6111, Al 2524, and Al 6013. The Al-Ge-Si alloy response was simulated with three microstructural models, including a novel SD (SuperDislocation) model, to reveal the origins of the Bauschinger effect in dilute precipitation-hardened / bypass alloys. The dominant mechanism is related to the elastic interaction of polarized dislocation arrays (generalized pile-up or bow-out model) at precipitate obstacles. Such effects are ignored in continuum and crystal plasticity models. C1 [Gan, Wei] Medtronic, Mounds View, MN 55112 USA. [Bong, Hyuk Jong; Wagoner, R. H.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Lim, Hojun] Dept Computat Mat & Data Sci, Sandia Natl Labs, Albuquerque, NM 87185 USA. [Boger, R. K.] Dassault Syst, Mason, OH 45040 USA. [Barlat, F.] Pohang Univ Sci & Technol, GIFT, Pohang 37673, Gyeongbuk, South Korea. RP Wagoner, RH (reprint author), Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. EM wagoner.2@osu.edu FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division [DE-SC0012483, DE-SC0012587]; U.S. Steel FX This research was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division, and particularly program director John S. Vetrano, for their support of the current work under Award Number DE-SC0012483 and DE-SC0012587. Thanks also to the Alcoa Technical Center, particularly Robert Hyland (currently at U.S. Steel), for partially funding the original experiments many years ago and for providing the aluminum-germanium-silicon alloys. NR 120 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 27 PY 2017 VL 684 BP 353 EP 372 DI 10.1016/j.msea.2016.12.020 PG 20 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA EK5AC UT WOS:000393938300044 ER PT J AU Yang, TF Tang, Z Xie, X Carroll, R Wang, GY Wang, YG Dahmen, KA Liaw, PK Zhang, YW AF Yang, Tengfei Tang, Zhi Xie, Xie Carroll, Robert Wang, Gongyao Wang, Yugang Dahmen, Karin A. Liaw, Peter K. Zhang, Yanwen TI Deformation mechanisms of Al0.1CoCrFeNi at elevated temperatures SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE High-entropy alloy; Transmission electron microscopy; Mechanical properties; Microstructure ID HIGH-ENTROPY ALLOYS; INDUCED PLASTICITY STEEL; SUZUKI SEGREGATION; WEAR-RESISTANCE; MICROSTRUCTURE; BEHAVIOR; DESIGN; DEPENDENCE; STRENGTH; ALUMINUM AB Deformation mechanisms of a high-entropy alloy with a single face-centered-cubic phase, Al0.3CoCrFeNi, at elevated temperatures are studied to explore the high temperature performances of high-entropy alloys. Tensile tests at a strain rate of 10(-4) s(-1) are performed at different temperatures ranging from 25 to 700 degrees C. While both yield strength and ultimate tensile strength decrease with increasing temperature, the maximum elongation to fracture occurred at 500 degrees C. Transmission electron microscopy characterizations reveal that, at both 25 and 500 degrees C, most of deformation occurs by dislocation glide on the normal face-centered-cubic slip system, {111} (110). In contrast, numerous stacking faults are observed at 600 and 700 degrees C, accompanied by the decreasing of dislocation density, which are attributed to the motion of Shockley partials and the dissociation of dislocations, respectively. According to the Considere's criterion, it is assumed that the dissociation of dislocations and movement of Shockley partials at higher temperatures significantly decreases the work hardening during tensile tests, promoting the early onset of necking instability and decreasing the high-temperature ductility. C1 [Yang, Tengfei; Tang, Zhi; Xie, Xie; Wang, Gongyao; Liaw, Peter K.; Zhang, Yanwen] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Yang, Tengfei; Wang, Yugang] Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Zhang, Yanwen] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Carroll, Robert; Dahmen, Karin A.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. RP Yang, TF (reprint author), Univ Tennessee, Dept Nucl Engn, 100 Estabrook Hall,1012 Estabrook Rd, Knoxville, TN 37996 USA. EM yangtengfei3745@qq.com FU US National Science Foundation [DMR-0909037, CMMI-0900271, CMMI-1100080]; Department of Energy (DOE). Office of Nuclear Energy's Nuclear Energy University Program (NEUP) [00119262]; DOE, Office of Fossil Energy, National Energy Technology Laboratory [DE-FE-0008855, DE-FE-0011194]; National Magnetic Confinement Fusion Energy Research Project [2015GB113000]; China Postdoctoral Science Foundation [2015M570014]; National Natural Science Foundation of China [11335003, 91226202] FX GY and PKL very much appreciate the financial support from the US National Science Foundation (DMR-0909037, CMMI-0900271, and CMMI-1100080). TY, ZT, and YZ thank the support of the Department of Energy (DOE). Office of Nuclear Energy's Nuclear Energy University Program (NEUP) 00119262. KAD and PKL appreciate the support from DOE, Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855 and DE-FE-0011194). Yugang Wang and Tengfei Yang thank the support of the National Magnetic Confinement Fusion Energy Research Project 2015GB113000, China Postdoctoral Science Foundation 2015M570014 and the National Natural Science Foundation of China (11335003, 91226202). NR 44 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 27 PY 2017 VL 684 BP 552 EP 558 DI 10.1016/jansea.2016.12.110 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA EK5AC UT WOS:000393938300064 ER PT J AU Gussev, MN Sridharan, N Norfolk, M Terrani, KA Babu, SS AF Gussev, M. N. Sridharan, N. Norfolk, M. Terrani, K. A. Babu, S. S. TI Effect of post weld heat treatment on the 6061 aluminum alloy produced by ultrasonic additive manufacturing SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Ultrasonic additive manufacturing; Post weld heat treatment; Electron back scatter diffraction; Digital image correlation; Tensile tests ID MECHANICAL-PROPERTIES; PROCESS PARAMETERS; CONSOLIDATION; MICROSTRUCTURE; DEFORMATION; INDENTATION; STRENGTH; BEHAVIOR; BUILDS; BULK AB Ultrasonic additive manufacturing (UAM) is a solid-state additive manufacturing technique employing principles of ultrasonic welding coupled with mechanized tape layering to fabricate fully functional parts. However, parts fabricated using UAM often exhibit a reduction in strength levels when loaded normal to the welding interfaces (Z-direction). In this work, the effect of post-weld heat treatments (PWHT) on Al-6061 builds fabricated using the UAM process was explored aiming to improve the mechanical strength of the UAM builds. Tensile testing with digital image correlation (DIC) coupled with metallography along with multi-scale structure characterization (SEM-EBSD) was used to investigate and rationalize the mechanical performance of the UAM builds. It was established that PWHTs may improve the Z-strength level by the factor of similar to 3 divided by 3.5 (from similar to 46 to 177 MPa). The improvements in the strength level were primarily aided by material aging and grain growth across the bond interface. C1 [Gussev, M. N.; Sridharan, N.; Terrani, K. A.; Babu, S. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sridharan, N.; Babu, S. S.] Univ Tennessee, Knoxville, TN 37916 USA. [Norfolk, M.] Fabrison LLC, Columbus, OH 43221 USA. RP Gussev, MN (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM gussevmn@ornl.gov FU Laboratory Directed R & D funds at Oak Ridge National Laboratory [LOIS 7345]; Department of Energy, Office of Basic Energy Sciences FX This work was sponsored by Laboratory Directed R & D funds (Grant number LOIS 7345) at Oak Ridge National Laboratory. EBSD analysis was performed at Center for Nano phase Materials (CNMS), Oak Ridge National Laboratory, sponsored by the Department of Energy, Office of Basic Energy Sciences. The authors also gratefully acknowledge the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. The authors also would like to thank Dr. A. Hehr for fruitful comments and discussion. NR 45 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 27 PY 2017 VL 684 BP 606 EP 616 DI 10.1016/j.msea.2016.12.083 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA EK5AC UT WOS:000393938300071 ER PT J AU Lee, S Hippalgaonkar, K Yang, F Hong, JW Ko, C Suh, J Liu, K Wang, K Urban, JJ Zhang, X Dames, C Hartnoll, SA Delaire, O Wu, JQ AF Sangwook, Lee Hippalgaonkar, Kedar Yang, Fan Hong, Jiawang Ko, Changhyun Suh, Joonki Liu, Kai Wang, Kevin Urban, Jeffrey J. Zhang, Xiang Dames, Chris Hartnoll, Sean A. Delaire, Olivier Wu, Junqiao TI Anomalously low electronic thermal conductivity in metallic vanadium dioxide SO SCIENCE LA English DT Article ID QUANTUM CRITICAL-POINT; WIEDEMANN-FRANZ LAW; MOTT TRANSITION; VO2; TRANSPORT; DRIVEN; SUPERCONDUCTIVITY; VIOLATION; NANOWIRES; LIQUID AB In electrically conductive solids, the Wiedemann-Franz law requires the electronic contribution to thermal conductivity to be proportional to electrical conductivity. Violations of the Wiedemann-Franz law are typically an indication of unconventional quasiparticle dynamics, such as inelastic scattering, or hydrodynamic collective motion of charge carriers, typically pronounced only at cryogenic temperatures. We report an order-of-magnitude breakdown of the Wiedemann-Franz law at high temperatures ranging from 240 to 340 kelvin in metallic vanadium dioxide in the vicinity of its metal-insulator transition. Different from previously established mechanisms, the unusually low electronic thermal conductivity is a signature of the absence of quasiparticles in a strongly correlated electron fluid where heat and charge diffuse independently. C1 [Sangwook, Lee; Ko, Changhyun; Suh, Joonki; Liu, Kai; Wang, Kevin; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Hippalgaonkar, Kedar] Kyungpook Natl Univ, Sch Mat Sci & Engn, Daegu 41566, South Korea. [Hippalgaonkar, Kedar; Yang, Fan; Zhang, Xiang; Dames, Chris] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Hippalgaonkar, Kedar] ASTAR, Inst Mat Res & Engn, 2 Fusionopolis Way, Innovis, 08-03, Singapore 138634, Singapore. [Yang, Fan; Urban, Jeffrey J.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Hong, Jiawang] Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China. [Hong, Jiawang] Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China. [Hong, Jiawang; Delaire, Olivier] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Liu, Kai; Zhang, Xiang; Dames, Chris; Wu, Junqiao] LBNL Berkeley, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Xiang] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia. [Hartnoll, Sean A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Delaire, Olivier] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. RP Wu, JQ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Delaire, O (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.; Delaire, O (reprint author), Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. EM olivier.delaire@duke.edu; wuj@berkeley.edu RI Wu, Junqiao/G-7840-2011; Liu, Kai/A-4754-2012 OI Wu, Junqiao/0000-0002-1498-0148; Liu, Kai/0000-0002-0638-5189 FU Office of Science, Basic Energy Sciences, U.S. DOE [DE-AC02-05CH11231]; U.S. DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Tsinghua-Berkeley Shenzhen Institute; U.S. DOE, Basic Energy Sciences Energy Frontier Research Center (DoE-LMI-EFRC) [DOE DE-AC02-05CH11231]; A*STAR of Singapore [M4070232.120]; Science and Engineering Research Council [152 72 00018]; National Science Foundation of China [11572040]; Thousand Young Talents Program of China; DOE Basic Energy Sciences award [DE-SC0016166] FX This work was supported by the U.S. Department of Energy (DOE) Early Career Award DE-FG02-11ER46796. Parts of this work were performed at the Molecular Foundry, a Lawrence Berkeley National Laboratory user facility supported by the Office of Science, Basic Energy Sciences, U.S. DOE, under contract DE-AC02-05CH11231, and used facilities of the Electronic Materials Program at LBNL supported by the Office of Science, Basic Energy Sciences, U.S. DOE, under contract DE-AC02-05CH11231. O.D. acknowledges funding from the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. C.K. was partially supported by the Tsinghua-Berkeley Shenzhen Institute. K.H. and X.Z. were supported by U.S. DOE, Basic Energy Sciences Energy Frontier Research Center (DoE-LMI-EFRC) under award DOE DE-AC02-05CH11231. K.H. also acknowledges public sector funding from A*STAR of Singapore (M4070232.120) and Pharos Funding from the Science and Engineering Research Council (grant 152 72 00018). J.H. acknowledges support from the National Science Foundation of China (grant 11572040) and the Thousand Young Talents Program of China. Simulation work by J.H. at Oak Ridge National Laboratory was supported by DOE Basic Energy Sciences award DE-SC0016166. Theoretical calculations were performed using resources of the National Supercomputer Center in Guangzhou and the Oak Ridge Leadership Computing Facility. We thank R. Chen, D.F. Ogletree, E. Wong, J. Budai, and A. Said for technical assistance and helpful discussions. J.W. conceived the project; S.L. and J.S. synthesized the materials; S.L., K.H., K.L., and K.W. fabricated the devices; S.L. and K.H. performed the thermal and electrical measurements; C.K. performed Auger electron spectroscopy; F.Y., S.A.H., K.H., C.D., J.J.U., and X.Z. helped with data analysis and theoretical understanding; J.H. and O.D. performed the modeling of thermal conductivity from first-principles phonon dispersions; and all authors contributed to writing the manuscript. NR 33 TC 0 Z9 0 U1 50 U2 50 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JAN 27 PY 2017 VL 355 IS 6323 BP 371 EP + DI 10.1126/science.aag0410 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ4FR UT WOS:000393172800032 PM 28126811 ER PT J AU Norby, RJ De Kauwe, MG Walker, AP Werner, C Zaehle, S Zak, DR AF Norby, R. J. De Kauwe, M. G. Walker, A. P. Werner, C. Zaehle, S. Zak, D. R. TI Comment on "Mycorrhizal association as a primary control of the CO2 fertilization effect" SO SCIENCE LA English DT Editorial Material ID FOREST; CARBON; ENHANCEMENT AB Terrer et al. (Reports, 1 July 2016, p. 72) used meta-analysis of carbon dioxide (CO2) enrichment experiments as evidence of an interaction between mycorrhizal symbiosis and soil nitrogen availability. We challenge their database and biomass as the response metric and, hence, their recommendation that incorporation of mycorrhizae in models will improve predictions of terrestrial ecosystem responses to increasing atmospheric CO2. C1 [Norby, R. J.; Walker, A. P.] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA. [Norby, R. J.; Walker, A. P.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [De Kauwe, M. G.] Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia. [Werner, C.] Senckenberg Biodivers & Climate Res Ctr BiK F, D-60325 Frankfurt, Germany. [Zaehle, S.] Max Planck Inst Biogeochem, Biogeochem Integrat Dept, D-07701 Jena, Germany. [Zak, D. R.] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA. RP Norby, RJ (reprint author), Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA.; Norby, RJ (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. EM rjn@ornl.gov OI Walker, Anthony P/0000-0003-0557-5594 FU U.S. Department of Energy, Office of Science at the Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by U.S. Department of Energy, Office of Science at the Oak Ridge National Laboratory. Oak Ridge National Laboratory is operated by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. NR 13 TC 0 Z9 0 U1 8 U2 8 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JAN 27 PY 2017 VL 355 IS 6323 DI 10.1126/science.aai7976 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EJ4FR UT WOS:000393172800028 ER PT J AU Oh, HJ Park, J Inceoglu, S Villaluenga, I Thelen, JL Jiang, X McGrath, JE Paul, DR AF Oh, Hee Jeung Park, Jaesung Inceoglu, Sebnem Villaluenga, Irune Thelen, Jacob L. Jiang, Xi McGrath, James E. Paul, Donald R. TI Formation of disulfonated poly(arylene ether sulfone) thin film desalination membranes plasticized with poly(ethylene glycol) by solvent-free melt extrusion SO POLYMER LA English DT Article DE Sulfonated polysulfone; Poly(ethylene glycol); Membrane; Melt processing; Plasticizer ID PROTON-EXCHANGE MEMBRANES; POLYPROPYLENE STRETCHED FILMS; MOLECULAR-WEIGHT; COPOLYMERS; POLYMER; POLYSULFONE; RELAXATION; FORM; PERMEABILITY; MORPHOLOGY AB In this study, we discuss a new membrane formation route for preparing sulfonated polysulfone desalination membranes by solvent-free melt processing. Single-layer membranes composed of a 20 mol% disulfonated poly(arylene ether sulfone) random copolymer (BPS-20K) and poly(ethylene glycol) (PEG) plasticizers were successfully prepared by using melt extrusion. The chemical integrity of the components in the BPS-20K/PEG membranes was maintained after the extrusion process, as confirmed by 1H NMR and FT-IR analysis. Although some of the films appeared opaque after extrusion, this was found to be due to surface roughness. Other factors that might lead to film opacity, such as phase separation, crystallization, or micro-voids, were not found. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Oh, Hee Jeung; Park, Jaesung; Paul, Donald R.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Inceoglu, Sebnem] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Villaluenga, Irune] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Villaluenga, Irune] Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, Berkeley, CA 94720 USA. [Villaluenga, Irune; Thelen, Jacob L.] Univ Calif Berkeley, Dept Biomol & Chem Engn, Berkeley, CA 94720 USA. [Jiang, Xi] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [McGrath, James E.] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA. RP Paul, DR (reprint author), Univ Texas Austin, McKetta Dept Chem Engn, 1 Univ Stn,Mail Code C0400, Austin, TX 78712 USA. EM drp@che.utexas.edu FU NSF Science and Technology Center for Layered Polymeric Systems [0423914]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF-MRI at Virginia Polytechnic Institute and State University [1126534] FX This work was supported by NSF Science and Technology Center for Layered Polymeric Systems (Grant 0423914). Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Benny Freeman for his help and guidance. We appreciated help from Dr. Sue Mecham at Virginia Polytechnic Institute and State University for SEC analysis. Equipment for SEC analysis was funded by NSF-MRI (grant 1126534) at Virginia Polytechnic Institute and State University. We also thank Dr. Ben Shoulders in the Department of Chemistry at the University of Texas at Austin for his help to analyzed 1H NMR data. NR 61 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD JAN 27 PY 2017 VL 109 BP 106 EP 114 DI 10.1016/j.polymer.2016.12.035 PG 9 WC Polymer Science SC Polymer Science GA EJ9FP UT WOS:000393532300011 ER PT J AU Mahady, K Tan, SD Greenzweig, Y Livengood, R Raveh, A Rack, P AF Mahady, Kyle Tan, Shida Greenzweig, Yuval Livengood, Richard Raveh, Amir Rack, Philip TI Monte Carlo simulations of nanoscale Ne+ ion beam sputtering: investigating the influence of surface effects, interstitial formation, and the nanostructural evolution SO NANOTECHNOLOGY LA English DT Article DE focused ion beam; Monte-Carlo simulations; nanofabrication ID DYNAMIC COMPOSITION CHANGES; SUBSURFACE; MICROSCOPE; PROGRAM; TRIDYN; DAMAGE AB We present an updated version of our Monte-Carlo based code for the simulation of ion beam sputtering. This code simulates the interaction of energetic ions with a target, and tracks the cumulative damage, enabling it to simulate the dynamic evolution of nanostructures as material is removed. The updated code described in this paper is significantly faster, permitting the inclusion of new features, namely routines to handle interstitial atoms, and to reduce the surface energy as the structure would otherwise develop energetically unfavorable surface porosity. We validate our code against the popular Monte-Carlo code SRIM-TRIM, and study the development of nanostructures from Ne+ ion beam milling in a copper target. C1 [Mahady, Kyle; Rack, Philip] Univ Tennessee Knoxville, Knoxville, TN 37996 USA. [Rack, Philip] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Tan, Shida; Livengood, Richard] Intel Corp, Santa Clara, CA 95054 USA. [Greenzweig, Yuval; Raveh, Amir] Intel Israel 74 Ltd, IL-31015 Haifa, Israel. RP Rack, P (reprint author), Univ Tennessee Knoxville, Knoxville, TN 37996 USA.; Rack, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM prack@utk.edu FU Intel Corporation FX The authors would like to acknowledge support from Intel Corporation. NR 21 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JAN 27 PY 2017 VL 28 IS 4 AR 045305 DI 10.1088/1361-6528/28/4/045305 PG 14 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EH2BD UT WOS:000391571300001 PM 27991448 ER PT J AU Benic, S Fukushima, K Garcia-Montero, O Venugopalan, R AF Benic, Sanjin Fukushima, Kenji Garcia-Montero, Oscar Venugopalan, Raju TI Probing gluon saturation with next-to-leading order photon production at central rapidities in proton-nucleus collisions SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Heavy Ion Phenomenology; NLO Computations ID COLOR GLASS CONDENSATE; ENERGY PA-COLLISIONS; RENORMALIZATION-GROUP; QUARK; EVOLUTION; BREMSSTRAHLUNG; FEATURES; EQUATION; THEOREM AB We compute the cross section for photons emitted from sea quarks in protonnucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the result obtained is formally at next-to-leading order in the CGC power counting, it provides the dominant contribution for central rapidities. We observe that the inclusive photon cross section is proportional to all-twist Wilson line correlators in the nucleus. These correlators also appear in quark-pair production; unlike the latter, photon production is insensitive to hadronization uncertainties and therefore more sensitive to multi-parton correlations in the gluon saturation regime of QCD. We demonstrate that k(perpendicular to) and collinear factorized expressions for inclusive photon production are obtained as leading twist approximations to our result. In particular, the collinearly factorized expression is directly sensitive to the nuclear gluon distribution at small x. Other results of interest include the realization of the Low-Burnett-Kroll soft photon theorem in the CGC framework and a comparative study of how the photon amplitude is obtained in Lorenz and light-cone gauges. C1 [Benic, Sanjin] Univ Zagreb, Dept Phys, Fac Sci, Zagreb 10000, Croatia. [Benic, Sanjin; Fukushima, Kenji] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Garcia-Montero, Oscar] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. RP Benic, S (reprint author), Univ Zagreb, Dept Phys, Fac Sci, Zagreb 10000, Croatia.; Benic, S (reprint author), Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. EM sanjinb@phy.hr; fuku@nt.phys.s.u-tokyo.ac.jp; garcia@thphys.uni-heidelberg.de; rajuv@mac.com FU European Union [291823, 48]; MEXT-KAKENHI [15H03652, 15K13479]; DOE [DE-SC0012704]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics; HZZO [8799]; DFG Collaborative Research Centre (ISOQUANT) [SFB 1225]; Excellence Initiative of Heidelberg University; Extreme Matter Institute (EMMI) FX S.B. was supported by the European Union Seventh Framework Programme (FP7 2007-2013) under grant agreement No. 291823, Marie Curie FP7-PEOPLE-2011-COFUND NEWFELPRO Grant No. 48. K.F. was supported by MEXT-KAKENHI Grant No. 15H03652 and 15K13479. R.V. is supported under DOE Contract No. DE-SC0012704. This material is also based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the TMD Topical Collaboration. S.B. also acknowledges the support of HZZO Grant No. 8799. This work is part of and supported by the DFG Collaborative Research Centre "SFB 1225 (ISOQUANT)". K.F. and R.V. would like to thank the Institut fur Theoretische Physik at Heidelberg University for kind hospitality during the course of this work and R.V. would like to thank the Excellence Initiative of Heidelberg University for their support. K.F. thanks the Extreme Matter Institute (EMMI) for support. Part of this work comprised the Master's thesis of Garcia-Montero at Heidelberg University; he would like to thank Jurgen Berges for valuable discusssions and for co-supervising his thesis with R.V. We would also like to thank Werner Vogelsang for useful discussions. NR 56 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JAN 26 PY 2017 IS 1 AR 115 DI 10.1007/JHEP01(2017)115 PG 36 WC Physics, Particles & Fields SC Physics GA EP8SL UT WOS:000397645000001 ER PT J AU Wang, ZY Wang, JH AF Wang, Zhaoyu Wang, Jianhui TI Service restoration based on AMI and networked MGs under extreme weather events SO IET GENERATION TRANSMISSION & DISTRIBUTION LA English DT Article ID DISTRIBUTION-SYSTEMS; MICROGRIDS; RECONFIGURATION AB This study proposes a comprehensive power outage detection and service restoration framework for a distribution system with advanced metering infrastructure (AMI) meters and networked microgrids (MGs). To cope with the resilience challenge of communication networks in severe weather events, the authors propose a decentralised outage detection method which obtains the total number of customers and the total amount of lost load in the outage area via local information exchanges among AMI meters. To provide fast-response service restoration, the proposed framework incorporates the network reconfiguration and the local power support from the connected MGs. The optimal restoration problem is formulated as a mixed-integer quadratic programme that controls distributed generators and loads in MGs and line switches to maximise the restored critical loads. Case studies on a modified 69-bus distribution system with networked MGs demonstrate the effectiveness of the proposed methodology in both outage detection and service restoration. C1 [Wang, Zhaoyu] Iowa State Univ, Dept Elect & Comp Engn, 2520 Osborn Dr, Ames, IA 50011 USA. [Wang, Jianhui] Argonne Natl Lab, Div Decis & Informat Sci, Argonne, IL 60439 USA. RP Wang, ZY (reprint author), Iowa State Univ, Dept Elect & Comp Engn, 2520 Osborn Dr, Ames, IA 50011 USA. EM wzy@iastate.edu FU U.S. Department of Energy (DOE)'s Office of Electricity Delivery and Energy Reliability FX This work is supported by the U.S. Department of Energy (DOE)'s Office of Electricity Delivery and Energy Reliability. NR 29 TC 0 Z9 0 U1 0 U2 0 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-8687 EI 1751-8695 J9 IET GENER TRANSM DIS JI IET Gener. Transm. Distrib. PD JAN 26 PY 2017 VL 11 IS 2 BP 401 EP 408 DI 10.1049/iet-gtd.2016.0864 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA EO2VF UT WOS:000396553400012 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adachi, S Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alshehri, AA Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, T Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska-Blenessy, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethani, A Bethke, S Bevan, AJ Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Billoud, TRV Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bisanz, T Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blue, A Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Callea, G Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cueto, A Donszelmann, TC Cummings, J Curatolo, M Cuth, J Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Mann, MDHF Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Cornell, SD Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dolejsi, J Dolezal, Z Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudder, AC Duffield, EM Duflot, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Ezzi, M Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gasnikova, K Gatti, C Gaudiello, A Gaudio, G Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gellerstedt, K Gemme, C Genest, MH Geng, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Hagebock, S Hagihara, M Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, D Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Herde, H Herget, V Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Honda, T Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hoya, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, Q Hu, S Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jeng, GY Jennens, D Jenni, P Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Jivan, H Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kaji, T Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-zada, F Khanov, A Kharlamov, AG Kharlamova, T Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kilby, CR Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koehler, NM Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, T Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lanfermann, MC Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, B Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, C Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, EM Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopez, JA Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Minegishi, Y Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Mlynarikova, M Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, S Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Pagacova, M Griso, SP Paganini, M Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reed, RG Reeves, K Rehnisch, L Reichert, J Reiss, A Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, J Martinez, VS Pineda, AS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sato, K Sauvan, E Savage, G Savard, P Savic, N Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, L Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schouwenberg, JFP Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shirabe, S Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shope, DR Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, IM Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, M Tanaka, R Tanaka, S Tanioka, R Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Tornambe, P Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tu, Y Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vasquez, GA Vazeille, F Schroeder, TV Veatch, J Veeraraghavan, V Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Weber, SA Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolf, TMH Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Nedden, MZ Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adachi, S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alshehri, A. A. Alstaty, M. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M-S Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska-Blenessy, Z. Baroncelli, A. Barone, G. Barr, A. J. Barranco Navarro, L. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethani, A. Bethke, S. Bevan, A. J. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Billoud, T. R. V. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bisanz, T. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blue, A. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Bossio Sola, J. D. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Callea, G. Caloba, L. P. Calvente Lopez, S. Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerda Alberich, L. Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muino, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cueto, A. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Cornell, S. Diez Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dolejsi, J. Dolezal, Z. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudder, A. Chr. Duffield, E. M. Duflot, L. Duehrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Ezzi, M. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Fernandez Perez, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. Ferreira de Lima, D. E. Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gasnikova, K. Gatti, C. Gaudiello, A. Gaudio, G. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gellerstedt, K. Gemme, C. Genest, M. H. Geng, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Hageboeck, S. Hagihara, M. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, D. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Herde, H. Herget, V. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Honda, T. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hoya, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, Q. Hu, S. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Jivan, H. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kaji, T. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Kharlamova, T. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kilby, C. R. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koehler, N. M. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lanfermann, M. C. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, B. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, C. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. M. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopez, J. A. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, L. Mandic, I. Maneira, J. de Andrade Filho, L. Manhaes Manjarres Ramos, J. Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Minegishi, Y. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Mlynarikova, M. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Moenig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, S. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Oleiro Seabra, L. F. Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Pacheco Rodriguez, L. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganini, M. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. St Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reed, R. G. Reeves, K. Rehnisch, L. Reichert, J. Reiss, A. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Rodriguez Perez, A. Rodriguez Rodriguez, D. Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Salazar Loyola, J. E. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, J. Sanchez Martinez, V. Pineda, A. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sato, K. Sauvan, E. Savage, G. Savard, P. Savic, N. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, L. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schouwenberg, J. F. P. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shirabe, S. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shope, D. R. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, I. M. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Staerz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, M. Tanaka, R. Tanaka, S. Tanioka, R. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Tornambe, P. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tu, Y. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vasquez, G. A. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veeraraghavan, V. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Weber, S. A. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolf, T. M. H. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. Nedden, M. zur Zwalinski, L. CA ATLAS collaboration TI Measurements of psi(2S) and X(3872) -> J/psi pi (+) pi (-) production in pp collisions at root s=8 Tev with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE B physics; Hadron-Hadron scattering (experiments) ID POLARIZATION; STATES; MESON; LHC AB Differential cross sections are presented for the prompt and non-prompt production of the hidden-charm states X(3872) and psi(2S), in the decay mode J/psi pi (+) pi (-), measured using 11.4 fb(-1) of pp collisions at root s = 8 Tev by the ATLAS detector at the LHC. The ratio of cross-sections X(3872)/psi(2S) is also given, separately for prompt and non-prompt components, as well as the non-prompt fractions of X(3872) and psi(2S). Assuming independent single effective lifetimes for non-prompt X(3872) and psi(2S) production gives separating short- and long-lived contributions, assuming that the short-lived component is due to B (c) decays, gives R (B) = (3.57 +/- 0.33(stat) +/- 0.11(sys)) x 10(-2), with the fraction of non-prompt X(3872) produced via B (c) decays for p (T)(X(3872)) > 10 GeV being (25 +/- 13(stat) +/- 2(sys) +/- 5(spin))%. The distributions of the dipion invariant mass in the X(3872) and psi(2S) decays are also measured and compared to theoretical predictions. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska-Blenessy, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska-Blenessy, Z.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veeraraghavan, V.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Abdallah, J.; Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Maltezos, S.; St Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Fernandez Perez, S.; Fisher, W. C.; Fracchia, S.; Gerbaudo, D.; Gonzalez Parra, G.; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rizzi, C.; Rodina, Y.; Rodriguez Perez, A.; Sorin, V.; Terzo, S.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Barcelona, Spain. [Aloisio, A.; Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Andari, N.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Caudron, J.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Hageboeck, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Dhaliwal, S.; Herde, H.; Kolb, M.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes; Peralva, B. S.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Stucci, S. A.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Dept Phys, Natl Inst Res & Dev Isotop & Mol Technol, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Bossio Sola, J. D.; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Malone, C.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.; Weber, S. A.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backhaus, M.; Barak, L.; Barisits, M-S; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chisholm, A. S.; Conti, G.; Cortes-Gonzalez, A.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helary, L.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Jenni, P.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Morgenstern, S.; Mornacchi, G.; Nairz, A. M.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Staerz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Lopez, J. A.; Pezoa, R.; Prokoshin, F.; Salazar Loyola, J. E.; Araya, S. Tapia; Vasquez, G. A.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Clermont Ferrand 2, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, New York, NY 10027 USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, Frascati, Italy. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Basalaev, A.; Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Cornell, S. Diez; Dutta, B.; Dyndal, M.; Eckardt, C.; Ferrando, J.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Aloisio, A.; Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Cornell, S. Diez; Dutta, B.; Dyndal, M.; Eckardt, C.; Ferrando, J.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mijovic, L.; Mills, C.; Pino, S. A. Olivares; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Luedtke, C.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tornambe, P.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lanfermann, M. C.; Lionti, A. E.; March, L.; Mermod, P.; Nackenhorst, O.; Nessi, M.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Alshehri, A. A.; Bates, R. L.; Blue, A.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Bisanz, T.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Bethani, A.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Li, C.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Ferreira de Lima, D. E.; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.; Salvucci, A.; Tu, Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.; Salvucci, A.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Aloisio, A.; Choi, K.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Iwanski, W.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Argyropoulos, S.; Benitez, J.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Turchikhin, S.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Honda, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Tanioka, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Shirabe, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Alconada Verzini, M. J.; Alonso, A.; Arduh, F. A.; Dova, M. T.; Hoya, J.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Hoya, J.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Giannelli, M. Faucci; Gadomski, S.; George, S.; Gibson, S. M.; Kempster, J. J.; Kilby, C. R.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Grout, Z. J.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Calvente Lopez, S.; Cueto, A.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Cuth, J.; Dudder, A. Chr.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Reiss, A.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Beddall, A.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Vacavant, L.; Wang, C.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Lefebvre, B.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Geng, C.; Guan, L.; Guo, Y.; Levin, D.; Li, B.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; De la Torre, H.; Fisher, W. C.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Billoud, T. R. V.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Koehler, N. M.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Savic, N.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Spettel, F.; Stonjek, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kawade, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kawade, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Igonkina, O.; Konig, A. C.; Nektarijevic, S.; Schouwenberg, J. F. P.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Kharlamova, T.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Budker Inst Nucl Phys, SB RAS, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Shope, D. R.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Dattagupta, A.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Snyder, I. M.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, Univ Paris 11, CNRS, IN2P3,LAL, Orsay, France. [Hanagaki, K.; Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Backes, M.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Radescu, V.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Schaefer, L.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] Kurchatov Inst, BP Konstantinov Petersburg Nucl Phys Inst, Natl Res Ctr, St Petersburg, Russia. [Aloisio, A.; Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Maio, A.; Maneira, J.; Oleiro Seabra, L. F.; Onofre, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Pedro, R.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Mlynarikova, M.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys Protvino, NRC KI, Moscow, Russia. [Adye, T.; Baines, T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cerrito, L.; Di Ciaccio, A.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cerrito, L.; Di Ciaccio, A.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Ezzi, M.; Fassi, F.; Haddad, N.; Idrissi, Z.; Tayalati, Y.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Pacheco Rodriguez, L.; Perego, M. M.; Peyaud, A.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Du, Y.; Feng, C.; Liu, B.; Ma, L. L.; Ma, Y.; Wang, C.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai, Peoples R China. [Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] PKU CHEP, Beijing, Peoples R China. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Jivan, H.; Kar, D.; Garcia, B. R. Mellado; Reed, R. G.; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Piacquadio, G.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Piacquadio, G.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Song, H. Y.; Teng, P. K.; Wang, S. M.; Yang, Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Adachi, S.; Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Minegishi, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Adachi, S.; Aloisio, A.; Asai, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Minegishi, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hayakawa, D.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Tanaka, M.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Chelkov, G. A.; Vaniachine, A.] Tomsk State Univ, Tomsk, Russia. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Iuppa, R.] INFN TIFPA, Trento, Italy. [Iuppa, R.] Univ Trento, Trento, Italy. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Hod, N.; Jovicevic, J.; Oakham, F. G.; Codina, E. Perez; Savard, P.; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Manjarres Ramos, J.; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hagihara, M.; Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hagihara, M.; Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Colombo, T.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Ntekas, K.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Boldyrev, A. S.; Cheatham, S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cheatham, S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Baroncelli, A.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Meloni, F.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelectron Barcelona IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Kaji, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zhou, C.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI USA. [Herget, V.; Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, T.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgrp Phys, Fak Math & Natur Wissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Paganini, M.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Lobodzinska, E. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY USA. [Bassalat, A.] An Najah Natl Univ, Dept Phys, Nablus, Palestine. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Oporto, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Victoria, BC, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Inst Catalana Rec & Estud Avancats, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY 10471 USA. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Moss, J.] Calif State Univ Sacramento, Dept Phys, Sacramento, CA 95819 USA. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Pinamonti, M.] Scuola Int Super Studi Avanzati, SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Bassalat, A.; Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. RP Aaboud, M (reprint author), Univ Mohamed Premier, Fac Sci, Oujda, Morocco.; Aaboud, M (reprint author), LPTPM, Oujda, Morocco. RI Doyle, Anthony/C-5889-2009; Livan, Michele/D-7531-2012; Prokoshin, Fedor/E-2795-2012; Warburton, Andreas/N-8028-2013; Vanyashin, Aleksandr/H-7796-2013; Gladilin, Leonid/B-5226-2011; Mitsou, Vasiliki/D-1967-2009; Camarri, Paolo/M-7979-2015; Carvalho, Joao/M-4060-2013; Tikhomirov, Vladimir/M-6194-2015; Sezgin, Berk/C-1112-2015 OI Doyle, Anthony/0000-0001-6322-6195; Livan, Michele/0000-0002-5877-0062; Prokoshin, Fedor/0000-0001-6389-5399; Warburton, Andreas/0000-0002-2298-7315; Vanyashin, Aleksandr/0000-0002-0367-5666; Gladilin, Leonid/0000-0001-9422-8636; Mitsou, Vasiliki/0000-0002-1533-8886; Camarri, Paolo/0000-0002-5732-5645; Carvalho, Joao/0000-0002-3015-7821; Tikhomirov, Vladimir/0000-0002-9634-0581; NR 44 TC 0 Z9 0 U1 13 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JAN 26 PY 2017 IS 1 AR 117 DI 10.1007/JHEP01(2017)117 PG 43 WC Physics, Particles & Fields SC Physics GA EK8LJ UT WOS:000394175000001 ER PT J AU Mock, T Otillar, RP Strauss, J McMullan, M Paajanen, P Schmutz, J Salamov, A Sanges, R Toseland, A Ward, BJ Allen, AE Dupont, CL Frickenhaus, S Maumus, F Veluchamy, A Wu, TY Barry, KW Falciatore, A Ferrante, MI Fortunato, AE Glockner, G Gruber, A Hipkin, R Janech, MG Kroth, PG Leese, F Lindquist, EA Lyon, BR Martin, J Mayer, C Parker, M Quesneville, H Raymond, JA Uhlig, C Valas, RE Valentin, KU Worden, AZ Armbrust, EV Clark, MD Bowler, C Green, BR Moulton, V van Oosterhout, C Grigoriev, IV AF Mock, Thomas Otillar, Robert P. Strauss, Jan McMullan, Mark Paajanen, Pirita Schmutz, Jeremy Salamov, Asaf Sanges, Remo Toseland, Andrew Ward, Ben J. Allen, Andrew E. Dupont, Christopher L. Frickenhaus, Stephan Maumus, Florian Veluchamy, Alaguraj Wu, Taoyang Barry, Kerrie W. Falciatore, Angela Ferrante, Maria I. Fortunato, Antonio E. Gloeckner, Gernot Gruber, Ansgar Hipkin, Rachel Janech, Michael G. Kroth, Peter G. Leese, Florian Lindquist, Erika A. Lyon, Barbara R. Martin, Joel Mayer, Christoph Parker, Micaela Quesneville, Hadi Raymond, James A. Uhlig, Christiane Valas, Ruben E. Valentin, Klaus U. Worden, Alexandra Z. Armbrust, E. Virginia Clark, Matthew D. Bowler, Chris Green, Beverley R. Moulton, Vincent van Oosterhout, Cock Grigoriev, Igor V. TI Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus SO NATURE LA English DT Article ID DIFFERENTIAL EXPRESSION ANALYSIS; ANTARCTIC SEA-ICE; SOUTHERN-OCEAN; MAXIMUM-LIKELIHOOD; GENE-EXPRESSION; THALASSIOSIRA-PSEUDONANA; PROTEIN DOMAINS; MARKOV-MODELS; PHYTOPLANKTON; CLASSIFICATION AB The Southern Ocean houses a diverse and productive community of organisms(1,2). Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice(3-7). How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus(8,9), based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean. C1 [Mock, Thomas] Univ East Anglia, Sch Environm Sci, Res Pk, Norwich NR4 7TJ, Norfolk, England. [Otillar, Robert P.; Schmutz, Jeremy] Dept Energy Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. [Paajanen, Pirita] Earlham Inst, Res Pk, Norwich NR4 7UH, Norfolk, England. [Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, 601 Genome Way, Huntsville, AL 35801 USA. [Sanges, Remo] Univ East Anglia, Sch Comp Sci, Res Pk, Norwich NR4 7TJ, Norfolk, England. [Toseland, Andrew] J Craig Venter Inst, Microbial & Environm Genom, La Jolla, CA 92037 USA. [Allen, Andrew E.] Univ Calif San Diego, Scripps Inst Oceanog, Integrat Oceanog Div, La Jolla, CA 92037 USA. [Allen, Andrew E.] Hochschule Bremerhaven, Karlsburg 8, D-27568 Bremerhaven, Germany. [Frickenhaus, Stephan] Univ Paris Saclay, URGI, INRA, F-78026 Versailles, France. [Frickenhaus, Stephan] PSL Res Univ, CNRS UMR 8197, Inst Biol Ecole Normale Super IBENS, Ecole Normale Super, 46 Rue Ulm, F-75005 Paris, France. [Maumus, Florian] Sorbonne Univ, Inst Biol Paris Seine, CNRS, Lab Biol Computat & Quantitat UMR 7238, F-75006 Paris, France. [Falciatore, Angela] Integrat Marine Ecol, Staz Zool Anton Dohrn, Villa Comunale, I-80121 Naples, Italy. [Salamov, Asaf; Gloeckner, Gernot; Quesneville, Hadi; Valentin, Klaus U.; Green, Beverley R.] Univ Cologne, Fac Med, Inst Biochem, Joseph Stelzmann Str, D-5250931 Cologne, Germany. [McMullan, Mark; Gloeckner, Gernot] Inst Freshwater, Ecol & Inland Fisheries, IGB, Maggelseedamm 301, D-12587 Berlin, Germany. [McMullan, Mark; Dupont, Christopher L.; Frickenhaus, Stephan; Maumus, Florian] Univ Konstanz, Fachbereich Biol, D-78457 Constance, Germany. [Salamov, Asaf; Falciatore, Angela; Bowler, Chris] Med Univ South Carolina, Dept Med, Div Nephrol, Charleston, SC 29425 USA. [Otillar, Robert P.; Dupont, Christopher L.] Univ Duisburg Essen, Fac Biol, Aquat Ecosyst Res Univ 5, D-45141 Essen, Germany. [Toseland, Andrew; Gloeckner, Gernot; Bowler, Chris] Med Univ South Carolina, Marine Biomed & Environm Sci Ctr, Charleston, SC 29412 USA. [Uhlig, Christiane; Grigoriev, Igor V.] Leibniz Inst Biodiversitat Tiere, Zoolog Forsch Museum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany. [Sanges, Remo; Barry, Kerrie W.; Lyon, Barbara R.] Univ Washington, Ctr Environm Genom, Sch Oceanog, Box 357940, Seattle, WA 98195 USA. [Sanges, Remo; Veluchamy, Alaguraj; Barry, Kerrie W.; Lyon, Barbara R.; Parker, Micaela; Uhlig, Christiane] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA. [Allen, Andrew E.; Fortunato, Antonio E.; Gruber, Ansgar] Monterey Bay Aquarium Res Inst, 7700 Sandholdt Rd, Moss Landing, CA 95039 USA. [Sanges, Remo; Frickenhaus, Stephan; Veluchamy, Alaguraj; Wu, Taoyang] Univ British Columbia, Univ Blvd, Dept Bot, Vancouver, BC V6T 1Z4, Canada. [Mock, Thomas; Schmutz, Jeremy; Frickenhaus, Stephan] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Strauss, Jan; Maumus, Florian; Barry, Kerrie W.] European Mol Biol Lab, German Elect Synchrotron DESY, Notkestr 85, Hamburg, Germany. [Paajanen, Pirita; Mayer, Christoph; Clark, Matthew D.] John Innes Ctr, Dept Cell & Dev Biol, Res Pk, Norwich NR4 7UH, Norfolk, England. [Otillar, Robert P.; Salamov, Asaf; Ward, Ben J.; Veluchamy, Alaguraj] King Abdullah Univ Sci & Technol, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi Arabia. [Strauss, Jan; Schmutz, Jeremy; Salamov, Asaf; Lyon, Barbara R.] Bowdoin Coll, Ctr Coastal Studies, Brunswick, ME 04011 USA. [Otillar, Robert P.; McMullan, Mark; Uhlig, Christiane] Univ Rhode Isl, Grad Sch Oceanog, 215 South Ferry Rd, Narragansett, RI 02882 USA. RP Mock, T (reprint author), Univ East Anglia, Sch Environm Sci, Res Pk, Norwich NR4 7TJ, Norfolk, England. EM t.mock@uea.ac.uk FU ERC; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; BBSRC [BB/J004669/1]; NERC [NE/I001751/1, NE/K004530/1]; MGF (NBAF) [197]; Royal Society [RG090774]; Earth & Life Systems Alliance in Norwich FX We thank A. Stecher and K. Schmidt for extracting and providing environmental DNA samples and the Natural Environment Research Council UK (NERC) Biomolecular Analysis Facility (NBAF) for conducting transcriptome sequencing and providing bioinformatics support. C.B. acknowledges funding from the ERC Advanced Grant ERC-2011-ADG (Diatomite). The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. PacBio sequencing and library construction was delivered via the BBSRC National Capability in Genomics (BB/J010375/1) at the Earlham Institute (formerly The Genome Analysis Centre, Norwich), by members of the Platforms and Pipelines Group, PacBio assembly and sequence analysis was strategically funded by the BBSRC, Institute Strategic Programme Grant (BB/J004669/1). Additional funding for this work was provided by NERC under grants NE/I001751/1, NE/K004530/1, MGF (NBAF) grant 197, The Royal Society grant RG090774 and the Earth & Life Systems Alliance in Norwich. NR 81 TC 0 Z9 0 U1 5 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JAN 26 PY 2017 VL 541 IS 7638 DI 10.1038/nature20803 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EN6LX UT WOS:000396116600052 ER PT J AU Wu, CY Wolf, WJ Levartovsky, Y Bechtel, HA Martin, MC Toste, FD Gross, E AF Wu, Chung-Yeh Wolf, William J. . Levartovsky, Yehonatan Bechtel, Hans A. . Martin, Michael C. Toste, F. Dean Gross, Elad TI High-spatial-resolution mapping of catalytic reactions on single particles SO NATURE LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; N-HETEROCYCLIC CARBENES; NEAR-FIELD; SPECTROSCOPY; NANOPARTICLES; SURFACES; GOLD; REACTIVITY; DYNAMICS; TIME AB The critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established(1,2). But despite the growing availability of tools that enable detailed in situ characterization(3), so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has been used to image and characterize single turnover sites at catalytic surfaces(4,5), but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy(6,7) with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. These observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules. C1 [Wu, Chung-Yeh; Wolf, William J. .; Toste, F. Dean] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Wu, Chung-Yeh; Wolf, William J. .; Toste, F. Dean] Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Levartovsky, Yehonatan; Gross, Elad] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel. [Levartovsky, Yehonatan; Gross, Elad] Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-91904 Jerusalem, Israel. [Bechtel, Hans A. .; Martin, Michael C.] Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Toste, FD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Toste, FD (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Gross, E (reprint author), Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel.; Gross, E (reprint author), Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-91904 Jerusalem, Israel. EM fdtoste@berkeley.edu; elad.gross@mail.huji.ac.il FU Office of Science, Office of Basic Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy at LBNL [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; NSF [DGE 1106400] FX F.D.T. thanks the Director, Office of Science, Office of Basic Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy at LBNL (DE-AC02-05CH11231) for partial support of this work. We thank the M. Raschke group at the University of Colorado for collaborating on the development of the SINS endstation. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract number DE-AC02-05CH11231. W.J.W. thanks the NSF for a predoctoral fellowship (DGE 1106400), and the Arnold Group (UCB) for use of their infrared spectrometer. NR 30 TC 0 Z9 0 U1 12 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JAN 26 PY 2017 VL 541 IS 7638 DI 10.1038/nature20795 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EN6LX UT WOS:000396116600046 ER PT J AU Lee, MB Martin, JA AF Lee, Myung-Bok Martin, James A. TI Avian Species and Functional Diversity in Agricultural Landscapes: Does Landscape Heterogeneity Matter? SO PLOS ONE LA English DT Article ID LAND-USE INTENSIFICATION; PHYLOGENETIC DIVERSITY; HABITAT HETEROGENEITY; PRESCRIBED FIRE; FOCAL PATCH; RICHNESS; CONSERVATION; BIODIVERSITY; BIRDS; COMMUNITIES AB While the positive relationship between avian diversity and habitat heterogeneity is widely accepted, it is primarily based on observed species richness without accounting for imperfect detection. Other facets of diversity such as functional diversity are also rarely explored. We investigated the avian diversity-landscape heterogeneity relationship in agricultural landscapes by considering two aspects of diversity: taxonomic diversity (species richness) estimated from a multi-species dynamic occupancy model, and functional diversity (functional evenness [FEve] and divergence [FDiv]) based on traits of occurring species. We also assessed how agricultural lands enrolled in a conservation program managed on behalf of declining early successional bird species (hereafter CP38 fields, an agri-environment scheme) influenced avian diversity. We analyzed breeding bird data collected at CP38 fields in Mississippi, USA, during 2010-2012, and two principal components of environmental variables: a gradient of heterogeneity (Shannon's landscape diversity index) and of the amount of CP38 fields (percent cover of CP38 fields; CP38). FEve did not show significant responses to environmental variables, whereas FDiv responded positively to heterogeneity and negatively to CP38. However, most FDiv values did not significantly differ from random expectations along an environmental gradient. When there was a significant difference, FDiv was lower than that expected. Unlike functional diversity, species richness showed a clear pattern. Species richness increased with increasing landscape heterogeneity but decreased with increasing amounts of CP38 fields. Only one species responded negatively to heterogeneity and positively to CP38. Our results suggest that the relationships between avian diversity and landscape heterogeneity may vary depending on the aspect of diversity considered: strong positive effects of heterogeneity on taxonomic diversity, but weakly positive or non-significant effects on functional diversity. Our results also indicate that effectiveness of CP38 in conserving avian diversity, particularly, taxonomic diversity, could be limited without the consideration of landscape heterogeneity. C1 [Lee, Myung-Bok] Mississippi State Univ, Dept Wildlife Fisheries & Aquaculture, Mississippi State, MS 39762 USA. [Martin, James A.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Savannah River Ecol Lab, Athens, GA 30602 USA. [Lee, Myung-Bok] Guangxi Univ, Coll Forestry, Nanning, Guangxi, Peoples R China. RP Lee, MB (reprint author), Mississippi State Univ, Dept Wildlife Fisheries & Aquaculture, Mississippi State, MS 39762 USA.; Lee, MB (reprint author), Guangxi Univ, Coll Forestry, Nanning, Guangxi, Peoples R China. EM bok.ecology@outlook.com FU Wildlife Mississippi; Mississippi Wildlife Federation; Mississippi State University's Forest and Wildlife Research Center; Mississippi Agriculture and Forestry Experimental Station FX The work was funded by Wildlife Mississippi (http://www.wildlifemiss.org/), Mississippi Wildlife Federation, Mississippi State University's Forest and Wildlife Research Center, and Mississippi Agriculture and Forestry Experimental Station. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 74 TC 0 Z9 0 U1 4 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 26 PY 2017 VL 12 IS 1 AR e0170540 DI 10.1371/journal.pone.0170540 PG 21 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EN7IT UT WOS:000396176100097 PM 28125653 ER PT J AU Zhang, HL Karki, K Huang, YQ Whittingham, MS Stach, EA Zhou, GW AF Zhang, Hanlei Karki, Khim Huang, Yiqing Whittingham, M. Stanley Stach, Eric A. Zhou, Guangwen TI Atomic Insight into the Layered/Spinel Phase Transformation in Charged LiNi0.80Co0.15Al0.05O2 Cathode Particles SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID LITHIUM-ION BATTERIES; NICKEL-OXIDE DERIVATIVES; THERMAL-STABILITY; STRUCTURAL-CHANGES; SURFACE-STRUCTURE; LI; ELECTRODES; TRANSITION; LIXNI0.89AL0.16O2; INTERCALATION AB Layered LiNi0.80Co0.15Al0.05O2 (NCA) holds great promise as a potential cathode material for high energy density lithium ion batteries. However, its high capacity is heavily dependent on the stability of its layered structure, which suffers from a severe structure degradation resulting from a not fully understood layered -> spinel phase transformation. Using high resolution transmission electron microscopy and electron diffraction, we probe the atomic structure evolution induced by the layered -> spinel phase transformation in the NCA cathode. We show that the phase transformation results in the development of a particle structure with the formation of complete spinel, spinel domains, and intermediate spinel from the surface to the subsurface region. The lattice planes of the complete and intermediate spinel phases are highly interwoven in the subsurface region. The layered -> spinel transformation occurs via the migration of transition metal (TM) atoms from the TM layer into the lithium layer. Incomplete migration leads to the formation of the intermediate spinel phase, which is featured by tetrahedral occupancy of TM cations in the lithium layer. The crystallographic structure of the intermediate spinel is discussed and verified by the simulation of electron diffraction patterns. C1 [Zhang, Hanlei; Zhou, Guangwen] SUNY Binghamton, Mat Sci & Engn Program, Binghamton, NY 13902 USA. [Zhang, Hanlei; Zhou, Guangwen] SUNY Binghamton, Mech Dept, Binghamton, NY 13902 USA. [Zhang, Hanlei; Karki, Khim; Huang, Yiqing; Whittingham, M. Stanley; Zhou, Guangwen] SUNY Binghamton, Northeast Ctr Chem Energy Storage, Binghamton, NY 13902 USA. [Karki, Khim; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Zhou, GW (reprint author), SUNY Binghamton, Mat Sci & Engn Program, Binghamton, NY 13902 USA.; Zhou, GW (reprint author), SUNY Binghamton, Mech Dept, Binghamton, NY 13902 USA.; Zhou, GW (reprint author), SUNY Binghamton, Northeast Ctr Chem Energy Storage, Binghamton, NY 13902 USA. EM gzhou@binghamton.edu FU NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012583]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; CCMR [NSEDMR1120296] FX This work was supported as part of the NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0012583. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors thank Daniel VanHart and In-tae Bae from the Analytical and Diagnostic Lab at Binghamton University for their experimental assistance. We thank John L. Grazul from the Cornell Center for Materials Research (CCMR) at Cornell University for his assistance with TEM sample preparation, under CCMR Grant # NSEDMR1120296. NR 50 TC 0 Z9 0 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 26 PY 2017 VL 121 IS 3 BP 1421 EP 1430 DI 10.1021/acs.jpcc.6b10220 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EJ1ZI UT WOS:000393008900005 ER PT J AU Pham, T Forrest, KA Furukawa, H Russina, M Albinati, A Georgiev, PA Eckert, J Space, B AF Pham, Tony Forrest, Katherine A. Furukawa, Hiroyasu Russina, Margarita Albinati, Alberto Georgiev, Peter A. Eckert, Juergen Space, Brian TI High H-2 Sorption Energetics in Zeolitic Imidazolate Frameworks SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID METAL-ORGANIC FRAMEWORKS; INELASTIC NEUTRON-SCATTERING; DIPOLE INTERACTION-MODEL; CARBON-DIOXIDE CAPTURE; HYDROGEN STORAGE; ATOM POLARIZABILITIES; MOLECULAR SIMULATION; BUILDING-BLOCKS; BINDING-SITES; MONTE-CARLO AB A combined experimental and theoretical study of H-2 sorption was carried out on two isostructural zeolitic imidazolate frameworks. (ZIFs), namely ZIF-68 and ZIF-69. The former consists of Zn2+ ions that are coordinated to two 2-nitroimidazolate and two benzimidazolate linkers in a tetrahedral fashion, while 5-chlorobenzimidazolate is used in place of benzimidazolate in the latter compound. H-2 sorption measurements showed that the two ZIFs display similar isotherms and isosteric heats of adsorption (Q(st)). The experimental initial H-2 Q(st) value for both ZIFs was determined to be 8.1 kJ mol(-1), which is quite high for materials that do not contain exposed metal centers. Molecular simulations of H-2 sorption in ZIF-68 and ZIF-69 confirmed the similar H-2 sorption properties between the two ZIFs, but also suggest that H-2 sorption is slightly favored in ZIF-68 with regards to uptake at 77 K/1.0 atm. This work also presents inelastic neutron scattering (INS) spectra for H-2 sorbed in ZIFs for the first time. The spectra for ZIF-68 and ZIF-69 show a broad range of intensities starting from about 4 meV. The most favorable H-2 sorption site in both ZIFs corresponds to a confined region between two adjacent 2-nitroimidazolate linkers. Two-dimensional quantum rotation calculations for H-2 sorbed at this site in ZIF-68 and ZIF-69 produced rotational transitions that are in accord with the lowest energy peak observed in the INS spectrum for the respective ZIFs. We found that the primary binding site for H-2 in the two ZIFs generates high barriers to rotation for the adsorbed H-2, which are greater than those in several metal organic frameworks (MOFs) which possess open-metal sites. H-2 sorption was also observed for both ZIFs in the vicinity of the nitro groups of the 2-nitroimidazolate linkers. This study' highlights the constructive interplay of experiment and theory to elucidate critical details of the H-2 sorption mechanism in these two isostructural ZIFs. C1 [Pham, Tony; Forrest, Katherine A.; Eckert, Juergen; Space, Brian] Univ S Florida, Dept Chem, 4202 East Fowler Ave,CHE205, Tampa, FL 33620 USA. [Furukawa, Hiroyasu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Dept Chem, Berkeley, CA 94720 USA. [Russina, Margarita] Helmholtz Zentrum Berlin Mat & Energie, Lise Meitner Campus,Hahn Meitner Pl 1, D-14109 Berlin, Germany. [Albinati, Alberto; Georgiev, Peter A.] Univ Milan, Dept Struct Chem, 21 Via G Venezian, I-20133 Milan, Italy. [Georgiev, Peter A.] Univ Sofia, Fac Chem & Pharm, 1 James Bourchier Blvd, Sofia 1164, Bulgaria. RP Eckert, J; Space, B (reprint author), Univ S Florida, Dept Chem, 4202 East Fowler Ave,CHE205, Tampa, FL 33620 USA. EM juergen@usf.edu; brian.b.space@gmail.com FU National Science Foundation [DMR-1607989]; Major Research Instrumentation Program [CHE-1531590]; XSEDE Grant [TG-DMR090028] FX B.S. acknowledges the National Science Foundation (Award No. DMR-1607989), including support from the Major Research Instrumentation Program (Award No. CHE-1531590), the computational resources that were made available by a XSEDE Grant (No. TG-DMR090028), and the use of the services provided by Research Computing at the University of South Florida. We thank Dr. Rahul Banerjee for preparing a sample of ZIF-68 and ZIF-69 and Professor Omar M. Yaghi for graciously allowing us to use his adsorption instrument. NR 85 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 26 PY 2017 VL 121 IS 3 BP 1723 EP 1733 DI 10.1021/acs.jpcc.6b11466 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EJ1ZI UT WOS:000393008900040 ER PT J AU Gupta, A Kumar, A Waghmare, UV Hegde, MS AF Gupta, Asha Kumar, Anil Waghmare, U. V. Hegde, M. S. TI Activation of Oxygen in Ce2Zr2O7+x across Pyrochlore to Fluorite Structural Transformation: First-Principles Analysis SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID GAS-SHIFT REACTION; STORAGE CAPACITY; MIXED OXIDES; CHEMICAL-PROPERTIES; NOBLE-METAL; CEO2-ZRO2; CATALYSTS; ORIGIN; WATER; HYDROGEN AB Cationic substitution of zirconium in ceria (CeO2) greatly improves its oxygen storage capacity (OSC) and thermal stability. Although the fluorite structure of Ce0.5Zr0.5O2 (Ce2Zr2O8) exhibits good oxygen storage and release properties, its reduced counterpart Ce2Zr2O7 in the pyrochlore structure derived from the fluorite structure does, not. Here, we present an analysis of the structural evolution of Ce2Zr2O7+z from pyrochlore-Ce2Zr2O7 (z = 0) to fluorite-Ce2Zr2O8 (z = 1) using first-principles density functional theoretical calculations and bond-valence theory and correlate the consequent activation of oxygen to the observed oxygen storage capacity. The gradual addition of oxygen atoms to the otherwise ordered vacant tetrahedral sites for anions in pyrochlore-Ce2Zr2O7 structure will lead to a transition to fluorite-Ce2Zr2O8 structure, and we demonstrate,that this transition involves an increase in the number of weakly bonded, activated oxygen sites that areliertinent to higher OSC observed for the fluorite-Ce0.5Zr0.5O2 structure. The structural descriptors of OSC demonstrated:here will facilitate the understanding and rational design of oxide materials with improved OSC, which is key to catalyzing a number of reactions for Various applications. C1 [Gupta, Asha] Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India. [Hegde, M. S.] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India. [Gupta, Asha] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Kumar, Anil; Waghmare, U. V.] Jawaharlal Nehru Ctr Adv Sci Res, Theoret Sci Unit, Jakkur Campus, Bangalore 560064, Karnataka, India. [Kumar, Anil] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. RP Gupta, A (reprint author), Indian Inst Sci, Mat Res Ctr, Bangalore 560012, Karnataka, India.; Hegde, MS (reprint author), Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India.; Gupta, A (reprint author), Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. EM toashagupta@gmail.com; mshegde@sscu.iisc.ernet.in FU Department of Science and Technology, India; Council of Scientific and Industrial Research (CSIR), India; JC Bose National Fellowship of the Department of Science and Technology, government of India FX A.G. acknowledges financial support from the Department of Science and Technology, India. A.K. thanks the Council of Scientific and Industrial Research (CSIR), India for a Ph.D. fellowship, and U.V.W. is grateful for support from a JC Bose National Fellowship of the Department of Science and Technology, government of India. NR 40 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 26 PY 2017 VL 121 IS 3 BP 1803 EP 1808 DI 10.1021/acs.jpcc.6b12264 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EJ1ZI UT WOS:000393008900048 ER PT J AU Medasani, B Sushko, ML Rosso, KM Schreiber, DK Bruemmer, SM AF Medasani, Bharat Sushko, Maria L. Rosso, Kevin M. Schreiber, Daniel K. Bruemmer, Stephen M. TI Vacancies and Vacancy-Mediated Self Diffusion in Cr2O3: A First-Principles Study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID INITIO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; AUGMENTED-WAVE METHOD; CHROMIUM DIFFUSION; SINGLE-CRYSTALS; POINT-DEFECTS; ION-TRANSPORT; OXIDATION; OXYGEN; SCALES AB Charged and neutral vacancies and vacancy-mediated self-diffusion in alpha-Cr2O3 were investigated using first principles density functional theory (DFT) and periodic supercell formalism. The vacancy formation energies of charged defects were calculated using the electrostatic finite-size corrections to account for electrostatic interactions between supercells and the corrections for the bandgap underestimation in DFT. Calculations predict that neutral oxygen (O) vacancies are predominant in chromium (Cr)-rich conditions and Cr vacancies with -2 charge. state are the dominant defects in O-rich conditions. The charge-transition levels of both O and Cr vacancies are deep within the bandgap, indicating the stability of these defects. Transport calculations indicate that vacancy-mediated diffusion along the basal plane has lower energy barriers for both O and Cr ions. The most favorable vacancy-mediated self-diffusion processes corresponds to the diffusion of Cr ion in Cr3+ charge state and O ion in O2- state, respectively. Our calculations reveal that Cr triple defects composed of Cr in octahedral interstitial sites with two adjacent Cr vacancies along the c axis have a lower formation energy compared with that of charged Cr vacancies. The formation of such triple defects facilitates Cr self-diffusion along the c axis. C1 [Medasani, Bharat; Sushko, Maria L.; Rosso, Kevin M.] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99354 USA. [Schreiber, Daniel K.; Bruemmer, Stephen M.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Medasani, B (reprint author), Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99354 USA. EM bharat.medasani@pnnl.gov OI Medasani, Bharat/0000-0002-2073-4162 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Simulations were performed using PNNL Institutional Computing facility. PNNL is a multiprogram National Laboratory operated by Battelle for the U.S. Department of Energy. B.M. thanks Danny Broberg for his assistance in generating Figure Si in the Supporting Information. NR 68 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 26 PY 2017 VL 121 IS 3 BP 1817 EP 1831 DI 10.1021/acs.jpcc.7b00071 PG 15 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EJ1ZI UT WOS:000393008900050 ER PT J AU Rong, YC Lin, K Guo, FM Kou, RH Chen, J Ren, Y Xing, XR AF Rong, Yangchun Lin, Kun Guo, Fangmin Kou, Ronghui Chen, Jun Ren, Yang Xing, Xianran TI Tailoring Negative Thermal Expansion in Ferroelectric Sn2P2S6 by Lone-Pair Cations SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTRONIC-STRUCTURE; PHASE-TRANSITION; PEROVSKITE; CRYSTAL; ZRW2O8 AB The rare negative thermal expansion (NTE) in ferroelectrics has received significant attention in lead-titanate perovskite oxides. Recently, a notable NTE of -4.7(1) x 10(-5) K-1 was reported in a lead-free and nonperovskite ferroelectric Sn2P2S6. The stereochemically active lone-pair of Sn(II) was considered to be responsible for the NTE. Here, the role of the lone-pair is further explored via substitution of Ge(II)/Pb(II) for the cation Sn(II). Both high-energy as well as high-resolution synchrotron X-ray diffraction were employed to reveal the tailored NTE behavior and structure evolution, respectively. Due to the stereochemically inactive Pb(II) 6s(2) pair when bonding with anion sulfur, the Pb(II)-substitution depresses the ferroelectricity and reduces the NTE of Sn2P2S6 to -1.9(2) x 10(-5)/K in (Sn0.85Pb0.15)P2S6. However, for (Sn0.975Ge0.025)P2S6, the ferroelectricity is enhanced by the tiny amount of stereochemically active Ge(II) 4s(2) pair but the NTE is weakened to -3.9(1) x 10(-5)/K. The Raman spectra helps reveal the disparate effects of Ge(II)/Pb(II)-substitution on the local/average spontaneous polarization and the NTE. This work clarifies a further understanding of the role of the lone-pair in the spontaneous volume ferroelectrostriction (SVFS) and the NTE among ferroelectrics. C1 [Rong, Yangchun; Lin, Kun; Chen, Jun; Xing, Xianran] Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. [Guo, Fangmin; Kou, Ronghui; Ren, Yang] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Xing, XR (reprint author), Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. EM xing@ustb.edu.cn FU National Natural Science Foundation of China [91022016, 21031005, 21231001, 91422301]; Program for Changjiang Scholars and Innovative Research Team in University [IRT1207]; Fundamental Research Funds for the Central Universities, China [FRF-TP-14-012C1]; China Scholarship Council; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC-0206CH113.57] FX This work is supported by National Natural Science Foundation of China (Grants 91022016, 21031005, 21231001, and 91422301), Program for Changjiang Scholars and Innovative Research Team in University (IRT1207), the Fundamental Research Funds for the Central Universities, China (FRF-TP-14-012C1), and the China Scholarship Council for the joint-training Ph.D. student program. The use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-AC-0206CH113.57). We highly appreciate the kind support from Dr. Saul Lapidus at the high-resolution powder diffraction beam 11 BM-B, Dr. Elena Shevchenko (Center for Nanoscale Materials of Argonne National Laboratory), and Ph.D. student Shuaiyu Jiang (University of Science and Technology Beijing) for their help with the EDS measurements. We also highly acknowledge the discussion with Dr. Longlong Fan (College of Physics and Materials Science, Tianjin Normal University), Dr. Hua Zhou (X-ray Science Division, Argonne National Laboratory), and Dr. Daniel Phelan (Materials Science Division, Argonne National Laboratory) to help improve this paper. NR 34 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 26 PY 2017 VL 121 IS 3 BP 1832 EP 1837 DI 10.1021/acs.jpcc.6b09146 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EJ1ZI UT WOS:000393008900051 ER PT J AU Ocola, LE Connolly, A Gosztola, DJ Schaller, RD Yanguas-Gil, A AF Ocola, Leonidas E. Connolly, Aine Gosztola, David J. Schaller, Richard D. Yanguas-Gil, Angel TI Infiltrated Zinc Oxide in Poly(methyl methacrylate): An Atomic Cycle Growth Study SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TIME-RESOLVED PHOTOLUMINESCENCE; RAY PHOTOELECTRON-SPECTROSCOPY; AL-DOPED ZNO; LAYER DEPOSITION; OPTICAL-PROPERTIES; AUGER PARAMETER; THIN-FILMS; WAGNER PLOT; BAND-GAP; SURFACE AB We have investigated the growth of zinc oxide in a polymer matrix by sequential infiltration synthesis (SiS). The atomic cycle-by-cycle self-terminating reaction growth investigation was done using photoluminescence (PL), Raman, and X-ray photoemission spectroscopy (XPS). Results show clear differences between Zn atom configurations at the initial stages of growth. Mono Zn atoms (O-Zn and O-Zn-O) exhibit pure UV emission with little evidence of deep level oxygen vacancy states (V-O). Dimer Zn atoms (O-Zn-O-Zn and O-Zn-O-Zn-O) show strong UV and visible PL emission from V-O states 20 times greater than that from the mono Zn atom configuration. After three precursor cycles, the PL emission intensity drops significantly exhibiting first evidence of crystal formation as observed with Raman spectroscopy via the presence of longitudinal optical phonons. We also report a first confirmation of energy transfer between polymer and ZnO where the polymer absorbs light at 241 nm and emits at 360 nm, which coincides with the ZnO UV emission peak. Our work shows that ZnO dimers are unique ZnO configurations with high PL intensity, unique O-1s oxidation states, and sub-10 ps absorption and decay, which are interesting properties for novel quantum material applications. C1 [Ocola, Leonidas E.; Gosztola, David J.; Schaller, Richard D.; Yanguas-Gil, Angel] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. [Connolly, Aine] Vassar Coll, 124 Raymond Ave, Poughkeepsie, NY 12604 USA. RP Ocola, LE (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. EM ocola@anl.gov OI Ocola, Leonidas/0000-0003-4990-1064 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; University of Chicago Materials Research Center (MRSEC) IRG3-Engineering Quantum Materials and Interactions [2-60700-95]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was also supported by the University of Chicago Materials Research Center (MRSEC) IRG3-Engineering Quantum Materials and Interactions Contract #2-60700-95. The authors acknowledge the support of Alex Zinovev for access and training on the XPS tool for this work. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357, with the EXAFS data being collected at 9-BM-B. NR 59 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 26 PY 2017 VL 121 IS 3 BP 1893 EP 1903 DI 10.1021/acs.jpcc.6b08007 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EJ1ZI UT WOS:000393008900058 ER PT J AU Davis, MJ Liu, W Sivaramakrishnan, R AF Davis, Michael J. Liu, Wei Sivaramakrishnan, Raghu TI Global Sensitivity Analysis with Small Sample Sizes: Ordinary Least Squares Approach SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID MODEL REPRESENTATIONS; REGRESSION SHRINKAGE; COMBUSTION; SELECTION; ENGINES; SYSTEMS; LASSO; FUELS AB A new version of global sensitivity analysis is developed in this paper. This new version coupled with tools from statistics, machine learning, and optimization can devise small sample sizes that allow for the accurate ordering of sensitivity coefficients for the first 10-30 most sensitive chemical reactions in complex chemical-kinetic mechanisms, and is particularly useful for studying the chemistry in realistic devices. A key part of the paper is calibration of these small samples. Because these small sample sizes are developed for use in realistic combustion devices, the calibration is done over the ranges of conditions in such devices, with a test case being the operating conditions of a compression ignition engine studied earlier. Compression ignition engines operate under low-temperature combustion conditions with quite complicated chemistry making this calibration difficult, leading to the possibility of false positives and false negatives in the ordering of the reactions. So an important aspect of the paper is showing how to handle the trade-off between false positives and false negatives using ideas from the multiobjective optimization literature. The combination of the new global sensitivity method and the calibration are sample sizes a factor of approximately 10 times smaller than were available with our previous algorithm. C1 [Davis, Michael J.; Liu, Wei; Sivaramakrishnan, Raghu] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Davis, MJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM davis@tcg.anl.gov RI SIVARAMAKRISHNAN, RAGHU/C-3481-2008 OI SIVARAMAKRISHNAN, RAGHU/0000-0002-1867-1254 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CH11357. NR 51 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 26 PY 2017 VL 121 IS 3 BP 553 EP 570 DI 10.1021/acs.jpca.6b09310 PG 18 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EJ1ZN UT WOS:000393009400001 PM 28001400 ER PT J AU Nichols, B Sullivan, EN Ryazanov, M Neumark, DM AF Nichols, Bethan Sullivan, Erin N. Ryazanov, Mikhail Neumark, Daniel M. TI Photodissociation Dynamics of the i-Methylvinoxy Radical at 308, 248, and 225 nm Using Fast Beam Photofragment Translational Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID LASER-INDUCED FLUORESCENCE; FLIGHT MASS-SPECTROMETER; INTERNAL-ROTATION; DISSOCIATION; KINETICS; ACETONE; CHLOROACETALDEHYDE; EXPANSION; SPECTRA; BARRIER AB The photodissociation dynamics of the i-methylvinoxy (CH3COCH2) radical have been studied by means of fast beam coincidence translational spectroscopy. The radical was produced by photodetachment of the i-methylVinoxide anion at 700 nm, followed by dissociation at 225 nm (5.51 eV), 248 nm (5.00 eV), and 308 nm (4.03 eV). At all three dissociation energies, the major products were found to be CH3 + CH2CO, with a small amount of CO + C2H5 produced at the higher dissociation energies. Photofragment mass distributions and translational energy distributions were recorded for each wavelength. Comparison of the mass distributions with dissociation of fully deuterated i-methylvinoxy aided the assignment of the observed channels. Electronic structure calculations were performed to determine the relative energies, of minima and transition states involved in the dissociation and to aid interpretation of the experimental results. The proposed dissociation mechanism involves internal conversion from the initially excited electronic state, followed by dissociation over a barrier :on the ground state. C1 [Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Ryazanov, Mikhail] JILA 440 Univ Ave, Boulder, CO 80309 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu FU Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. NR 43 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 26 PY 2017 VL 121 IS 3 BP 579 EP 586 DI 10.1021/acs.jpca.6b10570 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EJ1ZN UT WOS:000393009400003 PM 27992214 ER PT J AU Perras, FA Luo, H Zhang, XM Mosier, NS Pruski, M Abu-Omar, MM AF Perras, Frederic A. Luo, Hao Zhang, Ximing Mosier, Nathan S. Pruski, Marek Abu-Omar, Mahdi M. TI Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID C-13-C-13 CORRELATION SPECTROSCOPY; PLANT-CELL-WALLS; LIGNOCELLULOSIC BIOMASS; CATALYTIC CONVERSION; AMORPHOUS CELLULOSE; BIOFUEL PRODUCTION; LEVULINIC ACID; MALEIC-ACID; CHEMICALS; DEPOLYMERIZATION AB Lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear C-13-C-13 correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determine structure function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies. C1 [Perras, Frederic A.; Pruski, Marek] US DOE, Ames Lab, Ames, IA 50011 USA. [Luo, Hao; Abu-Omar, Mahdi M.] Purdue Univ, Dept Chem, Sch Chem Engn, W Lafayette, IN 47907 USA. [Luo, Hao; Zhang, Ximing; Mosier, Nathan S.; Abu-Omar, Mahdi M.] Purdue Univ, Ctr Direct Catalyt Convers Biomass Biofuels C3Bio, W Lafayette, IN 47907 USA. [Zhang, Ximing; Mosier, Nathan S.] Purdue Univ, Renewable Resources Engn Lab, Dept Agr & Biol Engn, W Lafayette, IN 47907 USA. [Pruski, Marek] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Abu-Omar, Mahdi M.] Univ Calif Santa Barbara, Dept Chem & Biochem, Dept Chem Engn, Santa Barbara, CA 93106 USA. RP Pruski, M (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.; Abu-Omar, MM (reprint author), Purdue Univ, Dept Chem, Sch Chem Engn, W Lafayette, IN 47907 USA.; Abu-Omar, MM (reprint author), Purdue Univ, Ctr Direct Catalyt Convers Biomass Biofuels C3Bio, W Lafayette, IN 47907 USA.; Pruski, M (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.; Abu-Omar, MM (reprint author), Univ Calif Santa Barbara, Dept Chem & Biochem, Dept Chem Engn, Santa Barbara, CA 93106 USA. EM mpruski@iastate.edu; abuomar@chem.ucsb.edu FU Center for direct Catalytic Conversion of Biomass [C3Bio]; Energy Frontier Research Center (EFRC) - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-SC000097]; National Science Foundation Engineering Research Center program [EEC-0813570]; U.S. DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; Spedding Fellowship - Laboratory Directed Research and Development (LDRD) program; DOE [DE-AC02-07CH11358]; NSERC (Natural Sciences and Engineering Research Council of Canada); Government of Canada for a Banting Postdoctoral Fellowship FX This research was supported by the Center for direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award No. DE-SC000097 and the National Science Foundation Engineering Research Center program (EEC-0813570). Solid-state NMR studies at Ames Laboratory were supported by the U.S. DOE, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and through a Spedding Fellowship (F.A.P.) funded by the Laboratory Directed Research and Development (LDRD) program. The Ames Laboratory is operated for the DOE by Iowa State University under Contract No. DE-AC02-07CH11358. F.A.P. thanks NSERC (Natural Sciences and Engineering Research Council of Canada) and the Government of Canada for a Banting Postdoctoral Fellowship. NR 65 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 26 PY 2017 VL 121 IS 3 BP 623 EP 630 DI 10.1021/acs.jpca.6b11121 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EJ1ZN UT WOS:000393009400008 PM 28026949 ER PT J AU Aserse, AA Woyke, T Kyrpides, NC Whitman, WB Lindstrom, K AF Aserse, Aregu Amsalu Woyke, Tanja Kyrpides, Nikos C. Whitman, William B. Lindstrom, Kristina TI Draft genome sequence of type strain HBR26(T) and description of Rhizobium aethiopicum sp nov. SO STANDARDS IN GENOMIC SCIENCES LA English DT Article DE Rhizobium aethiopicum; Ethiopia; Common bean; Symbiotic; Genome; Average Nucleotide Identity ID NODULATING PHASEOLUS-VULGARIS; SPECIES DEFINITION; ROOT-NODULES; SINORHIZOBIUM; ANNOTATION; BACTERIAL; PHYLOGENY; NITROGEN; SYSTEM; COMBINATIONS AB Rhizobium aethiopicum sp. nov. is a newly proposed species within the genus Rhizobium. This species includes six rhizobial strains; which were isolated from root nodules of the legume plant Phaseolus vulgaris growing in soils of Ethiopia. The species fixes nitrogen effectively in symbiosis with the host plant P. vulgaris, and is composed of aerobic, Gram-negative staining, rod-shaped bacteria. The genome of type strain HBR26(T) of R. aethiopicum sp. nov. was one of the rhizobial genomes sequenced as a part of the DOE JGI 2014 Genomic Encyclopedia project designed for soil and plant-associated and newly described type strains. The genome sequence is arranged in 62 scaffolds and consists of 6,557,588 bp length, with a 61% G + C content and 6221 protein-coding and 86 RNAs genes. The genome of HBR26(T) contains repABC genes (plasmid replication genes) homologous to the genes found in five different Rhizobium etli CFN42(T) plasmids, suggesting that HBR26(T) may have five additional replicons other than the chromosome. In the genome of HBR26(T), the nodulation genes nodB, nodC, nodS, nodI, nodJ and nodD are located in the same module, and organized in a similar way as nod genes found in the genome of other known common bean-nodulating rhizobial species. nodA gene is found in a different scaffold, but it is also very similar to nodA genes of other bean-nodulating rhizobial strains. Though HBR26(T) is distinct on the phylogenetic tree and based on ANI analysis (the highest value 90.2% ANI with CFN42(T)) from other bean-nodulating species, these nod genes and most nitrogen-fixing genes found in the genome of HBR26(T) share high identity with the corresponding genes of known bean-nodulating rhizobial species (96-100% identity). This suggests that symbiotic genes might be shared between bean-nodulating rhizobia through horizontal gene transfer. R. aethiopicum sp. nov. was grouped into the genus Rhizobium but was distinct from all recognized species of that genus by phylogenetic analyses of combined sequences of the housekeeping genes recA and glnII. The closest reference type strains for HBR26(T) were R. etli CFN42(T) (94% similarity of the combined recA and glnII sequences) and Rhizobium bangladeshense BLR175(T) (93%). Genomic ANI calculation based on protein-coding genes also revealed that the closest reference strains were R. bangladeshense BLR175(T) and R. etli CFN42(T) with ANI values 91.8 and 90.2%, respectively. Nevertheless, the ANI values between HBR26(T) and BLR175(T) or CFN42(T) are far lower than the cutoff value of ANI (> = 96%) between strains in the same species, confirming that HBR26(T) belongs to a novel species. Thus, on the basis of phylogenetic, comparative genomic analyses and ANI results, we formally propose the creation of R. aethiopicum sp. nov. with strain HBR26(T) (= HAMBI 3550(T)= LMG 29711(T)) as the type strain. The genome assembly and annotation data is deposited in the DOE JGI portal and also available at European Nucleotide Archive under accession numbers FMAJ01000001-FMAJ01000062. C1 [Aserse, Aregu Amsalu; Lindstrom, Kristina] Univ Helsinki, Dept Environm Sci, Viikinkaari 2a, Helsinki, Finland. [Woyke, Tanja; Kyrpides, Nikos C.] DOE Joint Genome Inst, Walnut Creek, CA USA. [Whitman, William B.] Univ Georgia, Dept Microbiol, Biol Sci Bldg, Athens, GA 30602 USA. RP Aserse, AA (reprint author), Univ Helsinki, Dept Environm Sci, Viikinkaari 2a, Helsinki, Finland. EM aregu.aserse@helsinki.fi FU SOILMAN project - Academy of Finland, University of Helsinki; U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility [DE-AC02-05CH11231] FX All microbiological lab work, data analyses, and manuscript preparation were supported by the SOILMAN project funded by Academy of Finland, University of Helsinki. Sequencing was performed by DOE JGI and the sequencing project was a part of the DOE JGI 2014 Genomic Encyclopedia of Type Strains, Phase III the genomes of soil and plant-associated and newly described type strains. We would like to thank Professor J.P.W. Young (University of York, UK) for providing Conting fasta files of additional reference genome reads. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, was supported under Contract No. DE-AC02-05CH11231. NR 65 TC 0 Z9 0 U1 1 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD JAN 26 PY 2017 VL 12 AR 14 DI 10.1186/s40793-017-0220-z PG 16 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA EJ1NV UT WOS:000392978400002 PM 28163823 ER PT J AU Tripathi, DK Tripathi, A Shweta Singh, S Singh, Y Vishwakarma, K Yadav, G Sharma, S Singh, VK Mishra, RK Upadhyay, RG Dubey, NK Lee, Y Chauhan, DK AF Tripathi, Durgesh K. Tripathi, Ashutosh Shweta Singh, Swati Singh, Yashwant Vishwakarma, Kanchan Yadav, Gaurav Sharma, Shivesh Singh, Vivek K. Mishra, Rohit K. Upadhyay, R. G. Dubey, Nawal K. Lee, Yonghoon Chauhan, Devendra K. TI Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review SO Frontiers in Microbiology LA English DT Review DE nanotoxicology; silver; uptake; autotrophic plants; heterotrophic microbes ID EXTRACELLULAR POLYMERIC SUBSTANCES; ESCHERICHIA-COLI; ENGINEERED NANOPARTICLES; ANTIBACTERIAL ACTIVITY; CHLAMYDOMONAS-REINHARDTII; STAPHYLOCOCCUS-AUREUS; COPPER NANOPARTICLES; OXIDATIVE STRESS; KNOWLEDGE GAPS; ORYZA-SATIVA AB Nanotechnology is a cutting-edge field of science with the potential to revolutionize today's technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes. C1 [Tripathi, Durgesh K.; Dubey, Nawal K.] Banaras Hindu Univ, Ctr Adv Study Bot, Varanasi, Uttar Pradesh, India. [Tripathi, Durgesh K.; Yadav, Gaurav; Sharma, Shivesh; Mishra, Rohit K.] Motilal Nehru Natl Inst Technol Allahaba, Ctr Med Diagnost & Res, Allahabad, Uttar Pradesh, India. [Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Chauhan, Devendra K.] Univ Allahabad, DD Pant Interdisciplinary Res Lab, Dept Bot, Allahabad, Uttar Pradesh, India. [Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh] Motilal Nehru Natl Inst Technol Allahaba, Dept Biotechnol, Allahabad, Uttar Pradesh, India. [Singh, Vivek K.] Shri Mata Vaishno Devi Univ, Dept Phys, Katra, India. [Singh, Vivek K.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Upadhyay, R. G.] Veer Chand Singh Garhwali Uttarakhand Univ Hort &, Tehri Garhwal, India. [Lee, Yonghoon] Mokpo Natl Univ, Dept Chem, Mokpo, South Korea. RP Tripathi, DK (reprint author), Banaras Hindu Univ, Ctr Adv Study Bot, Varanasi, Uttar Pradesh, India.; Tripathi, DK (reprint author), Motilal Nehru Natl Inst Technol Allahaba, Ctr Med Diagnost & Res, Allahabad, Uttar Pradesh, India.; Chauhan, DK (reprint author), Univ Allahabad, DD Pant Interdisciplinary Res Lab, Dept Bot, Allahabad, Uttar Pradesh, India. EM dktripathiau@gmail.com; dkchauhanau@yahoo.com FU University Grants Commission, New Delhi; MHRD; UGC; NASI, Allahabad; University Grants Commission (UGC), Govt. of India FX Authors are grateful to the University Grants Commission, New Delhi for financial assistance. The support provided by MHRD sponsored project DIC (Design and Innovation Centre) is also acknowledged. DKT is also grateful to the UGC for providing the D.S. Kothari Fellowship. AT is thankful to NASI, Allahabad for providing Ganga Research fellowship. VKS is also thankful to Shri Mata Vaishno Devi (SMVD) University, Jammu and Kashmir, India for study leave to pursue Post Doctoral Research in Lawrence Berkeley National Laboratory (LBNL), Berkeley, California, USA during "Raman Fellowship (2015-2016)" awarded by University Grants Commission (UGC), Govt. of India. NR 142 TC 1 Z9 1 U1 21 U2 21 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD JAN 26 PY 2017 VL 8 AR 7 DI 10.3389/fmicb.2017.00007 PG 16 WC Microbiology SC Microbiology GA EI9TR UT WOS:000392852500001 PM 28184215 ER PT J AU Neill, D AF Neill, Duff TI The asymptotic form of non-global logarithms, black disc saturation, and gluonic deserts SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Perturbative QCD; Resummation ID FINITE N-C; HIGH-ENERGY; JET EVOLUTION; BFKL POMERON; QCD; RESUMMATION; DEPENDENCE; EXPANSION; MOMENTUM; EQUATION AB We develop an asymptotic perturbation theory for the large logarithmic behavior of the non-linear integro-differential equation describing the soft correlations of QCD jet measurements, the Banfi-Marchesini-Smye (BMS) equation. This equation captures the late-time evolution of radiating color dipoles after a hard collision. This allows us to prove that at large values of the control variable (the non-global logarithm, a function of the infra-red energy scales associated with distinct hard jets in an event), the distribution has a gaussian tail. We compute the decay width analytically, giving a closed form expression, and find it to be jet geometry independent, up to the number of legs of the dipole in the active jet. Enabling the asymptotic expansion is the correct perturbative seed, where we perturb around an anzats encoding formally no real emissions, an intuition motivated by the buffer region found in jet dynamics. This must be supplemented with the correct application of the BFKL approximation to the BMS equation in collinear limits. Comparing to the asymptotics of the conformally related evolution equation encountered in small-x physics, the Balitisky-Kovchegov (BK) equation, we find that the asymptotic form of the non-global logarithms directly maps to the black-disc unitarity limit of the BK equation, despite the contrasting physical pictures. Indeed, we recover the equations of saturation physics in the final state dynamics of QCD. C1 [Neill, Duff] Los Alamos Natl Lab, Theoret Div MS B283, Los Alamos, NM 87545 USA. RP Neill, D (reprint author), Los Alamos Natl Lab, Theoret Div MS B283, Los Alamos, NM 87545 USA. EM duff.neill@gmail.com FU DOE [DE-AC52-06NA25396]; LANL/LDRD Program FX I would like to thank Mrinal Dasgupta for discussions of numerical work in determining the form of the tail of the NGL distribution. I would also like to acknowledge discussions with my fellow conspirators on NGLs and subjets, Ian Moult and Andrew Larkoski. I acknowledge support from DOE contract DE-AC52-06NA25396 and through the LANL/LDRD Program. I also thank the Erwin Schrodinger Institute's program "Challenges and Concepts for Field Theory and Applications in the Era of the LHC Run-2", where portions of this work were completed. NR 80 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JAN 25 PY 2017 IS 1 AR 109 DI 10.1007/JHEP01(2017)109 PG 24 WC Physics, Particles & Fields SC Physics GA EP8SJ UT WOS:000397644800006 ER PT J AU Baliga, NS Bjorkegren, JLM Boeke, JD Boutros, M Crawford, NPS Dudley, AM Farber, CR Jones, A Levey, AI Lusis, AJ Mak, HC Nadeau, JH Noyes, MB Petretto, E Seyfried, NT Steinmetz, LM Vonesch, SC AF Baliga, Nitin S. Bjoerkegren, Johan L. M. Boeke, Jef D. Boutros, Michael Crawford, Nigel P. S. Dudley, Aimee M. Farber, Charles R. Jones, Allan Levey, Allan I. Lusis, Aldons J. Mak, H. Craig Nadeau, Joseph H. Noyes, Marcus B. Petretto, Enrico Seyfried, Nicholas T. Steinmetz, Lars M. Vonesch, Sibylle C. TI The State of Systems Genetics in 2017 commentary SO CELL SYSTEMS LA English DT Editorial Material ID NETWORKS; REGULATOR; DISEASE; TRAITS AB Cell Systems invited 16 experts to share their views on the field of systems genetics. In questions repeated in the headings, we asked them to define systems genetics, highlight its relevance to researchers outside the field, discuss what makes a strong systems genetics paper, and paint a picture of where the field is heading in the coming years. Their responses, ordered by the journal but otherwise unedited, make it clear that deciphering genotype to phenotype relationships is a central challenge of systems genetics and will require understanding how networks and higher-order properties of biological systems underlie complex traits. In addition, our experts illuminate the applications and relevance of systems genetics to human disease, the gut microbiome, development of tools that connect the global research community, sustainability, drug discovery, patient-specific disease and network models, and personalized treatments. Finally, a table of suggested reading provides a sample of influential work in the field. C1 [Baliga, Nitin S.] Inst Syst Biol, Seattle, WA USA. [Bjoerkegren, Johan L. M.] Icahn Sch Med Mt Sinai, Icahn Inst Genom & Multiscale Biol, Dept Genet & Genom Sci, New York, NY 10029 USA. [Bjoerkegren, Johan L. M.] Karolinska Inst, Dept Med Biochem & Biophys, Vasc Biol Unit, Stockholm, Sweden. [Bjoerkegren, Johan L. M.] Univ Tartu, Inst Biomed & Translat Med, Dept Psychol, Tartu, Estonia. [Boeke, Jef D.; Noyes, Marcus B.] NYU, Langone Med Ctr, Inst Syst Genet, New York, NY USA. [Boutros, Michael] German Canc Res Ctr, Heidelberg, Germany. [Boutros, Michael] Heidelberg Univ, Heidelberg, Germany. [Crawford, Nigel P. S.] Natl Inst Hlth, Bethesda, MD USA. [Dudley, Aimee M.; Nadeau, Joseph H.] Pacific Northwest Res Inst, Seattle, WA USA. [Farber, Charles R.] Univ Virginia, Ctr Publ Hlth Gen, Dept Publ Hlth Sci, Charlottesville, VA 22908 USA. [Farber, Charles R.] Univ Virginia, Ctr Publ Hlth Gen, Dept Biochem & Mol Genet, Charlottesville, VA 22908 USA. [Jones, Allan; Steinmetz, Lars M.; Vonesch, Sibylle C.] European Mol Biol Lab EMBL, Genome Biol Unit, D-69117 Heidelberg, Germany. [Levey, Allan I.] Emory Univ, Sch Med, Dept Neurol, Atlanta, GA 30322 USA. [Lusis, Aldons J.] Univ Calif Los Angeles, Dept Med, Los Angeles, CA USA. [Lusis, Aldons J.] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA USA. [Lusis, Aldons J.] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA. [Mak, H. Craig] Cell Press, Cell Syst, Cambridge, MA 02139 USA. [Petretto, Enrico] Duke Natl Univ Singapore NUS, Sch Med, Cardiovasc & Metab Disorders Program, Singapore, Singapore. [Petretto, Enrico] Duke Natl Univ Singapore NUS, Sch Med, Ctr Computat Biol, Singapore, Singapore. [Seyfried, Nicholas T.] Emory Univ, Sch Med, Dept Biochem & Neurol, Atlanta, GA 30322 USA. [Steinmetz, Lars M.] Stanford Univ, Stanford Genome Technol Ctr, Palo Alto, CA 94304 USA. [Steinmetz, Lars M.] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA. RP Mak, HC (reprint author), Cell Press, Cell Syst, Cambridge, MA 02139 USA. EM cmak@cell.com NR 23 TC 0 Z9 0 U1 2 U2 2 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 2405-4712 EI 2405-4720 J9 CELL SYST JI Cell Syst. PD JAN 25 PY 2017 VL 4 IS 1 BP 7 EP 15 DI 10.1016/j.cels.2017.01.005 PG 9 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA EN1PV UT WOS:000395783200003 PM 28125793 ER PT J AU Webb, MJ Andrews, T Bodas-Salcedo, A Bony, S Bretherton, CS Chadwick, R Chepfer, H Douville, H Good, P Kay, JE Klein, SA Marchand, R Medeiros, B Siebesma, AP Skinner, CB Stevens, B Tselioudis, G Tsushima, Y Watanabe, M AF Webb, Mark J. Andrews, Timothy Bodas-Salcedo, Alejandro Bony, Sandrine Bretherton, Christopher S. Chadwick, Robin Chepfer, Helene Douville, Herve Good, Peter Kay, Jennifer E. Klein, Stephen A. Marchand, Roger Medeiros, Brian Siebesma, A. Pier Skinner, Christopher B. Stevens, Bjorn Tselioudis, George Tsushima, Yoko Watanabe, Masahiro TI The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6 SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID GENERAL-CIRCULATION MODEL; SURFACE-TEMPERATURE-CHANGE; COMMUNITY ATMOSPHERE MODEL; MADDEN-JULIAN OSCILLATION; CLIMATE SENSITIVITY; SOUTHERN-OCEAN; TROPICAL RAINFALL; SATELLITE-OBSERVATIONS; COUPLED MODEL; TROPOSPHERIC ADJUSTMENT AB The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions "How does the Earth system respond to forcing?" and "What are the origins and consequences of systematic model biases?" and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloudradiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming? CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. 1. How well do clouds and other relevant variables simulated by models agree with observations? 2. What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models? 3. Which models have the most credible representations of processes relevant to the simulation of clouds? 4. How do clouds and their changes interact with other elements of the climate system? C1 [Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Chadwick, Robin; Good, Peter; Tsushima, Yoko] Met Off Hadley Ctr, Exeter, Devon, England. [Bony, Sandrine; Chepfer, Helene] Univ Paris 06, CNRS, LMD IPSL, Paris, France. [Bretherton, Christopher S.; Marchand, Roger] Univ Washington, Seattle, WA 98195 USA. [Douville, Herve] Ctr Natl Rech Meteorol, Toulouse, France. [Kay, Jennifer E.] Univ Colorado, Boulder, CO 80309 USA. [Klein, Stephen A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Medeiros, Brian] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Siebesma, A. Pier] Royal Netherlands Meteorol Inst, De Bilt, Netherlands. [Skinner, Christopher B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Stevens, Bjorn] Max Planck Inst Meteorol, Hamburg, Germany. [Tselioudis, George] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Watanabe, Masahiro] Atmosphere & Ocean Res Inst, Tokyo, Japan. RP Webb, MJ (reprint author), Met Off Hadley Ctr, Exeter, Devon, England. EM mark.webb@metoffice.gov.uk FU Regional and Global Climate Modeling program of the United States Department of Energy's Office of Science; U.S. Department of Energy by Lawrence Livermore National Laboratory [DEAC5207NA27344]; UK BEIS DECC/Defra Met Office Hadley Centre Climate Programme [GA01101] FX We are grateful to Florent Brient, Hideo Shiogama, Aiko Voigt, Mark Ringer and two anonymous referees for helpful comments on the manuscript. We thank the modelling groups and the wider CFMIP community for reviewing and supporting the CFMIP contribution to CMIP6, the CMIP Panel for their coordination of CMIP6, the WGCM Infrastructure Panel (WIP) overseeing the CMIP6 infrastructure, and Martin Juckes for taking the lead in preparing the CMIP6 data request. We are also grateful to Robert Pincus and Yuying Zhang for their contributions to COSP and to CFMIP-OBS, to Dustin Swales for his development work for COSP-2, and to Gregory Cesana and Mathieu Reverdy for their contributions to CFMIP-OBS. We are grateful to Brian Soden for producing the CMIP3 composite pattern dataset used for the CMIP5 amipFuture and CMIP6 amip-future4K experiments, and to PMIP representatives Pascale Braconnot, Masa Kageyama, and Masakazu Yoshimori for discussions relating to the amip-m4K experiment. The efforts of S. A. Klein are supported by the Regional and Global Climate Modeling program of the United States Department of Energy's Office of Science and were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DEAC5207NA27344. Met Office Hadley Centre authors are supported by the Joint UK BEIS DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). NR 177 TC 0 Z9 0 U1 3 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD JAN 25 PY 2017 VL 10 IS 1 BP 359 EP 384 DI 10.5194/gmd-10-359-2017 PG 26 WC Geosciences, Multidisciplinary SC Geology GA EM3AS UT WOS:000395187500001 ER PT J AU Zhang, T Price, S Ju, LL Leng, W Brondex, J Durand, G Gagliardini, O AF Zhang, Tong Price, Stephen Ju, Lili Leng, Wei Brondex, Julien Durand, Gael Gagliardini, Olivier TI A comparison of two Stokes ice sheet models applied to the Marine Ice Sheet Model Intercomparison Project for plan view models (MISMIP3d) SO CRYOSPHERE LA English DT Article ID BENCHMARK EXPERIMENTS; FINITE-ELEMENT; HIGHER-ORDER; ISMIP-HOM; DYNAMICS; ELMER/ICE; 1ST-ORDER; PARALLEL; GLACIERS; MESH AB We present a comparison of the numerics and simulation results for two "full" Stokes ice sheet models, FELIX-S (Leng et al., 2012) and Elmer/Ice (Gagliardini et al., 2013). The models are applied to the Marine Ice Sheet Model Intercomparison Project for plan view models (MIS-MIP3d). For the diagnostic experiment (P75D) the two models give similar results (<2% difference with respect to along-flow velocities) when using identical geometries and computational meshes, which we interpret as an indication of inherent consistencies and similarities between the two models. For the standard (Stnd), P75S, and P75R prognostic experiments, we find that FELIX-S (Elmer/Ice) grounding lines are relatively more retreated (advanced), results that are consistent with minor differences observed in the diagnostic experiment results and that we show to be due to different choices in the implementation of basal boundary conditions in the two models. While we are not able to argue for the relative favorability of either implementation, we do show that these differences decrease with increasing horizontal (i.e., both along-and across-flow) grid resolution and that grounding-line positions for FELIX-S and Elmer/Ice converge to within the estimated truncation error for Elmer/Ice. Stokes model solutions are often treated as an accuracy metric in model intercomparison experiments, but computational cost may not always allow for the use of model resolution within the regime of asymptotic convergence. In this case, we propose that an alternative estimate for the uncertainty in the grounding-line position is the span of grounding-line positions predicted by multiple Stokes models. C1 [Zhang, Tong] Chinese Acad Meteorol Sci, State Key Lab Severe Weather LASW, Beijing, Peoples R China. [Price, Stephen] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Los Alamos, NM 87544 USA. [Zhang, Tong; Ju, Lili] Univ South Carolina, Dept Math, Columbia, SC 29208 USA. [Zhang, Tong; Ju, Lili] Univ South Carolina, Interdisciplinary Math Inst, Columbia, SC 29208 USA. [Zhang, Tong] Chinese Acad Sci, State Key Lab Cryospher Sci, Lanzhou, Peoples R China. [Leng, Wei] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Beijing, Peoples R China. [Brondex, Julien; Durand, Gael; Gagliardini, Olivier] Univ Grenoble Alpes, CNRS, IRD, IGE, F-38000 Grenoble, France. RP Price, S (reprint author), Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, Los Alamos, NM 87544 USA. EM sprice@lanl.gov FU Scientific Discovery through Advanced Computing (SciDAC) program - US Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research; National Basic Research Program (973) of China [2013CBA01804, CHINARE2016]; US National Science Foundation [DMS-1215659]; National 863 Project of China [2012AA01A309]; National Center for Mathematics and Interdisciplinary Sciences of the Chinese Academy of Sciences; Agence Nationale pour la Recherche (ANR) through the SUMER [Blanc SIMI 6-2012]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Center for Global Sea-Level Change at New York University Abu Dhabi FX The authors thank Steph Cornford, the three anonymous reviewers, and the editor Hilmar Gudmundsson for suggestions that helped to clarify and improve the paper. Support for Tong Zhang, Stephen Price, Lili Ju, and Wei Leng was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the US Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research. Tong Zhang was also supported by the National Basic Research Program (973) of China under grant No. 2013CBA01804 and CHINARE2016. Lili Ju was partially supported by the US National Science Foundation under grant No. DMS-1215659. Wei Leng was partially supported by the National 863 Project of China under grant No. 2012AA01A309 and the National Center for Mathematics and Interdisciplinary Sciences of the Chinese Academy of Sciences. Elmer/Ice development and simulations presented here were partly funded by the Agence Nationale pour la Recherche (ANR) through the SUMER, Blanc SIMI 6-2012. FELIX-S simulations presented here used computing resources of the National Energy Research Scientific Computing Center (NERSC; supported by the Office of Science of the US Department of Energy under Contract DE-AC02-05CH11231). Elmer/Ice simulations discussed in this paper used computing resources of CINES (Centre Informatique National de l'Enseignement Superieur, France) under allocations 2015-016066 made by GENCI (Grand Equipement National de Calcul Intensif). This study was inspired by discussions with Frank Pattyn and Gael Durand at the first MISOMIP workshop, supported by the Center for Global Sea-Level Change at New York University Abu Dhabi. NR 28 TC 0 Z9 0 U1 0 U2 0 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1994-0416 EI 1994-0424 J9 CRYOSPHERE JI Cryosphere PD JAN 25 PY 2017 VL 11 IS 1 BP 179 EP 190 DI 10.5194/tc-11-179-2017 PG 12 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA EM2XP UT WOS:000395179400002 ER PT J AU Chen, JY Zhao, XX Tan, SJR Xu, H Wu, B Liu, B Fu, DY Fu, W Geng, DC Liu, YP Liu, W Tang, W Li, LJ Zhou, W Sum, TC Loh, KP AF Chen, Jianyi Zhao, Xiaoxu Tan, Sherman J. R. Xu, Hai Wu, Bo Liu, Bo Fu, Deyi Fu, Wei Geng, Dechao Liu, Yanpeng Liu, Wei Tang, Wei Li, Linjun Zhou, Wu Sum, Tze Chien Loh, Kian Ping TI Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; MOLYBDENUM-DISULFIDE; GRAIN-BOUNDARIES; SINGLE-CRYSTAL; MONO LAYER; GROWTH; GRAPHENE; LIQUID; FILMS AB We report the fast growth of high-quality millimeter-size monolayer MoSe2 crystals on molten glass using an ambient pressure CVD system. We found that the isotropic surface of molten glass suppresses nucleation events and greatly improves the growth of large crystalline domains. Triangular monolayer MoSe2 crystals with sizes reaching 2.5 mm, and with a room-temperature carrier mobility up to 95 cm2(/)(V.s), can be synthesized in 5 min. The method can also be used to synthesize millimeter-size monolayer MoS2 crystals. Our results demonstrate that "liquid-state" glass is a highly promising substrate for the low-cost growth of high-quality large-size 2D transition metal dichalcogenides (TMDs). C1 [Chen, Jianyi; Zhao, Xiaoxu; Tan, Sherman J. R.; Xu, Hai; Wu, Bo; Liu, Bo; Fu, Deyi; Fu, Wei; Geng, Dechao; Liu, Yanpeng; Liu, Wei; Tang, Wei; Li, Linjun; Loh, Kian Ping] Natl Univ Singapore, Graphene Res Ctr, 6 Sci Dr 2, Singapore 117546, Singapore. [Chen, Jianyi; Zhao, Xiaoxu; Tan, Sherman J. R.; Xu, Hai; Wu, Bo; Liu, Bo; Fu, Deyi; Fu, Wei; Geng, Dechao; Liu, Yanpeng; Liu, Wei; Tang, Wei; Li, Linjun; Loh, Kian Ping] Natl Univ Singapore, Dept Chem, 6 Sci Dr 2, Singapore 117546, Singapore. [Liu, Bo; Sum, Tze Chien] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, 21 Nanyang Link, Singapore 637371, Singapore. [Zhou, Wu] Univ Chinese Acad Sci, CAS Key Lab Vacuum Sci, Sch Phys Sci, Beijing 100049, Peoples R China. [Zhou, Wu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Loh, KP (reprint author), Natl Univ Singapore, Graphene Res Ctr, 6 Sci Dr 2, Singapore 117546, Singapore.; Loh, KP (reprint author), Natl Univ Singapore, Dept Chem, 6 Sci Dr 2, Singapore 117546, Singapore. EM chmlohkp@nus.edu.sg FU National Research Foundation, Singapore, Midsized Centre grant (CA2DM) under the Prime Minister's Office FX The authors acknowledge support by National Research Foundation, Singapore, Midsized Centre grant (CA2DM) under the Prime Minister's Office. The electron microscopy work was supported in part by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division (W.Z.), and through a user project at ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. NR 23 TC 0 Z9 0 U1 28 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 25 PY 2017 VL 139 IS 3 BP 1073 EP 1076 DI 10.1021/jacs.6b12156 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EJ9IY UT WOS:000393541000013 PM 28051869 ER PT J AU Perticaroli, S Ehlers, G Stanley, CB Mamontov, E O'Neill, H Zhang, Q Cheng, XL Myles, DAA Katsaras, J Nickels, JD AF Perticaroli, Stefania Ehlers, Georg Stanley, Christopher B. Mamontov, Eugene O'Neill, Hugh Zhang, Qiu Cheng, Xiaolin Myles, Dean A. A. Katsaras, John Nickels, Jonathan D. TI Description of Hydration Water in Protein (Green Fluorescent Protein) Solution SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; DEPOLARIZED LIGHT-SCATTERING; PICOSECOND TIME-SCALE; NEUTRON-SCATTERING; COLLECTIVE DYNAMICS; AQUEOUS-SOLUTIONS; TRANSLATIONAL DIFFUSION; SUPERCOOLED WATER; GLOBULAR PROTEIN; SELF-DIFFUSION AB The structurally and dynamically perturbed hydration shells that surround proteins and biomolecules have a substantial influence upon their function and stability. This makes the extent and degree of water perturbation of practical interest for general biological study and industrial formulation. We present an experimental description of the dynamical perturbation of hydration water around green fluorescent protein in solution. Less than two shells (similar to 5.5 angstrom) were perturbed, with dynamics a factor of 2-10 times slower than bulk water, depending on their distance from the protein surface and the probe length of the measurement. This dependence on probe length demonstrates that hydration water undergoes subdiffusive motions (tau proportional to q(-2.5) for the first hydration Shell, tau proportional to q(-2.3) for perturbed water in the second shell), an important difference with neat water, which demonstrates diffusive behavior (tau proportional to q(-2)). These results help clarify the seemingly conflicting range of values reported for hydration water retardation as a logical consequence of the different length scales probed by the analytical techniques used. C1 [Perticaroli, Stefania; Katsaras, John; Nickels, Jonathan D.] Oak Ridge Natl Lab, Shull Wollan Ctr, Oak Ridge, TN 37831 USA. [Ehlers, Georg] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Perticaroli, Stefania; Stanley, Christopher B.; O'Neill, Hugh; Zhang, Qiu; Myles, Dean A. A.; Katsaras, John; Nickels, Jonathan D.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Cheng, Xiaolin] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [O'Neill, Hugh; Cheng, Xiaolin] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Katsaras, John; Nickels, Jonathan D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Perticaroli, S; Nickels, JD (reprint author), Oak Ridge Natl Lab, Shull Wollan Ctr, Oak Ridge, TN 37831 USA.; Perticaroli, S; Nickels, JD (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA.; Nickels, JD (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM perticarolis@ornl.gov; nickelsjd@ornl.gov RI Nickels, Jonathan/I-1913-2012; Mamontov, Eugene/Q-1003-2015 OI Nickels, Jonathan/0000-0001-8351-7846; Mamontov, Eugene/0000-0002-5684-2675 FU Center for Structural Molecular Biology - DOE Office of Biological and Environmental Research [FWP ERKP291]; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE; U.S. Department of Energy [DEAC0500OR22725] FX We acknowledge Brad O'Dell for assistance with Figure 1C and Rhonda Moody, Rick Goyette, and Carrie Gao for technical assistance. H.O'N. and Q.Z. acknowledge the support of the Center for Structural Molecular Biology funded by the DOE Office of Biological and Environmental Research under Contract FWP ERKP291. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. Oak Ridge National Laboratory facilities are sponsored by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DEAC0500OR22725. Cover image credit/Genevieve Martin, ORNL. NR 78 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 25 PY 2017 VL 139 IS 3 BP 1098 EP 1105 DI 10.1021/jacs.6b08845 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA EJ9IY UT WOS:000393541000018 PM 27783480 ER PT J AU Dub, PA Scott, BL Gordon, JC AF Dub, Pavel A. Scott, Brian L. Gordon, John C. TI Why Does Alkylation of the N-H Functionality within M/NH Bifunctional Noyori-Type Catalysts Lead to Turnover? SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ASYMMETRIC TRANSFER HYDROGENATION; TRANSITION-METAL-COMPLEXES; CENTER-DOT-O; AROMATIC KETONES; MICROSCOPIC REVERSIBILITY; MEDICINAL CHEMISTRY; SELECTIVE HYDROGENATION; RUTHENIUM CATALYST; IRIDIUM COMPLEXES; CHIRAL ALCOHOLS AB Molecular metal/NH bifunctional Noyori-type catalysts are remarkable in that they are among the most efficient artificial catalysts developed to date for the hydrogenation of carbonyl functionalities (loadings up to similar to 10(-5) mol %). In addition, these catalysts typically exhibit high C=O/C=C chemo- and enantioselectivities. This unique set of properties is traditionally associated with the operation of an unconventional mechanism for homogeneous catalysts in which the chelating ligand plays a key role in facilitating the catalytic reaction and enabling the aforementioned selectivities by delivering/accepting a proton (H+) via its N-H bond cleavage/formation. A recently revised mechanism of the Noyori hydrogenation reaction (Dub, P. A. et al. J. Am. Chem. Soc. 2014, 136, 3505) suggests that the N-H bond is not cleaved but serves to stabilize the turnover-determining transition states (TDTSs) via strong N-H center dot center dot center dot O hydrogen-bonding interactions (HBIs). The present paper shows that this is consistent with the largely ignored experimental fact that alkylation of the N-H functionality within M/NH bifunctional Noyori-type catalysts leads to detrimental catalytic activity. The purpose of this work is to demonstrate that decreasing the strength of this HBI, ultimately to the limit of its complete absence, are conditions under which the same alkylation may lead to beneficial catalytic activity. C1 [Dub, Pavel A.; Gordon, John C.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Scott, Brian L.] Los Alamos Natl Lab, Mat & Phys Applicat Div, Los Alamos, NM 87545 USA. RP Dub, PA; Gordon, JC (reprint author), Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. EM pdub@lanl.gov; jgordon@lanl.gov FU J. Robert Oppenheimer (JRO) Distinguished Postdoctoral Fellowship at LANL; U.S. Department of Energy (DOE) Office of Science [DE-AC52-06NA25396, DE-AC04-94AL85000] FX This work was supported via the award of a J. Robert Oppenheimer (JRO) Distinguished Postdoctoral Fellowship to P.A.D. at LANL. Some computations in this work were performed at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). Others were performed by using Darwin Computational Cluster at Los Alamos National Laboratory. Crystallographic data for Ir1 and Ir2 are available free of charge from the Cambridge Crystallographic Data Centre under reference numbers 1490846-1490847. NR 130 TC 1 Z9 1 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 25 PY 2017 VL 139 IS 3 BP 1245 EP 1260 DI 10.1021/jacs.6b11666 PG 16 WC Chemistry, Multidisciplinary SC Chemistry GA EJ9IY UT WOS:000393541000032 PM 28045260 ER PT J AU Rao, A Long, H Harley-Trochimczyk, A Pham, T Zettl, A Carraro, C Mahoudian, R AF Rao, Ameya Long, Hu Harley-Trochimczyk, Anna Thang Pham Zettl, Alex Carraro, Carlo Mahoudian, Roya TI In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE tin oxide; SnO2; metal oxide; hollow sphere; microheater; on-chip; formaldehyde; gas sensor ID TIN OXIDE; FAST-RESPONSE; SENSORS; FABRICATION; FILMS; NANOPARTICLE; SURFACE; NANOSTRUCTURES; MICROSPHERES; PERFORMANCE AB A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing.a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity. C1 [Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Carraro, Carlo; Mahoudian, Roya] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Carraro, Carlo; Mahoudian, Roya] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Long, Hu] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China. [Thang Pham] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Thang Pham; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Thang Pham; Zettl, Alex] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Thang Pham; Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Thang Pham; Zettl, Alex] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Mahoudian, R (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; Mahoudian, R (reprint author), Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. EM maboudia@berkeley.edu FU National Science Foundation (NSF grant) [IIP 1444950]; Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231, KC2207]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was partially supported by Berkeley Sensor and Actuator Center (BSAC) Industrial Members and the National Science Foundation (NSF grant # IIP 1444950), which provided for experiment design, student support (A.R, H.L., A.H.-T.), and sensor fabrication and performance characterization. Support was also provided by the Director, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 within the sp2-Bonded Materials Program (KC2207), which provided for instrumentation and personnel (T.P. and A.Z.) support. FESEM characterization was partially conducted at the Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 52 TC 0 Z9 0 U1 21 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JAN 25 PY 2017 VL 9 IS 3 BP 2634 EP 2641 DI 10.1021/acsami.6b12677 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EJ0OP UT WOS:000392909500073 PM 28060477 ER PT J AU Elshobaki, M Gebhardt, R Carr, J Lindemann, W Wang, WJ Grieser, E Venkatesan, S Ngo, E Bhattacharjee, U Strzalla, J Jiang, Z Qiao, QQ Petrich, J Vaknin, D Chaudhary, S AF Elshobaki, Moneim Gebhardt, Ryan Carr, John Lindemann, William Wang, Wenjie Grieser, Eric Venkatesan, Swaminathan Ngo, Evan Bhattacharjee, Ujjal Strzalla, Joseph Jiang, Zhang Qiao, Qiquan Petrich, Jacob Vaknin, David Chaudhary, Sumit TI Tailoring Nanoscale Morphology of Polymer:Fullerene Blends Using Electrostatic Field SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE P3HT; fullerene; nanomorphology; electrostatic field; Van de Graaff OPVs ID POLYMER SOLAR-CELLS; ELECTRIC-FIELD; CONJUGATED POLYMERS; CHARGE-TRANSPORT; ORGANIC PHOTOVOLTAICS; 11-PERCENT EFFICIENCY; TANDEM POLYMER; HIGH-MOBILITY; THIN-FILMS; P3HT AB To tailor the nanomorphology in polymer/fullerene blends, we study the effect of electrostatic field (E-field) on the solidification of poly(3-hexylthiophene-2, 5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) bulk heterojunction (BHJ). In addition to control; wet P3HT:PC60BM thin films were exposed to E-field of Van de Graaff (VDG) generator at three different directions horizontal (H), tilted (T), and vertical (V) relative to the plane of the substrate. Surface and bulk characterizations of the field-treated BHJs affirmed that fullerene molecules can easily penetrate the spaghetti-like P3HT and move up and down following the E-field. Using E-field treatment, we achieved favorable morphologies-with efficient charge separation, transport, and collection. We improve; (1) the hole mobility values up to 19.4 X 10(-4) +/- 1.6 x 10(-4) cm(2) V(-1)s(-1) and (2) the power conversion efficiency (PCE) of conventional and inverted OPVs up to 2.58 +/- 0.02% and 4.1 +/- 0.40%, respectively. This E-field approach can serve as a new morphology-tuning technique, which is generally applicable to other polymer-fullerene systems. C1 [Elshobaki, Moneim] Mansoura Univ, Dept Phys, Mansoura 35516, Egypt. [Elshobaki, Moneim; Gebhardt, Ryan; Lindemann, William; Chaudhary, Sumit] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Carr, John; Chaudhary, Sumit] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Grieser, Eric; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Bhattacharjee, Ujjal; Petrich, Jacob] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Wang, Wenjie; Vaknin, David] US DOE, Ames Lab, Ames, IA 50011 USA. [Venkatesan, Swaminathan; Ngo, Evan; Qiao, Qiquan] South Dakota State Univ, Dept Elect Engn, Brookings, SD 57007 USA. [Jiang, Zhang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Elshobaki, M (reprint author), Mansoura Univ, Dept Phys, Mansoura 35516, Egypt.; Elshobaki, M (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM elshobaki@alumni.iastate.edu OI Elshobaki, Moneim/0000-0003-2125-0394 FU Egyptian government; Iowa State University; National Science Foundation [CBET-1236839]; Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX M.E. thanks the fellowship support from the Egyptian government and Iowa State University. This work was supported by National Science Foundation (Award CBET-1236839). The work at the Ames Laboratory was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract DE-AC02-07CH11358. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 55 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JAN 25 PY 2017 VL 9 IS 3 BP 2678 EP 2685 DI 10.1021/acsami.6b10870 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EJ0OP UT WOS:000392909500078 PM 27982563 ER PT J AU Cheng, G Sun, X Wang, YX Tay, SL Gao, W AF Cheng, Guang Sun, Xin Wang, Yuxin Tay, See Leng Gao, Wei TI Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Nanoindentation; Electrodeposited; Ag coating; Anisotropic elastic-plastic property; FEA ID INSTRUMENTED SHARP INDENTATION; MECHANICAL-PROPERTIES; FINITE-ELEMENT; PIEZOELECTRIC MATERIALS; CONSTITUTIVE MODEL; SURFACE-ROUGHNESS; REVERSE PROBLEMS; PEEL TEST; FILMS; MICROSTRUCTURE AB A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of electrodeposited Ag thin coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was similar to 4% of coating thickness (similar to 10 mu m) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validated with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the an isotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations. (C) 2016 Elsevier B.V. All rights reserved. C1 [Cheng, Guang; Sun, Xin] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, POB 999, Richland, WA 99352 USA. [Wang, Yuxin] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China. [Tay, See Leng; Gao, Wei] Univ Auckland, Dept Chem & Mat Engn, PB 92019, Auckland 1142, New Zealand. RP Wang, YX (reprint author), Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China. EM ywan943@163.com OI Cheng, Guang /0000-0002-6860-4420 FU US Department of Energy (DOE) [DE-AC06-76RL01830]; National Natural Science Foundation of China [51601073]; Auckland UniServices project FX Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the US Department of Energy (DOE) under Contract No. DE-AC06-76RL01830. The University of Auckland performed all the experimental characterization reported in this work, and it is supported by National Natural Science Foundation of China (51601073) and Auckland UniServices project. The authors would like to thank the technical stuff in the Department of Chemical and Materials Engineering and the Research Centre of Surface and Materials Science for various assistances. We also want to express our gratitude to Mr. Glen Slater, Chris Goode and technical staff in Rigg Electroplating Ltd. NR 64 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JAN 25 PY 2017 VL 310 BP 43 EP 50 DI 10.1016/j.surfcoat.2016.12.056 PG 8 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA EJ6RV UT WOS:000393347400007 ER PT J AU Brake, MRW Hall, AC Madison, JD AF Brake, M. R. W. Hall, A. C. Madison, J. D. TI Designing energy dissipation properties via thermal spray coatings SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Thermal spray coatings; Impact; Coefficient of restitution; Contact; Microstructure ID YTTRIA-STABILIZED ZIRCONIA; WIRE ARC SPRAY; CERAMIC COATINGS; MECHANICAL-PROPERTIES; SPLAT MORPHOLOGY; BEHAVIOR; CONTACT; MICROSTRUCTURE; COMPRESSION; SUBSTRATE AB The coefficient of restitution is a measure of energy dissipation in a system across impact events. Often, the dissipative qualities of a pair of impacting components are neglected during the design phase. This research looks at the effect of applying a thin layer of metallic coating, using thermal spray technologies, to significantly alter the dissipative properties of a system. The dissipative properties are studied across multiple impacts in order to assess the effects of work hardening, the change in microstructure, and the change in surface topography. The results of the experiments indicate that any work hardening-like effects are likely attributable to the crushing of asperities, and the permanent changes in the dissipative properties of the system, as measured by the coefficient of restitution, are attributable to the microstructure formed by the thermal spray coating. Further, the microstructure appears to be robust across impact events of moderate energy levels, exhibiting negligible changes across multiple impact events. (C) 2016 Elsevier B.V. All rights reserved. C1 [Brake, M. R. W.; Hall, A. C.; Madison, J. D.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Brake, M. R. W.] Rice Univ, 6100 Main St, Houston, TX 77005 USA. RP Brake, MRW (reprint author), Rice Univ, 6100 Main St, Houston, TX 77005 USA. EM brake@rice.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporations, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 51 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JAN 25 PY 2017 VL 310 BP 70 EP 78 DI 10.1016/j.surfcoat.2016.12.034 PG 9 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA EJ6RV UT WOS:000393347400010 ER PT J AU Lin, RQ Fu, C Liu, M Jiang, H Li, X Ren, ZM Russell, AM Cao, GH AF Lin, R. Q. Fu, C. Liu, M. Jiang, H. Li, X. Ren, Z. M. Russell, A. M. Cao, G. H. TI Microstructure and oxidation behavior of Al plus Cr co-deposited coatings on nickel-based superalloys SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Coatings; Microstructure; Oxidation; Superalloys; Cr ID MODIFIED ALUMINIDE COATINGS; THERMAL BARRIER COATINGS; PACK CEMENTATION METHOD; CORROSION BEHAVIOR; DIFFUSION COATINGS; HOT-CORROSION; CHROMIUM; ALLOY; CODEPOSITION; RESISTANCE AB The microstructure and oxidation behavior were investigated in Al and Cr co-deposited diffusion coatings prepared by the pack cementation process. The composition (in wt.%) of the packs was 3NH(4)Cl-xAl-(25-x)Cr-72Al(2)O(3) with different Al levels (x = 0.5,1,2,4, and 10). After the heat-treatment process, the corresponding microstructure of the coatings was Cr + Cr2Ni3 + Al-rich phase, Cr + Cr2Ni3, Cr + NiAl + Ni3Al and NiAl + AlCr2, respectively. The isothermal oxidation tests were performed at 950 degrees C for up to 100 h in air, and the oxidation kinetic curves were obtained. It indicated that the coatings formed in the packs containing 1.2 wt.% Al had the lowest weight gain, while the weight gain of the coating formed in the packs having 4 wt.% Al was the largest. The presence of Cr in Al and Cr co-deposited coatings promotes Al2O3 generation. The formation mechanisms of Al + Cr co-deposited coatings and the effect of Cr in different types of coatings during the oxidation process were discussed. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lin, R. Q.; Liu, M.; Jiang, H.; Li, X.; Ren, Z. M.; Cao, G. H.] Sch Mat Sci & Engn, Shanghai Key Lab Adv Ferromet, State Key Lab Adv Special Steel, 149 Yanchang Rd, Shanghai 200072, Peoples R China. [Fu, C.] Shanghai Elect Grp Co Ltd, Cent Acad, 960 Zhongxing Rd, Shanghai 200070, Peoples R China. [Russell, A. M.] Iowa State Univ, Dept Mat Sci & Engn, Div Mat Sci & Engn, Ames Lab,USDOE, Ames, IA 50011 USA. RP Cao, GH (reprint author), Sch Mat Sci & Engn, Shanghai Key Lab Adv Ferromet, State Key Lab Adv Special Steel, 149 Yanchang Rd, Shanghai 200072, Peoples R China. EM ghcao@shu.edu.cn FU National Natural Science Foundation of China (NSFC) [51271107]; Shanghai Committee of Science and Technology, China [16520721700] FX This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 51271107, and the Shanghai Committee of Science and Technology, China under Grant No. 16520721700. NR 23 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JAN 25 PY 2017 VL 310 BP 273 EP 277 DI 10.1016/j.surfcoat.2016.12.096 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA EJ6RV UT WOS:000393347400036 ER PT J AU Fuller, EJ El Gabaly, F Leonard, F Agarwal, S Plimpton, SJ Jacobs-Gedrim, RB James, CD Marinella, MJ Talin, AA AF Fuller, Elliot J. El Gabaly, Farid Leonard, Franois Agarwal, Sapan Plimpton, Steven J. Jacobs-Gedrim, Robin B. James, Conrad D. Marinella, Matthew J. Talin, A. Alec TI Li-Ion Synaptic Transistor for Low Power Analog Computing SO ADVANCED MATERIALS LA English DT Article ID PHASE-CHANGE MEMORY; THIN-FILM; NEUROMORPHIC HARDWARE; NEURAL-NETWORKS; BATTERIES; OXIDE; TRANSITION; DEVICES; LIXCOO2; MEMRISTORS AB Nonvolatile redox transistors(NVRTs) based upon Li-ion battery materials are demonstrated as memory elements for neuromorphic computer architectures with multi-level analog states, "write" linearity, low-voltage switching, and low power dissipation. Simulations of backpropagation using the device properties reach ideal classification accuracy. Physics-based simulations predict energy costs per "write" operation of < 10 aJ when scaled to 200 nm x 200 nm. C1 [Fuller, Elliot J.; El Gabaly, Farid; Leonard, Franois; Talin, A. Alec] Sandia Natl Labs, Livermore, CA 94551 USA. [Agarwal, Sapan; Plimpton, Steven J.; Jacobs-Gedrim, Robin B.; James, Conrad D.; Marinella, Matthew J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Talin, AA (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM aatalin@sandia.gov FU Sandia's Laboratory-Directed Research and Development Program; Nanostructures for Electrical Energy Storage (NEES-II), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DESC0001160]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000] FX This work was supported in part by Sandia's Laboratory-Directed Research and Development Program. E. J. Fuller, F. El Gabaly, and A. A. Talin were also supported by Nanostructures for Electrical Energy Storage (NEES-II), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award number DESC0001160. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC0494AL85000. NR 54 TC 0 Z9 0 U1 34 U2 34 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JAN 25 PY 2017 VL 29 IS 4 AR 1604310 DI 10.1002/adma.201604310 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI8BU UT WOS:000392730500023 ER PT J AU Wang, Y Fullon, R Acerce, M Petoukhoff, CE Yang, J Chen, CG Du, SN Lai, SK Lau, SP Voiry, D O'Carroll, D Gupta, G Mohite, AD Zhang, SD Zhou, H Chhowalla, M AF Wang, Yan Fullon, Raymond Acerce, Muharrem Petoukhoff, Christopher E. Yang, Jieun Chen, Chenggan Du, Songnan Lai, Sin Ki Lau, Shu Ping Voiry, Damien O'Carroll, Deirdre Gupta, Gautam Mohite, Aditya D. Zhang, Shengdong Zhou, Hang Chhowalla, Manish TI Solution-Processed MoS2/Organolead Trihalide Perovskite Photodetectors SO ADVANCED MATERIALS LA English DT Article ID MOS2 NANOSHEETS; SINGLE-LAYER; GRAPHENE; PERFORMANCE; PHOTOTRANSISTORS; ABSORPTION; PHOTOLUMINESCENCE; PHOTORESPONSE; EFFICIENCY; BAND AB Integration of organic/inorganic hybridperovskites with metallic or semiconducting phases of 2D MoS2 nanosheets via solution processing is demonstrated. The results show that the collection of charge carriers is strongly dependent on the electronic properties of the 2D MoS2 with metallic MoS2 showing high responsivity and the semiconducting phase exhibiting high on/off ratios. C1 [Wang, Yan; Fullon, Raymond; Acerce, Muharrem; Petoukhoff, Christopher E.; Yang, Jieun; Voiry, Damien; O'Carroll, Deirdre; Chhowalla, Manish] Rutgers State Univ, Mat Sci & Engn, 607 Taylor Rd, Piscataway, NJ 08854 USA. [Wang, Yan; Chen, Chenggan; Du, Songnan; Zhang, Shengdong; Zhou, Hang] Peking Univ, Shenzhen Key Lab Thin Film Transistor & Adv Displ, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China. [Lai, Sin Ki; Lau, Shu Ping] Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China. [Gupta, Gautam; Mohite, Aditya D.] Los Alamos Natl Lab, MPA Mat Synth & Integrated Devices 11, Los Alamos, NM 87545 USA. RP Zhou, H (reprint author), Peking Univ, Shenzhen Key Lab Thin Film Transistor & Adv Displ, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China. EM zhouh81@pkusz.edu.cn; manish1@rci.rutgers.edu RI Lau, Shu Ping/A-6083-2008 OI Lau, Shu Ping/0000-0002-5315-8472 FU Shenzhen Science and Technology Innovation Committee [KQCX20140522143114399, JCYJ20160229122349365]; Rutgers Energy Institute FX H.Z. would like to acknowledge financial support from the Shenzhen Science and Technology Innovation Committee (Grant Nos. KQCX20140522143114399 and JCYJ20160229122349365). JY, MC acknowledge support from the Rutgers Energy Institute. RF acknowledges support for Department of Education GAANN Fellowship. NR 43 TC 0 Z9 0 U1 65 U2 65 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JAN 25 PY 2017 VL 29 IS 4 AR 1603995 DI 10.1002/adma.201603995 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI8BU UT WOS:000392730500019 ER PT J AU Zhang, JS Schott, JA Li, YC Zhan, WC Mahurin, SM Nelson, K Sun, XG Paranthaman, MP Dai, S AF Zhang, Jinshui Schott, Jennifer Ann Li, Yunchao Zhan, Wangcheng Mahurin, Shannon M. Nelson, Kimberly Sun, Xiao-Guang Paranthaman, Mariappan Parans Dai, Sheng TI Membrane-Based Gas Separation Accelerated by Hollow Nanosphere Architectures SO ADVANCED MATERIALS LA English DT Article ID MIXED-MATRIX MEMBRANES; COMPRISING ORGANIC POLYMERS; MODIFIED MOLECULAR-SIEVES; NATURAL-GAS; NANOCOMPOSITE MEMBRANES; INORGANIC FILLERS; GLASSY-POLYMERS; NANOPARTICLES; OPPORTUNITIES; ELECTROLYTES AB The coupling of hollow carbon nanospheres with triblock copolymers is a promising strategy to fabricate mixed-matrix membranes. This is because the symmetric microporous shells combine with the hollow space to promote gas transport, and the unique soft-rigid molecular structure of triblock copolymers can accommodate a high loading of fillers without a significant loss of mechanical strength. C1 [Zhang, Jinshui; Schott, Jennifer Ann; Li, Yunchao; Zhan, Wangcheng; Mahurin, Shannon M.; Nelson, Kimberly; Sun, Xiao-Guang; Paranthaman, Mariappan Parans; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Schott, Jennifer Ann; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Zhan, Wangcheng] East China Univ Sci & Technol, Key Lab Adv Mat, 130 Meilong Rd, Shanghai 200237, Peoples R China. [Zhan, Wangcheng] East China Univ Sci & Technol, Res Inst Ind Catalysis, 130 Meilong Rd, Shanghai 200237, Peoples R China. RP Mahurin, SM; Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.; Dai, S (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM mahurinsm@ornl.gov; dais@ornl.gov OI zhang, Jinshui/0000-0003-4649-6526; Zhan, Wangcheng/0000-0001-9094-3915 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. NR 62 TC 0 Z9 0 U1 44 U2 44 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JAN 25 PY 2017 VL 29 IS 4 AR 1603797 DI 10.1002/adma.201603797 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI8BU UT WOS:000392730500009 ER PT J AU Li, ZY Peters, AW Bernales, V Ortuno, MA Schweitzer, NM DeStefano, MR Gallington, LC Platero-Prats, AE Chapman, KW Cramer, CJ Gagliardi, L Hupp, JT Farha, OK AF Li, Zhanyong Peters, Aaron W. Bernales, Varinia Ortuno, Manuel A. Schweitzer, Neil M. DeStefano, Matthew R. Gallington, Leighanne C. Platero-Prats, Ana E. Chapman, Karena W. Cramer, Christopher J. Gagliardi, Laura Hupp, Joseph T. Farha, Omar K. TI Metal-Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature SO ACS CENTRAL SCIENCE LA English DT Article ID ATOMIC-LAYER-DEPOSITION; OXIDE CATALYSTS; KINETICS; COMPLEXES; EVOLUTION; DENSITY; VANADIA; ALKANES; DESIGN; STATE AB Zr-based metal-organic frameworks (MOFs) have been shown to be excellent catalyst supports in heterogeneous catalysis due to their exceptional stability. Additionally, their crystalline nature affords the opportunity for molecular level characterization of both the support and the catalytically active site, facilitating mechanistic investigations of the catalytic process. We describe herein the installation of Co(II) ions to the Zr-6 nodes of the mesoporous MOF, NU-1000, via two distinct routes, namely, solvothermal deposition in a MOF (SIM) and atomic layer deposition in a MOF (AIM), denoted as Co-SIM+NU-1000 and Co-AIM+NU-1000, respectively. The location of the deposited Co species in the two materials is determined via difference envelope density (DED) analysis. Upon activation in a flow of O-2 at 230 degrees C, both materials catalyze the oxidative dehydrogenation (ODH) of propane to propene under mild conditions. Catalytic activity as well as propene selectivity of these two catalysts, however, is different under the same experimental conditions due to differences in the Co species generated in these two materials upon activation as observed by in situ X-ray absorption spectroscopy. A potential reaction mechanism for the propane ODH process catalyzed by Co-SIM+NU-1000 is proposed, yielding a low activation energy barrier which is in accord with the observed catalytic activity at low temperature. C1 [Li, Zhanyong; Peters, Aaron W.; DeStefano, Matthew R.; Hupp, Joseph T.; Farha, Omar K.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Bernales, Varinia; Ortuno, Manuel A.; Cramer, Christopher J.; Gagliardi, Laura] Univ Minnesota, Supercomp Inst, Dept Chem, Minneapolis, MN 55455 USA. [Bernales, Varinia; Ortuno, Manuel A.; Cramer, Christopher J.; Gagliardi, Laura] Univ Minnesota, Chem Theory Ctr, Minneapolis, MN 55455 USA. [Schweitzer, Neil M.] Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Chapman, Karena W.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Farha, Omar K.] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 21589, Saudi Arabia. RP Hupp, JT; Farha, OK (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Cramer, CJ; Gagliardi, L (reprint author), Univ Minnesota, Supercomp Inst, Dept Chem, Minneapolis, MN 55455 USA.; Farha, OK (reprint author), King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 21589, Saudi Arabia. EM cramer@umn.edu; gagliard@umn.edu; j-hupp@northwestern.edu; o-farha@northwestern.edu RI Gallington, Leighanne/G-9341-2011; Platero-Prats, Ana Eva/B-2870-2017; OI Gallington, Leighanne/0000-0002-0383-7522; Platero-Prats, Ana Eva/0000-0002-2248-2739; Cramer, Christopher/0000-0001-5048-1859 FU Inorganometallic Catalyst Design Center, an EFRC - DOE, Office of Basic Energy Sciences [DE-SC0012702]; Department of Defense (DoD) through the National Defense Science and Engineering Fellowship (NDSEG) program; Ministry of Economy and Knowledge from the Catalan Government [BP-DGR 2014]; MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern University [DMR-1121262]; Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF NNCI-1542205]; MRSEC program at the Materials Research Center [NSF DMR-1121262]; International Institute for Nanotechnology (IIN); Keck Foundation; State of Illinois, through the IIN; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions FX This work was supported by the Inorganometallic Catalyst Design Center, an EFRC funded by the DOE, Office of Basic Energy Sciences (DE-SC0012702). A.W.P. and M.R.D. were supported by the Department of Defense (DoD) through the National Defense Science and Engineering Fellowship (NDSEG) program. A.E.P.-P. acknowledges a Beatriu de Pinos fellowship (BP-DGR 2014) from the Ministry of Economy and Knowledge from the Catalan Government. This work made use of the J.B. Cohen X-ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University. This work made use of the EPIC and Keck-II facilities of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Materials Research Collaborative Access Team (MRCAT, Sector10-ID-B) operations are supported by the Department of Energy and the MRCAT member institutions. The authors acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing computational resources. NR 42 TC 4 Z9 4 U1 83 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2374-7943 EI 2374-7951 J9 ACS CENTRAL SCI JI ACS Central Sci. PD JAN 25 PY 2017 VL 3 IS 1 BP 31 EP 38 DI 10.1021/acscentsci.6b00290 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA EI4YL UT WOS:000392499900007 PM 28149950 ER PT J AU Jewell, TNM Karaoz, U Bill, M Chakraborty, R Brodie, EL Williams, KH Beller, HR AF Jewell, Talia N. M. Karaoz, Ulas Bill, Markus Chakraborty, Romy Brodie, Eoin L. Williams, Kenneth H. Beller, Harry R. TI Metatranscriptomic Analysis Reveals Unexpectedly Diverse Microbial Metabolism in a Biogeochemical Hot Spot in an Alluvial Aquifer SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE strain-resolved metatranscriptome; metagenome; aquifer; naturally reduced zone (NRZ); Hydrogenophaga; Bathyarchaeota; biogeochemistry ID URANIUM-CONTAMINATED AQUIFER; MULTIPLE SEQUENCE ALIGNMENT; CO-OXIDIZING BACTERIA; CARBON-MONOXIDE; SP NOV.; PHYSIOLOGICAL CHARACTERIZATION; ANAEROBIC DEGRADATION; HETEROTROPHIC GROWTH; ELECTRON-ACCEPTOR; SULFUR OXIDATION AB Organic matter deposits in alluvial aquifers have been shown to result in the formation of naturally reduced zones (NRZs), which can modulate aquifer redox status and influence the speciation and mobility of metals, affecting groundwater geochemistry. In this study, we sought to better understand how natural organic matter fuels microbial communities within anoxic biogeochemical hot spots (NRZs) in a shallow alluvial aquifer at the Rifle (CO) site. We conducted a 20-day microcosm experiment in which NRZ sediments, which were enriched in buried woody plant material, served as the sole source of electron donors and microorganisms. The microcosms were constructed and incubated under anaerobic conditions in serum bottles with an initial N2 headspace and were sampled every 5 days for metagenome and metatranscriptome profiles in combination with biogeochemical measurements. Biogeochemical data indicated that the decomposition of native organic matter occurred in different phases, beginning with mineralization of dissolved organic matter (DOM) to CO2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. A pulse of methanogenesis co-occurred with acetogenesis, but only accounted for a small fraction of carbon flux. The depletion of DOM over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage (similar to 8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation, H-2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed (>98th percentile) transcripts, including acetone carboxylase and cell-wall-associated hydrolases with unknown substrates (numerous lesser expressed cell-wall-associated hydrolases targeted peptidoglycan). Many of the most highly expressed hydrolases belonged to a Ca. Bathyarchaeota strain and may have been associated with recycling of bacterial biomass. Overall, these results highlight the complex nature of organic matter transformation in NRZs and the microbial metabolic pathways that interact to mediate redox status and elemental cycling. C1 [Jewell, Talia N. M.; Karaoz, Ulas; Bill, Markus; Chakraborty, Romy; Brodie, Eoin L.; Williams, Kenneth H.; Beller, Harry R.] Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA 94720 USA. RP Beller, HR (reprint author), Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA 94720 USA. EM hrbeller@lbl.gov FU Subsurface Biogeochemical Research Scientific Focus Area - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was supported as part of the Subsurface Biogeochemical Research Scientific Focus Area Funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-AC02-05CH11231. NR 77 TC 0 Z9 0 U1 19 U2 19 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD JAN 25 PY 2017 VL 8 AR 40 DI 10.3389/fmicb.2017.00040 PG 16 WC Microbiology SC Microbiology GA EI5RO UT WOS:000392552200001 PM 28179898 ER PT J AU Cook, AM Fregoso, BM de Juan, F Coh, S Moore, JE AF Cook, Ashley M. Fregoso, Benjamin M. de Juan, Fernando Coh, Sinisa Moore, Joel E. TI Design principles for shift current photovoltaics SO NATURE COMMUNICATIONS LA English DT Article ID PEROVSKITE SOLAR-CELLS; CRYSTALLINE SNSE NANOSHEETS; BLACK PHOSPHORUS; THIN-FILMS; HETEROSTRUCTURES; SEMICONDUCTORS; POLYACETYLENE; CH3NH3PBI3; GENERATION; MONOLAYER AB While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mAW(-1). Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells. C1 [Cook, Ashley M.; Fregoso, Benjamin M.; de Juan, Fernando; Coh, Sinisa; Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cook, Ashley M.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Moore, Joel E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Coh, Sinisa] Univ Calif Riverside, Mech Engn Mat Sci & Engn, Riverside, CA 92521 USA. RP Moore, JE (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Moore, JE (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM jemoore@berkeley.edu RI de Juan, Fernando/B-9392-2008 OI de Juan, Fernando/0000-0001-6852-1484 FU NSF [DMR-1206515]; NERSC [DE-AC02-05CH11231]; NSERC CGS-MSFSS; NSERC CGS-D3; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]; AFOSR MURI; Conacyt FX We acknowledge useful discussions with J. Sipe, E. J. Mele, M. Bernardi, P. Kral, S. Barraza-Lopez and F. Duque-Gomez and especially with Y. Xu. We also thank R. Ilan and A.G. Grushin for a careful reading of the manuscript. B.M.F. was supported by Conacyt, NSF DMR-1206515 and NERSC Contract No. DE-AC02-05CH11231; A.M.C. was supported by the NSERC CGS-MSFSS and the NSERC CGS-D3; F.d.J. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, grant DE-AC02-05CH11231; and J.E.M. was supported by AFOSR MURI. NR 75 TC 0 Z9 0 U1 47 U2 47 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN 25 PY 2017 VL 8 AR 14176 DI 10.1038/ncomms14176 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI7AZ UT WOS:000392650600001 PM 28120823 ER PT J AU Alkhalaf, S Ranaweera, CK Kahol, PK Siam, K Adhikari, H Mishra, SR Perez, F Gupta, BK Ramasamy, K Gupta, RK AF Alkhalaf, Sara Ranaweera, C. K. Kahol, P. K. Siam, K. Adhikari, H. Mishra, S. R. Perez, Felio Gupta, Bipin Kumar Ramasamy, K. Gupta, Ram K. TI Electrochemical energy storage performance of electrospun CoMn2O4 nanofibers SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Electrospun; CoMn2O4; Cyclic voltammetry; Energy storage device ID LITHIUM-ION BATTERIES; FLEXIBLE SUPERCAPACITORS; GRAPHENE OXIDE; CARBON; ULTRACAPACITORS; CAPACITORS; MNO2; POLYANILINE; COMPOSITES; CAPABILITY AB Nanofibers of cobalt manganese oxide (CoMn2O4) were grown using an electrospun technique. Structural and microstructural characterizations confirm the formation of phase pure CoMn2O4 with high porosity. The potential application of CoMn2O4 nanofibers as an electrode material for energy storage device was studied using cyclic voltammetry and galvanostatic charge-discharge measurements. A specific capacitance of 121 F/g was observed with enhanced cyclic stability. Furthermore, an energy storage device was fabricated by sandwiching two electrodes separated by an ion transporting layer. The device showed a specific capacitance of 241 mF/cm(2) in 3 M NaOH electrolyte. The effect of temperature on the charge storage properties of the device was also investigated for high temperature applications. The device showed about 75% improvement in the charge storage capacity when the temperature was increased from 10 to 70 degrees C. This research suggests that nanofibers of CoMn2O4 could be used for fabrication of energy storage devices which could operate in a wide temperature range with improved efficiency. (C) 2016 Elsevier B.V. All rights reserved. C1 [Alkhalaf, Sara; Ranaweera, C. K.; Siam, K.; Gupta, Ram K.] Pittsburg State Univ, Dept Chem, 1701 S Broadway, Pittsburg, KS 66762 USA. [Kahol, P. K.] Pittsburg State Univ, Dept Phys, 1701 S Broadway, Pittsburg, KS 66762 USA. [Adhikari, H.; Mishra, S. R.] Univ Memphis, Dept Phys, Memphis, TN 38152 USA. [Perez, Felio] Univ Memphis, Integrated Microscopy Ctr, Memphis, TN 38152 USA. [Gupta, Bipin Kumar] CSIR, Natl Phys Lab, Dr KS Krishnan Rd, New Delhi 110012, India. [Ramasamy, K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Albuquerque, NM 87545 USA. RP Gupta, RK (reprint author), Pittsburg State Univ, Dept Chem, 1701 S Broadway, Pittsburg, KS 66762 USA. EM ramguptamsu@gmail.com FU Polymer Chemistry Initiative, Pittsburg State University; National Science Foundation [EPS-0903806]; Department of Energy for Visiting Faculty Program; FIT-Biologistic/DRONES initiative at UofM; State of Kansas through the Kansas Board of Regents FX Dr. Ram K. Gupta expresses his sincere acknowledgment to the Polymer Chemistry Initiative, Pittsburg State University for providing financial and research support. This material is partly based upon work supported by the National Science Foundation under Award No. EPS-0903806 and matching support from the State of Kansas through the Kansas Board of Regents. Dr. Ram K. Gupta acknowledges support from Department of Energy for Visiting Faculty Program. Dr. S.R. Mishra acknowledges financial support from FIT-Biologistic/DRONES initiative at UofM. NR 48 TC 0 Z9 0 U1 100 U2 100 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JAN 25 PY 2017 VL 692 BP 59 EP 66 DI 10.1016/j.jallcom.2016.09.005 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DZ9WH UT WOS:000386231200008 ER PT J AU Kimmel, G Glatz, A Aranson, IS AF Kimmel, Gregory Glatz, Andreas Aranson, Igor S. TI Phase slips in superconducting weak links SO PHYSICAL REVIEW B LA English DT Review ID CURRENT-CARRYING STATES; SUPERFLUID; FILAMENTS; MICROBRIDGES; CURRENTS; FILM AB Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires and slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations. C1 [Kimmel, Gregory; Aranson, Igor S.] Northwestern Univ, Dept Engn Sci & Appl Math, 2145 Sheridan Rd, Evanston, IL 60202 USA. [Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. [Glatz, Andreas] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Kimmel, G (reprint author), Northwestern Univ, Dept Engn Sci & Appl Math, 2145 Sheridan Rd, Evanston, IL 60202 USA.; Kimmel, G (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering FX This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering. NR 36 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 24 PY 2017 VL 95 IS 1 AR 014518 DI 10.1103/PhysRevB.95.014518 PG 12 WC Physics, Condensed Matter SC Physics GA EM7PC UT WOS:000395503600005 ER PT J AU Han, JW Tao, L Wang, M AF Han, Jeongwoo Tao, Ling Wang, Michael TI Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Life-cycle analysis; Well-to-wake analysis; Ethanol-to-jet; Sugar-to-jet; Greenhouse gas emissions; Fossil fuel use; Water consumption ID GREENHOUSE-GAS EMISSIONS; LIFE-CYCLE ASSESSMENT; LAND-USE CHANGE; CELLULOSIC ETHANOL; UNITED-STATES; TRANSPORTATION FUELS; CORN; DIESEL; CONSUMPTION; MICROALGAE AB Background: To reduce the environmental impacts of the aviation sector as air traffic grows steadily, the aviation industry has paid increasing attention to bio-based alternative jet fuels (AJFs), which may provide lower life-cycle petroleum consumption and greenhouse gas (GHG) emissions than petroleum jet fuel. This study presents well-to-wake (WTWa) results for four emerging AJFs: ethanol-to-jet (ETJ) from corn and corn stover, and sugar-to-jet (STJ) from corn stover via both biological and catalytic conversion. For the ETJ pathways, two plant designs were examined: integrated (processing corn or corn stover as feedstock) and distributed (processing ethanol as feedstock). Also, three H-2 options for STJ via catalytic conversion are investigated: external H-2 from natural gas (NG) steam methane reforming (SMR), in situ H-2, and H-2 from biomass gasification. Results: Results demonstrate that the feedstock is a key factor in the WTWa GHG emissions of ETJ: corn-and corn stover-based ETJ are estimated to produce WTWa GHG emissions that are 16 and 73%, respectively, less than those of petroleum jet. As for the STJ pathways, this study shows that STJ via biological conversion could generate WTWa GHG emissions 59% below those of petroleum jet. STJ via catalytic conversion could reduce the WTWa GHG emissions by 28% with H-2 from NG SMR or 71% with H-2 from biomass gasification than those of petroleum jet. This study also examines the impacts of co-product handling methods, and shows that the WTWa GHG emissions of corn stover-based ETJ, when estimated with a displacement method, are lower by 11 g CO(2)e/MJ than those estimated with an energy allocation method. Conclusion: Corn-and corn stover-based ETJ as well as corn stover-based STJ show potentials to reduce WTWa GHG emissions compared to petroleum jet. Particularly, WTWa GHG emissions of STJ via catalytic conversion depend highly on the hydrogen source. On the other hand, ETJ offers unique opportunities to exploit extensive existing corn ethanol plants and infrastructure, and to provide a boost to staggering ethanol demand, which is largely being used as gasoline blendstock. C1 [Han, Jeongwoo; Wang, Michael] Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, 9700 S Cass Ave, Argonne, IL 60439 USA. [Tao, Ling] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Han, JW (reprint author), Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jhan@anl.gov FU Biomass Energy Technology Office in the US Department of Energy's Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX This study was supported by the Biomass Energy Technology Office in the US Department of Energy's Office of Energy Efficiency and Renewable Energy, under Contract DE-AC02-06CH11357. NR 56 TC 0 Z9 0 U1 1 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD JAN 24 PY 2017 VL 10 AR 21 DI 10.1186/s13068-017-0698-z PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EK3RH UT WOS:000393843100001 PM 28138339 ER PT J AU Spanjers, CS Dasgupta, A Kirkham, M Burger, BA Kumar, G Janik, MJ Rioux, RM AF Spanjers, Charles S. Dasgupta, Anish Kirkham, Melanie Burger, Blake A. Kumar, Gaurav Janik, Michael J. Rioux, Robert M. TI Determination of Bulk and Surface Atomic Arrangement in Ni-Zn gamma-Brass Phase at Different Ni to Zn Ratios SO CHEMISTRY OF MATERIALS LA English DT Article ID HYDROGEN-DEUTERIUM EXCHANGE; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; PLATINUM NANOPARTICLES; DECAGONAL APPROXIMANT; NICKEL-CATALYSTS; CRYSTAL-SURFACES; QUASI-CRYSTALS; X-RAY; SEMIHYDROGENATION AB Previous attempts to characterize the gamma-brass crystal structure of Ni-Zn (15.4-24% Ni) have failed to identify the location of the Ni and Zn atoms in the crystal lattice for more than 15.4% Ni content (Ni8Zn44) due to the similar X-ray diffraction cross sections of Ni and Zn. Ni8Zn44 is known to have a typical gamma-brass crystal structure (space group 217, 143m, 52 atom unit cell with four distinct symmetry positions: inner tetrahedral, outer tetrahedral, octahedral, and cuboctahedral) where Ni atoms reside in outer tetrahedral sites completely isolated from each other and coordinated by 12 Zn atoms. We utilize neutron diffraction to identify the substitution positions of Zn by Ni when the Ni content is increased above 15.4% and up to 19.2% (Ni10Zn42). Upon increasing the Ni content above 15.4% (Ni9Zn43 and Ni10Zn4.2), Zn in the gamma-brass octahedral positions are replaced by Ni leading to the formation of Ni-Ni-Ni trimers, which are absent in Ni8Zn44. Density functional theory (DFT) calculations confirm our neutron diffraction results regarding the optimal position of excess Ni in the gamma-brass unit cell. The well-defined atomic site distribution in gamma-brass Ni Zn provides an excellent opportunity for producing site-isolated base metal catalysts that may find application in selective semihydrogenation. We investigated the presence of Ni-Ni-Ni trimers on the surface using H D exchange and ethylene hydrogenation as probe reactions, observing the influence of Ni concentration on catalysis. We conclude the catalytic performance is insensitive to Ni content. We provide a possible explanation for this observation using DFT calculations, which demonstrate that surface containing trimer sites are energetically unfavorable and therefore not exposed on Wulff reconstructions of gamma-brass phase Ni-Zn particles. C1 [Spanjers, Charles S.; Dasgupta, Anish; Burger, Blake A.; Kumar, Gaurav; Janik, Michael J.; Rioux, Robert M.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Kirkham, Melanie] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37931 USA. [Rioux, Robert M.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. RP Rioux, RM (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA.; Rioux, RM (reprint author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. EM rioux@engr.psu.edu OI Kirkham, Melanie/0000-0001-8411-9751 FU American Chemical Society Petroleum Research Fund (ACS PRF) [50-794-DN15]; National Science Foundation [DGE1255832, ACI-1053575]; MRSEC, Center for Nanoscale Sciences, under NSF [DMR-1420620] FX This work is supported by the donors of The American Chemical Society Petroleum Research Fund (ACS PRF #50-794-DN15). C.S.S. acknowledges the National Science Foundation under Grant No. DGE1255832. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. This work also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation Grant ACI-1053575. XRD experiments were performed at the Materials Characterization Laboratory's shared user facility at The Pennsylvania State University. The facility is supported in part by MRSEC, Center for Nanoscale Sciences, under NSF Award DMR-1420620. We would also like to acknowledge Mr. Zhifeng Chen (Department of Chemical Engineering, The Pennsylvania State University) for assisting us with the SEM images presented in Figure S5 and contributing to section 2.6, of this manuscript. NR 45 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JAN 24 PY 2017 VL 29 IS 2 BP 504 EP 512 DI 10.1021/acs.chemmater.6b01769 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EJ0IL UT WOS:000392891700007 ER PT J AU Sen Gupta, A Akamatsu, H Brown, FG Nguyen, MAT Strayer, ME Lapidus, S Yoshida, S Fujita, K Tanaka, K Tanaka, I Mallouk, TE Gopalan, V AF Sen Gupta, Arnab Akamatsu, Hirofumi Brown, Forrest G. Nguyen, Minh An T. Strayer, Megan E. Lapidus, Saul Yoshida, Suguru Fujita, Koji Tanaka, Katsuhisa Tanaka, Isao Mallouk, Thomas E. Gopalan, Venkatrarnan TI Competing Structural Instabilities in the Ruddlesden Popper Derivatives HRTiO4 (R = Rare Earths): Oxygen Octahedral Rotations Inducing Noncentrosymmetricity and Layer Sliding Retaining Centrosymmetricity SO CHEMISTRY OF MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; EXHIBITING ION-EXCHANGE; AUGMENTED-WAVE METHOD; POWDER DIFFRACTION; BASIS-SET; PEROVSKITES; FERROELECTRICITY; CHEMISTRY; BEHAVIOR; METALS AB We report the observation of noncentrosymmetricity in the family of HRTiO4 (R = Eu, Gd, Dy) layered oxides possessing a Ruddlesden Popper derivative structure, by second harmonic generation and synchrotron X-ray diffraction with the support of density functional theory calculations. These oxides were previously thought to possess inversion symmetry. Here, inversion symmetry is lifted by rotations of the oxygen-coordinated octahedra, a mechanism that is not active in simple perovskites. We observe a competition between rotations of the oxygen octahedra and sliding of a combined unit of perovskite rocksalt perovskite blocks at the proton layers. For the smaller rare earth ions, R = Eu, Gd, and Dy, which favor the octahedral rotations, noncentrosymmetricity is present but the sliding is absent. For the larger rare earth ions, R = Nd and Sm, the octahedral rotations are absent, but the sliding at the proton layers is present to optimize the length and direction of hydrogen.bonding in the crystal structure. The study reveals a new mechanism for inducing noncentrosymmetricity in layered oxides, and chemical structural effects related to rare earth ion size and hydrogen bonding that can turn this mechanism on and off. We construct a phase diagram of temperature versus rare earth ionic radius for the HRTiO4 family. C1 [Sen Gupta, Arnab; Akamatsu, Hirofumi; Brown, Forrest G.; Gopalan, Venkatrarnan] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Akamatsu, Hirofumi] Tokyo Inst Technol, Inst Innovat Res, Lab Mat & Struct, Midori Ku, Nagatsuta Cho, Yokohama, Kanagawa 2268503, Japan. [Nguyen, Minh An T.; Strayer, Megan E.; Mallouk, Thomas E.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Lapidus, Saul] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Lemont, IL 60439 USA. [Yoshida, Suguru; Fujita, Koji; Tanaka, Katsuhisa] Kyoto Univ, Dept Chem Mat, Nishikyo Ku, Kyoto, Kyoto 6158510, Japan. [Tanaka, Isao] Kyoto Univ, Dept Mat Sci & Engn, Sakyo Ku, Kyoto, Kyoto 6068501, Japan. RP Akamatsu, H; Gopalan, V (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.; Akamatsu, H (reprint author), Tokyo Inst Technol, Inst Innovat Res, Lab Mat & Struct, Midori Ku, Nagatsuta Cho, Yokohama, Kanagawa 2268503, Japan.; Mallouk, TE (reprint author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. EM akamatsu@msl.titech.ac.jp; tem5@psu.edu; vxg8@psu.edu RI Fujita, Koji/C-7662-2012; Tanaka, Isao/B-5941-2009 OI Fujita, Koji/0000-0002-1700-0889; FU National Science Foundation under MRSEC [DMR-1420620]; JSPS KAKENHI [16H04496, 16H06793]; Challenging Exploratory Research [16K14386]; Murata Science Foundation FX A.S.G., H.A., F.G.B., M.E.S., T.E.M., and V.G. were supported by the National Science Foundation under MRSEC grant DMR-1420620. K.F. was supported by JSPS KAKENHI Grant-in-Aids for Scientific Research (B) (Grant No. 16H04496) and Challenging Exploratory Research (Grant No. 16K14386). H.A. was financially supported by JSPS KAKENHI Grant-in-Aid for Research Activity Start-up (Grant No. 16H06793). H.A. also thanks Murata Science Foundation for their financial support. NR 45 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JAN 24 PY 2017 VL 29 IS 2 BP 656 EP 665 DI 10.1021/acs.chemmater.th04103 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EJ0IL UT WOS:000392891700024 ER PT J AU He, YP Galli, GL AF He, Yuping Galli, Giulia TI Instability and Efficiency of Mixed Halide Perovskites CH3NH3Al3-xCIx (A = Pb and Sn): A First-Principles, Computational Study SO CHEMISTRY OF MATERIALS LA English DT Article ID RELATIVISTIC GW CALCULATIONS; LEAD IODIDE PEROVSKITES; SENSITIZED SOLAR-CELLS; HIGH-PERFORMANCE; CH3NH3PBI3; TRANSPORT; PSEUDOPOTENTIALS; MOBILITIES; DEPOSITION; INTERPLAY AB We carried out calculations based on density functional theory to investigate the electronic, vibrational, and dielectric properties of mixed halide perovskites CH3NH3 Al3-xClx with A = Pb and Sn. Computed free energies indicated that Cl mixed systems may be formed only for Cl concentrations not exceeding 10(19) cm(3), and phonon calculations showed that the disorder induced in the host lattice by the presence of a smaller halogen is responsible for mechanical instabilities. However, we found that the presence of chloride may be beneficial to the electronic properties of the perovskites. Chloride anions cause the organic cations to be displaced from the center of the cage; such a displacement induces preferential orientations of the cation dipole, which in turn are responsible for notable changes in the dielectric properties of the material and possibly for the formation of local ferroelectric domains. The latter are instrumental in separating electron hole pairs and hence in contributing to long charge-carrier diffusion lengths, in spite of polarons being more likely formed in mixed perovksites than in CH3NH3Al3. C1 [He, Yuping] Sandia Natl Labs, Livermore, CA 94551 USA. [Galli, Giulia] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Galli, Giulia] Argonne Natl Lab, Lemont, IL 60439 USA. RP He, YP (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA.; Galli, GL (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.; Galli, GL (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA. EM yuphe@sandia.gov; gagalli@uchicago.edu FU Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; MICCoM, as part of the Computational Materials Sciences Program - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division [5J-30161-0010A] FX Y.H. acknowledges support of Sandia National Laboratories, which is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. G.G. acknowledges support from MICCoM, as part of the Computational Materials Sciences Program funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division (5J-30161-0010A). NR 50 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JAN 24 PY 2017 VL 29 IS 2 BP 682 EP 689 DI 10.1021/acs.chemmater.6b04300 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EJ0IL UT WOS:000392891700027 ER PT J AU Steele, BA Stavrou, E Crowhurst, JC Zaug, JM Prakapenka, VB Oleynik, II AF Steele, Brad A. Stavrou, Elissaios Crowhurst, Jonathan C. Zaug, Joseph M. Prakapenka, Vitali B. Oleynik, Ivan I. TI High-Pressure Synthesis of a Pentazolate Salt SO CHEMISTRY OF MATERIALS LA English DT Article ID SODIUM-AZIDE; BOND ORDER; NITROGEN; CHEMISTRY; DECOMPOSITION; CYCLO-N-5(-); SYSTEM; CESIUM; ANION; IONS AB The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here, we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N-5(-), which is achieved by compressing and laser heating cesium azide (CsN3) mixed with N-2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN5). Electron transfer from Cs atoms to N-5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN5 crystal. This work provides critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species. C1 [Steele, Brad A.; Oleynik, Ivan I.] Univ S Florida, Dept Phys, 4202 East Fowler Ave, Tampa, FL 33620 USA. [Stavrou, Elissaios; Crowhurst, Jonathan C.; Zaug, Joseph M.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, POB 808, Livermore, CA 94550 USA. [Prakapenka, Vitali B.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. RP Oleynik, II (reprint author), Univ S Florida, Dept Phys, 4202 East Fowler Ave, Tampa, FL 33620 USA.; Stavrou, E (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, POB 808, Livermore, CA 94550 USA. EM stavrou1@llnl.gov; oleynik@usf.edu FU Defense Threat Reduction Agency [HDTRA1-12-1-0023]; U.S. Department of Energy by Lawrence Livermore National Security, LLC [DE-AC52- 07NA27344]; U.S. NSF [EAR-0622171, DMR-1231586]; DOE Geosciences [DE-FG02-94ER14466]; DOE-BES [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by Defense Threat Reduction Agency, grant HDTRA1-12-1-0023. This work was also performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52- 07NA27344. GSECARS is supported by the U.S. NSF (EAR-0622171, DMR-1231586) and DOE Geosciences (DE-FG02-94ER14466). Use of the APS was supported by the DOE-BES under Contract No. DE-AC02-06CH11357. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 1 Z9 1 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JAN 24 PY 2017 VL 29 IS 2 BP 735 EP 741 DI 10.1021/acs.chemmater.6b04538 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EJ0IL UT WOS:000392891700033 ER PT J AU Hester, BR Hancock, JC Lapidus, SH Wilkinson, AP AF Hester, Brett R. Hancock, Justin C. Lapidus, Saul H. Wilkinson, Angus P. TI Composition, Response to Pressure, and Negative Thermal Expansion in (MBF6)-B-II-F-IV (M = Ca, Mg; B = Zr, Nb) SO CHEMISTRY OF MATERIALS LA English DT Article ID EQUATION-OF-STATE; PHASE-TRANSITIONS; ZIRCONIUM TUNGSTATE; POWDER DIFFRACTION; NIOBIUM; ZN; FERROMAGNETISM; FLUORIDES; BEHAVIOR; DOMAIN AB CaZrF6 has recently been shown to combine strong negative thermal expansion (NTE) over a very wide temperature range (at least 10-1000 K) with optical transparency from mid-IR into the UV range. Variable-temperature and high-pressure diffraction has been used to determine how the replacement of calcium by magnesium and zirconium by niobium(IV) modifies the phase behavior and physical properties of the compound. Similar to CaZrF6, CaNbF6 retains a cubic ReO3-type structure down to 10 K and displays NTE up until at least 900 K. It undergoes a reconstructive phase transition upon compression to similar to 400 MPa at room temperature and pressure induced amorphization above GPa. Prior to the first transition, it displays very strong pressure-induced softening. MgZrF6 adopts a cubic (Fm (3) over barm) structure at 300 K and undergoes a symmetry-lowering phase transition involving octahedral tilts at similar to 100 K. Immediately above this transition, it shows modest NTE. Its' thermal expansion increases upon heating, crossing through zero at similar to 500 K. Unlike CaZrF6 and CaNbF6, it undergoes an octahedral tilting transition upon compression (similar to 370 MPa) prior to a reconstructive transition at similar to 1 GPa. Cubic MgZrF6 displays both pressure-induced softening and stiffening upon heating. MgNbF6 is cubic (Fm (3) over barm) at room temperature, but it undergoes a symmetry-lowering octahedral tilting transition at similar to 280 K It does not display NTE within the investigated temperature range (100-950 K). Although the replacement of Zr(IV) by Nb(IV) leads to minor changes in phase behavior and properties, the replacement of the calcium by the smaller and more polarizing magnesium leads to large changes in both phase behavior and thermal expansion. C1 [Hester, Brett R.; Hancock, Justin C.; Wilkinson, Angus P.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Wilkinson, Angus P.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Lapidus, Saul H.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Hancock, Justin C.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. RP Wilkinson, AP (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA.; Wilkinson, AP (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM angus.wilkinson@chemistry.gatech.edu RI Wilkinson, Angus/C-3408-2008 OI Wilkinson, Angus/0000-0003-2904-400X FU NSF [DMR-1607316]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The work at Georgia Tech was partially supported under NSF DMR-1607316. A portion of this research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357 and resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. NR 58 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JAN 24 PY 2017 VL 29 IS 2 BP 823 EP 831 DI 10.1021/acs.chemmater.6b04809 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EJ0IL UT WOS:000392891700043 ER PT J AU Aden, B Kite, CM Hopkins, BW Zetterberg, A Lokitz, BS Ankner, JF MichaelKilbey, S AF Aden, Bethany Kite, Camille M. Hopkins, Benjamin W. Zetterberg, Anna Lokitz, Bradley S. Ankner, John F. MichaelKilbey, S., II TI Assessing Chemical Transformation of Reactive, Interfacial Thin Films Made of End-Tethered Poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) Chains SO MACROMOLECULES LA English DT Article ID FUNCTIONALIZED POLYMER BRUSHES; SURFACE-INITIATED POLYMERIZATION; TRANSFER RADICAL POLYMERIZATION; GLYCOL) METHACRYLATE) BRUSHES; RAFT POLYMERIZATION; BLOCK-COPOLYMERS; CLICK CHEMISTRY; TAGGED PROTEINS; GRAFTED LAYERS; MACROMOLECULES AB Designing thin films or surface scaffolds with an appropriate display of chemical functionality is useful for biomedical applications, sensing platforms, adhesives, and barrier coatings. Relationships between the structural characteristics of model thin films based on reactive poly(2-viny1-4,4dirnethyl azlactone) (PVDMA) brushes and the amount and distribution of primary-amines used to chemically functionalize these layers in situ are quantitatively detailed via neutron reflectometry and compared with results from ellipsometry After functionalization, the PVDMA brush thickness increases as a result of the primary amines reacting with the azlactone rings. Both techniques show that the extent of functionalization by small-molecule amines depends on the size of the amine, the grafting density of brush chains, and their molecular weight. However, constrained analysis of neutron reflectivity data predicated on that technique's sensitivity to isotopic substitution and its ability to resolve structure at the nanoscale shows that the extent of functionalization is not accurately represented by the average extent of functionalization determined from ellipsometric thickness: reactive modification is not uniform, even in modestly dense brushes, except when the penetrant is small. In addition, there appears to be a loss of PVDMA chains during functionalization, attributed to chain scission resulting from additional stretching brought about by functionalization. These findings provide unprecedented insight into the alteration of surface properties by reactive modification and broadly support efforts to produce tailored surfaces in which properties such as friction, colloidal stability, adhesion, wettability, and biocompatibility can be modulated in situ by chemical modification. C1 [Aden, Bethany; Kite, Camille M.; MichaelKilbey, S., II] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Hopkins, Benjamin W.; Zetterberg, Anna; MichaelKilbey, S., II] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Lokitz, Bradley S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Ankner, John F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP MichaelKilbey, S (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA.; MichaelKilbey, S (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM mkilbey@utk.edu FU National Science Foundation [1133320, 1512221]; UT-Battelle, LLC for the DOE [DE-AC05-00OR22725] FX Support from the National Science Foundation through (Award Nos. 1133320 and 1512221) is gratefully acknowledged by S.M.K.II, B.A., and C.K. FTIR-ATR and deuterated VMDA synthesis was done at the Center for Nanophase Materials Sciences, a User Facility sponsored by DOE Office of Science. Neutron reflectometry measurements were performed at the SNS at ORNL, managed by UT-Battelle, LLC for the DOE under Contract No. DE-AC05-00OR22725. NR 58 TC 0 Z9 0 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD JAN 24 PY 2017 VL 50 IS 2 BP 618 EP 630 DI 10.1021/acs.macromo1.6b01999 PG 13 WC Polymer Science SC Polymer Science GA EJ0GS UT WOS:000392887200014 ER PT J AU Bone, SE Dynes, JJ Cliff, J Bargar, JR AF Bone, Sharon E. Dynes, James J. Cliff, John Bargar, John R. TI Uranium(IV) adsorption by natural organic matter in anoxic sediments SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE uranium; organic matter; STXM; NanoSIMS; EXAFS ID X-RAY SPECTROMICROSCOPY; U(VI) REDUCTION; ABSORPTION SPECTROSCOPY; NEXAFS SPECTROSCOPY; MONOMERIC U(IV); PRODUCTS; AQUIFER; SOIL; BIOREMEDIATION; SPECIATION AB Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO2+x) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yet been developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment. C1 [Bone, Sharon E.; Bargar, John R.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Dynes, James J.] Canadian Light Source, Saskatoon, SK S7N 2V3, Canada. [Cliff, John] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Bone, SE (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. EM shbone@slac.stanford.edu FU DOE Office of Biological and Environmental Research (BER), Subsurface Biogeochemistry Research [DE-AC02-76SF00515]; US DOE, Office of Basic Energy Sciences; Office of BER (located at Pacific Northwest National Laboratory); Natural Sciences and Engineering Research Council; Canadian Institutes of Health Research; National Research Council; Western Economic Diversification Canada; University of Saskatchewan; Province of Saskatchewan FX The authors thank Ann Marshall for assistance in collecting TEM images at the Stanford Nano Shared Facilities. Funding was provided by the DOE Office of Biological and Environmental Research (BER), Subsurface Biogeochemistry Research activity to the SLAC Science Focus Area program under contract DE-AC02-76SF00515 to SLAC (S.E.B. and J.R.B.). Use of the Stanford Synchrotron Radiation Lightsource (SSRL) is supported by the US DOE, Office of Basic Energy Sciences. A portion of the research was performed using the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility sponsored by the Office of BER (located at Pacific Northwest National Laboratory). Research described in this paper was performed at beamline 10ID-1 at the Canadian Light Source (CLS), which is supported by Natural Sciences and Engineering Research Council, Canadian Institutes of Health Research, National Research Council, Western Economic Diversification Canada, the University of Saskatchewan, and the Province of Saskatchewan. NR 52 TC 1 Z9 1 U1 21 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 24 PY 2017 VL 114 IS 4 BP 711 EP 716 DI 10.1073/pnas.1611918114 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI6HV UT WOS:000392597000045 PM 28069941 ER PT J AU Erbilgin, O Bowen, BP Kosina, SM Jenkins, S Lau, RK Northen, TR AF Erbilgin, Onur Bowen, Benjamin P. Kosina, Suzanne M. Jenkins, Stefan Lau, Rebecca K. Northen, Trent R. TI Dynamic substrate preferences predict metabolic properties of a simple microbial consortium SO BMC BIOINFORMATICS LA English DT Article DE Microbiology; Quantitative metabolomics; Substrate preferences; Predicting community function ID CARBON CATABOLITE REPRESSION; MULTIPLE SEQUENCE ALIGNMENT; BACTERIAL-MEMBRANE VESICLES; PHYLOGENETIC ANALYSIS; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; ACTIVE-TRANSPORT; SOIL BACTERIA; AMINO-ACIDS; PSEUDOMONAS AB Background: Mixed cultures of different microbial species are increasingly being used to carry out a specific biochemical function in lieu of engineering a single microbe to do the same task. However, knowing how different species' metabolisms will integrate to reach a desired outcome is a difficult problem that has been studied in great detail using steady-state models. However, many biotechnological processes, as well as natural habitats, represent a more dynamic system. Examining how individual species use resources in their growth medium or environment (exometabolomics) over time in batch culture conditions can provide rich phenotypic data that encompasses regulation and transporters, creating an opportunity to integrate the data into a predictive model of resource use by a mixed community. Results: Here we use exometabolomic profiling to examine the time-varying substrate depletion from a mixture of 19 amino acids and glucose by two Pseudomonas and one Bacillus species isolated from ground water. Contrary to studies in model organisms, we found surprisingly few correlations between resource preferences and maximal growth rate or biomass composition. We then modeled patterns of substrate depletion, and used these models to examine if substrate usage preferences and substrate depletion kinetics of individual isolates can be used to predict the metabolism of a co-culture of the isolates. We found that most of the substrates fit the model predictions, except for glucose and histidine, which were depleted more slowly than predicted, and proline, glycine, glutamate, lysine and arginine, which were all consumed significantly faster. Conclusions: Our results indicate that a significant portion of a model community's overall metabolism can be predicted based on the metabolism of the individuals. Based on the nature of our model, the resources that significantly deviate from the prediction highlight potential metabolic pathways affected by species-species interactions, which when further studied can potentially be used to modulate microbial community structure and/or function. C1 [Erbilgin, Onur; Bowen, Benjamin P.; Kosina, Suzanne M.; Jenkins, Stefan; Lau, Rebecca K.; Northen, Trent R.] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Bowen, Benjamin P.; Northen, Trent R.] Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. [Jenkins, Stefan] Intrexon Corp, 1750 Kraft Dr, Blacksburg, VA 24060 USA. RP Northen, TR (reprint author), Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Northen, TR (reprint author), Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. EM trnorthen@lbl.gov FU Lawrence Berkeley National Lab [DE-AC02-05CH11231]; U.S. Department of Energy FX This work has been funded by the Lawrence Berkeley National Lab under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy. NR 40 TC 0 Z9 0 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD JAN 23 PY 2017 VL 18 AR 57 DI 10.1186/s12859-017-1478-2 PG 12 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA EP6KC UT WOS:000397487400004 PM 28114881 ER PT J AU Fan, JW Leung, LR Rosenfeld, D DeMott, PJ AF Fan, Jiwen Leung, L. Ruby Rosenfeld, Daniel DeMott, Paul J. TI Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID WESTERN UNITED-STATES; CONVECTIVE CLOUDS; SIERRA-NEVADA; NUMERICAL-SIMULATION; AEROSOL IMPACTS; AIR-POLLUTION; MODEL; DUST; MICROPHYSICS; QUANTIFY AB How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20 degrees C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that deposition plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm(-3) and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm(-3) or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces supercooled water content and increases the cloud glaciation temperature, while increasing CCN has the opposite effect with much smaller significance. C1 [Fan, Jiwen; Leung, L. Ruby] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Rosenfeld, Daniel] Hebrew Univ Jerusalem, Inst Earth Sci, IL-91904 Jerusalem, Israel. [DeMott, Paul J.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Fan, JW (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM jiwen.fan@pnnl.gov FU California Energy Commission (CEC); Office of Science of the US Department of Energy as part of the Regional and Global Climate Modeling program; DOE [DE-AC06-76RLO1830]; US Department of Energy's Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program [DE-SC0014354] FX This study was supported by the California Energy Commission (CEC) and the Office of Science of the US Department of Energy as part of the Regional and Global Climate Modeling program. PNNL is operated for DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. Paul DeMott additionally acknowledges partial support from the US Department of Energy's Atmospheric System Research, an Office of Science, Office of Biological and Environmental Research program, under Grant no. DE-SC0014354. NR 49 TC 0 Z9 0 U1 3 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD JAN 23 PY 2017 VL 17 IS 2 BP 1017 EP 1035 DI 10.5194/acp-17-1017-2017 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EL4MM UT WOS:000394595300004 ER PT J AU Huang, L Xue, JP Gao, B McPherson, C Beverage, J Idir, M AF Huang, Lei Xue, Junpeng Gao, Bo McPherson, Chris Beverage, Jacob Idir, Mourad TI Model mismatch analysis and compensation for modal phase measuring deflectometry SO OPTICS EXPRESS LA English DT Article ID FRINGE REFLECTOMETRY; RECONSTRUCTION AB The correspondence residuals due to the discrepancy between the reality and the shape model in use are analyzed for the modal phase measuring deflectometry. Slope residuals are calculated from these discrepancies between the modal estimation and practical acquisition. Since the shape mismatch mainly occurs locally, zonal integration methods which are good at dealing with local variations are used to reconstruct the height residual for compensation. Results of both simulation and experiment indicate the proposed height compensation method is effective, which can be used as a post-complement for the modal phase measuring deflectometry. (C) 2016 Optical Society of America C1 [Huang, Lei; Xue, Junpeng; Gao, Bo; Idir, Mourad] Brookhaven Natl Lab, NSLS 2,50 Rutherford Dr, Upton, NY 11973 USA. [Xue, Junpeng] Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610065, Peoples R China. [Gao, Bo] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Gao, Bo] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [McPherson, Chris; Beverage, Jacob] Arizona Opt Syst, Tucson, AZ 85747 USA. RP Huang, L (reprint author), Brookhaven Natl Lab, NSLS 2,50 Rutherford Dr, Upton, NY 11973 USA. EM huanglei0114@gmail.com FU US Department of Energy, Office of Science, Office of Basic Energy sciences [DE-AC-02-98CH10886] FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy sciences, under contract No. DE-AC-02-98CH10886. NR 11 TC 0 Z9 0 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 23 PY 2017 VL 25 IS 2 BP 881 EP 887 DI 10.1364/OE.25.000881 PG 7 WC Optics SC Optics GA EO2HY UT WOS:000396518400034 PM 28157976 ER PT J AU Alkahtani, M Chen, YY Pedraza, JJ Gonzalez, JM Parkinson, DY Hemmer, PR Liang, H AF Alkahtani, Masfer Chen, Yunyun Pedraza, Julie J. Gonzalez, Jorge M. Parkinson, Dilworth Y. Hemmer, Philip R. Liang, Hong TI High resolution fluorescence bio-imaging upconversion nanoparticles in insects SO OPTICS EXPRESS LA English DT Article ID YTTRIUM-OXIDE NANOPARTICLES; IN-VIVO; QUANTUM DOTS; TEMPERATURE; LUMINESCENCE; ENHANCEMENT; DESIGN; NM AB Imaging fluorescent markers with brightness, photostability, and continuous emission with auto fluorescence background suppression in biological samples has always been challenging due to limitations of available and economical techniques. Here we report a new approach, to achieve high contrast imaging inside small and difficult biological systems with special geometry such as fire ants, an important agricultural pest, using a homemade cost-effective optical system. Unlike the commonly used rare-earth doped fluoride nanoparticles, we utilized nanoparticles with a high upconversion efficiency in water. Specifically Y2O3 : Er+3, Yb+3 nanoparticles (40-50 nm diameter) were fed to fire ants as food and then a simple illuminating experiment was conducted at 980 nm wavelength at relatively low pump intensity 8 kW.cm(-2). The locations were further confirmed by X-ray tomography, where most particles aggregated inside the ant's mouth. High resolution, fast, and economical optical imaging system opens the door for studying more complex biological systems. (C) 2017 Optical Society of America C1 [Alkahtani, Masfer; Hemmer, Philip R.] Texas A&M Univ, IQSE, College Stn, TX 77843 USA. [Alkahtani, Masfer; Hemmer, Philip R.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Alkahtani, Masfer] KACST, Natl Ctr Appl Phys, POB 6086, Riyadh 11442, Saudi Arabia. [Chen, Yunyun; Liang, Hong] Texas A&M Univ, Mat Sci & Engn, College Stn, TX 77843 USA. [Chen, Yunyun; Liang, Hong] Texas A&M Univ, Mech Engn, College Stn, TX 77843 USA. [Pedraza, Julie J.; Gonzalez, Jorge M.] CALTECH, Dept Plant Sci, Fresno, CA 93740 USA. [Parkinson, Dilworth Y.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hemmer, Philip R.] Texas A&M Univ, Elect & Comp Engn Dept, College Stn, TX 77843 USA. RP Liang, H (reprint author), Texas A&M Univ, Mat Sci & Engn, College Stn, TX 77843 USA.; Liang, H (reprint author), Texas A&M Univ, Mech Engn, College Stn, TX 77843 USA. EM hliang@tamu.edu FU ALS fellowship; Provost's Assigned Time for Research; California State University Fresno, Research, Scholarship and Creative proposal Award; CSUF Provost's Undergraduate Research award; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Texas A&M Strategic Seed 5Grants program FX YYC was partially sponsored by the ALS fellowship. JMG was supported by the Provost's Assigned Time for Research (Summer 2016), and the California State University Fresno, Research, Scholarship and Creative proposal Award (2014-2016). JJP was supported by a CSUF Provost's Undergraduate Research award (2014-2016). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was partially sponsored by the Texas A&M Strategic Seed Grants program. NR 31 TC 0 Z9 0 U1 7 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 23 PY 2017 VL 25 IS 2 BP 1030 EP 1039 DI 10.1364/OE.25.001030 PG 10 WC Optics SC Optics GA EO2HY UT WOS:000396518400047 PM 28157984 ER PT J AU Halls, BR Radke, CD Reuter, BJ Kastengren, AL Gord, JR Meyer, TR AF Halls, Benjamin R. Radke, Christopher D. Reuter, Benjamin J. Kastengren, Alan L. Gord, James R. Meyer, Terrence R. TI High-speed, two-dimensional synchrotron white-beam x-ray radiography of spray breakup and atomization SO OPTICS EXPRESS LA English DT Article ID DENSE SPRAYS; FUEL SPRAYS; STRUCTURED ILLUMINATION; ATOMIZING SPRAYS; FLUID-DYNAMICS; DISTRIBUTIONS; FLUORESCENCE; JET; LIGHT; SHADOWGRAPHY AB High-speed, two-dimensional synchrotron x-ray radiography and phase-contrast imaging are demonstrated in propulsion sprays. Measurements are performed at the 7-BM beamline at the Advanced Photon Source user facility at Argonne National Laboratory using a recently developed broadband x-ray white beam. This novel enhancement allows for high speed, high fidelity x-ray imaging for the community at large. Quantitative path-integrated liquid distributions and spatio-temporal dynamics of the sprays were imaged with a LuAG:Ce scintillator optically coupled to a high-speed CMOS camera. Images are collected with a microscope objective at frame rates of 20 kHz and with a macro lens at 120 kHz, achieving spatial resolutions of 12 mu m and 65 mu m, respectively. Imaging with and without potassium iodide (KI) as a contrast-enhancing agent is compared, and the effects of broadband attenuation and spatial beam characteristics are determined through modeling and experimental calibration. In addition, phase contrast is used to differentiate liquid streams with varying concentrations of KI. The experimental approach is applied to different spray conditions, including quantitative measurements of mass distribution during primary atomization and qualitative visualization of turbulent binary fluid mixing. (C) 2017 Optical Society of America C1 [Halls, Benjamin R.; Gord, James R.] Air Force Res Lab, Aerosp Syst Directorate, Wright Patterson AFB, OH 45433 USA. [Radke, Christopher D.] NASA, Prop & Power Div, Johnson Space Ctr, Houston, TX 77058 USA. [Radke, Christopher D.; Reuter, Benjamin J.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Reuter, Benjamin J.] Spectral Energies LLC, Dayton, OH 45431 USA. [Kastengren, Alan L.] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. [Meyer, Terrence R.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Halls, BR (reprint author), Air Force Res Lab, Aerosp Syst Directorate, Wright Patterson AFB, OH 45433 USA. EM hallsbenjamin@gmail.com FU National Research Council Post-doctoral Research Associateship award at the Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson AFB; U.S. Department of Energy [DE-AC02-06CH11357] FX National Research Council Post-doctoral Research Associateship award at the Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson AFB; U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 54 TC 0 Z9 0 U1 3 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JAN 23 PY 2017 VL 25 IS 2 BP 1605 EP 1617 DI 10.1364/OE.25.001605 PG 13 WC Optics SC Optics GA EO2HY UT WOS:000396518400100 PM 28158042 ER PT J AU Liu, TY Iavarone, AT Doudna, JA AF Liu, Tina Y. Iavarone, Anthony T. Doudna, Jennifer A. TI RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System SO PLOS ONE LA English DT Article ID IN-VITRO RECONSTITUTION; STREPTOCOCCUS-THERMOPHILUS; STRUCTURAL BASIS; TRANSCRIPTION ELONGATION; CRYSTAL-STRUCTURE; IMMUNE-SYSTEM; CSM COMPLEX; CLEAVAGE; CASCADE; RECOGNITION AB CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65 degrees C than at 37 degrees C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryoelectron microscopy and x-ray crystallography. C1 [Liu, Tina Y.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [Liu, Tina Y.; Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Iavarone, Anthony T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, MBIB Div, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Lawrence Berkeley Natl Lab, MBIB Div, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. EM doudna@berkeley.edu FU Howard Hughes Medical Institute (HHMI); NIH S10 Instrumentation Grant [S10RR025622] FX This work is supported by the Howard Hughes Medical Institute (HHMI). Jennifer A. Doudna is an HHMI Investigator. Tina Y. Liu is an HHMI Postdoctoral Associate. This work used the Vincent J. Proteomics/Mass Spectrometry Laboratory at UC Berkeley, supported in part by NIH S10 Instrumentation Grant S10RR025622. NR 48 TC 0 Z9 0 U1 0 U2 0 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 23 PY 2017 VL 12 IS 1 AR e0170552 DI 10.1371/journal.pone.0170552 PG 20 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EN6QR UT WOS:000396129000065 PM 28114398 ER PT J AU Hays, SG Yan, LLW Silver, PA Ducat, DC AF Hays, Stephanie G. Yan, Leo L. W. Silver, Pamela A. Ducat, Daniel C. TI Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction SO JOURNAL OF BIOLOGICAL ENGINEERING LA English DT Article DE Synthetic biology; Photoproduction; Synthetic consortia; Microbial communities ID ESCHERICHIA-COLI W; BACILLUS-SUBTILIS; CYANOBACTERIAL BIOMASS; SUCROSE UTILIZATION; CELL FACTORIES; BACTERIA; ALGAL; BIOSYNTHESIS; CARBOHYDRATE; DYNAMICS AB Background: Microbial consortia composed of autotrophic and heterotrophic species abound in nature, yet examples of synthetic communities with mixed metabolism are limited in the laboratory. We previously engineered a model cyanobacterium, Synechococcus elongatus PCC 7942, to secrete the bulk of the carbon it fixes as sucrose, a carbohydrate that can be utilized by many other microbes. Here, we tested the capability of sucrose-secreting cyanobacteria to act as a flexible platform for the construction of synthetic, light-driven consortia by pairing them with three disparate heterotrophs: Bacillus subtilis, Escherichia coli, or Saccharomyces cerevisiae. The comparison of these different co-culture dyads reveals general design principles for the construction of robust autotroph/heterotroph consortia. Results: We observed heterotrophic growth dependent upon cyanobacterial photosynthate in each co-culture pair. Furthermore, these synthetic consortia could be stabilized over the long-term (weeks to months) and both species could persist when challenged with specific perturbations. Stability and productivity of autotroph/heterotroph co-cultures was dependent on heterotroph sucrose utilization, as well as other species-independent interactions that we observed across all dyads. One destabilizing interaction we observed was that non-sucrose byproducts of oxygenic photosynthesis negatively impacted heterotroph growth. Conversely, inoculation of each heterotrophic species enhanced cyanobacterial growth in comparison to axenic cultures. Finally, these consortia can be flexibly programmed for photoproduction of target compounds and proteins; by changing the heterotroph in co-culture to specialized strains of B. subtilis or E. coli we demonstrate production of alpha-amylase and polyhydroxybutyrate, respectively. Conclusions: Enabled by the unprecedented flexibility of this consortia design, we uncover species-independent design principles that influence cyanobacteria/heterotroph consortia robustness. The modular nature of these communities and their unusual robustness exhibits promise as a platform for highly-versatile photoproduction strategies that capitalize on multi-species interactions and could be utilized as a tool for the study of nascent symbioses. Further consortia improvements via engineered interventions beyond those we show here (i. e., increased efficiency growing on sucrose) could improve these communities as production platforms. C1 [Hays, Stephanie G.; Silver, Pamela A.] Harvard Med Sch, Dept Syst Biol, Boston, MA 02115 USA. [Hays, Stephanie G.; Silver, Pamela A.] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA. [Yan, Leo L. W.; Ducat, Daniel C.] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Yan, Leo L. W.] Washington Univ, Dept Biol, St Louis, MO USA. [Ducat, Daniel C.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Ducat, DC (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.; Ducat, DC (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM ducatdan@msu.edu FU National Science Foundation [1437657, DGE1144152]; Department of Energy [DE-SC0012658]; SynBERC; Wyss Institute for Biologically Inspired Engineering FX This work was supported by the National Science Foundation, Award Numbers 1437657 and DGE1144152, Department of Energy DE-SC0012658 'Systems Biology of Autotrophic-Heterotrophic Symbionts for Bioenergy', SynBERC, and the Wyss Institute for Biologically Inspired Engineering. NR 69 TC 1 Z9 1 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-1611 J9 J BIOL ENG JI J. Biol. Eng. PD JAN 23 PY 2017 VL 11 AR 4 DI 10.1186/s13036-017-0048-5 PG 14 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA EN3QX UT WOS:000395924100001 PM 28127397 ER PT J AU Choukulkar, A Brewer, WA Sandberg, SP Weickmann, A Bonin, TA Hardesty, RM Lundquist, JK Delgado, R Iungo, GV Ashton, R Debnath, M Bianco, L Wilczak, JM Oncley, S Wolfe, D AF Choukulkar, Aditya Brewer, W. Alan Sandberg, Scott P. Weickmann, Ann Bonin, Timothy A. Hardesty, R. Michael Lundquist, Julie K. Delgado, Ruben Iungo, G. Valerio Ashton, Ryan Debnath, Mithu Bianco, Laura Wilczak, James M. Oncley, Steven Wolfe, Daniel TI Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign SO ATMOSPHERIC MEASUREMENT TECHNIQUES LA English DT Article ID WIND MEASUREMENTS; TURBINE; ERROR; LAYER; VALIDATION; ANEMOMETRY; RETRIEVAL; DYNAMICS AB Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies. In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scan geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time-space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty. It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. It was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions. C1 [Choukulkar, Aditya; Weickmann, Ann; Bonin, Timothy A.; Hardesty, R. Michael; Bianco, Laura] Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Choukulkar, Aditya; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann; Bonin, Timothy A.; Hardesty, R. Michael] NOAA, Div Chem Sci, Boulder, CO 80305 USA. [Lundquist, Julie K.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Lundquist, Julie K.] Natl Renewable Energy Lab, Golden, CO USA. [Delgado, Ruben] Univ Maryland, Atmospher Phys Dept, Baltimore, MD 21201 USA. [Iungo, G. Valerio; Ashton, Ryan; Debnath, Mithu] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75083 USA. [Bianco, Laura; Wilczak, James M.; Wolfe, Daniel] NOAA, Div Phys Sci, Boulder, CO USA. [Oncley, Steven] Natl Ctr Atmospher Res, Boulder, CO USA. RP Choukulkar, A (reprint author), Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA.; Choukulkar, A (reprint author), NOAA, Div Chem Sci, Boulder, CO 80305 USA. EM aditya.choukulkar@noaa.gov FU US Department of Energy, Office of Energy Efficiency and Renewable Energy; NOAA's Earth System Research Laboratory FX The authors acknowledge the funding for this work provided by the US Department of Energy, Office of Energy Efficiency and Renewable Energy and by NOAA's Earth System Research Laboratory. The authors also acknowledge contributions of numerous individuals and organization who assisted with the field deployment including Bruce Bartram, Duane Hazen, Tom Ayers, Jesse Leach, Paul Johnston, Lefthand Water District, Erie High School and the St. Vrain School District. We also express our appreciation to NOAA/Earth Systems Research Laboratory/Physical Sciences Division for supporting the instrumentation at the BAO facility. We express appreciation to the National Science Foundation for supporting the CABL deployments (https://www.eol.ucar.edu/field_projects/cabl) of the tower instrumentation. NREL is a national laboratory of the US Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NR 42 TC 1 Z9 1 U1 2 U2 2 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1867-1381 EI 1867-8548 J9 ATMOS MEAS TECH JI Atmos. Meas. Tech. PD JAN 23 PY 2017 VL 10 IS 1 BP 247 EP 264 DI 10.5194/amt-10-247-2017 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EM6BK UT WOS:000395397600001 ER PT J AU Shao, Y Guo, FM Ren, Y Cui, LS AF Shao, Yang Guo, Fangmin Ren, Yang Cui, Lishan TI Tensile properties of a novel W-NiTi heavy alloy with transforming matrix SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE NiTi matrix; Tungsten heavy alloy; Martensitic transformation; In-situ synchrotron diffraction ID SHAPE-MEMORY ALLOYS; X-RAY-DIFFRACTION; MECHANICAL-PROPERTIES; PHASE-TRANSFORMATION; FE ALLOYS; TUNGSTEN; DEFORMATION; COMPOSITES; MICROSTRUCTURE; BEHAVIOR AB A new class of W-NiTi heavy alloy was prepared by infiltration and vacuum hot pressing. The W-NiTi heavy alloy containing 90 wt% tungsten of particle size 2-8 gm exhibited excellent tensile properties of the tensile strength (1120 MPa) and elongation (7.8%). In situ synchrotron diffraction experiments provided clear evidence on the reorientation of B19'-NiTi martensite at the initial stage of the deformation and the martensitic transformation from B2-NiTi to B19'-NiTi martensite. The strain hardening of the heavy alloy resulted from the deformation of the martensite phase and the strain hardening of tungsten particles. C1 [Shao, Yang; Guo, Fangmin; Cui, Lishan] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China. [Shao, Yang; Guo, Fangmin; Cui, Lishan] China Univ Petr, Dept Mat Sci & Engn, Beijing 102249, Peoples R China. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Shao, Y; Cui, LS (reprint author), China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China.; Shao, Y; Cui, LS (reprint author), China Univ Petr, Dept Mat Sci & Engn, Beijing 102249, Peoples R China. EM shaoyangok@163.com; lscui@cup.edu.cn FU key program project of the National Natural Science Foundation of China (NSFC) [51231008]; National 973 program of China [2012CB619403]; NSFC [11474362] FX This work was supported by the key program project of the National Natural Science Foundation of China (NSFC) (51231008), the National 973 program of China (2012CB619403), the NSFC (11474362). NR 30 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 EI 1873-4936 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JAN 23 PY 2017 VL 683 BP 103 EP 109 DI 10.1016/j.msea.2016.12.014 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA EJ1XN UT WOS:000393003900013 ER PT J AU Tocilj, A On, KF Yuan, ZN Sun, JC Elkayam, E Li, HL Stillman, B Joshua-Tor, L AF Tocilj, Ante On, Kin Fan Yuan, Zuanning Sun, Jingchuan Elkayam, Elad Li, Huilin Stillman, Bruce Joshua-Tor, Leemor TI Structure of the active form of human origin recognition complex and its ATPase motor module SO ELIFE LA English DT Article ID MEIER-GORLIN SYNDROME; CLAMP-LOADER COMPLEX; DNA-POLYMERASE CLAMP; CRYO-EM; SACCHAROMYCES-CEREVISIAE; CONFORMATIONAL-CHANGES; SINGLE-MOLECULE; CELL-CYCLE; REPLICATION; ORC AB Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a top layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations. C1 [Tocilj, Ante; On, Kin Fan; Elkayam, Elad; Joshua-Tor, Leemor] WM Keck Struct Biol Lab, Cold Spring Harbor, NY 11724 USA. [Tocilj, Ante; On, Kin Fan; Elkayam, Elad; Joshua-Tor, Leemor] Howard Hughes Med Inst, Cold Spring Harbor, NY 11724 USA. [Tocilj, Ante; On, Kin Fan; Elkayam, Elad; Stillman, Bruce; Joshua-Tor, Leemor] Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA. [Yuan, Zuanning; Sun, Jingchuan; Li, Huilin] Brookhaven Natl Lab, Dept Biol, New York, NY USA. [Yuan, Zuanning; Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Sun, Jingchuan; Li, Huilin] Van Andel Res Inst, Grand Rapids, MI USA. RP Joshua-Tor, L (reprint author), WM Keck Struct Biol Lab, Cold Spring Harbor, NY 11724 USA.; Joshua-Tor, L (reprint author), Howard Hughes Med Inst, Cold Spring Harbor, NY 11724 USA.; Stillman, B; Joshua-Tor, L (reprint author), Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA. EM stillman@cshl.edu; leemor@cshl.edu OI Stillman, Bruce/0000-0002-9453-4091 FU National Institute of General Medical Sciences [R01-GM111742, R01-GM45436]; National Cancer Institute [P01-CA13016]; Howard Hughes Medical Institute FX National Institute of General Medical Sciences R01-GM111742 Huilin Li; National Cancer Institute P01-CA13016 Bruce Stillman; Howard Hughes Medical Institute Leemor Joshua-Tor; National Institute of General Medical Sciences R01-GM45436 Bruce Stillman NR 63 TC 0 Z9 0 U1 4 U2 4 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD JAN 23 PY 2017 VL 6 AR e20818 DI 10.7554/eLife.20818 PG 23 WC Biology SC Life Sciences & Biomedicine - Other Topics GA EJ7QU UT WOS:000393418100001 ER PT J AU Esposito, A Pilloni, A Polosa, AD AF Esposito, A. Pilloni, A. Polosa, A. D. TI Multiquark resonances SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS LA English DT Review DE Tetraquarks; Pentaquarks; Exotic hadron resonances ID SHORT-DISTANCE ANALYSIS; HEAVY-QUARK SYSTEMS; FLUX-TUBE BREAKING; QCD SUM-RULES; HYBRID MESONS; GAUGE-THEORIES; TRIANGLE SINGULARITIES; QUANTUM CHROMODYNAMICS; ELEMENTARY PARTICLE; HADRONIC MOLECULES AB Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties have been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research. (C) 2016 Elsevier B.V. All rights reserved. C1 [Esposito, A.] Columbia Univ, Dept Phys, Ctr Theoret Phys, 538 W 120th St, New York, NY 10027 USA. [Esposito, A.] Columbia Univ, Inst Strings Cosmol & Astroparticle Phys, New York, NY 10027 USA. [Pilloni, A.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, 12000 Jefferson Ave, Newport News, VA 23606 USA. [Polosa, A. D.] Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Polosa, A. D.] Sapienza Univ Roma, Ist Nazl Fis Nucl, Ple A Moro 2, I-00185 Rome, Italy. [Polosa, A. D.] CERN, Theory Dept, CH-1211 Geneva, Switzerland. RP Polosa, AD (reprint author), Sapienza Univ Roma, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy.; Polosa, AD (reprint author), Sapienza Univ Roma, Ist Nazl Fis Nucl, Ple A Moro 2, I-00185 Rome, Italy. EM antonio.polosa@roma1.infn.it OI Polosa, Antonio Davide/0000-0002-0684-4082; Pilloni, Alessandro/0000-0003-4257-0928 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177, DE-FG02-11ER41743] FX Most of the work presented here derives from invaluable collaboration with Luciano Maiani, Fulvio Piccinini and Veronica Riquer. They are all implicitly coauthoring this paper, exception made for what is imprecise or even wrong, which is our full responsibility. Along the years we benefited of the collaboration of Riccardo Faccini, who helped us to find the way in some experimental data analysis intricacies, and of a number of collaborators each of them contributing with their insight and work to solve the problems offered by the changing experimental picture - we wish to thank F. Brazzi, T. Burns, G. Cotugno, N. Drenska, G. Filaci, A.L. Guerrieri, M. Papinutto, V. Prosperi, C. Sabelli, and N. Tantalo. ADP benefited from sporadic collaborations and discussions with A. Ali, I. Bigi, B. Grinstein, and R. Lebed and recent exchanges with G.C. Rossi, G. Veneziano, and S. Penis. AP wishes to thank M. Bochicchio and A. Szczepaniak for many fruitful discussions. The support and dialog with experimentalists has been constant. We wish to thank S. Stone for several decisive exchanges, together with A.A. Alves, M. Battaglieri, G. Cavoto, M. Destefanis, R. Mussa, A. Palano, M. Pappagallo, A. Pompili, F. Renga, M. Rescigno, and U. Tamponi. The confrontation with the ideas of E. Braaten and M. Voloshin has been very instructive to us. This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and DE-FG02-11ER41743. NR 418 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-1573 EI 1873-6270 J9 PHYS REP JI Phys. Rep.-Rev. Sec. Phys. Lett. PD JAN 23 PY 2017 VL 668 BP 1 EP 97 DI 10.1016/j.physrep.2016.11.002 PG 97 WC Physics, Multidisciplinary SC Physics GA EJ9DH UT WOS:000393526300001 ER PT J AU Kang, XY Shetty, S Garten, L Ihlefeld, JF Trolier-McKinstry, S Maria, JP AF Kang, Xiaoyu Shetty, Smitha Garten, Lauren Ihlefeld, Jon F. Trolier-McKinstry, Susan Maria, Jon-Paul TI Enhanced dielectric and piezoelectric responses in Zn1-xMgxO thin films near the phase separation boundary SO APPLIED PHYSICS LETTERS LA English DT Article ID ZNO FILMS; MGXZN1-XO; ALLOY AB Dielectric and piezoelectric properties for Zn1-xMgxO (ZMO) thin films are reported as a function of MgO composition up to and including the phase separation region. Zn1-xMgxO (0.25 <= x <= 0.5) thin films with c-axis textures were deposited by pulsed laser deposition on platinized sapphire substrates. The films were phase pure wurtzite for MgO concentrations up to 40%; above that limit, a second phase with rocksalt structure evolves with strong {100} texture. With increasing MgO concentration, the out-of-plane (d(33,f)) and in-plane (e(31,f)) piezoelectric coefficients increase by 360% and 290%, respectively. The increase in piezoelectric coefficients is accompanied by a 35% increase in relative permittivity. Loss tangent values fall monotonically with increasing MgO concentration, reaching a minimum of 0.001 for x >= 0.30, at which point the band gap is reported to be 4 eV. The enhanced piezoelectric response, the large band gap, and the low dielectric loss make Zn1-xMgxO an interesting candidate for thin film piezoelectric devices, and demonstrate that compositional phase transformations provide opportunities for property engineering. Published by AIP Publishing. C1 [Kang, Xiaoyu; Maria, Jon-Paul] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Shetty, Smitha; Garten, Lauren; Trolier-McKinstry, Susan] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Shetty, Smitha; Garten, Lauren; Trolier-McKinstry, Susan] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Ihlefeld, Jon F.] Sandia Natl Labs, Elect Opt & Nano Mat Dept, POB 5800, Albuquerque, NM 87185 USA. RP Kang, XY (reprint author), North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. FU NSF Center for Dielectrics and Piezoelectrics [NSF 1361503]; Army Research Office [W911NF1410285] FX This work was supported by the NSF Center for Dielectrics and Piezoelectrics (NSF 1361503), and the Army Research Office contract (W911NF1410285). The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation. NR 28 TC 0 Z9 0 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 23 PY 2017 VL 110 IS 4 AR 042903 DI 10.1063/1.4973756 PG 4 WC Physics, Applied SC Physics GA EI9OI UT WOS:000392837300037 ER PT J AU Kim, YJ Savukov, I Huang, JH Nath, P AF Kim, Young Jin Savukov, Igor Huang, Jen-Huang Nath, Pulak TI Magnetic microscopic imaging with an optically pumped magnetometer and flux guides SO APPLIED PHYSICS LETTERS LA English DT Article ID ATOMIC MAGNETOMETER AB By combining an optically pumped magnetometer (OPM) with flux guides (FGs) and by installing a sample platform on automated translation stages, we have implemented an ultra-sensitive FG-OPM scanning magnetic imaging system that is capable of detecting magnetic fields of similar to 20 pT with spatial resolution better than 300 mu m (expected to reach similar to 10 pT sensitivity and similar to 100 mu m spatial resolution with optimized FGs). As a demonstration of one possible application of the FGOPM device, we conducted magnetic imaging of micron-size magnetic particles. Magnetic imaging of such particles, including nano-particles and clusters, is very important for many fields, especially for medical cancer diagnostics and biophysics applications. For rapid, precise magnetic imaging, we constructed an automatic scanning system, which holds and moves a target sample containing magnetic particles at a given stand-off distance from the FG tips. We show that the device was able to produce clear microscopic magnetic images of 10 mu m-size magnetic particles. In addition, we also numerically investigated how the magnetic flux from a target sample at a given stand-off distance is transmitted to the OPM vapor cell. Published by AIP Publishing. C1 [Kim, Young Jin; Savukov, Igor; Huang, Jen-Huang; Nath, Pulak] Los Alamos Natl Lab, P-21, Los Alamos, NM 87545 USA. [Huang, Jen-Huang] Natl Tsing Hua Univ, Dept Chem Engn, 101,Sec 2,Kuang Fu Rd, Hsinchu 30013, Taiwan. RP Kim, YJ (reprint author), Los Alamos Natl Lab, P-21, Los Alamos, NM 87545 USA. EM youngjin@lanl.gov FU Los Alamos National Laboratory LDRD office [20150300ER] FX The authors are grateful for helpful discussion with Dr. Steven Clayton. The authors gratefully acknowledge that this work was supported by the Los Alamos National Laboratory LDRD office through grant 20150300ER. NR 13 TC 0 Z9 0 U1 13 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 23 PY 2017 VL 110 IS 4 AR 043702 DI 10.1063/1.4975069 PG 5 WC Physics, Applied SC Physics GA EI9OI UT WOS:000392837300052 ER PT J AU Liu, FZ Moody, NA Jensen, KL Pavlenko, V Villarrubia, CWN Mohite, AD Gupta, G AF Liu, Fangze Moody, Nathan A. Jensen, Kevin L. Pavlenko, Vitaly Villarrubia, Claudia W. Narvaez Mohite, Aditya D. Gupta, Gautam TI Single layer graphene protective gas barrier for copper photocathodes SO APPLIED PHYSICS LETTERS LA English DT Article ID LARGE-AREA SYNTHESIS; PHOTOEMISSION; FILMS; CRYSTALS AB Photocathodes can benefit from a thin protection layer and attain long-term stability. Graphene is potentially a good candidate for such application. We report direct growth of single-layer graphene on single crystal Cu(110) photocathodes using chemical vapor deposition and the effective protection of copper photocathodes with graphene against degradation under atmospheric conditions. Due to the interaction and charge transfer between graphene and copper, the graphene-protected cathodes have 0.25 eV lower work function and 17% higher quantum efficiency at 250 nm compared with bare Cu cathodes. The graphene coating can protect copper photocathodes from degradation for more than 20 min in an exposure to 200 Torr of air. The validation of graphene-photocathode compatibility opens a new route to the lifetime-extension for photocathodes. C1 [Liu, Fangze; Villarrubia, Claudia W. Narvaez; Mohite, Aditya D.; Gupta, Gautam] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Moody, Nathan A.; Pavlenko, Vitaly] Los Alamos Natl Lab, Accelerator Operat & Technol Div, Los Alamos, NM 87545 USA. [Jensen, Kevin L.] Naval Res Lab, MSTD, Code 6362, Washington, DC 20375 USA. RP Mohite, AD (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. EM amohite@lanl.gov; gautam.gupta@louisville.edu OI Jensen, Kevin/0000-0001-8644-1680; MOHITE, ADITYA/0000-0001-8865-409X FU Los Alamos National Laboratory (LANL) Laboratory Directed Research and Development (LDRD) Program through Directed Research (DR) "Applied Cathode Enhancement and Robustness Technologies (ACERT)" [20150394DR]; U.S. Department of Energy [DE-AC52-06NA25396] FX The authors acknowledge the financial support from the Los Alamos National Laboratory (LANL) Laboratory Directed Research and Development (LDRD) Program through Directed Research (DR) "Applied Cathode Enhancement and Robustness Technologies (ACERT)" (Project No. 20150394DR). Studies were performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. LANL, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. The authors also acknowledge Mark A. Hoffbauer of LANL for his support on forming gas annealing and Charudatta Galande of Rice University and Akhilesh Singh of LANL for their experimental support on CVD graphene growth. NR 32 TC 0 Z9 0 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 23 PY 2017 VL 110 IS 4 AR 041607 DI 10.1063/1.4974738 PG 4 WC Physics, Applied SC Physics GA EI9OI UT WOS:000392837300015 ER PT J AU Thompson, RJ Siday, T Glass, S Luk, TS Reno, JL Brener, I Mitrofanov, O AF Thompson, R. J. Siday, T. Glass, S. Luk, T. S. Reno, J. L. Brener, I. Mitrofanov, O. TI Optically thin hybrid cavity for terahertz photo-conductive detectors SO APPLIED PHYSICS LETTERS LA English DT Article ID GAAS; OPTOELECTRONICS; GENERATION; ANTENNAS; DEVICES AB The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities. Published by AIP Publishing. C1 [Thompson, R. J.; Siday, T.; Glass, S.; Mitrofanov, O.] UCL, Elect & Elect Engn, London WC1E 7JE, England. [Thompson, R. J.] UCL, London Ctr Nanotechnol, London WC1H 0AH, England. [Luk, T. S.; Reno, J. L.; Brener, I.; Mitrofanov, O.] Sandia Natl Labs, Ctr Integrated Technol, Albuquerque, NM 87185 USA. [Luk, T. S.; Reno, J. L.; Brener, I.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Thompson, RJ (reprint author), UCL, Elect & Elect Engn, London WC1E 7JE, England.; Thompson, RJ (reprint author), UCL, London Ctr Nanotechnol, London WC1H 0AH, England. EM robert.j.thompson@ucl.ac.uk RI Mitrofanov, Oleg/C-1938-2008 OI Mitrofanov, Oleg/0000-0003-3510-2675 FU Royal Society [UF130493]; EPSRC [EP/M507970/1]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Royal Society [Grant No.: UF130493] and EPSRC [Grant No.: EP/M507970/1]. The work was performed at UCL and in part at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 26 TC 0 Z9 0 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 23 PY 2017 VL 110 IS 4 AR 041105 DI 10.1063/1.4974482 PG 5 WC Physics, Applied SC Physics GA EI9OI UT WOS:000392837300005 ER PT J AU Yuan, CQ Smith, RS Kay, BD AF Yuan, Chunqing Smith, R. Scott Kay, Bruce D. TI Communication: Distinguishing between bulk and interface-enhanced crystallization in nanoscale films of amorphous solid water SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HOMOGENEOUS ICE NUCLEATION; NO-MANS-LAND; SUPERCOOLED WATER; THERMAL-DESORPTION; 150 K; KINETICS; SURFACE; SUBSTRATE; MODEL; SUBLIMATION AB The crystallization of amorphous solid water (ASW) nanoscale films was investigated using reflection absorption infrared spectroscopy. Two ASW film configurations were studied. In one case the ASW film was deposited on top of and capped with a decane layer ("sandwich" configuration). In the other case, the ASW film was deposited on top of a decane layer and not capped ("no cap" configuration). Crystallization of ASW films in the "sandwich" configuration is about eight times slower than in the "no cap." Selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film was used to determine the crystallization mechanism. In the "sandwich" configuration, the crystallization kinetics were independent of the isotopic layer placement whereas in the "no cap" configuration the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These results are consistent with a mechanism whereby the decane overlayer suppresses surface nucleation and provide evidence that the observed ASW crystallization in "sandwich" films is the result of uniform bulk nucleation. Published by AIP Publishing. C1 [Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.] Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA. RP Smith, RS; Kay, BD (reprint author), Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM Scott.smith@pnnl.gov; Bruce.Kay@pnnl.gov RI Smith, Scott/G-2310-2015 OI Smith, Scott/0000-0002-7145-1963 FU US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE's Office of Biological and Environmental Research FX This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research was performed using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated by Battelle for the DOE. NR 50 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 21 PY 2017 VL 146 IS 3 AR 031102 DI 10.1063/1.4974492 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL3GI UT WOS:000394507200002 ER PT J AU Li, M Zhang, Q Kurokawa, J Woo, JH He, KB Lu, ZF Ohara, T Song, Y Streets, DG Carmichael, GR Cheng, YF Hong, CP Huo, H Jiang, XJ Kang, SC Liu, F Su, H Zheng, B AF Li, Meng Zhang, Qiang Kurokawa, Jun-ichi Woo, Jung-Hun He, Kebin Lu, Zifeng Ohara, Toshimasa Song, Yu Streets, David G. Carmichael, Gregory R. Cheng, Yafang Hong, Chaopeng Huo, Hong Jiang, Xujia Kang, Sicong Liu, Fei Su, Hang Zheng, Bo TI MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID CARBONACEOUS AEROSOL EMISSIONS; VOLATILE ORGANIC-COMPOUNDS; SULFUR-DIOXIDE EMISSIONS; LONG-RANGE TRANSPORT; NOX EMISSIONS; SATELLITE-OBSERVATIONS; TROPOSPHERIC NO2; POWER-PLANTS; EAST-ASIA; INTEX-B AB The MIX inventory is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) by a mosaic of up-to-date regional emission inventories. Emissions are estimated for all major anthropogenic sources in 29 countries and regions in Asia. We conducted detailed comparisons of different regional emission inventories and incorporated the best available ones for each region into the mosaic inventory at a uniform spatial and temporal resolution. Emissions are aggregated to five anthropogenic sectors: power, industry, residential, transportation, and agriculture. We estimate the total Asian emissions of 10 species in 2010 as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.6 Tg CO, 67.0 Tg NMVOC (non-methane volatile organic compounds), 28.8 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2. Emissions from China and India dominate the emissions of Asia for most of the species. We also estimated Asian emissions in 2006 using the same methodology of MIX. The relative change rates of Asian emissions for the period of 2006-2010 are estimated as follows: -8.1% for SO2, +19.2% for NOx, +3.9% for CO, +15.5% for NMVOC, +1.7% for NH3, -3.4% for PM10, -1.6% for PM2.5, +5.5% for BC, +1.8% for OC, and +19.9% for CO2. Model-ready speciated NMVOC emissions for SAPRC-99 and CB05 mechanisms were developed following a profile-assignment approach. Monthly gridded emissions at a spatial resolution of 0.25 degrees x 0.25 degrees are developed and can be accessed from http://www.meicmodel.org/dataset-mix. C1 [Li, Meng; Zhang, Qiang; Hong, Chaopeng; Jiang, Xujia] Tsinghua Univ, Dept Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing, Peoples R China. [Li, Meng; He, Kebin; Hong, Chaopeng; Jiang, Xujia; Kang, Sicong; Liu, Fei; Zheng, Bo] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China. [Kurokawa, Jun-ichi] Asia Ctr Air Pollut Res, Nishi Ku, 1182 Sowa, Niigata, Niigata 9502144, Japan. [Woo, Jung-Hun] Konkuk Univ, Dept Adv Technol Fus, Seoul, South Korea. [Lu, Zifeng; Streets, David G.] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. [Ohara, Toshimasa] Natl Inst Environm Studies, 16-2 Onogawa, Tsukuba, Ibaraki 3058506, Japan. [Song, Yu] Peking Univ, Dept Environm Sci, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China. [Carmichael, Gregory R.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [Cheng, Yafang; Su, Hang] Max Planck Inst Chem, Multiphase Chem Dept, Mainz, Germany. [Huo, Hong] Tsinghua Univ, Inst Energy Environm & Econ, Beijing, Peoples R China. [He, Kebin] State Environm Protect Key Lab Sources & Control, Beijing, Peoples R China. [Zhang, Qiang; He, Kebin] Collaborat Innovat Ctr Reg Environm Qual, Beijing, Peoples R China. RP Zhang, Q (reprint author), Tsinghua Univ, Dept Earth Syst Sci, Key Lab Earth Syst Modeling, Minist Educ, Beijing, Peoples R China.; Zhang, Q (reprint author), Collaborat Innovat Ctr Reg Environm Qual, Beijing, Peoples R China. EM qiangzhang@tsinghua.edu.cn RI Su, Hang/A-6226-2010 OI Su, Hang/0000-0003-4889-1669 FU China's National Basic Research Program [2014CB441301]; National Science Foundation of China [41625020, 41222036, 21221004]; National Key Technology RD Program [2014BAC16B03, 2014BAC21B02]; China's Ministry of Environmental Protection [201509014]; EU; Max Planck Society; European Commission project PEGASOS [265148]; European Commission project NSFC [41330635]; Ministry of the Environment of Japan [S-7] FX This work was supported by China's National Basic Research Program (2014CB441301), the National Science Foundation of China (41625020, 41222036 and 21221004), the National Key Technology R&D Program (2014BAC16B03 and 2014BAC21B02), the public welfare program of China's Ministry of Environmental Protection (201509014), and the EU FP-7 program MarcoPolo and PANDA. H. Su and Y. F. Cheng acknowledge support by the Max Planck Society and the European Commission projects PEGASOS (265148) and NSFC (41330635). J. Kurokawa would like to thank support from the Global Environment Research Fund of the Ministry of the Environment of Japan (S-7). NR 77 TC 7 Z9 7 U1 3 U2 3 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD JAN 20 PY 2017 VL 17 IS 2 BP 935 EP 963 DI 10.5194/acp-17-935-2017 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EL4ME UT WOS:000394594500006 ER PT J AU Xie, JH Yin, KH Serov, A Artyushkova, K Pham, HN Sang, XH Unocic, RR Atanassov, P Datye, AK Davis, RJ AF Xie, Jiahan Yin, Kehua Serov, Alexey Artyushkova, Kateryna Pham, Hien N. Sang, Xiahan Unocic, Raymond R. Atanassov, Plamen Datye, Abhaya K. Davis, Robert J. TI Selective Aerobic Oxidation of Alcohols over Atomically-Dispersed Non-Precious Metal Catalysts SO CHEMSUSCHEM LA English DT Article DE heterogeneous catalyst; N-doped carbon; non-precious metal; oxidation; reaction mechanism ID OXYGEN REDUCTION REACTION; DOPED CARBON ELECTROCATALYSTS; SUPPORTED PLATINUM CATALYSTS; POROUS ORGANIC POLYMER; SENSITIZED SOLAR-CELLS; N-C CATALYST; ACTIVE-SITES; COUNTER ELECTRODE; MOLECULAR-OXYGEN; IRON AB Catalytic oxidation of alcohols often requires the presence of expensive transition metals. Herein, it is shown that earth-abundant Fe atoms dispersed throughout a nitrogen-containing carbon matrix catalyze the oxidation of benzyl alcohol and 5-hydroxymethylfurfural by O-2 in the aqueous phase. The activity of the catalyst can be regenerated by a mild treatment in H-2. An observed kinetic isotope effect indicates that beta-H elimination from the alcohol is the kinetically relevant step in the mechanism, which can be accelerated by substituting Fe with Cu. Dispersed Cr, Co, and Ni also convert alcohols, demonstrating the general utility of metal-nitrogen-carbon materials for alcohol oxidation catalysis. Oxidation of aliphatic alcohols is substantially slower than that of aromatic alcohols, but addition of 2,2,6,6-tetramethyl-1-piperidinyloxy as a co-catalyst with Fe can significantly improve the reaction rate. C1 [Xie, Jiahan; Yin, Kehua; Davis, Robert J.] Univ Virginia, Dept Chem Engn, 102 Engineers Way, Charlottesville, VA 22904 USA. [Serov, Alexey; Artyushkova, Kateryna; Pham, Hien N.; Atanassov, Plamen; Datye, Abhaya K.] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA. [Serov, Alexey; Artyushkova, Kateryna; Pham, Hien N.; Atanassov, Plamen; Datye, Abhaya K.] Univ New Mexico, Ctr Microengn Mat, Albuquerque, NM 87131 USA. [Sang, Xiahan; Unocic, Raymond R.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Davis, RJ (reprint author), Univ Virginia, Dept Chem Engn, 102 Engineers Way, Charlottesville, VA 22904 USA. EM rjd4f@virginia.edu OI Yin, Kehua/0000-0003-2391-5329 FU US NSF [EEC-0813570, CBET-1157829]; US DOE-EERE Fuel Cell Technology Program FX This work is supported by the US NSF under grant numbers EEC-0813570 (Center for Biorenewable Chemicals, CBiRC) and CBET-1157829, and in part by the US DOE-EERE Fuel Cell Technology Program (subcontract to Northeastern University, with PI Sanjeev Mukerjee). A portion of the microscopy research was conducted at the Center for Nanophase Materials Sciences in Oak Ridge National Lab, which is a DOE Office of Science User Facility. NR 52 TC 0 Z9 0 U1 22 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD JAN 20 PY 2017 VL 10 IS 2 BP 359 EP 362 DI 10.1002/cssc.201601364 PG 4 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA EL4DM UT WOS:000394571900005 PM 27863066 ER PT J AU Zhang, YY Bell, EF AF Zhang, Yuanyuan Bell, Eric F. TI M32 Analogs? A Population of Massive Ultra-compact Dwarf and Compact Elliptical Galaxies in Intermediate-redshift Clusters SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: clusters: general; galaxies: evolution ID STELLAR-SYSTEMS; GLOBULAR-CLUSTER; FORNAX CLUSTER; AIMSS PROJECT; STAR-CLUSTERS; IMAGES; PHOTOMETRY; DIVIDE AB We report the discovery of relatively massive, M32-like ultra compact dwarf (UCD) and compact elliptical (CE) galaxy candidates in 0.2 < z < 0.6 massive galaxy clusters imaged by the Cluster Lensing And Supernova survey with Hubble (CLASH) survey. Examining the nearly unresolved objects in the survey, we identify a sample of compact objects concentrated around the cluster central galaxies with colors similar to cluster red sequence galaxies. Their colors and magnitudes suggest stellar masses around 10(9)M(circle dot). More than half of these galaxies have half-light radii smaller than 200 pc, falling into the category of massive UCDs and CEs, with properties similar to M32. The properties are consistent with a tidal stripping origin, but we cannot rule out the possibility that they are early-formed compact objects trapped in massive dark matter halos. The 17 CLASH clusters studied in this work on average contain 2.7 of these objects in their central 0.3 Mpc and 0.6 in their central 50 kpc. Our study demonstrates the possibility of statistically characterizing UCDs/CEs with a large set of uniform imaging survey data. C1 [Zhang, Yuanyuan] Fermilab Natl Accelerator Lab, Kirk & Pine Rd, Batavia, IL 60510 USA. [Zhang, Yuanyuan] Univ Michigan, Dept Phys, 450 Church St, Ann Arbor, MI 48109 USA. [Bell, Eric F.] Univ Michigan, Dept Astron, 1085 S Univ Ave, Ann Arbor, MI 48109 USA. RP Zhang, YY (reprint author), Fermilab Natl Accelerator Lab, Kirk & Pine Rd, Batavia, IL 60510 USA.; Zhang, YY (reprint author), Univ Michigan, Dept Phys, 450 Church St, Ann Arbor, MI 48109 USA. EM ynzhang@fnal.gov OI Bell, Eric/0000-0002-5564-9873 FU University of Michigan Rackham Pre-Doctoral fellowship; Fermilab Schramm Post-Doctoral fellowship FX Y. Zhang acknowledges supports by the University of Michigan Rackham Pre-Doctoral fellowship and the Fermilab Schramm Post-Doctoral fellowship. We thank Prof. Timothy McKay, Dr. Nacho Trujillo, Prof. Michael Fellhauer, and Prof. Alister Graham for helpful discussions and insightful comments. NR 38 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JAN 20 PY 2017 VL 835 IS 1 AR L2 DI 10.3847/2041-8213/835/1/L2 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK5NV UT WOS:000393974000002 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TP Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santosa, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska-Blenessy, Z Baroncellia, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costaa, JBG Bartoldus, R Barton, AE Bartosa, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddalld, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, BH Bruschia, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrilla, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Mirandaa, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costaa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darboa, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K De Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F DeMaria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M Della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Valec, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duffield, EM Duflot, L Duguid, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS GarayWalls, FM Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gemmea, C Genest, MH Geng, C Gentile, S George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordania, MP Giorgia, FM Giorgi, FM Giraud, PF Giromini, P Giugnia, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Gonalo, R da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorinia, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellmana, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissie, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Urek, TJ Jeanneau, F Jeanty, L Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jina, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-Zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klugea, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarrod, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, EM Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J Andrade, LMD Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausena, HMZ Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, S Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villara, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, T Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyanga, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D Palma, A Panagiotopoulou, ES Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammense, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrania, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarraa, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulona, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, DJ Silva, J Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjoelin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Denis, RDS Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chiltona, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenee, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Vigne, R Villa, M Pereza, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Nedden, MZ Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Dos Santosa, S. P. Amor Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J. -F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska-Blenessy, Z. Baroncellia, A. Barone, G. Barr, A. J. Barranco Navarro, L. Barreiro, F. da Costaa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartosa, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddalld, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Bossio Sola, J. D. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, B. H. Bruschia, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvente Lopez, S. Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrilla, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Mirandaa, E. Castelijn, R. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerda Alberich, L. Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muino, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costaa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darboa, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. DeMaria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. Della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Valec, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duffield, E. M. Duflot, L. Duguid, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. . Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. GarayWalls, F. M. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gemmea, C. Genest, M. H. Geng, C. Gentile, S. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordania, M. P. Giorgia, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugnia, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Gonalo, R. da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorinia, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellmana, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Henriques Correia, A. M. Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J. -Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissie, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jina, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Koehler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-Zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klugea, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarrod, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. M. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Losel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Machado Miguens, J. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J. -P. Meyer, J. Theenhausena, H. Meyer Zu Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Monig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, S. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villara, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nguyen Manh, T. Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Seabra, L. F. Oleiro Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero Y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyanga, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Rodriguez, L. Pacheco Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. Palma, A. Panagiotopoulou, E. St. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammense, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Rodriguez Perez, A. Rodriguez Rodriguez, D. Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F. -W. Sadykov, R. Tehrania, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Salazar Loyola, J. E. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarraa, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulona, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, D. J. Silva, J. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjoelin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Denis, R. D. St. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chiltona, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenee, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C. -L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Vigne, R. Villa, M. Pereza, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W. -M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. Nedden, M. Zur Zwalinski, L. CA ATLAS Collaboration TI Measurement of the t(t)over-barZ and t(t)over-barW production cross sections in multilepton final states using 3.2 fb(-1) of pp collisions at root s=13 TeV with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID EXTENDED TECHNICOLOR; VERTEX; LHC AB A measurement of the t (t) over barZ and t (t) over barW production cross sections in final states with either two same-charge muons, or three or four leptons (electrons or muons) is presented. The analysis uses a data sample of proton-proton collisions at root s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider in 2015, corresponding to a total integrated luminosity of 3.2 fb(-1). The inclusive cross sections are extracted using likelihood fits to signal and control regions, resulting in sigma(t (t) over barZ) = 0.9 +/- 0.3 pb and sigma(t (t) over barW) = 1.5 +/- 0.8 pb, in agreement with the Standard Model predictions. C1 [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helsens, C.; Henriques Correia, A. M.; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Morgenstern, S.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammense, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.; ATLAS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Conventi, F.; Della Pietra, M.; Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska-Blenessy, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska-Blenessy, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E. St.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Oreglia, M. J.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Khalil-Zada, F.; Teoh, J. J.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Gonzalez Parra, G.; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Pages, A. Pacheco; Padilla Aranda, C.; Riu, I.; Rizzi, C.; Rodriguez Perez, A.; Sorin, V.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, D. J.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W. -M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kobayashi, D.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Allport, P. P.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddalld, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschia, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgia, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarraa, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Aielli, G.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Derkaoui, J. E.; Dhaliwal, S.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.; Peralva, B. S.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz De Fora, Brazil. [do Valec, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Ravinovich, I.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res, Dept Phys, Cluj Napoca, Romania. [Popeneciu, G. A.] Dev Isotop & Mol Technol, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Bossio Sola, J. D.; Marceca, G.; Otero Y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Mueller, T.; Parker, M. A.; Passaggio, S.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Vokac, P.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Farilla, A.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Oren, Y.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Salazar Loyola, J. E.; Araya, S. Tapia; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costaa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jina, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Mansour, J. D.; Ouyanga, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Mastroberardino, A.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Mastroberardino, A.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Mastroberardino, A.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Garcia-Sciveres, M.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Lab Nazl Frascati, INFN, Grp Collegato Cosenza, Frascati, Italy. [Cairo, V. M.; Capua, M.; Del Gaudio, M.; La Rotonda, L.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartmento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Hetherly, J. W.; Kama, S.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Bold, T.; Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; GarayWalls, F. M.; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Pino, S. A. Olivares; Proissl, M.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA, Sch Phys, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Rybar, M.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Mathemat & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; Della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lionti, A. E.; March, L.; Mermod, P.; Miucci, A.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darboa, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemmea, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Parodi, F.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Robson, A.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA USA. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. Univ Sci & Technol China, Dept Modern Phys, Anhui, Peoples R China. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Klugea, E. -E.; Kolb, M.; Lang, V. S.; Meier, K.; Theenhausena, H. Meyer Zu; Villara, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulona, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Lisovyi, M.; Radescu, V.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Physikal Inst, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orr, R. S.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Iwanski, W.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Rybkin, G.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorinia, E.; Longo, L.; Primavera, M.; Rauscher, F.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorinia, E.; Longo, L.; Rauscher, F.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Ratti, M. G.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Annovi, A.; Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Cerrito, L.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS, IN2P3, Paris, France. [Akesson, T. P.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Calvente Lopez, S.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Kopke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Raine, J. A.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Kehoe, R.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costaa, G.; Fanti, M.; Giugnia, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Pereza, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Shojaii, S.; Turra, R.; Pereza, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J. -F.; Azuelos, G.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Nguyen Manh, T.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rahal, G.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Mnchen, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Munich, Germany. [Fusayasu, T. .; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kawade, K.; Onyisi, P. U. E.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kawade, K.; Onyisi, P. U. E.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Gardner, R. W.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, CNRS, Univ Paris Sud, LAL,IN2P3, Orsay, France. [Endo, M.; Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Rangel-Smith, C.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Fassouliotis, D.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rave, S.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fassouliotis, D.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rave, S.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Machado Miguens, J.; Meyer, C.; Mistry, K. P.; Reichert, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Fassnacht, P.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santosa, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrilla, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Gonalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Seabra, L. F. Oleiro; Onofre, A.; Palma, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumenta Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Maio, A.; Onofre, A.; Palma, A.; Pedro, R.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santosa, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Fac Ciencias & Tecnol, Dep Fis, Caparica, Portugal. Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Garcia Navarro, J. E.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy Phys Protvino, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Derendarz, D.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrania, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncellia, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Fassi, F.; Graziani, E.; Iodice, M.; Orlando, N.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orlando, N.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Chafaq, A.; Hoummada, A.] Reseau Univ Phys Hautes Energies Univ Hassan II, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Techn Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Aaboud, M.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.; Haddad, N.; Idrissie, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauce, M.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J. -P.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energ Alte, DSM IRFU Inst Rech Lois Fondament Univ, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F. -W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Du, Y.; Feng, C.; Ma, L. L.; Ma, Y.; Wang, C.; Zaidan, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, Shanghai, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] PKU CHEP, Shanghai, Peoples R China. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartosa, P.; Blazek, T.; Castaneda-Mirandaa, E.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenee, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellmana, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellmana, S.; Jon-And, K.; Lundberg, O.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjoelin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Vazeille, F.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sin, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Orestano, D.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kuze, M.; Motohashi, K.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Osculati, B.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Hod, N.; Jovicevic, J.; Oakham, F. G.; Codina, E. Perez; Savard, P.; Schneider, B.; Stelzer-Chiltona, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nechaeva, P. Yu.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Giordania, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] INFN, Sez Trieste, Grp Coll Udine, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cobal, M.; Giordania, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiolhais, M. C. N.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Milstead, D. A.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiolhais, M. C. N.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Milstead, D. A.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiolhais, M. C. N.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Milstead, D. A.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Armitage, L. J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiolhais, M. C. N.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Milstead, D. A.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Koehler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Kuger, F.; Ravenscroft, T.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Strohmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Keeler, R.; Kersten, S.; Kuechler, J. T.; Mattig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Vorobev, K.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgruppe Phys, Fak Mathemat & Naturwissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Kaplan, L. S.; Lagouri, T.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. Ctr Calcul Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Acharya, B. S.; Tikhomirov, V. O.; Tompkins, L.; Toth, J.; Turchikhin, S.; Vest, A.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY USA. [Bassalat, A.] An Najah Natl Univ, Dept Phys, Nablus, Palestine. [Bawa, H. S.; Gao, Y. S.; Rozas, A. Juste] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Oporto, Portugal. [Chelkov, G. A.; Vaniachine, A.] Tomsk State Univ, Tomsk, Russia. Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Victoria, BC, Canada. [Ducu, O. A.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Geng, C.; Guo, Y.; Li, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Govender, N.] Ctr High Performance Comp, Cape Town, South Africa. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA USA. [Bawa, H. S.; Gao, Y. S.; Rozas, A. Juste] ICREA, Inst Catalana Recerca &Estudis Avancats, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. [Igonkina, O.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Ilchenko, Y.; Oreglia, M. J.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Lin, S. C.] Acad Sin, Inst Phys, Acad Sin Grid Comp, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Shandong, Peoples R China. Calif State Univ Sacramento, Dept Phys, Sacramento, CA 95819 USA. [Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Piacquadio, G.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY USA. [Piacquadio, G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY USA. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Song, H. Y.; Zhang, G.] Acad Sin, Inst Phys, Taipei, Taiwan. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. [Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Zhang, R.] CNRS, IN2P3, Marseille, France. RP Aaboud, M (reprint author), Univ Mohamed Premier, Fac Sci, Oujda, Morocco.; Aaboud, M (reprint author), LPTPM, Oujda, Morocco. EM atlas.publications@cern.ch RI Prokoshin, Fedor/E-2795-2012; Soldatov, Evgeny/E-3990-2017; Sezgin, Berk/C-1112-2015; Warburton, Andreas/N-8028-2013; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Doyle, Anthony/C-5889-2009; Vanyashin, Aleksandr/H-7796-2013; Mitsou, Vasiliki/D-1967-2009; Camarri, Paolo/M-7979-2015; Solodkov, Alexander/B-8623-2017; Carvalho, Joao/M-4060-2013; Tikhomirov, Vladimir/M-6194-2015 OI Prokoshin, Fedor/0000-0001-6389-5399; Soldatov, Evgeny/0000-0003-0694-3272; Warburton, Andreas/0000-0002-2298-7315; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Doyle, Anthony/0000-0001-6322-6195; Vanyashin, Aleksandr/0000-0002-0367-5666; Mitsou, Vasiliki/0000-0002-1533-8886; Camarri, Paolo/0000-0002-5732-5645; Solodkov, Alexander/0000-0002-2737-8674; Carvalho, Joao/0000-0002-3015-7821; Tikhomirov, Vladimir/0000-0002-9634-0581 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMTCR, Czech Republic; MPOCR, Czech Republic; VSCCR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEADSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI; Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Spain; Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMTCR, MPOCR and VSCCR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEADSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. NR 76 TC 0 Z9 0 U1 16 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN 20 PY 2017 VL 77 IS 1 AR 40 DI 10.1140/epjc/s10052-016-4574-y PG 29 WC Physics, Particles & Fields SC Physics GA EK1DH UT WOS:000393665500001 PM 28260981 ER PT J AU Blair, VL Fleischman, ZD Merkle, LD Ku, N Moorehead, CA AF Blair, Victoria L. Fleischman, Zackery D. Merkle, Larry D. Ku, Nicholas Moorehead, Carli A. TI Co-precipitation of rare-earth-doped Y2O3 and MgO nanocomposites for mid-infrared solid-state lasers SO APPLIED OPTICS LA English DT Article ID CERAMIC LASER; YTTRIA NANOPOWDERS; GEL COMBUSTION; MU-M; TRANSPARENT; DECOMPOSITION; EFFICIENCY; CO2 AB Mid-infrared, solid-state laser materials face three main challenges: (1) need to dissipate heat generated in lasing; (2) luminescence quenching by multiphonon relaxation; and (3) trade-off in high thermal conductivity and small maximum phonon energy. We are tackling these challenges by synthesizing a ceramic nanocomposite in which multiple phases will be incorporated into the same structure. The undoped majority species, MgO, will be the main carrier of high thermal conductivity, and the minority species, Er: Y2O3, will have low maximum phonon energy. There is also an inherent challenge in attempting to make a translucent part from a mixture of two different materials with two different indexes of refraction. A simple, co-precipitation technique has been developed in which both components are synthesized in situ to obtain intimate mixing. These powders compare well to commercially available ceramics, including their erbium spectroscopy, even when mixed as a composite, and can be air-fired to similar to 96% of theoretical density, yielding translucent parts. As the amount of Er: Y2O3 increases, the translucency decreases as the number of scattering sites start to coalesce into large patches. If the amount of Er: Y2O3 is sufficiently small and dispersed, the yttria grains will be pinned as individuals in a sea of MgO, leading to optimal translucency. C1 [Blair, Victoria L.; Fleischman, Zackery D.; Merkle, Larry D.] US Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA. [Ku, Nicholas] Oak Ridge Inst Sci Educ, 1299 Bethel Valley Rd, Oak Ridge, TN 37830 USA. [Moorehead, Carli A.] Drexel Univ, 3141 Chestnut St, Philadelphia, PA 19104 USA. RP Blair, VL (reprint author), US Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA. EM Victoria.L.Blair3.civ@mail.mil OI Moorehead, Carli/0000-0002-1592-4295 FU Oak Ridge Institute for Science and Education (ORISE) [1120-1120-99]; Science & Engineering Apprenticeship Program (SEAP) [W911SR-15-2-0001] FX Oak Ridge Institute for Science and Education (ORISE) (1120-1120-99); Science & Engineering Apprenticeship Program (SEAP) (W911SR-15-2-0001). NR 38 TC 0 Z9 0 U1 10 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JAN 20 PY 2017 VL 56 IS 3 BP B154 EP B158 DI 10.1364/AO.56.00B154 PG 5 WC Optics SC Optics GA EJ6SA UT WOS:000393347900021 PM 28157873 ER PT J AU Pan, YL Wang, CJ Beresnev, LA Yuffa, AJ Videen, G Ligon, D Santarpia, JL AF Pan, Yong-Le Wang, Chuji Beresnev, Leonid A. Yuffa, Alex J. Videen, Gorden Ligon, David Santarpia, Joshua L. TI Measurement of back-scattering patterns from single laser trapped aerosol particles in air SO APPLIED OPTICS LA English DT Article ID ELASTIC-LIGHT-SCATTERING; OPTICAL TRAP; DEFORMED DROPLETS; POLARIZATION; SIZE; INCLUSIONS; CELLS AB We demonstrate a method for measuring elastic back-scattering patterns from single laser trapped micron-sized particles, spanning the scattering angle range of theta = 167.7 degrees-180 degrees and phi = 0 degrees-360 degrees in spherical coordinates. We calibrated the apparatus by capturing light-scattering patterns of 10 mu m diameter borosilicate glass microspheres and comparing their scattered intensities with Lorenz-Mie theory. Back-scattering patterns are also presented from a single trapped Johnson grass spore, two attached Johnson grass spores, and a cluster of Johnson grass spores. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering data for lidar applications. C1 [Pan, Yong-Le; Beresnev, Leonid A.; Yuffa, Alex J.; Videen, Gorden; Ligon, David] Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA. [Wang, Chuji] Mississippi State Univ, Dept Phys & Astron, Starkville, MS 39759 USA. [Santarpia, Joshua L.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Pan, YL (reprint author), Army Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA. EM yongle.pan.civ@mail.mil FU Defense Threat Reduction Agency (DTRA) [HDTRS1518237, HDTRA1619734]; U.S. Army Research Laboratory (ARL) FX Defense Threat Reduction Agency (DTRA) (HDTRS1518237, HDTRA1619734); U.S. Army Research Laboratory (ARL). NR 30 TC 1 Z9 1 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JAN 20 PY 2017 VL 56 IS 3 BP B1 EP B4 DI 10.1364/AO.56.0000B1 PG 4 WC Optics SC Optics GA EJ6SA UT WOS:000393347900002 PM 28157859 ER PT J AU Sarney, WL Svensson, SP Ting, M Segercrantz, N Walukiewicz, W Yu, KM Martin, RW Novikov, SV Foxon, CT AF Sarney, Wendy L. Svensson, Stefan P. Ting, Min Segercrantz, Natalie Walukiewicz, Wladek Yu, Kin Man Martin, Robert W. Novikov, Sergei V. Foxon, C. T. TI Intermixing studies in GaN1-xSbx highly mismatched alloys SO APPLIED OPTICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; GAN-RICH SIDE; LUMINESCENCE EFFICIENCY; GROWTH; SURFACTANTS AB GaN1-xSbx with x similar to 5%-7% is a highly mismatched alloy predicted to have favorable properties for application as an electrode in a photoelectrochemical cell for solar water splitting. In this study, we grew GaN1-xSbx under conditions intended to induce phase segregation. Prior experiments with the similar alloy GaN1-xAsx, the tendency of Sb to surfact, and the low growth temperatures needed to incorporate Sb all suggested that GaN1-xSbx alloys would likely exhibit phase segregation. We found that, except for very high Sb compositions, this was not the case and that instead interdiffusion dominated. Characteristics measured by optical absorption were similar to intentionally grown bulk alloys for the same composition. Furthermore, the alloys produced by this method maintained crystallinity for very high Sb compositions and allowed higher overall Sb compositions. This method may allow higher temperature growth while still achieving needed Sb compositions for solar water splitting applications. (C) 2016 Optical Society of America C1 [Sarney, Wendy L.; Svensson, Stefan P.] US Army Res Lab, RDRL SEE I, 2800 Powder Mill Rd, Adelphi, MD 20783 USA. [Ting, Min; Segercrantz, Natalie; Walukiewicz, Wladek; Yu, Kin Man] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Segercrantz, Natalie] Aalto Univ, Sch Sci, Dept Appl Phys, POB 15100, FI-00076 Aalto, Finland. [Yu, Kin Man] City Univ Hong Kong, Dept Phys & Mat Sci, Kowloon, Hong Kong, Peoples R China. [Martin, Robert W.] Univ Strathclyde, SUPA, Dept Phys, Glasgow G4 0NG, Lanark, Scotland. [Novikov, Sergei V.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Ting, Min] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Sarney, WL (reprint author), US Army Res Lab, RDRL SEE I, 2800 Powder Mill Rd, Adelphi, MD 20783 USA. EM wendy.l.sarney.civ@mail.mil FU Engineering and Physical Sciences Research Council (EPSRC) [EP/I004203/1]; U.S. Army Research Office (ARO); ITC-Atlantic [W911NF-12-2-0003]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]; General Research Fund of the Research Grants Council of Hong Kong SAR, China [11303715] FX Engineering and Physical Sciences Research Council (EPSRC) (EP/I004203/1); U.S. Army Research Office (ARO) and ITC-Atlantic (W911NF-12-2-0003); U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-AC02-05CH11231); General Research Fund of the Research Grants Council of Hong Kong SAR, China (# 11303715). NR 25 TC 1 Z9 1 U1 2 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JAN 20 PY 2017 VL 56 IS 3 BP B64 EP B69 DI 10.1364/AO.56.000B64 PG 6 WC Optics SC Optics GA EJ6SA UT WOS:000393347900010 PM 28157866 ER PT J AU Lukens, JM Lougovski, P AF Lukens, Joseph M. Lougovski, Pavel TI Frequency-encoded photonic qubits for scalable quantum information processing SO OPTICA LA English DT Article ID WAVE-FORM GENERATION; ENTANGLED PHOTONS; OPTICAL-COMPONENT; KEY DISTRIBUTION; RING-RESONATOR; PULSE SHAPER; CHIP; AMPLITUDE; FABRICATION; MODULATORS AB Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguishable in frequency-a major challenge for systems experiencing different local environments or of different physical compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch for processing quantum information. Labeled "spectral linear optical quantum computation" (spectral LOQC), our protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an arbitrary N-qubit quantum gate may be performed in parallel on multiple N-qubit sets in the same linear optical device. Not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and robust optical quantum systems within reach. C1 [Lukens, Joseph M.; Lougovski, Pavel] Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. RP Lukens, JM (reprint author), Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. EM lukensjm@ornl.gov; lougovskip@ornl.gov FU Oak Ridge National Laboratory (ORNL) FX Oak Ridge National Laboratory (ORNL) (Wigner Fellowship). NR 78 TC 0 Z9 0 U1 3 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2334-2536 J9 OPTICA JI Optica PD JAN 20 PY 2017 VL 4 IS 1 BP 8 EP 16 DI 10.1364/OPTICA.4.000008 PG 9 WC Optics SC Optics GA EJ6RK UT WOS:000393346300002 ER PT J AU Aartsen, MG Abraham, K Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Andeen, K Anderson, T Ansseau, I Anton, G Archinger, M Arguelles, C Arlen, TC Auffenberg, J Axani, S Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blot, S Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Burgman, A Casey, J Casier, M Cheung, E Chirkin, D Christov, A Clark, K Classen, L Coenders, S Collin, GH Conrad, JM Cowen, DF Silva, AHC Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Rosendo, ED Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M DeYoung, T Diaz-Velez, JC di Lorenzo, V Dujmovic, H Dumm, JP Dunkman, M Eberhardt, B Ehrhardt, T Eichmann, B Euler, S Evenson, PA Fahey, S Fazely, AR Feintzeig, J Felde, J Filimonov, K Finley, C Flis, S Fosig, CC Franckowiak, A Fuchs, T Gaisser, TK Gaior, R Gallagher, J Gerhardt, L Ghorbani, K Giang, W Gladstone, L Glagla, M Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Gora, D Grant, D Griffith, Z Haack, C Ismail, AH Hallgren, A Halzen, F Hansen, E Hansmann, B Hansmann, T Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Holzapfel, K Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jeong, M Jero, K Jones, BJP Jurkovic, M Kappes, A Karg, T Karle, A Katz, U Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kim, M Kintscher, T Kiryluk, J Kittler, T Klein, SR Kohnen, G Koirala, R Kolanoski, H Konietz, R Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, M Kruckl, G Kruger, C Kunnen, J Kunwar, S Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lennarz, D Lesiak-Bzdak, M Leuermann, M Leuner, J Lu, L Lunemann, J Madsen, J Maggi, G Mahn, KBM Mancina, S Mandelartz, M Maruyama, R Mase, K Maunu, R McNally, F Meagher, K Medici, M Meier, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Mohrmann, L Montaruli, T Moulai, M Nahnhauer, R Naumann, U Neer, G Niederhausen, H Nowicki, SC Nygren, DR Pollmann, AO Olivas, A Omairat, A O'Murchadha, A Palczewski, T Pandya, H Pankova, DV Penek, O Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Quinnan, M Raab, C Radel, L Rameez, M Rawlins, K Reimann, R Relich, M Resconi, E Rhode, W Richman, M Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Rysewyk, D Sabbatini, L Herrera, SES Sandrock, A Sandroos, J Sarkar, S Satalecka, K Schimp, M Schlunder, P Schmidt, T Schoenen, S Schoneberg, S Schonwald, A Schumacher, L Seckel, D Seunarine, S Soldin, D Song, M Spiczak, GM Spiering, C Stahlberg, M Stamatikos, M Stanev, T Stasik, A Steuer, A Stezelberger, T Stokstad, RG Stossl, A Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Tatar, J Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Toscano, S Tosi, D Tselengidou, M Turcati, A Unger, E Usner, M Vallecorsa, S Vandenbroucke, J van Eijndhoven, N Vanheule, S van Rossem, M van Santen, J Veenkamp, J Vehring, M Voge, M Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Wickmann, S Wiebe, K Wiebusch, CH Wille, L Williams, DR Wills, L Wissing, H Wolf, M Wood, TR Woolsey, E Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zoll, M AF Aartsen, M. G. Abraham, K. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Andeen, K. Anderson, T. Ansseau, I. Anton, G. Archinger, M. Arguelles, C. Arlen, T. C. Auffenberg, J. Axani, S. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blot, S. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H. -P. Burgman, A. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Clark, K. Classen, L. Coenders, S. Collin, G. H. Conrad, J. M. Cowen, D. F. Silva, A. H. Cruz Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Rosendo, E. del Pino Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. DeYoung, T. Diaz-Velez, J. C. di Lorenzo, V. Dujmovic, H. Dumm, J. P. Dunkman, M. Eberhardt, B. Ehrhardt, T. Eichmann, B. Euler, S. Evenson, P. A. Fahey, S. Fazely, A. R. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Flis, S. Foesig, C. -C. Franckowiak, A. Fuchs, T. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardt, L. Ghorbani, K. Giang, W. Gladstone, L. Glagla, M. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Gora, D. Grant, D. Griffith, Z. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansen, E. Hansmann, B. Hansmann, T. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Holzapfel, K. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jeong, M. Jero, K. Jones, B. J. P. Jurkovic, M. Kappes, A. Karg, T. Karle, A. Katz, U. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kim, M. Kintscher, T. Kiryluk, J. Kittler, T. Klein, S. R. Kohnen, G. Koirala, R. Kolanoski, H. Konietz, R. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, M. Krueckl, G. Krueger, C. Kunnen, J. Kunwar, S. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lennarz, D. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Lu, L. Lunemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Mancina, S. Mandelartz, M. Maruyama, R. Mase, K. Maunu, R. McNally, F. Meagher, K. Medici, M. Meier, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Mohrmann, L. Montaruli, T. Moulai, M. Nahnhauer, R. Naumann, U. Neer, G. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Pollmann, A. Obertacke Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Pandya, H. Pankova, D. V. Penek, Oe. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Quinnan, M. Raab, C. Raedel, L. Rameez, M. Rawlins, K. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ryckbosch, D. Rysewyk, D. Sabbatini, L. Herrera, S. E. Sanchez Sandrock, A. Sandroos, J. Sarkar, S. Satalecka, K. Schimp, M. Schlunder, P. Schmidt, T. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schumacher, L. Seckel, D. Seunarine, S. Soldin, D. Song, M. Spiczak, G. M. Spiering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stasik, A. Steuer, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strom, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Tatar, J. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Toscano, S. Tosi, D. Tselengidou, M. Turcati, A. Unger, E. Usner, M. Vallecorsa, S. Vandenbroucke, J. van Eijndhoven, N. Vanheule, S. van Rossem, M. van Santen, J. Veenkamp, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallace, A. Wallraff, M. Wandkowsky, N. Weaver, Ch. Wendt, C. Westerhoff, S. Whelan, B. J. Wickmann, S. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wills, L. Wissing, H. Wolf, M. Wood, T. R. Woolsey, E. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zoll, M. CA IceCube Collaboration TI THE CONTRIBUTION OF FERMI-2LAC BLAZARS TO DIFFUSE TEV-PEV NEUTRINO FLUX SO ASTROPHYSICAL JOURNAL LA English DT Article DE astroparticle physics; BL Lacertae objects: general; gamma rays: galaxies; methods: data analysis; neutrinos; quasars: general ID ACTIVE GALACTIC NUCLEI; LARGE-AREA TELESCOPE; BL-LACERTAE OBJECTS; HIGH-ENERGY NEUTRINOS; ICECUBE DATA; LIKELIHOOD ANALYSIS; MAXIMUM-LIKELIHOOD; SIMPLIFIED VIEW; SOURCE CATALOG; LAC OBJECTS AB The recent discovery of a diffuse cosmic neutrino flux extending up to PeV energies raises the question of which astrophysical sources generate this signal. Blazars are one class of extragalactic sources which may produce such high-energy neutrinos. We present a likelihood analysis searching for cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalog (2LAC) using IceCube neutrino data set 2009-12, which was optimized for the detection of individual sources. In contrast to those in previous searches with IceCube, the populations investigated contain up to hundreds of sources, the largest one being the entire blazar sample in the 2LAC catalog. No significant excess is observed, and upper limits for the cumulative flux from these populations are obtained. These constrain the maximum contribution of 2LAC blazars to the observed astrophysical neutrino flux to 27% or less between around 10 TeV and 2 PeV, assuming the equipartition of flavors on Earth and a single power-law spectrum with a spectral index of -2.5. We can still exclude the fact that 2LAC blazars (and their subpopulations) emit more than 50% of the observed neutrinos up to a spectral index as hard as -2.2 in the same energy range. Our result takes into account the fact that the neutrino source count distribution is unknown, and it does not assume strict proportionality of the neutrino flux to the measured 2LAC gamma-ray signal for each source. Additionally, we constrain recent models for neutrino emission by blazars. C1 [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Wallace, A.; Whelan, B. J.] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. [Abraham, K.; Bernhard, A.; Coenders, S.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Ackermann, M.; Bernardini, E.; Blot, S.; Bretz, H. -P.; Silva, A. H. Cruz; Franckowiak, A.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kintscher, T.; Kowalski, M.; Kunwar, S.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Satalecka, K.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; van Santen, J.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Adams, J.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch, New Zealand. [Aguilar, J. A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.] Univ Libre Bruxelles, Fac Sci, CP230, B-1050 Brussels, Belgium. [Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Ahlers, M.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Krueger, C.; Mancina, S.; McNally, F.; Merino, G.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; van Rossem, M.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Dumm, J. P.; Finley, C.; Flis, S.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Altmann, D.; Anton, G.; Katz, U.; Kittler, T.; Tselengidou, M.] Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Andeen, K.] Marquette Univ, Dept Phys, Milwaukee, WI 53201 USA. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Pankova, D. V.; Quinnan, M.; Tesic, G.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Archinger, M.; Baum, V.; Boeser, S.; Rosendo, E. del Pino; di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C. -C.; Koepke, L.; Krueckl, G.; Sandroos, J.; Steuer, A.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany. [Arguelles, C.; Axani, S.; Collin, G. H.; Conrad, J. M.; Jones, B. J. P.; Moulai, M.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Auffenberg, J.; Bissok, M.; Glagla, M.; Haack, C.; Hansmann, B.; Hansmann, T.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Penek, Oe.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wickmann, S.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Klein, S. R.; Miarecki, S.; Price, P. B.; Tatar, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.] Ruhr Univ Bochum, Fac Phys & Astron, D-44780 Bochum, Germany. [Becker, K. -H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Naumann, U.; Pollmann, A. Obertacke; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [BenZvi, S.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Berghaus, P.] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Moscow, Russia. [Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Klein, S. R.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Tatar, J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Boersma, D. J.; Botner, O.; Burgman, A.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden. [Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Bose, D.; Dujmovic, H.; Jeong, M.; Kim, M.; Rott, C.; Tobin, M. N.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Lunemann, J.; Maggi, G.; Toscano, S.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Classen, L.; Kappes, A.] Westfalische Wilhelms Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [de Andre, J. P. A. M.; DeYoung, T.; Hignight, J.; Lennarz, D.; Mahn, K. B. M.; Neer, G.; Rysewyk, D.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Lu, L.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Giang, W.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Herrera, S. E. Sanchez; Weaver, Ch.; Wood, T. R.; Woolsey, E.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Hansen, E.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Homeier, A.; Voge, M.] Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany. [Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Kurahashi, N.; Richman, M.; Wills, L.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA. [Sarkar, S.] Univ Oxford, Dept Phys, 1 Keble Rd, Oxford OX1 3NP, England. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Glusenkamp, T (reprint author), DESY, D-15735 Zeuthen, Germany. EM thorsten.gluesenkamp@fau.de RI Beatty, James/D-9310-2011; Maruyama, Reina/A-1064-2013 OI Beatty, James/0000-0003-0481-4952; Maruyama, Reina/0000-0003-2794-512X FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory of Wisconsin's grid infrastructure at the University of Wisconsin-Madison; Open Science Grid's grid infrastructure; U.S. Department of Energy's National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative's grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid; Compute/Calcul Canada; Swedish Research Council, Sweden; Swedish Polar Research Secretariat, Sweden; Swedish National Infrastructure for Computing, Sweden; Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (Bochum), Germany; Deutsche Forschungsgemeinschaft (Bochum), Germany; Helmholtz Alliance for Astroparticle Physics (Bochum), Germany; Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research, FWO Odysseus program; Flanders Institute; Belgian Federal Science Policy Office; University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science; Swiss National Science Foundation, Switzerland; National Research Foundation of Korea (NRF); Villum Fonden, Danish National Research Foundation, Denmark FX We acknowledge support from the following agencies: the U.S. National Science Foundation-Office of Polar Programs, the U.S. National Science Foundation-Physics Division, the University of Wisconsin Alumni Research Foundation, the Grid Laboratory of Wisconsin's grid infrastructure at the University of Wisconsin-Madison, and the Open Science Grid's grid infrastructure; the U.S. Department of Energy's National Energy Research Scientific Computing Center and the Louisiana Optical Network Initiative's grid computing resources; the Natural Sciences and Engineering Research Council of Canada, WestGrid, and Compute/Calcul Canada; the Swedish Research Council, the Swedish Polar Research Secretariat, the Swedish National Infrastructure for Computing, and the Knut and Alice Wallenberg Foundation, Sweden; the German Ministry for Education and Research, Deutsche Forschungsgemeinschaft, the Helmholtz Alliance for Astroparticle Physics, and the Research Department of Plasmas with Complex Interactions (Bochum), Germany; the Fund for Scientific Research, FWO Odysseus program, Flanders Institute (to encourage scientific and technological research in industry) and the Belgian Federal Science Policy Office; the University of Oxford, United Kingdom; the Marsden Fund, New Zealand; the Australian Research Council; Japan Society for Promotion of Science; the Swiss National Science Foundation, Switzerland; the National Research Foundation of Korea (NRF); and Villum Fonden, Danish National Research Foundation, Denmark. NR 61 TC 0 Z9 0 U1 8 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2017 VL 835 IS 1 AR 45 DI 10.3847/1538-4357/835/1/45 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ8DO UT WOS:000393455400045 ER PT J AU Kuhar, M Krucker, S Hannah, IG Glesener, L Saint-Hilaire, P Grefenstette, BW Hudson, HS White, SM Smith, DM Marsh, AJ Wright, PJ Boggs, SE Christensen, FE Craig, WW Hailey, CJ Harrison, FA Stern, D Zhang, WW AF Kuhar, Matej Krucker, Sam Hannah, Iain G. Glesener, Lindsay Saint-Hilaire, Pascal Grefenstette, Brian W. Hudson, Hugh S. White, Stephen M. Smith, David M. Marsh, Andrew J. Wright, Paul J. Boggs, Steven E. Christensen, Finn E. Craig, William W. Hailey, Charles J. Harrison, Fiona A. Stern, Daniel Zhang, William W. TI EVIDENCE OF SIGNIFICANT ENERGY INPUT IN THE LATE PHASE OF A SOLAR FLARE FROM NuSTAR X-RAY OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE Sun: flares; Sun: particle emission; Sun: X-rays; gamma rays ID ACTIVE CORONAL PHENOMENA; ULTRAVIOLET LATE-PHASE; YOHKOH SXT IMAGES; GIANT ARCHES; ATOMIC DATABASE; MASS EJECTION; EMISSION; REGIONS; RHESSI; RECONNECTION AB We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at similar to 18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 angstrom channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8)x 10(46) cm(-3), and density estimated at (2.5-6.0) x 10(8) cm(-3). The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops' cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value. C1 [Kuhar, Matej; Krucker, Sam] Univ Appl Sci & Arts Northwestern Switzerland, Bahnhofstr 6, CH-5210 Windisch, Switzerland. [Kuhar, Matej] ETH, Inst Particle Phys, CH-8093 Zurich, Switzerland. [Krucker, Sam; Saint-Hilaire, Pascal; Hudson, Hugh S.; Boggs, Steven E.; Craig, William W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Hannah, Iain G.; Wright, Paul J.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Glesener, Lindsay] Univ Minnesota Twin Cities, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Grefenstette, Brian W.; Harrison, Fiona A.] CALTECH, Cahill Ctr Astrophys, 1216 E Calif Blvd, Pasadena, CA 91125 USA. [Hudson, Hugh S.] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [White, Stephen M.] Air Force Res Lab, Albuquerque, NM USA. [Smith, David M.; Marsh, Andrew J.] Univ Calif Santa Cruz, Dept Phys, 1156 High St, Santa Cruz, CA 95064 USA. [Smith, David M.; Marsh, Andrew J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, 1156 High St, Santa Cruz, CA 95064 USA. [Christensen, Finn E.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, William W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hailey, Charles J.] Columbia Univ, Columbia Astrophys Lab, 538 W 120th St, New York, NY 10027 USA. [Stern, Daniel] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Zhang, William W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Kuhar, M (reprint author), Univ Appl Sci & Arts Northwestern Switzerland, Bahnhofstr 6, CH-5210 Windisch, Switzerland.; Kuhar, M (reprint author), ETH, Inst Particle Phys, CH-8093 Zurich, Switzerland. RI Hannah, Iain/F-1972-2011; OI Hannah, Iain/0000-0003-1193-8603; Hudson, Hugh/0000-0001-5685-1283; Glesener, Lindsay/0000-0001-7092-2703; Wright, Paul/0000-0001-9021-611X; White, Stephen/0000-0002-8574-8629; Kuhar, Matej/0000-0002-7210-180X FU NASA [NNX12AJ36G, NNX14AG07G]; Swiss National Science Foundation [200021-140308]; NASA Earth and Space Science Fellowship [NNX13AM41H]; Royal Society University Research Fellowship; EPSRC-Royal Society fellowship engagement grant; NASA LCAS grant [NNX11AB75G] FX This work made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by NASA. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research made use of the NuSTAR Data Analysis Software (NuSTARDAS), jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). M.K. and S.K. acknowledge funding from the Swiss National Science Foundation (200021-140308). Funding for this work was also provided under NASA grants NNX12AJ36G and NNX14AG07G. A.J.M.'s participation was supported by NASA Earth and Space Science Fellowship award NNX13AM41H. I.G.H. is supported by a Royal Society University Research Fellowship. P.J.W. is supported by an EPSRC-Royal Society fellowship engagement grant. FOXSI was funded by NASA LCAS grant NNX11AB75G. We would also like to thank the anonymous referee for the helpful comments. NR 37 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2017 VL 835 IS 1 AR 6 DI 10.3847/1538-4357/835/1/6 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ8DO UT WOS:000393455400006 ER PT J AU Racusin, JL Burns, E Goldstein, A Connaughton, V Wilson-Hodge, CA Jenke, P Blackburn, L Briggs, MS Broida, J Camp, J Christensen, N Hui, CM Littenberg, T Shawhan, P Singer, L Veitch, J Bhat, PN Cleveland, W Fitzpatrick, G Gibby, MH von Kienlin, A McBreen, S Mailyan, B Meegan, CA Paciesas, WS Preece, RD Roberts, OJ Stanbro, M Veres, P Zhang, BB Ackermann, M Albert, A Atwood, WB Axelsson, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bellazzini, R Bissaldi, E Blandford, RD Bloom, ED Bonino, R Bregeon, J Bruel, P Buson, S Caliandro, GA Cameron, RA Caputo, R Caragiulo, M Caraveo, PA Cavazzuti, E Charles, E Chiang, J Ciprini, S Costanza, F Cuoco, A Cutini, S D'Ammando, F de Palma, F Desiante, R Digel, SW Di Lalla, N Di Mauro, M Di Venere, L Drell, PS Favuzzi, C Ferrara, EC Focke, WB Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Giglietto, N Gill, R Giroletti, M Glanzman, T Granot, J Green, D Grove, JE Guillemot, L Guiriec, S Harding, AK Jogler, T Johannesson, G Kamae, T Kensei, S Kocevski, D Kuss, M Larsson, S Latronico, L Li, J Longo, F Loparco, F Lubrano, P Magill, JD Maldera, S Malyshev, D Mazziotta, MN McEnery, JE Michelson, PF Mizuno, T Monzani, ME Morselli, A Moskalenko, IV Negro, M Nuss, E Omodei, N Orienti, M Orlando, E Ormes, JF Paneque, D Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Porter, TA Principe, G Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Parkinson, PMS Scargle, JD Sgro, C Simone, D Siskind, EJ Smith, DA Spada, F Spinelli, P Suson, DJ Tajima, H Thayer, JB Torres, DF Troja, E Uchiyama, Y Vianello, G Wood, KS Wood, M AF Racusin, J. L. Burns, E. Goldstein, A. Connaughton, V. Wilson-Hodge, C. A. Jenke, P. Blackburn, L. Briggs, M. S. Broida, J. Camp, J. Christensen, N. Hui, C. M. Littenberg, T. Shawhan, P. Singer, L. Veitch, J. Bhat, P. N. Cleveland, W. Fitzpatrick, G. Gibby, M. H. von Kienlin, A. McBreen, S. Mailyan, B. Meegan, C. A. Paciesas, W. S. Preece, R. D. Roberts, O. J. Stanbro, M. Veres, P. Zhang, B. -B. Ackermann, M. Albert, A. Atwood, W. B. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bellazzini, R. Bissaldi, E. Blandford, R. D. Bloom, E. D. Bonino, R. Bregeon, J. Bruel, P. Buson, S. Caliandro, G. A. Cameron, R. A. Caputo, R. Caragiulo, M. Caraveo, P. A. Cavazzuti, E. Charles, E. Chiang, J. Ciprini, S. Costanza, F. Cuoco, A. Cutini, S. D'Ammando, F. de Palma, F. Desiante, R. Digel, S. W. Di Lalla, N. Di Mauro, M. Di Venere, L. Drell, P. S. Favuzzi, C. Ferrara, E. C. Focke, W. B. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Giglietto, N. Gill, R. Giroletti, M. Glanzman, T. Granot, J. Green, D. Grove, J. E. Guillemot, L. Guiriec, S. Harding, A. K. Jogler, T. Johannesson, G. Kamae, T. Kensei, S. Kocevski, D. Kuss, M. Larsson, S. Latronico, L. Li, J. Longo, F. Loparco, F. Lubrano, P. Magill, J. D. Maldera, S. Malyshev, D. Mazziotta, M. N. McEnery, J. E. Michelson, P. F. Mizuno, T. Monzani, M. E. Morselli, A. Moskalenko, I. V. Negro, M. Nuss, E. Omodei, N. Orienti, M. Orlando, E. Ormes, J. F. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Principe, G. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Parkinson, P. M. Saz Scargle, J. D. Sgro, C. Simone, D. Siskind, E. J. Smith, D. A. Spada, F. Spinelli, P. Suson, D. J. Tajima, H. Thayer, J. B. Torres, D. F. Troja, E. Uchiyama, Y. Vianello, G. Wood, K. S. Wood, M. CA LAT Collaboration TI SEARCHING THE GAMMA-RAY SKY FOR COUNTERPARTS TO GRAVITATIONAL WAVE SOURCES: FERMI GAMMA-RAY BURST MONITOR. AND LARGE AREA TELESCOPE OBSERVATIONS OF LVT151012 AND GW151226 SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma rays: general; gravitational waves; methods: observational ID EVENT GW150914; ELECTROMAGNETIC COUNTERPARTS; SPECTRAL CATALOG; NEUTRON-STAR; GEV EMISSION; FOLLOW-UP; LIGO; TRANSIENTS; AFTERGLOW; MERGERS AB We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger event GW151226 and candidate LVT151012. At the time of the LIGO triggers on LVT151012 and GW151226, GBM was observing 68% and 83% of the localization regions, and LAT was observing 47% and 32%, respectively. No candidate electromagnetic counterparts were detected by either the GBM or LAT. We present a detailed analysis of the GBM and LAT data over a range of timescales from seconds to years, using automated pipelines and new techniques for characterizing the flux upper bounds across large areas of the sky. Due to the partial GBM and LAT coverage of the large LIGO localization regions at the trigger times for both events, differences in source distances and masses, as well as the uncertain degree to which emission from these sources could be beamed, these non-detections cannot be used to constrain the variety of theoretical models recently applied to explain the candidate GBM counterpart to GW150914. C1 [Racusin, J. L.; Camp, J.; Singer, L.; Buson, S.; Ferrara, E. C.; Green, D.; Guiriec, S.; Harding, A. K.; Kocevski, D.; McEnery, J. E.; Perkins, J. S.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Burns, E.] Univ Alabama, Dept Phys, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Goldstein, A.; Connaughton, V.; Littenberg, T.; Cleveland, W.; Paciesas, W. S.] Univ Space Res Assoc, 320 Sparkman Dr, Huntsville, AL 35806 USA. [Wilson-Hodge, C. A.; Hui, C. M.] NASA, Astrophys Off, Marshall Space Flight Ctr, ZP12, Huntsville, AL 35812 USA. [Jenke, P.; Briggs, M. S.; Bhat, P. N.; Mailyan, B.; Meegan, C. A.; Veres, P.; Zhang, B. -B.] Univ Alabama, CSPAR, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Blackburn, L.] MIT, LIGO, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Briggs, M. S.; Preece, R. D.; Stanbro, M.] Univ Alabama, Dept Space Sci, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Broida, J.; Christensen, N.] Carleton Coll, Phys & Astron, Northfield, MN 55057 USA. [Shawhan, P.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Veitch, J.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Fitzpatrick, G.; McBreen, S.; Roberts, O. J.] Univ Coll Dublin, Sch Phys, Stillorgan Rd, Dublin 4, Ireland. [Gibby, M. H.] Jacobs Technol Inc, Huntsville, AL USA. [von Kienlin, A.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Zhang, B. -B.] CSIC, Inst Astrofis Andalucia, POB 03004, E-18080 Granada, Spain. [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Albert, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Atwood, W. B.; Caputo, R.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Caputo, R.; Parkinson, P. M. Saz] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Axelsson, M.; Larsson, S.] KTH Royal Inst Technol, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Axelsson, M.] Tokyo Metropolitan Univ, Dept Phys, Minami Osawa 1-1, Hachioji, Tokyo 1920397, Japan. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.] Univ Paris Diderot, CNRS, Lab AIM, CEA,IRFU,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, MS-108,POB 1892, Houston, TX 77251 USA. [Bastieri, D.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Rando, R.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bellazzini, R.; Di Lalla, N.; Kuss, M.; Pesce-Rollins, M.; Pivato, G.; Razzano, M.; Sgro, C.; Spada, F.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bissaldi, E.; Caragiulo, M.; Costanza, F.; de Palma, F.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Loparco, F.; Mazziotta, M. N.; Raino, S.; Simone, D.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Blandford, R. D.; Bloom, E. D.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; Di Mauro, M.; Drell, P. S.; Focke, W. B.; Glanzman, T.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Blandford, R. D.; Bloom, E. D.; Caliandro, G. A.; Cameron, R. A.; Charles, E.; Chiang, J.; Digel, S. W.; Di Mauro, M.; Drell, P. S.; Focke, W. B.; Glanzman, T.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Omodei, N.; Orlando, E.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. B.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Bonino, R.; Cuoco, A.; Desiante, R.; Latronico, L.; Maldera, S.; Negro, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bonino, R.; Negro, M.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy. [Bregeon, J.; Nuss, E.; Piron, F.] Univ Montpellier, CNRS, IN2P3, Lab Univers & Particules Montpellier, F-34095 Montpellier, France. [Bruel, P.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.] CIFS, I-10133 Turin, Italy. [Caragiulo, M.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Loparco, F.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Caragiulo, M.; Di Venere, L.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Loparco, F.; Raino, S.; Spinelli, P.] Politecn Bari, I-70126 Bari, Italy. [Caraveo, P. A.] Ist Astrofis Spaziale & Fis Cosm Milano, INAF, Via E Bassini 15, I-20133 Milan, Italy. [Cavazzuti, E.; Ciprini, S.; Cutini, S.; Gasparrini, D.] ASI, Sci Data Ctr, I-00133 Rome, Italy. [Ciprini, S.; Cutini, S.; Gasparrini, D.; Lubrano, P.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Cuoco, A.] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany. [D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [D'Ammando, F.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [de Palma, F.] Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy. [Desiante, R.] Univ Udine, I-33100 Udine, Italy. [Fukazawa, Y.; Kensei, S.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Funk, S.; Malyshev, D.; Principe, G.] Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Gill, R.; Granot, J.] Open Univ Israel, Dept Nat Sci, 1 Univ Rd,POB 808, IL-43537 Raanana, Israel. [Green, D.; Magill, J. D.; McEnery, J. E.; Troja, E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Green, D.; Magill, J. D.; McEnery, J. E.; Troja, E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Grove, J. E.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Guillemot, L.] Univ Orleans, CNRS, Lab Phys & Chim Environm & Espace, F-45071 Orleans 02, France. [Guillemot, L.] Observ Paris, CNRS, INSU, Stn Radioastron Nancay, F-18330 Nancay, France. [Jogler, T.] Friedrich Alexander Univ, Schlosspl 4, D-91054 Erlangen, Germany. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kamae, T.] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Larsson, S.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Li, J.; Torres, D. F.] CSIC, Inst Space Sci, IEEC, Campus UAB, E-08193 Barcelona, Spain. [Mizuno, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Morselli, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Razzaque, S.] Univ Johannesburg, Dept Phys, POB 524, ZA-2006 Auckland Pk, South Africa. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Parkinson, P. M. Saz] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. [Parkinson, P. M. Saz] Univ Hong Kong, Lab Space Res, Hong Kong, Hong Kong, Peoples R China. [Scargle, J. D.] NASA, Div Space Sci, Ames Res Ctr, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Smith, D. A.] Univ Bordeaux 1, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, CNRS, BP120, F-33175 Gradignan, France. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Torres, D. F.] ICREA, Barcelona, Spain. [Uchiyama, Y.] Rikkyo Univ, Dept Phys, Toshima Ku, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, Japan. [Wood, K. S.] Praxis Inc, Alexandria, VA 22303 USA. [Wood, K. S.] Naval Res Lab, Washington, DC 20375 USA. RP Racusin, JL (reprint author), NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.; Burns, E (reprint author), Univ Alabama, Dept Phys, 320 Sparkman Dr, Huntsville, AL 35805 USA.; Goldstein, A (reprint author), Univ Space Res Assoc, 320 Sparkman Dr, Huntsville, AL 35806 USA.; Omodei, N; Vianello, G (reprint author), Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA.; Omodei, N; Vianello, G (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. EM judith.racusin@nasa.gov; EricKayserBurns@gmail.com; adam.m.goldstein@nasa.gov; nicola.omodei@stanford.edu; giacomov@stanford.edu OI Mazziotta, Mario Nicola/0000-0001-9325-4672 FU NASA; Bundesministerium fur Bildung und Forschung (BMBF) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) [50 QV 0301]; NASA Postdoctoral Fellowship Program; NSF [PHY-1505373] FX The GBM project is supported by NASA. Support for the German contribution to GBM was provided by the Bundesministerium fur Bildung und Forschung (BMBF) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) under contract number 50 QV 0301. AG is funded through the NASA Postdoctoral Fellowship Program.; NC and JB are supported by NSF grant PHY-1505373. NR 62 TC 0 Z9 0 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2017 VL 835 IS 1 AR 82 DI 10.3847/1538-4357/835/1/82 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ8DO UT WOS:000393455400082 ER PT J AU Vreeswijk, PM Leloudas, G Gal-Yam, A De Cia, A Perley, DA Quimby, RM Waldman, R Sullivan, M Yan, L Ofek, EO Fremling, C Taddia, F Sollerman, J Valenti, S Arcavi, I Howell, DA Filippenko, AV Cenko, SB Yaron, O Kasliwal, MM Cao, Y Ben-Ami, S Horesh, A Rubin, A Lunnan, R Nugent, PE Laher, R Rebbapragada, UD Wozniak, P Kulkarni, SR AF Vreeswijk, Paul M. Leloudas, Giorgos Gal-Yam, Avishay De Cia, Annalisa Perley, Daniel A. Quimby, Robert M. Waldman, Roni Sullivan, Mark Yan, Lin Ofek, Eran O. Fremling, Christoffer Taddia, Francesco Sollerman, Jesper Valenti, Stefano Arcavi, Iair Howell, D. Andrew Filippenko, Alexei V. Cenko, S. Bradley Yaron, Ofer Kasliwal, Mansi M. Cao, Yi Ben-Ami, Sagi Horesh, Assaf Rubin, Adam Lunnan, Ragnhild Nugent, Peter E. Laher, Russ Rebbapragada, Umaa D. Wozniak, Przemyslaw Kulkarni, Shrinivas R. TI ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (PTF 12dam, iPTF 13dcc) ID LIGHT CURVES; LUMINOUS SUPERNOVAE; SHOCK-BREAKOUT; IC SUPERNOVAE; HOST GALAXY; ANALYTIC SOLUTIONS; MASS-LOSS; EXPLOSIONS; TRANSIENT; MAGNETAR AB We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (similar to 10 days) and brightness relative to the main peak (2-3 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (>30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of Ni-56 and Co-56, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium. C1 [Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; De Cia, Annalisa; Waldman, Roni; Ofek, Eran O.; Yaron, Ofer; Ben-Ami, Sagi; Horesh, Assaf; Rubin, Adam] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel. [Leloudas, Giorgos; Perley, Daniel A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen O, Denmark. [De Cia, Annalisa] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Perley, Daniel A.; Kasliwal, Mansi M.; Cao, Yi; Lunnan, Ragnhild; Kulkarni, Shrinivas R.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Quimby, Robert M.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Quimby, Robert M.] Univ Tokyo, UTIAS, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan. [Waldman, Roni] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Sullivan, Mark] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Yan, Lin] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Fremling, Christoffer; Taddia, Francesco; Sollerman, Jesper] Stockholm Univ, AlbaNova, Dept Astron, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Valenti, Stefano] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Arcavi, Iair; Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Arcavi, Iair; Howell, D. Andrew] Las Cumbres Observ Global Telescope, 6740 Cortona Dr,Suite 102, Goleta, CA 93111 USA. [Filippenko, Alexei V.; Nugent, Peter E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Cenko, S. Bradley] NASA, Goddard Space Flight Ctr, Astrophys Sci Div, Mail Code 661, Greenbelt, MD 20771 USA. [Cenko, S. Bradley] Univ Maryland, Joint Space Sci Inst, College Pk, MD 20742 USA. [Ben-Ami, Sagi] Harvard Smithsonian Ctr Astrophys, Smithsonian Astrophys Observ, 60 Garden St, Cambridge, MA 02138 USA. [Nugent, Peter E.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Laher, Russ] CALTECH, Spitzer Sci Ctr, MS 314-6, Pasadena, CA 91125 USA. [Rebbapragada, Umaa D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wozniak, Przemyslaw] Los Alamos Natl Lab, MS D436, Los Alamos, NM 87545 USA. RP Vreeswijk, PM (reprint author), Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel. EM paul.vreeswijk@weizmann.ac.il OI Sullivan, Mark/0000-0001-9053-4820; Gal-Yam, Avishay/0000-0002-3653-5598 FU W. M. Keck Foundation; National Science Foundation [AST-1005313]; DNRF; EU/FP7 via ERC grant [307260]; Quantum Universe I-Core program by the Israeli Committee for planning; ISF; GIF; Minerva; NASA through Hubble Fellowship - Space Telescope Science Institute [HST-HF-51296.01-A]; NASA [NAS 5-26555]; EU/FP7-ERC grant [615929]; Willner Family Leadership Institute Ilan Gluzman (Secaucus NJ); Israel Science Foundation; I-CORE Program of the Planning and Budgeting Committee; NASA through the Einstein Fellowship Program [PF6-170148]; NSF grant [AST-1211916]; TABASGO Foundation; Christopher R. Redlich Fund; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX It is a pleasure to acknowledge the help of Manos Chatzopoulos with the implementation of the semianalytical light-curve models developed by him and his colleagues in our light-curve fitting program. We are grateful to Nir Sapir for enlightening discussions, and to WeiKang Zheng, Kelsey Clubb, and Patrick Kelly for their contribution to the 2013 December 3 Keck/LRIS observations of iPTF 13dcc. We thank the staffs at Palomar and Lick Observatories for their expert assistance. The intermediate Palomar Transient Factory project is a scientific collaboration among the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin at Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the Universe. This paper is based in part on observations made with the NASA/ESA Hubble Space Telescope. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. Research at Lick Observatory is partially supported by a generous gift from Google. These results also made use of the Discovery Channel Telescope at Lowell Observatory. Lowell is a private, non-profit institution dedicated to astrophysical research and public appreciation of astronomy and operates the DCT in partnership with Boston University, the University of Maryland, the University of Toledo, Northern Arizona University, and Yale University. LMI construction was supported by a grant AST-1005313 from the National Science Foundation.; The Dark Cosmology Centre is funded by the DNRF. A.G.-Y. is supported by the EU/FP7 via ERC grant No. 307260, the Quantum Universe I-Core program by the Israeli Committee for planning and funding, and the ISF, GIF, Minerva, and ISF grants, WIS-UK "making connections," and Kimmel and ARCHES awards. Support for D.A.P. was provided by NASA through Hubble Fellowship grant HST-HF-51296.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. M.S. acknowledges support from EU/FP7-ERC grant 615929. E.O.O. is incumbent of the Arye Dissentshik career development chair and is grateful to support by grants from the Willner Family Leadership Institute Ilan Gluzman (Secaucus NJ), Israel Science Foundation, Minerva, and the I-CORE Program of the Planning and Budgeting Committee and The Israel Science Foundation. Support for I. A. was provided by NASA through the Einstein Fellowship Program, grant PF6-170148. A.V.F.'s supernova group at UC Berkeley is supported through NSF grant AST-1211916, the TABASGO Foundation, and the Christopher R. Redlich Fund. The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, provided staff, computational resources, and data storage for this project. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 91 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 20 PY 2017 VL 835 IS 1 AR 58 DI 10.3847/1538-4357/835/1/58 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ8DO UT WOS:000393455400058 ER PT J AU Gering, KL AF Gering, Kevin L. TI Prediction of Electrolyte Conductivity: Results from a Generalized Molecular Model Based on Ion Solvation and a Chemical Physics Framework SO ELECTROCHIMICA ACTA LA English DT Article DE electrolyte; ionic conductivity; ion solvation; chemical physics; lithium battery ID EQUILIBRIUM STATISTICAL-MECHANICS; CATION-SOLVENT INTERACTION; EQUATION-OF-STATE; PROPYLENE CARBONATE; DIELECTRIC FRICTION; ETHYLENE CARBONATE; LITHIUM-ION; ROTATIONAL DIFFUSION; TRANSPORT-PROPERTIES; RAMAN INTENSITY AB Ionic conductivity is a foremost transport property that is extensively used to characterize and screen electrolyte systems. Although bulk measurements are done on the macroscopic scale, electrolytic conductivity has its foundation on molecular-scale interactions between solvent and ionic species. Correct interpretations of these molecular interactions and related quantities enable a balanced, comprehensive understanding of conductivity behavior with respect to system conditions (solvent composition, salt concentration and temperature). This work introduces a new methodology that achieves accurate predictions of electrolyte conductivity for a wide range of conditions, based on molecular, physical, and chemical terms. The formalism is universal, making it valid for aqueous and nonaqueous systems alike. The immediate application of the resultant model is candidate electrolytes for lithium-ion and sodium-ion batteries, although many other applications abound for systems that utilize liquid electrolytes. Conductivity predictions are compared to experimental data for a number of electrolytes over a wide range of conditions, demonstrating that exceptional accuracy is attained because the robust model captures multiple salient contributions to conductivity behavior. Model accuracy is well maintained over multi-solvent systems and for extended salt concentrations. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Gering, Kevin L.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. RP Gering, KL (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM kevin.gering@inl.gov FU INL Laboratory Directed Research and Development (LDRD) program office; U.S. DOE Vehicle Technologies Program Office FX This work was performed through support from the INL Laboratory Directed Research and Development (LDRD) program office and the U.S. DOE Vehicle Technologies Program Office. NR 84 TC 0 Z9 0 U1 8 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD JAN 20 PY 2017 VL 225 BP 175 EP 189 DI 10.1016/j.electacta.2016.12.083 PG 15 WC Electrochemistry SC Electrochemistry GA EJ8US UT WOS:000393502500020 ER PT J AU Ceron, MR Castro, E Neti, VSPK Dunk, PW Echegoyen, LA AF Ceron, Maira R. Castro, Edison Neti, Venkata S. Pavan K. Dunk, Paul W. Echegoyen, Luis A. TI Regiochemically Controlled Synthesis of a beta-4-beta ' [70]Fullerene Bis-Adduct SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; DIRECTED REMOTE FUNCTIONALIZATION; ETHYLENE-TETHERED INDENE; BISADDUCT REGIOISOMERS; FULLERENE-BISADDUCTS; C-70; PERFORMANCE; C-60; DERIVATIVES; ADDENDS AB A beta-4-beta' C-70 bis-adduct regioisomer and an uncommon mono-adduct beta-malonate C-70 derivative were synthesized by using a Diels-Alder cycloaddition followed by an addition elimination of bromo-ethylmalonate and a retro-Diels Alder cycloaddition reaction. We also report the regioselective synthesis and spectroscopic characterization of c-syrnmetric tris- and C-2v-symmetric tetra-adducts of C-70, which are the precursors of the mono- and bis-adduct final products. C1 [Ceron, Maira R.; Castro, Edison; Neti, Venkata S. Pavan K.; Echegoyen, Luis A.] Univ Texas El Paso, Dept Chem, 500 West Univ Ave, El Paso, TX 79968 USA. [Ceron, Maira R.] Lawrence Livermore Natl Lab, Phys & Life Sci, 7000 East Ave, Livermore, CA 94550 USA. [Dunk, Paul W.] Florida State Univ, Natl High Magnet Field Lab, 1800 East Paul Dirac Dr, Tallahassee, FL 32310 USA. RP Echegoyen, LA (reprint author), Univ Texas El Paso, Dept Chem, 500 West Univ Ave, El Paso, TX 79968 USA. EM echegoyen@utep.edu FU US National Science Foundation (NSF) [DMR 1205302]; Robert A. Welch Foundation [AH-0033]; NSF [DMR-11-57490]; State of Florida FX L.E. thanks the US National Science Foundation (NSF) for generous support of this work under the NSF-PREM program (DMR 1205302). The Robert A. Welch Foundation is also gratefully acknowledged for an endowed chair to L.E. (Grant AH-0033). LD FT-ICR MS was performed at the National High Magnetic Field Laboratory, which is supported by the NSF Cooperative Agreement through DMR-11-57490 and the State of Florida. NR 32 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD JAN 20 PY 2017 VL 82 IS 2 BP 893 EP 897 DI 10.1021/acs.joc.6b02301 PG 5 WC Chemistry, Organic SC Chemistry GA EI5XL UT WOS:000392569500006 PM 28006098 ER PT J AU Knudson, MD Desjarlais, MP AF Knudson, M. D. Desjarlais, M. P. TI High-Precision Shock Wave Measurements of Deuterium: Evaluation of Exchange-Correlation Functionals at the Molecular-to-Atomic Transition SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIQUID DEUTERIUM; HYDROGEN AB We present shock compression data for deuterium through the molecular-to-atomic transition along the principal Hugoniot with unprecedented precision, enabling discrimination between subtle differences in first-principle theoretical predictions. These observations, supported through reshock measurements, provide tight constraints in a regime directly relevant to planetary interiors. Our findings are in best agreement with density functional theory; however, no one exchange-correlation functional describes well both the onset of dissociation and the maximum compression along the Hugoniot. C1 [Knudson, M. D.; Desjarlais, M. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Knudson, M. D.] Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge the crew of the Sandia Z facility for their contributions to these experiments. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 36 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 20 PY 2017 VL 118 IS 3 AR 035501 DI 10.1103/PhysRevLett.118.035501 PG 5 WC Physics, Multidisciplinary SC Physics GA EI2BD UT WOS:000392290200018 PM 28157359 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Brown, DN Kolomensky, YG Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Lankford, AJ Gary, JW Long, O Eisner, AM Lockman, WS Vazquez, WP Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Kim, J Miyashita, TS Ongmongkolkul, P Porter, FC Rohrken, M Huard, Z Meadows, BT Pushpawela, BG Sokoloff, MD Sun, L Smith, JG Wagner, SR Bernard, D Verderi, M Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Santoro, V Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Zallo, A Passaggio, S Patrignani, C Bhuyan, B Mallik, U Chen, C Cochran, J Prell, S Ahmed, H Gritsan, AV Arnaud, N Davier, M Le Diberder, F Lutz, AM Wormser, G Lange, DJ Wright, DM Coleman, JP Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Banerjee, S Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Schubert, KR Barlow, RJ Lafferty, GD Cenci, R Jawahery, A Roberts, DA Cowan, R Cheaib, R Robertson, SH Dey, B Neri, N Palombo, F Cremaldi, L Godang, R Summers, DJ Taras, P De Nardo, G Sciacca, C Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Gaz, A Margoni, M Posocco, M Rotondo, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Calderini, G Chauveau, J Marchiori, G Ocariz, J Biasini, M Manoni, E Rossi, A Batignani, G Bettarini, S Carpinelli, M Casarosa, G Chrzaszcz, M Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Rama, M Rizzo, G Walsh, JJ Smith, AJS Anulli, F Faccini, R Ferrarotto, F Ferroni, F Pilloni, A Piredda, G Bunger, C Dittrich, S Grunberg, O Hess, M Leddig, T Voss, C Waldi, R Adye, T Wilson, FF Emery, S Vasseur, G Aston, D Cartaro, C Convery, MR Dorfan, J Dunwoodie, W Ebert, M Field, RC Fulsom, BG Graham, MT Hast, C Innes, WR Kim, P Leith, DWGS Luitz, S Luth, V MacFarlane, DB Muller, DR Neal, H Ratcliff, BN Roodman, A Sullivan, MK Va'vra, J Wisniewski, WJ Purohit, MV Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Schwitters, RF Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Albert, J Beaulieu, A Bernlochner, FU King, GJ Kowalewski, R Lueck, T Nugent, IM Roney, JM Tasneem, N Gershon, TJ Harrison, PF Latham, TE Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Brown, D. N. Kolomensky, Yu. G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Lankford, A. J. Gary, J. W. Long, O. Eisner, A. M. Lockman, W. S. Vazquez, W. Panduro Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Kim, J. Miyashita, T. S. Ongmongkolkul, P. Porter, F. C. Roehrken, M. Huard, Z. Meadows, B. T. Pushpawela, B. G. Sokoloff, M. D. Sun, L. Smith, J. G. Wagner, S. R. Bernard, D. Verderi, M. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Santoro, V. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Zallo, A. Passaggio, S. Patrignani, C. Bhuyan, B. Mallik, U. Chen, C. Cochran, J. Prell, S. Ahmed, H. Gritsan, A. V. Arnaud, N. Davier, M. Le Diberder, F. Lutz, A. M. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Banerjee, Sw. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Schubert, K. R. Barlow, R. J. Lafferty, G. D. Cenci, R. Jawahery, A. Roberts, D. A. Cowan, R. Cheaib, R. Robertson, S. H. Dey, B. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Summers, D. J. Taras, P. De Nardo, G. Sciacca, C. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Gaz, A. Margoni, M. Posocco, M. Rotondo, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Calderini, G. Chauveau, J. Marchiori, G. Ocariz, J. Biasini, M. Manoni, E. Rossi, A. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Chrzaszcz, M. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Rama, M. Rizzo, G. Walsh, J. J. Smith, A. J. S. Anulli, F. Faccini, R. Ferrarotto, F. Ferroni, F. Pilloni, A. Piredda, G. Buenger, C. Dittrich, S. Gruenberg, O. Hess, M. Leddig, T. Voss, C. Waldi, R. Adye, T. Wilson, F. F. Emery, S. Vasseur, G. Aston, D. Cartaro, C. Convery, M. R. Dorfan, J. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Leith, D. W. G. S. Luitz, S. Luth, V. MacFarlane, D. B. Muller, D. R. Neal, H. Ratcliff, B. N. Roodman, A. Sullivan, M. K. Va'vra, J. Wisniewski, W. J. Purohit, M. V. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Schwitters, R. F. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Albert, J. Beaulieu, A. Bernlochner, F. U. King, G. J. Kowalewski, R. Lueck, T. Nugent, I. M. Roney, J. M. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Prepost, R. Wu, S. L. CA BaBaR Collaboration TI Search for B+ -> K+tau(+)tau(-) at the BABAR Experiment SO PHYSICAL REVIEW LETTERS LA English DT Article ID DOUBLET MODEL; DECAYS; DETECTOR; PHYSICS AB We search for the rare flavor-changing neutral current process B+ -> K+tau(+)tau(-) using data from the BABAR experiment. The data sample, collected at the center-of-mass energy of the Upsilon(4S) resonance, corresponds to a total integrated luminosity of 424 fb(-1) and to 471 x 10(6) B (B) over bar pairs. We reconstruct one B meson, produced in the Upsilon(4S) -> B+B- decay, in one of many hadronic decay modes and search for activity compatible with a B+ -> K+tau(+)tau(-) decay in the rest of the event. Each tau lepton is required to decay leptonically into an electron or muon and neutrinos. Comparing the expected number of background events with the data sample after applying the selection criteria, we do not find evidence for a signal. The resulting upper limit, at the 90% confidence level, is B(B+ -> K+tau(+)tau(-)) < 2.25 x 10(-3). C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, IN2P3, CNRS, LAPP, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Univ Bari, INFN Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kolomensky, Yu. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kolomensky, Yu. G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] RAS, Budker Inst Nucl Phys SB, Novosibirsk 630090, Russia. [Blinov, V. E.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Lankford, A. J.] Univ Calif Irvine, Irvine, CA 92697 USA. [Gary, J. W.; Long, O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Eisner, A. M.; Lockman, W. S.; Vazquez, W. Panduro] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Roehrken, M.] CALTECH, Pasadena, CA 91125 USA. [Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Bernard, D.; Verderi, M.] Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.] INFN Sez Ferrara, I-44122 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Zallo, A.] INFN Lab Nazl Frascati, I-00044 Frascati, Italy. [Passaggio, S.; Patrignani, C.] INFN Sez Genova, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Prell, S.] Iowa State Univ, Ames, IA 50011 USA. [Ahmed, H.] Jazan Univ, Dept Phys, Jazan 22822, Saudi Arabia. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.] IN2P3, CNRS, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.] Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Univ London, London E1 4NS, England. [Cowan, G.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Banerjee, Sw.; Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Dey, B.; Neri, N.; Palombo, F.] INFN Sez Milano, I-20133 Milan, Italy. [Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Taras, P.] Univ Montreal, Phys Particules, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Sciacca, C.] Univ Napoli Federico II, INFN Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Sciacca, C.] Univ Napoli Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Gaz, A.; Margoni, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.] INFN Sez Padova, I-35131 Padua, Italy. [Margoni, M.; Simi, G.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.] Univ Denis Diderot Paris7, Univ Pierre & Marie Curie Paris6, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] INFN Sez Perugia, I-06123 Perugia, Italy. [Biasini, M.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.] INFN Sez Pisa, I-56127 Pisa, Italy. [Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.] INFN Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Dittrich, S.; Gruenberg, O.; Hess, M.; Leddig, T.; Voss, C.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Vasseur, G.] Ctr Saclay, SPP, Irfu, CEA, F-91191 Gif Sur Yvette, France. [Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Luth, V.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Purohit, M. V.; Wilson, J. R.] Univ South Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] Southern Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.] INFN Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Gamba, D.] Univ Torino, Dipartimento Fis, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, INFN Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Sun, L.] Wuhan Univ, Wuhan 43072, Peoples R China. [Patrignani, C.] Univ Bologna, I-47921 Rimini, Italy. [Patrignani, C.] INFN Sez Bologna, I-47921 Rimini, Italy. [Barlow, R. J.] Univ Huddersfield, Huddersfield HD1 3DH, W Yorkshire, England. [Godang, R.] Univ S Alabama, Mobile, AL 36688 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RI Patrignani, Claudia/C-5223-2009 OI Patrignani, Claudia/0000-0002-5882-1747 FU SLAC; DOE (U.S.); NSF (U.S.); Natural Sciences and Engineering Research Council of Canada (Canada); Commissariat a l'Energie Atomique et aux Energies Alternatives (France); Centre National de la Recherche Scientifique-IN2P3 (France); Bundesministerium fur Bildung ind Forschung (Germany); Deutsche Forschungsgemeinschaft (Germany); Instituto Nazionale di Fisica Nucleare (Italy); Stichting voor Fundamenteel Onderzoek der Materie (The Netherlands); Norges forskningsrad (Norway); Ministry of education and science (Russia); Ministerio de Economia y Competitividad (Spain); Science and Technology Facilities Council (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation (U.S.) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II2 colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), Natural Sciences and Engineering Research Council of Canada (Canada), Commissariat a l'Energie Atomique et aux Energies Alternatives and Centre National de la Recherche Scientifique-IN2P3 (France), Bundesministerium fur Bildung ind Forschung and Deutsche Forschungsgemeinschaft (Germany), Instituto Nazionale di Fisica Nucleare (Italy), Stichting voor Fundamenteel Onderzoek der Materie (The Netherlands), Norges forskningsrad (Norway), Ministry of education and science (Russia), Ministerio de Economia y Competitividad (Spain), and Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (U.S.). NR 34 TC 1 Z9 1 U1 7 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 20 PY 2017 VL 118 IS 3 AR 031802 DI 10.1103/PhysRevLett.118.031802 PG 8 WC Physics, Multidisciplinary SC Physics GA EI2BD UT WOS:000392290200010 PM 28157371 ER PT J AU Hartley, DJ Riedinger, LL Janssens, RVF Majola, SNT Riley, MA Allmond, JM Beausang, CW Carpenter, MP Chiara, CJ Cooper, N Curien, D Gall, BJP Garrett, PE Kondev, FG Kulp, WD Lauritsen, T McCutchan, EA Miller, D Miller, S Piot, J Redon, N Sharpey-Schafer, JF Simpson, J Stefanescu, I Wang, X Werner, V Wood, JL Yu, CH Zhu, S Dudek, J AF Hartley, D. J. Riedinger, L. L. Janssens, R. V. F. Majola, S. N. T. Riley, M. A. Allmond, J. M. Beausang, C. W. Carpenter, M. P. Chiara, C. J. Cooper, N. Curien, D. Gall, B. J. P. Garrett, P. E. Kondev, F. G. Kulp, W. D. Lauritsen, T. McCutchan, E. A. Miller, D. Miller, S. Piot, J. Redon, N. Sharpey-Schafer, J. F. Simpson, J. Stefanescu, I. Wang, X. Werner, V. Wood, J. L. Yu, C. -H. Zhu, S. Dudek, J. TI Investigation of negative-parity states in Dy-156: Search for evidence of tetrahedral symmetry SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA SHEETS; COINCIDENCE DATA; SPIN; MODEL AB An experiment populating low/medium-spin states in Dy-156 was performed to investigate the possibility of tetrahedral symmetry in this nucleus. In particular, focus was placed on the low-spin, negative-parity states since recent theoretical studies suggest that these may be good candidates for this high-rank symmetry. The states were produced in the Nd-148(C-12, 4n) reaction and the Gammasphere array was utilized to detect the emitted. rays. B(E2)/B(E1) ratios of transition probabilities from the low-spin, negative-parity bands were determined and used to interpret whether these structures are best associated with tetrahedral symmetry or, as previously assigned, to octupole vibrations. In addition, several other negative-parity structures were observed to higher spin and two new sequences were established. C1 [Hartley, D. J.] US Naval Acad, Dept Phys, Annapolis, MD 21402 USA. [Riedinger, L. L.; Miller, D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Janssens, R. V. F.; Carpenter, M. P.; Chiara, C. J.; Lauritsen, T.; Stefanescu, I.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Majola, S. N. T.] Natl Res Fdn, iThemba LABS, POB 722, ZA-7129 Somerset West, South Africa. [Riley, M. A.; Miller, S.; Wang, X.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Allmond, J. M.; Beausang, C. W.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Allmond, J. M.; Yu, C. -H.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Chiara, C. J.; Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Cooper, N.; Werner, V.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Curien, D.; Gall, B. J. P.; Piot, J.; Dudek, J.] Univ Strasbourg, IPHC, 23 Rue Loess, F-67037 Strasbourg, France. [Curien, D.; Gall, B. J. P.; Piot, J.] CNRS, UMR7178, F-67037 Strasbourg, France. [Garrett, P. E.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. [Kulp, W. D.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [McCutchan, E. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Redon, N.] Inst Phys Nucl, IN2P3, CNRS, F-69622 Villeurbanne, France. [Sharpey-Schafer, J. F.] Univ Western Cape, Dept Phys, P-B X17, ZA-7535 Bellville, South Africa. [Simpson, J.] STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [Dudek, J.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. [Chiara, C. J.] US Army Res Lab, Adelphi, MD 20783 USA. [Miller, D.] Idaho Natl Lab, Idaho Falls, ID 83402 USA. [Wang, X.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Werner, V.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. RP Hartley, DJ (reprint author), US Naval Acad, Dept Phys, Annapolis, MD 21402 USA. RI Werner, Volker/C-1181-2017 OI Werner, Volker/0000-0003-4001-0150 FU National Science Foundation [PHY-1203100, PHY-0754674]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848, DE-FG02-96ER40983, DE-FG02-91ER40609, DE-AC02-98CD10886, DE-FG02-94ER40834]; UK Science and Technology Council (STFC); Joyce Frances Adlard Cultural Fund FX The authors thank the ANL operations staff at Gammasphere and gratefully acknowledge the efforts of J. P. Greene for target preparation. We thank D. C. Radford and H. Q. Jin for their software support. This work is funded by the National Science Foundation under Grant Nos. PHY-1203100 (USNA) and PHY-0754674 (FSU), as well as by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 (ANL), and under award nos. DE-FG02-94ER40848 (UML), DE-FG02-96ER40983 (UT), DE-FG02-91ER40609 (Yale), DE-AC02-98CD10886 (BNL), and DE-FG02-94ER40834 (UM). J.S. would like to acknowledge the support of the UK Science and Technology Council (STFC). J.F.S-S. acknowledges support from the Joyce Frances Adlard Cultural Fund, and S.T.N.M. acknowledges the South African National Research Foundation. This research used resources of Argonne National Laboratory's ATLAS facility, which is a U.S. Department of Energy Office of Science User Facility. NR 30 TC 0 Z9 0 U1 8 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JAN 20 PY 2017 VL 95 IS 1 AR 014321 DI 10.1103/PhysRevC.95.014321 PG 10 WC Physics, Nuclear SC Physics GA EI1YI UT WOS:000392282400001 ER PT J AU Bodwin, GT Chung, HS Wagner, CEM AF Bodwin, Geoffrey T. Chung, Hee Sok Wagner, Carlos E. M. TI Higgs-stoponium mixing near the stop-antistop threshold SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; BOSON; PHYSICS; SUPERSYMMETRY; PARTICLES; DECAY; STATES; MSSM; MASS; QCD AB Supersymmetric extensions of the standard model contain additional heavy neutral Higgs bosons that are coupled to heavy scalar top quarks (stops). This system exhibits interesting field theoretic phenomena when the Higgs mass is close to the stop-antistop production threshold. Existing work in the literature has examined the digluon-to-diphoton cross section near threshold and has focused on enhancements in the cross section that might arise either from the perturbative contributions to the Higgs-to-digluon and Higgs-to-diphoton form factors or from mixing of the Higgs boson with stoponium states. Near threshold, enhancements in the relevant amplitudes that go as inverse powers of the stop-antistop relative velocity require resummations of perturbation theory and/or nonperturbative treatments. We present a complete formulation of threshold effects at leading order in the stop-antistop relative velocity in terms of nonrelativistic effective field theory. We give detailed numerical calculations for the case in which the stop-antistop Green's function is modeled with a Coulomb-Schrodinger Green's function. We find several general effects that do not appear in a purely perturbative treatment. Higgs-stop-antistop mixing effects displace physical masses from the threshold region, thereby rendering the perturbative threshold enhancements inoperative. In the case of large Higgs-stop- antistop couplings, the displacement of a physical state above threshold substantially increases its width, owing to its decay width to a stop-antistop pair, and greatly reduces its contribution to the cross section. C1 [Bodwin, Geoffrey T.; Chung, Hee Sok; Wagner, Carlos E. M.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Chung, Hee Sok] CERN, Theory Dept, CH-1211 Geneva 23, Switzerland. [Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. RP Bodwin, GT (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM gtb@anl.gov; hee.sok.chung@cern.ch; cwagner@anl.gov FU U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357]; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy [DE-SC0009924]; Korean Research Foundation through the CERN-Korea fellowship program FX G. T. B. and H. S. C. would like to thank Estia Eichten for a helpful discussion. C. E. M. W. would like to thank Marcela Carena, Abdelhak Djouadi, Ahmed Ismail, Ian Low, Steve Martin, and Nausheen Shah for useful discussions. The work of G. T. B., H. S. C., and C. E. M. W. is supported by the U.S. Department of Energy, Division of High Energy Physics, under Contract No. DE-AC02-06CH11357. The submitted manuscript has been created in part by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The work of C. E. M. W. at the University of Chicago is partially supported by the U.S. Department of Energy, under Contract No. DE-SC0009924. The work of H. S. C. at CERN is partially supported by the Korean Research Foundation through the CERN-Korea fellowship program. NR 50 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 20 PY 2017 VL 95 IS 1 AR 015013 DI 10.1103/PhysRevD.95.015013 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EI1ZA UT WOS:000392284200003 ER PT J AU Gong, Z Hu, RH Shou, YR Qiao, B Chen, CE He, XT Bulanov, SS Esirkepov, TZ Bulanov, SV Yan, XQ AF Gong, Z. Hu, R. H. Shou, Y. R. Qiao, B. Chen, C. E. He, X. T. Bulanov, S. S. Esirkepov, T. Zh. Bulanov, S. V. Yan, X. Q. TI High-efficiency gamma-ray flash generation via multiple-laser scattering in ponderomotive potential well SO PHYSICAL REVIEW E LA English DT Article ID ELECTROMAGNETIC-WAVE; TRANSPARENCY; ABSORPTION; PLASMAS; BURSTS; FIELD AB gamma-ray flash generation in near-critical-density target irradiated by four symmetrical colliding laser pulses is numerically investigated. With peak intensities about 10(23) W/cm(2), the laser pulses boost electron energy through direct laser acceleration, while pushing them inward with the ponderomotive force. After backscattering with counterpropagating laser, the accelerated electron is trapped in the electromagnetic standing waves or the ponderomotive potential well created by the coherent overlapping of the laser pulses, and emits gamma- ray photons in a multiple-laser-scattering regime, where electrons act as a medium transferring energy from the laser to gamma rays in the ponderomotive potential valley. C1 [Gong, Z.; Hu, R. H.; Shou, Y. R.; Qiao, B.; Chen, C. E.; He, X. T.; Yan, X. Q.] Peking Univ, CAPT, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Gong, Z.; Hu, R. H.; Shou, Y. R.; Qiao, B.; Chen, C. E.; He, X. T.; Yan, X. Q.] Peking Univ, CAPT, Key Lab HEDP, Minist Educ, Beijing 100871, Peoples R China. [Bulanov, S. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Esirkepov, T. Zh.; Bulanov, S. V.] Japan Atom Energy Agcy, QuBS, Kizugawa, Kyoto 6190215, Japan. [Bulanov, S. V.] RAS, AM Prokhorov Inst Gen Phys, Moscow 119991, Russia. [Yan, X. Q.] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China. RP Yan, XQ (reprint author), Peking Univ, CAPT, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China.; Yan, XQ (reprint author), Peking Univ, CAPT, Key Lab HEDP, Minist Educ, Beijing 100871, Peoples R China.; Yan, XQ (reprint author), Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China. EM x.yan@pku.edu.cn FU National Basic Research Program of China [2013CBA01502]; NSFC [11535001]; National Grand Instrument Project [2012YQ030142]; UK EPSRC [EP/G054950/1, EP/G056803/1, EP/G055165/1, EP/M022463/1] FX This work was supported by the National Basic Research Program of China (Grant No. 2013CBA01502), NSFC (Grant No. 11535001), and the National Grand Instrument Project (2012YQ030142). The PIC code EPOCH was funded by the UK EPSRC Grants No. EP/G054950/1, No. EP/G056803/1, No. EP/G055165/1, and No. EP/M022463/1. The PIC simulations were carried out at the Super Computation Center at the Max Planck Institute and the Shanghai Super Computation Center. NR 53 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JAN 20 PY 2017 VL 95 IS 1 AR 013210 DI 10.1103/PhysRevE.95.013210 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EI1ZP UT WOS:000392286000010 PM 28208321 ER PT J AU Zhang, YF Jiang, C Bai, XM AF Zhang, Yongfeng Jiang, Chao Bai, Xianming TI Anisotropic hydrogen diffusion in alpha-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations SO SCIENTIFIC REPORTS LA English DT Article ID HYDRIDE PRECIPITATION; ZIRCONIUM ALLOYS; AB-INITIO; SOLUBILITY; PHASE; COEFFICIENT; METALS AB This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in alpha-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in alpha-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along is found to be slightly higher than that along , with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in alpha-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins. C1 [Zhang, Yongfeng; Jiang, Chao] Idaho Natl Lab, Fuels Modeling & Simulat, Idaho Falls, ID 83415 USA. [Bai, Xianming] Virginia Tech, Mat Sci & Engn, Blacksburg, VA 24061 USA. RP Zhang, YF (reprint author), Idaho Natl Lab, Fuels Modeling & Simulat, Idaho Falls, ID 83415 USA. EM yongfeng.zhang@inl.gov RI Bai, Xianming/E-2376-2017 OI Bai, Xianming/0000-0002-4609-6576 FU INL Laboratory Directed Research and Development Program [14-026]; Department of Energy (DOE) Nuclear Energy Advanced Modeling and Simulation (NEAMS) program; U.S. Department of Energy [DE-AC07-05ID14517] FX The INL authors gratefully acknowledge the support of the INL Laboratory Directed Research and Development Program under project #14-026, "Multiscale modeling on delayed hydride cracking in zirconium: hydrogen transport and hydride nucleation", and the Department of Energy (DOE) Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. All authors are grateful to Dr. Larry Aagesen at INL who provided proofreading and valuable comments. NR 43 TC 0 Z9 0 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 20 PY 2017 VL 7 AR 41033 DI 10.1038/srep41033 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI3GL UT WOS:000392377700001 PM 28106154 ER PT J AU Lee, DY Thomas, VM AF Lee, Dong-Yeon Thomas, Valerie M. TI Parametric modeling approach for economic and environmental life cycle assessment of medium-duty truck electrification SO JOURNAL OF CLEANER PRODUCTION LA English DT Article DE Electric vehicles; Life cycle trade-offs; Robustness; Parametric analysis; Marginal electric grid; Water-energy nexus ID GREENHOUSE-GAS EMISSIONS; NATURAL-GAS; DELIVERY TRUCKS; TRANSIT BUSES; METHANE; EFFICIENCY; POLLUTANT; BIOFUELS AB Using a parametric modeling approach, we evaluate economic and environmental life cycle trade-offs of medium-duty electric trucks in comparison with nine non-electric technologies (e.g., conventional diesel, biodiesel, compressed natural gas, etc.) for U.S. model year 2015. Life cycle results for electric trucks vary strongly with weighted positive kinetic energy, whereas those for non-electric trucks vary the most with average trip speed. Our parametric life cycle assessment models explain 91%-98% of the variability in life cycle inventory and impact assessment results, revealing "how" and "why" the trade-offs of truck electrification change with different input conditions. In terms of cost, whether total cost of ownership or also including health and climate impact costs, model year 2015 battery electric trucks in severe applications such as urban driving provide positive and robust net benefits in many areas of the U.S. However, for typical operations, petroleum diesel with idle reduction or hybrid-electric technology provide the largest overall life cycle cost benefit. Battery electric, idle reduction, and hybrid trucks emit lower life cycle greenhouse gas emissions across the board in comparison with the other technologies. Despite lower carbon-intensity, electric trucks tend to be water-intensive because of cooling water consumption for thermo-electric power plants. Hybrid trucks create higher NOx emissions and thus larger associated environmental impacts. Idle reduction is beneficial to urban-type applications. Compressed natural gas trucks are the least water-intensive but may not reduce greenhouse gas emissions. Using marginal rather than average factors for electric grid emissions calculations doesn't change the overall life cycle comparisons. Improving driving behavior has universally positive effects for which the exact magnitude and sensitivity depend on environmental impact indicators and technologies. Published by Elsevier Ltd. C1 [Lee, Dong-Yeon] Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave, Argonne, IL 60439 USA. [Thomas, Valerie M.] Georgia Inst Technol, Sch Ind & Syst Engn, 755 Ferst Dr NW, Atlanta, GA 30332 USA. [Thomas, Valerie M.] Georgia Inst Technol, Sch Publ Policy, 685 Cherry St, Atlanta, GA 30332 USA. RP Lee, DY (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave, Argonne, IL 60439 USA. EM dongyeon.lee@anl.gov FU National Science Foundation [1441208] FX We thank Adam Duran and Robert Prohaska of the National Renewable Energy Laboratory (NREL) for providing electric truck charging profiles. Jeff Gonder of the NREL and Dominik A. Karbowski of Argonne National Laboratory (ANL) generously helped us collect medium-duty truck drive cycles. We appreciate helpful discussions on power generation modeling with Stan Hadley of Oak Ridge National Laboratory (ORNL). We also acknowledge Dr. Frank Southworth and Dr. Marilyn A. Brown at the Georgia Institute of Technology for their thoughtful comments and valuable suggestions on the manuscript, truck activity modeling, and the impact of future power sector evolution. This work is solely based on the authors' research done at the Georgia Institute of Technology, which was supported by a grant from the National Science Foundation (award number 1441208). Dong-Yeon (D-Y) Lee was a postdoctoral scholar of Argonne National Laboratory during completion and publication of the manuscript. The views expressed in this work are those of the authors and do not necessarily reflect the views of Argonne National Laboratory or the National Science Foundation. NR 86 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0959-6526 EI 1879-1786 J9 J CLEAN PROD JI J. Clean Prod. PD JAN 20 PY 2017 VL 142 BP 3300 EP 3321 DI 10.1016/j.jclepro.2016.10.139 PN 4 PG 22 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA EH1HU UT WOS:000391516300081 ER PT J AU Ovchinnikov, S Park, H Varghese, N Huang, PS Pavlopoulos, GA Kim, DE Kamisetty, H Kyrpides, NC Baker, D AF Ovchinnikov, Sergey Park, Hahnbeom Varghese, Neha Huang, Po-Ssu Pavlopoulos, Georgios A. Kim, David E. Kamisetty, Hetunandan Kyrpides, Nikos C. Baker, David TI Protein structure determination using metagenome sequence data SO SCIENCE LA English DT Article ID STRUCTURE PREDICTION; CRYSTAL-STRUCTURE; FAMILIES; REVEALS; DOMAINS; FOLD AB Despite decades of work by structural biologists, there are still similar to 5200 protein families with unknown structure outside the range of comparative modeling. We show that Rosetta structure prediction guided by residue-residue contacts inferred from evolutionary information can accurately model proteins that belong to large families and that metagenome sequence data more than triple the number of protein families with sufficient sequences for accurate modeling. We then integrate metagenome data, contact-based structure matching, and Rosetta structure calculations to generate models for 614 protein families with currently unknown structures; 206 are membrane proteins and 137 have folds not represented in the Protein Data Bank. This approach provides the representative models for large protein families originally envisioned as the goal of the Protein Structure Initiative at a fraction of the cost. C1 [Ovchinnikov, Sergey; Park, Hahnbeom; Huang, Po-Ssu; Kim, David E.; Baker, David] Univ Washington, Dept Biochem, Seattle, WA 98105 USA. [Ovchinnikov, Sergey; Park, Hahnbeom; Huang, Po-Ssu; Baker, David] Univ Washington, Inst Prot Design, Seattle, WA 98105 USA. [Ovchinnikov, Sergey] Univ Washington, Mol & Cellular Biol Program, Seattle, WA 98195 USA. [Varghese, Neha; Pavlopoulos, Georgios A.; Kyrpides, Nikos C.] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Kim, David E.; Baker, David] Univ Washington, Howard Hughes Med Inst, Box 357370, Seattle, WA 98105 USA. [Kamisetty, Hetunandan] Facebook Inc, Seattle, WA 98109 USA. [Kyrpides, Nikos C.] King Abdulaziz Univ, Dept Biol Sci, Jeddah, Saudi Arabia. RP Baker, D (reprint author), Univ Washington, Dept Biochem, Seattle, WA 98105 USA.; Baker, D (reprint author), Univ Washington, Inst Prot Design, Seattle, WA 98105 USA.; Baker, D (reprint author), Univ Washington, Howard Hughes Med Inst, Box 357370, Seattle, WA 98105 USA. EM dabaker@u.washington.edu RI Fac Sci, KAU, Biol Sci Dept/L-4228-2013 FU U.S. Department of Energy (DOE) Joint Genome Institute, a DOE Office of Science User Facility [DE-AC02-05CH11231]; National Institute of General Medical Sciences, NIH [R01GM092802] FX We thank P. Di Lena, N. Malod-Dognin, and R. Andonov for providing the source code for their software (Al-eigen and a_purva) and for their discussion and advice on contact map alignment. The 3D structures of 614 Pfam domains modeled in the study are available at http://gremlin.bakerlab.org/meta/. Other data are archived at the Dryad Digital Repository (doi:10.5061/dryad.27p4s). We also thank Rosetta@home and Charity engine participants for donating their computer time. The work performed by N.V., G.A.P., and N.C.K. was supported by the U.S. Department of Energy (DOE) Joint Genome Institute, a DOE Office of Science User Facility, under contract no. DE-AC02-05CH11231. Research reported here was supported by National Institute of General Medical Sciences, NIH, under award number R01GM092802. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. NR 40 TC 3 Z9 3 U1 23 U2 23 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JAN 20 PY 2017 VL 355 IS 6322 BP 294 EP 297 DI 10.1126/science.aah4043 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI0ZP UT WOS:000392204800039 PM 28104891 ER PT J AU Zhang, JC Wang, XY Hong, Y Xiong, QG Jiang, J Yue, YN AF Zhang, Jingchao Wang, Xinyu Hong, Yang Xiong, Qingang Jiang, Jin Yue, Yanan TI Understanding thermal transport in asymmetric layer hexagonal boron nitride heterostructure SO NANOTECHNOLOGY LA English DT Article DE hexagonal boron nitride; interfacial thermal resistance; thermal rectification; molecular dynamics; phonon thermal transport ID MOLECULAR-DYNAMICS SIMULATIONS; BILAYER HETEROSTRUCTURE; GRAPHENE NANORIBBONS; PHONON TRANSPORT; CONDUCTIVITY; CONDUCTANCE; RECTIFICATION; TEMPERATURE; PHOSPHORENE; RESISTANCE AB In this work, thermal transport at the junction of an asymmetric layer hexagonal boron-nitride (h-BN) heterostructure is explored using a non-equilibrium molecular dynamics method. A thermal contact resistance of 3.6 x 10(-11) K . m(2)W(-1) is characterized at a temperature of 300 K with heat flux from the trilayer to monolayer regions. The mismatch in the flexural phonon modes revealed by power spectra analysis provides the driving force for the calculated thermal resistance. A high thermal rectification efficiency of 360% is calculated at the layer junction surpassing that of graphene. Several modulators, i.e. the system temperature, contact pressure and lateral dimensions, are applied to manipulate the thermal conductance and rectification across the interfaces. The predicted thermal rectification sustains positive correlations with temperature and phonon propagation lengths with little change to the coupling strength. C1 [Zhang, Jingchao; Jiang, Jin; Yue, Yanan] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Hubei, Peoples R China. [Zhang, Jingchao] Univ Nebraska, Holland Comp Ctr, Lincoln, NE 68588 USA. [Wang, Xinyu] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China. [Hong, Yang] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Xiong, Qingang] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jiang, Jin; Yue, Yanan] Minist Educ, State Lab Hydraul Machinery Transients, Wuhan 430072, Hubei, Peoples R China. RP Zhang, JC; Yue, YN (reprint author), Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Hubei, Peoples R China.; Zhang, JC (reprint author), Univ Nebraska, Holland Comp Ctr, Lincoln, NE 68588 USA.; Yue, YN (reprint author), Minist Educ, State Lab Hydraul Machinery Transients, Wuhan 430072, Hubei, Peoples R China. EM zhang@unl.edu; yyue@whu.edu.cn RI Zhang, Jingchao/N-3267-2014 OI Zhang, Jingchao/0000-0001-5289-6062 FU Holland Computing Center University of Nebraska-Lincoln; National Natural Science Foundation of China [51428603, 51576145, 51279145] FX This work was partially conducted in the Micro/Nanoscale Thermal Characterization Lab at the School of Power and Mechanical Engineering, Wuhan University, China, and the Holland Computing Center at the University of Nebraska-Lincoln, USA. Support from the Holland Computing Center University of Nebraska-Lincoln and the National Natural Science Foundation of China (nos. 51428603, 51576145 and 51279145) is greatly appreciated. NR 60 TC 0 Z9 0 U1 37 U2 37 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JAN 20 PY 2017 VL 28 IS 3 AR 035404 DI 10.1088/1361-6528/28/3/035404 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EG8EP UT WOS:000391289000002 PM 27966468 ER PT J AU Miao, MS Hoffmann, R Botana, J Naumov, II Hemley, RJ AF Miao, Mao-sheng Hoffmann, Roald Botana, Jorge Naumov, Ivan I. Hemley, Russell J. TI Quasimolecules in Compressed Lithium SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE density functional calculations; high pressure electrides; interstitial quasi-atoms; maximally localized Wannier functions; semiconducting lithium ID HIGH-PRESSURE ELECTRIDES; CHARGE-DISTRIBUTIONS; CHEMISTRY; DENSITY; SODIUM AB Under high pressure, some materials form electrides, with valence electrons separated from all atoms and occupying interstitial regions. This is often accompanied by semiconducting or insulating behavior. The interstitial quasiatoms (ISQ) that characterize some high pressure electrides have been postulated to show some of the chemical features of atoms, including the potential of forming covalent bonds. It is argued that in the observed high-pressure semiconducting Li phase (oC40, Aba2), an example of such quasimolecules is realized. The theoretical evaluation of electron density, electron localization function, Wannier orbitals, and bond indices forms the evidence for covalently bonded ISQ pairs in this material. The quasimolecule concept thus provides a simple chemical perspective on the unusual insulating behavior of such materials, complementing the physical picture previously presented where the global crystal symmetry of the system plays the major role. C1 [Miao, Mao-sheng; Botana, Jorge] Calif State Univ Northridge, Dept Chem & Biochem, Northridge, CA 91330 USA. [Miao, Mao-sheng; Botana, Jorge] Beijing Computat Sci Res Ctr, Beijing 10084, Peoples R China. [Hoffmann, Roald] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. [Naumov, Ivan I.] Carnegie Inst Sci, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC USA. [Hemley, Russell J.] George Washington Univ, Dept Civil & Environm Engn, Washington, DC 20052 USA. [Hemley, Russell J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Miao, MS (reprint author), Calif State Univ Northridge, Dept Chem & Biochem, Northridge, CA 91330 USA.; Miao, MS (reprint author), Beijing Computat Sci Res Ctr, Beijing 10084, Peoples R China.; Hoffmann, R (reprint author), Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. EM mmiao@csun.edu; rh34@cornell.edu FU NSF [TG-DMR130005]; EFree, an Energy Frontier Research Center - U.S. Department of Energy DOE), Office of Science, Office of Basic Energy Sciences [DE-SC0001057]; DOE/National Nuclear Security Administration [DE-NA-0002006]; DOE [DE-AC52-07NA27344]; CDAC FX The calculations were performed using NSF-funded XSEDE resources (TG-DMR130005), resources at the Centre for Scientific Computing supported by the CNSI, MRL, and NSF CNS-0960316, and Beijing CSRC computing resources. The work at Cornell and Carnegie was supported by EFree, an Energy Frontier Research Center funded by U.S. Department of Energy DOE), Office of Science, Office of Basic Energy Sciences under Award DE-SC0001057 and by CDAC, which is funded by the DOE/National Nuclear Security Administration under award DE-NA-0002006. Work at LLNL was performed under the auspices of DOE contract DE-AC52-07NA27344. NR 36 TC 0 Z9 0 U1 4 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD JAN 19 PY 2017 VL 56 IS 4 BP 972 EP 975 DI 10.1002/anie.201608490 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EM0GQ UT WOS:000394997200004 PM 28000314 ER PT J AU Seipp, CA Williams, NJ Kidder, MK Custelcean, R AF Seipp, Charles A. Williams, Neil J. Kidder, Michelle K. Custelcean, Radu TI CO2 Capture from Ambient Air by Crystallization with a Guanidine Sorbent SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE carbon capture; crystallization; guanidines; hydrogen bonding; sustainable chemistry ID CARBON-DIOXIDE CAPTURE; ATMOSPHERIC AIR; ADSORBENT; ENERGY AB Carbon capture and storage is an important strategy for stabilizing the increasing concentration of atmospheric CO2 and the global temperature. A possible approach toward reversing this trend and decreasing the atmospheric CO2 concentration is to remove the CO2 directly from air (direct air capture). Herein we report a simple aqueous guanidine sorbent that captures CO2 from ambient air and binds it as a crystalline carbonate salt by guanidinium hydrogen bonding. The resulting solid has very low aqueous solubility (K-sp=1.0-(4) X 10(-8)), which facilitates its separation from solution by filtration. The bound CO2 can be released by relatively mild heating of the crystals at 80-120 degrees C, which regenerates the guanidine sorbent quantitatively. Thus, this crystallization-based approach to CO2 separation from air requires minimal energy and chemical input, and offers the prospect for low-cost direct air capture technologies. C1 [Seipp, Charles A.; Williams, Neil J.; Kidder, Michelle K.; Custelcean, Radu] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Seipp, Charles A.] Univ Texas Austin, Dept Chem, 1 Univ Stn A5300, Austin, TX 78712 USA. [Williams, Neil J.] Univ Tennessee, Dept Chem, Buehler Hall,1420 Circle Dr, Knoxville, TN 37996 USA. RP Custelcean, R (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM custelceanr@ornl.gov FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. The singlecrystal neutron diffraction experiment conducted at the ORNL Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 29 TC 0 Z9 0 U1 5 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD JAN 19 PY 2017 VL 56 IS 4 BP 1042 EP 1045 DI 10.1002/anie.201610916 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EM0GQ UT WOS:000394997200018 PM 28001001 ER PT J AU Hutt, LP Huntemann, M Clum, A Pillay, M Palaniappan, K Varghese, N Mikhailova, N Stamatis, D Reddy, T Daum, C Shapiro, N Ivanova, N Kyrpides, N Woyke, T Boden, R AF Hutt, Lee P. Huntemann, Marcel Clum, Alicia Pillay, Manoj Palaniappan, Krishnaveni Varghese, Neha Mikhailova, Natalia Stamatis, Dimitrios Reddy, Tatiparthi Daum, Chris Shapiro, Nicole Ivanova, Natalia Kyrpides, Nikos Woyke, Tanja Boden, Rich TI Permanent draft genome of Thiobacillus thioparus DSM 505(T), an obligately chemolithoautotrophic member of the Betaproteobacteria SO STANDARDS IN GENOMIC SCIENCES LA English DT Article DE Thiobacillus thioparus; Betaproteobacteria; Sulfur oxidation; Chemolithoautotroph; Carboxysome; Denitrification ID PARACOCCUS-DENITRIFICANS GB17; LITHOTROPHIC SULFUR OXIDATION; GENUS THIOBACILLUS; DEOXYRIBONUCLEIC-ACID; BASE COMPOSITION; SEQUENCE; SYSTEM; THERMITHIOBACILLUS; PROTEOBACTERIA; IDENTIFICATION AB Thiobacillus thioparus DSM 505(T) is one of first two isolated strains of inorganic sulfur-oxidising Bacteria. The original strain of T. thioparus was lost almost 100 years ago and the working type strain is Culture C-T (= DSM 505(T) = ATCC 8158(T)) isolated by Starkey in 1934 from agricultural soil at Rutgers University, New Jersey, USA. It is an obligate chemolithoautotroph that conserves energy from the oxidation of reduced inorganic sulfur compounds using the Kelly-Trudinger pathway and uses it to fix carbon dioxide It is not capable of heterotrophic or mixotrophic growth. The strain has a genome size of 3,201,518 bp. Here we report the genome sequence, annotation and characteristics. The genome contains 3,135 protein coding and 62 RNA coding genes. Genes encoding the transaldolase variant of the Calvin-Benson-Bassham cycle were also identified and an operon encoding carboxysomes, along with Smith's biosynthetic horseshoe in lieu of Krebs' cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome c oxidase (cbb3, EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). There is a partial sox operon of the Kelly-Friedrich pathway of inorganic sulfur-oxidation that contains soxXYZAB genes but lacking soxCDEF, there is also a lack of the DUF302 gene previously noted in the sox operon of other members of the 'Proteobacteria' that can use trithionate as an energy source. In spite of apparently not growing anaerobically with denitrification, the nar, nir, nor and nos operons encoding enzymes of denitrification are found in the T. thioparus genome, in the same arrangements as in the true denitrifier T. denitrificans. C1 [Hutt, Lee P.; Boden, Rich] Univ Plymouth, Sch Biol & Marine Sci, Plymouth PL4 8AA, Devon, England. [Hutt, Lee P.; Boden, Rich] Univ Plymouth, Sustainable Earth Inst, Plymouth PL4 8AA, Devon, England. [Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, Tatiparthi; Daum, Chris; Shapiro, Nicole; Ivanova, Natalia; Kyrpides, Nikos; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Boden, R (reprint author), Univ Plymouth, Sch Biol & Marine Sci, Plymouth PL4 8AA, Devon, England.; Boden, R (reprint author), Univ Plymouth, Sustainable Earth Inst, Plymouth PL4 8AA, Devon, England. EM rich.boden@plymouth.ac.uk OI Ivanova, Natalia/0000-0002-5802-9485 FU Office of Science of the United States Department of Energy [DE-AC02-05CH11231]; School of Biological and Marine Sciences, University of Plymouth; Royal Society Research Grant [RG120444]; United States Department of Energy JGI, a DOE Office of Science User Facility FX The sequencing and annotation was performed under the auspices of the United States Department of Energy JGI, a DOE Office of Science User Facility and is supported by the Office of Science of the United States Department of Energy under Contract Number DE-AC02-05CH11231. The authors wish to acknowledge the School of Biological and Marine Sciences, University of Plymouth for studentship funding to LH that supported the analysis of the genome and to the Royal Society Research Grant RG120444 awarded to RB to support the analysis of this genome. NR 49 TC 0 Z9 0 U1 2 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD JAN 19 PY 2017 VL 12 AR 10 DI 10.1186/s40793-017-0229-3 PG 8 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA EJ1NQ UT WOS:000392977900003 PM 28127420 ER PT J AU Soloninin, AV Dimitrievska, M Skoryunov, RV Babanova, OA Skripov, AV Tang, WS Stavila, V Orimo, S Udovic, TJ AF Soloninin, Alexei V. Dimitrievska, Mirjana Skoryunov, Roman V. Babanova, Olga A. Skripov, Alexander V. Tang, Wan Si Stavila, Vitalie Orimo, Shin-ichi Udovic, Terrence J. TI Comparison of Anion Reorientational Dynamics in MCB(9)Hi(10) and M2B10H10 (M = Li, Na) via Nuclear Magnetic Resonance and Quasielastic Neutron Scattering Studies SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SODIUM SUPERIONIC CONDUCTION; SOLID ELECTROLYTES; HYDROGEN DIFFUSION; MOTION; NA2B12H12; PHASE; RB; DIFFRACTION; NA2B10H10; LITHIUM AB The disordered phases of the 1-carba-closo-decaborates LiCB9H10 and NaCB(9)Hi(10) exhibit the best solid-state ionic conductivities to date among all known polycrystalline competitors, likely facilitated in part by the highly orientationally mobile CB9H10- anions. We have undertaken both NMR and quasielastic neutron scattering (QENS) measurements to help characterize the monovalent anion reorientational mobilities and mechanisms associated with these two compounds and to compare their anion reorientational behaviors with those for the divalent B10H102- anions in the related Li(2)B(10)Hio and Na2B10H10 compounds. NMR data show that the transition from the low-T ordered to the high-T disordered phase for both LiCB9H10 and NaCB9Hio is accompanied by a nearly two-orders-of-magnitude increase in the reorientational jump rate of CB9H10 anions. QENS measurements of the various disordered compounds indicate anion jump correlation frequencies on the order of 10(10)-10(11) s(-1) and confirm that NaCB9H10 displays jump frequencies about 60% to 120% higher than those for LiCB9H10 and Na2B10H10 at comparable temperatures. The Qdependent quasielastic scattering suggests similar small-angular-jump reorientational mechanisms for the different disordered anions, changing from more uniaxial in character at lower temperatures to more multidimensional at higher temperatures, although still falling short of full three-dimensional rotational diffusion below 500 K within the nanosecond neutron window. C1 [Soloninin, Alexei V.; Skoryunov, Roman V.; Babanova, Olga A.; Skripov, Alexander V.] Russian Acad Sci, Ural Div, Inst Met Phys, Ekaterinburg 620990, Russia. [Dimitrievska, Mirjana; Tang, Wan Si; Udovic, Terrence J.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Dimitrievska, Mirjana] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Tang, Wan Si] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Stavila, Vitalie] Sandia Natl Labs, Energy Nanomat, Livermore, CA 94551 USA. [Orimo, Shin-ichi] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Orimo, Shin-ichi] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan. RP Skripov, AV (reprint author), Russian Acad Sci, Ural Div, Inst Met Phys, Ekaterinburg 620990, Russia.; Dimitrievska, M; Udovic, TJ (reprint author), NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA.; Dimitrievska, M (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM mirjana.dimitrievska@nist.gov; skripov@imp.uran.ru; udovic@nist.gov RI Babanova, Olga/J-4821-2013; ORIMO, Shin-ichi/A-4971-2011; Skoryunov, Roman/K-6838-2013 OI Babanova, Olga/0000-0002-2422-3263; ORIMO, Shin-ichi/0000-0002-4216-0446; Skoryunov, Roman/0000-0001-6158-9056 FU Russian Foundation for Basic Research [15-03-01114]; Ural Branch of the Russian Academy of Sciences [15-9-2-9]; Collaborative Research Center on Energy Materials, Tohoku University; JSPS KAKENHI [25220911, 2682031]; CRDF Global [FSCX-15-61826-0]; US DOE Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office [DE-AC36-08GO28308]; US DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; National Science Foundation [DMR-0944772, DMR-1508249]; Russian Federal Agency of Scientific Organizations [01201463330] FX This work was performed, in part, in collaboration between members of IEA HIA Task 32- Hydrogen-Based Energy Storage, and within the assignment of the Russian Federal Agency of Scientific Organizations (program "Spin" No. 01201463330). The authors gratefully acknowledge support from the Russian Foundation for Basic Research under Grant No. 15-03-01114; the Ural Branch of the Russian Academy of Sciences under Grant No. 15-9-2-9; the Collaborative Research Center on Energy Materials, Tohoku University; and JSPS KAKENHI under Grant Nos. 25220911 and 2682031. A. V. S. gratefully acknowledges travel support from CRDF Global in conjunction with this work under Grant No. FSCX-15-61826-0. M.D. gratefully acknowledges support from the US DOE Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract No. DE-AC36-08GO28308. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work utilized facilities supported in part by the National Science Foundation under Agreement DMR-0944772 and DMR-1508249. The opinions, findings, and conclusions stated herein are those of the authors and do not necessarily reflect those of CRDF Global. The authors thank J. J. Rush, D. A. Neumann, and C. M. Brown for helpful discussions. NR 36 TC 0 Z9 0 U1 13 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 19 PY 2017 VL 121 IS 2 BP 1000 EP 1012 DI 10.1021/acs.jpcc.6b09113 PG 13 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EI5SD UT WOS:000392554000003 ER PT J AU Ma, P Tong, H Huang, T Xu, M Yu, NN Cheng, XM Sun, CJ Miao, XS AF Ma, Ping Tong, Hao Huang, Ting Xu, Ming Yu, Niannian Cheng, Xiaomin Sun, Cheng-Jun Miao, Xiangshui TI Variations of Local Motifs around Ge Atoms in Amorphous GeTe Ultrathin Films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BINDING-ENERGY SHIFTS; PHASE-CHANGE; CARBON NANOTUBE; CRYSTALLIZATION; GE2SB2TE5; GERMANIUM; STATES; EDGE; SEMICONDUCTORS; COORDINATION AB Phase-change materials, the highly promising candidate for nonvolatile data recording, present a different phase-change property when film thickness shrinks to very deep submicron scale. The local structure of amorphous GeTe ultrathin films, which contributes to the characteristics of phase change, is examined using X-ray absorption measurements. Ge atoms are found to be low-coordinated when the film thickness decreases. Ge atoms are linked to neighbor atoms by covalent bond, and the weaker Ge-Te bonds are more easily broken, which suggests that Ge atoms are located in the defective Ge2Te3 local arrangement. The mixture of se(3)/sp(2) hybridization and 3-coordinated Ge found in ab initio molecular dynamics simulations also supports this local motif. The exponential rise of crystallization temperatures of ultrathin films with decreasing film thickness, which is a vital parameter for phase change process, can be well explained by the proposed defective GeTe local arrangement. C1 [Ma, Ping; Tong, Hao; Huang, Ting; Xu, Ming; Cheng, Xiaomin; Miao, Xiangshui] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China. [Ma, Ping; Tong, Hao; Huang, Ting; Xu, Ming; Cheng, Xiaomin; Miao, Xiangshui] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China. [Huang, Ting; Sun, Cheng-Jun] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Yu, Niannian] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China. RP Miao, XS (reprint author), Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China.; Miao, XS (reprint author), Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China. EM miaoxs@hust.edu.cn FU National High-tech R&D Program of China (863 Program) [2014AA032903]; National Natural Science Foundation of China [61306005, 61474052, 11504281]; U.S. Department of Energy - Basic Energy Sciences; Canadian Light Source; U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory; U.S. DOE [DE-AC02-06CH11357]; Advanced Photon Source FX This work was supported by the grants from National High-tech R&D Program of China (863 Program) (Grant No. 2014AA032903) and the National Natural Science Foundation of China (Grant Nos. 61306005, 61474052, 11504281). Sector 20 facilities at the Advanced Photon Source, and research at these facilities, are supported by the U.S. Department of Energy - Basic Energy Sciences, the Canadian Light Source and its funding partners, and the Advanced Photon Source. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 51 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 19 PY 2017 VL 121 IS 2 BP 1122 EP 1128 DI 10.1021/acs.jpcc.6b09841 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EI5SD UT WOS:000392554000016 ER PT J AU Witman, M Ling, SL Gladysiak, A Stylianou, KC Smit, B Slater, B Haranczyk, M AF Witman, Matthew Ling, Sanliang Gladysiak, Andrzej Stylianou, Kyriakos C. Smit, Berend Slater, Ben Haranczyk, Maciej TI Rational Design of a Low-Cost, High-Performance Metal-Organic Framework for Hydrogen Storage and Carbon Capture SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; CRYSTALLINE POROUS MATERIALS; FORCE-FIELD DEVELOPMENT; SELECTIVE SEPARATION; GAS-STORAGE; CO2 CAPTURE; ADSORPTION; SIMULATIONS; MOLECULES; EXCHANGE AB We present the in silico design of a MOF-74 analogue, hereon known as M-2(DHFUMA) [M = Mg, Fe, Co, Ni, Zn], with enhanced small-molecule adsorption properties over the original M-2(DOBDC) series. Constructed from 2,3-dihydroxyfumarate (DHFUMA), an aliphatic ligand which is smaller than the aromatic 2,5-dioxidobenzene-1,4-dicarboxylate (DOBDC), the M-2(DHFUMA) framework has a reduced channel diameter, resulting in higher volumetric density of open metal sites and significantly improved volumetric hydrogen (H-2) storage potential. Furthermore, the reduced distance between two adjacent open metal sites in the pore channel leads to a CO2 binding mode of one molecule per two adjacent metals with markedly stronger binding energetics. Through dispersion-corrected density functional theory (DFT) calculations of guestframework interactions and classical simulation of the adsorption behavior of binary CO2:H2O mixtures, we theoretically predict the M-2(DHFUMA) series as an improved alternative for carbon capture over the M-2(DOBDC) series when adsorbing from wet flue gas streams. The improved CO2 uptake and humidity tolerance in our simulations is tunable based upon metal selection and adsorption temperature which, combined with the significantly reduced ligand expense, elevates this materials potential for CO2 capture and H-2 storage. The dynamical and elastic stabilities of Mg-2(DHFUMA) were verified by hybrid DFT calculations, demonstrating its significant potential for experimental synthesis. C1 [Witman, Matthew; Smit, Berend] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Ling, Sanliang; Slater, Ben] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England. [Gladysiak, Andrzej; Stylianou, Kyriakos C.; Smit, Berend] Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim Valais, Lab Mol Simulat, Rue Ind 17, CH-1951 Sion, Switzerland. [Haranczyk, Maciej] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Haranczyk, Maciej] IMDEA Mat Inst, C Eric Kandel 2, Madrid 28906, Spain. RP Haranczyk, M (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.; Haranczyk, M (reprint author), IMDEA Mat Inst, C Eric Kandel 2, Madrid 28906, Spain. EM mharanczyk@lbl.gov RI Smit, Berend/B-7580-2009; OI Smit, Berend/0000-0003-4653-8562; Ling, Sanliang/0000-0003-1574-7476 FU Center for Gas Separations Relevant to Clean Energy Technologies; Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001015]; European Research Council (ERC) [666983]; EPSRC [EP/K039296/1, EP/K038400/1, EP/L000202]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362]; Center for Advanced Mathematics; Swiss National Science Foundation (SNSF); Ambizione Energy [PZENP2_166888]; National Energy Research Scientific Computing Center (NERSC) [DE-AC02-05CH11231] FX M.W. and B. Smit were supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001015 for studies on statistical thermodynamic predictions of adsorption and in silico MOF assembly. B. Smit's research has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 666983, MaGic). S.L. and B. Slater were supported by EPSRC (EP/K039296/1 and EP/K038400/1) for studies on electronic structure calculations. M.H. was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362 for studies on cheminformatic approaches to linker identification, and the Center for Advanced Mathematics for Energy Research Applications for the development of algorithms of structure assembly. K.S. was supported by the Swiss National Science Foundation (SNSF) with funding under the Ambizione Energy Grant n.PZENP2_166888 for studies on experimental synthesis. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by Contract No. DE-AC02-05CH11231. Part of the computational work was performed on ARCHER through our membership of the HPC Materials Chemistry Consortium funded by EPSRC (EP/L000202). S.L. thanks Furio Cora for help on CRYSTAL calculations. NR 74 TC 0 Z9 0 U1 44 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 19 PY 2017 VL 121 IS 2 BP 1171 EP 1181 DI 10.1021/acs.jpcc.6b10363 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EI5SD UT WOS:000392554000022 PM 28127415 ER PT J AU Cui, ZZ Xie, CL Feng, XF Becknell, N Yang, PD Lu, YL Zhai, XF Liu, XS Yang, WL Chuang, YD Guo, JH AF Cui, Zhangzhang Xie, Chenlu Feng, Xuefei Becknell, Nigel Yang, Peidong Lu, Yalin Zhai, Xiaofang Liu, Xiaosong Yang, Wanli Chuang, Yi-De Guo, Jinghua TI Revealing the Size-Dependent d-d Excitations of Cobalt Nanoparticles Using Soft X-ray Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID FISCHER-TROPSCH SYNTHESIS; CHARGE-TRANSFER BANDS; PARTICLE-SIZE; ABSORPTION SPECTROSCOPY; CO OXIDATION; CATALYSTS; SCATTERING; DISSOCIATION; OXIDES; RU AB Cobalt-based catalysts are widely used to produce liquid fuels through the Fischer-Tropsch (FT) reaction. However, the cobalt nanocatalysts can exhibit intriguing size-dependent activity whose origin remains heavily debated. To shed light on this issue, the electronic structures of cobalt nanoparticles with size ranging from 4 to 10 nm are studied using soft X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS) spectroscopies. The RIXS measurements reveal the significant size-dependent d-d excitations, from which we determine that the crystal-field splitting energy 10Dq changes from 0.6 to 0.9 eV when the particle size is reduced from 10 to 4 nm. The finding that larger Co nanoparticles have smaller 10Dq value is further confirmed by the Co L-edge RIXS simulations with atomic multiplet code. Our RIXS results demonstrate a stronger Co-O bond in smaller Co nanoparticles, which brings in further insight into their size-dependent catalytic performance. C1 [Cui, Zhangzhang; Lu, Yalin; Zhai, Xiaofang] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Cui, Zhangzhang; Lu, Yalin; Zhai, Xiaofang] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China. [Cui, Zhangzhang; Lu, Yalin; Zhai, Xiaofang] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. [Xie, Chenlu; Becknell, Nigel; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Feng, Xuefei; Liu, Xiaosong] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Yang, Peidong] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Lu, Yalin] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Anhui, Peoples R China. [Yang, Wanli; Chuang, Yi-De; Guo, Jinghua] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Guo, Jinghua] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. RP Chuang, YD; Guo, JH (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.; Guo, JH (reprint author), Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. EM ychuang@lbl.gov; jguo@lbl.gov RI Yang, Wanli/D-7183-2011; OI Yang, Wanli/0000-0003-0666-8063; Becknell, Nigel/0000-0001-7857-6841 FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, of the U.S. Department of Energy (DOE), through the Chemical and Mechanical Properties of Surfaces, Interfaces and Nanostructures program [DE-AC02-05CH11231, FWP KC3101]; University of Science and Technology of China; Suzhou Industrial Park fellowship; National Natural Science Foundation of China [21473235, 11227902]; One Hundred Person Project of the Chinese Academy of Sciences FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. This work is supported by the Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, of the U.S. Department of Energy (DOE) under contract no. DE-AC02-05CH11231, through the Chemical and Mechanical Properties of Surfaces, Interfaces and Nanostructures program (FWP KC3101). Z.Z.C. acknowledges fellowship support from the University of Science and Technology of China. C.X. acknowledges support from Suzhou Industrial Park fellowship. X.L. and X.F. acknowledge the support of the National Natural Science Foundation of China (21473235, 11227902), One Hundred Person Project of the Chinese Academy of Sciences. NR 33 TC 0 Z9 0 U1 13 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 19 PY 2017 VL 8 IS 2 BP 319 EP 325 DI 10.1021/acs.jpclett.6b02600 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI5UJ UT WOS:000392560000001 PM 28001072 ER PT J AU Song, LS Yang, L Meng, J Yang, SC AF Song, Lingshuang Yang, Lin Meng, Jie Yang, Sichun TI Thermodynamics of Hydrophobic Amino Acids in Solution: A Combined Experimental-Computational Study SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; KNOWLEDGE-BASED POTENTIALS; QUASI-CHEMICAL APPROXIMATION; COARSE-GRAINED MODEL; FORCE-FIELD; STATISTICAL POTENTIALS; DISORDERED PROTEINS; AQUEOUS-SOLUTIONS; OSMOTIC-PRESSURE; WATER AB We present a joint experimental-computational study to quantitatively describe the thermodynamics of hydrophobic leucine amino acids in aqueous solution. X-ray scattering data were acquired at a series of solute and salt concentrations to effectively measure interleucine interactions, indicating that a major scattering peak is observed consistently at q = 0.83 angstrom(-1). Atomistic molecular dynamics simulations were then performed and compared with the scattering data, achieving high consistency at both small and wider scattering angles (q = 0-1.5 angstrom(-1)). This experimental-computational consistence enables a first glimpse of the leucine-leucine interacting landscape, where two leucine molecules are aligned mostly in a parallel fashion, as opposed to antiparallel, but also allows us to derive effective leucine-leucine interactions in solution. Collectively, this combined approach of employing experimental scattering and molecular simulation enables quantitative characterization of effective intermolecular interactions of hydrophobic amino acids, critical for protein function and dynamics such as protein folding. C1 [Song, Lingshuang; Meng, Jie] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Song, Lingshuang; Yang, Sichun] Case Western Reserve Univ, Dept Nutr, Cleveland, OH 44106 USA. [Yang, Lin] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Yang, SC (reprint author), Case Western Reserve Univ, Dept Nutr, Cleveland, OH 44106 USA. EM sichun.yang@case.edu FU China Scholarship Council; NIH [R01GM114056, P41RR012408, P41GM103473]; DoE [DE-AC02-98CH10886] FX We thank Wei Huang for preparing leucine samples for scattering experiments. This work was supported in part by the China Scholarship Council and by the NIH (Grant No. R01GM114056). Use of synchrotron was supported by the DoE (Grant No. DE-AC02-98CH10886) and the NIH (Grant No. P41RR012408 and Grant No. P41GM103473). NR 45 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 19 PY 2017 VL 8 IS 2 BP 347 EP 351 DI 10.1021/acs.jpclett.6b02673 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI5UJ UT WOS:000392560000005 PM 28033710 ER PT J AU Fortunelli, A Sementa, L Thanthirige, VD Jones, TC Stener, M Gagnon, KJ Dass, A Ramakrishna, G AF Fortunelli, Alessandro Sementa, Luca Thanthirige, Viraj Dhanushka Jones, Tanya C. Stener, Mauro Gagnon, Kevin J. Dass, Amala Ramakrishna, Guda TI Au21S(SAdm)(15): An Anisotropic Gold Nanomolecule. Optical and Photoluminescence Spectroscopy and First-Principles Theoretical Analysis SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID THIOLATE-PROTECTED AU-25; CRYSTAL-STRUCTURE; CLUSTERS; NANOCLUSTERS; NANOPARTICLE; ULTRAFAST; MOLECULES; AU-25(SR)(18); EVOLUTION; CHIRALITY AB We introduce a class of gold nanomolecules exhibiting anisotropy as a major feature by reporting steady-state and time-resolved photoluminescence and anisotropy measurements and in-depth theoretical analysis of energetics and optical response of a recently synthesized Au21S(SAdm)(15) nanomolecule (SAdm = adamantanethiol). Starting from single-crystal X-ray data showing that Au21S(SAdm)(15) exhibits a symmetry-broken structure, we unambiguously demonstrate how this translates into a striking anisotropy of its properties, for example, of its (chiro)optical absorption spectrum of great promise for sensing, optoelectronic, and electrochemical applications, and argue about the abundance and general significance of this class of compounds. C1 [Fortunelli, Alessandro; Sementa, Luca] CNR, CNR ICCOM, Via G Moruzzi 1, I-56124 Pisa, Italy. [Thanthirige, Viraj Dhanushka; Ramakrishna, Guda] Western Michigan Univ, Dept Chem, Kalamazoo, MI 49008 USA. [Jones, Tanya C.; Dass, Amala] Univ Mississippi, Dept Chem & Biochem, Oxford, MS 38677 USA. [Stener, Mauro] Univ Trieste, Dipartimento Sci Chim & Farmaceut, I-34127 Trieste, Italy. [Gagnon, Kevin J.] Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Fortunelli, A (reprint author), CNR, CNR ICCOM, Via G Moruzzi 1, I-56124 Pisa, Italy.; Ramakrishna, G (reprint author), Western Michigan Univ, Dept Chem, Kalamazoo, MI 49008 USA.; Dass, A (reprint author), Univ Mississippi, Dept Chem & Biochem, Oxford, MS 38677 USA. EM alessandro.fortunelli@cnr.it; amal@olemiss.edu; rama.guda@wmich.edu OI Fortunelli, Alessandro/0000-0001-5337-4450 FU Office of Biological and Environmental Research; Pacific Northwest National Laboratory; CINECA supercomputing centre within the ISCRA programme; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; ACS-PRF [53999-NDS]; Universita degli Studi di Trieste, Finanziamento di Ateneo per progetti di ricerca scientifica, FRA; PNNL Institutional Computing at Pacific Northwest National Laboratory; [NSF-CHE-1255519] FX We gratefully acknowledge support from NSF-CHE-1255519. A.F. is grateful to Teresa Cusati for technical help. Computational research was performed in part using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, and PNNL Institutional Computing at Pacific Northwest National Laboratory. Support from CINECA supercomputing centre within the ISCRA programme is also gratefully acknowledged. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. G.R. acknowledges the support of ACS-PRF 53999-NDS. M.S. acknowledges support of Universita degli Studi di Trieste, Finanziamento di Ateneo per progetti di ricerca scientifica, FRA2014. NR 41 TC 0 Z9 0 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 19 PY 2017 VL 8 IS 2 BP 457 EP 462 DI 10.1021/acs.jpclett.6b02810 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI5UJ UT WOS:000392560000023 PM 28045269 ER PT J AU Kang, J Wang, LW AF Kang, Jun Wang, Lin-Wang TI High Defect Tolerance in Lead Halide Perovskite CsPbBr3 SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID LIGHT-EMITTING-DIODES; LIGAND-MEDIATED SYNTHESIS; QUANTUM DOTS; ROOM-TEMPERATURE; NANOCRYSTALS; CH(3)NH(3)PBL(3); PHOTODETECTORS; SEMICONDUCTORS; CSPBX3; LASER AB The formation energies and charge-transition levels of intrinsic point defects in lead halide perovskite CsPbBr3 are studied from first-principles calculations. It is shown that the formation energy of dominant defect under Br-rich growth condition is much lower than that under moderate or Br-poor conditions. Thus avoiding the Br-rich condition can help to reduce the defect concentration. Interestingly, CsPbBr3 is found to be highly defect-tolerant in terms of its electronic structure. Most of the intrinsic defects induce shallow transition levels. Only a few defects with high formation energies can create deep transition levels. Therefore, CsPbBr3 can maintain its good electronic quality despite the presence of defects. Such defect tolerance feature can be attributed to the lacking of bonding-antibonding interaction between the conduction bands and valence bands. C1 [Kang, Jun; Wang, Lin-Wang] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, LW (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM lwwang@lbl.gov RI Kang, Jun/F-7105-2011 OI Kang, Jun/0000-0003-4788-0028 FU Office of Science, the Office of Basic Energy Sciences (BES), Materials Sciences and Engineering (MSE) Division of the U.S. Department of Energy (DOE) through the organic/inorganic nanocomposite program [KC3104, DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, the Office of Basic Energy Sciences (BES), Materials Sciences and Engineering (MSE) Division of the U.S. Department of Energy (DOE) through the organic/inorganic nanocomposite program (KC3104) under contract DE-AC02-05CH11231. It used resources of the National Energy Research Scientific Computing Center. NR 44 TC 0 Z9 0 U1 55 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 19 PY 2017 VL 8 IS 2 BP 489 EP 493 DI 10.1021/acs.jpclett.6b02800 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI5UJ UT WOS:000392560000028 PM 28071911 ER PT J AU Kang, B Potter, AC Vasseur, R AF Kang, Byungmin Potter, Andrew C. Vasseur, Romain TI Universal crossover from ground-state to excited-state quantum criticality SO PHYSICAL REVIEW B LA English DT Article ID ISING SPIN CHAINS; LOCALIZATION; TRANSITION AB We study the nonequilibrium properties of a nonergodic random quantum chain in which highly excited eigenstates exhibit critical properties usually associated with quantum critical ground states. The ground state and excited states of this system belong to different universality classes, characterized by infinite-randomness quantum critical behavior. Using strong-disorder renormalization group techniques, we show that the crossover between the zero and finite energy density regimes is universal. We analytically derive a flow equation describing the unitary dynamics of this isolated system at finite energy density from which we obtain universal scaling functions along the crossover. C1 [Kang, Byungmin; Potter, Andrew C.; Vasseur, Romain] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Potter, Andrew C.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Vasseur, Romain] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kang, B (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU NSF [DMR-1507141]; Simons Foundation; Korea Foundation for Advanced Studies; Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF4307]; LDRD Program of LBNL FX We thank S. Parameswaran for many insightful discussions and for collaborations on related matters. This work was supported by NSF Grant No. DMR-1507141, an Investigator Grant from the Simons Foundation, the Korea Foundation for Advanced Studies (B.K.), the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant No. GBMF4307 (A.C.P.), and the LDRD Program of LBNL (R.V.). NR 53 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 19 PY 2017 VL 95 IS 2 AR 024205 DI 10.1103/PhysRevB.95.024205 PG 11 WC Physics, Condensed Matter SC Physics GA EI1WY UT WOS:000392278400001 ER PT J AU Koehl, WF Diler, B Whiteley, SJ Bourassa, A Son, NT Janzen, E Awschalom, DD AF Koehl, William F. Diler, Berk Whiteley, Samuel J. Bourassa, Alexandre Son, N. T. Janzen, Erik Awschalom, David D. TI Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN SO PHYSICAL REVIEW B LA English DT Article ID SILICON-CARBIDE; ROOM-TEMPERATURE; TRANSITION-METAL; ELECTRON SPINS; LUMINESCENCE; CHROMIUM; QUBITS; RUBY; PHOTOLUMINESCENCE; SEMICONDUCTORS AB Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information and spintronic technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here, we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). Spin polarization is made possible by the narrow optical linewidths of these ensembles (<8.5 GHz), which are similar in magnitude to the ground state zero-field spin splitting energies of the ions at liquid helium temperatures. This allows us to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-line width laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained with the defects' zero-phonon lines. These characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials. C1 [Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; Bourassa, Alexandre; Awschalom, David D.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Koehl, William F.] Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. [Whiteley, Samuel J.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Son, N. T.; Janzen, Erik] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden. RP Koehl, WF (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.; Koehl, WF (reprint author), Argonne Natl Lab, Div Sci Mat, Argonne, IL 60439 USA. FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (LDRD program at Argonne National Laboratory); Air Force Office of Scientific Research [AFOSR FA9550-14-1-0231, AFOSR MURI FA9550-15-1-0029]; Army Research Office [W911NF-15-2-0058]; National Science Foundation [DMR-1306300]; Linkoping Linnaeus Initiative for Novel Functional Materials (LiLi-NFM) [VR 349-2006-176]; Knut and Alice Wallenberg Foundation [KAW 2013.0300] FX We thank B. B. Zhou, D. J. Christle, C. G. Yale, F. J. Heremans, P. J. Mintun, G. Wolfowicz, E. C. Vincent, and C. P. Anderson for advice on the paper and A. L. Falk for arranging sample transfer. W. F. K. and D. D. A. were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division (LDRD program at Argonne National Laboratory). B.D., S.J.W., and A.B. were supported by the Air Force Office of Scientific Research (AFOSR FA9550-14-1-0231 and AFOSR MURI FA9550-15-1-0029), the Army Research Office (W911NF-15-2-0058), and the National Science Foundation (DMR-1306300). E.J. and N.T.S. acknowledge support from the Linkoping Linnaeus Initiative for Novel Functional Materials (LiLi-NFM) VR 349-2006-176, and the Knut and Alice Wallenberg Foundation (KAW 2013.0300). NR 59 TC 0 Z9 0 U1 9 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 19 PY 2017 VL 95 IS 3 AR 035207 DI 10.1103/PhysRevB.95.035207 PG 8 WC Physics, Condensed Matter SC Physics GA EI1XU UT WOS:000392280900004 ER PT J AU Kelly, KJ Champagne, AE Downen, LN Dermigny, JR Hunt, S Iliadis, C Cooper, AL AF Kelly, K. J. Champagne, A. E. Downen, L. N. Dermigny, J. R. Hunt, S. Iliadis, C. Cooper, A. L. TI New measurements of low-energy resonances in the Ne-22(p, gamma)Na-23 reaction SO PHYSICAL REVIEW C LA English DT Article ID GALACTIC GLOBULAR-CLUSTERS; SELF-ENRICHMENT SCENARIO; NUCLEAR ASTROPHYSICS; REACTION-RATES; SYSTEM; STARS; NA-23; NUCLEOSYNTHESIS; ORIGIN; LENA AB The Ne-22(p, gamma)Na-23 reaction is one of the most uncertain reactions in the NeNa cycle and plays a crucial role in the creation of Na-23, the only stable Na isotope. Uncertainties in the low-energy rates of this and other reactions in the NeNa cycle lead to ambiguities in the nucleosynthesis predicted from models of thermally pulsing asymptotic giant branch (AGB) stars. This in turn complicates the interpretation of anomalous Na-O trends in globular cluster evolutionary scenarios. Previous studies of the Ne-22(p, gamma)Na-23 , Ne-22(He-3, d)Na-23, and C-12(C-12, p)Na-23 reactions disagree on the strengths, spins, and parities of low-energy resonances in Na-23 and the direct-capture Ne-22(p, gamma)Na-23 reaction rate contains large uncertainties as well. In this work we present new measurements of resonances at E-r(c.m.) = 417, 178, and 151 keV and of the direct-capture process in the Ne-22(p, gamma)Na-23 reaction. The resulting total Ne-22(p, gamma)Na-23 rate is approximately a factor of 20 higher than the rate listed in a recent compilation at temperatures relevant to hot-bottom burning in AGB stars. Although our rate is close to that derived from a recent Ne-22(p, gamma)Na-23 measurement by Cavanna et al. in 2015, we find that this large rate increase results in only a modest 18% increase in the Na-23 abundance predicted from a 5 M-circle dot thermally pulsing AGB star model from Ventura and D'Antona (2005). The estimated astrophysical impact of this rate increase is in marked contrast to the factor of similar to 3 increase in Na-23 abundance predicted by Cavanna et al. and is attributed to the interplay between the Ne-22(p, gamma)Na-23 and Ne-22(p, gamma)Na-23 reactions, both of which remain fairly uncertain at the relevant temperature range. C1 [Kelly, K. J.] Univ North Carolina Chapel Hill, Dept Phys & Astron, Chapel Hill, NC 27599 USA. Duke Univ, Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Kelly, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kelly, KJ (reprint author), Univ North Carolina Chapel Hill, Dept Phys & Astron, Chapel Hill, NC 27599 USA.; Kelly, KJ (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM kkelly@lanl.gov FU US Department of Energy [DE-FG02-97ER41041] FX This work was supported by the US Department of Energy under Grant No. DE-FG02-97ER41041. NR 65 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JAN 19 PY 2017 VL 95 IS 1 AR 015806 DI 10.1103/PhysRevC.95.015806 PG 22 WC Physics, Nuclear SC Physics GA EI1YD UT WOS:000392281900005 ER PT J AU Munson, JM Norman, EB Burke, JT Casperson, RJ Phair, LW McCleskey, E McCleskey, M Lee, D Hughes, RO Ota, S Czeszumska, A Chodash, PA Saastamoinen, AJ Austin, RAE Spiridon, AE Dag, M Chyzh, R Basunia, MS Ressler, JJ Ross, TJ AF Munson, J. M. Norman, E. B. Burke, J. T. Casperson, R. J. Phair, L. W. McCleskey, E. McCleskey, M. Lee, D. Hughes, R. O. Ota, S. Czeszumska, A. Chodash, P. A. Saastamoinen, A. J. Austin, R. A. E. Spiridon, A. E. Dag, M. Chyzh, R. Basunia, M. S. Ressler, J. J. Ross, T. J. TI Decay branching ratios of excited Mg-24 SO PHYSICAL REVIEW C LA English DT Article ID CROSS-SECTIONS; ENERGIES; C-12 AB The nuclear reactions C-12(C-12, alpha)Ne-20, C-12(C-12, p)Na-23, and C-12(C-12, n)Mg-23 are the primary reactions in carbon burning, which occurs as part of several stellar processes. The Gamow window, which describes the energy range where most of these reactions take place, is typically around 1.5 MeV in the center-of-mass frame. Direct measurements of the cross sections at this energy are difficult due to the large Coulomb barrier present between the carbon nuclei; however, a successful surrogate measurement can provide the branching ratios between these reactions while avoiding the C-12 + C-12 Coulomb barrier. An experiment was performed using inelastic scattering of 40 MeV alpha particles on Mg-24 as a possible surrogate for the C-12 + C-12 compound nucleus. C1 [Munson, J. M.; Norman, E. B.; Czeszumska, A.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Burke, J. T.; Casperson, R. J.; Hughes, R. O.; Ota, S.; Czeszumska, A.; Chodash, P. A.; Ressler, J. J.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94550 USA. [Phair, L. W.; Basunia, M. S.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [McCleskey, E.; McCleskey, M.; Spiridon, A. E.; Dag, M.; Chyzh, R.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Lee, D.] Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Austin, R. A. E.] St Marys Coll, Halifax, NS B3H 3C3, Canada. [Ross, T. J.] Univ Richmond, Dept Phys, Richmond, VA 32173 USA. RP Munson, JM (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. FU US Department of Energy under NNSA [DE-FG52-09NA29467, DE-NA0000979]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Texas A&M Nuclear Physics [DE-FG02-93ER40773] FX This work was supported in part by the US Department of Energy under NNSA Grants No. DE-FG52-09NA29467 and No. DE-NA0000979, Lawrence Livermore National Laboratory Contract No. DE-AC52-07NA27344, Lawrence Berkeley National Laboratory Contract No. DE-AC02-05CH11231, and Texas A&M Nuclear Physics Grant No. DE-FG02-93ER40773. NR 19 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JAN 19 PY 2017 VL 95 IS 1 AR 015805 DI 10.1103/PhysRevC.95.015805 PG 10 WC Physics, Nuclear SC Physics GA EI1YD UT WOS:000392281900004 ER PT J AU Workman, RL Tiator, L Wunderlich, Y Doring, M Haberzettl, H AF Workman, R. L. Tiator, L. Wunderlich, Y. Doring, M. Haberzettl, H. TI Amplitude reconstruction from complete photoproduction experiments and truncated partial-wave expansions SO PHYSICAL REVIEW C LA English DT Article ID PSEUDOSCALAR MESON PHOTOPRODUCTION; PION-PHOTOPRODUCTION; AMBIGUITIES; SPIN AB We compare the methods of amplitude reconstruction, for a complete experiment and a truncated partial-wave analysis, applied to the photoproduction of pseudoscalar mesons. The approach is pedagogical, showing in detail how the amplitude reconstruction (observables measured at a single energy and angle) is related to a truncated partial-wave analysis (observables measured at a single energy and a number of angles). C1 [Workman, R. L.; Doring, M.; Haberzettl, H.] George Washington Univ, Inst Nucl Studies, Washington, DC 20052 USA. [Workman, R. L.; Doring, M.; Haberzettl, H.] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Tiator, L.] Johannes Gutenberg Univ Mainz, Inst Kernphys, Johann Joachim Becher Weg 45, D-55099 Mainz, Germany. [Wunderlich, Y.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Nussallee 14-16, D-53115 Bonn, Germany. [Doring, M.] Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. RP Workman, RL (reprint author), George Washington Univ, Inst Nucl Studies, Washington, DC 20052 USA.; Workman, RL (reprint author), George Washington Univ, Dept Phys, Washington, DC 20052 USA. FU US Department of Energy [DE-SC0016582]; NSF PIF [1415459]; NSF CAREER [PHY-1452055]; US Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177]; Deutsche Forschungsgemeinschaft [SFB 1044, SFB/TR16] FX The work of H.H., M.D., and R.W. was supported in part by the US Department of Energy Grant DE-SC0016582. M.D. is also supported through the NSF PIF Grant No. 1415459, an NSF CAREER Grant No. PHY-1452055, and the US Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. The work of L.T. and Y.W. was supported by the Deutsche Forschungsgemeinschaft (SFB 1044 and SFB/TR16). NR 17 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JAN 19 PY 2017 VL 95 IS 1 AR 015206 DI 10.1103/PhysRevC.95.015206 PG 7 WC Physics, Nuclear SC Physics GA EI1YD UT WOS:000392281900003 ER PT J AU Akerib, DS Alsum, S Araujo, HM Bai, X Bailey, AJ Balajthy, J Beltrame, P Bernard, EP Bernstein, A Biesiadzinski, TP Boulton, EM Bramante, R Bras, P Byram, D Cahn, SB Carmona-Benitez, MC Chan, C Chiller, AA Chiller, C Currie, A Cutter, JE Davison, TJR Dobi, A Dobson, JEY Druszkiewicz, E Edwards, BN Faham, CH Fiorucci, S Gaitskell, RJ Gehman, VM Ghag, C Gibson, KR Gilchriese, MGD Hall, CR Hanhardt, M Haselschwardt, SJ Hertel, SA Hogan, DP Horn, M Huang, DQ Ignarra, CM Ihm, M Jacobsen, RG Ji, W Kamdin, K Kazkaz, K Khaitan, D Knoche, R Larsen, NA Lee, C Lenardo, BG Lesko, KT Lindote, A Lopes, MI Manalaysay, A Mannino, RL Marzioni, MF McKinsey, DN Mei, DM Mock, J Moongweluwan, M Morad, JA Murphy, ASJ Nehrkorn, C Nelson, HN Neves, F O'Sullivan, K Oliver-Mallory, KC Palladino, KJ Pease, EK Phelps, P Reichhart, L Rhyne, C Shaw, S Shutt, TA Silva, C Solmaz, M Solovov, VN Sorensen, P Stephenson, S Sumner, TJ Szydagis, M Taylor, DJ Taylor, WC Tennyson, BP Terman, PA Tiedt, DR To, WH Tripathi, M Tvrznikova, L Uvarov, S Verbus, JR Webb, RC White, JT Whitis, TJ Witherell, MS Wolfs, FLH Xu, J Yazdani, K Young, SK Zhang, C AF Akerib, D. S. Alsum, S. Araujo, H. M. Bai, X. Bailey, A. J. Balajthy, J. Beltrame, P. Bernard, E. P. Bernstein, A. Biesiadzinski, T. P. Boulton, E. M. Bramante, R. Bras, P. Byram, D. Cahn, S. B. Carmona-Benitez, M. C. Chan, C. Chiller, A. A. Chiller, C. Currie, A. Cutter, J. E. Davison, T. J. R. Dobi, A. Dobson, J. E. Y. Druszkiewicz, E. Edwards, B. N. Faham, C. H. Fiorucci, S. Gaitskell, R. J. Gehman, V. M. Ghag, C. Gibson, K. R. Gilchriese, M. G. D. Hall, C. R. Hanhardt, M. Haselschwardt, S. J. Hertel, S. A. Hogan, D. P. Horn, M. Huang, D. Q. Ignarra, C. M. Ihm, M. Jacobsen, R. G. Ji, W. Kamdin, K. Kazkaz, K. Khaitan, D. Knoche, R. Larsen, N. A. Lee, C. Lenardo, B. G. Lesko, K. T. Lindote, A. Lopes, M. I. Manalaysay, A. Mannino, R. L. Marzioni, M. F. McKinsey, D. N. Mei, D. -M. Mock, J. Moongweluwan, M. Morad, J. A. Murphy, A. St. J. Nehrkorn, C. Nelson, H. N. Neves, F. O'Sullivan, K. Oliver-Mallory, K. C. Palladino, K. J. Pease, E. K. Phelps, P. Reichhart, L. Rhyne, C. Shaw, S. Shutt, T. A. Silva, C. Solmaz, M. Solovov, V. N. Sorensen, P. Stephenson, S. Sumner, T. J. Szydagis, M. Taylor, D. J. Taylor, W. C. Tennyson, B. P. Terman, P. A. Tiedt, D. R. To, W. H. Tripathi, M. Tvrznikova, L. Uvarov, S. Verbus, J. R. Webb, R. C. White, J. T. Whitis, T. J. Witherell, M. S. Wolfs, F. L. H. Xu, J. Yazdani, K. Young, S. K. Zhang, C. CA LUX Collaboration TI Signal yields, energy resolution, and recombination fluctuations in liquid xenon SO PHYSICAL REVIEW D LA English DT Article ID SCINTILLATION YIELDS; ARGON; DEPENDENCE; IONIZATION; PARTICLES AB This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with H-3. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data. C1 [Akerib, D. S.; Biesiadzinski, T. P.; Gibson, K. R.; Ji, W.; Lee, C.; Phelps, P.; Shutt, T. A.; To, W. H.; Whitis, T. J.] Case Western Reserve Univ, Dept Phys, 10900 Euclid Ave, Cleveland, OH 44106 USA. [Akerib, D. S.; Biesiadzinski, T. P.; Ignarra, C. M.; Ji, W.; Lee, C.; Palladino, K. J.; Shutt, T. A.; To, W. H.; Whitis, T. J.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94205 USA. [Akerib, D. S.; Biesiadzinski, T. P.; Bramante, R.; Ignarra, C. M.; Ji, W.; Lee, C.; Palladino, K. J.; Shutt, T. A.; To, W. H.; Whitis, T. J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94309 USA. [Alsum, S.; Palladino, K. J.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Araujo, H. M.; Bailey, A. J.; Currie, A.; Sumner, T. J.; Yazdani, K.] Imperial Coll London, High Energy Phys, Blackett Lab, London SW7 2BZ, England. [Bai, X.; Hanhardt, M.; Tiedt, D. R.] South Dakota Sch Mines & Technol, 501 East St Joseph St, Rapid City, SD 57701 USA. [Balajthy, J.; Hall, C. R.; Knoche, R.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beltrame, P.; Davison, T. J. R.; Marzioni, M. F.; Murphy, A. St. J.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh EH9 3FD, Midlothian, Scotland. [Bernard, E. P.; Boulton, E. M.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Ihm, M.; Jacobsen, R. G.; Kamdin, K.; McKinsey, D. N.; O'Sullivan, K.; Oliver-Mallory, K. C.; Pease, E. K.; Tvrznikova, L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bernard, E. P.; Boulton, E. M.; Cahn, S. B.; Edwards, B. N.; Hertel, S. A.; Horn, M.; Ji, W.; Larsen, N. A.; McKinsey, D. N.; O'Sullivan, K.; Pease, E. K.; Tennyson, B. P.; Tvrznikova, L.] Yale Univ, Dept Phys, 217 Prospect St, New Haven, CT 06511 USA. [Bernstein, A.; Kazkaz, K.; Lenardo, B. G.; Xu, J.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. [Bramante, R.; Bras, P.; Lindote, A.; Lopes, M. I.; Neves, F.; Silva, C.; Solovov, V. N.] Univ Coimbra, Dept Phys, LIP Coimbra, Rua Larga, P-3004516 Coimbra, Portugal. [Byram, D.; Chiller, A. A.; Chiller, C.; Mei, D. -M.; Zhang, C.] Univ South Dakota, Dept Phys, 414E Clark St, Vermillion, SD 57069 USA. [Byram, D.; Hanhardt, M.; Horn, M.; Taylor, D. J.] Sanford Underground Res Facil, South Dakota Sci & Technol Author, Lead, SD 57754 USA. [Carmona-Benitez, M. C.; Haselschwardt, S. J.; Nehrkorn, C.; Nelson, H. N.; Solmaz, M.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Chan, C.; Fiorucci, S.; Gaitskell, R. J.; Huang, D. Q.; Rhyne, C.; Taylor, W. C.; Verbus, J. R.] Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA. [Cutter, J. E.; Lenardo, B. G.; Manalaysay, A.; Morad, J. A.; Stephenson, S.; Tripathi, M.; Uvarov, S.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Dobi, A.; Faham, C. H.; Fiorucci, S.; Gehman, V. M.; Gilchriese, M. G. D.; Lesko, K. T.; McKinsey, D. N.; O'Sullivan, K.; Pease, E. K.; Sorensen, P.; Witherell, M. S.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Dobson, J. E. Y.; Ghag, C.; Reichhart, L.; Shaw, S.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Druszkiewicz, E.; Khaitan, D.; Moongweluwan, M.; Wolfs, F. L. H.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Mannino, R. L.; Terman, P. A.; Webb, R. C.; White, J. T.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Mock, J.; Szydagis, M.; Young, S. K.] SUNY Albany, Dept Phys, 1400 Washington Ave, Albany, NY 12222 USA. RP Pease, EK (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Pease, EK (reprint author), Yale Univ, Dept Phys, 217 Prospect St, New Haven, CT 06511 USA.; Pease, EK (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM evan.pease@yale.edu OI Tvrznikova, Lucie/0000-0002-0394-7692 FU U.S. Department of Energy [DE-AC02-05CH11231, DE-AC05-06OR23100, DE-AC52-07NA27344, DE-FG01-91ER40618, DE-FG02-08ER41549, DE-FG02-11ER41738, DE-FG02-91ER40674, DE-FG02-91ER40688, DE-FG02-95ER40917, DE-NA0000979, DE-SC0006605, DE-SC0010010, DE-SC0015535]; U.S. National Science Foundation [PHY-0750671, PHY-0801536, PHY-1003660, PHY-1004661, PHY-1102470, PHY-1312561, PHY-1347449, PHY-1505868, PHY-1636738]; Research Corporation [RA0350]; Center for Ultra-low Background Experiments in the Dakotas; South Dakota School of Mines and Technology; Fundacao para a Ciencia e a Tecnologia [PTDC/FIS-NUC/1525/2014]; UK Royal Society [IE120804]; Imperial College London; Science & Technology Facilities Council [ST/K502042/1, ST/K502406/1, ST/M503538/1]; University College London; Edinburgh University FX This work was partially supported by the U.S. Department of Energy under Awards No. DE-AC02-05CH11231, No. DE-AC05-06OR23100, No. DE-AC52-07NA27344, No. DE-FG01-91ER40618, No. DE-FG02-08ER41549, No. DE-FG02-11ER41738, No. DE-FG02-91ER40674, No. DE-FG02-91ER40688, No. DE-FG02-95ER40917, No. DE-NA0000979, No. DE-SC0006605, No. DE-SC0010010, and No. DE-SC0015535, the U.S. National Science Foundation under Grants No. PHY-0750671, No. PHY-0801536, No. PHY-1003660, No. PHY-1004661, No. PHY-1102470, No. PHY-1312561, No. PHY-1347449, No. PHY-1505868, and No. PHY-1636738, the Research Corporation Grant No. RA0350, the Center for Ultra-low Background Experiments in the Dakotas, and the South Dakota School of Mines and Technology. LIP-Coimbra acknowledges funding from Fundacao para a Ciencia e a Tecnologia through the Project-Grant No. PTDC/FIS-NUC/1525/2014. Imperial College and Brown University thank the UK Royal Society for travel funds under the International Exchange Scheme (Grant No. IE120804). The UK groups acknowledge institutional support from Imperial College London, University College London and Edinburgh University, and from the Science & Technology Facilities Council for Ph.D. studentships Grants No. ST/K502042/1 (A.B.), No. ST/K502406/1 (S.S.), and No. ST/M503538/1 (K.Y.). The University of Edinburgh is a charitable body registered in Scotland, with Registration No. SC005336. This research was conducted using computational resources and services at the Center for Computation and Visualization, Brown University, and also the Yale Science Research Software Core. The 83Rb used in this research to produce 83mKr was supplied by the United States Department of Energy Office of Science by the Isotope Program in the Office of Nuclear Physics. We gratefully acknowledge the logistical and technical support and the access to laboratory infrastructure provided to us by SURF and its personnel at Lead, South Dakota. SURF was developed by the South Dakota Science and Technology Authority, with an important philanthropic donation from T. Denny Sanford, and is operated by Lawrence Berkeley National Laboratory for the Department of Energy, Office of High Energy Physics. NR 30 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 19 PY 2017 VL 95 IS 1 AR 012008 DI 10.1103/PhysRevD.95.012008 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EI1YY UT WOS:000392284000001 ER PT J AU Hyatt, JS Douglas, AM Stanley, C Do, C Barker, TH Fernandez-Nieves, A AF Hyatt, John S. Douglas, Alison M. Stanley, Chris Do, Changwoo Barker, Thomas H. Fernandez-Nieves, Alberto TI Charge segregation in weakly ionized microgels SO PHYSICAL REVIEW E LA English DT Article ID ANGLE NEUTRON-SCATTERING; POLY N-ISOPROPYLACRYLAMIDE; MOLECULAR DIMENSIONS; TEMPERATURE; TRANSITION; ULTRASOFT; EQUATION; GELS AB We investigatemicrogels synthesized from N-isopropylacrylamide (NIPAM) copolymerized with a large mol% of acrylic acid, finding that when the acid groups are partially ionized at high temperatures, competition between ion-induced swelling and hydrophobic deswelling of poly(NIPAM) chains results in microphase separation. In cross-linked microgels, this manifests as a dramatic decrease in the ratio between the radius of gyration and the hydrodynamic radius to similar to 0.2, indicating that almost all the mass of the microgel is concentrated near the particle center. We also observe a concurrent decrease of the polymer network length scale via small-angle neutron scattering, confirming the presence of a dense, deswollen core surrounded by a diffuse, charged periphery. We compare these results to those obtained for a system of charged ultralow-cross-linked microgels; the form factor shows a distinct peak at high q when the temperature exceeds a threshold value. We successfully fit the form factor to theory developed to describe scattering from weakly charged gels in poor solvents, and we tie this behavior to charge segregation in the case of the cross-linked microgels. C1 [Hyatt, John S.; Fernandez-Nieves, Alberto] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Douglas, Alison M.] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. [Stanley, Chris; Do, Changwoo] Oak Ridge Natl Lab, Neutron Sci Directorate, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Barker, Thomas H.] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22908 USA. RP Hyatt, JS (reprint author), Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. FU National Science Foundation [DMR-1609841]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We gratefully acknowledge financial support from the National Science Foundation (Grant No. DMR-1609841), and X. Hu and L. A. Lyon for the synthesis of the crosslinked microgels. Research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We also thank the research partnership between Children's Healthcare of Atlanta and the Georgia Institute of Technology, and Michael Dimitriev for useful discussions. NR 31 TC 0 Z9 0 U1 8 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JAN 19 PY 2017 VL 95 IS 1 AR 012608 DI 10.1103/PhysRevE.95.012608 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EI1ZN UT WOS:000392285800008 PM 28208440 ER PT J AU Tremsin, AS Rakovan, J Shinohara, T Kockelmann, W Losko, AS Vogel, SC AF Tremsin, Anton S. Rakovan, John Shinohara, Takenao Kockelmann, Winfried Losko, Adrian S. Vogel, Sven C. TI Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by Energy-Resolved Neutron Imaging SO SCIENTIFIC REPORTS LA English DT Article ID RESONANCE TRANSMISSION; COUNTING DETECTOR; RESOLUTION; SPECTROSCOPY; TEMPERATURE; RADIOGRAPHY; ABSORPTION AB Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of similar to 5-10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of similar to 0.4 atom% and similar to 5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 mu m and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity. C1 [Tremsin, Anton S.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Rakovan, John] Miami Univ, Dept Geol & Environm Earth Sci, 250 South Patterson Ave, Oxford, OH 45056 USA. [Shinohara, Takenao] Japan Atom Energy Agcy, 2-4 Shirakata Shirane, Tokai, Ibaraki 3191195, Japan. [Kockelmann, Winfried] STFC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Losko, Adrian S.; Vogel, Sven C.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Losko, AS (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM ast@ssl.berkeley.edu OI Vogel, Sven C./0000-0003-2049-0361 FU U.S. Department of Energy under STTR [DE-FG02-07ER86322, DE-FG02-08ER86353, DE-SC0009657] FX The detector used in the present experiments was developed in collaboration between the University of California at Berkeley and Nova Scientific, Inc. of Sturbridge with partial finding from the U.S. Department of Energy under STTR Grants No. DE-FG02-07ER86322, DE-FG02-08ER86353 and DE-SC0009657. The Timepix readout ASIC was developed within the Medipix collaboration. We would like to acknowledge the generous donation of Vertex 5 and 6 FPGAs and Vivado design suite by Xilinx Inc. of San Jose, California through their Xilinx University Program. We would also like to thank Alejandro Stern and Stephanie and Robert Snyder for use of several gold specimens analyzed in this study. NR 28 TC 0 Z9 0 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 19 PY 2017 VL 7 AR 40759 DI 10.1038/srep40759 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI1ET UT WOS:000392220000001 PM 28102285 ER PT J AU Zhang, Q Jun, SR Leuze, M Ussery, D Nookaew, I AF Zhang, Qian Jun, Se-Ran Leuze, Michael Ussery, David Nookaew, Intawat TI Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine Optimal Length of k-mer SO SCIENTIFIC REPORTS LA English DT Article ID FEATURE FREQUENCY PROFILES; MULTIPLE-SEGMENTED VIRUSES; WHOLE-PROTEOME PHYLOGENY; GENOME PHYLOGENY; SEQUENCE; TAXONOMY; INFORMATION; INCONGRUENCE; EVOLUTION; KMACS AB The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained > 2 million viral genome sequences and a reference set of similar to 4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral " tree of life". However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conserved proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. The resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses. C1 [Zhang, Qian] Univ Tennessee, UT ORNL Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. [Zhang, Qian; Jun, Se-Ran; Ussery, David; Nookaew, Intawat] Oak Ridge Natl Lab, Biosci Div, Comparat Genom Grp, Oak Ridge, TN 37831 USA. [Jun, Se-Ran; Ussery, David; Nookaew, Intawat] Univ Arkansas Med Sci, Coll Med, Dept Biomed Informat, Little Rock, AR 72205 USA. [Leuze, Michael] Univ Tennessee, Joint Inst Computat Sci, Knoxville, TN 37831 USA. [Leuze, Michael] Oak Ridge Natl Lab, Comp Sci & Math Div, Computat Biomol Modeling & Bioinformat Grp, Oak Ridge, TN 37831 USA. RP Nookaew, I (reprint author), Oak Ridge Natl Lab, Biosci Div, Comparat Genom Grp, Oak Ridge, TN 37831 USA.; Nookaew, I (reprint author), Univ Arkansas Med Sci, Coll Med, Dept Biomed Informat, Little Rock, AR 72205 USA. EM INookaew@uams.edu FU Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area; Arkansas Research Alliance; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy FX We thank Visanu Wanchai and Miriam Land for technical assistance. This research was sponsored in part by the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). This work was partially funded by The Arkansas Research Alliance. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC under Contract no. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This manuscript was edited by the Office of Grants and Scientific Publications at the University of Arkansas for Medical Sciences. NR 48 TC 0 Z9 0 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 19 PY 2017 VL 7 DI 10.1038/srep40712 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI0RV UT WOS:000392183100001 PM 28102365 ER PT J AU Li, J Broster, LS Jicha, GA Munro, NB Schmitt, FA Abner, E Kryscio, R Smith, CD Jiang, Y AF Li, Juan Broster, Lucas S. Jicha, Gregory A. Munro, Nancy B. Schmitt, Frederick A. Abner, Erin Kryscio, Richard Smith, Charles D. Jiang, Yang TI A cognitive electrophysiological signature differentiates amnestic mild cognitive impairment from normal aging SO ALZHEIMERS RESEARCH & THERAPY LA English DT Article DE Amnestic mild cognitive impairment; Alzheimer's disease; Event-related potentials; Working memory; Early detection ID EVENT-RELATED POTENTIALS; ALZHEIMERS ASSOCIATION WORKGROUPS; WORKING-MEMORY; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; NEURAL MECHANISMS; DISEASE; RECOMMENDATIONS; NEUROPATHOLOGY; PROGRESSION AB Background: Noninvasive and effective biomarkers for early detection of amnestic mild cognitive impairment (aMCI) before measurable changes in behavioral performance remain scarce. Cognitive event-related potentials (ERPs) measure synchronized synaptic neural activity associated with a cognitive event. Loss of synapses is a hallmark of the neuropathology of early Alzheimer's disease (AD). In the present study, we tested the hypothesis that ERP responses during working memory retrieval discriminate aMCI from cognitively normal controls (NC) matched in age and education. Methods: Eighteen NC, 17 subjects with aMCI, and 13 subjects with AD performed a delayed match-to-sample task specially designed not only to be easy enough for impaired participants to complete but also to generate comparable performance between subjects with NC and those with aMCI. Scalp electroencephalography, memory accuracy, and reaction times were measured. Results: Whereas memory performance separated the AD group from the others, the performance of NC and subjects with aMCI was similar. In contrast, left frontal cognitive ERP patterns differentiated subjects with aMCI from NC. Enhanced P3 responses at left frontal sites were associated with nonmatching relative to matching stimuli during working memory tasks in patients with aMCI and AD, but not in NC. The accuracy of discriminating aMCI from NC was 85% by using left frontal match/nonmatch effect combined with nonmatch reaction time. Conclusions: The left frontal cognitive ERP indicator holds promise as a sensitive, simple, affordable, and noninvasive biomarker for detection of early cognitive impairment. C1 [Li, Juan] Chinese Acad Sci, Inst Psychol, Key Lab Mental Hlth, Beijing 100101, Peoples R China. [Li, Juan; Broster, Lucas S.; Schmitt, Frederick A.; Jiang, Yang] Univ Kentucky, Coll Med, Dept Behav Sci, Lexington, KY 40536 USA. [Jicha, Gregory A.; Schmitt, Frederick A.; Abner, Erin; Kryscio, Richard; Smith, Charles D.; Jiang, Yang] Univ Kentucky, Sanders Brown Ctr Aging, Lexington, KY 40536 USA. [Jicha, Gregory A.; Schmitt, Frederick A.; Smith, Charles D.] Univ Kentucky, Dept Neurol, Coll Med, Lexington, KY 40536 USA. [Munro, Nancy B.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Abner, Erin] Univ Kentucky, Coll Publ Hlth, Dept Epidemiol, Lexington, KY 40536 USA. [Kryscio, Richard] Univ Kentucky, Dept Stat, Lexington, KY 40536 USA. [Kryscio, Richard] Univ Kentucky, Dept Biostat, Coll Publ Hlth, Lexington, KY 40536 USA. RP Li, J (reprint author), Chinese Acad Sci, Inst Psychol, Key Lab Mental Hlth, Beijing 100101, Peoples R China.; Li, J; Jiang, Y (reprint author), Univ Kentucky, Coll Med, Dept Behav Sci, Lexington, KY 40536 USA.; Jiang, Y (reprint author), Univ Kentucky, Sanders Brown Ctr Aging, Lexington, KY 40536 USA. EM lijuan@psych.ac.cn; yjiang@uky.edu FU National Science Foundation of China [31671157, 31470998, 31271108]; Chinese Academy of Sciences; State Administration of Foreign Experts Affairs (CAS/SAFEA) International Partnership Program for Creative Research Team [Y2CX131003]; China Abroad Scholarship Fund; Laboratory Directed Research and Development program of ORNL; UT-Battelle LLC for the U.S. Department of Energy [DE-AC05-00OR22725]; U.S. National Institutes of Health [P30AG028383, T32 AG 242-18, UL1RR033173, UL1TR000117, TL1TR00015, P50AG05144, AG000986]; pilot grant from University of Kentucky Department of Behavioral Science FX JL was supported by the National Science Foundation of China (grants 31671157, 31470998, 31271108), the Chinese Academy of Sciences and State Administration of Foreign Experts Affairs (CAS/SAFEA) International Partnership Program for Creative Research Team (Y2CX131003), and the China Abroad Scholarship Fund. The research project was sponsored in part by the Laboratory Directed Research and Development program of ORNL, UT-Battelle LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725; the U.S. National Institutes of Health (grants P30AG028383, T32 AG 242-18, UL1RR033173, UL1TR000117, TL1TR00015, P50AG05144, and AG000986); and a pilot grant from the University of Kentucky Department of Behavioral Science. NR 40 TC 1 Z9 1 U1 0 U2 0 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1758-9193 J9 ALZHEIMERS RES THER JI Alzheimers Res. Ther. PD JAN 19 PY 2017 VL 9 AR 3 DI 10.1186/s13195-016-0229-3 PG 10 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA EI0FT UT WOS:000392149100001 PM 28100252 ER PT J AU Tareef, A Song, Y Cai, WD Huang, H Chang, H Wang, Y Fulham, M Feng, DG Cheng, M AF Tareef, Afaf Song, Yang Cai, Weidong Huang, Heng Chang, Hang Wang, Yue Fulham, Michael Feng, Dagan Cheng, Mei TI Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation SO NEUROCOMPUTING LA English DT Article DE Overlapping cervical smear cells; Feature extraction; Sparse coding; Shape deformation; Distance regularized level set ID NUCLEUS SEGMENTATION; MICROSCOPIC IMAGES; CYTOPLASM; CLASSIFICATION; CONTOUR; REGION; SNAKE; RESOLUTION AB Automated segmentation of cells from cervical smears poses great challenge to biomedical image analysis because of the noisy and complex background, poor cytoplasmic contrast and the presence of fuzzy and overlapping cells. In this paper, we propose an automated segmentation method for the nucleus and cytoplasm in a cluster of cervical cells based on distinctive local features and guided sparse shape deformation. Our proposed approach is performed in two stages: segmentation of nuclei and cellular clusters, and segmentation of overlapping cytoplasm. In the first stage, a set of local discriminative shape and appearance cues of image superpixels is incorporated and classified by the Support Vector Machine (SVM) to segment the image into nuclei, cellular clusters, and background. In the second stage, a robust shape deformation framework is proposed, based on Sparse Coding (SC) theory and guided by representative shape features, to construct the cytoplasmic shape of each overlapping cell. Then, the obtained shape is refined by the Distance Regularized Level Set Evolution (DRLSE) model. We evaluated our approach using the ISBI 2014 challenge dataset, which has 135 synthetic cell images for a total of 810 cells. Our results show that our approach outperformed existing approaches in segmenting overlapping cells and obtaining accurate nuclear boundaries. C1 [Tareef, Afaf; Song, Yang; Cai, Weidong; Feng, Dagan] Univ Sydney, Sch Informat Technol, BMIT Res Grp, Sydney, NSW, Australia. [Huang, Heng] Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA. [Chang, Hang] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Wang, Yue] Virginia Polytech Inst & State Univ, Bradley Dept Elect & Comp Engn, Blacksburg, VA 24061 USA. [Fulham, Michael] Royal Prince Alfred Hosp, Dept PET & Nucl Med, Camperdown, NSW, Australia. [Fulham, Michael] Univ Sydney, Sydney Med Sch, Sydney, NSW, Australia. [Cheng, Mei] SUNY Albany, Dept Informat, Albany, NY 12222 USA. [Cheng, Mei] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA. RP Tareef, A (reprint author), Univ Sydney, Sch Informat Technol, BMIT Res Grp, Sydney, NSW, Australia. EM atar8654@uni.sydney.edu.au NR 55 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-2312 EI 1872-8286 J9 NEUROCOMPUTING JI Neurocomputing PD JAN 19 PY 2017 VL 221 BP 94 EP 107 DI 10.1016/j.neucom.2016.09.070 PG 14 WC Computer Science, Artificial Intelligence SC Computer Science GA EF7JG UT WOS:000390505300009 ER PT J AU DiFranzo, A Mohlabeng, G AF DiFranzo, Anthony Mohlabeng, Gopolang TI Multi-component dark matter through a radiative Higgs portal SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Cosmology of Theories beyond the SM; Higgs Physics AB We study a multi-component dark matter model where interactions with the Standard Model are primarily via the Higgs boson. The model contains vector-like fermions charged under SU(2)(W) x U(1)(Y) and under the dark gauge group, U(1)'. This results in two dark matter candidates. A spin-1 and a spin-1/2 candidate, which have loop and tree-level couplings to the Higgs, respectively. We explore the resulting effect on the dark matter relic abundance, while also evaluating constraints on the Higgs invisible width and from direct detection experiments. Generally, we find that this model is highly constrained when the fermionic candidate is the predominant fraction of the dark matter relic abundance. C1 [DiFranzo, Anthony; Mohlabeng, Gopolang] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [DiFranzo, Anthony] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [DiFranzo, Anthony] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Mohlabeng, Gopolang] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. RP DiFranzo, A (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA.; DiFranzo, A (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA.; DiFranzo, A (reprint author), Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. EM adifranz@uci.edu; gopolang.mohlabeng@ku.edu FU Universities Research Association Visiting Scholars Award Program at Fermilab; NSF [PHY-1316792]; Fermilab Graduate Student Research Program in Theoretical Physics; National Research Foundation of South Africa [88614]; University of Kansas, Physics and Astronomy; US Department of Energy [DE-AC02-07CH11359] FX We would like to thank Paddy Fox, Tim Tait, KC Kong, and David Shih for valuable discussions and direction. AD is supported in part by the Universities Research Association Visiting Scholars Award Program at Fermilab and by the NSF Grant No. PHY-1316792. During the beginning of this work GM was supported by the Fermilab Graduate Student Research Program in Theoretical Physics and is now supported in part by the National Research Foundation of South Africa, Grant No. 88614 and by the University of Kansas, Physics and Astronomy dissertation fellowship. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the US Department of Energy. NR 51 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JAN 18 PY 2017 IS 1 AR 080 DI 10.1007/JHEP01(2017)080 PG 22 WC Physics, Particles & Fields SC Physics GA EP8RU UT WOS:000397643300003 ER PT J AU Ligeti, Z Papucci, M Robinson, DJ AF Ligeti, Zoltan Papucci, Michele Robinson, Dean J. TI New physics in the visible final states of B -> D-tau nu(()*()) SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Heavy Quark Physics ID HEAVY MESONS; DECAY; ANOMALIES; MODEL AB We derive compact expressions for the helicity amplitudes of the many-body B -> D-(*())(-> DY)tau(-> X nu)nu decays, specifically for X = lv or pi and Y = pi or gamma. We include contributions from all ten possible new physics four-Fermi operators with arbitrary couplings. Our results capture interference effects in the full phase space of the visible 7- and D* decay products which are missed in analyses that treat the T or D* or both as stable. The tau interference effects are sizable, formally of order m tau/m(B) for the standard model, and may be of order unity in the presence of new physics. Treating interference correctly is essential when considering kinematic distributions of the tau or D* decay products, and when including experimentally unavoidable phase space cuts. Our amplitude-level results also allow for efficient exploration of new physics effects in the fully differential phase space, by enabling experiments to perform such studies on fully simulated Monte Carlo datasets via efficient event reweighing. As an example, we explore a class of new physics interactions that can fit the observed R(D-(*())) ratios, and show that analyses including more differential kinematic information can provide greater discriminating power for new physics, than single kinematic variables alone. C1 [Ligeti, Zoltan; Papucci, Michele; Robinson, Dean J.] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ligeti, Zoltan; Papucci, Michele; Robinson, Dean J.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Robinson, Dean J.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. RP Ligeti, Z (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Ligeti, Z (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM ligeti@berkeley.edu; mpapucci@lbl.gov; dean.robinson@uc.edu FU NSF [PHY-1066293]; Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-1002399]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; University of Cincinnati FX We thank Florian Bernlochner and Stephan Duell for helpful conversations and collaboration on Hammer, and Aneesh Manohar for comments on the manuscript. We thank the Aspen Center for Physics, supported by the NSF Grant No. PHY-1066293, for hospitality while parts of this work were completed. This work was supported in part by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under contract DE-AC02-05CH11231, and by the National Science Foundation under grant No. PHY-1002399. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. DR acknowledges support from the University of Cincinnati. NR 57 TC 4 Z9 4 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JAN 18 PY 2017 IS 1 AR 083 DI 10.1007/JHEP01(2017)083 PG 28 WC Physics, Particles & Fields SC Physics GA EP8RU UT WOS:000397643300006 ER PT J AU Cho, ES Qiu, F Urban, JJ AF Cho, Eun Seon Qiu, Fen Urban, Jeffrey J. TI Tailoring Polymer Conformation for Nanocrystal Growth: The Role of Chain Length and Solvent SO SMALL LA English DT Article ID GOLD NANOPARTICLES; OPTICAL-PROPERTIES; HYDROGEN STORAGE; NANOCOMPOSITES; SEMIDILUTE; DIFFUSION; SIZE C1 [Cho, Eun Seon; Qiu, Fen; Urban, Jeffrey J.] Lawrence Berkeley Natl Lab, Mol Foundry Mat Sci Div, Berkeley, CA 94720 USA. RP Urban, JJ (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry Mat Sci Div, Berkeley, CA 94720 USA. EM jjurban@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office [DE-AC02-05CH11231]; Department of Energy (DOE) through the Bay Area Photovoltaic Consortium (BAPVC) [DE-EE0004946]; U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program) [DE-AC36-08GO28308]; Government of India, through the Department of Science and Technology [IUSSTF/JCERDC-SERIIUS/2012] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors gratefully acknowledge research support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract No. DE-AC02-05CH11231. This material is based upon work supported by the Department of Energy (DOE) through the Bay Area Photovoltaic Consortium (BAPVC) under Award Number DE-EE0004946 and also in part under the US-India Partnership to Advance Clean Energy-Research (PACE-R) for the Solar Energy Research Institute for India and the United States (SERIIUS), funded jointly by the U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, under Subcontract DE-AC36-08GO28308 to the National Renewable Energy Laboratory, Golden, Colorado) and the Government of India, through the Department of Science and Technology under Subcontract IUSSTF/JCERDC-SERIIUS/2012 dated 22nd November 2012. The authors thank Dr. Jason Forster and Erin Creel for scientific discussions. NR 31 TC 0 Z9 0 U1 1 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1613-6810 EI 1613-6829 J9 SMALL JI Small PD JAN 18 PY 2017 VL 13 IS 3 AR UNSP 1602572 DI 10.1002/smll.201602572 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EO3AP UT WOS:000396567600010 ER PT J AU Milovanovic, P Zimmermann, EA Scheidt, AV Hoffmann, B Sarau, G Yorgan, T Schweizer, M Amling, M Christiansen, S Busse, B AF Milovanovic, Petar Zimmermann, Elizabeth A. Scheidt, Annika vom Hoffmann, Bjoern Sarau, George Yorgan, Timur Schweizer, Michaela Amling, Michael Christiansen, Silke Busse, Bjoern TI The Formation of Calcified Nanospherites during Micropetrosis Represents a Unique Mineralization Mechanism in Aged Human Bone SO SMALL LA English DT Article ID APOPTOTIC BODIES; MATRIX VESICLES; VASCULAR CALCIFICATION; OSTEOCYTE NETWORK; TRABECULAR BONE; CORTICAL BONE; HYDROXYAPATITE; MAGNESIUM; CALCIUM; TISSUE AB Osteocytes-the central regulators of bone remodeling-are enclosed in a network of microcavities (lacunae) and nanocanals (canaliculi) pervading the mineralized bone. In a hitherto obscure process related to aging and disease, local plugs in the lacuno-canalicular network disrupt cellular communication and impede bone homeostasis. By utilizing a suite of high-resolution imaging and physics-based techniques, it is shown here that the local plugs develop by accumulation and fusion of calcified nanospherites in lacunae and canaliculi (micropetrosis). Two distinctive nanospherites phenotypes are found to originate from different osteocytic elements. A substantial deviation in the spherites' composition in comparison to mineralized bone further suggests a mineralization process unlike regular bone mineralization. Clearly, mineralization of osteocyte lacunae qualifies as a strong marker for degrading bone material quality in skeletal aging. The understanding of micropetrosis may guide future therapeutics toward preserving osteocyte viability to maintain mechanical competence and fracture resistance of bone in elderly individuals. C1 [Milovanovic, Petar; Zimmermann, Elizabeth A.; Scheidt, Annika vom; Yorgan, Timur; Amling, Michael; Busse, Bjoern] Univ Med Ctr Hamburg Eppendorf, Inst Osteol & Biomech, Lottestrasse 55a, D-22529 Hamburg, Germany. [Milovanovic, Petar] Univ Belgrade, Inst Anat, Fac Med, Lab Anthropol, Dr Subotica 4-2, Belgrade 11000, Serbia. [Hoffmann, Bjoern; Sarau, George; Christiansen, Silke] Max Planck Inst Sci Light, Christiansen Res Grp, Gunther Scharowsky Str 1, D-91058 Erlangen, Germany. [Hoffmann, Bjoern] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Optic Informat & Photon, Staudtstr 7-B2, D-91058 Erlangen, Germany. [Schweizer, Michaela] Univ Med Ctr Hamburg Eppendorf, Ctr Mol Neurobiol, Martinistrasse 52, D-20246 Hamburg, Germany. [Christiansen, Silke] Helmholtz Zentrum Berlin Mat & Energie, Inst Nano architectures Energy Convers, Hahn Meitner Platz 1, D-14109 Berlin, Germany. [Christiansen, Silke] Free Univ Berlin, Dept Phys, Arnimallee 14, D-14195 Berlin, Germany. RP Busse, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM b.busse@uke.uni-hamburg.de OI Busse, Bjorn/0000-0002-3099-8073 FU "Partnership for Innovation, Education and Research" (PIER-Nanosciences, Hamburg) [PIF-2014-28]; European Union Seventh Framework Program [FP7] [280566]; Alexander von Humboldt Founation fellowship program; South-East-Europe Cooperation of the University Medical Center Hamburg-Eppendorf; Serbian Ministry of Education and Science [III 45005]; German Research Community (DFG) Research Training Group [GRK1896]; DFG - Emmy Noether program [BU 2562/2-1]; project UnivSEM FX The authors are thankful for the imaging support by Heiko Stegmann, Andreas Schertel, and Endre Majorovits, and further thank Wolfgang Probst and Albert Trondle for their help in EELS analysis. The authors thank Dr. Katharina John, UKE and Robert O. Ritchie from the University of California, Berkeley for their comments. The research leading to these results received funding from the "Partnership for Innovation, Education and Research" (PIER-Nanosciences, Hamburg) under Grant No. PIF-2014-28, the European Union Seventh Framework Program [FP7/2007-2013] under Grant Agreement No. 280566, project UnivSEM, the Alexander von Humboldt Founation fellowship program, the South-East-Europe Cooperation of the University Medical Center Hamburg-Eppendorf, the Serbian Ministry of Education and Science (III 45005), the German Research Community (DFG) Research Training Group GRK1896 and the DFG - Emmy Noether program under Grant No. BU 2562/2-1. NR 50 TC 0 Z9 0 U1 0 U2 0 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1613-6810 EI 1613-6829 J9 SMALL JI Small PD JAN 18 PY 2017 VL 13 IS 3 AR UNSP 1602215 DI 10.1002/smll.201602215 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EO3AP UT WOS:000396567600004 ER PT J AU Papanicolaou, A Schetelig, MF Arensburger, P Atkinson, PW Benoit, JB Bourtzis, K Castanera, P Cavanaugh, JP Chao, H Childers, C Curril, I Dinh, H Doddapaneni, H Dolan, A Dugan, S Friedrich, M Gasperi, G Geib, S Georgakilas, G Gibbs, RA Giers, SD Gomulski, LM Gonzalez-Guzman, M Guillem-Amat, A Han, Y Hatzigeorgiou, AG Hernandez-Crespo, P Hughes, DST Jones, JW Karagkouni, D Koskinioti, P Lee, SL Malacrida, AR Manni, M Mathiopoulos, K Meccariello, A Munoz-Torres, M Murali, SC Murphy, TD Muzny, DM Oberhofer, G Ortego, F Paraskevopoulou, MD Poelchau, M Qu, JX Reczko, M Robertson, HM Rosendale, AJ Rosselot, AE Saccone, G Salvemini, M Savini, G Schreiner, P Scolari, F Siciliano, P Sim, SB Tsiamis, G Urena, E Vlachos, IS Werren, JH Wimmer, EA Worley, KC Zacharopoulou, A Richards, S Handler, AM AF Papanicolaou, Alexie Schetelig, Marc F. Arensburger, Peter Atkinson, Peter W. Benoit, Joshua B. Bourtzis, Kostas Castanera, Pedro Cavanaugh, John P. Chao, Hsu Childers, Christopher Curril, Ingrid Dinh, Huyen Doddapaneni, HarshaVardhan Dolan, Amanda Dugan, Shannon Friedrich, Markus Gasperi, Giuliano Geib, Scott Georgakilas, Georgios Gibbs, Richard A. Giers, Sarah D. Gomulski, Ludvik M. Gonzalez-Guzman, Miguel Guillem-Amat, Ana Han, Yi Hatzigeorgiou, Artemis G. Hernandez-Crespo, Pedro Hughes, Daniel S. T. Jones, Jeffery W. Karagkouni, Dimitra Koskinioti, Panagiota Lee, Sandra L. Malacrida, Anna R. Manni, Mose Mathiopoulos, Kostas Meccariello, Angela Munoz-Torres, Monica Murali, Shwetha C. Murphy, Terence D. Muzny, Donna M. Oberhofer, Georg Ortego, Felix Paraskevopoulou, Maria D. Poelchau, Monica Qu, Jiaxin Reczko, Martin Robertson, Hugh M. Rosendale, Andrew J. Rosselot, Andrew E. Saccone, Giuseppe Salvemini, Marco Savini, Grazia Schreiner, Patrick Scolari, Francesca Siciliano, Paolo Sim, Sheina B. Tsiamis, George Urena, Enric Vlachos, Ioannis S. Werren, John H. Wimmer, Ernst A. Worley, Kim C. Zacharopoulou, Antigone Richards, Stephen Handler, Alfred M. TI The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species (vol 17, 192, 2016) SO GENOME BIOLOGY LA English DT Correction C1 [Papanicolaou, Alexie] Univ Western Sydney, Hawkesbury Inst Environm, Sydney, NSW, Australia. [Schetelig, Marc F.] Justus Liebig Univ Giessen, Inst Insect Biotechnol, D-35394 Giessen, Germany. [Arensburger, Peter] Cal Poly Pomona, Dept Sci Biol, Pomona, CA 91768 USA. [Atkinson, Peter W.] Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA. [Atkinson, Peter W.] Univ Calif Riverside, Ctr Dis Vector Res, Riverside, CA 92521 USA. [Atkinson, Peter W.; Schreiner, Patrick] Univ Calif Riverside, Interdept Grad Program Genet Genom & Bioinformat, Riverside, CA 92521 USA. [Benoit, Joshua B.; Cavanaugh, John P.; Rosendale, Andrew J.; Rosselot, Andrew E.] Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA. [Bourtzis, Kostas] Joint FAO IAEA Programme Nucl Tech Food & Agr, Insect Pest Control Lab, Vienna, Austria. [Bourtzis, Kostas; Tsiamis, George] Univ Patras, Dept Environm & Nat Resources, Agrinion, Greece. [Castanera, Pedro; Gonzalez-Guzman, Miguel; Guillem-Amat, Ana; Hernandez-Crespo, Pedro; Ortego, Felix; Urena, Enric] CSIC, Ctr Invest Biol, Dept Environm Biol, E-28040 Madrid, Spain. [Chao, Hsu; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dugan, Shannon; Gibbs, Richard A.; Han, Yi; Hughes, Daniel S. T.; Lee, Sandra L.; Murali, Shwetha C.; Muzny, Donna M.; Worley, Kim C.; Richards, Stephen] Baylor Coll Med, Human Genome Sequencing Ctr, Dept Human & Mol Genet, Houston, TX 77030 USA. [Childers, Christopher; Munoz-Torres, Monica] USDA, Natl Agr Lib, Beltsville, MD 20705 USA. [Curril, Ingrid; Oberhofer, Georg; Wimmer, Ernst A.] Georg August Univ Gottingen, Johann Friedrich Blumenbach Inst Zool & Anthropol, D-37077 Gottingen, Germany. [Dolan, Amanda; Werren, John H.] Univ Rochester, Dept Biol, Rochester, NY 14627 USA. [Friedrich, Markus] Wayne State Univ, Dept Biol Sci, Detroit, MI 48202 USA. [Gasperi, Giuliano; Gomulski, Ludvik M.; Malacrida, Anna R.; Manni, Mose; Savini, Grazia; Scolari, Francesca; Siciliano, Paolo] Univ Pavia, Dept Biol & Biotechnol, I-27100 Pavia, Italy. [Geib, Scott; Sim, Sheina B.] USDA ARS, Pacific Basin Agr Res Ctr, Hilo, HI 96720 USA. [Georgakilas, Georgios; Hatzigeorgiou, Artemis G.; Karagkouni, Dimitra; Paraskevopoulou, Maria D.; Vlachos, Ioannis S.] Univ Thessaly, Dept Elect & Comp Engn, DIANA Lab, Volos 38221, Greece. [Georgakilas, Georgios; Hatzigeorgiou, Artemis G.; Karagkouni, Dimitra; Paraskevopoulou, Maria D.; Vlachos, Ioannis S.] Hellenic Pasteur Inst, Athens 11521, Greece. [Giers, Sarah D.; Robertson, Hugh M.] Univ Illinois, Dept Entomol, Urbana, IL 61801 USA. [Jones, Jeffery W.] Oakland Univ, Dept Biol Sci, Rochester, MI 48309 USA. [Mathiopoulos, Kostas] Univ Thessaly, Dept Biochem & Biotechnol, Larisa, Greece. [Meccariello, Angela; Saccone, Giuseppe; Salvemini, Marco] Univ Naples Federico II, Dept Biol, I-80126 Naples, Italy. [Munoz-Torres, Monica] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA. [Murphy, Terence D.] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA. [Reczko, Martin] Biomed Sci Res Ctr Alexander Fleming, Inst Mol Biol & Genet, Athens, Greece. [Zacharopoulou, Antigone] Univ Patras, Dept Biol, Patras, Greece. [Handler, Alfred M.] USDA ARS, Ctr Med Agr & Vet Entomol, 1700 SW 23rd Dr, Gainesville, FL 32608 USA. RP Handler, AM (reprint author), USDA ARS, Ctr Med Agr & Vet Entomol, 1700 SW 23rd Dr, Gainesville, FL 32608 USA. EM al.handler@ars.usda.gov FU U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS); U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS); U.S. Department of Agriculture (USDA), National Institute of Food and Agriculture (NIFA) [2011-39211-30769]; National Institutes of Health (NIH)-National Human Genome Research Institute (NHGRI) [U54 HG003273]; NIH Intramural Research Program, National Library of Medicine; NIGMS [5R01GM080203]; NHGRI [5R01HG004483]; U.S. Department of Energy [DE-AC02-05CH11231]; MINECO, Spain [AGL2013-42632-R]; European Social Fund; National Strategic Reference Framework-THALES [MIS375869]; U.S. National Science Foundation [DEB 1257053]; USDA-NIFA [2016-67012-24652, 2015-33522-24094]; L.R. Campania [5/02]; FAO/IAEA [16966]; DFG [SCHE 1833/1-1]; LOEWE Center for Insect Biotechnology & Bioresources grant of the Hessen State Ministry of Higher Education, Research and the Arts (HMWK), Germany FX Support of this project was provided by the U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Animal and Plant Health Inspection Service (APHIS), and National Institute of Food and Agriculture (NIFA)-Biotechnology Risk Assessment Grants Program (grant #2011-39211-30769 to AMH) for funding the initial phase of this project, and to the National Institutes of Health (NIH)-National Human Genome Research Institute (NHGRI) for funding the medfly genome sequencing, assembly and Maker 2.0 automated annotation as part of the i5K 30 genome pilot project (grant #U54 HG003273 to RAG). The NIH Intramural Research Program, National Library of Medicine funded the NCBI Gnomon annotation and the USDA-National Agricultural Library (NAL) provided support for the WebApollo curation website, with support for manual curation training (to MM-T) provided by NIGMS (grant #5R01GM080203), NHGRI (grant #5R01HG004483), and the U.S. Department of Energy (contract #DE-AC02-05CH11231). Support was provided for: toxin metabolism and insecticide resistance gene studies from MINECO, Spain (AGL2013-42632-R to FO and PH-C); microRNAs, horizontal gene transfer and bacterial contaminant studies from the European Social Fund and National Strategic Reference Framework-THALES (MIS375869 to KB, GT, AGH, and KM) and the U.S. National Science Foundation (DEB 1257053 to JHW); cuticle protein gene studies from USDA-NIFA (grant #2016-67012-24652 to AJR); sex-determination studies from L.R. Campania (grant 5/02, 2008 to GS); male reproduction and sexual differentiation studies from the FAO/IAEA (Technical Contract No: 16966 to GGa) and Cariplo IMPROVE (to FS); and programmed cell death gene studies and genomic data analysis (to MFS) from the Emmy Noether program, DFG (SCHE 1833/1-1) and the LOEWE Center for Insect Biotechnology & Bioresources grant of the Hessen State Ministry of Higher Education, Research and the Arts (HMWK), Germany and from the USDA-NIFA-Biotechnology Risk Assessment Grants Program (grant #2015-33522-24094 to AMH). NR 1 TC 0 Z9 0 U1 6 U2 6 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1474-760X J9 GENOME BIOL JI Genome Biol. PD JAN 18 PY 2017 VL 18 AR 11 DI 10.1186/s13059-017-1155-9 PG 2 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA EL7UM UT WOS:000394826300003 PM 28100280 ER PT J AU Wang, JK Seibert, M AF Wang, Jaw-Kai Seibert, Michael TI Prospects for commercial production of diatoms SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Review DE Diatoms; Biomass; Long-term growth outdoors; Invasive species; Biofuels; Bioproducts; Co-products; Hydrothermal liquefaction ID WATER GASIFICATION CONDITIONS; ALGAL BIOFUEL PRODUCTION; FATTY-ACID-COMPOSITION; HYDROTHERMAL LIQUEFACTION; SUPERCRITICAL WATER; NANNOCHLOROPSIS SP; MARINE DIATOM; LIFE-CYCLE; THERMOCHEMICAL LIQUEFACTION; HASLEA-OSTREARIA AB In this review, a simple procedure that portends the open-pond growth of commercially viable diatoms is discussed. We examined a number of topics relevant to the production and harvesting of diatoms as well as topics concerning the production of bioproducts from diatoms. Among the former topics, we show that it is currently possible to continuously grow diatoms and control the presence of invasive species without chemical toxins at an average annual yield of 132 MT dry diatoms ha(-1) over a period of almost 5 years, while maintaining the dominancy of the optimal diatom species on a seasonal basis. The dominant species varies during the year. The production of microalgae is essentially agriculture, but without the ability to control invasive species in the absence of herbicides and insecticides, pollution and production costs would be prohibitive. Among the latter topics are the discussions of whether it is better to produce lipids and then convert them to biofuels or maximize the production of diatom biomass and then convert it to biocrude products using, for example, hydrothermal processes. It is becoming increasingly evident that without massive public support, the commercial production of microalgal biofuels alone will remain elusive. While economically competitive production of biofuels from diatoms will be difficult, when priority is given to multiple high-value products, including wastewater treatment, and when biofuels are considered co-products in a systems approach to commercial production of diatoms, an economically competitive process will become more likely. C1 [Wang, Jaw-Kai] Shenzhen Jawkai Bioengn R&D Ctr Inc, Bldg 9,Marine Biotech Ind Pk, Shenzhen 518120, Peoples R China. [Seibert, Michael] Natl Renewable Energy Lab, BioEnergy Sci & Technol Directorate, Golden, CO 80401 USA. RP Seibert, M (reprint author), Natl Renewable Energy Lab, BioEnergy Sci & Technol Directorate, Golden, CO 80401 USA. EM mike.seibert@nrel.gov FU Shenzhen Jawkai Bioengineering RD Center FX The Shenzhen Jawkai Bioengineering R&D Center. NR 95 TC 0 Z9 0 U1 10 U2 10 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD JAN 18 PY 2017 VL 10 AR 16 DI 10.1186/s13068-017-0699-y PG 13 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EK3RE UT WOS:000393842800001 PM 28115988 ER PT J AU Barnard, ES Ursprung, B Colegrove, E Moutinho, HR Borys, NJ Hardin, BE Peters, CH Metzger, WK Schuck, PJ AF Barnard, Edward S. Ursprung, Benedikt Colegrove, Eric Moutinho, Helio R. Borys, Nicholas J. Hardin, Brian E. Peters, Craig H. Metzger, Wyatt K. Schuck, P. James TI 3D Lifetime Tomography Reveals How CdCl2 Improves Recombination Throughout CdTe Solar Cells SO ADVANCED MATERIALS LA English DT Article ID GRAIN-BOUNDARIES; 2-PHOTON MICROSCOPY; DIFFUSION; IMPACT AB Using two-photon tomography, carrier lifetimes are mapped in polycrystalline CdTe photovoltaic devices. These 3D maps probe subsurface carrier dynamics that are inaccessible with traditional optical techniques. They reveal that CdCl2 treatment of CdTe solar cells suppresses nonradiative recombination and enhances carrier lifetimes throughout the film with substantial improvements particularly near subsurface grain boundaries and the critical buried p-n junction. C1 [Barnard, Edward S.; Borys, Nicholas J.; Schuck, P. James] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Barnard, Edward S.; Ursprung, Benedikt; Hardin, Brian E.; Peters, Craig H.] PLANT PV Inc, Alameda, CA 94501 USA. [Colegrove, Eric; Moutinho, Helio R.; Metzger, Wyatt K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Barnard, ES; Schuck, PJ (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.; Barnard, ES (reprint author), PLANT PV Inc, Alameda, CA 94501 USA. EM esbarnard@lbl.gov; pjschuck@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; DOE, Office of Energy Efficiency and Renewable Energy (EERE) [DE-AC36-08GO28308]; DOE [DE-EE0005953]; DOE EERE SunShot Postdoctoral Research Award FX This work was partially performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. The work at the National Renewable Energy Laboratory was supported by the DOE, Office of Energy Efficiency and Renewable Energy (EERE), under Contract No. DE-AC36-08GO28308. This material is based upon work supported by the DOE under Award Number DE-EE0005953. ESB was supported by a DOE EERE SunShot Postdoctoral Research Award. NR 22 TC 1 Z9 1 U1 6 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JAN 18 PY 2017 VL 29 IS 3 AR 1603801 DI 10.1002/adma.201603801 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI8BP UT WOS:000392729800010 ER PT J AU Zhou, JD Liu, FC Lin, JH Huang, XW Xia, J Zhang, BW Zeng, QS Wang, H Zhu, C Niu, L Wang, XW Fu, W Yu, P Chang, TR Hsu, CH Wu, D Jeng, HT Huang, YZ Lin, H Shen, ZX Yang, CL Lu, L Suenaga, K Zhou, W Pantelides, ST Liu, GT Liu, Z AF Zhou, Jiadong Liu, Fucai Lin, Junhao Huang, Xiangwei Xia, Juan Zhang, Bowei Zeng, Qingsheng Wang, Hong Zhu, Chao Niu, Lin Wang, Xuewen Fu, Wei Yu, Peng Chang, Tay-Rong Hsu, Chuang-Han Wu, Di Jeng, Horng-Tay Huang, Yizhong Lin, Hsin Shen, Zexiang Yang, Changli Lu, Li Suenaga, Kazu Zhou, Wu Pantelides, Sokrates T. Liu, Guangtong Liu, Zheng TI Large-Area and High-Quality 2D Transition Metal Telluride SO ADVANCED MATERIALS LA English DT Article ID TUNGSTEN DITELLURIDE WTE2; THERMODYNAMIC PROPERTIES; MOLYBDENUM-DISULFIDE; LAYER MOSE2; MONOLAYER; MOTE2; GROWTH; SUPERCONDUCTIVITY; SEMIMETAL; MONO AB Large-area and high-quality 2D transition metal tellurides are synthesized by the chemical vapor deposition method. The as-grown WTe2 maintains two different stacking sequences in the bilayer, where the atomic structure of the stacking boundary is revealed by scanning transmission electron microscopy. The low-temperature transport measurements reveal a novel semimetal-to-insulator transition in WTe2 layers and an enhanced superconductivity in few-layer MoTe2. C1 [Zhou, Jiadong; Liu, Fucai; Zhang, Bowei; Zeng, Qingsheng; Wang, Hong; Zhu, Chao; Niu, Lin; Wang, Xuewen; Fu, Wei; Yu, Peng; Huang, Yizhong; Shen, Zexiang; Liu, Zheng] Nanyang Technol Univ, Sch Mat Sci & Engn, Ctr Programmable Mat, Singapore 639798, Singapore. [Lin, Junhao; Zhou, Wu; Pantelides, Sokrates T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lin, Junhao; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Lin, Junhao; Suenaga, Kazu] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. [Huang, Xiangwei; Yang, Changli; Lu, Li; Liu, Guangtong] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Xia, Juan; Shen, Zexiang] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore. [Chang, Tay-Rong; Jeng, Horng-Tay] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Hsu, Chuang-Han; Wu, Di; Lin, Hsin] Natl Univ Singapore, Ctr Adv Mat 2D, Singapore 117546, Singapore. [Hsu, Chuang-Han; Wu, Di; Lin, Hsin] Natl Univ Singapore, Graphene Res Ctr, Singapore 117546, Singapore. [Hsu, Chuang-Han; Wu, Di; Lin, Hsin] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Jeng, Horng-Tay] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Shen, Zexiang] Nanyang Technol Univ, Sch Phys & Math Sci, Ctr Disrupt Photon Technol, Singapore 637371, Singapore. [Yang, Changli; Lu, Li] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Liu, Zheng] Nanyang Technol Univ, Sch Elect & Elect Engn, Ctr Micro Nanoelect NOVITAS, 50 Nanyang Ave, Singapore 639798, Singapore. [Liu, Zheng] CNRS, CINTRA, NTU, THALES,UMR 3288, Res Techno Plaza,50 Nanyang Dr,Border X Block, Singapore 637553, Singapore. RP Liu, Z (reprint author), Nanyang Technol Univ, Sch Mat Sci & Engn, Ctr Programmable Mat, Singapore 639798, Singapore.; Lin, JH (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA.; Lin, JH (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA.; Lin, JH (reprint author), Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan.; Liu, GT (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.; Liu, Z (reprint author), Nanyang Technol Univ, Sch Elect & Elect Engn, Ctr Micro Nanoelect NOVITAS, 50 Nanyang Ave, Singapore 639798, Singapore.; Liu, Z (reprint author), CNRS, CINTRA, NTU, THALES,UMR 3288, Res Techno Plaza,50 Nanyang Dr,Border X Block, Singapore 637553, Singapore. EM lin.junhao@aist.go.jp; gtliu@iphy.ac.cn; z.liu@ntu.edu.sg RI Huang Yizhong, .Yizhong/A-2252-2011; Zhou, Wu/D-8526-2011; Chang, Tay-Rong/K-3943-2015; Shen, Zexiang/B-6988-2011 OI Zhou, Wu/0000-0002-6803-1095; Chang, Tay-Rong/0000-0003-1222-2527; FU Singapore National Research Foundation under NRF RF [NRF-RF2013-08]; Nanyang Technological University [M4081137.070]; Ministry of Education Singapore [MOE2015-T2-2-007, RG164/15]; JST Research Acceleration Programme; U.S. DOE [DE-FG02-09ER46554]; U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Ministry of Science and Technology; National Tsing Hua University; Academia Sinica, Taiwan; Singapore National Research Foundation under NRF [NRF-NRFF2013-03]; National Basic Research Program of China from the MOST [2014CB920904, 2013CB921702]; NSFC [11174340, 91421303] FX J.Z., F.L., J.L., and X.H. contributed equally to this work. This work was supported by the Singapore National Research Foundation under NRF RF Award No. NRF-RF2013-08, the start-up funding from Nanyang Technological University (M4081137.070), and supported from the Ministry of Education Singapore under grant No. MOE2015-T2-2-007 and RG164/15. J.L. and K.S. acknowledge support from the JST Research Acceleration Programme. This research was also supported in part by U.S. DOE grant DE-FG02-09ER46554 (J.L. and S.T.P.), by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering Division (W.Z.), and through a user project at ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. This research used resources of the National Energy Research Scientific Computing Center, which was supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. T.-R.C. and H.-T.J. were supported by the Ministry of Science and Technology, National Tsing Hua University, and Academia Sinica, Taiwan. The authors also thank NCHC, CINC-NTU, and NCTS, Taiwan for technical support. H.L. acknowledges the Singapore National Research Foundation for the support under NRF Award No. NRF-NRFF2013-03. The work at IOP was supported by the National Basic Research Program of China from the MOST under the Grant Nos. 2014CB920904 and 2013CB921702, by the NSFC under the Grant Nos. 11174340 and 91421303. NR 37 TC 0 Z9 0 U1 46 U2 46 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JAN 18 PY 2017 VL 29 IS 3 AR 1603471 DI 10.1002/adma.201603471 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI8BP UT WOS:000392729800008 ER PT J AU Plonka, AM Wang, Q Gordon, WO Balboa, A Troya, D Guo, WW Sharp, CH Senanayake, SD Morris, JR Hill, CL Frenkel, AI AF Plonka, Anna M. Wang, Qi Gordon, Wesley O. Balboa, Alex Troya, Diego Guo, Weiwei Sharp, Conor H. Senanayake, Sanjaya D. Morris, John R. Hill, Craig L. Frenkel, Anatoly I. TI In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DESTRUCTION; HYDROLYSIS; STORAGE; DECONTAMINATION; ADSORPTION; HYDROGEN; UIO-66; WATER; VX AB Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent. hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combinatitin of X-ray absorption and infrared spectra suggests direct coordination of DMMP to the Zr-6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials. C1 [Plonka, Anna M.; Wang, Qi; Frenkel, Anatoly I.] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA. [Gordon, Wesley O.; Balboa, Alex] US Army, Edgewood Chem Biol Ctr APG, Aberdeen Proving Ground, MD 21010 USA. [Troya, Diego; Sharp, Conor H.; Morris, John R.] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. [Guo, Weiwei; Hill, Craig L.] Emory Univ, Dept Chem, 1515 Pierce Dr, Atlanta, GA 30322 USA. [Senanayake, Sanjaya D.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM anatoly.frenkel@stonybrook.edu RI Frenkel, Anatoly/D-3311-2011; OI Frenkel, Anatoly/0000-0002-5451-1207; Sharp, Conor/0000-0002-5313-0760 FU U.S. Army Research Laboratory; U.S. Army Research Office [W911NF-15-2-0107]; Defense Threat Reduction Agency [BB11PHM156]; U.S. Department of Energy [DE-AC02-06CH11357, DE-AC02-76SF00515, DE-SC0012704, DE-SC0012335] FX This work is supported by the U.S. Army Research Laboratory and the U.S. Army Research Office under Grant No. W911NF-15-2-0107. The authors thank the Defense Threat Reduction Agency for support under program BB11PHM156. Use of Advanced Photon Source, Stanford Synchrotron Radiation Lightsource, and National Synchrotron Light Source II was supported by the U.S. Department of Energy under Contract Nos. DE-AC02-06CH11357, DE-AC02-76SF00515, and DE-SC0012704, respectively. In situ operations at the BL2-2 beamline at SLAC were made possible by the U.S. Department of Energy Grant No. DE-SC0012335. A.I.F. and Q.W. thank Prof. C. Lamberti for valuable discussions. The authors are grateful to Prof. J. T. Hupp and Prof. O. K. Farha for generously providing the sample of NU-1000. NR 34 TC 0 Z9 0 U1 84 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 18 PY 2017 VL 139 IS 2 BP 599 EP 602 DI 10.1021/jacs.6b11373 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EI4JH UT WOS:000392459300009 PM 28038315 ER PT J AU Moller, P Schmitt, C AF Moller, Peter Schmitt, Christelle TI Evolution of uranium fission-fragment charge yields with neutron number SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID POTENTIAL-ENERGY SURFACES; NUCLEAR-FISSION; HEAVY; MODES; BEAMS; MASS AB We use the Brownian shape-motion model, with its recent extensions, which allow modeling of odd-even staggering, to calculate the evolution of fission-fragment charge distributions with neutron number for the compound-system sequence U-234, U-236, U-238, and U-240. We compare to experimental data where available, for neutron-and electromagnetic-induced fission over a compound-nucleus excitation energy range from about 6 to 20MeV. A notable result of the study is that the evolution of the location of the peak charge yield from Z = 54 in U-234 towards Z = 52 in heavier isotopes, seen in the experimental data, is present also in the calculated yields. We further show that to describe yields at higher compound-nucleus excitation energies, then, already at 20MeV, it is necessary to take multi-chance fission into account. C1 [Moller, Peter] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Schmitt, Christelle] CNRS, IN2P3, CEA, Grand Accelerateur Natl Ions Lourds,DSM, F-14076 Caen, France. RP Moller, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM moller@lanl.gov FU NNSA of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; FUSTIPEN (French-U.S. Theory Institute for Physics with Exotic Nuclei) under DOE [DE-FG02-10ER41700] FX Discussions with A. Sierk, A. Andreyev, K.-H. Schmidt, T. Ichikawa, K. Nishio, and D. Madland are appreciated. This work was carried out under the auspices of the NNSA of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We also acknowledge support through FUSTIPEN (French-U.S. Theory Institute for Physics with Exotic Nuclei) under DOE grant number DE-FG02-10ER41700. NR 35 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD JAN 18 PY 2017 VL 53 IS 1 AR 7 DI 10.1140/epja/i2017-12188-6 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EI2VW UT WOS:000392347500001 ER PT J AU Sergeicheva, EG Sosin, SS Prozorova, LA Gu, GD Zaliznyak, IA AF Sergeicheva, E. G. Sosin, S. S. Prozorova, L. A. Gu, G. D. Zaliznyak, I. A. TI Unusual magnetic excitations in the weakly ordered spin-1/2 chain antiferromagnet Sr2CuO3: Possible evidence for Goldstone magnon coupled with the amplitude mode SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM ANTIFERROMAGNET; RESONANCE; TEMPERATURE; CRITICALITY; DYNAMICS; CSNICL3; SUSCEPTIBILITY; CONTINUUM; SYSTEMS AB We report on an electron spin resonance (ESR) study of a nearly one-dimensional (1D) spin-1/2 chain antiferromagnet, Sr2CuO3, with extremely weak magnetic ordering. The ESR spectra at T > T-N, in the disordered Luttinger-spin-liquid phase, reveal nearly ideal Heisenberg-chain behavior with only a very small, field-independent linewidth, similar to 1/ T. In the ordered state, below T-N, we identify field-dependent antiferromagnetic resonance modes, which are well described by pseudo-Goldstone magnons in the model of a collinear biaxial antiferromagnet. Additionally, we observe a major resonant mode with unusual and strongly anisotropic properties, which is not anticipated by the conventional theory of Goldstone spin waves. We propose that this unexpected magnetic excitation can be attributed to a field-independent magnon mode renormalized due to its interaction with the high-energy amplitude (Higgs) mode in the regime of weak spontaneous symmetry breaking. C1 [Sergeicheva, E. G.; Sosin, S. S.; Prozorova, L. A.] P Kapitza Inst Phys Problems, Moscow 119334, Russia. [Gu, G. D.; Zaliznyak, I. A.] Brookhaven Natl Lab, CMPMSD, Upton, NY 11973 USA. [Sosin, S. S.] High Sch Econ, Moscow 101000, Russia. RP Sosin, SS (reprint author), P Kapitza Inst Phys Problems, Moscow 119334, Russia.; Sosin, SS (reprint author), High Sch Econ, Moscow 101000, Russia. EM sosin@kapitza.ras.ru; zaliznyak@bnl.gov FU Russian Fund for Basic Research [15-02-05918]; Program of Russian Scientific Schools; Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, U.S. Department of Energy (DOE) [DE-SC00112704]; National Institute of Standards and Technology, U.S. Department of Commerce FX The authors thank A. I. Smirnov, L. E. Svistov, V. N. Glazkov, M. E. Zhitomirsky, A. Abanov, and A. Tsvelik for useful discussions. The work at P. Kapitza Institute was supported by the Russian Fund for Basic Research, Grant No. 15-02-05918, and the Program of Russian Scientific Schools. The work at Brookhaven National Laboratory was supported by the Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, U.S. Department of Energy (DOE), under Contract No. DE-SC00112704. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. NR 45 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 18 PY 2017 VL 95 IS 2 AR 020411 DI 10.1103/PhysRevB.95.020411 PG 5 WC Physics, Condensed Matter SC Physics GA EI1WV UT WOS:000392278100003 ER PT J AU Beck, AL Lakkaraju, K Rai, V AF Beck, Ariane L. Lakkaraju, Kiran Rai, Varun TI Small Is Big: Interactive Trumps Passive Information in Breaking Information Barriers and Impacting Behavioral Antecedents SO PLOS ONE LA English DT Article ID SOLAR POWER-SYSTEMS; PLANNED BEHAVIOR; ENERGY-CONSERVATION; EMPIRICAL-EVIDENCE; COMPUTER GAMES; SERIOUS GAMES; PERCEPTIONS; EFFICIENCY; DECISIONS; EFFICACY AB The wealth of information available on seemingly every topic creates a considerable challenge both for information providers trying to rise above the noise and discerning individuals trying to find relevant, trustworthy information. We approach this information problem by investigating how passive versus interactive information interventions can impact the antecedents of behavior change using the context of solar energy adoption, where persistent information gaps are known to reduce market potential. We use two experiments to investigate the impact of both passive and interactive approaches to information delivery on the antecedents (attitudes, subjective norms, and perceived behavioral control in the Theory of Planned Behavior) of intentions and behavior, as well as their effect on intentions and behavior directly. The passive information randomized control trial delivered via Amazon Mechanical Turk tests the effectiveness of delivering the same content in a single message versus multiple shorter messages. The interactive information delivery uses an online (mobile and PC) trivia-style gamification platform. Both experiments use the same content and are carried out over a two-week time period. Our findings suggest that interactive, gamified information has greater impact than passive information, and that shorter multiple messages of passive information are more effective than a single passive message. C1 [Beck, Ariane L.; Rai, Varun] Univ Texas Austin, LBJ Sch Publ Affairs, Austin, TX 78712 USA. [Lakkaraju, Kiran] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Rai, Varun] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. RP Beck, AL (reprint author), Univ Texas Austin, LBJ Sch Publ Affairs, Austin, TX 78712 USA. EM abeck@utexas.edu OI Beck, Ariane/0000-0002-8622-8377 FU North Texas Renewable Energy Group; U.S. Department of Energy under Solar Energy Evolution and Diffusion Studies (SEEDS) program within the SunShot Initiative [DE-EE0006129, 26153]; Elspeth Rostow Memorial Fellowship; Policy Research Institute (PRI) at UT Austin's LBJ School of Public Affairs; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the following: North Texas Renewable Energy Group assisted in participant recruitment and incentives for Energy Games (ALB, VR), http://www.ntreg.org/; U.S. Department of Energy under its Solar Energy Evolution and Diffusion Studies (SEEDS) program within the SunShot Initiative (Award Number DE-EE0006129, VR), http://energy.gov/eere/sunshot/solar-energy-evolution-and-diffusion-stud ies; Elspeth Rostow Memorial Fellowship and the Policy Research Institute (PRI) at UT Austin's LBJ School of Public Affairs (VR), https://lbj.utexas.edu/; Sandia National Laboratories, managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 (KL); U.S. Department of Energy under its Solar Energy Evolution and Diffusion Studies (SEEDS) program within the SunShot Initiative (Award Number 26153, KL), http://energy.gov/eere/sunshot/solar-energy-evolution-and-diffusion-stud ies, Laboratory Directed Research and Development program (KL). NR 50 TC 0 Z9 0 U1 6 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 18 PY 2017 VL 12 IS 1 AR e0169326 DI 10.1371/journal.pone.0169326 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI3HH UT WOS:000392380100018 PM 28099478 ER PT J AU Feng, H Qian, Y Cochran, JK Zhu, QZ Hu, W Yan, HF Li, L Huang, XJ Chu, YS Liu, HJ Yoo, S Liu, CJ AF Feng, Huan Qian, Yu Cochran, J. Kirk Zhu, Qingzhi Hu, Wen Yan, Hanfei Li, Li Huang, Xiaojing Chu, Yong S. Liu, Houjun Yoo, Shinjae Liu, Chang-Jun TI Nanoscale measurement of trace element distributions in Spartina alterniflora root tissue during dormancy SO SCIENTIFIC REPORTS LA English DT Article ID RICE ORYZA-SATIVA; X-RAY-FLUORESCENCE; IRON PLAQUE; URBAN BROWNFIELD; TYPHA-LATIFOLIA; SOLUTION CULTURE; WETLAND PLANTS; L. SEEDLINGS; ACCUMULATION; TRANSLOCATION AB This paper reports a nanometer-scale investigation of trace element (As, Ca, Cr, Cu, Fe, Mn, Ni, S and Zn) distributions in the root system Spartina alterniflora during dormancy. The sample was collected on a salt marsh island in Jamaica Bay, New York, in April 2015 and the root was cross-sectioned with 10 mu m resolution. Synchrotron X-ray nanofluorescence was applied to map the trace element distributions in selected areas of the root epidermis and endodermis. The sampling resolution was 60 nm to increase the measurement accuracy and reduce the uncertainty. The results indicate that the elemental concentrations in the epidermis, outer endodermis and inner endodermis are significantly (p < 0.01) different. The root endodermis has relatively higher concentrations of these elements than the root epidermis. Furthermore, this high resolution measurement indicates that the elemental concentrations in the outer endodermis are significantly (p < 0.01) higher than those in the inner endodermis. These results suggest that the Casparian strip may play a role in governing the aplastic transport of these elements. Pearson correlation analysis on the average concentrations of each element in the selected areas shows that most of the elements are significantly (p < 0.05) correlated, which suggests that these elements may share the same transport pathways. C1 [Feng, Huan; Qian, Yu] Montclair State Univ, Dept Earth & Environm Studies, Montclair, NJ 07043 USA. [Cochran, J. Kirk; Zhu, Qingzhi] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Hu, Wen; Yan, Hanfei; Li, Li; Huang, Xiaojing; Chu, Yong S.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Liu, Houjun] Shenyang Agr Univ, Coll Land & Environm, Shenyang 110866, Peoples R China. [Yoo, Shinjae] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Liu, Chang-Jun] Brookhaven Natl Lab, Biol Sci Dept, Upton, NY 11973 USA. [Qian, Yu] Yunnan Univ, Sch Ecol & Environm Sci, Kunming 650091, Yunnan, Peoples R China. RP Feng, H (reprint author), Montclair State Univ, Dept Earth & Environm Studies, Montclair, NJ 07043 USA. EM fengh@mail.montclair.edu FU U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program; China Scholarship Council; National Science Foundation [MCB-1051675]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DEAC0298CH10886]; U.S. Department of Energy (DOE) Office of Science User Facility [DE-SC0012704]; National Parks Service [P14AC00888, P14AC01395] FX We would like to thank Drs. Michelle Watt and Adam Hartland (Editorial Board Members) and two anonymous reviewers for their constructive comments and suggestions which have improved the quality of an early version of this manuscript. We would also like to thank Yuanyi Li for his assistance in the manuscript preparation. We are grateful to Mingyan Ge and Evegny Nazareski (Brookhaven National Laboratory) for commissioning the synchrotron X-ray microscope, to Don Riepe and Elizabeth Manclark (American Littoral Society) for providing boat support for sampling in Jamaica Bay, and to Christina Heilbrun, Patrick Fitzgerald and Joseph Tamborski (Stony Brook University) for assistance in the field. This work was also supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (HF), and the China Scholarship Council (HL and YQ). The part of work in Biology Department, Brookhaven National Laboratory was supported in part by National Science Foundation through grant MCB-1051675 and by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through Grant DEAC0298CH10886 to CJL. This research used resources the Hard X-ray Nanoprobe Beamline, 3-ID, of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. Sample collection was supported by National Parks Service (Cooperative Agreement P14AC00888, Task Agreement P14AC01395) funding to JKC and QZ. NR 49 TC 0 Z9 0 U1 11 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 18 PY 2017 VL 7 AR 40420 DI 10.1038/srep40420 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI1HD UT WOS:000392226800001 PM 28098254 ER PT J AU Golden, E Yu, LJ Meilleur, F Blakeley, MP Duff, AP Karton, A Vrielink, A AF Golden, Emily Yu, Li-Juan Meilleur, Flora Blakeley, Matthew P. Duff, Anthony P. Karton, Amir Vrielink, Alice TI An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase SO SCIENTIFIC REPORTS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ARYL-ALCOHOL OXIDASE; RESOLUTION CRYSTALLOGRAPHY REVEALS; BARRIER HYDROGEN-BOND; AMINO-ACID OXIDASE; CRYSTAL-STRUCTURE; ENZYMATIC CATALYSIS; HYDRIDE TRANSFER; X-RAY; PYRANOSE 2-OXIDASE AB The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed. C1 [Golden, Emily; Yu, Li-Juan; Karton, Amir; Vrielink, Alice] Univ Western Australia, Sch Chem & Biochem, Crawley, WA 6009, Australia. [Meilleur, Flora] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Meilleur, Flora] N Carolina State Univ, Struct & Mol Biochem, Raleigh, NC 27695 USA. [Blakeley, Matthew P.] Inst Laue Langevin, 71 Ave Martyrs, F-38000 Grenoble, France. [Duff, Anthony P.] Australian Nucl Sci & Technol Org, Bragg Inst, Lucas Heights, NSW 2234, Australia. RP Vrielink, A (reprint author), Univ Western Australia, Sch Chem & Biochem, Crawley, WA 6009, Australia. EM alice.vrielink@uwa.edu.au OI Blakeley, Matthew/0000-0002-6412-4358 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation [CHE-0922719] FX Research conducted at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The IMAGINE beam line was funded in part by the National Science Foundation Grant CHE-0922719. NR 67 TC 0 Z9 0 U1 11 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 18 PY 2017 VL 7 AR 40517 DI 10.1038/srep40517 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI1HK UT WOS:000392227500001 PM 28098177 ER PT J AU Robinson, AE AF Robinson, Alan E. TI Coherent photon scattering background in sub-GeV/c(2) direct dark matter searches SO PHYSICAL REVIEW D LA English DT Article ID ELASTIC-SCATTERING; CROSS-SECTIONS; GAMMA-RAYS; X-RAYS AB Proposed dark matter detectors with eV-scale sensitivities will detect a large background of atomic (nuclear) recoils from coherent photon scattering of MeV-scale photons. This background climbs steeply below similar to 10 eV, far exceeding the declining rate of low-energy Compton recoils. The upcoming generation of dark matter detectors will not be limited by this background, but further development of eV-scale and sub-eV detectors will require strategies, including the use of low nuclear mass target materials, to maximize dark matter sensitivity while minimizing the coherent photon scattering background. C1 [Robinson, Alan E.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Robinson, AE (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM fbfree@fnal.gov FU Fermi Research Alliance, LLC [De-AC02-07CH11359]; United States Department of Energy FX This work was completed with the support of the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. NR 22 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 18 PY 2017 VL 95 IS 2 AR 021301 DI 10.1103/PhysRevD.95.021301 PG 3 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EH9GR UT WOS:000392080200001 ER PT J AU Price, SF Hoffman, MJ Bonin, JA Howat, IM Neumann, T Saba, J Tezaur, I Guerber, J Chambers, DP Evans, KJ Kennedy, JH Lenaerts, J Lipscomb, WH Perego, M Salinger, AG Tuminaro, RS van den Broeke, MR Nowicki, SMJ AF Price, Stephen F. Hoffman, Matthew J. Bonin, Jennifer A. Howat, Ian M. Neumann, Thomas Saba, Jack Tezaur, Irina Guerber, Jeffrey Chambers, Don P. Evans, Katherine J. Kennedy, Joseph H. Lenaerts, Jan Lipscomb, William H. Perego, Mauro Salinger, Andrew G. Tuminaro, Raymond S. van den Broeke, Michiel R. Nowicki, Sophie M. J. TI An ice sheet model validation framework for the Greenland ice sheet SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID FUTURE SEA-LEVEL; SURFACE MASS-BALANCE; GLACIERS; GRACE; VARIABILITY; DYNAMICS; PROJECT; RISE; SENSITIVITIES; ALBANY/FELIX AB We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of <1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation. C1 [Price, Stephen F.; Hoffman, Matthew J.; Lipscomb, William H.] Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, MS B216, Los Alamos, NM 87545 USA. [Bonin, Jennifer A.; Chambers, Don P.] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA. [Howat, Ian M.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Howat, Ian M.] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA. [Neumann, Thomas; Saba, Jack; Guerber, Jeffrey; Nowicki, Sophie M. J.] NASA, Cryospher Sci, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Tezaur, Irina] Sandia Natl Labs, Extreme Scale Data Sci & Analyt Dept, POB 969,MS 9159, Livermore, CA 94551 USA. [Saba, Jack] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Guerber, Jeffrey] Sigma Space Corp, Lanham, MD 20706 USA. [Evans, Katherine J.; Kennedy, Joseph H.] Oak Ridge Natl Lab, Computat Earth Sci Grp, MS 6301, Oak Ridge, TN 37831 USA. [Lenaerts, Jan; van den Broeke, Michiel R.] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands. [Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.] Sandia Natl Labs, Computat Math Dept, POB 5800,MS 1320, Albuquerque, NM 87185 USA. RP Price, SF (reprint author), Los Alamos Natl Lab, Fluid Dynam & Solid Mech Grp, MS B216, Los Alamos, NM 87545 USA. EM sprice@lanl.gov RI Van den Broeke, Michiel/F-7867-2011; Howat, Ian/A-3474-2008; OI Van den Broeke, Michiel/0000-0003-4662-7565; Howat, Ian/0000-0002-8072-6260; Evans, Katherine/0000-0001-8174-6450 FU Scientific Discovery through Advanced Computing (SciDAC) program - US Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research Programs; NASA Cryospheric Sciences grant [NNX11AR47G]; NASA Cryospheric Sciences; National Science Foundation [ANT-0424589]; Polar Program of the Netherlands Organization for Scientific Research (NWO/NPP); Netherlands Earth System Science Center (NESSC); Water, Climate, Ecosystems research theme of Utrecht University; NWO ALW through a Veni postdoctoral grant; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX The authors thank the editor, Philip Huybrechts, and three anonymous reviewers for comments that helped improve the clarity and focus of the paper. Support for Stephen F. Price, Matthew J. Hoffman, Irina Tezaur, Katherine J. Evans, Joseph H. Kennedy, William H. Lipscomb, Mauro Perego, Andrew G. Salinger, and Raymond S. Tuminaro was provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the US Department of Energy (DOE), Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research Programs. Support for Ian M. Howat was provided by NASA Cryospheric Sciences grant NNX11AR47G. Stephen F. Price was also partially supported by NASA Cryospheric Sciences, and Stephen F. Price and Matthew J. Hoffman were partially supported by the National Science Foundation, under grant ANT-0424589 to the Center for Remote Sensing of Ice Sheets (CReSIS). Jan Lenaerts and Michiel R. van den Broeke acknowledge funding from the Polar Program of the Netherlands Organization for Scientific Research (NWO/NPP), the Netherlands Earth System Science Center (NESSC) and Water, Climate, Ecosystems research theme of Utrecht University. Jan Lenaerts is supported by NWO ALW through a Veni postdoctoral grant. This research used resources of the National Energy Research Scientific Computing Center (NERSC; supported by the Office of Science of the US Department of Energy under contract DE-AC02-05CH11231). NR 48 TC 0 Z9 0 U1 4 U2 4 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD JAN 17 PY 2017 VL 10 IS 1 BP 255 EP 270 DI 10.5194/gmd-10-255-2017 PG 16 WC Geosciences, Multidisciplinary SC Geology GA EK1LC UT WOS:000393685800001 ER PT J AU Cooney, G Jamieson, M Marriott, J Bergerson, J Brandt, A Skone, TJ AF Cooney, Gregory Jamieson, Matthew Marriott, Joe Bergerson, Joule Brandt, Adam Skone, Timothy J. TI Updating the US Life Cycle GHG Petroleum Baseline to 2014 with Projections to 2040 Using Open-Source Engineering-Based Models SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID GREENHOUSE-GAS EMISSIONS; INFORMATION GAPS; ENERGY; UNCERTAINTY; REFINERIES; PRODUCTS AB The National Energy Technology Laboratory produced a well-to-wheels (WTW) life cycle greenhouse gas analysis of petroleum-based fuels consumed in the U.S. in 2005, known as the NETL 2005 Petroleum Baseline. This study uses a set of engineering-based, open-source models combined with publicly available data to calculate baseline results for 2014. An increase between the 2005 baseline and the 2014 results presented here (e.g., 92.4 vs 96.2 g CO(2)e/MJ gasoline, + 4.1%) are due to changes both in modeling platform and in the U.S. petroleum sector. An updated result for 2005 was calculated to minimize the effect of the change in modeling platform, and emissions for gasoline in 2014 were about 2% lower than in 2005 (98.1 vs 96.2 g CO(2)e/MJ gasoline). The same methods were utilized to forecast emissions from fuels out to 2040, indicating maximum changes from the 2014 gasoline result between +2.1% and -1.4%. The changing baseline values lead to potential compliance challenges with frameworks such as the Energy Independence and Security Act (EISA) Section 526, which states that Federal agencies should not purchase alternative fuels unless their life cycle GHG emissions are less than those of conventionally produced, petroleum-derived fuels. C1 [Cooney, Gregory; Jamieson, Matthew; Marriott, Joe; Skone, Timothy J.] Natl Energy Technol Lab, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. [Bergerson, Joule] Univ Calgary, EEEL Bldg,2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. [Brandt, Adam] Stanford Univ, 066 Green Earth Sci Bldg,367 Panama St, Stanford, CA 94305 USA. EM timothy.skone@netl.doe.gov FU DOE NETL [DE-FE0004001, DE-FE0025912] FX This analysis was prepared by the Energy Sector Planning and Analysis (ESPA) team for the United States Department of Energy (DOE), National Energy Technology Laboratory (NETL). This work was completed under DOE NETL Contract Number DE-FE0004001 and DE-FE0025912. The authors thank Jason Guinan, contractor to the National Energy Technology Laboratory, for the cover concept. NR 35 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JAN 17 PY 2017 VL 51 IS 2 BP 977 EP 987 DI 10.1021/acs.est.6b02819 PG 11 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EI4IT UT WOS:000392457700029 PM 28092937 ER PT J AU Pierce, EM Lilova, K Missimer, DM Lukens, WW Wu, LL Fitts, J Rawn, C Huq, A Leonard, DN Eskelsen, JR Woodfield, BF Jantzen, CM Navrotsky, A AF Pierce, Eric M. Lilova, Kristina Missimer, David M. Lukens, Wayne W. Wu, Lili Fitts, Jeffrey Rawn, Claudia Huq, Ashfia Leonard, Donovan N. Eskelsen, Jeremy R. Woodfield, Brian F. Jantzen, Carol M. Navrotsky, Alexandra TI Structure and Thermochemistry of Perrhenate Sodalite and Mixed Guest Perrhenate/Pertechnetate Sodalite SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HIGH-TEMPERATURE CALORIMETRY; SOLID-STATE NMR; RADIOACTIVE-WASTE; CRYSTAL-STRUCTURE; ELEMENT 43; TECHNETIUM; PERTECHNETATE; REDUCTION; TC(VII); IMMOBILIZATION AB Treatment and immobilization of technetium-99 (Tc-99) contained in reprocessed nuclear waste and present in contaminated subsurface systems represents a major environmental challenge. One potential approach to managing this highly mobile and long-lived radionuclide is immobilization into micro- and meso-porous crystalline solids, specifically sodalite. We synthesized and characterized the structure of perrhenate sodalite, Na-8[AlSiO4](6)(ReO4)(2), and the structure of a mixed guest perrhenate/pertechnetate sodalite, Na-8[AlSiO4](6)(ReO4)(2-x)(TcO4)(x). Perrhenate was used as a chemical analogue for pertechnetate. Bulk analyses of each solid confirm a cubic sodalite-type structure (P (4) over bar 3n, No. 218 space group) with rhenium and technetium in the 7+ oxidation state. High-resolution nanometer scale characterization measurements provide first-of-a-kind evidence that the ReO4- anions are distributed in a periodic array in the sample, nanoscale clustering is not observed, and the ReO4- anion occupies the center of the sodalite beta-cage in Na-8[AlSiO4](6)(ReO4)(2). We also demonstrate, for the first time, that the TcO4- anion can be incorporated into the sodalite structure. Lastly, thermochemistry measurements for the perrhenate sodalite were used to estimate the thermochemistry of pertechnetate sodalite based on a relationship between ionic potential and the enthalpy and Gibbs free energy of formation for previously measured oxyanion-bearing feldspathoid phases. The results collected in this study suggest that micro- and mesoporous crystalline solids maybe viable candidates for the treatment and immobilization of Tc-99 present in reprocessed nuclear waste streams and contaminated subsurface environments. C1 [Pierce, Eric M.; Eskelsen, Jeremy R.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008,MS 6038, Oak Ridge, TN 37831 USA. [Lilova, Kristina; Wu, Lili; Navrotsky, Alexandra] Univ Calif Davis, Peter Rock Thermochem Lab, Davis, CA 95616 USA. [Lilova, Kristina; Wu, Lili; Navrotsky, Alexandra] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. [Missimer, David M.] Savannah River Natl Lab, Analyt Dev Ctr, Aiken, SC 29808 USA. [Lukens, Wayne W.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Fitts, Jeffrey] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Rawn, Claudia; Leonard, Donovan N.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Huq, Ashfia] Oak Ridge Natl Lab, Chem & Engn Mat Div, POB 2008, Oak Ridge, TN 37831 USA. [Woodfield, Brian F.] Brigham Young Univ, Chem & Biochem, Provo, UT 84602 USA. [Jantzen, Carol M.] Savannah River Natl Lab, Environm Technol Ctr, Aiken, SC 29808 USA. EM pierceem@ornl.gov RI Huq, Ashfia/J-8772-2013; OI Huq, Ashfia/0000-0002-8445-9649; Pierce, Eric/0000-0002-4951-1931; Eskelsen, Jeremy/0000-0003-2828-9099 FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) [DE-AC02-98CH10886]; DOE, Office of Science, BES [DE-AC02-76SF00515]; DOE Office of Science by ANL [DE-AC02-06CH11357]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Scientific User Facilities Division, BES, DOE; DOE [DE-AC05-00OR22725]; Subsurface Biogeochemical Research Program under the US Department of Energy (DOE) Office of Biological and Environmental Research, Climate and Environmental Sciences Division; Heavy Element Chemistry Program under the Office of Basic Energy Sciences (BES) Chemical Sciences, Biosciences and Geosciences Divisions; Tank Waste Management Technology Development Program under the Office of Environmental Management; U.S. Department of Energy [DE-AC05-00OR22725] FX The powder neutron diffraction data was collected on POWGEN (BL-11A) neutron powder diffractometer at Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) under proposal numbers IPTS 5857 and 7810. The XAFS data was collected on beamline 20-ID-B at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL) under proposal number GUP-24070, National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) beamline X27A, and at the Stanford Synchrotron Radiation Lightsource (SSRL). Use of the NSLS, BNL, was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) under Contract No. DE-AC02-98CH10886. Use of the SSRL, SLAC National Accelerator Laboratory, is supported by the DOE, Office of Science, BES under Contract No. DE-AC02-76SF00515. A portion of this research used resources of the APS, a DOE Office of Science User Facility operated for the DOE Office of Science by ANL under Contract No. DE-AC02-06CH11357. Portions of this work were performed at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. TA portion of this research was performed at ORNL's SNS was sponsored by the Scientific User Facilities Division, BES, DOE. The ultra STEM imaging was conducted at the Center for Nanophase Material Science under proposal number CNMS2016-R15, which is a DOE Office of Science User Facility. ORNL is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. Support was provided by the Subsurface Biogeochemical Research Program under the US Department of Energy (DOE) Office of Biological and Environmental Research, Climate and Environmental Sciences Division. Portions of this research were supported by Heavy Element Chemistry Program under the Office of Basic Energy Sciences (BES) Chemical Sciences, Biosciences and Geosciences Divisions and the Tank Waste Management Technology Development Program under the Office of Environmental Management. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-publicaccess-plan NR 58 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JAN 17 PY 2017 VL 51 IS 2 BP 997 EP 1006 DI 10.1021/acs.est.6b01879 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EI4IT UT WOS:000392457700031 PM 28026187 ER PT J AU Klonowska, A Lopez-Lopez, A Moulin, L Ardley, J Gollagher, M Marinova, D Tian, R Huntemann, M Reddy, TBK Varghese, N Woyke, T Markowitz, V Ivanova, N Seshadri, R Baeshen, MN Baeshen, NA Kyrpides, N Reeve, W AF Klonowska, Agnieszka Lopez-Lopez, Aline Moulin, Lionel Ardley, Julie Gollagher, Margaret Marinova, Dora Tian, Rui Huntemann, Marcel Reddy, T. B. K. Varghese, Neha Woyke, Tanja Markowitz, Victor Ivanova, Natalia Seshadri, Rekha Baeshen, Mohamed N. Baeshen, Nabih A. Kyrpides, Nikos Reeve, Wayne TI High-quality draft genome sequence of Rhizobium mesoamericanum strain STM6155, a Mimosa pudica microsymbiont from New Caledonia SO Standards in Genomic Sciences LA English DT Article DE Root-nodule bacteria; Nitrogen fixation; Rhizobium; Alphaproteobacteria; Mimosa ID ROOT-NODULE-BACTERIA; NITROGEN-FIXATION; GENETIC DIVERSITY; SYMBIONTS; SYSTEM; BURKHOLDERIA; SPP.; CUPRIAVIDUS; PROTEOBACTERIA; IDENTIFICATION AB Rhizobium mesoamericanum STM6155 (INSCD = ATYY01000000) is an aerobic, motile, Gram-negative, non-sporeforming rod that can exist as a soil saprophyte or as an effective nitrogen fixing microsymbiont of the legume Mimosa pudica L.. STM6155 was isolated in 2009 from a nodule of the trap host M. pudica grown in nickel-rich soil collected near Mont Dore, New Caledonia. R. mesoamericanum STM6155 was selected as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) genome sequencing project. Here we describe the symbiotic properties of R. mesoamericanum STM6155, together with its genome sequence information and annotation. The 6,927,906 bp high-quality draft genome is arranged into 147 scaffolds of 152 contigs containing 6855 protein-coding genes and 71 RNA-only encoding genes. Strain STM6155 forms an ANI clique (ID 2435) with the sequenced R. mesoamericanum strain STM3625, and the nodulation genes are highly conserved in these strains and the type strain of Rhizobium grahamii CCGE501(T). Within the STM6155 genome, we have identified a chr chromate efflux gene cluster of six genes arranged into two putative operons and we postulate that this cluster is important for the survival of STM6155 in ultramafic soils containing high concentrations of chromate. C1 [Klonowska, Agnieszka; Moulin, Lionel] Univ Montpellier, IPME, IRD, Cirad, F-34394 Montpellier, France. [Klonowska, Agnieszka; Lopez-Lopez, Aline; Moulin, Lionel] IRD, LSTM, UMR, F-34398 Montpellier 5, France. [Ardley, Julie; Tian, Rui; Reeve, Wayne] Murdoch Univ, Sch Vet & Life Sci, Murdoch, WA, Australia. [Gollagher, Margaret; Marinova, Dora] Curtin Univ, Sustainabil Policy Inst, Bentley, WA, Australia. [Huntemann, Marcel; Reddy, T. B. K.; Varghese, Neha; Woyke, Tanja; Ivanova, Natalia; Seshadri, Rekha; Kyrpides, Nikos] DOE Joint Genome Inst, Walnut Creek, CA USA. [Markowitz, Victor] Lawrence Berkeley Natl Lab, Biol Data Management & Technol Ctr, Berkeley, CA USA. [Baeshen, Mohamed N.] Univ Jeddah, Fac Sci, Dept Biol, Jeddah, Saudi Arabia. [Baeshen, Nabih A.; Kyrpides, Nikos] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah, Saudi Arabia. RP Reeve, W (reprint author), Murdoch Univ, Sch Vet & Life Sci, Murdoch, WA, Australia. EM W.Reeve@murdoch.edu.au RI Moulin, Lionel/C-2921-2008; Faculty of, Sciences, KAU/E-7305-2017; Fac Sci, KAU, Biol Sci Dept/L-4228-2013 OI Moulin, Lionel/0000-0001-9068-6912; FU US Department of Energy's Office of Science, Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; French National Agency of Research (Project BETASYM) [ANR 09 JCJ 0046]; Curtin University Sustainability Policy Institute; Murdoch University Small Research Grants Scheme FX This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231. We gratefully acknowledge the funding received from the French National Agency of Research (Project BETASYM ANR 09 JCJ 0046), Curtin University Sustainability Policy Institute, and the funding received from Murdoch University Small Research Grants Scheme in 2016. NR 60 TC 0 Z9 0 U1 2 U2 2 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD JAN 17 PY 2017 VL 12 AR 7 DI 10.1186/s40793-016-0212-4 PG 11 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA EJ1NO UT WOS:000392977700001 PM 28116041 ER PT J AU Nguyen, SN Liyu, AV Chu, RK Anderton, CR Laskin, J AF Nguyen, Son N. Liyu, Andrey V. Chu, Rosalie K. Anderton, Christopher R. Laskin, Julia TI Constant-Distance Mode Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Biological Samples with Complex Topography SO ANALYTICAL CHEMISTRY LA English DT Article ID BACILLUS-SUBTILIS; METABOLIC EXCHANGE; ATMOSPHERIC-PRESSURE; LASER-ABLATION; REAL-TIME; IDENTIFICATION; PROBE; QUANTIFICATION; SPORULATION; NETWORKING AB A new approach for constant-distance mode mass spectrometry imaging (MSI) of biological samples using nanospray desorption electrospray ionization (nano-DESI) was developed by integrating a shear-force probe with the nano-DESI probe. The technical concept and basic instrumental setup, as well as the general operation of the system are described. Mechanical dampening of resonant oscillations due to the presence of shear forces between the probe and the sample surface enabled the constant-distance imaging mode via a computer-controlled closed-feedback loop. The capability of simultaneous chemical and topographic imaging of complex biological samples is demonstrated using living Bacillus subtilis ATCC 49760 colonies on agar plates. The constant-distance mode nano-DESI MSI enabled imaging of many metabolites, including nonribosomal peptides (surfactin, plipastatin, and iturin) on the surface of living bacterial colonies, ranging in diameter from 10 to 13 mm, with height variations up to 0.8 mm above the agar plate. Co-registration of ion images to topographic images provided higher-contrast images. Based on this effort, constant-mode nano-DESI MSI proved to be ideally suited for imaging biological samples of complex topography in their native states. C1 [Nguyen, Son N.; Laskin, Julia] Pacific Northwest Natl Lab, Phys Sci Div, Richland, WA 99352 USA. [Liyu, Andrey V.; Chu, Rosalie K.; Anderton, Christopher R.] Pacific Northwest Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. RP Laskin, J (reprint author), Pacific Northwest Natl Lab, Phys Sci Div, Richland, WA 99352 USA. EM laskin@pnnl.gov RI Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 FU U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research FX The research described in this paper is part of the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL). The research was conducted under the Laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy (DOE) under Contract DE-AC05-76RL01830. The authors thank Mark Engelhard for help with tissue profilometry. The work was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 53 TC 0 Z9 0 U1 13 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD JAN 17 PY 2017 VL 89 IS 2 BP 1131 EP 1137 DI 10.1021/acs.analchem.6b03293 PG 7 WC Chemistry, Analytical SC Chemistry GA EI4IX UT WOS:000392458100017 PM 27973782 ER PT J AU Giera, B Zepeda-Ruiz, LA Pascall, AJ Weisgraber, TH AF Giera, Brian Zepeda-Ruiz, Luis A. Pascall, Andrew J. Weisgraber, Todd H. TI Mesoscale Particle-Based Model of Electrophoretic Deposition SO LANGMUIR LA English DT Article ID COLLOIDAL SUSPENSIONS; CERAMICS; CATAPHORESIS; CRYSTALS; DYNAMICS; KINETICS; MOTION; FILMS AB We present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increases and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. We find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force. C1 [Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; Weisgraber, Todd H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Giera, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM giera1@llnl.gov OI Pascall, Andrew/0000-0002-7933-8690 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 60 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JAN 17 PY 2017 VL 33 IS 2 BP 652 EP 661 DI 10.1021/acs.langmuir.6b04010 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EI4IS UT WOS:000392457600024 PM 27997803 ER PT J AU Kang, CJ Birol, T Kotliar, G AF Kang, Chang-Jong Birol, Turan Kotliar, Gabriel TI Phase stability and large in-plane resistivity anisotropy in the 112-type iron-based superconductor Ca1-xLaxFeAs2 SO PHYSICAL REVIEW B LA English DT Article ID SYMMETRY-BREAKING TRANSITIONS; CRYSTAL-STRUCTURE PREDICTION; 1ST PRINCIPLES CALCULATIONS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MEAN-FIELD THEORY; ARSENIDE SUPERCONDUCTOR; ELECTRICAL-PROPERTIES; ELECTRONIC-STRUCTURE; LANDAU THEORY AB The recently discovered high-Tc superconductor Ca1-xLaxFeAs2 is a unique compound not only because of its low-symmetry crystal structure but also because of its electronic structure, which hosts Dirac-like metallic bands resulting from (spacer) zigzag As chains. We present a comprehensive first-principles theoretical study of the electronic and crystal structures of Ca1-xLaxFeAs2. After discussing the connection between the crystal structure of the 112 family, which Ca1-xLaxFeAs2 is a member of, with the other known structures of Fe pnictide superconductors, we check the thermodynamic phase stability of CaFeAs2, and similar hyphothetical compounds SrFeAs2 and BaFeAs2 which, we find, are slightly higher in energy. We calculate the optical conductivity of Ca1-xLaxFeAs2 using the DFT+DMFT method and predict a large in-plane resistivity anisotropy in the normal phase, which does not originate from electronic nematicity, but is enhanced by the electronic correlations. In particular, we predict a 0.34 eV peak in the yy component of the optical conductivity of the 30% La-doped compound, which corresponds to coherent interband transitions within a fast-dispersing band arising from the zigzag As chains, which are unique to this compound. We also study the Landau free energy for Ca1-xLaxFeAs2 including the order parameter relevant for the nematic transition and find that the free energy does not have any extra terms that could induce ferro-orbital order. This explains why the presence of As chains does not broaden the nematic transition in Ca1-xLaxFeAs2. C1 [Kang, Chang-Jong; Birol, Turan; Kotliar, Gabriel] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Birol, Turan] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. [Kotliar, Gabriel] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Kang, CJ (reprint author), Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RI Birol, Turan/D-1948-2012 OI Birol, Turan/0000-0001-5174-3320 FU NSF DMREF [DMR-1435918]; Center for Materials Theory at Rutgers University FX C.-J. Kang and G. Kotliar were supported by NSF DMREF DMR-1435918. T. Birol acknowledges the support of the Center for Materials Theory at Rutgers University. NR 70 TC 0 Z9 0 U1 10 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 17 PY 2017 VL 95 IS 1 AR 014511 DI 10.1103/PhysRevB.95.014511 PG 13 WC Physics, Condensed Matter SC Physics GA EI1WL UT WOS:000392277000005 ER PT J AU Lapa, PN Roshchin, IV Ding, JJ Pearson, JE Novosad, V Jiang, JS Hoffmann, A AF Lapa, Pavel N. Roshchin, Igor V. Ding, Junjia Pearson, John. E. Novosad, Valentine Jiang, J. S. Hoffmann, Axel TI Magnetoresistive detection of strongly pinned uncompensated magnetization in antiferromagnetic FeMn SO PHYSICAL REVIEW B LA English DT Article ID EXCHANGE BIAS; ANISOTROPY; MODEL AB We observed and studied pinned uncompensated magnetization in an antiferromagnet using magnetoresistance measurements. For this, we developed antiferromagnet-ferromagnet spin valves (AFSVs) that consist of an antiferromagnetic layer and a ferromagnetic one, separated by a nonmagnetic conducting spacer. In an AFSV, the uncompensated magnetization in the antiferromagnet affects scattering of spin-polarized electrons giving rise to giant magnetoresitance (GMR). By measuring angular dependence of AFSVs' resistance, we detected pinned uncompensated magnetization responsible for the exchange bias effect in an antiferromagnet- only exchange bias system Cu/FeMn/Cu. The fact that GMR measured in this system persists up to 110 kOe indicates that the scattering occurs on strongly pinned uncompensated magnetic moments in FeMn. This strong pinning can be explained if this pinned uncompensated magnetization is a thermodynamically stable state and coupled to the antiferromagnetic order parameter. Using the AFSV technique, we confirmed that the two interfaces between FeMn and Cu are magnetically different: The uncompensated magnetization is pinned only at the interface with the bottom Cu layer. C1 [Lapa, Pavel N.; Ding, Junjia; Pearson, John. E.; Novosad, Valentine; Jiang, J. S.; Hoffmann, Axel] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lapa, Pavel N.; Roshchin, Igor V.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Roshchin, Igor V.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. RP Lapa, PN (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.; Lapa, PN (reprint author), Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. RI Novosad, V /J-4843-2015; DING, Junjia/K-2277-2013 OI DING, Junjia/0000-0002-9917-9156 FU United States Department of Energy Office of Science, Basic Energy Sciences, Material Sciences and Engineering Division; Texas AM University FX Work was supported by the United States Department of Energy Office of Science, Basic Energy Sciences, Material Sciences and Engineering Division. P.N.L. also received partial support from Texas A&M University. We acknowledge inspiring discussions with K. D. Belashchenko and thank him for critical reading of the manuscript. NR 46 TC 0 Z9 0 U1 8 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 17 PY 2017 VL 95 IS 2 AR 020409 DI 10.1103/PhysRevB.95.020409 PG 6 WC Physics, Condensed Matter SC Physics GA EI1WR UT WOS:000392277600001 ER PT J AU Micklitz, T Norman, MR AF Micklitz, T. Norman, M. R. TI Nodal lines and nodal loops in nonsymmorphic odd-parity superconductors SO PHYSICAL REVIEW B LA English DT Article ID P-WAVE SUPERCONDUCTIVITY; SPACE-GROUP-APPROACH; SYMMETRY AB We discuss the nodal structure of odd-parity superconductors in the presence of nonsymmorphic crystal symmetries, both with and without spin-orbit coupling, and with and without time-reversal symmetry. We comment on the relation of our work to previous work in the literature, and also the implications for unconventional superconductors such as UPt3. C1 [Micklitz, T.] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil. [Norman, M. R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Micklitz, T (reprint author), Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil. FU Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy; CNPq; FAPERJ FX This work was supported by the Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy. T.M. acknowledges financial support by Brazilian agencies CNPq and FAPERJ. NR 25 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 17 PY 2017 VL 95 IS 2 AR 024508 DI 10.1103/PhysRevB.95.024508 PG 6 WC Physics, Condensed Matter SC Physics GA EI1WR UT WOS:000392277600006 ER PT J AU Munirov, VR Fisch, NJ AF Munirov, Vadim R. Fisch, Nathaniel J. TI Radiative transfer dynamo effect SO PHYSICAL REVIEW E LA English DT Article ID STELLAR MAGNETIC-FIELDS; COSMIC BATTERY; CURRENT GENERATION; FUSION PLASMAS; CURRENT DRIVE; ACCRETION; ORIGIN AB Magnetic fields in rotating and radiating astrophysical plasma can be produced due to a radiative interaction between plasma layers moving relative to each other. The efficiency of current drive, and with it the associated dynamo effect, is considered in a number of limits. It is shown here, however, that predictions for these generated magnetic fields can be significantly higher when kinetic effects, previously neglected, are taken into account. C1 [Munirov, Vadim R.; Fisch, Nathaniel J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Munirov, Vadim R.; Fisch, Nathaniel J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. RP Munirov, VR (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA.; Munirov, VR (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. EM vmunirov@pppl.gov OI Munirov, Vadim/0000-0001-6711-1272 FU DOE [DE-AC02-09CH1-1466] FX This work is supported by DOE Contract No. DE-AC02-09CH1-1466. NR 32 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JAN 17 PY 2017 VL 95 IS 1 AR 013205 DI 10.1103/PhysRevE.95.013205 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EI1ZG UT WOS:000392284900020 PM 28208367 ER PT J AU Sandor, C Libal, A Reichhardt, C Reichhardt, CJO AF Sandor, Cs. Libal, A. Reichhardt, C. Reichhardt, C. J. Olson TI Collective transport for active matter run-and-tumble disk systems on a traveling-wave substrate SO PHYSICAL REVIEW E LA English DT Article ID SWIMMING BACTERIA; PARTICLES; DRIVEN; DYNAMICS; PHYSICS; MEDIA AB We examine numerically the transport of an assembly of active run-and-tumble disks interacting with a traveling-wave substrate. We show that as a function of substrate strength, wave speed, disk activity, and disk density, a variety of dynamical phases arise that are correlated with the structure and net flux of disks. We find that there is a sharp transition into a state in which the disks are only partially coupled to the substrate and form a phase-separated cluster state. This transition is associated with a drop in the net disk flux, and it can occur as a function of the substrate speed, maximum substrate force, disk run time, and disk density. Since variation of the disk activity parameters produces different disk drift rates for a fixed traveling-wave speed on the substrate, the system we consider could be used as an efficient method for active matter species separation. Within the cluster phase, we find that in some regimes the motion of the cluster center of mass is in the opposite direction to that of the traveling wave, while when the maximum substrate force is increased, the cluster drifts in the direction of the traveling wave. This suggests that swarming or clustering motion can serve as a method by which an active system can collectively move against an external drift. C1 [Sandor, Cs.; Libal, A.; Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. [Sandor, Cs.; Libal, A.; Reichhardt, C.; Reichhardt, C. J. Olson] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Sandor, Cs.; Libal, A.] Univ Babes Bolyai, Math & Comp Sci Dept, Cluj Napoca 400084, Romania. RP Sandor, C (reprint author), Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA.; Sandor, C (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.; Sandor, C (reprint author), Univ Babes Bolyai, Math & Comp Sci Dept, Cluj Napoca 400084, Romania. FU NNSA of the U.S. DOE at LANL [DE-AC52-06NA25396] FX This work was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 42 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JAN 17 PY 2017 VL 95 IS 1 AR 012607 DI 10.1103/PhysRevE.95.012607 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EI1ZG UT WOS:000392284900016 PM 28208499 ER PT J AU Shaffer, NR Baalrud, SD Daligault, J AF Shaffer, Nathaniel R. Baalrud, Scott D. Daligault, Jerome TI Effective potential theory for diffusion in binary ionic mixtures SO PHYSICAL REVIEW E LA English DT Article ID MULTICOMPONENT MIXTURES; ENSKOG THEORY; PLASMA; INTERDIFFUSION; COEFFICIENTS; EQUATION AB Self-diffusion and interdiffusion coefficients of binary ionic mixtures are evaluated using the effective potential theory (EPT), and the predictions are compared with the results of molecular dynamics simulations. We find that EPT agrees with molecular dynamics from weak coupling well into the strong-coupling regime, which is a similar range of coupling strengths as previously observed in comparisons with the one-component plasma. Within this range, typical relative errors of approximately 20% and worst-case relative errors of approximately 40% are observed. We also examine the Darken model, which approximates the interdiffusion coefficients based on the self-diffusion coefficients. C1 [Shaffer, Nathaniel R.; Baalrud, Scott D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Daligault, Jerome] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Shaffer, NR (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM nathaniel-shaffer@uiowa.edu FU National Science Foundation [PHY-1453736]; Los Alamos National Laboratory LDRD Grant [20150520ER] FX This material is based upon work supported by the National Science Foundation under Grant No. PHY-1453736. The work of J.D. was supported by Los Alamos National Laboratory LDRD Grant No. 20150520ER. NR 34 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JAN 17 PY 2017 VL 95 IS 1 AR 013206 DI 10.1103/PhysRevE.95.013206 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EI1ZG UT WOS:000392284900021 PM 28208485 ER PT J AU Janoschek, M Lander, G Lawrence, JM Bauer, ED Lashley, JC Lumsden, M Abernathy, DL Thompson, JD AF Janoschek, Marc Lander, Gerry Lawrence, Jon M. Bauer, E. D. Lashley, Jason C. Lumsden, Mark Abernathy, Douglas L. Thompson, J. D. TI Relevance of Kondo physics for the temperature dependence of the bulkmodulus in plutonium SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter ID DELTA-PLUTONIUM C1 [Janoschek, Marc; Lawrence, Jon M.; Bauer, E. D.; Lashley, Jason C.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lander, Gerry] Inst Transuranium Elements, Joint Res Ctr, European Commiss, D-76125 Karlsruhe, Germany. [Lumsden, Mark; Abernathy, Douglas L.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Janoschek, M (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM mjanoschek@lanl.gov RI Lumsden, Mark/F-5366-2012; Abernathy, Douglas/A-3038-2012 OI Lumsden, Mark/0000-0002-5472-9660; Abernathy, Douglas/0000-0002-3533-003X NR 10 TC 1 Z9 1 U1 3 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 17 PY 2017 VL 114 IS 3 BP E268 EP E268 DI 10.1073/pnas.1618967114 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH9MQ UT WOS:000392095800001 PM 28074035 ER PT J AU Migliori, A Soderlind, P Landa, A Freibert, FJ Maiorov, B Ramshaw, BJ Betts, JB AF Migliori, Albert Soderlind, Per Landa, Alexander Freibert, Franz J. Maiorov, Boris Ramshaw, B. J. Betts, Jon B. TI The excited delta-phase of plutonium SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Letter C1 [Migliori, Albert; Freibert, Franz J.; Maiorov, Boris; Ramshaw, B. J.; Betts, Jon B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Soderlind, Per; Landa, Alexander] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Migliori, A (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM migliori@lanl.gov FU Materials Science of Actinides, an Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001089]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC0001089; and under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 6 TC 0 Z9 0 U1 5 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JAN 17 PY 2017 VL 114 IS 3 BP E269 EP E269 DI 10.1073/pnas.1619207114 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH9MQ UT WOS:000392095800002 PM 28074034 ER PT J AU Pool, VL Dou, B Van Campen, DG Klein-Stockert, TR Barnes, FS Shaheen, SE Ahmad, MI van Hest, MFAM Toney, MF AF Pool, Vanessa L. Dou, Benjia Van Campen, Douglas G. Klein-Stockert, Talysa R. Barnes, Frank S. Shaheen, Sean E. Ahmad, Md I. van Hest, Maikel F. A. M. Toney, Michael F. TI Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD SO NATURE COMMUNICATIONS LA English DT Article ID PERFORMANCE SOLAR-CELLS; TRIHALIDE PEROVSKITES; HALIDE PEROVSKITE; LEAD TRIHALIDE; IODIDE; CRYSTALLIZATION; CH3NH3PBI3 AB Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application of radiative thermal annealing, an easily scalable processing method for synthesizing formamidinium lead iodide (FAPbI(3)) perovskite solar absorbers. Devices fabricated from films formed via radiative thermal annealing have equivalent efficiencies to those annealed using a conventional hotplate. By coupling results from in situ X-ray diffraction using a radiative thermal annealing system with device performances, we mapped the processing phase space of FAPbI(3) and corresponding device efficiencies. Our map of processing-structure-performance space suggests the commonly used FAPbI(3) annealing time, 10 min at 170 degrees C, can be significantly reduced to 40 s at 170 degrees C without affecting the photovoltaic performance. The Johnson-Mehl-Avrami model was used to determine the activation energy for decomposition of FAPbI(3) into PbI2. C1 [Pool, Vanessa L.; Van Campen, Douglas G.; Ahmad, Md I.; Toney, Michael F.] SSRL Mat Sci Div, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Dou, Benjia; Klein-Stockert, Talysa R.; van Hest, Maikel F. A. M.] Ctr Mat Sci, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Dou, Benjia; Barnes, Frank S.; Shaheen, Sean E.] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [Shaheen, Sean E.] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA. [Ahmad, Md I.] Indian Inst Technol BHU, Dept Ceram Engn, Varanasi 221005, Uttar Pradesh, India. RP van Hest, MFAM (reprint author), Ctr Mat Sci, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Maikel.van.Hest@nrel.gov FU Bridging Research Interactions through collaborating the Development Grants in Energy (BRIDGE) program under the SunShot initiative of the Department of Energy [DE-EE0005951]; Department of Energy [DE-AC36-08GO28308, DE-AC02-76SF00515] FX This work was funded by the Bridging Research Interactions through collaborating the Development Grants in Energy (BRIDGE) program under the SunShot initiative of the Department of Energy (DE-EE0005951). The work at the National Renewable Energy Laboratory was supported by the Department of Energy under Contract Number DE-AC36-08GO28308 and the work at Stanford Synchrotron Radiation Lightsource was funded by the Department of Energy under Contract No. DE-AC02-76SF00515. Stanford Synchrotron Radiation Lightsource at the SLAC National Accelerator Laboratory is a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. We thank Bart Johnson (SLAC) for assistance with SSRL beam line 7-2. We thank Dr Z. Li (NREL) for assisting on SEM images, Dr D. Moore (NREL) for discussion on the kinetic modeling and Dr J. Christians (NREL) for helpful discussions. NR 36 TC 0 Z9 0 U1 54 U2 54 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN 17 PY 2017 VL 8 AR 14075 DI 10.1038/ncomms14075 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH7GH UT WOS:000391940400002 PM 28094249 ER PT J AU Arnold, R Augier, C Baker, JD Barabash, AS Basharina-Freshville, A Blondel, S Blot, S Bongrand, M Boursette, D Brudanin, V Busto, J Caffrey, AJ Calvez, S Cascella, M Cerna, C Cesar, JP Chapon, A Chauveau, E Chopra, A Duchesneau, D Durand, D Egorov, V Eurin, G Evans, JJ Fajt, L Filosofov, D Flack, R Garrido, X Gomez, H Guillon, B Guzowski, P Hodak, R Huber, A Hubert, P Hugon, C Jullian, S Klimenko, A Kochetov, O Konovalov, SI Kovalenko, V Lalanne, D Lang, K Lemiere, Y Le Noblet, T Liptak, Z Liu, XR Loaiza, P Lutter, G Macko, M Macolino, C Mamedov, F Marquet, C Mauger, F Morgan, B Mott, J Nemchenok, I Nomachi, M Nova, F Nowacki, F Ohsumi, H Pahlka, RB Perrot, F Piquemal, F Povinec, P Pridal, P Ramachers, YA Remoto, A Reyss, JL Richards, B Riddle, CL Rukhadze, E Saakyan, R Salazar, R Sarazin, X Shitov, Y Simard, L Simkovic, F Smetana, A Smolek, K Smolnikov, A Soldner-Rembold, S Soule, B Stekl, I Suhonen, J Sutton, CS Szklarz, G Thomas, J Timkin, V Torre, S Tretyak, VI Tretyak, VI Umatov, VI Vanushin, I Vilela, C Vorobe, V Waters, D Zukauskas, A AF Arnold, R. Augier, C. Baker, J. D. Barabash, A. S. Basharina-Freshville, A. Blondel, S. Blot, S. Bongrand, M. Boursette, D. Brudanin, V. Busto, J. Caffrey, A. J. Calvez, S. Cascella, M. Cerna, C. Cesar, J. P. Chapon, A. Chauveau, E. Chopra, A. Duchesneau, D. Durand, D. Egorov, V. Eurin, G. Evans, J. J. Fajt, L. Filosofov, D. Flack, R. Garrido, X. Gomez, H. Guillon, B. Guzowski, P. Hodak, R. Huber, A. Hubert, P. Hugon, C. Jullian, S. Klimenko, A. Kochetov, O. Konovalov, S. I. Kovalenko, V. Lalanne, D. Lang, K. Lemiere, Y. Le Noblet, T. Liptak, Z. Liu, X. R. Loaiza, P. Lutter, G. Macko, M. Macolino, C. Mamedov, F. Marquet, C. Mauger, F. Morgan, B. Mott, J. Nemchenok, I. Nomachi, M. Nova, F. Nowacki, F. Ohsumi, H. Pahlka, R. B. Perrot, F. Piquemal, F. Povinec, P. Pridal, P. Ramachers, Y. A. Remoto, A. Reyss, J. L. Richards, B. Riddle, C. L. Rukhadze, E. Saakyan, R. Salazar, R. Sarazin, X. Shitov, Yu. Simard, L. Simkovic, F. Smetana, A. Smolek, K. Smolnikov, A. Soldner-Rembold, S. Soule, B. Stekl, I. Suhonen, J. Sutton, C. S. Szklarz, G. Thomas, J. Timkin, V. Torre, S. Tretyak, Vl. I. Tretyak, V. I. Umatov, V. I. Vanushin, I. Vilela, C. Vorobe, V. Waters, D. Zukauskas, A. CA NEMO-3 Collaboration TI Measurement of the 2 nu beta beta decay half-life and search for the 0 nu beta beta decay of Cd-116 with the NEMO-3 detector SO PHYSICAL REVIEW D LA English DT Article ID DOUBLE-BETA-DECAY; STATE DOMINANCE HYPOTHESIS; NUCLEAR-DATA SHEETS; NEUTRINO MASS; MAJORON; VALUES AB The NEMO-3 experiment measured the half-life of the 2 nu beta beta decay and searched for the 0 nu beta beta decay of Cd-116. Using 410 g of Cd-116 installed in the detector with an exposure of 5.26 y, (4968 +/- 74) events corresponding to the 2 nu beta beta decay of Cd-116 to the ground state of Sn-116 have been observed with a signal to background ratio of about 12. The half-life of the 2 nu beta beta decay has been measured to be T-1/2(2 nu) = [2.74 +/- 0.04(stat) +/- 0.18(syst)] x 10(19) y. No events have been observed above the expected background while searching for 0 nu beta beta decay. The corresponding limit on the half-life is determined to be T-1/2(0 nu) >= 1.0 x 10(23) y at the 90% C. L. which corresponds to an upper limit on the effective Majorana neutrino mass of < m(nu)> <= 1.4-2.5 eV depending on the nuclear matrix elements considered. Limits on other mechanisms generating 0 nu beta beta decay such as the exchange of R-parity violating supersymmetric particles, right-handed currents and majoron emission are also obtained. C1 [Arnold, R.; Nowacki, F.] ULP, CNRS IN2P3, IPHC, F-67037 Strasbourg, France. [Augier, C.; Blondel, S.; Bongrand, M.; Boursette, D.; Calvez, S.; Eurin, G.; Garrido, X.; Gomez, H.; Jullian, S.; Lalanne, D.; Loaiza, P.; Macolino, C.; Sarazin, X.; Simard, L.; Szklarz, G.] Univ Paris 11, CNRS IN2P3, LAL, F-91405 Orsay, France. [Baker, J. D.; Caffrey, A. J.; Riddle, C. L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Barabash, A. S.; Konovalov, S. I.; Umatov, V. I.; Vanushin, I.] NRC, Kurchatov Inst, ITEP, Moscow 117218, Russia. [Basharina-Freshville, A.; Cascella, M.; Chopra, A.; Eurin, G.; Flack, R.; Liu, X. R.; Mott, J.; Richards, B.; Saakyan, R.; Thomas, J.; Torre, S.; Vilela, C.; Waters, D.] UCL, London WC1E 6BT, England. [Blot, S.; Chauveau, E.; Evans, J. J.; Guzowski, P.; Soldner-Rembold, S.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Brudanin, V.; Egorov, V.; Filosofov, D.; Klimenko, A.; Kochetov, O.; Kovalenko, V.; Nemchenok, I.; Shitov, Yu.; Smolnikov, A.; Timkin, V.] JINR, Dubna 141980, Russia. [Brudanin, V.] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia. [Busto, J.] Aix Marseille Univ, CNRS, CPPM, F-13009 Marseille, France. [Cerna, C.; Huber, A.; Hubert, P.; Hugon, C.; Lutter, G.; Macko, M.; Marquet, C.; Perrot, F.; Piquemal, F.; Soule, B.] Univ Bordeaux, CNRS IN2P3, CENBG, F-33175 Gradignan, France. [Cesar, J. P.; Lang, K.; Liptak, Z.; Nova, F.; Pahlka, R. B.] Univ Texas Austin, Austin, TX 78712 USA. [Chapon, A.; Durand, D.; Lemiere, Y.; Mauger, F.] Univ Caen, CNRS IN2P3, ENSICAEN, LPC Caen, F-14050 Caen, France. [Duchesneau, D.; Le Noblet, T.; Remoto, A.] Univ Savoie Mont Blanc, CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Mamedov, F.; Pridal, P.; Rukhadze, E.; Smetana, A.; Smolek, K.; Stekl, I.] Czech Tech Univ, Inst Expt & Appl Phys, CZ-12800 Prague, Czech Republic. [Macko, M.; Povinec, P.; Simkovic, F.] Comenius Univ, FMFI, SK-84248 Bratislava, Slovakia. [Morgan, B.; Ramachers, Y. A.] Univ Warwick, Coventry CV4 7AL, W Midlands, England. [Nomachi, M.] Osaka Univ, 1-1 Machikaney Arna Toyonaka, Osaka 5600043, Japan. [Ohsumi, H.] Saga Univ, Saga 8408502, Japan. [Piquemal, F.] Lab Souterrain Modane, F-73500 Modane, France. [Reyss, J. L.] CNRS, LSCE, F-91190 Gif Sur Yvette, France. [Shitov, Yu.] Imperial Coll London, London SW7 2AZ, England. [Simard, L.] Inst Univ France, F-75005 Paris, France. [Suhonen, J.] Univ Jyvaskyla, FIN-40351 Jyvaskyla, Finland. [Sutton, C. S.] MHC, S Hadley, MA 01075 USA. [Tretyak, Vl. I.] Inst Nucl Res, MSP, UA-03680 Kiev, Ukraine. [Vorobe, V.; Zukauskas, A.] Charles Univ Prague, Fac Math & Phys, CZ-12116 Prague, Czech Republic. RP Arnold, R (reprint author), ULP, CNRS IN2P3, IPHC, F-67037 Strasbourg, France. EM remoto@in2p3.fr FU funding agencies of the Czech Republic; National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Russian Foundation for Basic Research (Russia); Agentura na Podporu Vyskumu a Vyvoja (Slovak Republic); Science and Technology Facilities Council (United Kingdom); National Science Foundation (United States) FX The authors thank the staffs of the Modane Underground Laboratory for their technical assistance in operating the detector. We acknowledge support by the funding agencies of the Czech Republic, the National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France), the Russian Foundation for Basic Research (Russia), the Agentura na Podporu Vyskumu a Vyvoja (Slovak Republic), the Science and Technology Facilities Council (United Kingdom), and the National Science Foundation (United States). NR 52 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 17 PY 2017 VL 95 IS 1 AR 012007 DI 10.1103/PhysRevD.95.012007 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EH9FY UT WOS:000392078300001 ER PT J AU Li, YT Xu, BY Xu, HH Duan, HN Lu, XJ Xin, S Zhou, WD Xue, LG Fu, GT Manthiram, A Goodenough, JB AF Li, Yutao Xu, Biyi Xu, Henghui Duan, Huanan Lu, Xujie Xin, Sen Zhou, Weidong Xue, Leigang Fu, Gengtao Manthiram, Arumugam Goodenough, John B. TI Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE all-solid-state battery; interfacial resistance; Li-rich garnet; Li-S battery; lithium fluoride ID GARNET-TYPE LI7LA3ZR2O12; CERAMIC ELECTROLYTES; SOLID ELECTROLYTES; LI BATTERIES; CONDUCTIVITY; PEROVSKITE; CHALLENGES AB Li7La3Zr2O12-based Li-rich garnets react with water and carbon dioxide in air to form a Li-ion insulating Li2CO3 layer on the surface of the garnet particles, which results in a large interfacial resistance for Li-ion transfer. Here, we introduce LiF to garnet Li6.5La3Zr1.5Ta0.5O12 (LLZT) to increase the stability of the garnet electrolyte against moist air; the garnet LLZT-2 wt% LiF (LLZT-2LiF) has less Li2CO3 on the surface and shows a small interfacial resistance with Li metal, a solid polymer electrolyte, and organic-liquid electrolytes. An all-solid-state Li/polymer/LLZT-2LiF/ LiFePO4 battery has a high Coulombic efficiency and long cycle life; a Li-S cell with the LLZT-2LiF electrolyte as a separator, which blocks the polysulfide transport towards the Li-metal, also has high Coulombic efficiency and kept 93% of its capacity after 100 cycles. C1 [Li, Yutao; Xu, Henghui; Xin, Sen; Zhou, Weidong; Xue, Leigang; Fu, Gengtao; Manthiram, Arumugam; Goodenough, John B.] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Li, Yutao; Xu, Henghui; Xin, Sen; Zhou, Weidong; Xue, Leigang; Fu, Gengtao; Manthiram, Arumugam; Goodenough, John B.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Xu, Biyi; Duan, Huanan] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China. [Lu, Xujie] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. RP Zhou, WD; Goodenough, JB (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA.; Zhou, WD; Goodenough, JB (reprint author), Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. EM zhouwd@utexas.edu; jgoodenough@mail.utexas.edu OI LU, XUJIE/0000-0001-8402-7160 FU National Science Foundation [CBET-1438007]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DESC0005397]; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy through the Advanced Battery Materials Research (BMR) Program FX The polymer development work was supported by the National Science Foundation Grant No. CBET-1438007, and the LLZT solid electrolyte work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award No. DESC0005397. Research has been partly supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy through the Advanced Battery Materials Research (BMR) Program. NR 35 TC 1 Z9 1 U1 73 U2 73 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD JAN 16 PY 2017 VL 56 IS 3 BP 753 EP 756 DI 10.1002/anie.201608924 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EM0GN UT WOS:000394996900012 PM 27936306 ER PT J AU Dell, WBOQ Agarwal, PK Meilleur, F AF Dell, William B. O. Q. Agarwal, Pratul K. Meilleur, Flora TI Oxygen Activation at the Active Site of a Fungal Lytic Polysaccharide Monooxygenase SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE copper; oxidoreductases; oxygen activation; polysaccharide monooxygenases; protein structures ID X-RAY; CELLULOSE DEGRADATION; NEUROSPORA-CRASSA; CRYSTALLOGRAPHY; MECHANISM; PROTEINS; CLEAVAGE; DATABASE; ENZYMES; CAZY AB Lytic polysaccharide monooxygenases have attracted vast attention owing to their abilities to disrupt glycosidic bonds via oxidation instead of hydrolysis and to enhance enzymatic digestion of recalcitrant substrates including chitin and cellulose. We have determined high-resolution X-ray crystal structures of an enzyme from Neurospora crassa in the resting state and of a copper(II) dioxo intermediate complex formed in the absence of substrate. X-ray crystal structures also revealed "pre-bound" molecular oxygen adjacent to the active site. An examination of protonation states enabled by neutron crystallography and density functional theory calculations identified a role for a conserved histidine in promoting oxygen activation. These results provide a new structural description of oxygen activation by substrate free lytic polysaccharide monooxygenases and provide insights that can be extended to reactivity in the enzyme-substrate complex. C1 [Dell, William B. O. Q.; Meilleur, Flora] North Carolina State Univ, Dept Mol & Struct Biochem, POB 2008, Oak Ridge, TN 37831 USA. [Dell, William B. O. Q.; Meilleur, Flora] Oak Ridge Natl Lab, Biol & Soft Matter Div, POB 2008, Oak Ridge, TN 37831 USA. [Agarwal, Pratul K.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN USA. [Agarwal, Pratul K.] Oak Ridge Natl Lab, Computat Biol Inst, POB 2008, Oak Ridge, TN 37831 USA. [Agarwal, Pratul K.] Oak Ridge Natl Lab, Comp Sci & Math Div, POB 2008, Oak Ridge, TN 37831 USA. RP Meilleur, F (reprint author), North Carolina State Univ, Dept Mol & Struct Biochem, POB 2008, Oak Ridge, TN 37831 USA.; Meilleur, F (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, POB 2008, Oak Ridge, TN 37831 USA. EM fmeille@ncsu.edu OI O'Dell, William/0000-0002-8063-5190 FU USDA NIFA Hatch [211001]; NIH [GM105978] FX Protein expression and purification experiments were conducted at the Center for Structural Molecular Biology, a DOE BER User Facility. Diffraction data were collected at SER-CAT 22-ID at the Advanced Photon Source and at CG-4D IMAGINE (NSF MRI 09229719) at the High Flux Isotope Reactor, DOE BES User Facilities. W.B.O. acknowledges student support from NSF IGERT 1069091. F.M. acknowledges support from USDA NIFA Hatch 211001. P.K.A. acknowledges support from NIH GM105978. NR 23 TC 0 Z9 0 U1 1 U2 1 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD JAN 16 PY 2017 VL 56 IS 3 BP 767 EP 770 DI 10.1002/anie.201610502 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EM0GN UT WOS:000394996900015 ER PT J AU Alharbi, A Zahl, P Shahrjerdi, D AF Alharbi, Abdullah Zahl, Percy Shahrjerdi, Davood TI Material and device properties of superacid-treated monolayer molybdenum disulfide SO APPLIED PHYSICS LETTERS LA English DT Article ID SINGLE-LAYER MOS2; STRONG PHOTOLUMINESCENCE ENHANCEMENT; TRANSITION-METAL DICHALCOGENIDES; CHEMICAL-VAPOR-DEPOSITION; FIELD-EFFECT TRANSISTORS; GRAIN-BOUNDARIES; ATOMIC LAYERS; PHOTOTRANSISTORS; EXCITONS; DEFECTS AB We study the effects of chemical treatment with bis(trifluoromethane) sulfonimide superacid on material and device properties of monolayer molybdenum disulfide grown by chemical vapor deposition. Our spatially resolved photoluminescence (PL) measurements and device studies reveal two key findings due to the chemical treatment: (1) noticeable transformation of trions to neutral excitons, and (2) over 7-fold reduction in the density of mid-gap trap states. Specifically, a combination of scanning Auger microscopy and PL mapping reveals that the superacid treatment is effective in passivating the sulfur-deficient regions. Published by AIP Publishing. C1 [Alharbi, Abdullah; Shahrjerdi, Davood] NYU, Elect & Comp Engn, Brooklyn, NY 11201 USA. [Zahl, Percy] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Shahrjerdi, D (reprint author), NYU, Elect & Comp Engn, Brooklyn, NY 11201 USA. EM davood@nyu.edu FU NSF [1638598]; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DESC0012704] FX The authors acknowledge Borui Liu for the initial help with some of the TFSI treatments. This work was supported in part by NSF award #1638598. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DESC0012704. NR 34 TC 0 Z9 0 U1 22 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 16 PY 2017 VL 110 IS 3 AR 033503 DI 10.1063/1.4974046 PG 4 WC Physics, Applied SC Physics GA EI9OE UT WOS:000392836900041 ER PT J AU Lee, HJ Guo, EJ Kwak, JH Hwang, SH Dorr, K Lee, JH Jo, JY AF Lee, Hyeon Jun Guo, Er-Jia Kwak, Jeong Hun Hwang, Seung Hyun Doerr, Kathrin Lee, Jun Hee Jo, Ji Young TI Controllable piezoelectricity of Pb(Zr0.2Ti0.8)O-3 film via in situ misfit strain SO APPLIED PHYSICS LETTERS LA English DT Article ID HETEROSTRUCTURES; FERROELECTRICITY; CERAMICS AB The tetragonality (c/a) of a PbZr0.2Ti0.8O3 (PZT) thin film on La0.7Sr0.3MnO3/0.72Pb(Mg1/3Nb2/3)O-3-0.28PbTiO(3) (PMN-PT) substrates was controlled by applying an electric field on the PMN-PT substrate. The piezoelectric response of the PZT thin film under various biaxial strains was observed using time-resolved micro X-ray diffraction. The longitudinal piezoelectric coefficient (d(33)) was reduced from 29.5 to 14.9 pm/V when the c/a ratio of the PZT film slightly changed from 1.051 to 1.056. Our results demonstrate that the tetragonality of the PZT thin film plays a critical role in determining d(33), and in situ strain engineering using electromechanical substrate is useful in excluding the extrinsic effect resulting from the variation in the film thickness or the interface between substrate. Published by AIP Publishing. C1 [Lee, Hyeon Jun; Kwak, Jeong Hun; Hwang, Seung Hyun; Jo, Ji Young] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Gwangju 61005, South Korea. [Guo, Er-Jia] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37830 USA. [Guo, Er-Jia; Doerr, Kathrin] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany. [Lee, Jun Hee] Ulsan Inst Sci & Technol, Sch Energy & Chem Engn, Ulsan 44919, South Korea. RP Jo, JY (reprint author), Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Gwangju 61005, South Korea. EM jyjo@gist.ac.kr OI Guo, Erjia/0000-0001-5702-225X FU National Research Foundation of Korea (NRF) - Korean Government [NRF-2014R1A1A3053111]; GRI (GIST Research Institute) project by GIST; TJ Park Science Fellowship of POSCO TJ Park Foundation; MSIO; PAL, Korea; Deutsche Forschungsgemeinschaft (DFG) [SFB 762]; Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory FX J.Y.J. acknowledges support through grants from National Research Foundation of Korea (NRF) funded by the Korean Government (NRF-2014R1A1A3053111), GRI (GIST Research Institute) project by GIST, and TJ Park Science Fellowship of POSCO TJ Park Foundation. This work was supported by MSIO and PAL, Korea. E.J.G. and K.D. acknowledges the support from Deutsche Forschungsgemeinschaft (DFG) under the grant of SFB 762 Functionality of Oxide Interfaces. In addition, E.J.G. was supported by Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE. NR 29 TC 0 Z9 0 U1 18 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 16 PY 2017 VL 110 IS 3 AR 032901 DI 10.1063/1.4974450 PG 4 WC Physics, Applied SC Physics GA EI9OE UT WOS:000392836900026 ER PT J AU Tra, VT Huang, R Gao, X Chen, YJ Liu, YT Kuo, WC Chin, YY Lin, HJ Chen, JM Lee, JM Lee, JF Shi, PS Jiang, MG Duan, CG Juang, JY Chen, CT Jeng, HT He, Q Chuang, YD Lin, JY Chu, YH AF Tra, V. T. Huang, R. Gao, X. Chen, Y. -J. Liu, Y. T. Kuo, W. C. Chin, Y. Y. Lin, H. J. Chen, J. M. Lee, J. M. Lee, J. F. Shi, P. S. Jiang, M. G. Duan, C. G. Juang, J. Y. Chen, C. T. Jeng, H. T. He, Q. Chuang, Y. -D. Lin, J. -Y. Chu, Y. -H. TI The unconventional doping in YBa2Cu3O7-x/La0.7Ca0.3MnO3 heterostructures by termination control SO APPLIED PHYSICS LETTERS LA English DT Article ID LAALO3/SRTIO3 HETEROINTERFACE; SUPERCONDUCTING OXIDES; INTERFACES AB In strongly correlated oxides, heterostructures provide a powerful route to manipulate the charge, spin, orbital, and lattice degrees of freedom to create distinctive functionalities. In this work, we have achieved atomically precise interface control in YBa2Cu3O7-x/La0.7Ca0.3MnO3 (YBCO/LCMO) heterostructures and find a hidden effective doping. This mechanism is responsible for higher Tc in the sample with the MnO2-terminated interface than in that with the La0.7Ca0.3O-terminated interface. The MnO2-terminated sample also shows a larger magnetic moment of Mn together with a lower valence state. For more than a decade, the control of T-c in these heterostructures prior to this work has been solely via the variation of YBCO or LCMO thickness. This work hints at an alternative way of exploiting and exploring the interactions between superconductivity and magnetism in this system. Published by AIP Publishing. C1 [Tra, V. T.; Liu, Y. T.; Shi, P. S.; Jiang, M. G.; Lin, J. -Y.] Natl Chiao Tung Univ, Inst Phys, Hsinchu 30010, Taiwan. [Tra, V. T.] Can Tho Univ, Sch Educ, Dept Phys, 3-2 St, Can Tho, Vietnam. [Huang, R.; Duan, C. G.] East China Normal Univ, Key Lab Polar Mat & Devices, Minist Educ, Shanghai 200062, Peoples R China. [Huang, R.; Gao, X.] Japan Fine Ceram Ctr, Nanostruct Res Lab, Nagoya, Aichi 4568587, Japan. [Chen, Y. -J.] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan. [Chen, Y. -J.; Chuang, Y. -D.; Lin, J. -Y.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kuo, W. C.; Juang, J. Y.; Chu, Y. -H.] Natl Chiao Tung Univ, Dept Electrophys, Hshinchu 30010, Taiwan. [Chin, Y. Y.; Lin, H. J.; Chen, J. M.; Lee, J. M.; Lee, J. F.; Chen, C. T.] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Jeng, H. T.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30043, Taiwan. [Jeng, H. T.; Chu, Y. -H.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [He, Q.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Chu, Y. -H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. RP Lin, JY (reprint author), Natl Chiao Tung Univ, Inst Phys, Hsinchu 30010, Taiwan.; Lin, JY (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM ago@nctu.edu.tw; yhc@nctu.edu.tw RI Duan, Chun-Gang/D-2755-2013; Huang, Rong/A-9684-2008 FU National Science Council of Republic of China [103-2112-M-009-007-MY3]; Ministry of Education [MOE-ATU 101W961]; Center for Interdisciplinary Science at National Chiao Tung University; 973 Program [2013CB922301, 2014CB921104]; NSFC [61125403] FX The authors acknowledge Dr. Takeharu Kato and Mr. Ryuji Yoshida at the Japan Fine Ceramics Center (JFCC) for their help in preparing the TEM samples. This work was supported by the National Science Council of Republic of China (under Contract No. 103-2112-M-009-007-MY3), the Ministry of Education (under Grant No. MOE-ATU 101W961), and the Center for Interdisciplinary Science at National Chiao Tung University. The work in the East Normal China University was supported by the 973 Program Nos. 2013CB922301 and 2014CB921104, the NSFC 61125403. NR 32 TC 0 Z9 0 U1 10 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 16 PY 2017 VL 110 IS 3 AR 032402 DI 10.1063/1.4973996 PG 5 WC Physics, Applied SC Physics GA EI9OE UT WOS:000392836900022 ER PT J AU Liang, HW Kroll, T Nordlund, D Weng, TC Sokaras, D Pierpont, CG Gaffney, KJ AF Liang, H. Winnie Kroll, Thomas Nordlund, Dennis Weng, Tsu-Chien Sokaras, Dimosthenis Pierpont, Cortlandt G. Gaffney, Kelly J. TI Charge and Spin-State Characterization of Cobalt Bis(o-dioxolene) Valence Tautomers Using Co K beta X-ray Emission and L-Edge X-ray Absorption Spectroscopies SO INORGANIC CHEMISTRY LA English DT Article ID TRANSITION-METAL-COMPLEXES; PRUSSIAN BLUE ANALOG; INTRAMOLECULAR ELECTRON-TRANSFER; O-QUINONE COMPLEXES; MAGNETIC-PROPERTIES; DIOXOLENE COMPLEX; REDOX ISOMERISM; ROOM-TEMPERATURE; OXIDATION-STATES; ORGANIC-LIGANDS AB The valence tautomeric stated of Co(phen)-(3,5-DBQ)(2) and co(tmeda)(3,5-DBQ)(2), where 3,5-DBQ is either the semiquinone (SQ(-)) or catecholate (Cat(2-)) form of 3,5-di-tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission Spectroscopy (K beta XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their K beta XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described as a low-spin Co-III configuration and the high-temperature valence tautomer as a high-spin Co-II configuration. This conclusion is further supported by L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature Valence tautomers and ligand-field atomic-multiplet calculations of the K beta XES and L-edge XAS spectra. The nature and strength of the magnetic exchange interaction between the cobalt center and SQ(-) in cobalt valence tautomers is discussed: in view of the effective spin at the Co site from K beta XES and the molecular spin moment from magnetic susceptibility measurements. C1 [Liang, H. Winnie] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Liang, H. Winnie; Gaffney, Kelly J.] SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA. [Kroll, Thomas; Nordlund, Dennis; Sokaras, Dimosthenis; Gaffney, Kelly J.] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. [Weng, Tsu-Chien] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China. [Pierpont, Cortlandt G.] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. RP Liang, HW (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA.; Liang, HW; Gaffney, KJ (reprint author), SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA.; Gaffney, KJ (reprint author), SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. EM wliang6@stanford.edu; kgaffney@slac.stanford.edu RI Kroll, Thomas/D-3636-2009 FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; DOE, Office of Biological and Environmental Research; National Institutes of Health, National Institute of General Medical Sciences (NIGMS) [P41GM103393]; AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, DOE FX Use of the SSRL, SLAG National Accelerator Laboratory, is supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE, Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (NIGMS; including Grant P41GM103393). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NIGMS or NIH. H.W.L. and K.J.G. acknowledge support from the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, DOE. H.W.L. acknowledges technical support from SSRL and sincerely thanks Dr. Shanina S. Johnson, Dr. Marco E. Reinhard, Dr. Trevor A. McQueen, and Hoang Nguyen for their assistance during the beamtimes as well as Dr. Maxwell C. Shapiro and Professor Ian Fisher for the use of their MPMS instrument and helpful discussions. NR 100 TC 0 Z9 0 U1 13 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JAN 16 PY 2017 VL 56 IS 2 BP 737 EP 747 DI 10.1021/acs.inorgchem.6b01666 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EI1UA UT WOS:000392262400011 PM 28035824 ER PT J AU Sweet, LE Corbey, JF Gendron, F Autschbach, J McNamara, BK Ziegelgruber, KL Arrigo, LM Peper, SM Schwantes, JM AF Sweet, Lucas E. Corbey, Jordan F. Gendron, Frederic Autschbach, Jochen McNamara, Bruce K. Ziegelgruber, Kate L. Arrigo, Leah M. Peper, Shane M. Schwantes, Jon M. TI Structure and Bonding Investigation of Plutonium Peroxocarbonate Complexes Using Cerium Surrogates and Electronic Structure Modeling SO INORGANIC CHEMISTRY LA English DT Article ID SPENT NUCLEAR-FUEL; CRYSTAL-STRUCTURE; URANYL POLYHEDRA; DELOCALIZATION ERROR; PERCERIC OXIDE; CAGE CLUSTERS; METAL; DIOXYGEN; CHEMISTRY; WATER AB Herein, we report the synthesis and structural characterization of K-8[(CO3)(3)Pu](2)(mu-eta(2)-eta(2)-O-2)(2)12H(2)O. This is the second Pu-containing addition to the previously studied alkali-metal peroxocarbonate series M-8[(CO3)(3)A](2)(mu-eta(2)-eta(2)-O-2)(2)xH(2)O (M = alkali metal; A = Ce or Pu; x = 8, 10, 12, or 18), for which only the M = Na analogue has been previously reported when A = Pu. The previously reported crystal structure for Na-8[(CO3)(3)Pu](2)(mu-eta(2)-eta(2)-O-2)(2)12H(2)O is not isomorphous with its known Ce analogue. However, a new synthetic route to these M-8[(CO3)(3)Pu](2)(mu-eta(2)-eta(2)-O-2)(2)12H(2)O complexes, described below, has produced crystals of Na-8[(CO3)(3)Ce](2)(mu-eta(2)-eta(2)-O-2)(2)12H(2)O that are isomorphous with the previously reported Pu analogue. Via this synthetic method, the M = Na, K, Rb, and Cs salts of M-8[(CO3)(3)Ce](2)(mu-eta(2)-eta(2)-O-2)(2)12H(2)O have also been synthesized for a systematic structural comparison with each other and the available Pu analogues using single-crystal X-ray diffraction, Raman spectroscopy, and density functional theory calculations. The Ce salts, in particular, demonstrate subtle differences in the peroxide bond lengths, which correlate with Raman shifts for the peroxide O-p-O-p stretch (O-p = O atoms of the peroxide bridges) with each of the cations studied: Na+ [1.492(3) A/847 cm(-1)], Rb+ [1.471(1) A/854 cm(-1)], Cs+ [1.474(1) A/859 cm(-1)], and K+ [1.468(6) A/870 cm(-1)]. The trends observed in the O-p-O-p bond distances appear to relate to supermolecular interactions between the neighboring cations. C1 [Sweet, Lucas E.; Corbey, Jordan F.; Ziegelgruber, Kate L.; Arrigo, Leah M.; Peper, Shane M.; Schwantes, Jon M.] Pacific Northwest Natl Lab, Signature Sci & Technol Div, Analyt Chem Nucl Mat Grp, 902 Battelle Blvd, Richland, WA 99354 USA. [McNamara, Bruce K.] Pacific Northwest Natl Lab, Div Nucl Sci, Actinide Sci Grp, 902 Battelle Blvd, Richland, WA 99354 USA. [Gendron, Frederic; Autschbach, Jochen] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. RP Sweet, LE (reprint author), Pacific Northwest Natl Lab, Signature Sci & Technol Div, Analyt Chem Nucl Mat Grp, 902 Battelle Blvd, Richland, WA 99354 USA. EM lucas.sweet@pnnl.gov FU DOE by Battelle Memorial Institute [DE-AC05-76RL1830]; DOE, Office of Basic Energy Sciences, Heavy Element Chemistry Program [DE-SC0001136]; Department of Homeland Security's Nuclear Forensics Postdoctoral Fellowship Program FX This research was conducted at the U.S. Department of Energy (DOE)'s Pacific Northwest National Laboratory, which is operated for the DOE by Battelle Memorial Institute under Contract DE-AC05-76RL1830. We thank and acknowledge the Department of Homeland Security's Nuclear Forensics Postdoctoral Fellowship Program run by the National Technical Nuclear Forensics Center within the Domestic Nuclear Detection Office for providing support for Dr. Jordan Corbey. We thank our sponsors for their support as well as Dr. Richard E. Wilson and Argonne National Laboratory for assistance with crystallography. L.E.S. and J.F.C. also thank Dr. David G. Abrecht for technical discussion. F.G. and J.A. acknowledge financial support of the computational part of this study from the DOE, Office of Basic Energy Sciences, Heavy Element Chemistry Program, under Grant DE-SC0001136 (formerly Grant DE-FG02-09ER16066) and thank the Center for Computational Research at The State University of New York at Buffalo for providing computing resources. NR 73 TC 0 Z9 0 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD JAN 16 PY 2017 VL 56 IS 2 BP 791 EP 801 DI 10.1021/acs.inorgchem.6b02235 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EI1UA UT WOS:000392262400016 PM 28033000 ER PT J AU He, HK Rahimi, K Zhong, MJ Mourran, A Luebke, DR Nulwala, HB Moller, M Matyjaszewski, K AF He, Hongkun Rahimi, Khosrow Zhong, Mingjiang Mourran, Ahmed Luebke, David R. Nulwala, Hunaid B. Moeller, Martin Matyjaszewski, Krzysztof TI Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers SO NATURE COMMUNICATIONS LA English DT Article ID TRANSFER RADICAL POLYMERIZATION; CRYSTALLINE NANOPARTICLES CUBOSOMES; IONIC LIQUIDS; CUBIC PHASES; EMERGING APPLICATIONS; MOLECULAR-WEIGHT; DRUG-DELIVERY; SQUARE ARRAYS; VESICLES; CONSTRUCTION AB Cubosomes are micro-and nanoparticles with a bicontinuous cubic two-phase structure, reported for the self-assembly of low molecular weight surfactants, for example, lipids, but rarely formed by polymers. These objects are characterized by a maximum continuous interface and high interface to volume ratio, which makes them promising candidates for efficient adsorbents and host-guest applications. Here we demonstrate self-assembly to nanoscale cuboidal particles with a bicontinuous cubic structure by amphiphilic poly(ionic liquid) diblock copolymers, poly(acrylic acid)-block-poly(4-vinylbenzyl)-3-butyl imidazolium bis(trifluoromethylsulfonyl) imide, in a mixture of tetrahydrofuran and water under optimized conditions. Structure determining parameters include polymer composition and concentration, temperature, and the variation of the solvent mixture. The formation of the cubosomes can be explained by the hierarchical interactions of the constituent components. The lattice structure of the block copolymers can be transferred to the shape of the particle as it is common for atomic and molecular faceted crystals. C1 [He, Hongkun; Nulwala, Hunaid B.; Matyjaszewski, Krzysztof] Carnegie Mellon Univ, Dept Chem, Ctr Macromol Engn, 4400 Fifth Ave, Pittsburgh, PA 15213 USA. [Rahimi, Khosrow; Mourran, Ahmed; Moeller, Martin] DWI Leibniz Inst Interact Mat, Forckenbeckstr 50, D-52074 Aachen, Germany. [Zhong, Mingjiang] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA. [Luebke, David R.; Nulwala, Hunaid B.] US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. [He, Hongkun] MIT, Dept Chem Engn, Cambridge, MA 02139 USA. RP Nulwala, HB; Matyjaszewski, K (reprint author), Carnegie Mellon Univ, Dept Chem, Ctr Macromol Engn, 4400 Fifth Ave, Pittsburgh, PA 15213 USA.; Moller, M (reprint author), DWI Leibniz Inst Interact Mat, Forckenbeckstr 50, D-52074 Aachen, Germany.; Nulwala, HB (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM nulwala@andrew.cmu.edu; moeller@dwi.rwth-aachen.de; km3b@andrew.cmu.edu OI /0000-0001-7533-4708; Ahmed, Mourran/0000-0003-1607-5739 FU National Science Foundation [DMR 1501324]; CRP Consortium at Carnegie Mellon University; U.S. Department of Energy's National Energy Technology Laboratory [DE-FE0004000]; EU; federal state of North Rhine-Westphalia [EFRE 30 00 883 02] FX Financial support was provided by the National Science Foundation (DMR 1501324) and CRP Consortium at Carnegie Mellon University. This technical effort was also performed in support of the U.S. Department of Energy's National Energy Technology Laboratory's ongoing research on CO2 capture under the contract DE-FE0004000. This work was also partially performed at the Center for Chemical Polymer Technology CPT, which was supported by the EU and the federal state of North Rhine-Westphalia (grant EFRE 30 00 883 02). The authors thank Dr Cesar Rodriguez-Emmenegger for fruitful discussions. NR 79 TC 0 Z9 0 U1 64 U2 64 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN 16 PY 2017 VL 8 DI 10.1038/ncomms14057 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH9LR UT WOS:000392093300001 PM 28091605 ER PT J AU Yan, PF Zheng, JM Gu, M Xiao, J Zhang, JG Wang, CM AF Yan, Pengfei Zheng, Jianming Gu, Meng Xiao, Jie Zhang, Ji-Guang Wang, Chong-Min TI Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries SO NATURE COMMUNICATIONS LA English DT Article ID TRANSITION-METAL OXIDES; ELECTRON-MICROSCOPY; SURFACE RECONSTRUCTION; COMPOSITE CATHODE; PHASE-TRANSITION; STRESS EVOLUTION; PARTICLES; LIFEPO4; INTERCALATION; DEGRADATION AB LiNi1/3Mn1/3Co1/3O2-layered cathode is often fabricated in the form of secondary particles, consisting of densely packed primary particles. This offers advantages for high energy density and alleviation of cathode side reactions/corrosions, but introduces drawbacks such as intergranular cracking. Here, we report unexpected observations on the nucleation and growth of intragranular cracks in a commercial LiNi1/3Mn1/3Co1/3O2 cathode by using advanced scanning transmission electron microscopy. We find the formation of the intragranular cracks is directly associated with high-voltage cycling, an electrochemically driven and diffusion-controlled process. The intragranular cracks are noticed to be characteristically initiated from the grain interior, a consequence of a dislocation-based crack incubation mechanism. This observation is in sharp contrast with general theoretical models, predicting the initiation of intragranular cracks from grain boundaries or particle surfaces. Our study emphasizes that maintaining structural stability is the key step towards high-voltage operation of layered-cathode materials. C1 [Yan, Pengfei; Gu, Meng; Wang, Chong-Min] Pacific Northwest Natl Lab, Environm Mol Sci Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Zheng, Jianming; Xiao, Jie; Zhang, Ji-Guang] Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. RP Wang, CM (reprint author), Pacific Northwest Natl Lab, Environm Mol Sci Lab, 902 Battelle Blvd, Richland, WA 99352 USA.; Zhang, JG (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM Jiguang.zhang@pnnl.gov; Chongmin.wang@pnnl.gov RI yan, pengfei/E-4784-2016 OI yan, pengfei/0000-0001-6387-7502 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under the Advanced Battery Materials Research (BMR) program [DE-AC02-05CH11231, 6951379]; DOE's Office of Biological and Environmental Research; Department of Energy [DE-AC05-76RLO1830] FX We thank Dr Yuanyuan Zhu for help on the GPA analysis. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 6951379 under the Advanced Battery Materials Research (BMR) program. The microscopic analysis in this work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. NR 55 TC 0 Z9 0 U1 56 U2 56 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN 16 PY 2017 VL 8 AR 14101 DI 10.1038/ncomms14101 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH9MN UT WOS:000392095500001 PM 28091602 ER PT J AU Li, N Yadav, SK Xu, Y Aguiar, JA Baldwin, JK Wang, YQ Luo, HM Misra, A Uberuaga, BP AF Li, N. Yadav, S. K. Xu, Y. Aguiar, J. A. Baldwin, J. K. Wang, Y. Q. Luo, H. M. Misra, A. Uberuaga, B. P. TI Cr incorporated phase transformation in Y2O3 under ion irradiation SO SCIENTIFIC REPORTS LA English DT Article ID NANOSTRUCTURED FERRITIC ALLOYS; DISPERSION-STRENGTHENED STEELS; RELEVANT HE/DPA RATIOS; THIN-FILMS; STRUCTURAL TRANSFORMATION; MARTENSITIC STEELS; DPA RATES; STABILITY; HELIUM; TEMPERATURE AB Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 degrees C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys. C1 [Li, N.; Baldwin, J. K.] Los Alamos Natl Lab, MPA CINT, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Yadav, S. K.; Wang, Y. Q.; Uberuaga, B. P.] Los Alamos Natl Lab, MST 8, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Xu, Y.; Luo, H. M.] New Mexico State Univ, Dept Chem & Mat Engn, Las Cruces, NM 88003 USA. [Aguiar, J. A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Misra, A.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Li, N (reprint author), Los Alamos Natl Lab, MPA CINT, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. EM nanli@lanl.gov RI Yadav, Satyesh/M-6588-2014 FU U.S. Department of Energy through the Los Alamos National Laboratory (LANL)/Laboratory Directed Research & Development (LDRD) Program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We gratefully acknowledge the support of the U.S. Department of Energy through the Los Alamos National Laboratory (LANL)/Laboratory Directed Research & Development (LDRD) Program for this work. This research used resources provided by the LANL Institutional Computing Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. LANL, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. JAA acknowledges access to the ORNL's ShaRE User Facility where part of the TEM work was performed in collaboration with Miaofang Chi and Juan Carlos Idrobo, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 50 TC 0 Z9 0 U1 3 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 16 PY 2017 VL 7 AR 40148 DI 10.1038/srep40148 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH9NI UT WOS:000392097600001 PM 28091522 ER PT J AU Nlebedim, IC Ucar, H Hatter, CB McCallum, RW McCall, SK Kramer, MJ Paranthaman, MP AF Nlebedim, I. C. Ucar, Huseyin Hatter, Christine B. McCallum, R. W. McCall, Scott K. Kramer, M. J. Paranthaman, M. Parans TI Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article ID ACETATE COPOLYMER BLENDS; PERMANENT-MAGNETS; COERCIVITY; DEPENDENCE; MORPHOLOGY; FIELD AB Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths. (C) 2016 Published by Elsevier B.V. C1 [Nlebedim, I. C.; McCallum, R. W.; Kramer, M. J.] Ames Lab, Ames, IA 50011 USA. [Ucar, Huseyin; Hatter, Christine B.; Paranthaman, M. Parans] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [McCall, Scott K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Nlebedim, IC (reprint author), Ames Lab, Ames, IA 50011 USA. FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office; [DE-AC02-07CH11358]; [DE-AC52-07NA27344] FX This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. Work at Ames Laboratory, operated by Iowa State University, was performed under Contract No. DE-AC02-07CH11358. Work done at LLNL was prepared under Contract DE-AC52-07NA27344. Authors wish to acknowledge Jim Herchenroeder of Molycorp Magnequench for providing the MQA magnet powders used for this work. NR 24 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD JAN 15 PY 2017 VL 422 BP 168 EP 173 DI 10.10161/j.jmmm.2016.08.090 PG 6 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA EO1XX UT WOS:000396492300026 ER PT J AU Reis, MS Rocco, DL Vivas, RJC Pimentel, B Checca, NR Torrao, R Paixao, L dos Santos, AM AF Reis, M. S. Rocco, D. L. Caraballo Vivas, R. J. Pimentel, B. Checca, N. R. Torrao, R. Paixao, L. dos Santos, A. M. TI Spin state and magnetic ordering of half-doped Nd0.5Sr0.5CoO3 cobaltite SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Cobaltites; Magnetic phase diagram; Anomalous XRD; Syncrotron; Magnetic entropy change; Magnetocaloric effect ID OXIDE FUEL-CELLS; TRANSPORT-PROPERTIES; PEROVSKITES AB Cobaltites show intriguing magnetic and transport properties, when compared with manganites for instance, as they exhibit an additional degree of freedom: the spin state of the Co ions. For Nd0.5Sr0.5CoO3 this spin configuration is not well-established, as well as the magnetic ordering below the Curie temperature. Thus, in the present effort, magnetization measurements and a mean-field theoretical model were developed in order to understand in detail these aspects of the half-doped Nd0.5Sr0.5CoO3 cobaltite. These results show that the Co and Nd magnetic sub-lattices couple antiferromagnetically below Curie temperature T-c=215 K down to very low temperature. These findings clarify the presence of the plateau observed at 80 K on M(T) curve, which is erroneously attributed, in the literature, to the onset of an antiferromagnetic ordering. Magnetization data also clearly shows that Co3+ and Ed(4+) are in an intermediate spin state. In addition, experimental and theoretical magnetic entropy changes were determined and a comparative analysis among these two leads to ratify the results above claimed. Finally, from all those results, a magnetic phase diagram for Nd0.5Sr0.5CoO3. could be drawn. (C) 2016 Elsevier B.V. All rights reserved. C1 [Reis, M. S.; Rocco, D. L.; Caraballo Vivas, R. J.; Pimentel, B.; Checca, N. R.; Torrao, R.; Paixao, L.] Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil. [Rocco, D. L.] Ctr Fed Educ Tecnol Minas Gerais CEFET MG, Dept Formacao Geral, Campus Timoteo, BR-35180008 Belo Horizonte, MG, Brazil. [Paixao, L.; dos Santos, A. M.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Rocco, DL (reprint author), Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ, Brazil. EM rocco@if.uff.br FU Brazilian agency CNPq; Brazilian agency CAPES; Brazilian agency FAPERJ; Brazilian agency PROPPI-UFF; Scientific User Facilities Division, Office of Basic Energy Sciences, of the U.S. Department of Energy; U.S. DOE [DE-AC02-06CH11357] FX The authors thank Brazilian agencies CNPq, CAPES, FAPERJ and PROPPI-UFF for financial support. Research at the Oak Ridge National Laboratory's Spallation Neutron Source and Center for Nanophase Materials Science was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, of the U.S. Department of Energy. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) by the Argonne National Laboratory, was supported by the U.S. DOE under contract no. DE-AC02-06CH11357. NR 23 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD JAN 15 PY 2017 VL 422 BP 197 EP 203 DI 10.1016/j.jmmm.2016.08.080 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA EO1XX UT WOS:000396492300030 ER PT J AU Farha, AH Ozkendir, OM Elsayed-Ali, HE Myneni, G Ufuktepe, Y AF Farha, Ashraf Hassan Ozkendir, Osman Murat Elsayed-Ali, Hani E. Myneni, Ganapati Ufuktepe, Yuksel TI The effect of heat treatment on structural and electronic properties of niobium nitride prepared by a thermal diffusion method SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE NbNX; Nitride; Surface morphology; XRD; Thermal diffusion; XAS ID PULSED-LASER DEPOSITION; NB-N SYSTEM; THIN-FILMS; NANOMECHANICAL PROPERTIES; REACTIVE DIFFUSION; CRYSTAL-STRUCTURE; SOLID SOLUBILITY; HIGH-TEMPERATURE; W ALLOYS; NITROGEN AB Niobium nitride (NbNX) coatings were prepared onto Nb substrate by thermal diffusion at high temperatures. The formation of NbNX coating by thermal diffusion was studied in the range of 1250-1500 degrees C at constant nitrogen background gas pressure (1.3 x 10(-3) Pa) and processing time (180 min). The electronic and crystal structures of the NbNX coatings were investigated. It was found that nitrogen diffuses into Nb forming the Nb-N solid solution (bcc) alpha-NbN phase that starts to appear above 1250 degrees C. Increasing the processing temperature gives richer alpha-phase concentration. Besides, X-ray absorption spectroscopy (XAS) was performed to study the electronic structure of the NbNX layer. The results of the electronic structural study corroborate the crystal structural analysis. The Nb M-3,M-2 edge X-ray absorption spectroscopy (XAS) spectrum shows strong temperature dependence. At the highest processing temperature (1500 degrees C), the number of d holes increased. Electrostatic interaction between d electron and core hole was increased due to nitrogen diffusion into the niobium. For the studied conditions, only the alpha-NbN was observed in the X-ray diffraction patterns. (C) 2016 Elsevier B.V. All rights reserved. C1 [Farha, Ashraf Hassan; Elsayed-Ali, Hani E.] Old Dominion Univ, Appl Res Ctr, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. [Farha, Ashraf Hassan] Ain Shams Univ, Dept Phys, Fac Sci, Cairo 11566, Egypt. [Ozkendir, Osman Murat] Mersin Univ, Tarsus Technol Fac, TR-33480 Tarsus, Turkey. [Myneni, Ganapati] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Ufuktepe, Yuksel] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. RP Farha, AH; Ufuktepe, Y (reprint author), Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. EM ahass006@odu.edu; ufuk@cu.edu.tr FU Egyptian Ministry of Higher Education; Department of Energy Office of Nuclear Physics ARRA-NPQ project at Jefferson Lab under the U.S. DOE [DE-AC05-06OR23177]; US Department of Energy, Office of Basic Energy Sciences [DEAC02-76SF00515]; DOE Cooperative Research Program FX A H. F. was supported by a scholarship from the Egyptian Ministry of Higher Education and a Jefferson Lab scholarship funded by the Department of Energy Office of Nuclear Physics ARRA-NPQ project at Jefferson Lab under the U.S. DOE Contract No. DE-AC05-06OR23177. The authors are grateful to the Stanford Synchrotron Radiation Light source (SSRL), California, USA, for providing synchrotron-based XAS facility. Use of SSRL source is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DEAC02-76SF00515. Support of DOE Cooperative Research Program for SESAME project is acknowledged by A.H.F., O.M.O. and Y.U. NR 36 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JAN 15 PY 2017 VL 309 BP 54 EP 58 DI 10.1016/j.surfcoat.2016.11.044 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA EN7LN UT WOS:000396184400008 ER PT J AU De Silva, GPD Ranjith, PG Perera, MSA Dai, ZX Yang, SQ AF De Silva, G. P. D. Ranjith, P. G. Perera, M. S. A. Dai, Z. X. Yang, S. Q. TI An experimental evaluation of unique CO2 flow behaviour in loosely held fine particles rich sandstone under deep reservoir conditions and influencing factors SO ENERGY LA English DT Article DE Fine-rich sandstone; Flow characteristics; Effective factors; Core flooding experiments; CO2 sequestration ID SUPERCRITICAL CARBON-DIOXIDE; IN-SITU CONDITIONS; POROUS-MEDIA; GEOLOGICAL MEDIA; CLIMATE-CHANGE; PORE-PRESSURE; FLUID-FLOW; PERMEABILITY; SEQUESTRATION; STRESS AB Lack of understanding of CO2 flow behaviour in loosely bonded fine particles (clay and mineral fragments) rich sandstone formations has limited the optimum usage and the operational efficiency of various CO2 injection-related field applications in these formations. A comprehensive experimental study including core flooding tests, XRD and SEM image analysis was therefore conducted precisely to understand the CO2 flow behaviour in sandstone formations rich with loosely bonded clay and detrital particles. 210 mm long sandstone cores obtained from the Marburg Formation, eastern Australia were flooded with CO2 at a range of temperatures (24-54 degrees C) and confining pressures (10-60 MPa). Pressure developments along the cores were monitored to identify the fluid migration patterns through the samples. According to the results, CO2 permeability in tested sandstone has a high tendency to decrease with increasing injection pressure, depth (confining pressure) and temperature. Increased confining pressure and temperature caused 40-50% and 10-30% reductions in the CO2 permeability. This is because the permeability of fine-rich sandstone is highly affected by fine particle migration associated increased flowing fluid viscosity, pore shrinkage with fine clay particle accumulations and easy compaction of soft clay minerals. Moreover, the closure of micro-cracks under high confining stresses, CO2 adsorption created by clay swelling, the occurrence of electric double layers around clay minerals and a reduced CO2 slip effect are also affect the permeability reduction. Many of these effects were identified in the micro-scale study conducted using SEM image analysis. Interestingly, the injection of CO2 at higher pressures (>6 MPa) caused the pressure development in the sample to be held for a significant time due to the blocking of CO2 flow by the accumulation of transported clay particles in pores. This pressure holding period lasts until sufficient pressure development occurs at the upstream side of the barrier to initiating a fluid flow by breaking that barrier. The findings of the study will be very useful for advances in numerical modelling and analytical equations and worldwide CO2 geo-sequestration projects in fine-rich sandstone aquifers. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved. C1 [De Silva, G. P. D.; Ranjith, P. G.; Perera, M. S. A.] Monash Univ, Deep Earth Energy Res Lab, Bldg 60, Clayton, Vic 3800, Australia. [Dai, Z. X.] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87545 USA. [Yang, S. Q.] China Univ Min & Technol, Sch Mech & Civil Engn, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Peoples R China. RP Ranjith, PG (reprint author), Monash Univ, Deep Earth Energy Res Lab, Bldg 60, Clayton, Vic 3800, Australia. EM ranjith.pg@monash.edu OI Ranjith, PG/0000-0003-0094-7141 FU Australian Research Council (ARC) [DP120101761] FX This research project is funded by the Australian Research Council (ARC) grant number DP120101761 and the authors would like to thank all the Deep Earth Energy Laboratory staff at Monash University, Clayton campus, Australia and the Monash Centre for Electron Microscopy (MCEM), who dedicated their time and energy to bring this experimental series to a successful conclusion. NR 60 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD JAN 15 PY 2017 VL 119 BP 121 EP 137 DI 10.1016/j.energy.2016.11.144 PG 17 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA EK1ZV UT WOS:000393727800012 ER PT J AU Howe, DT Taasevigen, D Garcia-Perez, M McDonald, AG Li, GS Wolcott, M AF Howe, Daniel T. Taasevigen, Danny Garcia-Perez, Manuel McDonald, Armando G. Li, Guosheng Wolcott, Michael TI Steam gasification of a thermally pretreated high lignin corn stover simultaneous saccharification and fermentation digester residue SO ENERGY LA English DT Article DE Thermochemical conversions; Gasification; Lignin Integrated biorefinery; Biofuels; Bioenergy ID BIOMASS GASIFICATION; PYROLYSIS; CARBONS; FUELS AB Efficient conversion of all components in lignocellulosic biomass is essential to realizing economic feasibility of biorefineries. However, lignin cannot be fermented using biochemical routes. Furthermore, high lignin and high ash residues from simultaneous saccharification and fermentation (SSF) is difficult to thermochemically process due to feed line plugging and bed agglomeration. In this study a corn stover SSF digester residue was thermally pretreated at 300 degrees C for 22.5 min and gasified in a fluidized bed gasifier to study the effect of thermal pretreatment on its processing behavior. Untreated, pelletized SSF residue was gasified at the same conditions to establish the baseline processing behavior. Results indicate the thermal pretreatment process removes a substantial portion of the polar and non-polar extractives, with a resultant increase in the concentration of lignin, cellulose, and ash. Feed line plugging was not observed, although bed agglomeration occurred at similar rates for both feedstocks, suggesting that overall ash content is the most important factor affecting bed agglomeration. Benzene, phenol, and polyaromatic hydrocarbons in the tar were present at higher concentrations in the treated material, with higher tar loading in the product gas. Total product gas generation is lower for the treated material, although overall gas composition does not change. (C) 2016 Published by Elsevier C1 [Howe, Daniel T.; Taasevigen, Danny; Li, Guosheng] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Garcia-Perez, Manuel; Wolcott, Michael] Washington State Univ, 1935 Grimes Way, Pullman, WA 99164 USA. [McDonald, Armando G.] Univ Idaho, Dept Forest Rangeland & Fire Sci, 875 Perimeter Dr, Moscow, ID 83844 USA. RP Howe, DT (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM Daniel.howe@pnnl.gov; Danny.taasevigen@pnnl.gov; Mgarcia-perez@wsu.edu; Armandm@uidaho.edu; guosheng.li@pnnl.gov; Wolcott@wsu.edu FU U.S. Department of Energy [DE-AC05-76RL01830] FX This manuscript has been authored by Battelle Memorial Institute under Contract No. DE-AC05-76RL01830 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 48 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD JAN 15 PY 2017 VL 119 BP 400 EP 407 DI 10.1016/j.energy.2016.12.094 PG 8 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA EK1ZV UT WOS:000393727800036 ER PT J AU Zhang, YX Guo, KH Wang, D Chen, C Li, XF AF Zhang, Yuxin Guo, Konghui Wang, Dai Chen, Chao Li, Xuefei TI Energy conversion mechanism and regenerative potential of vehicle suspensions SO ENERGY LA English DT Article DE Vehicle suspensions; Vibration energy; Oil temperature-rise; Energy conversion; Energy harvesting ID LARGE-AMPLITUDE MOTIONS; FLUID DAMPERS; SYSTEM; PERFORMANCE; MANAGEMENT; CONVECTION; MODEL AB Vehicle suspension vibration can cause damping oil temperature-rise, which further effects the suspension performance, rapids the suspension failure, and goes against the vehicle fuel efficiency. This paper focuses on the suspension vibration energy conversion mechanism and energy harvest potential analysis. A mathematical model is developed to characterize the oil temperature-rise and damping force change which is then verified by experimental tests. Both simulation and test results show that the damping oil temperature rises with the excitation time and damping force decreases as the oil temperature rises. The equilibrium temperature almost reaches to 105 degrees C under sinusoidal excitation with 0.52 m/s maximum speed, and the damping force decreases significantly when the temperature rises from -20 degrees C to 100 degrees C. Then the energy flow of regenerative suspension system is analyzed and the suspension energy regenerate potential is explored based on the quarter vehicle model and road roughness model. The model simulation results show that vehicles with large mass, relatively high driving speed, and bad driving conditions have a good application prospect for the regenerative suspension systems. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zhang, Yuxin; Guo, Konghui] Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130022, Jilin, Peoples R China. [Zhang, Yuxin] Jilin Univ, Dept Control Sci & Engn, Changchun 130022, Jilin, Peoples R China. [Wang, Dai] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Chen, Chao; Li, Xuefei] Jilin Univ, Coll Mech Sci & Engn, Changchun 130022, Jilin, Peoples R China. RP Zhang, YX (reprint author), Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130022, Jilin, Peoples R China.; Chen, C (reprint author), Jilin Univ, Coll Mech Sci & Engn, Changchun 130022, Jilin, Peoples R China. EM zhangyuxin312@163.com; jluchenchao@163.com FU National Basic Research Program of China (973 Program) [2011CB711201]; China Scholarship Council [201406170091]; KH Automotive Technologies FX The authors gratefully acknowledge the support of this work by the National Basic Research Program of China (973 Program) via Grant No. 2011CB711201 and the scholarship from China Scholarship Council via Grant No. 201406170091. We would like to gratefully acknowledge and thank KH Automotive Technologies, which funded the experimental tests. Special thanks to Prof. Karl Hedrick and Dr. Andreas Hansen of UC Berkeley, Prof. Shengbo Eben Li of Tsinghua University, Prof. Hong Chen and Prof. Xinjie Zhang of Jilin University, for their helpful discussions and suggestions on this research topic. NR 28 TC 0 Z9 0 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD JAN 15 PY 2017 VL 119 BP 961 EP 970 DI 10.1016/j.energy.2016.11.045 PG 10 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA EK1ZV UT WOS:000393727800080 ER PT J AU Morgado, L Bruix, M Pokkuluri, PR Salgueiro, CA Turner, DL AF Morgado, Leonor Bruix, Marta Pokkuluri, P. Raj Salgueiro, Carlos A. Turner, David L. TI Redox- and pH-linked conformational changes in triheme cytochrome PpcA from Geobacter sulfurreducens SO BIOCHEMICAL JOURNAL LA English DT Article ID C-TYPE CYTOCHROMES; HEME ELECTRONIC-STRUCTURE; AROMATIC RESIDUE F-15; ESCHERICHIA-COLI; DESULFOVIBRIO-VULGARIS; PARAMAGNETIC NMR; AXIAL LIGANDS; ELECTROCHEMICAL CHARACTERIZATION; STRUCTURAL-CHARACTERIZATION; MAGNETIC-PROPERTIES AB The periplasmic triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant; it is the likely reservoir of electrons to the outer surface to assist the reduction of extracellular terminal acceptors; these include insoluble metal oxides in natural habitats and electrode surfaces from which electricity can be harvested. A detailed thermodynamic characterization of PpcA showed that it has an important redox-Bohr effect that might implicate the protein in e(-)/H+ coupling mechanisms to sustain cellular growth. This functional mechanism requires control of both the redox state and the protonation state. In the present study, isotope-labeled PpcA was produced and the three-dimensional structure of PpcA in the oxidized form was determined by NMR. This is the first solution structure of a G. sulfurreducens cytochrome in the oxidized state. The comparison of oxidized and reduced structures revealed that the heme I axial ligand geometry changed and there were other significant changes in the segments near heme I. The pH-linked conformational rearrangements observed in the vicinity of the redox-Bohr center, both in the oxidized and reduced structures, constitute the structural basis for the differences observed in the pK(a) values of the redox-Bohr center, providing insights into the e(-)/H+ coupling molecular mechanisms driven by PpcA in G. sulfurreducens. C1 [Morgado, Leonor; Salgueiro, Carlos A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, UCIBIO,REQUIMTE, P-2829516 Caparica, Portugal. [Bruix, Marta] CSIC, Inst Quim Fis Rocasolano, Dept Quim Fis Biol, Serrano 119, E-28006 Madrid, Spain. [Pokkuluri, P. Raj] Argonne Natl Lab, Biosci Div, Lemont, IL 60439 USA. [Turner, David L.] Univ Nova Lisboa, Inst Tecnol Quim & Biol, Av Republ, P-2780157 Oeiras, Portugal. [Morgado, Leonor] Univ Basel, Biozentrum, Basel, Switzerland. RP Salgueiro, CA (reprint author), Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, UCIBIO,REQUIMTE, P-2829516 Caparica, Portugal.; Turner, DL (reprint author), Univ Nova Lisboa, Inst Tecnol Quim & Biol, Av Republ, P-2780157 Oeiras, Portugal. EM csalgueiro@fct.unl.pt; turner@itqb.unl.pt FU L'Oreal Portugal Medal of Honor for Women in Science; L'Oreal-UNESCO Awards; Fundacao para a Ciencia e a Tecnologia, Portugal [PTDC/BBB-BQB/3554/2014, UID/Multi/04378/2013]; Fundacao para a Ciencia e a Tecnologia [RECI/BBB-BQB/0230/2012]; division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by L'Oreal Portugal Medal of Honor for Women in Science, L'Oreal-UNESCO Awards (to L.M.), PTDC/BBB-BQB/3554/2014 (to C.A.S.) and UID/Multi/04378/2013 from Fundacao para a Ciencia e a Tecnologia, Portugal. The NMR spectrometers are part of The National NMR Facility, supported by Fundacao para a Ciencia e a Tecnologia [RECI/BBB-BQB/0230/2012]. P.R.P. is partially supported by the division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy program under contract no. DE-AC02-06CH11357. NR 55 TC 1 Z9 1 U1 2 U2 2 PU PORTLAND PRESS LTD PI LONDON PA CHARLES DARWIN HOUSE, 12 ROGER STREET, LONDON WC1N 2JU, ENGLAND SN 0264-6021 EI 1470-8728 J9 BIOCHEM J JI Biochem. J. PD JAN 15 PY 2017 VL 474 BP 231 EP 246 DI 10.1042/BCJ20160932 PN 2 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EK2OI UT WOS:000393766200003 PM 28062839 ER PT J AU Stock, SR Finney, LA Telser, A Maxey, E Vogt, S Okasinski, JS AF Stock, S. R. Finney, L. A. Telser, A. Maxey, E. Vogt, S. Okasinski, J. S. TI Cementum structure in Beluga whale teeth SO ACTA BIOMATERIALIA LA English DT Article DE Cementum; growth layer groups (GLGs); Odontocete; Synchrotron radiation; X-ray fluorescence; X-ray diffraction; Zn; Ca; Dentin ID DENTAL CEMENTUM; INCREMENTAL LINES; AGE-DETERMINATION; BONE; MMP-2 AB A large fraction of the volume of Beluga whale (Delphinapterus leucas) teeth consists of cementum, a mineralized tissue which grows throughout the life of the animal and to which the periodontal ligaments attach. Annular growth bands or growth layer groups (GLGs) form within Beluga cementum, and this study investigates GLG structure using X-ray fluorescence mapping and X-ray diffraction mapping with microbeams of synchrotron radiation. The Ca and Zn fluorescent intensities and carbonated hydroxyapatite (cAp) diffracted intensities rise and fall together and match the light-dark bands visible in transmitted light micrographs. Within the bands of maximum Ca and Zn intensity, the ratio of Zn to Ca is slightly higher than in the minima bands. Further, the GLG cAp, Ca and Zn modulation is preserved throughout the cementum for durations >25 year. Statement of significance Cementum is an important tooth tissue to which the periodontal ligaments attach and consists primarily of carbonated apatite mineral and collagen. In optical microscopy of cementum thin sections, light/dark bands are formed annually, and age at death is determined by counting these bands. We employ synchrotron X-ray diffraction and X-ray fluorescence mapping to show the bands in Beluga whale cementum result from differences in mineral content and not from differences in collagen orientation as was concluded by others. Variation in Zn fluorescent intensity was found to be very sensitive indicator of changing biomineralization and suggest that Zn plays an important role this process. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Stock, S. R.; Telser, A.] Northwestern Univ, Dept Cell & Mol Biol, Feinberg Sch Med, Chicago, IL 60611 USA. [Finney, L. A.; Maxey, E.; Vogt, S.; Okasinski, J. S.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Stock, SR (reprint author), 303 E Chicago Ave, Chicago, IL 60611 USA. EM s-stock@northwestern.edu FU NICDR [DE001374]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank Ms. Barbara Mahoney (Alaska Regional Office, National Marine Fisheries Service, NOAA) for providing the teeth, Greg Haider (APS) for support in data collection at 17-BM, and Prof. Steven Jacobsen (Dept. of Earth and Planetary Sciences, Northwestern University) for measuring the thickness of the transverse tooth section. The research was supported by NICDR grant DE001374. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The funding agencies had no role in the design or execution of this study. NR 37 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 EI 1878-7568 J9 ACTA BIOMATER JI Acta Biomater. PD JAN 15 PY 2017 VL 48 BP 289 EP 299 DI 10.1016/j.actbio.2016.11.015 PG 11 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA EJ5GY UT WOS:000393247000024 PM 27836805 ER PT J AU Hu, XL Altoe, MVP Martini, A AF Hu, Xiaoli Altoe, M. Virginia P. Martini, Ashlie TI Amorphization-assisted nanoscale wear during the running-in process SO WEAR LA English DT Article DE Molecular dynamics; Nanoscale wear; Amorphization; Running-in wear ID ATOMIC-FORCE MICROSCOPY; DIAMOND-LIKE CARBON; MOLECULAR-DYNAMICS; FRICTION; SILICON; DEFORMATION; TRANSITION; MECHANISMS; EVOLUTION; ADHESION AB Atomistic simulations were used to study the nanoscale wear of crystalline silicon with a native oxide sliding against amorphous silicon dioxide. The size, shape and crystallographic orientation of the model were defined to be comparable to those in a corresponding atomic force microscope experiment, where the tip was imaged before and after 40 nm of sliding using ex situ transmission electron microscopy. Tip wear was quantified in the simulation as the volume of silicon atoms removed from the tip at intervals up to 40 nm sliding distance. We also quantified amorphization during sliding as the change of tip material from crystalline to amorphous. Amorphization was analyzed in the context of a previously proposed analytical model for crystalline-to-amorphous transitions and related qualitatively to local strain distributions within the tip. Finally, wear and amorphization rates were found to exhibit similar trends, which suggests that amorphization may play an important role in nanoscale wear during the running-in process. (C) 2016 Elsevier B.V. All rights reserved. C1 [Hu, Xiaoli; Martini, Ashlie] Univ Calif Merced, Dept Mech Engn, Merced, CA 95343 USA. [Altoe, M. Virginia P.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Martini, A (reprint author), Univ Calif Merced, Dept Mech Engn, Merced, CA 95343 USA. EM amartini@ucmerced.edu FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors also thank D. F. Ogletree, P. D. Ashby and S. Aloni for helpful discussions on this project. Lastly, AM and XH acknowledge assistance from Tzu-Ray Shan related to the charge-optimized many-body potential. NR 37 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0043-1648 EI 1873-2577 J9 WEAR JI Wear PD JAN 15 PY 2017 VL 370 BP 46 EP 50 DI 10.1016/j.wear.2016.11.004 PG 5 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA EI8RX UT WOS:000392776300006 ER PT J AU Kim, W Katipamula, S AF Kim, Woohyun Katipamula, Srinivas TI Development and validation of an intelligent load control algorithm SO ENERGY AND BUILDINGS LA English DT Article DE Analytic hierarchy process; Load control; Demand response; Duty cycling; Load curtailment ID ANALYTIC HIERARCHY PROCESS; MODEL; SYSTEMS; AHP AB The renewable generation technologies form a significant (>20%) fraction of grid capacity, however their generation capabilities remain variable in nature. Therefore, utilities will be forced to maintain a significant standby capacity to mitigate the imbalance between supply and demand. Because more than 75% of electricity consumption occurs in buildings, building loads can be used to mitigate some of the imbalance. This paper describes the development and validation of an intelligent load control (ILC) algorithm that can be used to manage loads in a building or group of buildings using both quantitative and qualitative criteria. ILC uses an analytic hierarchy process to prioritize the loads for curtailment. The ILC process was developed and tested in a simulation environment to control a group of rooftop units (RTUs) to manage a building's peak demand while still keeping zone temperatures within acceptable deviations. The ILC algorithm can be implemented at a low cost on a supervisory controller without the need for additional sensing. By anticipating future demand, the process can be extended to add advanced control features such as precooling and preheating to alleviate comfort when operation of the RTUs is curtailed to manage the peak demand. (C) 2016 Elsevier B.V. All rights reserved. C1 [Kim, Woohyun; Katipamula, Srinivas] Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Katipamula, S (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM Srinivas.Katipamula@pnnl.gov FU Buildings Technologies Office of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy FX The authors acknowledge the Buildings Technologies Office of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy for supporting the research and development effort. The authors would also like to thank Joseph Hagerman, Senior Advisor and Technical Development Manager at DOE for thoughtful comments and insights; and Weimin Wang for the technical review of the report. NR 17 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD JAN 15 PY 2017 VL 135 BP 62 EP 73 DI 10.1016/j.enbuild.2016.11.040 PG 12 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA EI0LF UT WOS:000392165300007 ER PT J AU Pang, XF Piette, MA Zhou, N AF Pang, Xiufeng Piette, Mary A. Zhou, Nan TI Characterizing variations in variable air volume system controls SO ENERGY AND BUILDINGS LA English DT Article DE Variable air volume (VAV) system; Controls; EnergyPlus; Building energy performance; Building simulation ID CONDITIONING SYSTEMS; CONTROL STRATEGIES; START TIME; VAV; SIMULATION AB The variable air volume (VAV) system is the most popular form of heating, ventilation, and air-conditioning (HVAC) system used in commercial buildings. Researchers and engineers often use VAV systems as a reference when evaluating new technologies and systems or comparing design options. However, VAV system performance varies significantly, in part because of variations among VAV system controls, so, when analyzing use cases, it is critical to accurately represent system controls in order to accurately define system performance. Unfortunately, no existing literature documents standard VAV system controls for this purpose. This paper aims to remedy this omission by characterizing the variations in VAV system controls and proposing an approach to representing VAV system baseline performance. We used EnergyPlus to model variation among VAV system controls. We use the medium-size office reference-building model developed by the U.S. Department of Energy to demonstrate the impact of variations among controls in two U.S. climate zones and sort system performance into "good," "average," and "poor" categories. (C) 2016 Elsevier B.V. All rights reserved. C1 [Pang, Xiufeng; Piette, Mary A.; Zhou, Nan] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Pang, XF (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM xpang@lbl.gov FU Building Technologies Office, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Office, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 41 TC 0 Z9 0 U1 23 U2 23 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD JAN 15 PY 2017 VL 135 BP 166 EP 175 DI 10.1016/j.enbuild.2016.11.031 PG 10 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA EI0LF UT WOS:000392165300017 ER PT J AU Agarwal, V Buttles, JW Beaty, LH Naser, J Hallbert, BP AF Agarwal, Vivek Buttles, John W. Beaty, Lawrence H. Naser, Joseph Hallbert, Bruce P. TI Wireless Online Position Monitoring of Manual Valve Types for Plant Configuration Management in Nuclear Power Plants SO IEEE SENSORS JOURNAL LA English DT Article DE Online monitoring; wireless valve position indicator sensors; manual valves; plant configuration; nuclear power plants ID INTERNET; VISION; THINGS; IOT AB In the current competitive energy market, the nuclear industry is committed to lowering operations and maintenance costs and increasing productivity and efficiency while maintaining a safe and reliable operation. The present nuclear power plant operating model is dependent on a large technical staff, which has put the nuclear industry at a long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management to offset labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will support continued safe operation of today's fleet of light water reactors by providing the technical means of monitoring components in nuclear power plants today that are only routinely monitored through manual activities. The wireless-enabled valve position indicators that are the subject of this paper are able to provide a continuously available, rather than periodically available, valid position indication. A real-time (online) availability of valve positions using affordable technologies is vital to plant configuration when compared with long-term labor rates and it provides information that can be used for a variety of plant engineering, maintenance, and management applications. C1 [Agarwal, Vivek; Buttles, John W.; Hallbert, Bruce P.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Beaty, Lawrence H.] Idaho State Univ, Coll Technol, Pocatello, ID 83209 USA. [Naser, Joseph] Elect Power Res Inst, Palo Alto, CA 94304 USA. RP Agarwal, V (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM vivek.agarwal@inl.gov; john.buttles@inl.gov; beatlawr@isu.edu; jnaser@epri.com; bruce.hallbert@inl.gov OI Agarwal, Vivek/0000-0003-1334-0509 FU Electric Power Research Institute (EPRI) FX Idaho National Laboratory (INL) and ISU performed work under the contract funded by the Electric Power Research Institute (EPRI). Authors acknowledge support from the following individuals and organizations that contributed to this work: A. Al Rashdan (INL), R. Beaman (ISU), C. Hawk (INL), R. Heydt (ISU), J. Meng (ISU), C. Morgan (INL), J. Perschon (ISU), R. Pitcher (ISU), B. Smith (ISU), E. Smith (ISU), and K. Thomas (INL). Authors would like to thank anonymous reviewers for their feedback. They would also like to thank Jodi L. Vollmer and Jake E. Rudd for technical editing of the manuscript. NR 36 TC 0 Z9 0 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X EI 1558-1748 J9 IEEE SENS J JI IEEE Sens. J. PD JAN 15 PY 2017 VL 17 IS 2 BP 311 EP 322 DI 10.1109/JSEN.2016.2615131 PG 12 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA EH4PJ UT WOS:000391752800013 ER PT J AU Begg, JD Zavarin, M Kersting, AB AF Begg, James D. Zavarin, Mavrik Kersting, Annie B. TI Desorption of plutonium from montmorillonite: An experimental and modeling study SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Plutonium; Sorption; Desorption; Montmorillonite ID SURFACE-MEDIATED REDUCTION; GRIMSEL TEST-SITE; NEVADA TEST-SITE; RADIONUCLIDE MIGRATION; NEPTUNIUM(V) SORPTION; REDOX TRANSFORMATIONS; ESTUARINE SEDIMENTS; MINERAL SURFACES; OXIDATION-STATES; NATURAL-WATERS AB Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. We evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with K-d values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in K-d, indicating that true sorption equilibrium was not achieved within the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. A conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50-100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci, Livermore, CA 94550 USA. RP Begg, JD (reprint author), Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci, Livermore, CA 94550 USA. EM Begg2@llnl.gov FU Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research; Used Fuel Disposition Campaign of the Department of Energy's Nuclear Energy Program; LLNL [DE-AC52-07NA27344] FX We thank B. Powell, (Clemson University, SC) for providing the flow cells used in these experiments. This work was supported by the Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research. This work was also supported by the Used Fuel Disposition Campaign of the Department of Energy's Nuclear Energy Program. Prepared by LLNL under Contract DE-AC52-07NA27344. NR 66 TC 0 Z9 0 U1 19 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JAN 15 PY 2017 VL 197 BP 278 EP 293 DI 10.1016/j.gca.2016.10.006 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EG4BF UT WOS:000390987700017 ER PT J AU Timofeev, A Migdisov, AA Williams-Jones, AE AF Timofeev, A. Migdisov, Art. A. Williams-Jones, A. E. TI An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Tantalum solubility and speciation; Hydrothermal systems; Niobium and tantalum mobility; Nb/Ta ratios ID THERMODYNAMIC PROPERTIES; ACTIVITY-COEFFICIENTS; 5 KB; MINERALS; NIOBIUM; BEHAVIOR; CANADA; FLUID; MINERALIZATION; GEOCHEMISTRY AB The solubility of Ta2O5 (solid) and the speciation of tantalum in HF-bearing aqueous solutions have been determined at temperatures of 100-250 degrees C and vapour-saturated water pressure. Tantalum is transported as the species Ta(OH)(5)(0) at low HF concentration and pH similar to 1-3. At higher HF concentration, tantalum mobility is controlled by the species TaF3(OH)(3)(-) and TaF50; the presence of TaF50 is only evident at <= 150 degrees C. Equilibrium constants range from -17.4 +/- 0.45 to -16.4 +/- 0.12 for the formation of Ta(OH)(5)(0) from crystalline Ta2O5 and from -8.24 +/- 0.64 to -8.55 +/- 0.68 for the formation of TaF3(OH)(3)(-) at 100 and 250 degrees C, respectively. For TaF50, they were determined to be 0.13 at 100 degrees C and -0.35 at 150 degrees C. In many respects, the behaviour of tantalum in acidic fluoride-bearing solutions is similar to that of niobium. The solubility of Ta2O5 (solid) is not dependent on HF concentration in fluoride-poor fluids, but rises rapidly at higher HF concentration. However, at the conditions of our experiments, namely a pH of similar to 2, temperature up to 250 degrees C, and a wide range of HF concentrations, Ta2O5 (solid) solubility is almost invariably lower than that of Nb2O5 (solid). Modelling of Nb and Ta leaching confirmed the preferential mobility of niobium under most conditions expected in natural fluoride-rich hydrothermal systems. This modelling also demonstrated that both niobium and tantalum are rapidly deposited upon removal of fluoride from an acidic brine. As a result of hydrothermal alteration, the Nb/Ta ratios of secondary minerals may increase relative to those of the primary mineral, or remain largely unaffected, depending on the pH of the fluid. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Timofeev, A.; Williams-Jones, A. E.] McGill Univ, Dept Earth & Planetary Sci, 3450 Univ St, Montreal, PQ H3A 0E8, Canada. [Migdisov, Art. A.] Los Alamos Natl Lab, Earth & Environm Div, POB 1663,MS J535, Los Alamos, NM 87545 USA. RP Timofeev, A (reprint author), McGill Univ, Dept Earth & Planetary Sci, 3450 Univ St, Montreal, PQ H3A 0E8, Canada. EM alexander.timofeev@mail.mcgill.ca OI Timofeev, Alexander/0000-0002-8127-8164 FU NSERC CGS D scholarship; FQRNT scholarship; NSERC Discovery grant; NSERC CRD grant FX This study was supported financially by NSERC CGS D and FQRNT scholarships to A.T. and NSERC Discovery and NSERC CRD grants to A.E.W.-J. The manuscript was improved significantly by comments from three anonymous reviewers. NR 33 TC 1 Z9 1 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JAN 15 PY 2017 VL 197 BP 294 EP 304 DI 10.1016/j.gca.2016.10.027 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EG4BF UT WOS:000390987700018 ER PT J AU Taylor, SD Marcano, MC Becker, U AF Taylor, S. D. Marcano, M. C. Becker, U. TI A first principles investigation of electron transfer between Fe(II) and U(VI) on insulating Al- vs. semiconducting Fe-oxide surfaces via the proximity effect SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Hematite; Corundum; Surface-mediated redox reactions; Uranyl reduction; Electron transfer ID GOETHITE ALPHA-FEOOH; SOLID-WATER INTERFACE; HETEROGENEOUS REDUCTION; HEMATITE ALPHA-FE2O3; SPECTROSCOPIC EVIDENCE; CHARGE-DISTRIBUTION; MINERAL SURFACES; URANYL REDUCTION; FERROUS IRON; OXALIC-ACID AB This study investigates how the intrinsic chemical and electronic properties of mineral surfaces and their associated electron transfer (ET) pathways influence the reduction of U(VI) by surface-associated Fe(II). Density functional theory (DFT), including the Hubbard U correction to the exchange-correlation functional, was used to investigate sorption/redox reactions and ET mechanisms between Fe(II) and U(VI) coadsorbed on isostructural, periodic (001) surfaces of the insulator corundum (alpha-Al2O3) vs. the semiconductor hematite (alpha-Fe2O3). Furthermore, the coadsorbed Fe(II) and U(VI) ions are spatially separated from one another on the surfaces (>= 5.9 angstrom ) to observe whether electronic-coupling through the semiconducting hematite surface facilitates ET between the adsorbates, a phenomenon known as the proximity effect. The calculations show that the different chemical and electronic properties between the isostructural corundum and hematite (001) surfaces lead to considerably different ET mechanisms between Fe(II) and U(VI). ET on the insulating corundum (001) surface is limited by the adsorbates' structural configuration. When Fe(II) and U(VI) are spatially separated and do not directly interact with one another (e.g. via an inner-sphere complex), U(VI) reduction by Fe(II) cannot occur as there is no physical pathway enabling ET between the adsorbates. In contrast to the insulating corundum (001) surface, the hematite (001) surface can potentially participate in ET reactions due to the high number of electron acceptor sites from the Fe d-states near the Fermi level at the hematite surface. The adsorption of Fe(II) also introduces d-states near the Fermi level as well as shifts unoccupied d-states of the Fe cations at the hematite surface to lower energies, making the surface more conductive. In turn, electronic coupling through the surface can link the spatially separated adsorbates to one another and provide distinct ET pathways for an electron from Fe(II) to travel through the hematite surface and reach U(VI). The progression and extent of ET occurring on the semiconducting hematite (001) surface via the proximity effect depends on the electronic properties of the surface. ET between the spatially separated U(VI) and Fe(II) occurs most readily when orbitals between the Fe and U adsorbates overlap with those of neighboring O and Fe ions at the hematite surface, as shown by calculations without the Hubbard U correction. Analyses of the spins densities confirm that the U and Fe adsorbates were reduced and oxidized, respectively, (acquiring 0.33 mu(B) and 0.11-0.20 mu(B), respectively), while Fe cations at the hematite surface were reduced (losing <= 0.6 mu(B)). If electrons are highly localized, the amount of orbital mixing and electronic coupling through the hematite surface decreases and in turn leads to a lower degree of spin transfer, as predicted by calculations with the Hubbard U correction. Thus, the proximity effect is a potential mechanism on semiconducting surfaces facilitating surface-mediated redox reactions, although its significance varies depending on the electronic properties and subsequent charge-carrying ability of the surface. These results provide insight into ET pathways and mechanisms on insulating Al- and semi-conducting Fe oxide surfaces influencing the reduction U(VI) by Fe(II) that may subsequently limit uranium's transport in the subsurface. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Taylor, S. D.; Marcano, M. C.; Becker, U.] Univ Michigan, Dept Earth & Environm Sci, 2534 CC Little Bldg,1100 North Univ Ave, Ann Arbor, MI 48109 USA. [Taylor, S. D.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Taylor, SD (reprint author), Univ Michigan, Dept Earth & Environm Sci, 2534 CC Little Bldg,1100 North Univ Ave, Ann Arbor, MI 48109 USA.; Taylor, SD (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM sdtaylor2015@outlook.com FU U.S. Office of Science, BES/HEC (Basic Energy Sciences, Heavy Element Chemistry) [DE-FG02-06ER15783] FX This research was supported by the U.S. Office of Science, BES/HEC (Basic Energy Sciences, Heavy Element Chemistry) DE-FG02-06ER15783. NR 97 TC 0 Z9 0 U1 17 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JAN 15 PY 2017 VL 197 BP 305 EP 322 DI 10.1016/j.gca.2016.10.022 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EG4BF UT WOS:000390987700019 ER PT J AU Miller, HM Matter, JM Kelemen, P Ellison, ET Conrad, M Fierer, N Ruchala, T Tominaga, M Templeton, AS AF Miller, Hannah M. Matter, Jurg M. Kelemen, Peter Ellison, Eric T. Conrad, Mark Fierer, Noah Ruchala, Tyler Tominaga, Masako Templeton, Alexis S. TI Reply to "Methane origin in the Samail ophiolite: Comment on 'Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability'" [Geochim. Cosmochim. Acta 179 (2016) 217-241] SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Editorial Material ID SULTANATE-OF-OMAN; CARBONATION C1 [Miller, Hannah M.; Ellison, Eric T.; Templeton, Alexis S.] Univ Colorado, Dept Geol Sci, UCB 399, Boulder, CO 80309 USA. [Matter, Jurg M.] Univ Southampton, Dept Ocean & Earth Sci, Southampton SO14 3ZH, Hants, England. [Matter, Jurg M.; Kelemen, Peter] Columbia Univ, Lamont Doherty Earth Observ, 61 Route 9W, Palisades, NY 10964 USA. [Conrad, Mark] EO Lawrence Berkeley Natl Lab, Div Earth Sci, MS 90R1116, Berkeley, CA 94720 USA. [Fierer, Noah] Univ Colorado, Dept Ecol & Evolutionary Biol, CIRES 215, Boulder, CO 80309 USA. [Ruchala, Tyler; Tominaga, Masako] Texas A&M Univ, Dept Geol & Geophys, College Stn, TX 77843 USA. RP Miller, HM (reprint author), Univ Colorado, Dept Geol Sci, UCB 399, Boulder, CO 80309 USA. EM hannah.miller-1@colorado.edu; alexis.templeton@colorado.edu OI TEMPLETON, ALEXIS/0000-0002-9670-0647 NR 11 TC 1 Z9 1 U1 6 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JAN 15 PY 2017 VL 197 BP 471 EP 473 DI 10.1016/j.gca.2016.11.011 PG 3 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EG4BF UT WOS:000390987700028 ER PT J AU Wohl, E Rathburn, S Chignell, S Garrett, K Laurel, D Livers, B Patton, A Records, R Richards, M Schook, DM Sutfin, NA Wegener, P AF Wohl, Ellen Rathburn, Sara Chignell, Stephen Garrett, Krista Laurel, DeAnna Livers, Bridget Patton, Annette Records, Rosemary Richards, Mariah Schook, Derek M. Sutfin, Nicholas A. Wegener, Pamela TI Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado SO GEOMORPHOLOGY LA English DT Article DE Connectivity; Water; Sediment; Mountain river; GIS; Stream gradient ID SCALE CHANNEL GEOMETRY; FRONT RANGE; SEDIMENT CONNECTIVITY; PROCESS DOMAINS; GEOMORPHIC RESPONSE; MOUNTAIN STREAMS; BEAVER DAMS; RIVER; CATCHMENT; FOREST AB We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field based understanding of relative connectivity within the watershed. We conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wohl, Ellen; Rathburn, Sara; Garrett, Krista; Laurel, DeAnna; Livers, Bridget; Patton, Annette; Records, Rosemary; Richards, Mariah; Schook, Derek M.; Sutfin, Nicholas A.] Colorado State Univ, Dept Geosci, Ft Collins, CO 80523 USA. [Chignell, Stephen; Wegener, Pamela] Colorado State Univ, Dept Ecosyst Sci & Sustainabil, Ft Collins, CO 80523 USA. [Sutfin, Nicholas A.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM USA. RP Wohl, E (reprint author), Colorado State Univ, Dept Geosci, Ft Collins, CO 80523 USA. OI Chignell, Stephen/0000-0002-8277-4338 NR 60 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-555X EI 1872-695X J9 GEOMORPHOLOGY JI Geomorphology PD JAN 15 PY 2017 VL 277 SI SI BP 171 EP 181 DI 10.1016/j.geomorph.2016.05.004 PG 11 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA EF9AL UT WOS:000390623000013 ER PT J AU Doisneau, F Arienti, M Oefelein, JC AF Doisneau, Francois Arienti, Marco Oefelein, Joseph C. TI A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Kinetic theory; Fuel injection; Dense polydisperse reacting spray; Euler-Euler spray model; Semi-lagrangian transport scheme; Two-way coupling ID LARGE-EDDY SIMULATION; SOLID-PROPELLANT COMBUSTION; PARTICLE-LADEN FLOWS; NUMERICAL-SIMULATION; VLASOV EQUATION; EVAPORATING SPRAYS; LIQUID SPRAYS; MOMENT METHOD; WATER-BAG; MODELS AB For sprays, as described by a kinetic disperse phase model strongly coupled to the NavierStokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle-particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows. (C) 2016 Elsevier Inc. All rights reserved. C1 [Doisneau, Francois; Arienti, Marco; Oefelein, Joseph C.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Doisneau, F (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM fdoisne@sandia.gov; marient@sandia.gov; oefelei@sandia.gov NR 97 TC 0 Z9 0 U1 7 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD JAN 15 PY 2017 VL 329 BP 48 EP 72 DI 10.1016/j.jcp.2016.10.042 PG 25 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA EF7LQ UT WOS:000390511500004 ER PT J AU Bair, J Zaeem, MA Schwen, D AF Bair, Jacob Zaeem, Mohsen Asle Schwen, Daniel TI Formation path of delta hydrides in zirconium by multiphase field modeling SO ACTA MATERIALIA LA English DT Article DE Hydrides; Zirconium; Multiphase field model; Metastable phases ID BI-CRYSTALLINE ZIRCONIUM; PHASE-TRANSFORMATIONS; APPLIED STRESS; APPLIED LOAD; AB-INITIO; PRECIPITATION; ALLOYS; DISLOCATIONS; SIMULATION; EVOLUTION AB A multiphase field model is developed to study the effects of metastable zeta and gamma hydrides on the nucleation and growth of the stable delta hydrides in a zirconium matrix. The model incorporates all the possible phases using the Gibbs free energies of formation for each phase and their available material properties. The multiphase field model is constructed by utilizing one conserved phase-field variable to represent the concentration of hydrogen, and six non-conserved phase-field variables to represent the a phase, phase, three orientation variants of gamma phase, and delta phase. The evolution equations are coupled with the mechanical equilibrium equations and solved using the Multiphysics Object Oriented Simulation Environment (MOOSE). Nucleation of hydrides is controlled using classic nucleation theory, inserting nuclei randomly with a probability dependent on the competition between the hydride's volume free energy and the interface's area free energy to form critical sized nuclei. The comparison between the results of the multiphase model and a two-phase model (without metastable phases) indicate that the intermediate phases are influential in the initial formation and evolution of delta phase hydrides. Random seed simulations, both in the basal plane and the (10 (1) over bar0) plane, also indicate that the intermediate metastable phases play a key role in the shape evolution of delta hydrides. Results suggest that quantitative phase field models of delta hydride growth need to include intermediate phases in order to accurately predict the morphology of hydrides. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Bair, Jacob; Zaeem, Mohsen Asle] Missouri Univ Sci & Technol, 1400 N Bishop Ave, Rolla, MO 65409 USA. [Schwen, Daniel] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83401 USA. RP Zaeem, MA (reprint author), Missouri Univ Sci & Technol, 1400 N Bishop Ave, Rolla, MO 65409 USA. EM zaeem@mst.edu FU Idaho National Laboratory Directed Research and Development funds FX This work was supported by Idaho National Laboratory Directed Research and Development funds. Authors would like to thank Dr. Yongfeng Zhang of INL for his insightful discussions on interface energy calculations. NR 41 TC 0 Z9 0 U1 9 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JAN 15 PY 2017 VL 123 BP 235 EP 244 DI 10.1016/j.actamat.2016.10.056 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EE4FA UT WOS:000389556500023 ER PT J AU Oshima, R France, RM Geisz, JF Norman, AG Steiner, MA AF Oshima, Ryuji France, Ryan M. Geisz, John F. Norman, Andrew G. Steiner, Myles A. TI Growth of lattice-matched GaInAsP grown on vicinal GaAs(001) substrates within the miscibility gap for solar cells SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Metalorganic vapor phase epitaxy; Alloys; Semiconducting quaternary alloys; Solar cells ID VAPOR-PHASE EPITAXY; LAYERS; MOVPE; INGAASP; SEPARATION; EFFICIENCY; SURFACE; MOCVD; GAAS; SEMICONDUCTORS AB The growth of quaternary Ga0.68In0.32As0.35P0.65 by metal-organic vapor phase epitaxy is very sensitive to growth conditions because the composition is within a miscibility gap. In this investigation, we fabricated 1 mu m thick lattice-matched GaInAsP films grown on GaAs(001) for application to solar cells. The growth temperature and substrate miscut are varied in order to characterize the effect of the surface diffusion of adatoms on the material quality of alloys. Transmission electron microscopy and two-dimensional in-situ multi-beam optical stress determine that growth temperatures of 650 degrees C and below enhance the formation of the CuPtB atomic ordering and suppress material decomposition, which is found to occur at the growth surface. The root-meansquare (RMS) roughness is reduced from 33.6 nm for 750 degrees C to 1.62 nm for 650 degrees C, determined by atomic force microscopy. Initial investigations show that the RMS roughness can be further reduced using increased miscut angle, and substrates miscut toward (111) A, leading to an RMS roughness of 0.56 nm for the sample grown at 600 degrees C on GaAs miscut 6 degrees toward (111) A. Using these conditions, we fabricate an inverted hetero-junction 1.62 eV Ga0.68In0.32As0.35P0.65 solar cell without an anti-reflection coating with a short-circuit current density, open-circuit voltage, fill factor, and efficiency of 12.23 mA/cm(2), 1.12 V, 86.18%, and 11.80%, respectively. C1 [Oshima, Ryuji; France, Ryan M.; Geisz, John F.; Norman, Andrew G.; Steiner, Myles A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Oshima, Ryuji] Natl Inst Adv Ind Sci & Technol, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan. RP Oshima, R (reprint author), Natl Inst Adv Ind Sci & Technol, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan. EM r.oshima@aist.go.jp RI Norman, Andrew/F-1859-2010 OI Norman, Andrew/0000-0001-6368-521X FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; International Joint Research Program for Innovative Energy Technology FX It is my pleasure to acknowledge Daniel J. Friedman, William McMahon, and Nikhil Jain for valuable discussions, Waldo Olavarria for sample growth, Michelle Young for sample processing, Bobby To for AFM measurements and Pat Dippo for PL measurements. The work was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory. R. Oshima was supported by International Joint Research Program for Innovative Energy Technology. NR 44 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD JAN 15 PY 2017 VL 458 BP 1 EP 7 DI 10.1016/j.jcrysgro.2016.10.025 PG 7 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA EE4QV UT WOS:000389590900001 ER PT J AU Ou, HS Liu, J Ye, JS Wang, LL Gao, NY Ke, J AF Ou, Hua-se Liu, Juan Ye, Jin-shao Wang, Lin-lin Gao, Nai-yun Ke, Jing TI Degradation of tris(2-chloroethyl) phosphate by ultraviolet-persulfate: Kinetics, pathway and intermediate impact on proteome of Escherichia coli SO CHEMICAL ENGINEERING JOURNAL LA English DT Article DE Organophosphorus flame retardants; Ultraviolet; Persulfate; Advanced oxidation process; Proteomics ID ORGANOPHOSPHORUS FLAME RETARDANTS; ADVANCED OXIDATION PROCESSES; ACTIVATED PERSULFATE; WATER; TOXICITY; CIPROFLOXACIN; DEHYDROGENASE; PLASTICIZERS; MECHANISM; RESPONSES AB Organophosphorus flame retardants (OPFRs) are commonly applied in many consumer products, resulting in their widespread distribution in water, soil and indoor air. It is in urgent need of developing efficient and safe removal methods for OPFRs. The degradation kinetics and mechanism of tris(2-chloroethyl) phosphate (TCEP), a representative OPFR, by ultraviolet-persulfate (UV/PS) were explored, and the toxicological assessment of degrading intermediate mixture was performed using isobaric tags for relative and absolute quantitation proteomic technology. The results indicated that UV/PS had a high transformation efficiency of TCEP ([TCEP](0) = 3.5 mu M, [S2Og2-](0) = 175 mu M, apparent rate constant reached 0.1272 min(-1)) with the generations of three primary intermediates, including C4H9Cl2O4P (m/z 222.97, 224.97), C6H13Cl2O5P (m/z 266.99, 268.99) and C2H6ClO4P (m/z 160.98, 162.97), through the selective electron-transfer reactions induced by activated sulfate radical. Compared to that of TCEP, the Escherichia coli ATCC11303 exposed to intermediate mixture expressed 64 up-regulated proteins those primarily associated with nutrient import, energy generation, DNA protection and signal transduction. The 86 down-regulated proteins were related to DNA repair, protein turnover and stress response, suggesting that the toxicity of the degrading intermediate mixture decreased significantly. The current study provided insights into the molecular mechanisms of TCEP and its degrading intermediate mixture on E. coli, clarifying that the UV/PS degradation is an alternative efficient and safe treatment method for TCEP. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ou, Hua-se; Liu, Juan; Ye, Jin-shao; Wang, Lin-lin] Jinan Univ, Sch Environm, Guangzhou Key Lab Environm Exposure & Hlth, Guangzhou 510632, Guangdong, Peoples R China. [Ou, Hua-se; Liu, Juan; Ye, Jin-shao; Wang, Lin-lin] Jinan Univ, Guangdong Key Lab Environm Pollut & Hlth, Guangzhou 510632, Guangdong, Peoples R China. [Ye, Jin-shao; Wang, Lin-lin; Ke, Jing] Lawrence Berkeley Natl Lab, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Gao, Nai-yun] Tongji Univ, Coll Environm Sci and Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China. RP Ye, JS (reprint author), Jinan Univ, Sch Environm, Guangzhou Key Lab Environm Exposure & Hlth, Guangzhou 510632, Guangdong, Peoples R China.; Ye, JS (reprint author), Jinan Univ, Guangdong Key Lab Environm Pollut & Hlth, Guangzhou 510632, Guangdong, Peoples R China. EM jinshaoye@lbl.gov FU National Natural Science Foundation of China - China [51308224, 21577049]; Science and Technology Planning Project of Guangdong Province, China [2014A020216014, 2016A020222005] FX This project was supported by the National Natural Science Foundation of China - China (Grant Nos. 51308224, 21577049), the Science and Technology Planning Project of Guangdong Province, China (Grant Nos. 2014A020216014, 2016A020222005). NR 39 TC 1 Z9 1 U1 65 U2 65 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1385-8947 EI 1873-3212 J9 CHEM ENG J JI Chem. Eng. J. PD JAN 15 PY 2017 VL 308 BP 386 EP 395 DI 10.1016/j.cej.2016.09.076 PG 10 WC Engineering, Environmental; Engineering, Chemical SC Engineering GA ED7YG UT WOS:000389088000041 ER PT J AU Ramirez, E Finney, CEA Pannala, S Daw, CS Halow, J Xiong, QG AF Ramirez, Emilio Finney, Charles E. A. Pannala, Sreekanth Daw, C. Stuart Halow, Jack Xiong, Qingang TI Computational study of the bubbling-to-slugging transition in a laboratory-scale fluidized bed SO CHEMICAL ENGINEERING JOURNAL LA English DT Article DE Multiphase flow; Skewness and kurtosis; Higher order statistics; Bubble regime transition; Pressure fluctuations; MS3DATA ID ELECTRICAL CAPACITANCE TOMOGRAPHY; DETERMINISTIC CHAOS ANALYSIS; BIOMASS FAST PYROLYSIS; PRESSURE-FLUCTUATIONS; GAS-SOLIDS; CONSTITUTIVE RELATIONS; EULERIAN SIMULATION; LARGE PARTICLES; REACTOR MODEL; 2-FLUID MODEL AB We report results from a computational study of the transition from bubbling to slugging in a laboratory scale fluidized-bed reactor with Geldart Group B glass particles. For simulating the three-dimensional fluidized-bed hydrodynamics, we employ MFiX, a widely studied multi-phase flow simulation tool, that uses a two-fluid Eulerian-Eulerian approximation of the particle and gas dynamics over a range of gas flows. We also utilize a previously published algorithm to generate bubble statistics that can be correlated with pressure fluctuations to reveal previously unreported details about the stages through which the hydrodynamics progress during the bubbling-to-slugging transition. We expect this new information will lead to improved approaches for on-line reactor diagnostics, as well as new approaches for validating the results of computational fluidized-bed simulations with experimental measurements. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ramirez, Emilio; Finney, Charles E. A.; Daw, C. Stuart] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ramirez, Emilio] Univ Tennessee, Knoxville, TN 37996 USA. [Pannala, Sreekanth] Saudi Arabia Basic Ind Corp Amer, Sugar Land, TX 77478 USA. [Halow, Jack] Separat Design Grp, Waynesburg, PA 15370 USA. [Xiong, Qingang] Fiat Chrysler Automobiles US LLC, Auburn Hills, MI 48326 USA. RP Ramirez, E; Daw, CS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM eramire2@vols.utk.edu; dawcs@ornl.gov FU Bioenergy Technology Office, US Department of Energy through the Computational Pyrolysis Consortium (CPC) project FX This work was supported by the Bioenergy Technology Office, US Department of Energy through the Computational Pyrolysis Consortium (CPC) project. The authors would like to thank program sponsors Jeremy Leong, Cynthia Tyler, and Kevin Craig for their support and guidance. More information about the CPC project can be found at http://cpcbiomass.org/. The authors acknowledge Akhilesh Bakshi for making MS3DATA available and See Hoon Lee for discussions through email about their work related to slugging fluidization. NR 98 TC 0 Z9 0 U1 19 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1385-8947 EI 1873-3212 J9 CHEM ENG J JI Chem. Eng. J. PD JAN 15 PY 2017 VL 308 BP 544 EP 556 DI 10.1016/j.cej.2016.08.113 PG 13 WC Engineering, Environmental; Engineering, Chemical SC Engineering GA ED7YG UT WOS:000389088000054 ER PT J AU Kim, JH Kwon, G Lim, H Zhu, CH You, H Kim, YT AF Kim, Jun-Hyuk Kwon, Gihan Lim, Hankwon Zhu, Chenhui You, Hoydoo Kim, Yong-Tae TI Effects of transition metal doping in Pt/M-TiO2 (M = V, Cr, and Nb) on oxygen reduction reaction activity (vol 320, pg 188, 2016) SO JOURNAL OF POWER SOURCES LA English DT Correction C1 [Kim, Jun-Hyuk; Kim, Yong-Tae] Pusan Natl Univ, Sch Mech Engn, Busan 609735, South Korea. [Kim, Jun-Hyuk] Pusan Natl Univ, Hybrid Mat Solut Natl Core Res Ctr NCRC, Busan 609735, South Korea. [Kwon, Gihan] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Lim, Hankwon] Catholic Univ Daegu, Dept Chem Systemat Engn, Daegu 712702, South Korea. [Zhu, Chenhui; You, Hoydoo] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Zhu, Chenhui] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Kim, YT (reprint author), Pusan Natl Univ, Sch Mech Engn, Busan 609735, South Korea. EM yongtae@pusan.ac.kr NR 1 TC 0 Z9 0 U1 21 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD JAN 15 PY 2017 VL 338 BP 163 EP 163 DI 10.1016/j.jpowsour.2016.11.006 PG 1 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA ED8ZG UT WOS:000389159000018 ER PT J AU Wang, SY Zhang, B Yang, QC Chen, GS Yang, BJ Lu, LL Shen, M Peng, YY AF Wang, Siyuan Zhang, Bing Yang, Qichun Chen, Guangsheng Yang, Bojuan Lu, Linlin Shen, Ming Peng, Yaoyao TI Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Phenology; Net primary productivity (NPP); Climate change; Normalized difference vegetation index (NDVI); The Tibetan Plateau ID DELAYED SPRING PHENOLOGY; CLIMATE-CHANGE; ECOSYSTEM PRODUCTIVITY; VEGETATION PHENOLOGY; TIME-SERIES; SATELLITE; WINTER; VARIABILITY; FOREST; MODEL AB Quantifying the response of vegetation Net Primary Productivity (NPP) to phenological dynamics is critical to study climate change effects on ecosystem dynamics in the high-latitude, so investigating responses of NPP to phenological dynamics is becoming an increasing important way to identify and predict global ecosystem dynamics. In this study, we intend to quantifying the temporal trends and spatial variations of vegetation phenology and NPP across the Tibetan Plateau by calibrating and analyzing time series of the MODIS-derived normalized difference vegetation index (NDVI) during 2002-2012, and examining the mechanisms of vegetation NPP response to phenological dynamics over the plateau. Our results indicated that most of the plateau experienced a coninuous advancing trend in the beginning of vegetation growing season (BGS) and a delaying trend in the end of vegetation growing season (EGS), consequently a prolonged length of vegetation growing season (LGS). Accordingly, NPP also substantially increased in most parts of the plateau. Meanwhile, the spatial patterns of the BGS, EGS, LGS and NPP varied in accordcance with the heat and water gradient across the plateau. The response modes of the NPP to phenological shifs varied within different climatic regimes, and the spatiotemporal response patterns were primarily controlled by the local climatic and topographic conditions. Moreover, temperature and precipitation played different roles in diverse responses of NPP to phenological dynamics, implying a profound effect of climate on response mechanism of the NPP to phenological changes. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wang, Siyuan; Zhang, Bing; Yang, Bojuan; Lu, Linlin; Shen, Ming; Peng, Yaoyao] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth, Beijing 100101, Peoples R China. [Yang, Qichun] Pacific Northwest Natl Lab, 5825 Univ Res Court,Suite 1200, College Pk, MD 20740 USA. [Chen, Guangsheng] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Wang, SY (reprint author), Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth, Beijing 100101, Peoples R China. EM w_siyuan@126.com FU Natural Science Foundation of China [41271426, 41428103, 91547107]; National Basic Research Program of China [2011CB707100]; "1-3-5 Project" of Chinese Academy of Sciences FX This study was supported by the Natural Science Foundation of China (Grant No. 41271426, No. 41428103 and No. 91547107), National Basic Research Program of China (No. 2011CB707100), and "1-3-5 Project" of Chinese Academy of Sciences. The authors are very grateful to Prof. Hanqin Tian and the anonymous reviewers for their constructive and critical comments on this manuscript. NR 71 TC 0 Z9 0 U1 46 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD JAN 15 PY 2017 VL 232 BP 235 EP 246 DI 10.1016/j.agrformet.2016.08.020 PG 12 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA ED7YY UT WOS:000389089800020 ER PT J AU Pimont, F Dupuy, JL Linn, RR Parsons, R Martin-StPaul, N AF Pimont, Francois Dupuy, Jean-Luc Linn, Rodman R. Parsons, Russell Martin-StPaul, Nicolas TI Representativeness of wind measurements in fire experiments: Lessons learned from large-eddy simulations in a homogeneous forest SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Fire metrology; Measurement accuracy; Measurement error; Spatial correlation; Temporal correlation; HIGRAD/FIRETEC ID ATMOSPHERE INTERACTIONS; SPREAD; MODEL; SURFACE; PREDICTIONS; STATISTICS; VALIDATION; FLOW AB Experimental fires often aim to relate fire behavior to fuel and weather conditions, such as wind speeds. These experiments are typically limited to short durations (similar to 300 s) and small lateral extents (similar to 100 m). Although most studies include measurements of wind velocities, such measurements are often taken at some distance from the fire experiments, and may not represent conditions at the fire location. This disparity may potentially introduce errors of unknown magnitude in empirical models based upon the data collected. At present, little guidance is available regarding how well remote anemometry measurements are actually representative of wind velocities at the fire front. A number of factors may affect this representativeness, including the fire itself (size, spread rate and duration), the reference height for fire wind measurement, the sensors (number and location), the vegetation, and weather conditions (wind speed and atmospheric stability). In the present study, we use large-eddy simulations of wind flows to compute fire-front wind (at a virtual moving fire line) and measured wind (at anemometer locations) corresponding to hypothetical fire experiments. Replicates of these hypothetical experiments were used to quantify wind measurement representativeness, by computing the errors resulting from the estimation of the fire-front wind by remote anemometers. We then examine the sensitivity of these errors to the factors mentioned above. We found that the main factors were the size of the experiment, the reference height for wind measurement, the ratio of ambient wind speed to expected spread rate, and the number of sensors. Convective instability and distance between anemometers and fire plots played a minor role in most cases. We propose a simple model to characterize this error as it is influenced by the main factors. The simple model reproduces and generalizes outcomes reported by an earlier field study and shows a clear picture of the respective role of the factors cited above. It can be used to estimate errors in wind measurement in completed experiments. Practical guidelines are provided to apply this model to the design of future experiments. (C) 2016 Published by Elsevier B.V. C1 [Pimont, Francois; Dupuy, Jean-Luc; Martin-StPaul, Nicolas] INRA, URFM, F-84914 Avignon, France. [Pimont, Francois; Dupuy, Jean-Luc; Martin-StPaul, Nicolas] Domaine St Paul, Site Agroparc,CS 40509, F-84914 Avignon 09, France. [Linn, Rodman R.] LANL, EES, Los Alamos, NM 87544 USA. [Parsons, Russell] US Forest Serv, USDA, Fire Sci Lab, Missoula, MT 59808 USA. RP Pimont, F (reprint author), INRA, URFM, F-84914 Avignon, France. EM francois.pimont@inra.fr; jean-luc.dupuy@inra.fr; rrl@lanl.gov; rparsons@fs.fed.us; nicolas.martin@inra.fr FU Australian Centre for International Agriculture Research (ACIAR) FX The authors would like to thank the Australian Centre for International Agriculture Research (ACIAR) for sponsoring this research under the John Allwright Fellowship. The authors are grateful to Rodger Ian Young and Robert Pipunic for their valuable support in data collection. NR 28 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD JAN 15 PY 2017 VL 232 BP 479 EP 488 DI 10.1016/j.agrformet.2016.10.002 PG 10 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA ED7YY UT WOS:000389089800039 ER PT J AU Gonsalves, DRP Sa, JCD Mishra, U Cerri, CEP Ferreira, LA Furlan, FJF AF Potma Gonsalves, Daniel Ruiz de Moraes Sa, Joao Carlos Mishra, Umakant Pellegrino Cerri, Carlos Eduardo Ferreira, Lucimara Aparecida Ferreira Furlan, Flavia Juliana TI Soil type and texture impacts on soil organic carbon storage in a sub-tropical agro-ecosystem SO GEODERMA LA English DT Article DE Long term no-till; Oxisols; Oxides; Modeling; Century model ID LONG-TERM EXPERIMENTS; BRAZILIAN OXISOL; TILLAGE CHRONOSEQUENCE; CLAY-MINERALS; LAND-USE; SOUTHERN BRAZIL; TROPICAL SOILS; MATTER POOLS; MODEL; DYNAMICS AB Soil organic carbon (C) plays a fundamental role in tropical and subtropical.soil fertility, agronomic productivity, and soil health. As a tool for understand ecosystems dynamics, mathematical models such as Century have been used to assess soil's capacity to store C in different environments. However, as Century was initially developed for temperate ecosystems, several authors have hypothesized that C storage may be underestimated by Century in Oxisols. We tested the hypothesis that Century model can be parameterized for tropical soils and used to reliably estimate soil organic carbon (SOC) storage. The aim of this study was to investigate SOC storage under two soil types and three textural classes and quantify the sources and magnitude of uncertainty using the Century model. The simulation for SOC storage was efficient and the mean residue was 10 Mg C ha(-1) (13%) for n = 91. However, a different simulation bias was observed for soil with <600 g kg(-1) of clay was 16.3 Mg C ha(-1) (18%) for n = 30, and at >600 g kg(-1) of clay, was 4 Mg C ha(-1) (5%) for n = 50, respectively. The results suggest a non-linear effect of clay and silt contents on C storage in Oxisols. All types of soil contain nearly 70% of Fe and Al oxides in the clay fraction and a regression analysis showed an increase in model bias with increase in oxides content Consequently, inclusion of mineralogical control of SOC stabilization by Fe and Al (hydro) oxides may improve results of Century model simulations in soils with high oxides contents. (C) 2016 Elsevier B.V. All rights reserved. C1 [Potma Gonsalves, Daniel Ruiz] Univ Estadual Ponta Grossa, Grad Agron Program, Ave Gen Carlos Cavalcanti 4748,Campus Uvaranas, BR-84030900 Ponta Grossa, PR, Brazil. [de Moraes Sa, Joao Carlos] Univ Estadual Ponta Grossa, Dept Soil Sci & Agr Engn, Ave Gen Carlos Cavalcanti 4748,Campus Uvaranas, BR-84030900 Ponta Grossa, PR, Brazil. [Mishra, Umakant] Argonne Natl Lab, Div Environm Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. [Pellegrino Cerri, Carlos Eduardo] Univ Sao Paulo, Luiz de Queiroz Coll Agr, Dept Soil Sci, Ave Padua Dias 11, BR-13418900 Piracicaba, SP, Brazil. [Ferreira, Lucimara Aparecida; Ferreira Furlan, Flavia Juliana] Univ Estadual Ponta Grossa, Undergrad Program Agron, Ave Gen Carlos Cavalcanti 4748,Campus Uvaranas, BR-84030900 Ponta Grossa, PR, Brazil. RP Sa, JCD (reprint author), Univ Estadual Ponta Grossa, Dept Soil Sci & Agr Engn, Ave Gen Carlos Cavalcanti 4748,Campus Uvaranas, BR-84030900 Ponta Grossa, PR, Brazil. EM jcmoraessa@yahoo.com.br OI Sa, Joao Carlos de Moraes/0000-0003-1502-5537 FU Agrisus Foundation [PA 965/12]; CNPq [482292/2012-1]; CAPES [99999.006792/2014-06] FX We thank Allison Fornari from Agropecuaria Ludo Miranda, technical manager of Paiquere farm for his support and the team of CLABMU (UEPG) for their support with the X-ray diffraction analysis. We are grateful to Agrisus Foundation (Grant PA 965/12), CNPq (Grant 482292/2012-1) and CAPES (Grant 99999.006792/2014-06) for research funding and the scholarship. We thank M.Sc. Allison Fornari from Agropecuaria Ludo Miranda, technical manager of Paiquere farm for his support and the team of LABMU (UEPG) for their support with X-ray diffraction analysis. NR 64 TC 0 Z9 0 U1 53 U2 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0016-7061 EI 1872-6259 J9 GEODERMA JI Geoderma PD JAN 15 PY 2017 VL 286 BP 88 EP 97 DI 10.1016/j.geoderma.2016.10.021 PG 10 WC Soil Science SC Agriculture GA ED8FI UT WOS:000389107000011 ER PT J AU Kasemset, S Wang, L He, ZW Miller, DJ Kirschner, A Freeman, BD Sharma, MM AF Kasemset, Sirirat Wang, Lu He, Zhengwang Miller, Daniel J. Kirschner, Alon Freeman, Benny D. Sharma, Mukul M. TI Influence of polydopamine deposition conditions on hydraulic permeability, sieving coefficients, pore size and pore size distribution for a polysulfone ultrafiltration membrane SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Surface modification; Polydopamine; Ultrafiltration; Membrane pore size; Molecular weight cutoff ID WATER-PURIFICATION MEMBRANES; FOULING-RESISTANT MEMBRANES; CROSS-FLOW ULTRAFILTRATION; REVERSE-OSMOSIS MEMBRANES; SURFACE MODIFICATION; ASYMMETRIC MEMBRANES; POLYETHYLENE-GLYCOL; POROUS MEMBRANES; CONSTANT FLUX; POLYMER-FILMS AB Membrane surface modification with polydopamine (PDA) coatings can reduce fouling in oily water filtration due, at least in part, to enhanced surface hydrophilicity. In this study, polysulfone (PSf) UF membranes were coated with PDA. PDA coating conditions (solution concentration and deposition time) were varied, and the effect of coating conditions on membrane molecular weight cutoff (MWCO) and hydraulic permeability was measured. Membrane MWCO decreased and PDA film thickness increased as initial dopamine coating solution concentration or deposition time increased. The MWCO decrease confirmed that PDA restricted the membrane pores. While the PDA coating thickness on membrane surfaces grew progressively with increasing initial dopamine concentration or coating time, coating inside the membrane pores was limited by the finite membrane pore size. A tradeoff between selectivity and hydraulic permeability of unmodified and PDA-modified membranes was noted. This tradeoff is reminiscent of that observed in other separation membranes. Zydney's hindered solute transport model of flow through porous membranes was used to estimate changes in membrane mean pore size and pore size distribution. Based on the modelling results, membrane mean pore radius increased at low initial dopamine concentrations or short deposition times and decreased at high initial dopamine concentrations or long deposition times with increasing initial dopamine concentration or increasing PDA coating time. The pore size distribution narrowed as the membranes were modified with PDA. The porosity to thickness ratio of FDA-modified membranes remained unchanged or was only slightly higher than that of unmodified membranes. (C) 2016 Elsevier B.V. All rights reserved. C1 [Kasemset, Sirirat; Wang, Lu; He, Zhengwang; Miller, Daniel J.; Kirschner, Alon; Freeman, Benny D.] Univ Texas Austin, Texas Mat Inst, McKetta Dept Chem Engn, 10100 Burnet Rd,Bldg 133, Austin, TX 78758 USA. [Kasemset, Sirirat; Wang, Lu; He, Zhengwang; Miller, Daniel J.; Kirschner, Alon; Freeman, Benny D.] Ctr Energy & Environm Resources, 10100 Burnet Rd,Bldg 133, Austin, TX 78758 USA. [Sharma, Mukul M.] Univ Texas Austin, Dept Petr & Geosyst Engn, 200 East Dean Keeton St, Austin, TX 78712 USA. [Kasemset, Sirirat] Evonik Corp, 4201 Evonik Rd, Theodore, AL 36582 USA. [Wang, Lu] ExxonMobil Asia Pacific Res & Dev Co Ltd, 1099 Zixing Rd, Shanghai 200241, Peoples R China. [Miller, Daniel J.] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Freeman, BD (reprint author), Univ Texas Austin, Texas Mat Inst, McKetta Dept Chem Engn, 10100 Burnet Rd,Bldg 133, Austin, TX 78758 USA.; Freeman, BD (reprint author), Ctr Energy & Environm Resources, 10100 Burnet Rd,Bldg 133, Austin, TX 78758 USA. EM freeman@che.utexas.edu RI He, Zhengwang/C-6727-2017 OI He, Zhengwang/0000-0003-4271-5728 FU National Science Foundation Science and Technology Center for Layered Polymeric Systems (CLiPS) [DMR-0423914]; National Science Foundation [CBET-1160069, CBET-1403670]; International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University of World Premier International Research Center Initiative (WPI), MEXT, Japan FX The authors gratefully acknowledge financial support from the National Science Foundation Science and Technology Center for Layered Polymeric Systems (CLiPS) (DMR-0423914) and the National Science Foundation Grant number CBET-1160069 and CBET-1403670. This work was also partially supported by the International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University of World Premier International Research Center Initiative (WPI), MEXT, Japan. NR 81 TC 0 Z9 0 U1 78 U2 78 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 EI 1873-3123 J9 J MEMBRANE SCI JI J. Membr. Sci. PD JAN 15 PY 2017 VL 522 BP 100 EP 115 DI 10.1016/j.memsci.2016.07.016 PG 16 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA EB2LB UT WOS:000387192500010 ER PT J AU Pinho, AD de Almeida, MBB Mendes, FL Casavechia, LC Talmadge, MS Kinchin, CM Chum, HL AF Pinho, Andrea de Rezende de Almeida, Marlon B. B. Mendes, Fabio Leal Casavechia, Luiz Carlos Talmadge, Michael S. Kinchin, Christopher M. Chum, Helena L. TI Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production SO FUEL LA English DT Article DE Refining; Co-processing; Fluid catalytic cracking; Biofuels; Bio-oil ID BIO-OILS; LIGNOCELLULOSIC BIOMASS; REFINERY; PERSPECTIVE; STANDARDS; BIOFUELS; NORMS AB Raw bio-oil produced from fast pyrolysis of pine woodchips was co-processed with standard Brazilian vacuum gasoil (VGO) and tested in a 200 kg.h(-1) fluid catalytic cracking (FCC) demonstration-scale unit using a commercial FCC equilibrium catalyst. Two different bio-oil/VGO weight ratios were used: 5/95 and 10/90. Co-processing of raw bio-oil in FCC was shown to be technically feasible. Bio-oil could be directly co-processed with a regular gasoil FCC feed up to 10 wt%. The bio-oil and the conventional gasoil were cracked into valuable liquid products such as gasoline and diesel range products. Most of the oxygen present in the bio-oil was eliminated as water and carbon monoxide as these yields were always higher than that of carbon dioxide. Product quality analysis shows that trace oxygenates, primarily alkyl phenols, in FCC gasoline and diesel products are present with or without co-processing oxygenated intermediates. The oxygenate concentrations increase with co-processing, but have not resulted in increased concerns with quality of fuel properties. The presence of renewable carbon was confirmed in gasoline and diesel cuts through C-14 isotopic analysis, showing that renewable carbon is not only being converted into coke, CO, and CO2, but also into valuable refining liquid products. Thus, gasoline and diesel could be produced from lignocellulosic raw materials through a conventional refining scheme, which uses the catalytic cracking process. The bio-oil renewable carbon conversion into liquid products (carbon efficiency) was approximately 30%, well above the efficiency found in literature for FCC bio-oil upgrading. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license. C1 [Pinho, Andrea de Rezende; de Almeida, Marlon B. B.; Mendes, Fabio Leal] Petrobras SA, Ctr Pesquisas Desenvolvimento Leopoldo A Miguez d, Av Horacio Macedo 950, Rio De Janeiro, RJ, Brazil. [Casavechia, Luiz Carlos] PETROBRAS SIX, Rodovia Xisto BR 476,Km 143, Sao Mateus Do Sul, PR, Brazil. [Talmadge, Michael S.; Kinchin, Christopher M.; Chum, Helena L.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Pinho, AD (reprint author), Petrobras SA, Ctr Pesquisas Desenvolvimento Leopoldo A Miguez d, Av Horacio Macedo 950, Rio De Janeiro, RJ, Brazil. EM andreapinho@petrobras.com.br NR 36 TC 0 Z9 0 U1 29 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD JAN 15 PY 2017 VL 188 BP 462 EP 473 DI 10.1016/j.fuel.2016.10.032 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EA6WS UT WOS:000386770400049 ER PT J AU Boatner, LA Kolopus, JA Lavrik, NV Phani, PS AF Boatner, L. A. Kolopus, J. A. Lavrik, Nicolay V. Phani, P. Sudharshan TI Cryo-quenched Fe-Ni-Cr alloy single crystals: A new decorative steel SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Metals and alloys; Crystal growth; Optical properties; Phase transition; Light absorption and reflection; Metallography ID WADSWORTH-SHERBY MECHANISM; DAMASCUS STEEL; LAMINATED COMPOSITES; ANCIENT; WELDS; MICROSTRUCTURES; PATTERN; BLADES AB A decorative steel is described that is formed by a process that is unlike that of the fabrication methods utilized in making the original Damascus steels over 2000 years ago. The decorative aspect of the steel arises from a three-dimensional surface pattern that results from cryogenically quenching polished austenitic alloy single crystals into the martensitic phase that is present below 190 K. No forging operations are involved - the mechanism is entirely based on the metallurgical phase properties of the ternary alloy. The symmetry of the decorative pattern is determined and controlled by the crystallographic orientation and symmetry of the 70%Fe, 15%Ni, 15%Cr alloy single crystals. In addition to using "cuts" made along principal crystallographic surface directions, an effectively infinite number of other random-orientation "cuts" can be utilized to produce decorative patterns where each pattern is unique after the austenitic-to-martensitic phase transformation. (C) 2016 Elsevier B.V. All rights reserved. C1 [Boatner, L. A.; Kolopus, J. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lavrik, Nicolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Phani, P. Sudharshan] Nanomechanics Inc, Oak Ridge, TN 37831 USA. RP Boatner, LA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM boatnerla@ornl.gov OI Boatner, Lynn/0000-0002-0235-7594 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Theme Science Program at the Center for Nanophase Materials Sciences; Division of Scientific User Facilities, U.S. Department of Energy; Nanomechanics, Inc., Oak Ridge Tennessee FX Research by L.A.B. and J.A.K. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Research by N.V.L. was supported by the Theme Science Program at the Center for Nanophase Materials Sciences, sponsored by the Division of Scientific User Facilities, U.S. Department of Energy. Research by S.P. was supported by Nanomechanics, Inc., Oak Ridge Tennessee. The authors are indebted to Bryan Chakoumakos for his X-ray examination of the as-grown and transformed Fe-Ni-Cr single crystals and to Kurt Johanns for his assistance with the nano-indentation data. The authors acknowledge with thanks the comments of Jeffrey Wadsworth on the manuscript and his suggestions for its improvement. NR 27 TC 0 Z9 0 U1 19 U2 19 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JAN 15 PY 2017 VL 691 BP 666 EP 671 DI 10.1016/j.jallcom.2016.08.327 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DZ9VI UT WOS:000386227900083 ER PT J AU Malengreaux, CM Pirard, SL Leonard, G Mahy, JG Herlitschke, M Klobes, B Hermann, R Heinrichs, B Bartlett, JR AF Malengreaux, Charline M. Pirard, Sophie L. Leonard, Geraldine Mahy, Julien G. Herlitschke, Marcus Klobes, Benedikt Hermann, Raphael Heinrichs, Benoit Bartlett, John R. TI Study of the photocatalytic activity of Fe3+, Cr3+, La3+ and Eu3+ single-doped and co-doped TiO2 catalysts produced by aqueous sol-gel processing SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Aqueous sol-gel process; Photocatalysis; TiO2; Single-doped; Co-doped catalyst ID TITANIUM-DIOXIDE; ORGANIC POLLUTANTS; THIN-FILMS; DEGRADATION; DYES; IONS; NANOPARTICLES; NITROPHENOLS; HYDROLYSIS; REMOVAL AB An aqueous sol-gel process, previously developed for producing undoped and Cu2+, Ni2+, Zn2+ or Pb2+ doped TiO2 photocatalysts with remarkably high photocatalytic activity without requiring any calcination step, has been adapted to produce Fe3+, Cr3+, La3+ or Eu3+ single-doped TiO2 photocatalysts as well as La3+-Fe3+ and Eu3+-Fe3+ co-doped TiO2 catalysts. The physicochemical properties of the obtained catalysts have been characterized using a suite of complementary techniques, including ICP-AES, XRD, UV-Vis spectroscopy, nitrogen adsorption-desorption and Fe-57 Mossbauer. The active crystalline phase is obtained without requiring any calcination step and all the different catalysts are composed of nanocrystallites of anatase with a size of 6-7 nm and a high specific surface area varying from 181 to 298 m(2) g(-1). In this study, the effect of the NO3:Ti(IV) mole ratio used to induce the peptisation reaction during the synthesis has been studied and the results revealed that this ratio can influence significantly the textural properties of the resulting catalyst. A screening of the photocatalytic activity of the undoped and Fe3+, Cr3+, La3+ or Eu3+ single-doped and co-doped photocatalysts has been performed by evaluating the degradation of 4-nitrophenol under UV-Visible light (330 nm < lambda < 800 nm). This study suggests that the photocatalytic activity is significantly influenced by the dopant nature and content with an optimal dopant content being observed in the case of Fe3+ or La3+ single-doped as well as in the case of La3+-Fe3+ and Eu3+-Fe3+ co-doped catalysts. In the case of Cr3+ single-doped catalysts, a detrimental effect of the dopant on the photocatalytic degradation of 4-nitrophenol has been observed while no significant influence of the dopant has been detected in the case of Eu3+ single-doped catalysts. The role of the different dopants in modulating the photocatalytic activity is discussed. (C) 2016 Published by Elsevier B.V. C1 [Malengreaux, Charline M.; Pirard, Sophie L.; Leonard, Geraldine; Mahy, Julien G.; Heinrichs, Benoit] Univ Liege, Dept Chem Engn, Lab Nanomat, Catalyse,Electrochim, B6a, B-4000 Liege, Belgium. [Herlitschke, Marcus; Klobes, Benedikt; Hermann, Raphael] Forschungszentrum Julich, JCNS, D-52425 Julich, Germany. [Herlitschke, Marcus; Klobes, Benedikt; Hermann, Raphael] Forschungszentrum Julich, JARA FIT, PGI, D-52425 Julich, Germany. [Herlitschke, Marcus; Hermann, Raphael] Univ Liege, Fac Sci, B-4000 Liege, Belgium. [Hermann, Raphael] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Bartlett, John R.] Univ Western Sydney, Sch Nat Sci, Penrith, NSW 1797, Australia. [Bartlett, John R.] Univ Sunshine Coast, Fac Sci Hlth Educ & Engn, Maroochydore, Qld 4558, Australia. [Herlitschke, Marcus] DESY, FS PE, D-22607 Hamburg, Germany. RP Pirard, SL (reprint author), Univ Liege, Dept Chem Engn, Lab Nanomat, Catalyse,Electrochim, B6a, B-4000 Liege, Belgium. EM sophie.pirard@ulg.ac.be RI Hermann, Raphael/F-6257-2013 OI Hermann, Raphael/0000-0002-6138-5624 FU F.R.S.-FNRS; Patrimoine de l'Universite de Liege; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Interuniversity Attraction Pole [IAP-P6/17]; Ministere de la Region Wallonne; Fonds de la Recherche Fondamentale Collective; Fonds Wetenschappelijk Onderzoek Vlaanderen FX C.M. Malengreaux and S.L. Pirard are grateful to the F.R.S.-FNRS for PhD Grant, and postdoctoral researcher positions respectively. C. M. Malengreaux also acknowledges the F.R.S.-FNRS and the Patrimoine de l'Universite de Liege for financial support during her scientific stay at the University of Western Sydney, Australia. R. Hermann acknowledges support from the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors are grateful to the Vitrerie Duchaine sprl who kindly supplied the Saint Gobain Glass Bioclean (R) samples. The authors thank the Interuniversity Attraction Pole (IAP-P6/17), the Ministere de la Region Wallonne, the Fonds de la Recherche Fondamentale Collective and the Fonds Wetenschappelijk Onderzoek Vlaanderen for their financial support. NR 48 TC 1 Z9 1 U1 83 U2 83 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JAN 15 PY 2017 VL 691 BP 726 EP 738 DI 10.1016/j.jallcom.2016.08.211 PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DZ9VI UT WOS:000386227900091 ER PT J AU Parish, CM Wang, K Doerner, RP Baldwin, MJ AF Parish, Chad M. Wang, Kun Doerner, Russel P. Baldwin, Matthew J. TI Grain orientations and grain boundaries in tungsten nonotendril fuzz grown under divertor-like conditions SO SCRIPTA MATERIALIA LA English DT Article DE Transmission Kikuchi diffraction; Plasma simulation; Fusion energy; Fusion; Tungsten ID SCANNING-ELECTRON-MICROSCOPE; TRANSMISSION EBSD; HELIUM PLASMA; DIFFRACTION AB We grew nanotendril "fuzz" on tungsten via plasma exposure and performed transmission Kikuchi diffraction (tKD) in scanning electron microscopy of isolated nanotendrils. 900 degrees C, 10(23) He/m(2)sec, 4 x 10(26) He/m(2) exposure of tungsten produced a deep and fully developed nanotendril mat. tKD of isolated nanotendrils indicated that there was no preferred crystallographic direction oriented along the long axes of the tendrils, and the grain boundary character showed slightly preferential orientations. Tendril growth is sufficiently non-equilibrium to prevent any preference of growth direction to manifest measurably, and that new high-angle boundaries (with new grains and grain-growth axes) nucleate randomly along the tendrils during growth. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Parish, Chad M.; Wang, Kun] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Doerner, Russel P.; Baldwin, Matthew J.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Parish, CM (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM parishcm@ornl.gov RI Parish, Chad/J-8381-2013; Wang, Kun/E-2349-2017 OI Wang, Kun/0000-0002-0704-5370 FU Early Career Award, US Department of Energy, Office of Science, Fusion Energy Sciences [DE-AC05-00OR22725]; [DE-FG02-07ER54912] FX CMP and KW supported by an Early Career Award, US Department of Energy, Office of Science, Fusion Energy Sciences under contract number DE-AC05-00OR22725. RPD and MJB supported by DE-FG02-07ER54912. We thank Prof B. Wirth, Dr. X. Hu., and Dr. D. Leonard for constructive criticism and discussions. NR 32 TC 3 Z9 3 U1 9 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JAN 15 PY 2017 VL 127 BP 132 EP 135 DI 10.1016/j.scriptamat.2016.09.018 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA EA2FB UT WOS:000386407100030 ER PT J AU Bank, RE Vassilevski, PS Zikatanov, LT AF Bank, Randolph E. Vassilevski, Panayot S. Zikatanov, Ludmil T. TI Arbitrary dimension convection-diffusion schemes for space-time discretizations SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article DE Space-time formulation; Convection-diffusion problems; Finite-element method; Exponential fitting; Streamline-diffusion ID ELEMENT EXTERIOR CALCULUS; MIXED FINITE-ELEMENTS; EQUATIONS AB This note proposes embedding a time dependent PDE into a convection-diffusion type PDE (in one space dimension higher) with singularity, for which two discretization schemes, the classical streamline-diffusion and the EAFE (edge average finite element) one, are investigated in terms of stability and error analysis. The EAFE scheme, in particular, is extended to be arbitrary order which is of interest on its own. Numerical results, in combined space-time domain demonstrate the feasibility of the proposed approach. (C) 2016 Elsevier B.V. All rights reserved. C1 [Bank, Randolph E.] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA. [Vassilevski, Panayot S.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, POB 808,Mail Stop L-561, Livermore, CA 94551 USA. [Zikatanov, Ludmil T.] Penn State Univ, Dept Math, University Pk, PA 16802 USA. [Zikatanov, Ludmil T.] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria. RP Vassilevski, PS (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, POB 808,Mail Stop L-561, Livermore, CA 94551 USA. EM rbank@ucsd.edu; panayot@llnl.gov; ludmil@psu.edu OI Zikatanov, Ludmil/0000-0002-5189-4230 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation [DMS-1318480, DMS-1418843, DMS-1522615] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The work of the first author was supported in part by the National Science Foundation under contract DMS-1318480 and the work of the third author was supported in part by the National Science Foundation under contracts DMS-1418843 and DMS-1522615. NR 24 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 EI 1879-1778 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD JAN 15 PY 2017 VL 310 BP 19 EP 31 DI 10.1016/j.cam.2016.04.029 PG 13 WC Mathematics, Applied SC Mathematics GA DY0IL UT WOS:000384780400003 ER PT J AU Dharuman, G Stanton, LG Glosli, JN Murillo, MS AF Dharuman, Gautham Stanton, Liam G. Glosli, James N. Murillo, Michael S. TI A generalized Ewald decomposition for screened Coulomb interactions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; PERIODIC BOUNDARY-CONDITIONS; COUPLED YUKAWA SYSTEMS; PARTICLE MESH EWALD; MULTIPOLE METHOD; LIQUID-METALS; SUMMATION; SUMS; POTENTIALS; MATTER AB Medium-range interactions occur in a wide range of systems, including charged-particle systems with varying screening lengths. We generalize the Ewald method to charged systems described by interactions involving an arbitrary dielectric response function epsilon(k). We provide an error estimate and optimize the generalization to find the break-even parameters that separate a neighbor list-only algorithm from the particle-particle particle-mesh algorithm. We examine the implications of different choices of the screening length for the computational cost of computing the dynamic structure factor. We then use our new method in molecular dynamics simulations to compute the dynamic structure factor for a model plasma system and examine the wave-dispersion properties of this system. Published by AIP Publishing. C1 [Dharuman, Gautham] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. [Stanton, Liam G.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Glosli, James N.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Murillo, Michael S.] New Mexico Consortium, Los Alamos, NM 87544 USA. [Murillo, Michael S.] Michigan State Univ, Computat Math Sci & Engn Dept, E Lansing, MI 48824 USA. RP Dharuman, G (reprint author), Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. EM dharuman@msu.edu; murillom@msu.edu FU Air Force Office of Scientific Research [FA9550-12-1-0344]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We would like to thank John Verboncoeur of Michigan State University for his support and useful discussions. The work of Dharuman and Murillowas supported by the Air Force Office of Scientific Research (Grant No. FA9550-12-1-0344); Stanton and Glosli were supported under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory Contract No. DE-AC52-07NA27344. NR 52 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 14 PY 2017 VL 146 IS 2 AR 024112 DI 10.1063/1.4973842 PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EK5PN UT WOS:000393978400012 PM 28088145 ER PT J AU Kirkegaard, MC Langford, J Steill, J Anderson, B Miskowiec, A AF Kirkegaard, M. C. Langford, J. Steill, J. Anderson, B. Miskowiec, A. TI Vibrational properties of anhydrous and partially hydrated uranyl fluoride SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL INVESTIGATIONS; INCOHERENT NEUTRON-SCATTERING; AUGMENTED-WAVE METHOD; AB-INITIO; ELECTRONIC-STRUCTURE; STRUCTURAL STABILITY; CRYSTAL-STRUCTURE; WATER-MOLECULES; RAMAN-SPECTRUM; HYDROGEN-BOND AB Uranyl fluoride (UO2F2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R (3) over barm symmetry. The formally closed-shell electron structure of anhydrous UO2F2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically averaged Hubbard + U correction on vibrational frequencies, electronic structure, and geometry of anhydrous UO2F2. A particular choice of U-eff = 5.5 eV yields the correct U-Oyl bond distance and vibrational frequencies for the characteristic E-g and A(1g) modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO2F2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm(-1) lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion-hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 degrees C using temperature-dependent Raman scattering. Published by AIP Publishing. C1 [Kirkegaard, M. C.] Univ Tennessee, Knoxville, TN 37996 USA. [Kirkegaard, M. C.; Langford, J.; Steill, J.; Anderson, B.; Miskowiec, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Miskowiec, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM miskowiecaj@ornl.gov OI Miskowiec, Andrew/0000-0002-0361-2614 FU U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Homeland Security [2012-DN-130-NF0001]; Department of Energy FX This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledge that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doepublic-access-plan). This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award No. 2012-DN-130-NF0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official NR 73 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 14 PY 2017 VL 146 IS 2 AR 024502 DI 10.1063/1.4973430 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EK5PN UT WOS:000393978400020 PM 28088154 ER PT J AU Deng, J Du, ZX Benedetti, LR Lee, KKM AF Deng, Jie Du, Zhixue Benedetti, Laura Robin Lee, Kanani K. M. TI The influence of wavelength-dependent absorption and temperature gradients on temperature determination in laser-heated diamond-anvil cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID REDUCED RADIATIVE CONDUCTIVITY; CORE-MANTLE BOUNDARY; HIGH-PRESSURE; OPTICAL-ABSORPTION; IRON; EMISSIVITY; (MG,FE)O; DESIGN; SYSTEM AB In situ temperature measurements in laser-heated diamond-anvil cells (LHDACs) are among the most fundamental experiments undertaken in high-pressure science. Despite its importance, few efforts have been made to examine the alteration of thermal radiation spectra of hot samples by wavelength-dependent absorption of the sample itself and temperature gradients within the sample and their influence on temperature measurements while laser heating. In this study, we take (Mg, Fe)O ferropericlase as an example to evaluate the effects of these two factors. Iron-rich ferropericlase shows strong wavelength-dependent absorption in the wavelength range used to determine temperature, which, together with temperature gradients can account for largely aliased apparent temperatures in some experiments obtained by Wien fitting of detected thermal radiation intensities (e.g., an offset of similar to 700K for a 3300K melting temperature). In general, wavelength-dependent absorption and temperature gradients of samples are two key factors to consider in order to rigorously constrain temperatures, which have been largely ignored in previous LHDAC studies. Published by AIP Publishing. C1 [Deng, Jie; Lee, Kanani K. M.] Yale Univ, Dept Geol & Geophys, POB 6666, New Haven, CT 06520 USA. [Du, Zhixue] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Benedetti, Laura Robin] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Deng, J (reprint author), Yale Univ, Dept Geol & Geophys, POB 6666, New Haven, CT 06520 USA. OI Lee, Kanani/0000-0003-3003-4802 FU NSF [EAR-1321956, EAR-1551348]; YINQE; NSF MRSEC [DMR 1119826]; Center for Functional Nanomaterials, Brookhaven National Laboratory; U.S. Department of Energy, Office of Basic Energy Sciences; [DE-AC52-07NA27344]; [LLNL-JRNL-706083] FX We would like to thank Ronald Smith, Yohsinori Miyazaki, Sergey Lobanov, and Alexander Goncharov for helpful discussions. We are grateful to two anonymous reviewers for very useful comments and suggestions that improved the paper. Z. Du thanks Carnegie Postdoctoral Fellowship for financial support. This work was supported by NSF (EAR-1321956, EAR-1551348). FIB use was supported by YINQE and NSF MRSEC DMR 1119826 and by the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences. Prepared by LLNL under Contract Nos. DE-AC52-07NA27344 and LLNL-JRNL-706083. NR 38 TC 0 Z9 0 U1 9 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 14 PY 2017 VL 121 IS 2 AR 025901 DI 10.1063/1.4973344 PG 11 WC Physics, Applied SC Physics GA EI9PG UT WOS:000392840000056 ER PT J AU Ogoke, O Wu, G Wang, XL Casimir, A Ma, L Wu, TP Lu, J AF Ogoke, Ogechi Wu, Gang Wang, Xianliang Casimir, Anix Ma, Lu Wu, Tianpin Lu, Jun TI Effective strategies for stabilizing sulfur for advanced lithium-sulfur batteries SO JOURNAL OF MATERIALS CHEMISTRY A LA English DT Review ID LI-S BATTERIES; LONG CYCLE LIFE; METAL-ORGANIC FRAMEWORKS; RECHARGEABLE LITHIUM; OXYGEN-REDUCTION; POROUS CARBON; MESOPOROUS CARBON; ION BATTERIES; CATHODE MATERIALS; ELEMENTAL-SULFUR AB The lithium-ion battery, with a relatively small energy density of similar to 250 W h kg(-1), has dominantly powered many devices requiring small energy demands. However, there remains a need for a cheaper and smaller type of battery with higher energy density for energy-intensive storage purposes in the automotive, aircraft, and household energy sectors. With its higher specific capacity (1675 mA h g(-1)) and lower costs, the lithium-sulfur (Li-S) battery represents the most promising next generation battery. The main focus of scientific inquiry surrounding Li-S batteries lies at the cathode, where sulfur chemically bonds to lithium. Current challenges pertaining to the high performance cathode such as the dissolution of sulfur into the electrolyte and electrode volume changes are highlighted. This review focuses on recent developments in the last three years of various sulfur integration methods at the cathode that result in improved electrochemical performance, increased energy density, cyclic stability, and a higher capacity over the mainstream lithium-ion battery. In particular, the most recent approaches were systematically examined and compared including the use of carbon and non-carbon composites to stabilize sulfur. Ideal material hosts for sulfur atoms in the cathode for outstanding Li-S batteries were outlined and thoroughly discussed. Critical understanding and relevant knowledge were summarized aiming to provide general guidance for rational design of high-performance cathodes for advanced Li-S batteries. C1 [Ogoke, Ogechi; Wu, Gang; Wang, Xianliang; Casimir, Anix] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA. [Ma, Lu; Wu, Tianpin] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Wu, G (reprint author), SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA.; Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gangwu@buffalo.edu; junlu@anl.gov RI Wu, Gang/E-8536-2010 OI Wu, Gang/0000-0003-4956-5208 FU University at Buffalo; National Science Foundation [CBET-1511528]; US Department of Energy under the Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) [DE-AC0206CH11357] FX G. Wu acknowledges the financial support from the start-up funds of University at Buffalo along with the National Science Foundation (CBET-1511528). This work was also partially supported by the US Department of Energy under Contract DE-AC0206CH11357 from the Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE). We are grateful to Mr Matthew Smith from University at Buffalo for editing the text. NR 125 TC 0 Z9 0 U1 195 U2 195 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7488 EI 2050-7496 J9 J MATER CHEM A JI J. Mater. Chem. A PD JAN 14 PY 2017 VL 5 IS 2 BP 448 EP 469 DI 10.1039/c6ta07864h PG 22 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Energy & Fuels; Materials Science GA EI3TF UT WOS:000392413600001 ER PT J AU Dulieu, O Alnaser, A Colgan, J Grant, E Krishnakumar, E Osterwalder, A Sadeghpour, H Vrakking, M Wu, J AF Dulieu, Olivier Alnaser, Ali Colgan, James Grant, Ed Krishnakumar, E. Osterwalder, Andreas Sadeghpour, Hossein Vrakking, Marc Wu, Jian TI Call for papers: Roll over hydrogen: a fundamental system in all states SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Editorial Material C1 [Dulieu, Olivier] Univ Paris Sud, ENS Cachan, CNRS, Lab Aime Cotton, Paris, France. [Alnaser, Ali] Amer Univ Sharjah, Sharjah, U Arab Emirates. [Colgan, James] Los Alamos Natl Lab, Los Alamos, NM USA. [Grant, Ed] Univ British Columbia, Vancouver, BC, Canada. [Krishnakumar, E.] Tata Inst Fundamental Res, Bombay, Maharashtra, India. Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Sadeghpour, Hossein] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Vrakking, Marc] Max Born Inst, Berlin, Germany. [Wu, Jian] East China Normal Univ, Shanghai, Peoples R China. RP Dulieu, O (reprint author), Univ Paris Sud, ENS Cachan, CNRS, Lab Aime Cotton, Paris, France. NR 0 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JAN 14 PY 2017 VL 50 IS 1 AR 010201 DI 10.1088/1361-6455/50/1/010201 PG 2 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA EF5HH UT WOS:000390360800001 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska-Blenessy, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Billoud, TRV Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, B Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Callea, G Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cueto, A Donszelmann, TC Cummings, J Curatolo, M Cuth, J Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K De Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duffield, EM Duflot, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gasnikova, K Gatti, C Gaudiello, A Gaudio, G Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Hadef, A Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, D Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, S Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Javurkova, M Jeanneau, F Jeanty, L Jeng, GY Jennens, D Jenni, P Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kaji, T Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kilby, CR Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kohler, NM Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Kneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLLR La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lanfermann, MC Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, B Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, EM Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, S Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, J Martinez, VS Pineda, AS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Savic, N Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Stark, SH Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, M Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D TenKate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tu, Y Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Graaf, H van Eldik, N Van Gemmeren, P Van Nieuwkoop, J Van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veeraraghavan, V Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolf, TMH Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M-S Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska-Blenessy, Z. Baroncelli, A. Barone, G. Barr, A. J. Navarro, L. Barranco Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Billoud, T. R. V. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, Bh Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buscher, D. Buscher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Callea, G. Caloba, L. P. Lopez, S. Calvente Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Alberich, L. Cerda Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cueto, A. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duffield, E. M. Duflot, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gasnikova, K. Gatti, C. Gaudiello, A. Gaudio, G. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. de la Hoz, S. Gonzlez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Hadef, A. Haefner, P. Hagebock, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, D. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Jimenez, Y. Hernandez Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, S. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Javurkova, M. Jeanneau, F. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kaji, T. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kilby, C. R. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kohler, N. M. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Kneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lanfermann, M. C. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, B. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. M. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Losel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Monig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, S. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Seabra, L. F. Oleiro Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero Y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Rodriguez, L. Pacheco Aranda, C. Padilla Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. St Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Perez, A. Rodriguez Rodriguez, D. Rodriguez Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, J. Martinez, V. Sanchez Pineda, A. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Savic, N. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Stark, S. H. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, M. Tanaka, R. Tanaka, S. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. TenKate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tu, Y. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Ferrer, J. A. Valls Van den Wollenberg, W. Van der Deijl, P. C. van der Graaf, H. van Eldik, N. Van Gemmeren, P. Van Nieuwkoop, J. Van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veeraraghavan, V. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolf, T. M. H. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zwalinski, L. CA ATLAS Collaboration TI A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID HEAVY-ION COLLISIONS; PARTON DISTRIBUTIONS; TRANSVERSE FLOW; NUCLEUS; MODEL AB A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb(-1) of proton-proton collision data at root s = 7 TeV from 2010 and 0.1 nb(-1) of data at root s = 8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of GEANT4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska-Blenessy, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska-Blenessy, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; Van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veeraraghavan, V.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Gkialas, I.; Ioannou, P.; Kourkoumelis, C.; Papageorgiou, K.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; St Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rizzi, C.; Perez, A. Rodriguez; Sorin, V.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Aloisio, A.; Andari, N.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] INFN, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Annovi, A.; Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Caudron, J.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Haefner, P.; Hagebock, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kroseberg, J.; Kruger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Dhaliwal, S.; Goblirsch-Kolb, M.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.; Peralva, B. S.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Sola, J. D. Bossio; Marceca, G.; Otero Y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, Bh; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backhaus, M.; Barak, L.; Barisits, M-S; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Cortes-Gonzalez, A.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helary, L.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Morgenstern, S.; Mornacchi, G.; Nairz, A. M.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; TenKate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Araya, S. Tapia; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Clermont Auvergne, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, CNRS, IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Stark, S. H.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Frascati, Italy. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Dept Phys, Dallas, TX USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Gossling, C.; Homann, M.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mijovic, L.; Mills, C.; Pino, S. A. Olivares; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] INFN, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buscher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Javurkova, M.; Jenni, P.; Kiss, F.; Kneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruhr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lanfermann, M. C.; Lionti, A. E.; March, L.; Mermod, P.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Wu, X.] Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] INFN, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.; Tu, Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN USA. [Guenther, J.; Iwanski, W.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Turchikhin, S.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] INFN, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Expt Particle Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Dept Phys, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Kilby, C. R.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Grout, Z. J.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Lopez, S. Calvente; Cueto, A.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buscher, V.; Caputo, R.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Kopke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schafer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Lefebvre, B.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] INFN, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Perini, L.; Ragusa, F.; Ratti, M. G.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Byelorussian State Univ, Res Inst Nucl Problems, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Billoud, T. R. V.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Knue, A.; Kohler, N. M.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Savic, N.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kawade, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kawade, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez; Sekhniaidze, G.] INFN, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Pineda, A. Sanchez] Univ Napoli, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; Van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; Van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, SB, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Dattagupta, A.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, Univ Paris Sud, LAL, CNRS,IN2P3, Orsay, France. [Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Radescu, V.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] INFN, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Seabra, L. F. Oleiro; Onofre, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Pedro, R.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy Phys Protvino, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] INFN, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cerrito, L.; Di Ciaccio, A.; Liberti, B.; Salamon, A.; Santonico, R.] INFN, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cerrito, L.; Di Ciaccio, A.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] INFN, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Res Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Tayalati, Y.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA USA. [Du, Y.; Feng, C.; Ma, L. L.; Ma, Y.; Wang, C.; Zaidan, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Minist Educ, Dept Phys & Astron,Key Lab Particle Phys Astrophy, Shanghai, Peoples R China. [Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] PKU CHEP, Shanghai, Peoples R China. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bendtz, K.; Bertoli, G.; Bruncko, D.; Jon-And, K.; Kladiva, E.; Lundberg, O.; Strandberg, S.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Backes, M.; Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Backes, M.; Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkaitatzis, S.; Iliadis, D.; Kimura, N.; Kordas, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hayakawa, D.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Tanaka, M.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Vaniachine, A.] Tomsk State Univ, Tomsk, Russia. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Iuppa, R.] INFN TIFPA, Trento, Italy. [Iuppa, R.] Univ Trento, Trento, Italy. [Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzlez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Kaji, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI USA. [Aloisio, A.; Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Strohmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Mattig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgrp Phys, Fak Math & Nat Wissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bassalat, A.] An Najah Natl Univ, Dept Phys, Nablus, Palestine. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Chen, X.] CICQM, Beijing, Peoples R China. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Toronto, ON, Canada. [Ducu, O. A.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Geng, C.; Guo, Y.; Li, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Govender, N.] Ctr High Performance Comp, Rosebank, CSIR Campus, Cape Town, South Africa. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. [Igonkina, O.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nikhef, Nijmegen, Netherlands. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Melini, D.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Melini, D.] Univ Granada, CAFPE, Granada, Spain. [Moss, J.] Calif State Univ Sacramento, Dept Phys, Sacramento, CA 95819 USA. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Dept Phys Nucleaire & Corpusculaire, Geneva, Switzerland. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Piacquadio, G.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Piacquadio, G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Pinamonti, M.] SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC USA. [Rodina, Y.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Shi, L.] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, INRNE, Sofia, Bulgaria. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Song, H. Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Wang, C.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Wang, C.; Zhang, R.] CNRS, IN2P3, Marseille, France. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. [Zhao, Y.] Univ Paris Saclay, Univ Paris Sud, LAL, CNRS,IN2P3, Orsay, France. RP Aaboud, M (reprint author), Univ Mohamed Premier, Fac Sci, Oujda, Morocco.; Aaboud, M (reprint author), LPTPM, Oujda, Morocco. RI Warburton, Andreas/N-8028-2013; Livan, Michele/D-7531-2012; Gladilin, Leonid/B-5226-2011; Vanyashin, Aleksandr/H-7796-2013; Mitsou, Vasiliki/D-1967-2009; Camarri, Paolo/M-7979-2015; Carvalho, Joao/M-4060-2013; Tikhomirov, Vladimir/M-6194-2015; Sezgin, Berk/C-1112-2015; Prokoshin, Fedor/E-2795-2012; OI Warburton, Andreas/0000-0002-2298-7315; Livan, Michele/0000-0002-5877-0062; Gladilin, Leonid/0000-0001-9422-8636; Vanyashin, Aleksandr/0000-0002-0367-5666; Mitsou, Vasiliki/0000-0002-1533-8886; Camarri, Paolo/0000-0002-5732-5645; Carvalho, Joao/0000-0002-3015-7821; Tikhomirov, Vladimir/0000-0002-9634-0581; Prokoshin, Fedor/0000-0001-6389-5399; Muenstermann, Daniel/0000-0001-6223-2497; Bertram, Iain/0000-0003-4073-4941 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Spain; Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [41]. NR 41 TC 0 Z9 0 U1 11 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN 13 PY 2017 VL 77 IS 1 AR 26 DI 10.1140/epjc/s10052-016-4580-0 PG 47 WC Physics, Particles & Fields SC Physics GA EI2RN UT WOS:000392335600003 PM 28260979 ER PT J AU Hoss, A Basler, C Stevenson, L Gambino-Shirley, K Robyn, MP Nichols, M AF Hoss, Aila Basler, Colin Stevenson, Lauren Gambino-Shirley, Kelly Robyn, Misha Park Nichols, Megin TI State Laws Requiring Hand Sanitation Stations at Animal Contact Exhibits - United States, March-April 2016 SO MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT LA English DT Article ID INFECTIONS; OUTBREAK; COUNTY C1 [Hoss, Aila] CDC, Publ Hlth Law Program, Off State Tribal Local & Terr Support, Atlanta, GA 30333 USA. [Basler, Colin; Stevenson, Lauren; Gambino-Shirley, Kelly; Robyn, Misha Park; Nichols, Megin] CDC, Outbreak Response & Prevent Branch, Div Foodborne Waterborne & Environm Dis, Natl Ctr Emerging & Zoonot Infect Dis, Atlanta, GA 30333 USA. [Stevenson, Lauren] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Gambino-Shirley, Kelly] CDC, Epidem Intelligence Serv, Atlanta, GA 30333 USA. [Robyn, Misha Park] CDC, Prevent Med Residency & Fellowship, Atlanta, GA 30333 USA. RP Hoss, A (reprint author), CDC, Publ Hlth Law Program, Off State Tribal Local & Terr Support, Atlanta, GA 30333 USA. EM ahoss@cdc.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU CENTERS DISEASE CONTROL PI ATLANTA PA 1600 CLIFTON RD, ATLANTA, GA 30333 USA SN 0149-2195 EI 1545-861X J9 MMWR-MORBID MORTAL W JI MMWR-Morb. Mortal. Wkly. Rep. PD JAN 13 PY 2017 VL 66 IS 1 BP 16 EP 18 PG 3 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA EI2YO UT WOS:000392356300003 PM 28081063 ER PT J AU Morgan, B Dadmun, MD AF Morgan, Brian Dadmun, Mark D. TI Illumination alters the structure of gels formed from the model optoelectronic material P3HT SO POLYMER LA English DT Article DE Optically active conjugated polymers; Polymer gels; Neutron scattering ID CONJUGATED POLYMERS; THIN-FILMS; CHARGE-TRANSPORT; MORPHOLOGY CONTROL; ENERGY-TRANSFER; POLY(3-HEXYLTHIOPHENE); PERFORMANCE; GELATION; MECHANISM; LIGHT AB Studying the gelation process of conjugated optoelectronic polymers has often been employed as a means of better understanding the final morphology and assembly in active layers of organic electronic devices due to the correlation between the experimentally observed sol-gel transition and many common solution based fabrication techniques. The nature of the percolated network structures formed through the molecular assembly that occurs during this gelation directly affects device performance in conjugated polymer based active layers. Thus, precise knowledge of the evolution of structures during gelation provides crucial information that is needed to rationally improve device performance by directing the assembly during processing. Additionally, observing the effects of environmental factors such as ambient light exposure upon the gelation process will direct efforts towards improving universally overlooked facets of the typical fabrication procedure. Thus, we have conducted a series of ultra small angle and small angle neutron scattering experiments to probe the temperature-driven gelation process of the conjugated photoactive polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) in both the presence and absence of white light. Analysis of the resultant scattering data shows that the gelation process consists of the creation and steady growth of cylindrical aggregates formed by the agglomeration of free chain P3HT. Furthermore, clear differences in the gel structure and assembly between illuminated and non-illuminated gels are observed across multiple length scales, pointing towards an optically induced variation in the gelation process. Our results indicate that simple white light exposure sharply retards the growth of conjugated polymer microstructures, which clearly suggests that ignoring illumination conditions throughout organic electronic fabrication processes risks producing inconsistent and non-reproducible active layer architectures and ultimately endangers dependable device performance. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Morgan, Brian; Dadmun, Mark D.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Dadmun, Mark D.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dadmun, MD (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM Dad@utk.edu OI Dadmun, Mark/0000-0003-4304-6087 FU National Science Foundation [DMR-1409034, DMR-0944772]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The authors gratefully acknowledge the National Science Foundation (DMR-1409034) for support of this project. We also acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the USANS facilities used in this work, where these facilities are supported in part by the National Science Foundation under Agreement No. DMR-0944772. The SANS experiments of this research was completed at ORNL's High Flux Isotope Reactor, which was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 33 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD JAN 13 PY 2017 VL 108 BP 313 EP 321 DI 10.1016/j.polymer.2016.11.056 PG 9 WC Polymer Science SC Polymer Science GA EI2YU UT WOS:000392356900035 ER PT J AU Strand, DD Livingston, AK Satoh-Cruz, M Koepke, T Enlow, HM Fisher, N Froehlich, JE Cruz, JA Minhas, D Hixson, KK Kohzuma, K Lipton, M Dhingra, A Kramer, DM AF Strand, Deserah D. Livingston, Aaron K. Satoh-Cruz, Mio Koepke, Tyson Enlow, Heather M. Fisher, Nicholas Froehlich, John E. Cruz, Jeffrey A. Minhas, Deepika Hixson, Kim K. Kohzuma, Kaori Lipton, Mary Dhingra, Amit Kramer, David M. TI Defects in the Expression of Chloroplast Proteins Leads to H2O2 Accumulation and Activation of Cyclic Electron Flow around Photosystem I SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE photosynthesis; cyclic electron flow around photosystem I; hydrogen peroxide (H2O2); Arabidopsis; chloroplast translation ID CYTOCHROME BF COMPLEX; PLASTID NDH GENES; CHLOROPHYLL FLUORESCENCE; CHLAMYDOMONAS-REINHARDTII; ARABIDOPSIS-THALIANA; LIGHT REACTIONS; QUANTUM YIELD; C3 PLANTS; PHOTOSYNTHESIS; REDOX AB We describe a new member of the class of mutants in Arabidopsis exhibiting high rates of cyclic electron flow around photosystem I (CEF), a light-driven process that produces ATP but not NADPH. High cyclic electron flow 2 (hcef2) shows strongly increased CEF activity through the NADPH dehydrogenase complex (NDH), accompanied by increases in thylakoid proton motive force (pmf), activation of the photoprotective q(E) response, and the accumulation of H2O2. Surprisingly, hcef2 was mapped to a non-sense mutation in the TADA1 (tRNA adenosine deaminase arginine) locus, coding for a plastid targeted tRNA editing enzyme required for efficient codon recognition. Comparison of protein content from representative thylakoid complexes, the cytochrome bf complex, and the ATP synthase, suggests that inefficient translation of hcef2 leads to compromised complex assembly or stability leading to alterations in stoichiometries of major thylakoid complexes as well as their constituent subunits. Altered subunit stoichiometries for photosystem I, ratios and properties of cytochrome bf hemes, and the decay kinetics of the flash-induced thylakoid electric field suggest that these defect lead to accumulation of H2O2 in hcef2, which we have previously shown leads to activation of NDH-related CEF. We observed similar increases in CEF, as well as increases in H2O2 accumulation, in other translation defective mutants. This suggests that loss of coordination in plastid protein levels lead to imbalances in photosynthetic energy balance that leads to an increase in CEF. These results taken together with a large body of previous observations, support a general model in which processes that lead to imbalances in chloroplast energetics result in the production of H2O2, which in turn activates CEF. This activation could be from either H2O2 acting as a redox signal, or by a secondary effect from H2O2 inducing a deficit in ATP. C1 [Strand, Deserah D.; Kramer, David M.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Strand, Deserah D.; Satoh-Cruz, Mio; Fisher, Nicholas; Froehlich, John E.; Cruz, Jeffrey A.; Kohzuma, Kaori; Kramer, David M.] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. [Livingston, Aaron K.; Enlow, Heather M.; Hixson, Kim K.] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA. [Koepke, Tyson; Minhas, Deepika; Dhingra, Amit] Washington State Univ, Dept Hort, Pullman, WA 99164 USA. [Froehlich, John E.; Kramer, David M.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Hixson, Kim K.; Lipton, Mary] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Strand, Deserah D.] Max Planck Inst Mol Pflanzenphysiol, Potsdam, Germany. [Livingston, Aaron K.] Portland Community Coll, Dept Biol, Portland, OR USA. RP Kramer, DM (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA.; Kramer, DM (reprint author), Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA.; Kramer, DM (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM kramerd8@msu.edu FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DE-FG02-11ER16220]; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences [BES DE-FG02-91ER20021]; MSU Center for Advanced Algal and Plant Phenotyping (CAAPP) FX Experiments performed at MSU and WSU were funded by Grant DE-FG02-11ER16220 from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (to DK), with support for the development and use of phenotyping tools from U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES DE-FG02-91ER20021) and the MSU Center for Advanced Algal and Plant Phenotyping (CAAPP). A portion of this work was performed in the Environmental Molecular Science Laboratory, a U.S. Department of Energy national scientific user facility at Pacific Northwest National Laboratory (PNNL) in Richland, WA. NR 69 TC 0 Z9 0 U1 20 U2 20 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD JAN 13 PY 2017 VL 7 AR 2073 DI 10.3389/fpls.2016.02073 PG 16 WC Plant Sciences SC Plant Sciences GA EH6JJ UT WOS:000391878900001 ER PT J AU Jiang, J Liu, ZK Sun, Y Yang, HF Rajamathi, CR Qi, YP Yang, LX Chen, C Peng, H Hwang, CC Sun, SZ Mo, SK Vobornik, I Fujii, J Parkin, SSP Felser, C Yan, BH Chen, YL AF Jiang, J. Liu, Z. K. Sun, Y. Yang, H. F. Rajamathi, C. R. Qi, Y. P. Yang, L. X. Chen, C. Peng, H. Hwang, C. -C. Sun, S. Z. Mo, S. -K. Vobornik, I. Fujii, J. Parkin, S. S. P. Felser, C. Yan, B. H. Chen, Y. L. TI Signature of type-II Weyl semimetal phase in MoTe2 SO NATURE COMMUNICATIONS LA English DT Article ID TOPOLOGICAL FERMI ARCS; MAGNETORESISTANCE; DISCOVERY; STATE; TAAS AB Topological Weyl semimetal (TWS), a new state of quantum matter, has sparked enormous research interest recently. Possessing unique Weyl fermions in the bulk and Fermi arcs on the surface, TWSs offer a rare platform for realizing many exotic physical phenomena. TWSs can be classified into type-I that respect Lorentz symmetry and type-II that do not. Here, we directly visualize the electronic structure of MoTe2, a recently proposed type-II TWS. Using angle-resolved photoemission spectroscopy (ARPES), we unravel the unique surface Fermi arcs, in good agreement with our ab initio calculations that have nontrivial topological nature. Our work not only leads to new understandings of the unusual properties discovered in this family of compounds, but also allows for the further exploration of exotic properties and practical applications of type-II TWSs, as well as the interplay between superconductivity (MoTe2 was discovered to be superconducting recently) and their topological order. C1 [Jiang, J.; Liu, Z. K.; Chen, Y. L.] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201203, Peoples R China. [Jiang, J.; Liu, Z. K.; Chen, Y. L.] CAS Shanghai Sci Res Ctr, Shanghai 201203, Peoples R China. [Jiang, J.; Yang, H. F.; Chen, C.; Peng, H.; Chen, Y. L.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. [Jiang, J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Jiang, J.; Hwang, C. -C.] POSTECH, Pohang Accelerator Lab, Pohang 790784, South Korea. [Sun, Y.; Rajamathi, C. R.; Qi, Y. P.; Felser, C.; Yan, B. H.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Yang, H. F.] Chinese Acad Sci, SIMIT, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Yang, L. X.; Chen, Y. L.] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Yang, L. X.; Chen, Y. L.] Tsinghua Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. [Sun, S. Z.; Chen, Y. L.] Univ Sci & Technol China, CAS, Hefei Sci Ctr, Hefei 200026, Peoples R China. [Sun, S. Z.; Chen, Y. L.] Univ Sci & Technol China, SCGY, Hefei 200026, Peoples R China. [Vobornik, I.; Fujii, J.] CNR, Lab TASC, IOM, I-34149 Trieste, Italy. [Parkin, S. S. P.] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany. RP Chen, YL (reprint author), ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201203, Peoples R China.; Chen, YL (reprint author), CAS Shanghai Sci Res Ctr, Shanghai 201203, Peoples R China.; Chen, YL (reprint author), Univ Oxford, Dept Phys, Oxford OX1 3PU, England.; Chen, YL (reprint author), Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China.; Chen, YL (reprint author), Tsinghua Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China.; Chen, YL (reprint author), Univ Sci & Technol China, CAS, Hefei Sci Ctr, Hefei 200026, Peoples R China.; Chen, YL (reprint author), Univ Sci & Technol China, SCGY, Hefei 200026, Peoples R China. EM yulin.chen@physics.ox.ac.uk RI Felser, Claudia/A-5779-2009; Rajamathi, Catherine/K-3121-2016; Mo, Sung-Kwan/F-3489-2013 OI Felser, Claudia/0000-0002-8200-2063; Mo, Sung-Kwan/0000-0003-0711-8514 FU CAS-Shanghai Science Research Center [CAS-SSRC-YH-2015-01]; EPSRC Platform Grant [EP/M020517/1]; Hefei Science Center CAS [2015HSC-UE013]; ERC Advanced Grant [291472 'Idea Heusler']; Office of Basic Energy Science of US DOE [DE-AC02-05CH11231]; NRF, Korea through SRC Center for Topological Matter [2011-0030787] FX This work is supported by grant from CAS-Shanghai Science Research Center, Grant No: CAS-SSRC-YH-2015-01. This work has been partly performed in the framework of the nanoscience foundry and fine analysis (NFFA-MIUR Italy) project. Y.L.C. acknowledges the support of the EPSRC Platform Grant (Grant No EP/M020517/1) and Hefei Science Center CAS (2015HSC-UE013). C.F. acknowledges the financial support by the ERC Advanced Grant (No 291472 'Idea Heusler'). Advanced Light Source is operated by Office of Basic Energy Science of US DOE (contract DE-AC02-05CH11231). C.-C.H. and J.J. acknowledge the support of the NRF, Korea through the SRC Center for Topological Matter (No 2011-0030787). NR 38 TC 2 Z9 2 U1 65 U2 65 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN 13 PY 2017 VL 8 AR 13973 DI 10.1038/ncomms13973 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH7JY UT WOS:000391950300001 PM 28082746 ER PT J AU Montoya, SA Couture, S Chess, JJ Lee, JCT Kent, N Henze, D Sinha, SK Im, MY Kevan, SD Fischer, P McMorran, BJ Lomakin, V Roy, S Fullerton, EE AF Montoya, S. A. Couture, S. Chess, J. J. Lee, J. C. T. Kent, N. Henze, D. Sinha, S. K. Im, M. -Y. Kevan, S. D. Fischer, P. McMorran, B. J. Lomakin, V. Roy, S. Fullerton, E. E. TI Tailoring magnetic energies to form dipole skyrmions and skyrmion lattices SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILMS; WEAK FERROMAGNETISM; DOMAIN-STRUCTURES; STRIPE DOMAINS; ANISOTROPY; MULTILAYERS; EVOLUTION; PLATELETS; GD/(FECO); DYNAMICS AB The interesting physics and potential memory technologies resulting from topologically protected spin textures such as skyrmions have prompted efforts to discover new material systems that can host these kinds of magnetic structures. Here, we use the highly tunable magnetic properties of amorphous Fe/Gd multilayer films to explore the magnetic properties that lead to dipole-stabilized skyrmions and skyrmion lattices that form from the competition of dipolar field and exchange energy. Using both real space imaging and reciprocal space scattering techniques, we determined the range of material properties and magnetic fields where skyrmions form. Micromagnetic modeling closely matches our observation of small skyrmion features (similar to 50 to 70 nm) and suggests that these classes of skyrmions have a rich domain structure that is Bloch-like in the center of the film and more Neel-like towards each surface. Our results provide a pathway to engineer the formation and controllability of dipole skyrmion phases in a thin film geometry at different temperatures and magnetic fields. C1 [Montoya, S. A.; Couture, S.; Lomakin, V.; Fullerton, E. E.] Univ Calif San Diego, Ctr Memory & Recording Res, La Jolla, CA 92093 USA. [Montoya, S. A.; Couture, S.; Lomakin, V.; Fullerton, E. E.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Chess, J. J.; Lee, J. C. T.; Kevan, S. D.; McMorran, B. J.] Univ Oregon, Dept Phys, Eugene, OR 97401 USA. [Lee, J. C. T.; Im, M. -Y.; Kevan, S. D.; Fischer, P.; Roy, S.] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Kent, N.; Henze, D.; Fischer, P.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 94056 USA. [Sinha, S. K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Im, M. -Y.] Daegu Gyeongbuk Inst Sci & Technol, Dept Emerging Mat Sci, Daegu, South Korea. RP Fullerton, EE (reprint author), Univ Calif San Diego, Ctr Memory & Recording Res, La Jolla, CA 92093 USA.; Fullerton, EE (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. EM efullerton@ucsd.edu RI Fullerton, Eric/H-8445-2013; Fischer, Peter/A-3020-2010; McMorran, Benjamin/G-9954-2016 OI Fullerton, Eric/0000-0002-4725-9509; Fischer, Peter/0000-0002-9824-9343; McMorran, Benjamin/0000-0001-7207-1076 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) [DE-SC0003678]; DOE, Office of Science, BES [DE-SC0010466]; Office of Science, BES, of the DOE [DE-AC02- 05CH11231]; Department of Defense (DoD) through the Science, Mathematics & Research for Transformation (SMART) Scholarship; Leading Foreign Research Institute Recruitment Program through the National Research Foundation (NRF) of Korea - Ministry of Education, Science and Technology (MEST) [2012K1A4A3053565, 2014R1A2A2A01003709]; Office of Science, BES, Materials Sciences and Engineering Division, of the DOE within the Nonequilibrium Magnetic Materials Program at LBNL [DE-AC02-05-CH11231, KC2204] FX Work at University of California-San Diego, including materials synthesis and characterization, participation in synchrotron measurements, and modeling, was supported by U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) under Award No. DE-SC0003678. Work at University of Oregon was supported by the DOE, Office of Science, BES under Award No. DE-SC0010466. Work at the Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL), was supported by the Director, Office of Science, BES, of the DOE (Contract No. DE-AC02- 05CH11231). S.A.M. acknowledges support from the Department of Defense (DoD) through the Science, Mathematics & Research for Transformation (SMART) Scholarship. B.J.M. and J.J.C. gratefully acknowledge the use of CAMCOR facilities, which have been purchased with a combination of federal and state funding. M.-Y.I. acknowledges support by Leading Foreign Research Institute Recruitment Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) (Grants No. 2012K1A4A3053565 and No. 2014R1A2A2A01003709). S.D.K. and P.F. acknowledge support by the Director, Office of Science, BES, Materials Sciences and Engineering Division, of the DOE under Contract No. DE-AC02-05-CH11231 within the Nonequilibrium Magnetic Materials Program (No. KC2204) at LBNL. NR 58 TC 0 Z9 0 U1 35 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 13 PY 2017 VL 95 IS 2 AR 024415 DI 10.1103/PhysRevB.95.024415 PG 10 WC Physics, Condensed Matter SC Physics GA EH5ZV UT WOS:000391852800005 ER PT J AU Henderson, S AF Henderson, Stuart TI New head of US accelerator lab SO SCIENCE LA English DT News Item C1 [Henderson, Stuart] Thomas Jefferson Natl Accelerator Facil JLab, Newport News, VA 23606 USA. [Henderson, Stuart] Argonne Natl Lab, Lemont, IL 60439 USA. RP Henderson, S (reprint author), Thomas Jefferson Natl Accelerator Facil JLab, Newport News, VA 23606 USA.; Henderson, S (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JAN 13 PY 2017 VL 355 IS 6321 BP 114 EP 114 PG 1 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH4LW UT WOS:000391743700010 ER PT J AU Marcos, E Basanta, B Chidyausiku, TM Tang, YF Oberdorfer, G Liu, GH Swapna, GVT Guan, RJ Silva, DA Dou, JY Pereira, JH Xiao, R Sankaran, B Zwart, PH Montelione, GT Baker, D AF Marcos, Enrique Basanta, Benjamin Chidyausiku, Tamuka M. Tang, Yuefeng Oberdorfer, Gustav Liu, Gaohua Swapna, G. V. T. Guan, Rongjin Silva, Daniel-Adriano Dou, Jiayi Pereira, Jose Henrique Xiao, Rong Sankaran, Banumathi Zwart, Peter H. Montelione, Gaetano T. Baker, David TI Principles for designing proteins with cavities formed by curved beta sheets SO SCIENCE LA English DT Article ID ATOMIC-LEVEL ACCURACY; COMPUTATIONAL DESIGN; STRUCTURE PREDICTION; EVOLUTION; BULGES; BLAST AB Active sites and ligand-binding cavities in native proteins are often formed by curved b sheets, and the ability to control beta-sheet curvature would allow design of binding proteins with cavities customized to specific ligands. Toward this end, we investigated the mechanisms controlling beta-sheet curvature by studying the geometry of beta sheets in naturally occurring protein structures and folding simulations. The principles emerging from this analysis were used to design, de novo, a series of proteins with curved b sheets topped with a helices. Nuclear magnetic resonance and crystal structures of the designs closely match the computational models, showing that beta-sheet curvature can be controlled with atomic-level accuracy. Our approach enables the design of proteins with cavities and provides a route to custom design ligand-binding and catalytic sites. C1 [Marcos, Enrique; Basanta, Benjamin; Chidyausiku, Tamuka M.; Oberdorfer, Gustav; Silva, Daniel-Adriano; Baker, David] Univ Washington, Dept Biochem, Seattle, WA 98195 USA. [Marcos, Enrique; Basanta, Benjamin; Chidyausiku, Tamuka M.; Oberdorfer, Gustav; Silva, Daniel-Adriano; Dou, Jiayi; Baker, David] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA. [Marcos, Enrique] Barcelona Inst Sci & Technol, Inst Biomed Res IRB Barcelona, Baldiri Reixac 10, Barcelona 08028, Spain. [Basanta, Benjamin; Chidyausiku, Tamuka M.; Dou, Jiayi] Univ Washington, Grad Program Biol Phys Struct & Design, Seattle, WA 98195 USA. [Tang, Yuefeng; Liu, Gaohua; Swapna, G. V. T.; Guan, Rongjin; Xiao, Rong; Montelione, Gaetano T.] Rutgers State Univ, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA. [Tang, Yuefeng; Liu, Gaohua; Swapna, G. V. T.; Guan, Rongjin; Montelione, Gaetano T.] Rutgers State Univ, Dept Mol Biol & Biochem, Piscataway, NJ 08854 USA. [Tang, Yuefeng; Liu, Gaohua; Swapna, G. V. T.; Guan, Rongjin; Montelione, Gaetano T.] Northeast Struct Genom Consortium, Piscataway, NJ 08854 USA. [Oberdorfer, Gustav] Graz Univ, Inst Mol Biosci, Humboldtstr 50-3, A-8010 Graz, Austria. [Dou, Jiayi] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA. [Pereira, Jose Henrique] Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol Mol Biophys & Integrated, Berkeley, CA 94720 USA. [Pereira, Jose Henrique; Sankaran, Banumathi; Zwart, Peter H.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Montelione, Gaetano T.] Rutgers State Univ, Robert Wood Johnson Med Sch, Dept Biochem & Mol Biol, Piscataway, NJ 08854 USA. [Baker, David] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA. RP Baker, D (reprint author), Univ Washington, Dept Biochem, Seattle, WA 98195 USA.; Baker, D (reprint author), Univ Washington, Inst Prot Design, Seattle, WA 98195 USA.; Baker, D (reprint author), Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA. EM dabaker@u.washington.edu FU Howard Hughes Medical Institute; Defense Threat Reduction Agency [HDTRA 1-11-1-0041]; NIH; National Institute of General Medical Sciences (NIGMS), NIH; Office of Science, Office of Basic Energy Sciences of the DOE [DE-AC02-05CH11231]; Marie Curie International Outgoing Fellowship [FP7-PEOPLE-2011-IOF 298976, 332094]; Severo Ochoa Award of Excellence from the Ministry of Economy, Industry, and Competitiveness (Government of Spain); Community Outreach Activity of NIGMS Protein Structure Initiative grant [U54 GM094597] FX We thank L. Carter for assistance with SEC-MALS and protein production; J. Nguyen, A. Young-Seug, Z. Wang, M. Bick, S. Jayaraman, and P. O'Connell for assistance in x-ray crystallography; all Baker lab members for discussions; and Rosetta@Home volunteers for computing resources used in ab initio structure prediction calculations. Work carried out at the Baker laboratory was supported by the Howard Hughes Medical Institute and the Defense Threat Reduction Agency (funding HDTRA 1-11-1-0041). X-ray diffraction data were collected at the National Synchrotron Light Source with beamline X4C [Brookhaven National Laboratory, Upton, NY, U.S. Department of Energy (DOE)] and the Advance Light Source (Lawrence Berkeley National Laboratory, Berkeley, CA, DOE). The Berkeley Center for Structural Biology is supported in part by the NIH; National Institute of General Medical Sciences (NIGMS), NIH; and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the DOE under contract no. DE-AC02-05CH11231. E.M. was supported by a Marie Curie International Outgoing Fellowship (FP7-PEOPLE-2011-IOF 298976). IRB Barcelona is the recipient of a Severo Ochoa Award of Excellence from the Ministry of Economy, Industry, and Competitiveness (Government of Spain). G.O. was supported by a Marie Curie International Outgoing Fellowship (332094 ASR-CompEnzDes FP7-PEOPLE-2012-IOF). D.-A.S. is a Latin American PEW postdoctoral fellow and Mexican National Council of Science and Technology (CONACYT) postdoctoral fellow and acknowledges their support. This work was supported as a Community Outreach Activity of NIGMS Protein Structure Initiative grant U54 GM094597 (to G. T. M). Coordinates and structure factors have been deposited in the Research Collaboratory for Structural Bioinformatics Protein Data Bank with the accession codes 5KPH (dcs_A_3), 4R80 (dcs_A_4), 5KPE (dcs_B_2), 5TS4 (dcs_C_1_ss), 5L33 (dcs_D_2), 5TPJ (dcs_E_3), 5TRV (dcs_E_4), 5TPH (dcs_E_4_dim9), and 5U35 (dcs_E_4_dim9_cav3). NMR data have been deposited in the Biological Magnetic Resonance Data Bank with the accession codes 30139 (dcs_A_3) and 30128 (dcs_B_2). E. M. and D. B. designed the research; E. M. developed the b-sheet design principles and set up the design method; E. M., B. B., and T. M. C. carried out the design calculations, protein expression, and biophysical characterization; E. M., B. B., and T. M. C. crystallized proteins from folds C, D, and E; J. H. P. crystallized dcs_C_1_ss; Y. T. solved the NMR structures of dcs_A_3 and dcs_B_2 with help from G. L.; R. G. solved the crystal structure of dcs_A_4; G. O. and B. B. solved the crystal structures of dcs_C_1_ss, dcs_D_2, dcs_E_3, dcs_E_4, dcs_E_4_dim9, and dcs_E_4_dim9_cav3; G. V. T. S. collected HSQC data; R. X. prepared isotope-enriched protein samples for NMR structure determination; D.-A. S. and E. M. developed the biased ab initio folding protocol; J. D. designed and experimentally characterized cavity-creating mutations in dcs_D_2; B. S. and P. H. Z. collected and analyzed crystallographic data; and E. M., B. B., G. T. M., and D. B. wrote the manuscript. NR 31 TC 0 Z9 0 U1 16 U2 16 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD JAN 13 PY 2017 VL 355 IS 6321 BP 201 EP 206 DI 10.1126/science.aah7389 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH4LW UT WOS:000391743700048 PM 28082595 ER PT J AU Oxberry, GM Kostova-Vassilevska, T Arrighi, W Chand, K AF Oxberry, Geoffrey M. Kostova-Vassilevska, Tanya Arrighi, William Chand, Kyle TI Limited-memory adaptive snapshot selection for proper orthogonal decomposition SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE proper orthogonal decomposition; reduced order model; snapshot; incremental singular value decomposition ID NONLINEAR MODEL-REDUCTION; DOMINANT SINGULAR SUBSPACES; REDUCED-ORDER MODELS; DYNAMICAL-SYSTEMS; ERROR ESTIMATION; TURBULENT FLOWS; FLUID-DYNAMICS; APPROXIMATIONS; EQUATIONS; BOUNDS AB Reduced order models are useful for accelerating simulations in many-query contexts, such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training of reduced order models (ROMs) can have prohibitively expensive memory and floating-point operation costs in high-performance computing applications, where memory per core is limited. To overcome this limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for snapshots in time that limits offline training costs by selecting snapshots according an error control mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers. The error estimator used in this work is related to theory bounding the approximation error in time of proper orthogonal decomposition-based ROMs, and memory usage is minimized by computing the singular value decomposition using a single-pass incremental algorithm. Results for a viscous Burgers' test problem demonstrate convergence in the limit as the algorithm error tolerances go to zero; in this limit, the full-order model is recovered to within discretization error. A parallel version of the resulting method can be used on supercomputers to generate proper orthogonal decomposition-based ROMs, or as a subroutine within hyperreduction algorithms that require taking snapshots in time, or within greedy algorithms for sampling parameter space. Copyright (C) 2016 John Wiley & Sons, Ltd. C1 [Oxberry, Geoffrey M.] Lawrence Livermore Natl Lab, Computat Engn Div, L-792,POB 808, Livermore, CA 94550 USA. [Kostova-Vassilevska, Tanya] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, L-561,POB 808, Livermore, CA 94550 USA. [Arrighi, William] Lawrence Livermore Natl Lab, Applicat Simulat & Qual, L-560,POB 808, Livermore, CA 94550 USA. [Chand, Kyle] Lawrence Livermore Natl Lab, Global Secur Comp Applicat Div, L-389,POB 808, Livermore, CA 94550 USA. RP Oxberry, GM (reprint author), Lawrence Livermore Natl Lab, Computat Engn Div, L-792,POB 808, Livermore, CA 94550 USA. EM oxberry1@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LDRD grant from Lawrence Livermore National Laboratory [13-ERD-031] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by LDRD grant 13-ERD-031 from Lawrence Livermore National Laboratory, and released under document number LLNL-TR-669265. NR 53 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 EI 1097-0207 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD JAN 13 PY 2017 VL 109 IS 2 BP 198 EP 217 DI 10.1002/nme.5283 PG 20 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA EF8MQ UT WOS:000390583600003 ER PT J AU Adhikary, DP Jayasundara, CT Podgorney, RK Wilkins, AH AF Adhikary, D. P. Jayasundara, C. T. Podgorney, R. K. Wilkins, A. H. TI A robust return-map algorithm for general multisurface plasticity SO INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING LA English DT Article DE multisurface plasticity; return-map algorithm; Kuhn-Tucker conditions; geomechanics ID IMPLICIT NUMERICAL-INTEGRATION; PRINCIPAL STRESS SPACE; YIELD CRITERIA; EQUATIONS; CRYSTALS; CAP AB Three new contributions to the field of multisurface plasticity are presented for general situations with an arbitrary number of nonlinear yield surfaces with hardening or softening. A method for handling linearly dependent flow directions is described. A residual that can be used in a line search is defined. An algorithm that has been implemented and comprehensively tested is discussed in detail. Examples are presented to illustrate the computational cost of various components of the algorithm. The overall result is that a single Newton-Raphson iteration of the algorithm costs between 1.5 and 2 times that of an elastic calculation. Examples also illustrate the successful convergence of the algorithm in complicated situations. For example, without using the new contributions presented here, the algorithm fails to converge for approximately 50% of the trial stresses for a common geomechanical model of sedementary rocks, while the current algorithm results in complete success. Because it involves no approximations, the algorithm is used to quantify the accuracy of an efficient, pragmatic, but approximate, algorithm used for sedimentary-rock plasticity in a commercial software package. The main weakness of the algorithm is identified as the difficulty of correctly choosing the set of initially active constraints in the general setting. Copyright (C) 2016 John Wiley & Sons, Ltd. C1 [Adhikary, D. P.; Jayasundara, C. T.; Wilkins, A. H.] CSIRO Energy Flagship, Queensland Ctr Adv Technol, Coal Min Programme, POB 883, Kenmore Q4069, Australia. [Podgorney, R. K.] Idaho Natl Lab, Energy Resource Recovery & Sustainabil, Idaho Falls, ID USA. RP Wilkins, AH (reprint author), CSIRO Energy Flagship, Queensland Ctr Adv Technol, Coal Min Programme, POB 883, Kenmore Q4069, Australia. EM andrew.wilkins@csiro.au NR 27 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0029-5981 EI 1097-0207 J9 INT J NUMER METH ENG JI Int. J. Numer. Methods Eng. PD JAN 13 PY 2017 VL 109 IS 2 BP 218 EP 234 DI 10.1002/nme.5284 PG 17 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA EF8MQ UT WOS:000390583600004 ER PT J AU Nami, M Eller, RF Okur, S Rishinaramangalam, AK Liu, S Brener, I Feezell, DF AF Nami, Mohsen Eller, Rhett F. Okur, Serdal Rishinaramangalam, Ashwin K. Liu, Sheng Brener, Igal Feezell, Daniel F. TI Tailoring the morphology and luminescence of GaN/InGaN core-shell nanowires using bottom-up selective-area epitaxy SO NANOTECHNOLOGY LA English DT Article DE MOCVD; GaN/InGaN; core-shell; nanowire; multi-color LED; selective-area epitaxy ID LIGHT-EMITTING-DIODES; MOLECULAR-BEAM EPITAXY; GAN NANOWIRES; CATALYST-FREE; WELL STRUCTURES; QUANTUM-WELLS; GROWTH; SINGLE; LASERS; EFFICIENCY AB Controlled bottom-up selective-area epitaxy (SAE) is used to tailor the morphology and photoluminescence properties of GaN/InGaN core-shell nanowire arrays. The nanowires are grown on c-plane sapphire substrates using pulsed-mode metal organic chemical vapor deposition. By varying the dielectric mask configuration and growth conditions, we achieve GaN nanowire cores with diameters ranging from 80 to 700 nm that exhibit various degrees of polar, semipolar, and nonpolar faceting. A single InGaN quantum well (QW) and GaN barrier shell is also grown on the GaN nanowire cores and micro-photoluminescence is obtained and analyzed for a variety of nanowire dimensions, array pitch spacings, and aperture diameters. By increasing the nanowire pitch spacing on the same growth wafer, the emission wavelength redshifts from 440 to 520 nm, while increasing the aperture diameter results in a similar to 35 nm blueshift. The thickness of one QW/barrier period as a function of pitch and aperture diameter is inferred using scanning electron microscopy, with larger pitches showing significantly thicker QWs. Significant increases in indium composition were predicted for larger pitches and smaller aperture diameters. The results are interpreted in terms of local growth conditions and adatom capture radius around the nanowires. This work provides significant insight into the effects of mask configuration and growth conditions on the nanowire properties and is applicable to the engineering of monolithic multi-color nanowire LEDs on a single chip. C1 [Nami, Mohsen; Eller, Rhett F.; Okur, Serdal; Rishinaramangalam, Ashwin K.; Feezell, Daniel F.] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. [Liu, Sheng; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Nami, M (reprint author), Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. EM mnami@unm.edu RI Okur, Serdal/D-3765-2015 OI Okur, Serdal/0000-0002-0391-3492 FU Defense Advanced Research Projects Agency (DARPA) [D13AP00055]; NSF [EEC-0812056]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Defense Advanced Research Projects Agency (DARPA) under award number D13AP00055.; This work is supported by the NSF under cooperative agreement EEC-0812056. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.; This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 75 TC 0 Z9 0 U1 24 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JAN 13 PY 2017 VL 28 IS 2 AR 025202 DI 10.1088/0957-4484/28/2/025202 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EF5EE UT WOS:000390352700002 PM 27905321 ER PT J AU Ouchi, T Stumpf, V Miteva, T Fukuzawa, H Sakai, K Liu, XJ Mazza, T Schoffler, M Iwayama, H Nagaya, K Tamenori, Y Saito, N Kuleff, AI Gokhberg, K Ueda, K AF Ouchi, T. Stumpf, V. Miteva, T. Fukuzawa, H. Sakai, K. Liu, X. -J. Mazza, T. Schoeffler, M. Iwayama, H. Nagaya, K. Tamenori, Y. Saito, N. Kuleff, A. I. Gokhberg, K. Ueda, K. TI Ion pair formation in the NeAr dimer irradiated by monochromatic soft X-rays SO CHEMICAL PHYSICS LA English DT Article ID CORRELATED MOLECULAR CALCULATIONS; PHOTOCHEMISTRY BEAMLINE BL27SU; RADIATIVE CHARGE-TRANSFER; GAUSSIAN-BASIS SETS; ELECTRON-IMPACT; ARGON DIMERS; ATOMS; PHOTON; DECAY; NE AB We investigated Ne+-Ar+ ion-pair formation which follows irradiation of the NeAr dimer by monochromatic soft X-rays. Using momentum-resolved electron-ion multicoincidence spectroscopy, we could unambiguously identify that the formation of the ion pair at photon energy of 200.5 eV proceeds via interatomic Coulombic decay (ICD) of the Ne+(2s(-1))Ar inner-valence ionized and NeAr+(3p(-2)5d) ionization satellite states. Photoabsorption at higher photon energies of 268.2 eV and 888.7 eV leads to the emission of core electrons of Ar and Ne respectively, and to the subsequent local Auger decay process. We demonstrate that at these energies the ion pair formation originating in the doubly ionized Ar L-MM and Ne K-LL Auger final states proceeds mostly via radiative charge transfer and charge transfer driven by non-adiabatic coupling mechanisms. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ouchi, T.; Fukuzawa, H.; Sakai, K.; Liu, X. -J.; Mazza, T.; Ueda, K.] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. [Stumpf, V.; Miteva, T.; Kuleff, A. I.; Gokhberg, K.] Heidelberg Univ, Inst Phys Chem, Theoret Chem, Neuenheimer Feld 229, D-69120 Heidelberg, Germany. [Liu, X. -J.] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China. [Mazza, T.] Univ Milan, Cimaina, Via Celoria 16, I-20133 Milan, Italy. [Mazza, T.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Mazza, T.] European XFEL, Albert Einstein Ring 19, D-22761 Hamburg, Germany. [Schoeffler, M.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Schoeffler, M.] Goethe Univ Frankfurt, Inst Nucl Phys, D-60438 Frankfurt, Germany. [Iwayama, H.; Nagaya, K.] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Iwayama, H.] Inst Mol Sci, UVSOR Facil, Okazaki, Aichi 4448585, Japan. [Tamenori, Y.] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan. [Saito, N.] Natl Inst Adv Ind Sci & Technol, NMIJ, Tsukuba, Ibaraki 3058568, Japan. RP Ueda, K (reprint author), Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Sendai, Miyagi 9808577, Japan. EM ueda@tagen.tohoku.ac.jp FU JSPS [21244062]; MEXT; IMRAM project; Deutsche Forschungsgemeinschaft [FOR1789] FX The experiments were performed at SPring-8 with the approval of JASRI. We are grateful to L.S. Cederbaum for helpful discussion. The work was supported by Grant-in-Aid (21244062) from JSPS, by the Management Expenses Grants for National Universities Corporations from MEXT, and by IMRAM project funding. V.S. and K.G. thank the Deutsche Forschungsgemeinschaft for the financial support (FOR1789). NR 45 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 EI 1873-4421 J9 CHEM PHYS JI Chem. Phys. PD JAN 12 PY 2017 VL 482 SI SI BP 178 EP 184 DI 10.1016/j.chemphys.2016.09.032 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL5AU UT WOS:000394634700022 ER PT J AU Rist, J Miteva, T Gaire, B Sann, H Trinter, F Keiling, M Gehrken, N Moradmand, A Berry, B Zohrabi, M Kunitski, M Ben-Itzhak, I Belkacem, A Weber, T Landers, AL Schoffler, M Williams, JB Kolorenc, P Gokhberg, K Jahnke, T Dorner, R AF Rist, J. Miteva, T. Gaire, B. Sann, H. Trinter, F. Keiling, M. Gehrken, N. Moradmand, A. Berry, B. Zohrabi, M. Kunitski, M. Ben-Itzhak, I. Belkacem, A. Weber, T. Landers, A. L. Schoeffler, M. Williams, J. B. Kolorenc, P. Gokhberg, K. Jahnke, T. Doerner, R. TI A comprehensive study of Interatomic Coulombic Decay in argon dimers: Extracting R-dependent absolute decay rates from the experiment SO CHEMICAL PHYSICS LA English DT Article ID UNITARY GROUP-APPROACH; GAUSSIAN-BASIS SETS; RARE-GAS DIMERS; MOMENTUM SPECTROSCOPY; ELECTRON CORRELATION; ENERGY-TRANSFER; RECOIL-ION; MOLECULES; CLUSTERS; FRAGMENTATION AB In this work we present a comprehensive and detailed study of Interatomic Coulombic Decay (ICD) occurring after irradiating argon dimers with XUV-synchrotron radiation. A manifold of different decay channels is observed and the corresponding initial and final states are assigned. Additionally, the effect of nuclear dynamics on the ICD electron spectrum is examined for one specific decay channel. The internuclear distance-dependent width Gamma(R) of the decay is obtained from the measured kinetic energy release distribution of the ions employing a classical nuclear dynamics model. (C) 2016 Elsevier B.V. All rights reserved. C1 [Rist, J.; Sann, H.; Trinter, F.; Keiling, M.; Gehrken, N.; Kunitski, M.; Schoeffler, M.; Jahnke, T.; Doerner, R.] Goethe Univ, Inst Kernphys, Max von Laue Str 1, D-60438 Frankfurt, Germany. [Miteva, T.; Gokhberg, K.] Heidelberg Univ, Theoret Chem Grp, D-69117 Heidelberg, Germany. [Gaire, B.; Belkacem, A.; Weber, T.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Keiling, M.; Moradmand, A.; Landers, A. L.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Berry, B.; Zohrabi, M.; Ben-Itzhak, I.] Kansas State Univ, Dept Phys, JR Macdonald Lab, Manhattan, KS 66506 USA. [Williams, J. B.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Kolorenc, P.] Charles Univ Prague, Fac Math & Phys, V Holesovickach 2, CR-18000 Prague, Czech Republic. RP Rist, J (reprint author), Goethe Univ, Inst Kernphys, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM rist@atom.uni-frankfurt.de; jahnke@atom.uni-frankfurt.de; doerner@atom.uni-frankfurt.de RI Doerner, Reinhard/A-5340-2008 OI Doerner, Reinhard/0000-0002-3728-4268 FU Office of Science, Office of Basic Energy Sciences, the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231, DE-FG02-86ER13491]; National Science Foundation [NSF-PHYS1404366]; DAAD; DFG FX We thank the staff of the Advanced Light Source, in particular beamline 10.0.1 scientists for their outstanding support. This research used the Advance Light Source and resources of the National Energy Research Scientific Computing Center, DOE Offices of Science User Facilities supported by the Director, Office of Science, Office of Basic Energy Sciences, the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. JRML personnel were supported by Grant No. DE-FG02-86ER13491 from the same funding agency. The Auburn University personnel were supported by the National Science Foundation under contract NSF-PHYS1404366. We acknowledge the financial support of the DAAD and DFG, this work was performed within the DFG research unit FOR1789. NR 46 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 EI 1873-4421 J9 CHEM PHYS JI Chem. Phys. PD JAN 12 PY 2017 VL 482 SI SI BP 185 EP 191 DI 10.1016/j.chemphys.2016.09.024 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL5AU UT WOS:000394634700023 ER PT J AU Dutoi, AD Leone, SR AF Dutoi, Anthony D. Leone, Stephen R. TI Simulation of X-ray transient absorption for following vibrations in coherently ionized F-2 molecules SO CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; DIAGRAMMATIC CONSTRUCTION SCHEME; CORE-EXCITED STATES; K-SHELL EXCITATION; POLARIZATION PROPAGATOR; SYMMETRY-BREAKING; CHARGE MIGRATION; COUPLED-CLUSTER; SPECTRA; SPECTROSCOPY AB Femtosecond and attosecond X-ray transient absorption experiments are becoming increasingly sophisticated tools for probing nuclear dynamics. In this work, we explore and develop theoretical tools needed for interpretation of such spectra,in order to characterize the vibrational coherences that result from ionizing a molecule in a strong IR field. Ab initio data for F-2 is combined with simulations of nuclear dynamics, in order to simulate time-resolved X-ray absorption spectra for vibrational wavepackets after coherent ionization at 0 K and at finite temperature. Dihalogens pose rather difficult electronic structure problems, and the issues encountered in this work will be reflective of those encountered with any core valence excitation simulation when a bond is breaking. The simulations reveal a strong dependence of the X-ray absorption maximum on the locations of the vibrational wave packets. A Fourier transform of the simulated signal shows features at the overtone frequencies of both the neutral and the cation, which reflect spatial interferences of the vibrational eigenstates. This provides a direct path for implementing ultrafast X-ray spectroscopic methods to visualize coherent nuclear dynamics. (C) 2016 Elsevier B.V. All rights reserved. C1 [Dutoi, Anthony D.] Univ Pacific, Dept Chem, Stockton, CA 95211 USA. [Leone, Stephen R.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Dutoi, AD (reprint author), Univ Pacific, Dept Chem, Stockton, CA 95211 USA. EM adutoi@pacific.edu; srleone@lbl.gov FU U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP); University of the Pacific; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [CHE-1361226] FX This manuscript is dedicated to Lorenz S. Cederbaum, on the occasion of his 70th birthday. A special acknowledgement goes to Michael Wormit, an academic grandchild of Cederbaum, for all of his help in recent years, both theoretical and practical; since his untimely departure, he has been missed as a friend as well as a colleague. The authors would also like to thank Andrew Attar, Evgeny Epifanovsky, Jan Wenzel, Andreas Dreuw, Anna Krylov, Joseph Subotnik, and Martin Head-Gordon for helpful conversations. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP). A. D. D. gratefully acknowledges start-up funding from the University of the Pacific. S. R. L. gratefully acknowledges support by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract DE-AC02-05CH11231 and by the National Science Foundation under grant CHE-1361226. NR 56 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 EI 1873-4421 J9 CHEM PHYS JI Chem. Phys. PD JAN 12 PY 2017 VL 482 SI SI BP 249 EP 264 DI 10.1016/j.chemphys.2016.10.006 PG 16 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL5AU UT WOS:000394634700032 ER PT J AU Huang, DL Liu, HT Ning, CG Dau, PD Wang, LS AF Huang, Dao-Ling Liu, Hong-Tao Ning, Chuan-Gang Phuong Diem Dau Wang, Lai-Sheng TI Resonant photoelectron imaging of deprotonated uracil anion via vibrational levels of a dipole-bound excited state SO CHEMICAL PHYSICS LA English DT Article DE Dipole-bound state; Deprotonated uracil; Photoelectron imaging; Resonant photoelectron spectroscopy; Autodetachment ID PHOTODETACHMENT CROSS-SECTIONS; NEGATIVE-IONS; COLD ANIONS; ELECTRONIC-STRUCTURE; SPECTROSCOPY; AUTODETACHMENT; SURFACES AB We report both non-resonant and resonant high-resolution photoelectron imaging of cryogenically cooled deprotonated uracil anions, N1[U-H](-), via vibrational levels of a dipole-bound excited state. Photodetachment spectroscopy of N1[U-H](-) was reported previously (Liu et al., 2014), in which forty-six vibrational autodetachment resonances due to the excited dipole-bound state were observed. By tuning the detachment laser to the vibrational levels of the dipole-bound state, we obtained high resolution resonant photoelectron spectra, which are highly non-Franck-Condon. The resonant photoelectron spectra reveal many Franck-Condon inactive vibrational modes, significantly expanding the capability of photoelectron spectroscopy. A total of twenty one fundamental vibrational frequencies for the N1[U-H](.) radical are obtained, including all eight low-frequency out-of-plane modes, which are forbidden in non-resonant photoelectron spectroscopy. Furthermore, the breakdown of the Delta v = -1 propensity rule is observed for autodetachment from many vibrational levels of the dipole-bound state, due to anharmonic effects. In particular, we have observed intramolecular electron rescattering in a number of resonant photoelectron spectra, leading to excitations of low-frequency vibrational modes. Further theoretical study may be warranted, in light of the extensive experimental data and new observations, to provide further insight into the autodetachment dynamics and vibronic coupling in dipole-bound states, as well as electron molecule interactions. (C) 2016 Elsevier B.V. All rights reserved. C1 [Huang, Dao-Ling; Phuong Diem Dau; Wang, Lai-Sheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Liu, Hong-Tao] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Ning, Chuan-Gang] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Phuong Diem Dau] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Wang, LS (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA. EM Lai-Sheng_Wang@brown.edu FU National Science Foundation [CHE-1263745] FX This work was supported by the National Science Foundation (CHE-1263745). NR 31 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0301-0104 EI 1873-4421 J9 CHEM PHYS JI Chem. Phys. PD JAN 12 PY 2017 VL 482 SI SI BP 374 EP 383 DI 10.1016/j.chemphys.2016.06.003 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EL5AU UT WOS:000394634700044 ER PT J AU Sollars, ESA Harper, AL Kelly, LJ Sambles, CM Ramirez-Gonzalez, RH Swarbreck, D Kaithakottil, G Cooper, ED Uauy, C Havlickova, L Worswick, G Studholme, DJ Zohren, J Salmon, DL Clavijo, BJ Li, Y He, ZS Fellgett, A McKinney, LV Nielsen, LR Douglas, GC Kjaer, ED Downie, JA Boshier, D Lee, S Clark, J Grant, M Bancroft, I Caccamo, M Buggs, RJA AF Sollars, Elizabeth S. A. Harper, Andrea L. Kelly, Laura J. Sambles, Christine M. Ramirez-Gonzalez, Ricardo H. Swarbreck, David Kaithakottil, Gemy Cooper, Endymion D. Uauy, Cristobal Havlickova, Lenka Worswick, Gemma Studholme, David J. Zohren, Jasmin Salmon, Deborah L. Clavijo, Bernardo J. Li, Yi He, Zhesi Fellgett, Alison McKinney, Lea Vig Nielsen, Lene Rostgaard Douglas, Gerry C. Kjaer, Erik Dahl Downie, J. Allan Boshier, David Lee, Steve Clark, Jo Grant, Murray Bancroft, Ian Caccamo, Mario Buggs, Richard J. A. TI Genome sequence and genetic diversity of European ash trees SO NATURE LA English DT Article ID POPULATION-STRUCTURE; RNA-SEQ; PHYLOGENETIC ANALYSIS; FRAXINUS-EXCELSIOR; MASS-SPECTROMETRY; FLOWERING SIGNALS; PROVIDES INSIGHT; SNP DATA; ALIGNMENT; ARABIDOPSIS AB Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis(1,2). Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we reanalyse association transcriptomic data(3), yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic. C1 [Sollars, Elizabeth S. A.; Kelly, Laura J.; Cooper, Endymion D.; Worswick, Gemma; Buggs, Richard J. A.] Queen Mary Univ London, Sch Biol & Chem Sci, Mile End Rd, London E1 4NS, England. [Sollars, Elizabeth S. A.] QIAGEN Aarhus AS, Silkeborgvej 2, DK-8000 Aarhus C, Denmark. [Harper, Andrea L.; Havlickova, Lenka; Li, Yi; He, Zhesi; Fellgett, Alison; Bancroft, Ian] Univ York, Ctr Novel Agr Prod, York YO10 5DD, N Yorkshire, England. [Sambles, Christine M.; Studholme, David J.; Salmon, Deborah L.; Grant, Murray] Univ Exeter, Coll Life & Environm Sci, Biosci, Exeter EX4 4QD, Devon, England. [Ramirez-Gonzalez, Ricardo H.; Swarbreck, David; Kaithakottil, Gemy; Clavijo, Bernardo J.; Caccamo, Mario] Earlham Inst, Norwich Res Pk, Norwich NR4 7UZ, Norfolk, England. [Uauy, Cristobal; Downie, J. Allan] John Innes Ctr, Norwich Res Pk, Norwich NR4 7UH, Norfolk, England. [McKinney, Lea Vig; Nielsen, Lene Rostgaard; Kjaer, Erik Dahl] Univ Copenhagen, Dept Geosci & Nat Resource Management, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark. [Worswick, Gemma; Douglas, Gerry C.] Agr & Food Dev Author, Teagasc, Dublin D15 KN3K, Ireland. [Boshier, David] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England. [Lee, Steve] Northern Res Stn, Forest Res, Roslin EH25 9SY, Midlothian, Scotland. [Clark, Jo] Earth Trust Little Wittenham, Abingdon OX14 4QZ, Oxon, England. [Caccamo, Mario] Natl Inst Agr Bot, Cambridge CB3 0LE, England. [Buggs, Richard J. A.] Royal Bot Gardens Kew, Richmond TW9 3AB, Surrey, England. [Grant, Murray] Univ Warwick, Sch Life Sci, Gibbet Hill Campus, Coventry CV4 7AL, W Midlands, England. RP Buggs, RJA (reprint author), Queen Mary Univ London, Sch Biol & Chem Sci, Mile End Rd, London E1 4NS, England. EM r.buggs@qmul.ac.uk OI Clavijo, Bernardo J./0000-0002-7597-2774; Sambles, Christine/0000-0002-7219-0398 FU Natural Environment Research Council (NERC) [NE/K01112X/1]; UK Biotechnology and Biological Sciences Research Council (BBSRC) [BBS/E/J/000CA5323]; Department for Environment, Food Rural Affairs; 'Nornex' project; European Diversity Panel - Earlham Institute National Capability in Genomics [BB/J010375/1]; Living with Environmental Change (LWEC) Tree Health and Plant Biosecurity Initiative - Phase 2 grant [BB/L012162/1]; BBSRC; Defra; Economic and Social Research Council; Forestry Commission; NERC; Scottish Government; Teagasc Walsh Fellowship [2014001]; Marie Sklodowska-Curie Individual Fellowship 'FraxiFam' [660003]; Marie Sklodowska-Curie Initial Training Network INTERCROSSING; Norwich Research Park PhD Studentship; Earlham Institute Funding and Maintenance Grant; Engineering and Physical Sciences Research Council [EP/K000128/1]; NERC EOS Cloud; BBSRC [BB/N021452/1] FX Eurofins MWG provided a discounted service for Illumina and 454 sequencing of the reference genome, funded by Natural Environment Research Council (NERC) Urgency Grant NE/K01112X/1 to R.J.A.B. The associative transcriptomic and metabolomic work was part of the 'Nornex' project led by J. A. D. funded jointly by the UK Biotechnology and Biological Sciences Research Council (BBSRC) (BBS/E/J/000CA5323) and the Department for Environment, Food & Rural Affairs. The Earlham Institute, Norwich, UK, sequenced 'Tree 35' funded by 'Nornex' and the European Diversity Panel funded by the Earlham Institute National Capability in Genomics (BB/J010375/1) grant. W. Crowther assisted with DNA extractions for the KASP assay; The John Innes Centre contributed KASP analyses. J. F. Miranda assisted with RNA extractions and quantitative PCR with reverse transcription (qRT-PCR) at the University of York. H. V. Florance, N. Smirnoff and the Exeter Metabolomics Facility developed metabolomic methods and ran samples, and T. P. Howard helped with statistics. L.J.K. and R.J.A.B. were partly funded by Living with Environmental Change (LWEC) Tree Health and Plant Biosecurity Initiative - Phase 2 grant BB/L012162/1 to R.J.A.B., S.L. and P. Jepson funded jointly by a grant from the BBSRC, Defra, Economic and Social Research Council, the Forestry Commission, NERC and the Scottish Government, under the Tree Health and Plant Biosecurity Initiative. G.W. was funded by Teagasc Walsh Fellowship 2014001 to R.J.A.B. and G.C.D. E.D.C. was funded by a Marie Sklodowska-Curie Individual Fellowship 'FraxiFam' (grant agreement 660003) to E.D.C. and R.J.A.B. E.S.A.S. and J.Z. were funded by the Marie Sklodowska-Curie Initial Training Network INTERCROSSING. J.A.D. received a John Innes Foundation fellowship. We thank A. Joecker for supervising E. S. A. S. at Qiagen and for helpful discussions. R. H. R. G. is supported by a Norwich Research Park PhD Studentship and Earlham Institute Funding and Maintenance Grant. This research used Queen Mary's MidPlus computational facilities, supported by QMUL Research-IT and funded by Engineering and Physical Sciences Research Council grant EP/K000128/1 and NERC EOS Cloud. D. J. S. acknowledges the support of BBSRC grant BB/N021452/1, which partly supported M. G., C. M. S. and D. J. S. during this work. NR 111 TC 0 Z9 0 U1 12 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JAN 12 PY 2017 VL 541 IS 7636 BP 212 EP + DI 10.1038/nature20786 PG 23 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EN6PI UT WOS:000396125500040 PM 28024298 ER PT J AU Stagno, JR Liu, Y Bhandari, YR Conrad, CE Panja, S Swain, M Fan, L Nelson, G Li, C Wendel, DR White, TA Coe, JD Wiedorn, MO Knoska, J Oberthuer, D Tuckey, RA Yu, P Dyba, M Tarasov, SG Weierstall, U Grant, TD Schwieters, CD Zhang, J Ferre-D'Amare, AR Fromme, P Draper, DE Liang, M Hunter, MS Boutet, S Tan, K Zuo, X Ji, X Barty, A Zatsepin, NA Chapman, HN Spence, JCH Woodson, SA Wang, YX AF Stagno, J. R. Liu, Y. Bhandari, Y. R. Conrad, C. E. Panja, S. Swain, M. Fan, L. Nelson, G. Li, C. Wendel, D. R. White, T. A. Coe, J. D. Wiedorn, M. O. Knoska, J. Oberthuer, D. Tuckey, R. A. Yu, P. Dyba, M. Tarasov, S. G. Weierstall, U. Grant, T. D. Schwieters, C. D. Zhang, J. Ferre-D'Amare, A. R. Fromme, P. Draper, D. E. Liang, M. Hunter, M. S. Boutet, S. Tan, K. Zuo, X. Ji, X. Barty, A. Zatsepin, N. A. Chapman, H. N. Spence, J. C. H. Woodson, S. A. Wang, Y. -X. TI Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography SO NATURE LA English DT Article ID X-RAY-DIFFRACTION; PHOTOACTIVE YELLOW PROTEIN; STANDARD ATOMIC VOLUMES; FEMTOSECOND CRYSTALLOGRAPHY; BINDING RIBOSWITCHES; MOLECULAR-STRUCTURE; ADENINE RIBOSWITCH; GENETIC-CONTROL; SCATTERING DATA; LIGAND AB Riboswitches are structural RNA elements that are generally located in the 5' untranslated region of messenger RNA. During regulation of gene expression, ligand binding to the aptamer domain of a riboswitch triggers a signal to the downstream expression platform(1-3). A complete understanding of the structural basis of this mechanism requires the ability to study structural changes over time(4). Here we use femtosecond X-ray free electron laser (XFEL) pulses(5,6) to obtain structural measurements from crystals so small that diffusion of a ligand can be timed to initiate a reaction before diffraction. We demonstrate this approach by determining four structures of the adenine riboswitch aptamer domain during the course of a reaction, involving two unbound apo structures, one ligand-bound intermediate, and the final ligand-bound conformation. These structures support a reaction mechanism model with at least four states and illustrate the structural basis of signal transmission. The three-way junction and the P1 switch helix of the two apo conformers are notably different from those in the ligand-bound conformation. Our time-resolved crystallographic measurements with a 10-second delay captured the structure of an intermediate with changes in the binding pocket that accommodate the ligand. With at least a 10-minute delay, the RNA molecules were fully converted to the ligand-bound state, in which the substantial conformational changes resulted in conversion of the space group. Such notable changes in crystallo highlight the important opportunities that micro-and nanocrystals may offer in these and similar time-resolved diffraction studies. Together, these results demonstrate the potential of 'mix-and-inject' time-resolved serial crystallography to study biochemically important interactions between biomacromolecules and ligands, including those that involve large conformational changes. C1 [Stagno, J. R.; Liu, Y.; Bhandari, Y. R.; Swain, M.; Wendel, D. R.; Tuckey, R. A.; Yu, P.; Dyba, M.; Tarasov, S. G.; Wang, Y. -X.] NCI, Prot Nucle Acid Interact Sect, Struct Biophys Lab, Ctr Canc Res, Frederick, MD 21702 USA. [Conrad, C. E.; Coe, J. D.; Fromme, P.] Arizona State Univ, Dept Biochem, Tempe, AZ 85287 USA. [Conrad, C. E.; Coe, J. D.; Weierstall, U.; Fromme, P.; Zatsepin, N. A.; Spence, J. C. H.] Arizona State Univ, Biodesign Inst, Ctr Appl Struct Discovery, Tempe, AZ 85287 USA. [Panja, S.; Woodson, S. A.] Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21218 USA. [Fan, L.] NCI, Small Angle Xray Scattering Core Facil, Ctr Canc Res, Frederick, MD 21702 USA. [Nelson, G.; Li, C.; Weierstall, U.; Zatsepin, N. A.; Spence, J. C. H.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [White, T. A.; Wiedorn, M. O.; Knoska, J.; Oberthuer, D.; Barty, A.; Chapman, H. N.] Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany. [Wiedorn, M. O.; Knoska, J.; Chapman, H. N.] Univ Hamburg, Dept Phys, Luruper Chaussee 149, D-22607 Hamburg, Germany. [Grant, T. D.] Hauptmann Woodward Med Res Inst, Buffalo, NY 14203 USA. [Schwieters, C. D.] NIH, Ctr Informat Technol, Bldg 10, Bethesda, MD 20892 USA. [Zhang, J.] NIDDK, Mol Biol Lab, NIH, Bethesda, MD 20892 USA. [Ferre-D'Amare, A. R.] NHLBI, Lab RNA Biophys & Cellular Physiol, NIH, Bldg 10, Bethesda, MD 20892 USA. [Draper, D. E.] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA. [Liang, M.; Hunter, M. S.; Boutet, S.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Tan, K.] Argonne Natl Lab, Adv Photon Source, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. [Zuo, X.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Ji, X.] NCI, Macromol Crystallog Lab, Ctr Canc Res, Frederick, MD 21702 USA. RP Wang, YX (reprint author), NCI, Prot Nucle Acid Interact Sect, Struct Biophys Lab, Ctr Canc Res, Frederick, MD 21702 USA. EM wangyunx@mail.nih.gov FU LCLS Ultrafast Science Instruments (LUSI) project - US Department of Energy, Office of Basic Energy Sciences; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; NSF-STC "BioXFEL" [NSF-1231306]; NIH Intramural Research Program of NCI; NIH Intramural Research Program of CIT; NIH Intramural Research Program of NHLBI; NIH Intramural Research Program of US Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357]; European Research Council [ERC-2013-SyG 609920]; BMBF [05K16GU1] FX Portions of this research were carried out at the Linac Coherent Light Source, a National User Facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. The CXI instrument was funded by the LCLS Ultrafast Science Instruments (LUSI) project funded by the US Department of Energy, Office of Basic Energy Sciences. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. We thank J. Strathern and M. Dunne for their support and S. Wakatsuki for discussions. This work is supported in part by the NSF-STC "BioXFEL" (NSF-1231306), the NIH Intramural Research Programs of NCI, CIT, NHLBI, and the US Department of Energy, Office of Biological and Environmental Research under Contract DE-AC02-06CH11357, the European Research Council, "Frontiers in Attosecond X-ray Science: Imaging and Spectroscopy (AXSIS)", ERC-2013-SyG 609920, and the BMBF through project 05K16GU1. NR 55 TC 0 Z9 0 U1 6 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JAN 12 PY 2017 VL 541 IS 7636 BP 242 EP + DI 10.1038/nature20599 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EN6PI UT WOS:000396125500046 PM 27841871 ER PT J AU Gabriel, CJ Robock, A Xia, LL Zambri, B Kravitz, B AF Gabriel, Corey J. Robock, Alan Xia, Lili Zambri, Brian Kravitz, Ben TI The G4Foam Experiment: global climate impacts of regional ocean albedo modification SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID EARTH SYSTEM MODEL; SST DIPOLE EVENTS; INDIAN-OCEAN; CHEMISTRY; PACIFIC; PRECIPITATION; TEMPERATURE; VARIABILITY; RAINFALL; MONSOON AB Reducing insolation has been proposed as a geo-engineering response to global warming. Here we present the results of climate model simulations of a unique Geo-engineering Model Intercomparison Project Testbed experiment to investigate the benefits and risks of a scheme that would brighten certain oceanic regions. The National Center for Atmospheric Research CESM CAM4-Chem global climate model was modified to simulate a scheme in which the albedo of the ocean surface is increased over the subtropical ocean gyres in the Southern Hemisphere. In theory, this could be accomplished using a stable, nondispersive foam, comprised of tiny, highly reflective microbubbles. Such a foam has been developed under idealized conditions, although deployment at a large scale is presently infeasible. We conducted three ensemble members of a simulation (G4Foam) from 2020 through to 2069 in which the albedo of the ocean surface is set to 0.15 (an increase of 150%) over the three subtropical ocean gyres in the Southern Hemisphere, against a background of the RCP6.0 (representative concentration pathway resulting in +6Wm (-2) radiative forcing by 2100) scenario. After 2069, geoengineering is ceased, and the simulation is run for an additional 20 years. Global mean surface temperature in G4Foam is 0.6K lower than RCP6.0, with statistically significant cooling relative to RCP6.0 south of 30 degrees N. There is an increase in rainfall over land, most pronouncedly in the tropics during the June-July-August season, relative to both G4SSA (specified stratospheric aerosols) and RCP6.0. Heavily populated and highly cultivated regions throughout the tropics, including the Sahel, southern Asia, the Maritime Continent, Central America, and much of the Amazon experience a statistically significant increase in precipitation minus evaporation. The temperature response to the relatively modest global average forcing of -1.5Wm (-2) is amplified through a series of positive cloud feedbacks, in which more shortwave radiation is reflected. The precipitation response is primarily the result of the intensification of the southern Hadley cell, as its mean position migrates northward and away from the Equator in response to the asymmetric cooling. C1 [Gabriel, Corey J.; Robock, Alan; Xia, Lili; Zambri, Brian] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA. [Kravitz, Ben] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Gabriel, CJ (reprint author), Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA. EM cjgabriel7@gmail.com OI Gabriel, Corey/0000-0002-7010-3051 FU US National Science Foundation (NSF) [AGS-1157525, GEO-1240507, AGS-1617844]; NSF; Office of Science (BER) of the US Department of Energy; US Department of Energy by Battelle Memorial Institute [DE-AC05-76RL01830] FX We thank two anonymous referees for their valuable comments, which improved this paper. This work is supported by US National Science Foundation (NSF) grants AGS-1157525, GEO-1240507, and AGS-1617844. Computer simulations were conducted on the National Center for Atmospheric Research (NCAR) Yellowstone supercomputer. NCAR is funded by NSF. The CESM project is supported by NSF and the Office of Science (BER) of the US Department of Energy. The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 62 TC 1 Z9 1 U1 1 U2 1 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD JAN 12 PY 2017 VL 17 IS 1 BP 595 EP 613 DI 10.5194/acp-17-595-2017 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EK4JH UT WOS:000393892400002 ER PT J AU Luo, YQ Shi, Z Lu, XJ Xia, JY Liang, JY Jiang, J Wang, Y Smith, MJ Jiang, LF Ahlstrom, A Chen, B Hararuk, O Hastings, A Hoffman, F Medlyn, B Niu, SL Rasmussen, M Todd-Brown, K Wang, YP AF Luo, Yiqi Shi, Zheng Lu, Xingjie Xia, Jianyang Liang, Junyi Jiang, Jiang Wang, Ying Smith, Matthew J. Jiang, Lifen Ahlstrom, Anders Chen, Benito Hararuk, Oleksandra Hastings, Alan Hoffman, Forrest Medlyn, Belinda Niu, Shuli Rasmussen, Martin Todd-Brown, Katherine Wang, Ying-Ping TI Transient dynamics of terrestrial carbon storage: mathematical foundation and its applications SO BIOGEOSCIENCES LA English DT Article ID SOIL ORGANIC-MATTER; NONLINEAR MICROBIAL MODELS; EARTH SYSTEM MODELS; DATA-ASSIMILATION; ATMOSPHERIC CO2; ELEVATED CO2; NITROGEN MINERALIZATION; DISTRIBUTED EXPERIMENTS; LITTER DECOMPOSITION; GRASSLAND SOILS AB Terrestrial ecosystems have absorbed roughly 30% of anthropogenic CO2 emissions over the past decades, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling and experimental and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under global change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production, NPP) and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, which is the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Moreover, this and our other studies have demonstrated that one matrix equation can replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3-D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. In addition, the physical emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C sequestration. Overall, this new mathematical framework offers new approaches to understanding, evaluating, diagnosing, and improving land C cycle models. C1 [Luo, Yiqi; Shi, Zheng; Liang, Junyi; Jiang, Jiang; Jiang, Lifen] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Luo, Yiqi] Tsinghua Univ, Dept Earth Syst Sci, Beijing, Peoples R China. [Lu, Xingjie; Wang, Ying-Ping] CSIRO Oceans & Atmosphere, Aspendale, Vic, Australia. [Xia, Jianyang] East China Normal Univ, Sch Ecol & Environm Sci, Shanghai, Peoples R China. [Wang, Ying] Univ Oklahoma, Dept Math, Norman, OK 73019 USA. [Smith, Matthew J.] Microsoft Res, Sci Computat Lab, Cambridge, England. [Ahlstrom, Anders] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA. [Ahlstrom, Anders] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden. [Chen, Benito] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA. [Hararuk, Oleksandra] McGill Univ, Dept Nat Resource Sci, Montreal, PQ, Canada. [Hastings, Alan] Univ Calif Davis, Dept Environm Sci & Policy, One Shields Ave, Davis, CA 95616 USA. [Hoffman, Forrest] Oak Ridge Natl Lab, Computat Earth Sci Grp, Oak Ridge, TN 37831 USA. [Medlyn, Belinda] Univ Western Sydney, Hawkesbury Inst Environm, Penrith, NSW 2751, Australia. [Niu, Shuli] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China. [Rasmussen, Martin] Imperial Coll, Dept Math, London, England. [Todd-Brown, Katherine] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99352 USA. RP Luo, YQ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.; Luo, YQ (reprint author), Tsinghua Univ, Dept Earth Syst Sci, Beijing, Peoples R China. EM yluo@ou.edu RI Ahlstrom, Anders/F-3215-2017 OI Ahlstrom, Anders/0000-0003-1642-0037 FU National Science Foundation; US Department of Homeland Security; US Department of Agriculture through NSF [EF-0832858]; University of Tennessee, Knoxville; US Department of Energy [DE-SC0008270, DE-SC0014085]; US National Science Foundation (NSF) [EF 1137293, OIA-1301789] FX This work was partially done through the working group, Nonautonomous Systems and Terrestrial Carbon Cycle, at the National Institute for Mathematical and Biological Synthesis, an institute sponsored by the National Science Foundation, the US Department of Homeland Security, and the US Department of Agriculture through NSF award no. EF-0832858, with additional support from the University of Tennessee, Knoxville. Research in Yiqi Luo EcoLab was financially supported by US Department of Energy grants DE-SC0008270, DE-SC0014085, and US National Science Foundation (NSF) grants EF 1137293 and OIA-1301789. NR 88 TC 0 Z9 0 U1 6 U2 6 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PD JAN 12 PY 2017 VL 14 IS 1 BP 145 EP 161 DI 10.5194/bg-14-145-2017 PG 17 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA EK4JS UT WOS:000393893500001 ER PT J AU Hollstein, M Alexandrov, LB Wild, CP Ardin, M Zavadil, J AF Hollstein, M. Alexandrov, L. B. Wild, C. P. Ardin, M. Zavadil, J. TI Base changes in tumour DNA have the power to reveal the causes and evolution of cancer SO ONCOGENE LA English DT Review ID SQUAMOUS-CELL CARCINOMA; ARISTOLOCHIC ACID; MUTATIONAL SIGNATURES; P53 GENE; LUNG-CANCER; HEPATOCELLULAR-CARCINOMA; SOMATIC MUTATIONS; GENOMIC LANDSCAPE; ESOPHAGEAL ADENOCARCINOMA; INTRATUMOR HETEROGENEITY AB Next-generation sequencing (NGS) technology has demonstrated that the cancer genomes are peppered with mutations. Although most somatic tumour mutations are unlikely to have any role in the cancer process per se, the spectra of DNA sequence changes in tumour mutation catalogues have the potential to identify the mutagens, and to reveal the mutagenic processes responsible for human cancer. Very recently, a novel approach for data mining of the vast compilations of tumour NGS data succeeded in separating and precisely defining at least 30 distinct patterns of sequence change hidden in mutation databases. At least half of these mutational signatures can be readily assigned to known human carcinogenic exposures or endogenous mechanisms of mutagenesis. A quantum leap in our knowledge of mutagenesis in human cancers has resulted, stimulating a flurry of research activity. We trace here the major findings leading first to the hypothesis that carcinogenic insults leave characteristic imprints on the DNA sequence of tumours, and culminating in empirical evidence from NGS data that well-defined carcinogen mutational signatures are indeed present in tumour genomic DNA from a variety of cancer types. The notion that tumour DNAs can divulge environmental sources of mutation is now a well-accepted fact. This approach to cancer aetiology has also incriminated various endogenous, enzyme-driven processes that increase the somatic mutation load in sporadic cancers. The tasks now confronting the field of molecular epidemiology are to assign mutagenic processes to orphan and newly discovered tumour mutation patterns, and to determine whether avoidable cancer risk factors influence signatures produced by endogenous enzymatic mechanisms. Innovative research with experimental models and exploitation of the geographical heterogeneity in cancer incidence can address these challenges. C1 [Hollstein, M.; Ardin, M.; Zavadil, J.] World Hlth Org, Int Agcy Res Canc, Mol Mech & Biomarkers, 150 Cours Albert Thomas, F-69008 Lyon, France. [Hollstein, M.] Univ Leeds, Fac Med & Hlth, Leeds LS2 9JT, W Yorkshire, England. [Alexandrov, L. B.] Los Alamos Natl Lab, Theoret Biol & Biophys T 6, POB 1663, Los Alamos, NM 87545 USA. [Alexandrov, L. B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. [Wild, C. P.] World Hlth Org, Int Agcy Res Canc, Lyon, France. RP Hollstein, M; Zavadil, J (reprint author), World Hlth Org, Int Agcy Res Canc, Mol Mech & Biomarkers, 150 Cours Albert Thomas, F-69008 Lyon, France.; Alexandrov, LB (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys T 6, POB 1663, Los Alamos, NM 87545 USA. EM M.Hollstein@leeds.ac.uk; lba@lanl.gov; zavadilj@iarc.fr OI Zavadil, Jiri/0000-0003-0640-5562 FU INCa-INSERM Plan Cancer grant; J. Robert Oppenheimer Fellowship at Los Alamos National Laboratory FX We acknowledge these funding sources: INCa-INSERM 2015 Plan Cancer grant to JZ; LBA is supported through the J. Robert Oppenheimer Fellowship at Los Alamos National Laboratory. NR 99 TC 2 Z9 2 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0950-9232 EI 1476-5594 J9 ONCOGENE JI Oncogene PD JAN 12 PY 2017 VL 36 IS 2 BP 158 EP 167 DI 10.1038/onc.2016.192 PG 10 WC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Oncology; Cell Biology; Genetics & Heredity GA EK5AA UT WOS:000393938100002 PM 27270430 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Konig, A Kratschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rad, N Rahbaran, B Rohringer, H Schieck, J Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S De Klundert, MV Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Lowette, S Moortgat, S Moreels, L Olbrechts, A Python, Q Tavernier, S Van Doninck, W Van Mulders, P Van Parijs, I Brun, H Caillol, C Clerbaux, B De Lentdecker, G Delannoy, H Fasanella, G Favart, L Goldouzian, R Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Maerschalk, T Marinov, A Randle-Conde, A Seva, T Vander Velde, C Vanlaer, P Yonamine, R Zenoni, F Zhang, F Cimmino, A Dobur, D Fagot, A Garcia, G Gul, M Mccartin, J Poyraz, D Salva, S Schofbeck, R Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Beluffi, C Bondu, O Brochet, S Bruno, G Caudron, A Ceard, L De Visscher, S Delaere, C Delcourt, M Forthomme, L Francois, B Giammanco, A Jafari, A Jez, P Komm, M Lemaitre, V Magitteri, A Mertens, A Musich, M Nuttens, C Piotrzkowski, K Quertenmont, L Selvaggi, M Marono, MV Wertz, S Beliy, N Alda, WL Alves, FL Alves, GA Brito, L Martins, MC Hensel, C Pol, AMME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Da Silveira, GG Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Herrera, CM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Fang, W Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Chen, Y Cheng, T Du, R Jiang, CH Leggat, D Liu, Z Romeo, F Shaheen, SM Spiezia, A Tao, J Wang, C Wang, Z Zhang, H Zhao, J Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Alvarez, JDR Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Antunovic, Z Kovac, M Brigljevic, V Ferencek, D Kadija, K Luetic, J Micanovic, S Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Finger, M Finger, M Jarrin, EC Awad, A Elgammal, S Mohamed, A Salama, E Calpas, B Kadastik, M Murumaa, M Perrini, L Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Peltola, T Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Ghosh, S Givernaud, A Gras, P De Monchenault, GH Jarry, P Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Abdulsalam, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Davignon, O de Cassagnac, RG Jo, M Lisniak, S Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Grenier, G Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Popov, A Sabes, D Sordini, V Vander Donckt, M Verdier, P Viret, S Toriashvili, T Tsamalaidze, Z Autermann, C Beranek, S Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schomakers, C Schulte, JF Schulz, J Verlage, T Weber, H Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Knutzen, S Merschmeyer, M Meyer, A Millet, P Mukherjee, S Olschewski, M Padeken, K Papacz, P Pook, T Radziej, M Reithler, H Rieger, M Scheuch, F Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Hoehle, F Kargoll, B Kress, T Kunsken, A Lingemann, J Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asin, I Beernaert, K Behnke, O Behrens, U Bin Anuar, AA Borras, K Campbell, A Connor, P Contreras-Campana, C Costanza, F Pardos, CD Dolinska, G Eckerlin, G Eckstein, D Eichhorn, T Gallo, E Garcia, JG Geiser, A Gizhko, A Luyando, JMG Gunnellini, P Harb, A Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Kieseler, J Kleinwort, C Korol, I Lange, W Lelek, A Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Ntomari, E Pitzl, D Placakyte, R Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Seitz, C Spannagel, S Stefaniuk, N Trippkewitz, KD Van Onsem, GP Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Dreyer, T Erfle, J Garutti, E Goebel, K Gonzalez, D Gorner, M Haller, J Hoffmann, M Hoing, RS Junkes, A Klanner, R Kogler, R Kovalchuk, N Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Niedziela, M Nowatschin, D Ott, J Pantaleo, F Peiffer, T Perieanu, A Pietsch, N Poehlsen, J Sander, C Scharf, C Schleper, P Schlieckau, E Schmidt, A Schumann, S Schwandt, J Stadie, H Steinbruck, G Stober, FM Stover, M Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Barth, C Baus, C Berger, J Butz, E Chwalek, T Colombo, F Husemann, U Katkov, I Kornmayer, A Pardo, PL Maier, B Mildner, H Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Schroder, M Sieber, G Simonis, HJ Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Williamson, S Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Filipovic, N Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Szillasi, Z Bartok, M Makovec, A Raics, P Trocsanyi, ZL Ujvari, B Bahinipati, S Choudhury, S Mal, P Mandal, K Nayak, A Sahoo, DK Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Gupta, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Keshri, S Kumar, A Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Bhattacharya, R Bhattacharya, S Chatterjee, K Dey, S Dutt, S Dutta, S Ghosh, S Majumdar, N Modak, A Mondal, K Mukhopadhyay, S Nandan, S Purohit, A Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Thakur, S Behera, PK Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Netrakanti, PK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Guchait, M Gurtu, A Jain, S Kole, G Kumar, S Mahakud, B Maity, M Majumder, G Mazumdar, K Mitra, S Mohanty, GB Parida, B Sarkar, T Sur, N Sutar, B Wickramage, N Chauhan, S Dube, S Kapoor, A Kothekar, K Rane, A Sharma, S Bakhshiansohi, H Behnamian, H Chenarani, S Tadavani, EE Etesami, SM Fahim, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Silvestris, L Venditti, R Abbiendi, G Battilana, C Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Albergo, S Chiorboli, M Costa, S Di Mattia, A Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Calvelli, V Ferro, F Lo Vetere, M Monge, MR Robutti, E Tosi, S Brianza, L Brivio, F Dinardo, ME Fiorendi, S Gennai, S Ghezzi, A Govoni, P Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Pigazzini, S de Fatis, TT Buontempo, S Cavallo, N De Nardo, G Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Merola, M Paolucci, P Sciacca, C Thyssen, F Azzi, P Benato, L Bisello, D Boletti, A Carlin, R De Oliveira, ACA Checchia, P Dall'Osso, M Manzano, PD Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Braghieri, A Magnani, A Montagna, P Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Ciangottini, D Ciangottini, D Fano, L Lariccia, P Leonardi, R Mantovani, G Menichelli, M Saha, A Santocchia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Cipriani, M D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bartosik, N Bellan, R Biino, C Cartiglia, N Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Traczyk, P Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G La Licata, C Schizzi, A Zanetti, A Kim, DH Kim, GN Kim, MS Lee, S Lee, SW Oh, YD Sekmen, S Son, DC Yang, YC Kim, H Cifuentes, JAB Kim, TJ Cho, S Choi, S Go, Y Gyun, D Ha, S Hong, B Jo, Y Kim, Y Lee, B Lee, K Lee, KS Lee, S Lim, J Park, SK Roh, Y Almond, J Kim, J Seo, SH Yang, UK Yoo, HD Yu, GB Choi, M Kim, H Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Ryu, MS Choi, Y Goh, J Kim, D Kwon, E Lee, J Yu, I Dudenas, V Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Yusli, MN Zolkapli, Z Linares, EC Castilla-Valdez, H De la Cruz-Burelo, E Heredia-De la Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Guisao, JM Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Estrada, CU Pineda, AM Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Waqas, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Hollar, J Leonardo, N Iglesias, LL Nemallapudi, MV Nguyen, F Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Bunin, P Golutvin, I Gorbounov, N Gorbunov, I Kamenev, A Karjavin, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Shulha, S Skatchkov, N Smirnov, V Voytishin, N Zarubin, A Chtchipounov, L Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Murzin, V Oreshkin, V Sulimov, V Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Toms, M Vlasov, E Zhokin, A Chistov, R Danilov, M Rusinov, V Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Rusakov, SV Terkulov, A Baskakov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Miagkov, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Elumakhov, D Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Cirkovic, P Devetak, D Milosevic, J Rekovic, V Maestre, JA Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS de Troconiz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Caballero, IG Cortezon, EP Cruz, SS Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Curras, E Fernandez, M Garcia-Ferrero, J Gomez, G Virto, AL Marco, J Rivero, CM Matorras, F Gomez, JP Rodrigo, T Ruiz-Jimeno, A Scodellaro, L Trevisani, N Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bloch, P Bocci, A Bonato, A Botta, C Camporesi, T Castello, R Cepeda, M Cerminara, G D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A Di Marco, E Dobson, M Dordevic, M Dorney, B du Pree, T Duggan, D Dunser, M Dupont, N Elliott-Peisert, A Fartoukh, S Franzoni, G Fulcher, J Funk, W Gigi, D Gill, K Girone, M Glege, F Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Knunz, V Kortelainen, MJ Kousouris, K Krammer, M Lecoq, P Lourenco, C Lucchini, MT Magini, N Malgeri, L Mannelli, M Martelli, A Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Racz, A Reis, T Rolandi, G Rovere, M Ruan, M Sakulin, H Sauvan, JB Schafer, C Schwick, C Seidel, M Sharma, A Rovere, M Ruan, M Sakulin, H Sauvan, JB Schafer, C Schwick, C Seidel, M Sharma, A Silva, P Simon, M Sphicas, P Steggemann, J Stoye, M Takahashi, Y Treille, D Triossi, A Tsirou, A Veckalns, V Veres, GI Wardle, N Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Rohe, T Bachmair, F Bani, L Bianchini, L Casal, B Dissertori, G Dittmar, M Donega, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lecomte, P Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Meinhard, MT Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrin, G Perrozzi, L Quittnat, M Rossini, M Schonenberger, M Starodumov, A Takahashi, M Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF Chiochia, V De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Rauco, G Robmann, P Salerno, D Yang, Y Chen, KH Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Pozdnyakov, A Yu, SS Kumar, A Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Paganis, E Tsai, JF Tzeng, YM Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Damarseckin, S Demiroglu, ZS Dozen, C Dumanoglu, I Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Cerci, DS Tali, B Zorbilmez, C Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Gulmez, E Kaya, M Kaya, O Yetkin, EA Yetkin, T Cakir, A Cankocak, K Sen, S Imath, FIV Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Burns, D Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-Storey, SS Senkin, S Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Calligaris, L Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Dauncey, P Davies, G Dewit, A Della Negra, M Dunne, P Elwood, A Futyan, D Haddad, Y Hall, G Iles, G Lane, R Laner, C Lucas, R Lyons, L Magnan, AM Malik, S Mastrolorenzo, L Nash, J Nikitenko, A Pela, J Penning, B Pesaresi, M Raymond, DM Richards, A Rose, A Seez, C Tapper, A Uchida, K Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P Arcaro, D Avetisyan, A Bose, T Gastler, D Rankin, D Richardson, C Rohlf, J Sulak, L Zou, D Benelli, G Berry, E Cutts, D Ferapontov, A Garabedian, A Hakala, J Heintz, U Jesus, O Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Spencer, E Syarif, R Breedon, R Breto, G Burns, D Sanchez, MCDL Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Flores, C Funk, G Gardner, M Ko, W Lander, R Mclean, C Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Florent, A Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Kennedy, E Lacroix, F Long, OR Malberti, M Negrete, MO Paneva, MI Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Derdzinski, M Gerosa, R Holzner, A Kelley, R Klein, D Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wood, J Wurthwein, F Yagil, A Della Porta, GZ Bhandari, R Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Heller, R Incandela, J Mccoll, N Mullin, SD Ovcharova, A Richman, J Stuart, D Suarez, I West, C Yoo, J Anderson, D Apresyan, A Bendavid, J Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Calamba, A Carlson, B Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Jensen, F Johnson, A Krohn, M Mulholland, T Stenson, K Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Sun, W Tan, SM Tao, Z Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Wittich, P Winn, D Abdullin, S Albrow, M Apollinari, G Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Cremonesi, M Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, RM Hasegawa, S Hirschauer, J Hu, Z Jayatilaka, B Jindariani, S Johnson, M Joshi, U Klima, B Kreis, B Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Merkel, P Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Ristori, L Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Stoynev, S Strobbe, N Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Wang, M Weber, HA Whitbeck, A Acosta, D Avery, P Bortignon, P Bourilkov, D Brinkerhoff, A Carnes, A Carver, M Curry, D Das, S Field, RD Furic, IK Konigsberg, J Korytov, A Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Shchutska, L Sperka, D Thomas, L Wang, J Wang, S Yelton, J Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bein, S Diamond, B Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Santra, A Weinberg, M Baarmand, MM Bhopatkar, V Colafranceschi, S Hohlmann, M Kalakhety, H Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Turner, P Varelas, N Wu, Z Zakaria, M Zhang, J Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tiras, E Wetzel, J Yi, K Anderson, I Blumenfeld, B Cocoros, A Eminizer, N Fehling, D Feng, L Gritsan, AV Maksimovic, P Osherson, M Roskes, J Sarica, U Swartz, M Xiao, M Xin, Y You, C Al-bataineh, A Baringer, P Bean, A Bruner, C Castle, J Kenny, RP Kropivnitskaya, A Majumder, D Malek, M Mcbrayer, W Murray, M Sanders, S Stringer, R Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Baty, A Bi, R Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Hsu, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Krajczar, K Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Narayanan, S Niu, X Paus, C Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Tatar, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Benvenuti, AC Dahmes, B Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Klapoetke, K Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bartek, R Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Knowlton, D Kravchenko, I Meier, F Monroy, J Siado, JE Snow, GR Stieger, B Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Parker, A Rappoccio, S Roozbahani, B Alverson, G Barberis, E Baumgartel, D Chasco, M Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Bhattacharya, S Hahn, KA Kubik, A Low, JF Mucia, N Odell, N Pollack, B Schmitt, MH Sung, K Trovato, M Velasco, M Dev, N Hildreth, M Anampa, KH Jessop, C Karmgard, DJ Kellams, N Lannon, K Marinelli, N Meng, F Mueller, C Musienko, Y Planer, M Reinsvold, A Ruchti, R Rupprecht, N Smith, G Taroni, S Valls, N Wayne, M Wolf, M Woodard, A Alimena, J Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Francis, B Hart, A Hill, C Hughes, R Ji, W Liu, B Luo, W Puigh, D Rodenburg, M Winer, BL Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Marlow, D Medvedeva, T Mooney, M Olsen, J Palmer, C Piroue, P Stickland, D Tully, C Zuranski, A Malik, S Barker, A Barnes, VE Benedetti, D Folgueras, S Gutay, L Jha, MK Jones, M Jung, AW Jung, K Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A De Barbaro, P Demina, R Duh, YT Eshaq, Y Ferbel, T Galanti, M Garcia-Bellido, A Han, J Hindrichs, O Khukhunaishvili, A Lo, KH Tan, P Verzetti, M Chou, JP Contreras-Campana, E Gershtein, Y Espinosa, TAG Halkiadakis, E Heindl, M Hidas, D Hughes, E Kaplan, S Elayavalli, RK Kyriacou, S Lath, A Nash, K Saka, H Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Heideman, J Riley, G Rose, K Spanier, S Thapa, K Bouhali, O Hernandez, AC Celik, A Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Flanagan, W Gilmore, J Huang, T Juska, E Kamon, T Krutelyov, V Mueller, R Pakhotin, Y Patel, R Perloff, A Pernie, L Rathjens, D Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Wang, Z Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Melo, A Ni, H Sheldon, P Tuo, S Velkovska, J Xu, Q Arenton, MW Barria, P Cox, B Goodell, J Hirosky, R Ledovskoy, A Li, H Neu, C Sinthuprasith, T Sun, X Wang, Y Wolfe, E Xia, F Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Dasu, S Dodd, L Duric, S Gomber, B Grothe, M Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Ojalvo, I Perry, T Pierro, GA Polese, G Ruggles, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Verwilligen, P Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Koenig, A. Kraetschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rad, N. Rahbaran, B. Rohringer, H. Schieck, J. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. De Klundert, M. Van Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Lowette, S. Moortgat, S. Moreels, L. Olbrechts, A. Python, Q. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Parijs, I. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Delannoy, H. Fasanella, G. Favart, L. Goldouzian, R. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Maerschalk, T. Marinov, A. Randle-Conde, A. Seva, T. Vander Velde, C. Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Cimmino, A. Dobur, D. Fagot, A. Garcia, G. Gul, M. Mccartin, J. Poyraz, D. Salva, S. Schofbeck, R. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Caudron, A. Ceard, L. De Visscher, S. Delaere, C. Delcourt, M. Forthomme, L. Francois, B. Giammanco, A. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Magitteri, A. Mertens, A. Musich, M. Nuttens, C. Piotrzkowski, K. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Wertz, S. Beliy, N. Alda Junior, W. L. Alves, F. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Hensel, C. Pol, A. Moraes M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Da Silveira, G. G. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mora Herrera, C. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Fang, W. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Chen, Y. Cheng, T. Du, R. Jiang, C. H. Leggat, D. Liu, Z. Romeo, F. Shaheen, S. M. Spiezia, A. Tao, J. Wang, C. Wang, Z. Zhang, H. Zhao, J. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Ruiz Alvarez, J. D. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Cipriano, P. M. Ribeiro Antunovic, Z. Kovac, M. Brigljevic, V. Ferencek, D. Kadija, K. Luetic, J. Micanovic, S. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Finger, M. Finger, M., Jr. Carrera Jarrin, E. Awad, A. elgammal, S. Mohamed, A. Salama, E. Calpas, B. Kadastik, M. Murumaa, M. Perrini, L. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Peltola, T. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Ghosh, S. Givernaud, A. Gras, P. De Monchenault, G. Hamel Jarry, P. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Abdulsalam, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Davignon, O. de Cassagnac, R. Granier Jo, M. Lisniak, S. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Montoya, C. A. Carrillo Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Grenier, G. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Popov, A. Sabes, D. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Toriashvili, T. Tsamalaidze, Z. Autermann, C. Beranek, S. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schomakers, C. Schulte, J. F. Schulz, J. Verlage, T. Weber, H. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Knutzen, S. Merschmeyer, M. Meyer, A. Millet, P. Mukherjee, S. Olschewski, M. Padeken, K. Papacz, P. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, F. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Hoehle, F. Kargoll, B. Kress, T. Kuensken, A. Lingemann, J. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Beernaert, K. Behnke, O. Behrens, U. Bin Anuar, A. A. Borras, K. Campbell, A. Connor, P. Contreras-Campana, C. Costanza, F. Pardos, C. Diez Dolinska, G. Eckerlin, G. Eckstein, D. Eichhorn, T. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Luyando, J. M. Grados Gunnellini, P. Harb, A. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Kieseler, J. Kleinwort, C. Korol, I. Lange, W. Lelek, A. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Ntomari, E. Pitzl, D. Placakyte, R. Raspereza, A. Roland, B. Sahin, M. Oe. Saxena, P. Schoerner-Sadenius, T. Seitz, C. Spannagel, S. Stefaniuk, N. Trippkewitz, K. D. Van Onsem, G. P. Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Dreyer, T. Erfle, J. Garutti, E. Goebel, K. Gonzalez, D. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Junkes, A. Klanner, R. Kogler, R. Kovalchuk, N. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Niedziela, M. Nowatschin, D. Ott, J. Pantaleo, F. Peiffer, T. Perieanu, A. Pietsch, N. Poehlsen, J. Sander, C. Scharf, C. Schleper, P. Schlieckau, E. Schmidt, A. Schumann, S. Schwandt, J. Stadie, H. Steinbrueck, G. Stober, F. M. Stoever, M. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Barth, C. Baus, C. Berger, J. Butz, E. Chwalek, T. Colombo, F. Husemann, U. Katkov, I. Kornmayer, A. Pardo, P. Lobelle Maier, B. Mildner, H. Mozer, M. U. Mueller, T. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Schroeder, M. Sieber, G. Simonis, H. J. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Williamson, S. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Filipovic, N. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Szillasi, Z. Bartok, M. Makovec, A. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bahinipati, S. Choudhury, S. Mal, P. Mandal, K. Nayak, A. Sahoo, D. K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Keshri, S. Kumar, A. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Bhattacharya, R. Bhattacharya, S. Chatterjee, K. Dey, S. Dutt, S. Dutta, S. Ghosh, S. Majumdar, N. Modak, A. Mondal, K. Mukhopadhyay, S. Nandan, S. Purohit, A. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Thakur, S. Behera, P. K. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Netrakanti, P. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Guchait, M. Gurtu, A. Jain, Sa. Kole, G. Kumar, S. Mahakud, B. Maity, M. Majumder, G. Mazumdar, K. Mitra, S. Mohanty, G. B. Parida, B. Sarkar, T. Sur, N. Sutar, B. Wickramage, N. Chauhan, S. Dube, S. Kapoor, A. Kothekar, K. Rane, A. Sharma, S. Bakhshiansohi, H. Behnamian, H. Chenarani, S. Tadavani, E. Eskandari Etesami, S. M. Fahim, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Silvestris, L. Venditti, R. Abbiendi, G. Battilana, C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Albergo, S. Chiorboli, M. Costa, S. Di Mattia, A. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Primavera, F. Calvelli, V. Ferro, F. Lo Vetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Brivio, F. Dinardo, M. E. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Pigazzini, S. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Nardo, G. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Merola, M. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Benato, L. Bisello, D. Boletti, A. Carlin, R. De Oliveira, A. Carvalho Antunes Checchia, P. Dall'Osso, M. Manzano, P. De Castro Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Braghieri, A. Magnani, A. Montagna, P. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Solestizi, L. Alunni Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Leonardi, R. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Cipriani, M. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bartosik, N. Bellan, R. Biino, C. Cartiglia, N. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Traczyk, P. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. La Licata, C. Schizzi, A. Zanetti, A. Kim, D. H. Kim, G. N. Kim, M. S. Lee, S. Lee, S. W. Oh, Y. D. Sekmen, S. Son, D. C. Yang, Y. C. Kim, H. Cifuentes, J. A. Brochero Kim, T. J. Cho, S. Choi, S. Go, Y. Gyun, D. Ha, S. Hong, B. Jo, Y. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Lim, J. Park, S. K. Roh, Y. Almond, J. Kim, J. Seo, S. H. Yang, U. K. Yoo, H. D. Yu, G. B. Choi, M. Kim, H. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Goh, J. Kim, D. Kwon, E. Lee, J. Yu, I. Dudenas, V. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Yusli, M. N. Zolkapli, Z. Casimiro Linares, E. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-De la Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Mejia Guisao, J. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Pedraza, I. Salazar Ibarguen, H. A. Uribe Estrada, C. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Waqas, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beirao Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Hollar, J. Leonardo, N. Lloret Iglesias, L. Nemallapudi, M. V. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Bunin, P. Golutvin, I. Gorbounov, N. Gorbunov, I. Kamenev, A. Karjavin, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Voytishin, N. Zarubin, A. Chtchipounov, L. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Murzin, V. Oreshkin, V. Sulimov, V. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Toms, M. Vlasov, E. Zhokin, A. Chistov, R. Danilov, M. Rusinov, V. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Rusakov, S. V. Terkulov, A. Baskakov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Miagkov, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Elumakhov, D. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Cirkovic, P. Devetak, D. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. de Troconiz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Palencia Cortezon, E. Sanchez Cruz, S. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. Curras, E. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Martinez Rivero, C. Matorras, F. Piedra Gomez, J. Rodrigo, T. Ruiz-Jimeno, A. Scodellaro, L. Trevisani, N. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bloch, P. Bocci, A. Bonato, A. Botta, C. Camporesi, T. Castello, R. Cepeda, M. Cerminara, G. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. du Pree, T. Duggan, D. Dunser, M. Dupont, N. Elliott-Peisert, A. Fartoukh, S. Franzoni, G. Fulcher, J. Funk, W. Gigi, D. Gill, K. Girone, M. Glege, F. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Knunz, V. Kortelainen, M. J. Kousouris, K. Krammer, M. Lecoq, P. Lourenco, C. Lucchini, M. T. Magini, N. Malgeri, L. Mannelli, M. Martelli, A. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Racz, A. Reis, T. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Sauvan, J. B. Schafer, C. Schwick, C. Seidel, M. Sharma, A. Rovere, M. Ruan, M. Sakulin, H. Sauvan, J. B. Schafer, C. Schwick, C. Seidel, M. Sharma, A. Silva, P. Simon, M. Sphicas, P. Steggemann, J. Stoye, M. Takahashi, Y. Treille, D. Triossi, A. Tsirou, A. Veckalns, V. Veres, G. I. Wardle, N. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lecomte, P. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meinhard, M. T. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrin, G. Perrozzi, L. Quittnat, M. Rossini, M. Schonenberger, M. Starodumov, A. Takahashi, M. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. Chiochia, V. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Rauco, G. Robmann, P. Salerno, D. Yang, Y. Chen, K. H. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Pozdnyakov, A. Yu, S. S. Kumar, Arun Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Paganis, E. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Damarseckin, S. Demiroglu, Z. S. Dozen, C. Dumanoglu, I. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Cerci, D. Sunar Tali, B. Zorbilmez, C. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Gulmez, E. Kaya, M. Kaya, O. Yetkin, E. A. Yetkin, T. Cakir, A. Cankocak, K. Sen, S. Imath, F. I. Vardarl Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Burns, D. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-Storey, S. Seif Senkin, S. Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Calligaris, L. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Dauncey, P. Davies, G. Dewit, A. Della Negra, M. Dunne, P. Elwood, A. Futyan, D. Haddad, Y. Hall, G. Iles, G. Lane, R. Laner, C. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mastrolorenzo, L. Nash, J. Nikitenko, A. Pela, J. Penning, B. Pesaresi, M. Raymond, D. M. Richards, A. Rose, A. Seez, C. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Arcaro, D. Avetisyan, A. Bose, T. Gastler, D. Rankin, D. Richardson, C. Rohlf, J. Sulak, L. Zou, D. Benelli, G. Berry, E. Cutts, D. Ferapontov, A. Garabedian, A. Hakala, J. Heintz, U. Jesus, O. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Spencer, E. Syarif, R. Breedon, R. Breto, G. Burns, D. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Flores, C. Funk, G. Gardner, M. Ko, W. Lander, R. Mclean, C. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Florent, A. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Malberti, M. Negrete, M. Olmedo Paneva, M. I. Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Derdzinski, M. Gerosa, R. Holzner, A. Kelley, R. Klein, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wood, J. Wurthwein, F. Yagil, A. Della Porta, G. Zevi Bhandari, R. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Heller, R. Incandela, J. Mccoll, N. Mullin, S. D. Ovcharova, A. Richman, J. Stuart, D. Suarez, I. West, C. Yoo, J. Anderson, D. Apresyan, A. Bendavid, J. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Stenson, K. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Sun, W. Tan, S. M. Tao, Z. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cremonesi, M. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jayatilaka, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kreis, B. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Merkel, P. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Ristori, L. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Stoynev, S. Strobbe, N. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Wang, M. Weber, H. A. Whitbeck, A. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Brinkerhoff, A. Carnes, A. Carver, M. Curry, D. Das, S. Field, R. D. Furic, I. K. Konigsberg, J. Korytov, A. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Shchutska, L. Sperka, D. Thomas, L. Wang, J. Wang, S. Yelton, J. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bein, S. Diamond, B. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Santra, A. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Colafranceschi, S. Hohlmann, M. Kalakhety, H. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Turner, P. Varelas, N. Wu, Z. Zakaria, M. Zhang, J. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Blumenfeld, B. Cocoros, A. Eminizer, N. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Osherson, M. Roskes, J. Sarica, U. Swartz, M. Xiao, M. Xin, Y. You, C. Al-bataineh, A. Baringer, P. Bean, A. Bruner, C. Castle, J. Kenny, R. P., III Kropivnitskaya, A. Majumder, D. Malek, M. Mcbrayer, W. Murray, M. Sanders, S. Stringer, R. Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Baty, A. Bi, R. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Hsu, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Krajczar, K. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Narayanan, S. Niu, X. Paus, C. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Tatar, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Benvenuti, A. C. Dahmes, B. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Klapoetke, K. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bartek, R. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Knowlton, D. Kravchenko, I. Meier, F. Monroy, J. Siado, J. E. Snow, G. R. Stieger, B. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Parker, A. Rappoccio, S. Roozbahani, B. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Bhattacharya, S. Hahn, K. A. Kubik, A. Low, J. F. Mucia, N. Odell, N. Pollack, B. Schmitt, M. H. Sung, K. Trovato, M. Velasco, M. Dev, N. Hildreth, M. Anampa, K. Hurtado Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Planer, M. Reinsvold, A. Ruchti, R. Rupprecht, N. Smith, G. Taroni, S. Valls, N. Wayne, M. Wolf, M. Woodard, A. Alimena, J. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Francis, B. Hart, A. Hill, C. Hughes, R. Ji, W. Liu, B. Luo, W. Puigh, D. Rodenburg, M. Winer, B. L. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Stickland, D. Tully, C. Zuranski, A. Malik, S. Barker, A. Barnes, V. E. Benedetti, D. Folgueras, S. Gutay, L. Jha, M. K. Jones, M. Jung, A. W. Jung, K. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. De Barbaro, P. Demina, R. Duh, Y. T. Eshaq, Y. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Hindrichs, O. Khukhunaishvili, A. Lo, K. H. Tan, P. Verzetti, M. Chou, J. P. Contreras-Campana, E. Gershtein, Y. Espinosa, T. A. Gomez Halkiadakis, E. Heindl, M. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Kyriacou, S. Lath, A. Nash, K. Saka, H. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Heideman, J. Riley, G. Rose, K. Spanier, S. Thapa, K. Bouhali, O. Hernandez, A. Castaneda Celik, A. Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Flanagan, W. Gilmore, J. Huang, T. Juska, E. Kamon, T. Krutelyov, V. Mueller, R. Pakhotin, Y. Patel, R. Perloff, A. Pernie, L. Rathjens, D. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Wang, Z. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Melo, A. Ni, H. Sheldon, P. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Barria, P. Cox, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Neu, C. Sinthuprasith, T. Sun, X. Wang, Y. Wolfe, E. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Dasu, S. Dodd, L. Duric, S. Gomber, B. Grothe, M. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ruggles, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Verwilligen, P. Woods, N. CA CMS Collaboration TI Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTON DISTRIBUTIONS; COMPUTATION AB A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at root s = 8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb(-1), recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Koenig, A.; Kraetschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; De Klundert, M. Van; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Maerschalk, T.; Marinov, A.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Fang, W.] Univ Libre Bruxelles, Brussels, Belgium. [Cimmino, A.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Poyraz, D.; Salva, S.; Schofbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, Ghent, Belgium. [Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Wertz, S.] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.] Univ Mons, Mons, Belgium. [Alda Junior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Pol, A. Moraes M. E.; Rebello Teles, P.; Romero, A.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Ruiz Vargas, J. C.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.; Romero Abad, D.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, Sofia, Bulgaria. [Fang, W.] Beihang Univ, Beijing, Peoples R China. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.] Inst High Energy Phys, Beijing, Peoples R China. [Zhang, F.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Monteil, E.; Obertino, M. M.; Pacher, L.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Ruiz Alvarez, J. D.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.] Univ Split, Fac Sci, Split, Croatia. [Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.] Inst Rudjer Boskovic, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Carrera Jarrin, E.] Univ San Francisco Quito, Quito, Ecuador. [Awad, A.; elgammal, S.; Mohamed, A.; Salama, E.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Voutilainen, M.; Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; De Monchenault, G. Hamel; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, IN2P3 CNRS, Lab Leprince Ringuet, Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Gadrat, S.] CNRS IN2P3, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.] Univ Claude Bernard Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, Villeurbanne, France. [Toriashvili, T.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Toriashvili, T.; Tsamalaidze, Z.] Tbilisi State Univ, Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Borras, K.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuensken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Chen, Y.; Martin, M. Aldaya; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Luyando, J. M. Grados; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Oe.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Gallo, E.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrueck, G.; Stober, F. M.; Stoever, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; Husemann, U.; Katkov, I.; Kornmayer, A.; Pardo, P. Lobelle; Maier, B.; Mildner, H.; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Schroeder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Woehrmann, C.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, Ioannina, Greece. [Filipovic, N.; Vesztergombi, G.; Bartok, M.; Veckalns, V.; Veres, G. I.] Eotvos Lorand Univ, MTA ELTE Lendulet CMS Particle & Nucl Phys Grp, H-1364 Budapest, Hungary. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Bartok, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi, India. [Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Thakur, S.] Saha Inst Nucl Phys, Kolkata, India. [Behera, P. K.] Indian Inst Technol Madras, Madras, Tamil Nadu, India. [Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.] Tata Inst Fundamental Res, Mumbai, Maharashtra, India. [Choudhury, S.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.] IISER, Pune, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Chenarani, S.; Tadavani, E. Eskandari; Etesami, S. M.; Fahim, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Gori, V.; Lenzi, P.; Viliani, L.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Primavera, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Brianza, L.; Brivio, F.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Manzoni, R. A.; Marzocchi, B.; Moroni, L.; Paganoni, M.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, Rome, Italy. [Fabozzi, F.; Iorio, A. O. M.] Univ Napoli Federico II, Rome, Italy. [Cavallo, N.; Esposito, M.] Univ Basilicata, Rome, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Thyssen, F.; Azzi, P.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Checchia, P.; Dall'Osso, M.; Manzano, P. De Castro; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.] Ist Nazl Fis Nucl, Sez Padova, Trento, Italy. [Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Dall'Osso, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.] Univ Padua, Trento, Italy. Univ Trento, Trento, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Magnani, A.; Montagna, P.; Ratti, S. P.; Riccardi, C.; Vai, I.; Vitulo, P.] Univ Pavia, Pavia, Italy. [Solestizi, L. Alunni; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy. [Solestizi, L. Alunni; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Santocchia, A.] Univ Perugia, Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Donato, S.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.] Ist Nazl Fis Nucl, Sez Roma, Pisa, Italy. [Barone, L.; Cipriani, M.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.] Univ Rome, Pisa, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Torino, Novara, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Sacchi, R.; Solano, A.; Traczyk, P.] Univ Turin, Novara, Italy. [Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.] Kyungpook Natl Univ, Daegu, South Korea. [Kim, H.] Chonbuk Natl Univ, Jeonju, South Korea. [Cifuentes, J. A. Brochero; Kim, T. J.] Hanyang Univ, Seoul, South Korea. [Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Almond, J.; Kim, J.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Dudenas, V.; Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.; Zolkapli, Z.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Casimiro Linares, E.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-De la Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.] IPN, Ctr Invest Estudios Avanzados, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Finger, M.; Finger, M., Jr.; Tsamalaidze, Z.; Bunin, P.; Golutvin, I.; Gorbounov, N.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Kim, V.; Chistov, R.; Danilov, M.; Rusinov, V.] Natl Res Nucl Univ, MEPhI, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Troconiz, J. F.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.] CSIC Univ Cantabria, Inst Fis Cantabria IFCA, Santander, Spain. [Merlin, J. A.; Stahl, A.; Pantaleo, F.; Kornmayer, A.; Mohanty, A. K.; Silvestris, L.; Tosi, N.; Viliani, L.; Primavera, F.; Manzoni, R. A.; Di Guida, S.; Meola, S.; Paolucci, P.; Thyssen, F.; Pazzini, J.; Azzurri, P.; D'imperio, G.; Del Re, D.; Arcidiacono, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dunser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knunz, V.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenco, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schafer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Schafer, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.; Virdee, T.] CERN, European Org Nucl Res, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schonenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Paganis, E.; Tsai, J. F.; Tzeng, Y. M.; Singh, G.] NTU, Taipei, Taiwan. [Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Cerci, D. Sunar; Tali, B.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle East Tech Univ, Dept Phys, Ankara, Turkey. [Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cakir, A.; Cankocak, K.; Sen, S.; Imath, F. I. Vardarl] Istanbul Tech Univ, Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-Storey, S. Seif; Senkin, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Lucas, R.; Kenny, R. P., III] Rutherford Appleton Lab, Didcot, Oxon, England. [Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; Dewit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Imperial Coll, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Burns, D.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Negrete, M. Olmedo; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Wurthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.] Univ Colorado Boulder, Boulder, CO USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Sun, W.; Tan, S. M.; Tao, Z.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Kuznetsova, E.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.] UIC, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Al-bataineh, A.; Baringer, P.; Bean, A.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Malek, M.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.] Univ Nebraska Lincoln, Lincoln, NE USA. [Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.] Northeastern Univ, Boston, MA 02115 USA. [Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Dev, N.; Hildreth, M.; Anampa, K. Hurtado; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Stickland, D.; Tully, C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barker, A.; Barnes, V. E.; Benedetti, D.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; De Barbaro, P.; Demina, R.; Duh, Y. T.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.] Univ Rochester, Rochester, NY 14627 USA. [Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Espinosa, T. A. Gomez; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Hernandez, A. Castaneda; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Krutelyov, V.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Pernie, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.] Texas Tech Univ, Lubbock, TX 79409 USA. [Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.] Univ Wisconsin Madison, Madison, WI USA. [Friedl, M.; Jeitler, M.; Schieck, J.; Wulz, C. -E.; Krammer, M.] Vienna Univ Technol, Vienna, Austria. [Chinellato, J.] Univ Estadual Campinas, Campinas, Brazil. [Moon, C. S.] CNRS IN2P3, Paris, France. [elgammal, S.; Salama, E.] British Univ Egypt, Cairo, Egypt. [Mohamed, A.] Zewail City Sci & Technol, Zewail, Egypt. [Salama, E.] Ain Shams Univ, Cairo, Egypt. [Agram, J. -L.; Brom, J. -M.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Karacheban, O.; Lohmann, W.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.] Univ Siena, Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Idris, F. Mohamad] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia. [Heredia-De la Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Byszuk, A.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Matveev, V.; Musienko, Y.] Inst Nucl Res, Moscow, Russia. [Di Marco, E.] Univ Roma, Sez Roma, Ist Nazl Fis Nucl, Rome, Italy. [Orfanelli, S.] Natl Tech Univ Athens, Athens, Greece. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Veckalns, V.] Riga Tech Univ, Riga, Latvia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.] Gaziosmanpasa Univ, Tokat, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, E. A.] Istanbul Bilgi Univ, Istanbul, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Acosta, M. Vazquez] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Colafranceschi, S.] Univ Roma, Fac Ingn, Rome, Italy. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bouhali, O.; Hernandez, A. Castaneda] Texas A&M Univ Qatar, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan, Armenia. RI Lokhtin, Igor/D-7004-2012; Della Ricca, Giuseppe/B-6826-2013; Manganote, Edmilson/K-8251-2013; Konecki, Marcin/G-4164-2015; Puljak, Ivica/D-8917-2017; Fernandez Menendez, Javier/B-6550-2014; TUVE', Cristina/P-3933-2015; Terkulov, Adel/M-8581-2015; Goh, Junghwan/Q-3720-2016 OI Della Ricca, Giuseppe/0000-0003-2831-6982; Konecki, Marcin/0000-0001-9482-4841; Fernandez Menendez, Javier/0000-0002-5213-3708; TUVE', Cristina/0000-0003-0739-3153; Goh, Junghwan/0000-0002-1129-2083 FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); Croatian Science Foundation CSF (Croatia); RPF (Cyprus); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); BUAP (Mexico); CINVESTAV (Mexico); CONACYT (Mexico); LNS (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI(Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie program (European Union); European Research Council (European Union); EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS program of the Foundation for Polish Science; Mobility Plus program of the Ministry of Science and Higher Education (Poland); OPUS program of the National Science Center (Poland); Thalis and Aristeia programs - EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Programa Clarin-COFUND del Principado de Asturias; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); Welch Foundation [C-1845]; European Union, Regional Development Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and Croatian Science Foundation CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Mobility Plus program of the Ministry of Science and Higher Education (Poland); the OPUS program of the National Science Center (Poland); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarin-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, Contract No. C-1845. NR 52 TC 1 Z9 1 U1 30 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 12 PY 2017 VL 118 IS 2 AR 021802 DI 10.1103/PhysRevLett.118.021802 PG 18 WC Physics, Multidisciplinary SC Physics GA EH7BL UT WOS:000391927700004 PM 28128610 ER PT J AU Lu, XY McNally, DE Sala, MM Terzic, J Upton, MH Casa, D Ingold, G Cao, G Schmitt, T AF Lu, Xingye McNally, D. E. Sala, M. Moretti Terzic, J. Upton, M. H. Casa, D. Ingold, G. Cao, G. Schmitt, T. TI Doping Evolution of Magnetic Order and Magnetic Excitations in (Sr1-xLax)(3)Ir2O7 SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOTT INSULATOR; FERMI ARCS; SPIN; SUPERCONDUCTORS; PHYSICS; SR2IRO4 AB We use resonant elastic and inelastic x-ray scattering at the Ir-L-3 edge to study the doping-dependent magnetic order, magnetic excitations, and spin-orbit excitons in the electron-doped bilayer iridate (Sr1-xLax)(3)Ir2O7 (0 <= x <= 0.065). With increasing doping x, the three-dimensional long range anti-ferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order across the insulator-to-metal transition from x = 0 to 0.05, followed by a transition to two-dimensional short range order between x = 0.05 and 0.065. Because of the interactions between the J(eff) = 1/2 pseudospins and the emergent itinerant electrons, magnetic excitations undergo damping, anisotropic softening, and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr1-xLax)(3)Ir2O7 into a correlated metallic state with two-dimensional short range antiferromagnetic order. Strong antiferromagnetic fluctuations of the J(eff) = 1/2 moments persist deep in this correlated metallic state, with the magnon gap strongly suppressed. C1 [Lu, Xingye; McNally, D. E.; Ingold, G.; Schmitt, T.] Paul Scherrer Inst, Res Dept Synchrotron Radiat & Nanotechnol, CH-5232 Villigen, Switzerland. [Sala, M. Moretti] European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France. [Terzic, J.; Cao, G.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Terzic, J.; Cao, G.] Univ Colorado Boulder, Dept Phys, Boulder, CO 80309 USA. [Upton, M. H.; Casa, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ingold, G.] Paul Scherrer Inst, SwissFEL, CH-5232 Villigen, Switzerland. RP Lu, XY (reprint author), Paul Scherrer Inst, Res Dept Synchrotron Radiat & Nanotechnol, CH-5232 Villigen, Switzerland. EM xingye.lu@psi.ch; thorsten.schmitt@psi.ch RI Schmitt, Thorsten/A-7025-2010 FU Swiss National Science Foundation; NCCR-MARVEL; European Community [290605]; US National Science Foundation [DMR-1265162, DMR-1712101]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX We thank Matteo Rossi (ESRF) for helpful discussions. The work at PSI is supported by the Swiss National Science Foundation through its Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH) and the NCCR-MARVEL. Xingye Lu acknowledges financial support from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant agreement No. 290605 (COFUND: PSI-FELLOW). G. Cao acknowledges support by the US National Science Foundation via Grants No. DMR-1265162 and No. DMR-1712101. The work used Sector 27 of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 56 TC 0 Z9 0 U1 9 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 12 PY 2017 VL 118 IS 2 AR 027202 DI 10.1103/PhysRevLett.118.027202 PG 6 WC Physics, Multidisciplinary SC Physics GA EH7BL UT WOS:000391927700009 PM 28128620 ER PT J AU Ma, XD Cambre, S Wenseleers, W Doorn, SK Htoon, H AF Ma, Xuedan Cambre, Sofie Wenseleers, Wim Doorn, Stephen K. Htoon, Han TI Quasiphase Transition in a Single File of Water Molecules Encapsulated in (6,5) Carbon Nanotubes Observed by Temperature-Dependent Photoluminescence Spectroscopy SO PHYSICAL REVIEW LETTERS LA English DT Article ID OPTICAL-RESPONSE; TRANSPORT; DESALINATION; MEMBRANES; DIAMETER; DYNAMICS; FUTURE; ENERGY AB Molecules confined inside single-walled carbon nanotubes (SWCNTs) behave quite differently from their bulk analogues. In this Letter we present temperature-dependent (4.2 K up to room temperature) photoluminescence (PL) spectra of water-filled and empty single-chirality (6,5) SWCNTs. Superimposed on a linear temperature-dependent PL spectral shift of the empty SWCNTs, an additional stepwise PL spectral shift of the water-filled SWCNTs is observed at similar to 150 K. With the empty SWCNTs serving as an ideal reference system, we assign this shift to temperature-induced changes occurring in the single-file chain of water molecules encapsulated in the tubes. Our molecular dynamics simulations further support the occurrence of a quasiphase transition of the orientational order of the water dipoles in the single-file chain. C1 [Ma, Xuedan; Doorn, Stephen K.; Htoon, Han] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Cambre, Sofie; Wenseleers, Wim] Univ Antwerp, Expt Condensed Matter Phys Lab, B-2610 Antwerp, Belgium. [Ma, Xuedan] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. EM xuedan.ma@anl.gov; sofie.cambre@uantwerpen.be FU LANL LDRD program; U.S. Department of Energy, Office of Science User Facility; Fund for Scientific Research Flanders, Belgium (FWO) [G040011N, G021112N, 1513513N, 1512716N]; Hercules Foundation [AUHA/13006]; European Research Council (ERC) under Horizon/ERC starting Grant [679841] FX This work was supported in part by the LANL LDRD program and was performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Science User Facility. S. C. and W. W. acknowledge financial support from the Fund for Scientific Research Flanders, Belgium (FWO, Projects No. G040011N, No. G021112N, No. 1513513N, and No. 1512716N), which also supported S. C. through a postdoctoral fellowship and a mobility grant for visiting LANL. Funding from the Hercules Foundation (Grant No. AUHA/13006) and the European Research Council (ERC) under Horizon 2020/ERC starting Grant Agreement No. 679841 is gratefully acknowledged. NR 69 TC 0 Z9 0 U1 10 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 12 PY 2017 VL 118 IS 2 AR 027402 DI 10.1103/PhysRevLett.118.027402 PG 7 WC Physics, Multidisciplinary SC Physics GA EH7BL UT WOS:000391927700011 PM 28128601 ER PT J AU Strozzi, DJ Bailey, DS Michel, P Divol, L Sepke, SM Kerbel, GD Thomas, CA Ralph, JE Moody, JD Schneider, MB AF Strozzi, D. J. Bailey, D. S. Michel, P. Divol, L. Sepke, S. M. Kerbel, G. D. Thomas, C. A. Ralph, J. E. Moody, J. D. Schneider, M. B. TI Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics SO PHYSICAL REVIEW LETTERS LA English DT Article ID BEAMS AB The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI-specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)-mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape. C1 [Strozzi, D. J.; Bailey, D. S.; Michel, P.; Divol, L.; Sepke, S. M.; Kerbel, G. D.; Thomas, C. A.; Ralph, J. E.; Moody, J. D.; Schneider, M. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM strozzi2@llnl.gov FU U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX We thank J. A. Harte and G. B. Zimmerman for Lasnex advice. This work was performed under auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. NR 27 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 12 PY 2017 VL 118 IS 2 AR 025002 DI 10.1103/PhysRevLett.118.025002 PG 5 WC Physics, Multidisciplinary SC Physics GA EH7BL UT WOS:000391927700006 PM 28128587 ER PT J AU Chhantyal-Pun, R Welz, O Savee, JD Eskola, AJ Lee, EPF Blacker, L Hill, HR Ashcroft, M Khan, MAH Lloyd-Jones, GC Evans, L Rotavera, B Huang, HF Osborn, DL Mok, DKW Dyke, JM Shallcross, DE Percival, CJ Orr-Ewing, AJ Taatjes, CA AF Chhantyal-Pun, Rabi Welz, Oliver Savee, John D. Eskola, Arkke J. Lee, Edmond P. F. Blacker, Lucy Hill, Henry R. Ashcroft, Matilda Khan, M. Anwar H. Lloyd-Jones, Guy C. Evans, Louise Rotavera, Brandon Huang, Haifeng Osborn, David L. Mok, Daniel K. W. Dyke, John M. Shallcross, Dudley E. Percival, Carl J. Orr-Ewing, Andrew J. Taatjes, Craig A. TI Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH3)(2)COO SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CONFORMER-DEPENDENT REACTIVITY; SUBSTITUTED CARBONYL OXIDES; ATMOSPHERIC IMPLICATIONS; SELF-REACTION; GAS-PHASE; CH2OO; OZONOLYSIS; SO2; CHEMISTRY; PRESSURE AB The Criegee intermediate acetone oxide, (CH3)(2)COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O-2 and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO2 was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 +/- 0.5) x 10(-11) cm(3) s(-1) at 298 K and 4 Torr and (1.5 +/- 0.5) x 10(-10) cm(3) s(-1) at 298 K and 10 Torr (He buffer). These values are similar to directly measured rate coefficients of anti-CH3CHOO with SO2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N-2 from cavity ring-down decay of the ultraviolet absorption of (CH3)(2)COO yielded even larger rate coefficients, in the range (1.84 +/- 0.12) x 10(-10) to (2.29 +/- 0.08) x 10(-10) cm(3) s(-1). Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, k(H)/k(D) = (0.53 +/- 0.06), for reactions with SO2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)(2)COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 +/- 0.5) x 10(-12) cm(3) s(-1) (measured with photoionization mass spectrometry), again similar to rate for the reaction of anti-CH3CHOO with NO2. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH3)(2)COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 +/- 70) s(-1), is similar to determinations from ozonolysis. The present measurements confirm the large rate coefficient for reaction of (CH3)(2)COO with SO2 and the small rate coefficient for its reaction with water. Product measurements of the reactions of (CH3)(2)COO with NO2 and with SO2 suggest that these reactions may facilitate isomerization to 2-hydroperoxypropene, possibly by subsequent reactions of association products. C1 [Chhantyal-Pun, Rabi; Blacker, Lucy; Hill, Henry R.; Ashcroft, Matilda; Khan, M. Anwar H.; Lloyd-Jones, Guy C.; Evans, Louise; Shallcross, Dudley E.; Orr-Ewing, Andrew J.] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England. [Welz, Oliver; Savee, John D.; Eskola, Arkke J.; Rotavera, Brandon; Huang, Haifeng; Osborn, David L.; Taatjes, Craig A.] Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA. [Lee, Edmond P. F.] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England. [Lee, Edmond P. F.; Dyke, John M.] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hong Kong, Hong Kong, Peoples R China. [Mok, Daniel K. W.; Percival, Carl J.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Ctr Atmospher Sci, Simon Bldg,Brunswick St, Manchester M13 9PL, Lancs, England. [Lloyd-Jones, Guy C.] Univ Edinburgh, Sch Chem, Edinburgh EH9 3FJ, Midlothian, Scotland. [Eskola, Arkke J.] Univ Helsinki, Dept Chem, AI Virtasen Aukio 1, FI-00560 Helsinki, Finland. RP Orr-Ewing, AJ (reprint author), Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England.; Taatjes, CA (reprint author), Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA. FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences (BES), United States Department of Energy (USDOE); UK Natural Environment Research Council (NERC Grant) [NE/K004905/1]; Research Grant Council (RGC) of the Hong Kong Special Administrative Region (HKSAR) [PolyU 5011/12P]; USDOE's National Nuclear Security Administration [DEAC04-94AL85000]; Office of Science, BES/USDOE [DE-AC02-05CH11231] FX This material is based upon work supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences (BES), United States Department of Energy (USDOE). The Bristol group gratefully acknowledges financial support from the UK Natural Environment Research Council (NERC Grant NE/K004905/1). DKWM, JMD, CJP and EPFL are grateful to the Research Grant Council (RGC) of the Hong Kong Special Administrative Region (HKSAR, Grant Numbers PolyU 5011/12P) for support. Computations were carried out using resources of the National Service for Computational Chemistry Software (NSCCS), EPSRC (UK), and the IRIDIS High Performance Computing Facility, the University of Southampton. We thank Adam M. Scheer, Kendrew Au, and Howard Johnsen for assistance with the experiments at Sandia and the Advanced Light Source, and Darryl Y. Sasaki for help with synthesis of 2,2-diiodopropane. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the USDOE's National Nuclear Security Administration under contract DEAC04-94AL85000. This research used resources of the Advanced Light Source of Lawrence Berkeley National Laboratory, which is a USDOE Office of Science User Facility. The Advanced Light Source is supported by the Director, Office of Science, BES/USDOE, under contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the USDOE. NR 38 TC 1 Z9 1 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 12 PY 2017 VL 121 IS 1 BP 4 EP 15 DI 10.1021/acs.jpca.6b07810 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EH8PW UT WOS:000392035800002 PM 27755879 ER PT J AU Taatjes, CA Liu, F Rotavera, B Kumar, M Caravan, R Osborn, DL Thompson, WH Lester, MI AF Taatjes, Craig A. Liu, Fang Rotavera, Brandon Kumar, Manoj Caravan, Rebecca Osborn, David L. Thompson, Ward H. Lester, Marsha I. TI Hydroxyacetone Production From C-3 Criegee Intermediates SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GAS-PHASE OZONOLYSIS; OH RADICAL PRODUCTS; CARBONYL OXIDES; ATMOSPHERIC CHEMISTRY; ELECTRONIC-STRUCTURE; SELF-REACTION; WATER-VAPOR; KINETICS; CH2OO; OZONE AB Hydroxyacetone (CH3C(O)CH2OH) is observed as a stable end product from reactions of the (CH3)(2)COO Criegee intermediate, acetone oxide, in a flow tube coupled with multiplexed photoionization mass spectrometer detection. In the experiment, the isomers at m/z = 74 are distinguished by their different photoionization spectra and reaction times. Hydroxyacetone is observed as a persistent signal at longer reaction times at a higher photoionization threshold of ca. 9.7 eV than Criegee intermediate and definitively identified by comparison with the known photoionization spectrum. Complementary electronic structure calculations reveal multiple possible reaction pathways for hydroxyacetone formation, including unimolecular isomerization via hydrogen atom transfer and -OH group migration as well as self-reaction of Criegee intermediates. Varying the concentration of Criegee intermediates suggests contributions from both unimolecular and self-reaction pathways to hydroxyacetone. The hydroxyacetone end product can provide an effective, stable marker for the production of transient Criegee intermediates in future studies of alkene ozonolysis. C1 [Taatjes, Craig A.; Rotavera, Brandon; Caravan, Rebecca; Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Liu, Fang; Lester, Marsha I.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Kumar, Manoj] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Thompson, Ward H.] Univ Kansas, Dept Chem, Lawrence, KS 66045 USA. RP Taatjes, CA (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA.; Lester, MI (reprint author), Univ Penn, Dept Chem, Philadelphia, PA 19104 USA.; Thompson, WH (reprint author), Univ Kansas, Dept Chem, Lawrence, KS 66045 USA. EM cataatj@sandia.gov; wthompson@ku.edu; milester@sas.upenn.edu FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences (BES), U.S. Department of Energy (USDOE); USDOE's National Nuclear Security Administration [DEAC04-94AL85000]; Office of Science, BES/USDOE [DE-AC02- 05CH11231]; BES/USDOE [DE-FG02-87ER13792]; NIFA/USDA [2011-10006-30362] FX This material is based upon work supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences (BES), U.S. Department of Energy (USDOE). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the USDOE's National Nuclear Security Administration under contract DEAC04-94AL85000. This research used resources of the Advanced Light Source of Lawrence Berkeley National Laboratory, which is a USDOE Office of Science User Facility. The Advanced Light Source is supported by the Director, Office of Science, BES/USDOE, under contract DE-AC02- 05CH11231 between Lawrence Berkeley National Laboratory and the USDOE. M.I.L. and F.L. were supported by BES/USDOE under grant DE-FG02-87ER13792. W.H.T. and M.K. acknowledge the support of NIFA/USDA under grant 2011-10006-30362. NR 51 TC 1 Z9 1 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 12 PY 2017 VL 121 IS 1 BP 16 EP 23 DI 10.1021/acs.jpca.6b07712 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EH8PW UT WOS:000392035800003 PM 28001404 ER PT J AU Santra, K Smith, EA Petrich, JW Song, XY AF Santra, Kalyan Smith, Emily A. Petrich, Jacob W. Song, Xueyu TI Photon Counting Data Analysis: Application of the Maximum Likelihood and Related Methods for the Determination of Lifetimes in Mixtures of Rose Bengal and Rhodamine B SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SHOT NOISE LIMIT; FLUORESCENCE DECAY; LEAST-SQUARES; STATISTICAL-INFERENCE; WAVELENGTH DEPENDENCE; EXPONENTIAL DECAYS; SINGLE MOLECULES; TEST CRITERIA; CHI-SQUARE; SPECTROSCOPY AB It is often convenient to know the minimum amount of data needed to obtain a result of desired accuracy and precision. It is a necessity in the case of subdiffraction-limited microscopies, such as stimulated emission depletion (STED) microscopy, owing to the limited sample volumes and the extreme sensitivity of the samples to photobleaching and photodamage. We present a detailed comparison of probability-based techniques (the maximum likelihood method and methods based on the binomial and the Poisson distributions) with residual minimization-based techniques for retrieving the fluorescence decay parameters for various two-fluorophore mixtures, as a function of the total number of photon counts, in time-correlated, single photon counting experiments. The probability-based techniques proved to be the most robust (insensitive to initial values) in retrieving the target parameters and, in fact, performed equivalently to 2-3 significant figures. This is to be expected, as we demonstrate that the three methods are fundamentally related. Furthermore, methods based on the Poisson and binomial distributions have the desirable feature of providing a bin-by-bin analysis of a single fluorescence decay trace, which thus permits statistics to be acquired using only the one trace not only for the mean and median values of the fluorescence decay parameters but also for the associated standard deviations. These probability-based methods lend themselves well to the analysis of the sparse data sets that are encountered in subdiffraction-limited microscopies. C1 [Song, Xueyu] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. US DOE, Ames Lab, Ames, IA 50011 USA. RP Song, XY (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM xsong@iastate.edu OI Song, Xueyu/0000-0001-5142-4223 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory; U.S. Department of Energy [DE-AC02-07CH11358]; Division of Material Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy [W-7405-430 ENG-82]; Iowa State University FX The work performed by K. Santra, E. A. Smith, and J. W. Petrich was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. X. Song was supported by The Division of Material Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under Contact No. W-7405-430 ENG-82 with Iowa State University. We acknowledge the assistance of Mr. Zhitao Zhao, a visiting undergraduate student from Beijing Normal University, Beijing. NR 37 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 12 PY 2017 VL 121 IS 1 BP 122 EP 132 DI 10.1021/acs.jpca.6b10728 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EH8PW UT WOS:000392035800014 PM 27936713 ER PT J AU Cawkwell, MJ Montgomery, DS Ramos, KJ Bolme, CA AF Cawkwell, M. J. Montgomery, D. S. Ramos, K. J. Bolme, C. A. TI Free Energy Based Equation of State for Pentaerythritol Tetranitrate SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CRYSTAL ORIENTATION; MOLECULAR-DYNAMICS; PETN; COMPRESSION; WAVES AB An equation of state for the energetic molecular crystal pentaerythritol tetranitrate (PETN) has been developed from a parametrized model for its Helmholtz free energy. The ion motion contribution to the free energy is represented by a sum of Debye models for the vibrational modes of mainly lattice phonon and intramolecular character. The dependence of the frequencies of the normal modes on density is captured using the quasi-harmonic approximation whereby the Debye temperatures for both populations of modes depend explicitly on specific volume. The dependence of the Debye temperatures on specific volume was parametrized to normal-mode frequencies computed from solid state dispersion-corrected density functional theory. The model provides a good description of the thermophysical properties of PETN. The equation of state has been applied to the calculation of thermodynamic states along the principal Hugoniot of single crystal PETN. C1 [Cawkwell, M. J.; Montgomery, D. S.; Ramos, K. J.; Bolme, C. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cawkwell, MJ (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM cawkwell@lanl.gov OI Bolme, Cynthia/0000-0002-1880-271X FU National Nuclear Security Administration Science Campaign 2 [DE-AC52-06NA25396] FX This work was supported by the National Nuclear Security Administration Science Campaign 2 and performed at Los Alamos National Laboratory under DE-AC52-06NA25396. M.J.C. thanks Jeff Leiding and Scott Crockett for helpful discussions. NR 36 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 12 PY 2017 VL 121 IS 1 BP 238 EP 243 DI 10.1021/acs.jpca.6b09284 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EH8PW UT WOS:000392035800026 PM 27997195 ER PT J AU Zahariev, F Levy, M AF Zahariev, Federico Levy, Mel TI Properties of Augmented Kohn-Sham Potential for Energy as Simple Sum of Orbital Energies SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID EXCHANGE-CORRELATION; WAVE-FUNCTIONS; ATOMS; FUNCTIONALS; EQUATIONS; ACCURATE; HELIUM AB A recent modification to the traditional Kohn-Sham method (Levy, M.; Zahariev, F. Phys. Rev. Lett 2014, 113, 113002; Levy, M.; Zahariev, F. Mol. Phys. 2016, 114, 1162-1164), which gives the ground state energy as a direct sum of the occupied orbital energies, is discussed and its properties are numerically illustrated on representative atoms and ions. It is observed that current approximate density functionals tend to give surprisingly small errors for the highest occupied orbital energies that are obtained with the augmented potential. The appropriately shifted Kohn-Sham potential is the basic object within this direct-energy Kohn Sham method and needs to be approximated. To facilitate approximations, several constraints to the augmented Kohn Sham potential are presented. C1 [Zahariev, Federico] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Zahariev, Federico] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Levy, Mel] Duke Univ, Dept Chem, Durham, NC 27708 USA. [Levy, Mel] North Carolina A&T State Univ, Dept Phys, Greensboro, NC 27411 USA. [Levy, Mel] Tulane Univ, Dept Chem, New Orleans, LA 70118 USA. [Levy, Mel] Tulane Univ, Quantum Theory Grp, New Orleans, LA 70118 USA. RP Zahariev, F (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.; Zahariev, F (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.; Levy, M (reprint author), Duke Univ, Dept Chem, Durham, NC 27708 USA.; Levy, M (reprint author), North Carolina A&T State Univ, Dept Phys, Greensboro, NC 27411 USA.; Levy, M (reprint author), Tulane Univ, Dept Chem, New Orleans, LA 70118 USA.; Levy, M (reprint author), Tulane Univ, Quantum Theory Grp, New Orleans, LA 70118 USA. EM fzahari@iastate.edu; inlevy@tulane.edu FU National Science Foundation [CHEM-1047772] FX The authors thank the National Science Foundation for partial support from the SI2 Grant No. CHEM-1047772. NR 17 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 12 PY 2017 VL 121 IS 1 BP 342 EP 347 DI 10.1021/acs.jpca.6b10952 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EH8PW UT WOS:000392035800037 PM 28004931 ER PT J AU Kortright, JB Sun, J Spencer, RK Jiang, X Zuckermann, RN AF Kortright, Jeffrey B. Sun, Jing Spencer, Ryan K. Jiang, Xi Zuckermann, Ronald N. TI Oxygen K Edge Scattering from Bulk Comb Diblock Copolymer Reveals Extended, Ordered Backbones above Lamellar Order-Disorder Transition SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID X-RAY-SCATTERING; PEPTOID POLYMERS; MICROPHASE SEPARATION; BLOCK-COPOLYMERS; CRYSTALLIZATION; POLYPEPTOIDS; CRYSTALS; BEHAVIOR; NANOSHEETS; FILMS AB The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc(12)-b-pNte(21) across the lamellar order-disorder transition (ODT) is studied using resonant X-ray scattering at the oxygen K edge with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their, different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODT corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. The roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range in oxygen resonant scattering are discussed. C1 [Kortright, Jeffrey B.; Jiang, Xi; Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Sun, Jing; Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Spencer, Ryan K.] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA. [Sun, Jing] Qingdao Univ Sci & Technol, Sch Polymer Sci & Engn, 53 Zhengzhou Rd, Qingdao 266042, Peoples R China. RP Kortright, JB; Zuckermann, RN (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Zuckermann, RN (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jbkortright@lbl.gov; rnzuckermann@lbl.gov OI Spencer, Ryan/0000-0002-1043-3913 FU Electron Microscopy of Soft Matter Program from the Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX Primary funding for this work was provided by the Electron Microscopy of Soft Matter Program from the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Samples were prepared and characterized at LBNL's Molecular Foundry, RSoXS measurements utilized Beamline 11.0.1.2, and some absorption measurements utilized Beamline 6.3.2 at LBNL's Advanced Light Source; both User Facilities are funded by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Discussions with Nitash P. Balsara, X. Chelsea Chen, David Prendergast and Cheng Wang are gratefully acknowledged. NR 45 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 12 PY 2017 VL 121 IS 1 BP 298 EP 305 DI 10.1021/acs.jpcb.6b09925 PG 8 WC Chemistry, Physical SC Chemistry GA EH8PY UT WOS:000392036000029 PM 27960255 ER PT J AU Nichols, JE McCloskey, BD AF Nichols, Jessica E. McCloskey, Bryan D. TI The Sudden Death Phenomena in Nonaqueous Na-O-2 Batteries SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SODIUM-OXYGEN BATTERIES; LI-AIR BATTERIES; DISCHARGE PRODUCTS; LI-O-2 BATTERIES; ELECTROCHEMICAL IMPEDANCE; CELL CHEMISTRY; SUPEROXIDE; LITHIUM; NAO2; LIMITATIONS AB Metal-air (O-2) batteries have been intensely studied over the past decade as potential high-energy alternatives to current state-of-the-art Li-ion batteries. Although Li-O-2 batteries possess higher theoretical specific energies, Na-O-2 cells have been reported to achieve higher capacities on discharge and exhibit much lower overpotentials on charge than analogous Li-O-2 cells. Nevertheless, sudden and large overpotential increases ("sudden deaths") occur in Na-O-2 cells on both discharge and charge, substantially limiting achievable capacity on discharge and increasing the average charge voltage, thereby reducing round-trip energy efficiency. In this work, we unravel the origins of these sudden death phenomena, which have been previously linked to the electrochemistry occurring at the cathode. On discharge, the maximum capacity was limited by pore clogging at low current densities and by surface passivation at high current densities, with concentration polarization playing only a small role in limiting the achievable capacity. On charge, the discharge and charge current densities were both found to influence the attainable capacity prior to sudden death. We propose a charge mechanism consistent with our data, where a concerted surface oxidation mechanism and a dissolution-oxidation mechanism both contribute to the observed overpotentials. Sudden death on charge is proposed to occur when these two pathways cannot support the applied current rate. C1 [McCloskey, Bryan D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. RP McCloskey, BD (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM bmcclosk@berkeley.edu OI Nichols, Jessica/0000-0002-8597-1898 FU National Science Foundation [DGE-1106400]; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge Alan Luntz and Venkat Viswanathan for valuable discussion regarding the discharge and charge mechanism of Na-O2 cells. This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1106400. The work at UC, Berkeley was supported in part by previous work performed through the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. NR 43 TC 2 Z9 2 U1 21 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 12 PY 2017 VL 121 IS 1 BP 85 EP 96 DI 10.1021/acs.jpcc.6b09663 PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EH8PT UT WOS:000392035500008 ER PT J AU Yang, JH Yuan, QH Deng, HX Wei, SH Yakobson, BI AF Yang, Ji-Hui Yuan, Qinghong Deng, Huixiong Wei, Su-Huai Yakobson, Boris I. TI Earth-Abundant and Non-Toxic SiX (X = S, Se) Monolayers as Highly Efficient Thermoelectric Materials SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ULTRALOW THERMAL-CONDUCTIVITY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; TRANSPORT-PROPERTIES; FIGURE; MERIT; NANOSCALE; NANOWIRES; SNSE; NANOSTRUCTURES AB Current thermoelectric (TE) materials often have low performance or contain less abundant and/or toxic elements, thus limiting-their large-scale applications. Therefore, new TE materials with high efficiency and low cost are strongly desirable. Here:We demonstrate that SiS and SiSe monolayers made from nontoxic and earth-abundant elements intrinsically have low thermal conductivities arising from their low frequency optical phonon branches with large overlaps with acoustic phonon modes, which is similar to the state-of-the-art experimentally demonstrated material SnSe with a layered. structure. Together with high thermal power factors due to their two-dimensional nature, they show promising TE performances with large figure of merit (ZT) values exceeding 1 or 2 over a wide range of temperatures. We establish some basic understanding of identifying layered materials with low thermal conductivities, which can guide and stimulate the search and study of other layered materials for TE applications. C1 [Yang, Ji-Hui; Yuan, Qinghong; Yakobson, Boris I.] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA. [Deng, Huixiong] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 100083, Peoples R China. [Yang, Ji-Hui] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Wei, Su-Huai] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China. RP Yakobson, BI (reprint author), Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA.; Wei, SH (reprint author), Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China. EM suhuaiwei@csrc.ac.cn; biy@rice.edu FU U.S. Army Research Office MURI [W911NF-11-1-0362]; Laboratory Directed Research and Development Program [065K1601]; National Natural Science Foundation of China [11474273] FX Work at Rice was supported by the U.S. Army Research Office MURI Grant W911NF-11-1-0362. Effort at NREL is funded by the Laboratory Directed Research and Development Program under Grant No. 065K1601. The work at Institute of Semiconductors, Chinese Academy of Sciences, was supported by National Natural Science Foundation of China under Grant No. 11474273. The calculations are done on Rice DAVinCI supercomputer and NREL peregrine supercomputer. NR 53 TC 0 Z9 0 U1 37 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 12 PY 2017 VL 121 IS 1 BP 123 EP 128 DI 10.1021/acs.jpcc.6b10163 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EH8PT UT WOS:000392035500012 ER PT J AU Pelzer, KM Cheng, L Curtiss, LA AF Pelzer, Kenley M. Cheng, Lei Curtiss, Larry A. TI Effects of Functional Groups in Redox-Active Organic Molecules: A High-Throughput Screening Approach SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CLEAN ENERGY PROJECT; MATERIALS DISCOVERY; DENSITY; POTENTIALS; DESIGN; PHOTOVOLTAICS; IDENTIFICATION; CANDIDATES; STORAGE; LEVEL AB Nonaqueous redox flow batteries have attracted recent attention with their potential for high electrochemical storage capacity-, with organic electrolytes serving as solvents with a wide electrochemical stability window. Organic molecules can also serve as electroactive species; where molecules with low reduction potentials or high oxidation potentials can provide substantial chemical energy. To identify promising electrolytes in a vast chemical space, high-throughput screening (HTS) of candidate molecules plays an important role, where HTS is used to calculate properties of thousands of molecules and identify a few organic molecules worthy of further attention in battery research. Here, we present reduction and oxidation potentials obtained from HTS of 4178 molecules. The molecules are, composed of base groups of five- or six-membered rings with one or two functional groups attached, with the set of possible functional groups including both electron-withdrawing and electron-donating groups. In addition to observing the trends in potentials that result from differences in organic base groups and functional groups, we analyze the effects of molecular characteristics such as multiple bonds, Hammett parameters, and functional group position. This work provides useful guidance in determining how the identities. of the base groups and functional groups. are correlated with desirable reduction and oxidation potentials. C1 [Pelzer, Kenley M.; Cheng, Lei; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, 9700 Cass Ave, Lemont, IL 60439 USA. [Pelzer, Kenley M.; Cheng, Lei; Curtiss, Larry A.] Argonne Natl Lab, Joint Ctr Energy Storage Res, 9700 Cass Ave, Lemont, IL 60439 USA. RP Pelzer, KM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 Cass Ave, Lemont, IL 60439 USA.; Pelzer, KM (reprint author), Argonne Natl Lab, Joint Ctr Energy Storage Res, 9700 Cass Ave, Lemont, IL 60439 USA. EM kpelzer@anl.gov FU U.S. Department of Energy, Basic Energy Science, Joint Center for Energy Storage Research [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Aneesur Rahman Fellowship of Argonne National Laboratory FX Support for this work came from the U.S. Department of Energy, Basic Energy Science, Joint Center for Energy Storage Research under Contract No. DE-AC02-06CH11357. Calculations were performed using the computational resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Calculations were also performed on the computing resources provided on Fusion, a high-performance computing cluster operated by the Laboratory Computing Resource Center of Argonne National Laboratory. We acknowledge grants of computer time at Argonne National Laboratory on the LCRC Fusion Cluster and the ALCF Vesta Cluster. K.M. Pelzer was supported by the Aneesur Rahman Fellowship of Argonne National Laboratory. NR 34 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 12 PY 2017 VL 121 IS 1 BP 237 EP 245 DI 10.1021/acs.jpcc.6b11473 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EH8PT UT WOS:000392035500025 ER PT J AU Dai, Y Gorey, TJ Anderson, SL Lee, S Lee, S Seifert, S Winans, RE AF Dai, Yang Gorey, Timothy J. Anderson, Scott L. Lee, Sungsik Lee, Sungwon Seifert, Soenke Winans, Randall E. TI Inherent Size Effects on XANES of Nanometer Metal Clusters: Size Selected Platinum Clusters on Silica SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID IN-SITU GISAXS; ABSORPTION FINE-STRUCTURE; SUPPORTED GOLD CLUSTERS; LEVEL BINDING-ENERGIES; SINGLE-ATOM CATALYSTS; CO OXIDATION ACTIVITY; ELECTRONIC-STRUCTURE; PHOTOELECTRON-SPECTROSCOPY; ELECTROCHEMICAL REACTIONS; CHEMICAL-PROPERTIES AB X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials; however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Pt-n/SiO2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small-angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O-2 exposure and annealing in H2. The clusters are found to be stable during deposition and upon air exposure, but sinter if heated above similar to 150 degrees C. XANES shows shifts in the Pt L-3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized; however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wave functions in small clusters. C1 [Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Lee, Sungsik; Lee, Sungwon; Seifert, Soenke; Winans, Randall E.] Argonne Natl Lab, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Anderson, SL (reprint author), Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. EM anderson@chem.utah.edu OI Winans, Randall/0000-0002-7080-7673 FU Air Force Office of Scientific Research under a Basic Research Initiative grant [AFOSR FA9550-12-1-0481, FA9550-16-1-0141]; DOE Office of Science [DE-AC02-06CH11357] FX This work supported by the Air Force Office of Scientific Research under a Basic Research Initiative grant (AFOSR FA9550-12-1-0481) and Grant FA9550-16-1-0141. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 92 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 12 PY 2017 VL 121 IS 1 BP 361 EP 374 DI 10.1021/acs.jpcc.6b10167 PG 14 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EH8PT UT WOS:000392035500040 ER PT J AU Liu, LJ Zhao, CY Miller, JT Li, Y AF Liu, Lianjun Zhao, Cunyu Miller, Jeffrey T. Li, Ying TI Mechanistic Study of CO2 Photoreduction with H2O on Cu/TiO2 Nanocomposites by in Situ X-ray Absorption and Infrared Spectroscopies SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PHOTOCATALYTIC REDUCTION; CARBON-DIOXIDE; TIO2 NANOPARTICLES; TITANIUM-DIOXIDE; CATALYSTS; ANATASE; COMPOSITE; STATES; WATER; MICROSPHERES AB Cu/TiO2 composites are extensively studied for photocatalytic reduction of CO2 with H2O, but the roles of Cu species (Cu2+, Cu+, or Cu-0) is not well understood, and the photocatalyst deactivation mechanism is seldom addressed. In this work, we have employed in situ techniques, i.e., X-ray absorption spectroscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), to explore the surface chemistry of Cu/TiO2 composites under CO2 photoreduction environment. We found that the air-calcined Cu/TiO2 (Cu/Ti(air)) surface was dominated by isolated Cu2+ sites, while the one post-treated with H-2 at 200 degrees C (Cu/Ti(H-2)) was rich in Cu+ and oxygen vacancy (V-o). Cu/Ti(H-2) showed more than 50% higher activity than Cu/Ti(air) for CO2 photoreduction to CO, mainly resulting from the synergy of Cu+, OH groups, and V-o that could scavenge holes to enhance electron transfer, provide CO2 adsorption sites, and facilitate the activation and conversion of the adsorbed CO2 (HCO3- and CO2). Meanwhile, the consumption of OH groups and Cu+ active sites by holes may result in the deactivation of Cu/Ti(H-2). Moreover, in situ XAS results directly demonstrated that (1) the photoinduced oxidation of Cu+ to Cu2+ changed the surrounding environments of Cu by increasing the coordination number; (2) thermal treatment by Hy could not fully recover the OH and Cu+ sites to their original states; and (3) adding hole scavengers (e.g., methanol) maintained or even increased the more active Cu+ species from the photoreduction of Cu2+ thus leading to a higher and more stable CO2 reduction activity. Findings in this work and the application of in situ XAS technique will help develop a more efficient photocatalyst for CO2 photoreduction and advance the understanding of the reaction mechanism and surface chemistry. C1 [Liu, Lianjun; Zhao, Cunyu; Li, Ying] Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Miller, Jeffrey T.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Li, Ying] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. RP Li, Y (reprint author), Univ Wisconsin, Dept Mech Engn, Milwaukee, WI 53211 USA.; Li, Y (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM yingli@tamu.edu FU National Science Foundation (NSF) [CBET-1538404]; Chemical Sciences, Geosciences and Biosciences Division, U.S. Department of Energy [DE-AC0-06CH11357]; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [E-AC02-06CH113.57]; Department of Energy; MRCAT FX This work is supported by National Science Foundation (NSF) Early Faculty CAREER Award (CBET-1538404). Partial funding for J.T.M. was provided by Chemical Sciences, Geosciences and Biosciences Division, U.S. Department of Energy, under contract DE-AC0-06CH11357. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH113.57. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 36 TC 0 Z9 0 U1 34 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 12 PY 2017 VL 121 IS 1 BP 490 EP 499 DI 10.1021/acs.jpcc.6b10835 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EH8PT UT WOS:000392035500052 ER PT J AU Bu, LT Nimlos, MR Robichaud, DJ Kim, S AF Bu, Lintao Nimlos, Mark R. Robichaud, David J. Kim, Seonah TI Diffusion of Biomass Pyrolysis Products in H-ZSM-5 by Molecular Dynamics Simulations SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELASTIC NEUTRON-SCATTERING; CATALYTIC FAST PYROLYSIS; FIELD GRADIENT TECHNIQUE; MONTE-CARLO SIMULATIONS; AB-INITIO CALCULATIONS; LENGTH COLUMN METHOD; MFI-TYPE ZEOLITES; P-XYLENE; LIGNOCELLULOSIC BIOMASS; AROMATIC-HYDROCARBONS AB Diffusion of biomass pyrolysis vapors and their upgraded products is an essential catalytic property of zeolites during catalytic fast pyrolysis and likely plays a critical role in the selectivity of these catalysts. Characterizing the diffusivities of representative biofuel molecules is critical to understand shape selectivity and interpret product distribution. Yet, experimental measurements on the diffusivities of oxygenated biofuel molecules at pyrolysis temperatures are very limited in the literature. As an alternative approach, we conducted MD simulations to measure the diffusion coefficients of several selected molecules, that are representative of biomass pyrolysis vapors, namely water, methanol, glycolaldehyde, and toluene in HZSM-5 zeolite. The results show the diffusion coefficients calculated via MD simulations are consistent with available NMR. measurements at room temperature.(1) The effect of molecular weight and molecular critical diameter on the diffusivity among the chosen model compounds is also examined. Furthermore, we have characterized the diffusivities of representative biofuel molecules, namely xylene isomers, in H-ZSM-5. Our calculations determined that the ratio of the diffusion coefficients for xylene isomers is p-xylene:o-xylene:m-xylene approximate to 83:3:1 at 700 K. Additionally, our results also demonstrate the different diffusivity between p-xylene and toluene is due to the molecular orientations when the molecules diffuse along the channels in H-ZSM-5 and provide deep insight into the effect of molecular orientation on its diffusivity. C1 [Bu, Lintao; Nimlos, Mark R.; Robichaud, David J.; Kim, Seonah] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Kim, S (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM seonah.kim@nrel.gov FU Computational Pyrolysis Consortium - U.S. Department of Energy's Bioenergy Technologies Office [DE-AC36-08GO28308] FX This work was supported by the Computational Pyrolysis Consortium funded by the U.S. Department of Energy's Bioenergy Technologies Office (DE-AC36-08GO28308). Computational resources were provided by the Computational Sciences Center at National Renewable Energy Laboratory. We thank professor David Sholl, Dr. Ambarish Kulkarni, and Dr. Rohan Awati for providing their codes to conduct the MD simulations. We thank Dr. Singfoong Cheah and Dr. Erica Gjersing for helpful discussions. NR 80 TC 0 Z9 0 U1 18 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 12 PY 2017 VL 121 IS 1 BP 500 EP 510 DI 10.1021/acs.jpcc.6b10871 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EH8PT UT WOS:000392035500053 ER PT J AU Bowers, GM Schaef, HT Loring, JS Hoyt, DW Burton, SD Walter, ED Kirkpatrick, RJ AF Bowers, Geoffrey M. Schaef, H. Todd Loring, John S. Hoyt, David W. Burton, Sarah D. Walter, Eric D. Kirkpatrick, R. James TI Role of Cations in CO2 Adsorption, Dynamics, and Hydration in Smectite Clays under in Situ Supercritical CO2 Conditions SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; CARBON-DIOXIDE CAPTURE; NATURAL ORGANIC-MATTER; X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS; MAGIC-ANGLE; EXCHANGED MONTMORILLONITE; FORSTERITE CARBONATION; NA-MONTMORILLONITE; NMR-SPECTROSCOPY AB This paper explores the molecular-scale interactions between CO2 and the representative smectite mineral hectorite under supercritical conditions (90 bar, 50 degrees C) using novel in situ X-ray diffraction (XRD), infrared (IR) spectroscopy, and magic angle spinning (MAS) nuclear magnetic resonance (NMR) techniques. Particular emphasis is placed on understanding the roles of the smectite charge balancing cation (CBC) and H2O in these interactions. The data show that supercritical CO2 (scCO(2)) can be adsorbed on external surfaces and in the confined interlayer spaces of hectorite at 50 degrees C and 90 bar, with the uptake of CO2 into the interlayer favored at low H2O content and when the basal spacing is similar to a monolayer hydrate of hectorite (1WL, similar to 12.5 angstrom). These results are in agreement with published spectroscopic and molecular modeling data for the related smectite Na-montmorillonite. Charge balancing cations with small radii, large hydration energies, and low polarizabilities tend to scavenge H2O from humid scCO(2) or retain the H2O they held before scCO(2) exposure, swelling spontaneously to a bilayer hydrate (2WL) dominated state that largely prevents CO2-ion interactions and influences the extent of CO2 intercalation into the interlayer. In contrast, ions with large radii, low hydration energies, and large polarizabilities more readily form close associations with CO2 with the energetics enabling coexistence of CO2 and H2O in the interlayer over a wide range of scCO(2) humidities. Integrating our results with those from molecular dynamics simulations of wet CO2-bearing montmorillonites suggest that adsorbed CO2 in 1WL-type interlayers is oriented with its long axis parallel to the clay sheets and experiences dynamics dominated by anisotropic rotation about the axis perpendicular to the CO2 long axis at rates of at least similar to 10(5) Hz. If appreciable CO2 is adsorbed in 2WL-type interlayers, it must experience a mean orientation and dynamic averaging affects that mimic the 1WL-type adsorption environment. External surface adsorbed CO2 is dynamically similar to the 1WL case, but the CO2 long axis samples a larger range of orientations with respect to the smectite surface and adopts a different mean angle between the long axis and the smectite surface. Our data also suggest that equilibrating hectorite with a large volume of scCO(2) at 50 degrees C and 90 bar leads to interlayer dehydration, with the extent of dehydration correlating with the hydrophilicity of the CBC. C1 [Bowers, Geoffrey M.] St Marys Coll Maryland, Dept Chem & Biochem, St Marys City, MD 20686 USA. [Schaef, H. Todd; Loring, John S.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Hoyt, David W.; Burton, Sarah D.; Walter, Eric D.] Pacific Northwest Natl Lab, William R Wiley Environm & Mol Sci Lab, Richland, WA 99352 USA. [Kirkpatrick, R. James] Michigan State Univ, Coll Nat Sci, E Lansing, MI 48824 USA. RP Bowers, GM (reprint author), St Marys Coll Maryland, Dept Chem & Biochem, St Marys City, MD 20686 USA. EM gmbowers1@smcm.edu OI Bowers, Geoffrey/0000-0003-4876-9305 FU United States Department of Energy, Office of Science, Office of Basic Energy Science, Chemical science, Biosciences, and Geosciences division [DE-FG02-10ER16128, DE-FG02-08ER15929]; U.S. Department of Energy, Office of Science, Office of Basic Energy Science, Chemical Sciences, Biosciences, and Geosciences Division through its Geosciences Program at Pacific Northwest National Laboratory; U.S. Department of Energy, Office of Fossil Energy; Office of Biological and Environmental Research; DOE [DE- AC05-76RL01830] FX The work in this manuscript was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Science, Chemical science, Biosciences, and Geosciences division through the sister Grants DE-FG02-10ER16128 (G.M.B., P.I.) and DE-FG02-08ER15929 (R.J.K, P.I.). J.S.L. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, Chemical Sciences, Biosciences, and Geosciences Division through its Geosciences Program at Pacific Northwest National Laboratory. H.T.S. was supported by the U.S. Department of Energy, Office of Fossil Energy. The NMR data in this work was collected via a Science Theme Proposal (ID: 48812) using instrumentation at the Environmental Molecular Science Laboratory, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is operated by Battelle for the DOE under Contract DE- AC05-76RL01830. NR 53 TC 0 Z9 0 U1 21 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 12 PY 2017 VL 121 IS 1 BP 577 EP 592 DI 10.1021/acs.jpcc.6b11542 PG 16 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EH8PT UT WOS:000392035500061 ER PT J AU Howe, JD Morelock, CR Jiao, Y Chapman, KW Walton, KS Sholl, DS AF Howe, Joshua D. Morelock, Cody R. Jiao, Yang Chapman, Karena W. Walton, Krista S. Sholl, David S. TI Understanding Structure, Metal Distribution, and Water Adsorption in Mixed-Metal MOF-74 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ZEOLITIC IMIDAZOLATE FRAMEWORKS; IRON(II) COORDINATION SITES; AUGMENTED-WAVE METHOD; ORGANIC FRAMEWORKS; CARBON-DIOXIDE; HYDROGEN ADSORPTION; CO2 CAPTURE; STABILITY; NICKEL; N-2 AB We present a joint computational and experimental study of Mg-Ni-MOF-74 and Mg-Cd-MOF-74 to gain insight into the mixing of metals and understand how metal mixing affects the structure of the undercoordinated open-metal sites. Our calculations predict that metal mixing is energetically preferred in these materials. Recent experimental work has demonstrated that Mg-Ni-MOF-74 shows a much greater surface area retention in the presence of water than Mg-MOF-74. To probe this effect, we study H2O adsorption in MgNi-MOF-74, finding that the adsorption energetics and electronic structure do not change significantly at the metal sites when compared to Mg-MOF-74 and Ni-MOF-74, respectively. We conclude that the increased stability of MgNi-MOF-74 is a result of a M-O bond length distortion in mixed-metal MOF-74, consistent with recent work on the stability of MOF-74 under water exposure. C1 [Howe, Joshua D.; Morelock, Cody R.; Jiao, Yang; Walton, Krista S.; Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Chapman, Karena W.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Sholl, DS (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM david.sholl@chbe.gatech.edu FU Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award [DE-SC0012577]; United States Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported as a part of the Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #DE-SC0012577. Use of the Advanced Photon Source (APS) at Argonne National Laboratory was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors thank Olaf Borkiewicz at the APS for collection and integration of X-ray total scattering data. NR 48 TC 0 Z9 0 U1 40 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 12 PY 2017 VL 121 IS 1 BP 627 EP 635 DI 10.1021/acs.jpcc.6b11719 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EH8PT UT WOS:000392035500066 ER PT J AU Bhattacharjee, U Men, L Rosales, BA Alvarado, SR Vela, J Petrich, JW AF Bhattacharjee, Ujjal Men, Long Rosales, Bryan A. Alvarado, Samuel R. Vela, Javier Petrich, Jacob W. TI Using ATTO Dyes To Probe the Photocatalytic Activity of Au-CdS Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PHOTOINDUCED CHARGE SEPARATION; HOT-ELECTRON TRANSFER; GOLD NANOPARTICLES; QUANTUM DOTS; NANOROD HETEROSTRUCTURES; SEMICONDUCTOR NANORODS; CYCLIC VOLTAMMETRY; H-2 GENERATION; VISIBLE-LIGHT; NANOCRYSTALS AB Metal semiconductor nanohybrids (or heterostructures), such as Au-CdS, have become an important class of materials because of their role in photochemical hydrogen production and in other catalytic reactions. Here we report the results of photophysical studies of the interactions of these particles with ATTO dyes (ATTO 590 and 655), which are used as fluorescent probes in a wide range of spectroscopic techniques, most notably super-resolution microscopies. The most important feature of the Au-CdS particles is that they provide the possibility of selective excitation at either their CdS or their Au domains, which absorb preferentially at wavelengths shorter or longer than 500 nm, respectively, thus making possible an excited-state charge transfer reaction from ATTO. Fluorescence quenching of ATTO is dominated by charge transfer to either the CdS domain (lambda(ex) = 400 nm) or the Au domain (lambda(ex) = 570 nm). This quenching is quantified by steady-state and time-resolved absorption and fluorescence measurements, and its assignment is confirmed by electrochemical measurements. The results indicate that the ATTO dyes are sensitive and useful probes for measuring the photocatalytic activity of nanoparticles. Characterizing the nonradiative processes of the ATTO dyes in the presence of these catalytically active particles provides a means of gauging their utility in the wide range of spectroscopies in which they are employed. C1 [Bhattacharjee, Ujjal; Men, Long; Rosales, Bryan A.; Alvarado, Samuel R.; Vela, Javier; Petrich, Jacob W.] Iowa State Univ, Dept Chem, Ames, IA 50010 USA. [Bhattacharjee, Ujjal; Men, Long; Rosales, Bryan A.; Vela, Javier; Petrich, Jacob W.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50010 USA. [Alvarado, Samuel R.] Univ Wisconsin, Dept Chem & Biotechnol, River Falls, WI 54022 USA. RP Petrich, JW (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50010 USA.; Petrich, JW (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50010 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. We thank Malinda Reichert and Pat Dilsaver for assistance with synthesis. NR 64 TC 0 Z9 0 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 12 PY 2017 VL 121 IS 1 BP 676 EP 683 DI 10.1021/acs.jpcc.6b09814 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EH8PT UT WOS:000392035500071 ER PT J AU Sachan, R Cooper, VR Liu, B Aidhy, DS Voas, BK Lang, M Ou, X Trautmann, C Zhang, YW Chisholm, MF Weber, WJ AF Sachan, Ritesh Cooper, Valentino R. Liu, Bin Aidhy, Dilpuneet S. Voas, Brian K. Lang, Maik Ou, Xin Trautmann, Christina Zhang, Yanwen Chisholm, Matthew F. Weber, William J. TI Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID COMPLEX OXIDES; RADIATION TOLERANCE; TRACK FORMATION; PYROCHLORE; DISORDER; A(2)B(2)O(7); STABILITY; DIFFUSION AB Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd2Ti2O7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic:structure, which could provide a channel for fast oxygen conduction. In the present work, we provide insights into the subangstrom scale on the disordering -induced variations in the local atomic environment and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiOx polyhedral that exist in the amorphbus and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd2Ti2O7. The correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction. C1 [Sachan, Ritesh; Cooper, Valentino R.; Zhang, Yanwen; Chisholm, Matthew F.; Weber, William J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Liu, Bin; Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Aidhy, Dilpuneet S.] Univ Wyoming, Dept Mech Engn, Laramie, WY 82071 USA. [Voas, Brian K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Lang, Maik] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Ou, Xin] Chinese Acad Sci, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Trautmann, Christina] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany. [Trautmann, Christina] Tech Univ Darmstadt, Mat Wissensch, D-64287 Darmstadt, Germany. RP Sachan, R (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM sachanr@ornl.gov RI Cooper, Valentino /A-2070-2012; Weber, William/A-4177-2008; OI Cooper, Valentino /0000-0001-6714-4410; Weber, William/0000-0002-9017-7365; Sachan, Ritesh/0000-0002-3604-1467 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division through the Office of Science Early Career Research Program; Materials Science of Actinides, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001089]; Office of Science, U.S. Department of Energy [DEAC02-05CH11231] FX This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. V.R.C. was sponsored by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division through the Office of Science Early Career Research Program. B.K.V. acknowledges summer support through the HERE program at ORNL. M.L.'s contribution was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001089. This simulation used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, U.S. Department of Energy, under Contract No. DEAC02-05CH11231. NR 34 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 12 PY 2017 VL 121 IS 1 BP 975 EP 981 DI 10.1021/acs.jpcc.6b12522 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EH8PT UT WOS:000392035500103 ER PT J AU Smith, AM AF Smith, A. Matthew TI Secure Communication via a Recycling of Attenuated Classical Signals SO PHYSICAL REVIEW APPLIED LA English DT Article AB We describe a simple method of interleaving a classical and quantum signal in a secure communication system at a single wavelength. The system transmits data encrypted via a one-time pad on a classical signal and produces a single-photon reflection of the encrypted signal. This attenuated signal can be used to observe eavesdroppers and produce fresh secret bits. The system can be secured against eavesdroppers, detect simple tampering or classical bit errors, produces more secret bits than it consumes, and does not require any entanglement or complex wavelength division multiplexing, thus, making continuous secure two-way communication via one-time pads practical. C1 [Smith, A. Matthew] Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. RP Smith, AM (reprint author), Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. FU U.S. Department of Energy [DE-AC05-00OR22725]; United States Government FX The author thanks P.G. Evans for helpful discussions and B. Qi for assistance with the numerical method. The author thanks the Air Force Research Laboratory for time to complete the publication of this paper. This work is supported by the U.S. Department of Energy under the Cybersecurity for Energy Delivery Systems (CEDS) program. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.; The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan [ 15]. NR 14 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2331-7019 J9 PHYS REV APPL JI Phys. Rev. Appl. PD JAN 12 PY 2017 VL 7 IS 1 AR 014010 DI 10.1103/PhysRevApplied.7.014010 PG 7 WC Physics, Applied SC Physics GA EH7BX UT WOS:000391928900004 ER PT J AU Reichhardt, C Reichhardt, CJO AF Reichhardt, C. Reichhardt, C. J. Olson TI Shapiro spikes and negative mobility for skyrmion motion on quasi-one-dimensional periodic substrates SO PHYSICAL REVIEW B LA English DT Article ID CHIRAL MAGNET; DYNAMICS; LATTICE AB Using a simple numerical model of skyrmions in a two-dimensional system interacting with a quasi-one-dimensional periodic substrate under combined dc and ac drives where the dc drive is applied perpendicular to the substrate periodicity, we show that a rich variety of novel phase-locking dynamics can occur due to the influence of the Magnus term on the skyrmion dynamics. Instead of Shapiro steps, the velocity response in the direction of the dc drive exhibits a series of spikes, including extended dc drive intervals over which the skyrmions move in the direction opposite to the dc drive, producing negative mobility. There are also specific dc drive values at which the skyrmions move exactly perpendicular to the dc drive direction, giving a condition of absolute transverse mobility. C1 [Reichhardt, C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Reichhardt, C (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U.S. Department of Energy through the LANL/LDRD program; NNSA of the U.S. DOE at LANL [DE-AC52-06NA25396] FX We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD program for this work. This work was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 32 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 12 PY 2017 VL 95 IS 1 AR 014412 DI 10.1103/PhysRevB.95.014412 PG 5 WC Physics, Condensed Matter SC Physics GA EH5YZ UT WOS:000391850500003 ER PT J AU Stillwell, RL Liu, IL Harrison, N Jaime, M Jeffries, JR Butch, NP AF Stillwell, R. L. Liu, I-L. Harrison, N. Jaime, M. Jeffries, J. R. Butch, N. P. TI Tricritical point of the f-electron antiferromagnet USb2 driven by high magnetic fields SO PHYSICAL REVIEW B LA English DT Article ID CYLINDRICAL FERMI SURFACES; NEUTRON-DIFFRACTION; URANIUM-COMPOUNDS; SINGLE-CRYSTALS; PHASE-TRANSITIONS; ANISOTROPY; UBI2; TEMPERATURE; PNICTIDES; DIAGRAM AB In pulsed magnetic fields up to 65 T and at temperatures below the Neel transition, our magnetization and magnetostriction measurements reveal a field-induced metamagneticlike transition that is suggestive of an antiferromagnetic to ferrimagnetic ordering. Our data also suggest a change in the nature of this metamagneticlike transition from second-to first-order-like near a tricritical point at T-tc similar to 145K and H-c similar to 52 T. At high fields for H > H-c we found a decreased magnetic moment roughly half of the moment determined by neutron powder diffraction. We propose that the decreased moment and lack of saturation at high fields indicate the presence of a field-induced ferrimagnetic state above the tricritical point of the H-T phase diagram for USb2. C1 [Stillwell, R. L.; Jeffries, J. R.] Lawrence Livermore Natl Lab, Div Mat Sci, Livermore, CA 94550 USA. [Liu, I-L.] Univ Maryland, Dept Chem Phys, College Pk, MD 20742 USA. [Liu, I-L.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Liu, I-L.; Butch, N. P.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Liu, I-L.; Butch, N. P.] Univ Maryland, Ctr Nanophys & Adv Mat, Dept Phys, College Pk, MD 20742 USA. [Harrison, N.; Jaime, M.] Los Alamos Natl Lab, High Field Magnet Lab, Los Alamos, NM 87545 USA. [Harrison, N.; Jaime, M.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Stillwell, RL (reprint author), Lawrence Livermore Natl Lab, Div Mat Sci, Livermore, CA 94550 USA. FU US Department of Energy by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; National Science Foundation [DMR-1157490]; State of Florida; U.S. Department of Energy; U.S. office of Science project "Science at 100 T" FX The authors would like to thank Gerry Lander for fruitful discussions. This work was performed under LDRD (Tracking Code 14-ERD-041) and under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344. Aportion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida, the U.S. Department of Energy and the U.S. office of Science project "Science at 100 T". NR 50 TC 0 Z9 0 U1 9 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 12 PY 2017 VL 95 IS 1 AR 014414 DI 10.1103/PhysRevB.95.014414 PG 8 WC Physics, Condensed Matter SC Physics GA EH5YZ UT WOS:000391850500005 ER PT J AU Landay, J Doring, M Fernandez-Ramirez, C Hu, B Molina, R AF Landay, J. Doring, M. Fernandez-Ramirez, C. Hu, B. Molina, R. TI Model selection for pion photoproduction SO PHYSICAL REVIEW C LA English DT Article ID CHIRAL PERTURBATION-THEORY; NEAR-THRESHOLD; PRECISION CALCULATION; SCATTERING LENGTHS; PI(-)D SCATTERING; ISOSPIN BREAKING; CROSS-SECTION; N SCATTERING; SUM-RULE; ELECTROPRODUCTION AB Partial-wave analysis of meson and photon-induced reactions is needed to enable the comparison of many theoretical approaches to data. In both energy-dependent and independent parametrizations of partial waves, the selection of the model amplitude is crucial. Principles of the S matrix are implemented to a different degree in different approaches; but a many times overlooked aspect concerns the selection of undetermined coefficients and functional forms for fitting, leading to a minimal yet sufficient parametrization. We present an analysis of low-energy neutral pion photoproduction using the least absolute shrinkage and selection operator (LASSO) in combination with criteria from information theory and K-fold cross validation. These methods are not yet widely known in the analysis of excited hadrons but will become relevant in the era of precision spectroscopy. The principle is first illustrated with synthetic data; then, its feasibility for real data is demonstrated by analyzing the latest available measurements of differential cross sections (d sigma/d Omega), photon-beam asymmetries (Sigma), and target asymmetry differential cross sections (d sigma(T)/d T d rho/d Omega) in the low-energy regime. C1 [Landay, J.; Hu, B.; Molina, R.] George Washington Univ, Washington, DC 20052 USA. [Doring, M.] George Washington Univ, INS, Washington, DC 20052 USA. [Doring, M.] George Washington Univ, APSIS, Washington, DC 20052 USA. [Doring, M.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. [Fernandez-Ramirez, C.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ciudad De Mexico 04510, Mexico. RP Landay, J (reprint author), George Washington Univ, Washington, DC 20052 USA. EM jlanday@gwmail.gwu.edu; doring@gwu.edu; cesar.fernandez@nucleares.unam.mx RI Fernandez Ramirez, Cesar/E-9213-2010 OI Fernandez Ramirez, Cesar/0000-0001-8979-5660 FU National Science Foundation (PIF) [1415459]; George Washington University through the Columbian College Facilitating Funds (CCFF); U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC05-06OR23177, DE-SC0016582]; CONACYT (Mexico) [251817]; PAPIIT-DGAPA (UNAM) [IA101717]; Red Tematica CONACYT de Fisica de Altas Energias (Red FAE, Mexico) FX The authors thank Maxim Mai for discussions. This work is supported by the National Science Foundation (PIF Grant No. 1415459) and by The George Washington University through the Columbian College Facilitating Funds (CCFF). M.D. is also supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC05-06OR23177 and Grant No. DE-SC0016582. C.F.-R. is supported in part by CONACYT (Mexico) under Grant No. 251817, by research Grant No. IA101717 from PAPIIT-DGAPA (UNAM), and by Red Tematica CONACYT de Fisica de Altas Energias (Red FAE, Mexico). NR 107 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JAN 12 PY 2017 VL 95 IS 1 AR 015203 DI 10.1103/PhysRevC.95.015203 PG 13 WC Physics, Nuclear SC Physics GA EH6CJ UT WOS:000391859800005 ER PT J AU Meeks, K Tencer, J Pantoya, ML AF Meeks, Kelsey Tencer, John Pantoya, Michelle L. TI Percolation of binary disk systems: Modeling and theory SO PHYSICAL REVIEW E LA English DT Article ID CONTINUUM PERCOLATION; MONTE-CARLO; THERMAL-CONDUCTIVITY; CRITICAL DENSITY; THRESHOLD; UNIVERSALITY; NETWORKS; MEDIA; TRANSPORT; COMPOSITE AB The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This work utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and compared to previously published correlations. A set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested. C1 [Meeks, Kelsey; Tencer, John] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Meeks, Kelsey; Pantoya, Michelle L.] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. RP Meeks, K (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA.; Meeks, K (reprint author), Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. EM kmeeks@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Army Research Office [W911NF-11-1-0439] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This document has been reviewed and approved for unclassified, unlimited release under 2015-475586. The authors are grateful for additional support by the Army Research Office under Contract No. W911NF-11-1-0439 and encouragement by our program manager, Dr. Ralph Anthenien. NR 46 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JAN 12 PY 2017 VL 95 IS 1 AR 012118 DI 10.1103/PhysRevE.95.012118 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EH6EI UT WOS:000391865100002 PM 28208494 ER PT J AU Lehnert, MS Bennett, A Reiter, KE Gerard, PD Wei, QH Byler, M Yan, H Lee, WK AF Lehnert, Matthew S. Bennett, Andrew Reiter, Kristen E. Gerard, Patrick D. Wei, Qi-Huo Byler, Miranda Yan, Huan Lee, Wah-Keat TI Mouthpart conduit sizes of fluid-feeding insects determine the ability to feed from pores SO PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES LA English DT Article DE Lepidoptera; Diptera; capillarity; liquid bridges; nanoparticles ID LONG-PROBOSCID FLIES; BUTTERFLY PROBOSCIS; PUDDLING BEHAVIOR; DRINKING-STRAW; L. NYMPHALIDAE; GLOSSAL HAIRS; LEPIDOPTERA; DIVERSIFICATION; DIPTERA; MECHANISMS AB Fluid-feeding insects, such as butterflies, moths and flies (20% of all animal species), are faced with the common selection pressure of having to remove and feed on trace amounts of fluids from porous surfaces. Insects able to acquire fluids that are confined to pores during drought conditions would have an adaptive advantage and increased fitness over other individuals. Here, we performed feeding trials using solutions with magnetic nanoparticles to show that butterflies and flies have mouthparts adapted to pull liquids from porous surfaces using capillary action as the governing principle. In addition, the ability to feed on the liquids collected from pores depends on a relationship between the diameter of the mouthpart conduits and substrate pore size diameter; insects with mouthpart conduit diameters larger than the pores cannot successfully feed, thus there is a limiting substrate pore size from which each species can acquire liquids for fluid uptake. Given that natural selection independently favoured mouthpart architectures that support these methods of fluid uptake (Diptera and Lepidoptera share a common ancestor 280 Ma that had chewing mouthparts), we suggest that the convergence of this mechanism advocates this as an optimal strategy for pulling trace amounts of fluids from porous surfaces. C1 [Lehnert, Matthew S.; Bennett, Andrew; Reiter, Kristen E.; Byler, Miranda] Kent State Univ, Dept Biol Sci, North Canton, OH 44720 USA. [Gerard, Patrick D.] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA. [Wei, Qi-Huo; Yan, Huan] Kent State Univ, Inst Liquid Crystal, Kent, OH 44242 USA. [Lee, Wah-Keat] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Lehnert, MS (reprint author), Kent State Univ, Dept Biol Sci, North Canton, OH 44720 USA. EM mlehner1@kent.edu FU National Science Foundation [IOS 1354956, DBI 1429113]; US DOE [DE-AC02-06CH11357] FX This work was supported by National Science Foundation grant no. IOS 1354956 and DBI 1429113. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 46 TC 0 Z9 0 U1 4 U2 4 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 0962-8452 EI 1471-2954 J9 P ROY SOC B-BIOL SCI JI Proc. R. Soc. B-Biol. Sci. PD JAN 11 PY 2017 VL 284 IS 1846 AR 20162026 DI 10.5061/dryad.b167g PG 8 WC Biology; Ecology; Evolutionary Biology SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GA EJ7KL UT WOS:000393400500012 ER PT J AU Jacobs, IE Aasen, EW Nowak, D Li, J Morrison, W Roehling, JD Augustine, MP Moule, AJ AF Jacobs, Ian E. Aasen, Erik W. Nowak, Derek Li, Jun Morrison, William Roehling, John D. Augustine, Matthew P. Moule, Adam J. TI Direct-Write Optical Patterning of P3HT Films Beyond the Diffraction Limit SO ADVANCED MATERIALS LA English DT Article ID POLYMER SOLAR-CELLS; SOFT LITHOGRAPHY; ORGANIC SEMICONDUCTORS; CONJUGATED POLYMERS; CROSS-LINKING; LARGE-AREA; EFFICIENT; DEVICES; AGGREGATION; MORPHOLOGY AB Doping-induced solubility control is a patterning technique for semiconducting polymers, which utilizes the reduction in polymer solubility upon p-type doping to provide direct, optical control of film topography and doping level. In situ direct-write patterning and imaging are demonstrated, revealing subdiffraction-limited topographic features. Photoinduced force microscopy shows that doping level can be optically modulated with similar resolution. C1 [Jacobs, Ian E.] Univ Calif Davis, Dept Mat Sci & Engn, One Shields Ave, Davis, CA 95616 USA. [Aasen, Erik W.; Li, Jun; Roehling, John D.; Moule, Adam J.] Univ Calif Davis, Dept Chem Engn, One Shields Ave, Davis, CA 95616 USA. [Nowak, Derek; Morrison, William] Mol Vista Inc, 6840 Via Del Oro,Suite 110, San Jose, CA 95119 USA. [Augustine, Matthew P.; Moule, Adam J.] Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA. [Roehling, John D.] Lawrence Livermore Natl Lab, Div Mat Sci, 7000 East Ave, Livermore, CA 94550 USA. RP Moule, AJ (reprint author), Univ Calif Davis, Dept Chem Engn, One Shields Ave, Davis, CA 95616 USA.; Moule, AJ (reprint author), Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA. EM amoule@ucdavis.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0010419]; University of California Advanced Solar Technologies Institute (UC Solar) FX This research project was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award No. DE-SC0010419. I.E.J. and J.L. also thank the University of California Advanced Solar Technologies Institute (UC Solar) for funding. The authors would also like to acknowledge the Keck Spectral Imaging Facility, NEAT-ORU UC Davis, for use of the LSCM. NR 50 TC 2 Z9 2 U1 13 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JAN 11 PY 2017 VL 29 IS 2 AR 1603221 DI 10.1002/adma.201603221 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI8BK UT WOS:000392729200009 ER PT J AU Yang, YC Li, X Wen, MR Hacopian, E Chen, WB Gong, YJ Zhang, J Li, B Zhou, W Ajayan, PM Chen, Q Zhu, T Lou, J AF Yang, Yingchao Li, Xing Wen, Minru Hacopian, Emily Chen, Weibing Gong, Yongji Zhang, Jing Li, Bo Zhou, Wu Ajayan, Pulickel M. Chen, Qing Zhu, Ting Lou, Jun TI Brittle Fracture of 2D MoSe2 SO ADVANCED MATERIALS LA English DT Article ID ELASTIC PROPERTIES; LAYER MOS2; GRAPHENE; PHOTODETECTORS; TOUGHNESS; TRANSISTORS; NANOSHEETS; STRENGTH AB An in situ quantitative tensile testing platform is developed to enable the uniform in-plane loading of a freestanding membrane of 2D materials inside a scanning electron microscope. The in situ tensile testing reveals the brittle fracture of large-area MoSe2 crystals and measures their fracture strength for the first time. C1 [Yang, Yingchao; Li, Xing; Hacopian, Emily; Chen, Weibing; Gong, Yongji; Zhang, Jing; Li, Bo; Ajayan, Pulickel M.; Lou, Jun] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [Li, Xing; Chen, Qing] Peking Univ, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China. [Li, Xing; Chen, Qing] Peking Univ, Dept Elect, Beijing 100871, Peoples R China. [Wen, Minru] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Wen, Minru; Zhu, Ting] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Zhou, Wu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Lou, J (reprint author), Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA.; Zhu, T (reprint author), Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM ting.zhu@me.gatech.edu; jlou@rice.edu RI Zhou, Wu/D-8526-2011; Chen, Qing/C-9010-2009 OI Zhou, Wu/0000-0002-6803-1095; Chen, Qing/0000-0002-7919-5159 FU Air Force Office of Scientific Research BRI Grant [FA9550-14-1-0628]; Welch Foundation Grant [C-1716]; Department of Energy, Office of Basic Energy Sciences [DE-FG02-13ER46967]; NSF [DMR-1410331]; NSF of China [11528407] FX Y.Y. and X.L. contributed equally to this work. Y.Y. and J.L. acknowledge support from the Air Force Office of Scientific Research BRI Grant FA9550-14-1-0628, the Welch Foundation Grant C-1716, and the Department of Energy, Office of Basic Energy Sciences under contract DE-FG02-13ER46967. T.Z. acknowledges funding from NSF grant DMR-1410331. X.L., Q.C., and J.L. thank support from NSF of China (Grant No. 11528407). DFT simulations were performed on the "Explorer 100" cluster system of Tsinghua National Laboratory for Information Science and Technology, Beijing, China. NR 35 TC 1 Z9 1 U1 21 U2 21 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JAN 11 PY 2017 VL 29 IS 2 AR 1604201 DI 10.1002/adma.201604201 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI8BK UT WOS:000392729200021 ER PT J AU Zhao, BD Abdi-Jalebi, M Tabachnyk, M Glass, H Kamboj, VS Nie, WY Pearson, AJ Puttisong, Y Godel, KC Beere, HE Ritchie, DA Mohite, AD Dutton, SE Friend, RH Sadhanala, A AF Zhao, Baodan Abdi-Jalebi, Mojtaba Tabachnyk, Maxim Glass, Hugh Kamboj, Varun S. Nie, Wanyi Pearson, Andrew J. Puttisong, Yuttapoom Godel, Karl C. Beere, Harvey E. Ritchie, David A. Mohite, Aditya D. Dutton, Sian E. Friend, Richard H. Sadhanala, Aditya TI High Open-Circuit Voltages in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction Photovoltaics SO ADVANCED MATERIALS LA English DT Article ID LIGHT-EMITTING-DIODES; EXCITON BINDING-ENERGY; HYBRID SOLAR-CELLS; HALIDE PEROVSKITES; LEAD IODIDE; QUANTUM EFFICIENCY; EFFECTIVE MASSES; CHARGE-CARRIERS; PERFORMANCE; SEMICONDUCTORS AB Low-bandgap CH3NH3(PbxSn1-x)I-3 (0 <= x <= 1) hybrid perovskites (e.g., approximate to 1.5-1.1 eV) demonstrating high surface coverage and superior optoelectronic properties are fabricated. State-of-the-art photovoltaic (PV) performance is reported with power conversion efficiencies approaching 10% in planar heterojunction architecture with small (<450 meV) energy loss compared to the bandgap and high (>100 cm(2) V-1 s(-1)) intrinsic carrier mobilities. C1 [Zhao, Baodan; Abdi-Jalebi, Mojtaba; Tabachnyk, Maxim; Glass, Hugh; Kamboj, Varun S.; Pearson, Andrew J.; Puttisong, Yuttapoom; Godel, Karl C.; Beere, Harvey E.; Ritchie, David A.; Dutton, Sian E.; Friend, Richard H.; Sadhanala, Aditya] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Nie, Wanyi; Mohite, Aditya D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sadhanala, A (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. EM as2233@cam.ac.uk OI Godel, Karl Christoph/0000-0001-7426-1308; Pearson, Andrew/0000-0003-3634-4748; Glass, Hugh/0000-0001-7559-9829 FU Engineering and Physical Sciences Research Council [EPSRC - EP/M005143/1]; India-UK APEX project; Winton Programme (Cambridge) for the Physics of Sustainability; Cambridge Trust; China Scholarship Council; Nava Technology Limited; LDRD program; LANL FX A.S., V.S.K., and D.A.R. would like to acknowledge and thank Angadjit Singh for the useful discussions. A.J.P. and A.S. thank Prof. David Lidzey (University of Sheffield) for the use of a sample chamber for X-ray scattering measurements. The authors acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC - EP/M005143/1), India-UK APEX project, and the Winton Programme (Cambridge) for the Physics of Sustainability. B.Z. would like to thank the Cambridge Trust and China Scholarship Council for the funding and continued support. M.A.J. thanks Nava Technology Limited for a PhD scholarship. A.D.M. and W.N. would like to acknowledge the LDRD program and LANL for the funding and continued support. The data underlying this publication are available at http://dx.doi.org/10.17863/CAM.5871. NR 67 TC 1 Z9 1 U1 23 U2 23 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD JAN 11 PY 2017 VL 29 IS 2 AR 1604744 DI 10.1002/adma.201604744 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI8BK UT WOS:000392729200026 ER PT J AU Zhang, JX Gu, LH Zhang, JB Wu, RN Wang, F Lin, GH Wu, B Lu, Q Meng, P AF Zhang, Jinxin Gu, Lianhong Zhang, Jingbo Wu, Rina Wang, Feng Lin, Guanghui Wu, Bo Lu, Qi Meng, Ping TI The interaction between nitrogen and phosphorous is a strong predictor of intra-plant variation in nitrogen isotope composition in a desert species SO BIOGEOSCIENCES LA English DT Article ID STABLE NITROGEN; MYCORRHIZAL FUNGI; NATURAL-ABUNDANCE; HIGHER-PLANTS; NUTRIENT RESORPTION; FOLIAR DELTA-N-15; AMMONIA EXCHANGE; GLOBAL PATTERNS; LEAVES; CARBON AB Understanding intra-plant variations in delta N-15 is essential for fully utilizing the potential of delta N-15 as an integrator of the terrestrial nitrogen (N) cycle and as an indicator of the relative limitation of N and phosphorous (P) on plant growth. Studying such variations can also yield insights into N metabolism by plant as a whole or by specific organs. However, few researchers have systematically evaluated intra-plant variations in delta N-15 and their relationships with organ nutrient contents. We excavated whole plant architectures of Nitraria tangutorum Bobrov, a C-3 species of vital regional ecological importance, in two deserts in northwestern China. We systematically and simultaneously measured N isotope ratios and N and P contents of different parts of the excavated plants. We found that intra-plant variations in delta N-15 of N. tangutorum were positively correlated with corresponding organ N and P contents. However, it was the N x P interaction, not N and P individually or their linear combination, that was the strongest predictor of intra-plant delta N-15. Additionally, we showed that root delta N-15 increased with depth into soil, a pattern similar to profiles of soil delta N-15 reported by previous studies in different ecosystems. We hypothesized that the strong positive intra-plant delta N-15-N and P relationships are caused by three processes acting in conjunction: (1) N and P content-driven fractionating exchanges of ammonia between leaves and the atmosphere (volatilization) during photorespiration, (2) resorption and remobilization of N and P from senescing leaves, and (3) mixture of the re-translocated foliar N and P with existing pools in stems and roots. To test our hypothesis, future studies should investigate plant N volatilization and associated isotope fractionation and intra-plant variations in delta N-15 in different species across ecosystems and climates. C1 [Zhang, Jinxin; Zhang, Jingbo; Wu, Rina; Wang, Feng; Wu, Bo; Lu, Qi] Chinese Acad Forestry, Inst Desertificat Studies, Beijing, Peoples R China. [Zhang, Jinxin] Chinese Acad Forestry, Res Inst Forestry, Beijing, Peoples R China. [Gu, Lianhong] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA. [Gu, Lianhong] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Zhang, Jingbo] Chinese Acad Forestry, Expt Ctr Desert Forestry, Dengkou, Inner Mongolia, Peoples R China. [Lin, Guanghui] Tsinghua Univ, Ctr Earth Syst Sci, Beijing, Peoples R China. [Meng, Ping] Chinese Acad Forestry, Beijing, Peoples R China. RP Gu, LH (reprint author), Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA.; Gu, LH (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. EM lianhong-gu@ornl.gov FU National Key Technology R&D Program of the Ministry of Science and Technology of China [2012BAD16B01]; National Natural Science Foundation of China Youth Fund Project [31400620]; State Forestry Administration of China Forestry Public Welfare Scientific Research Funding [201404304]; Science and Technology Foundation [CAF201202]; Lecture and Study Program for Outstanding Scholars from Home and Abroad of the Chinese Academy of Forestry [CAFYBB2011007]; US Department of Energy, Office of Science, Biological and Environmental Research Program, Climate and Environmental Sciences Division; US Department of Energy [DE-AC05-00OR22725] FX Field work, data acquisition, and analyses were conducted at the Institute of Desertification Studies with support from the National Key Technology R&D Program of the Ministry of Science and Technology of China (2012BAD16B01), the National Natural Science Foundation of China Youth Fund Project (31400620), the State Forestry Administration of China Forestry Public Welfare Scientific Research Funding (201404304), the Science and Technology Foundation (CAF201202), and the Lecture and Study Program for Outstanding Scholars from Home and Abroad of the Chinese Academy of Forestry (CAFYBB2011007). Data analyses and manuscript writing were partly carried out at Oak Ridge National Laboratory (ORNL) with support from US Department of Energy, Office of Science, Biological and Environmental Research Program, Climate and Environmental Sciences Division. ORNL is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. NR 82 TC 0 Z9 0 U1 8 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1726-4170 EI 1726-4189 J9 BIOGEOSCIENCES JI Biogeosciences PD JAN 11 PY 2017 VL 14 IS 1 BP 131 EP 144 DI 10.5194/bg-14-131-2017 PG 14 WC Ecology; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA EK1KC UT WOS:000393683200001 ER PT J AU Akerib, DS Alsum, S Araujo, HM Bai, X Bailey, AJ Balajthy, J Beltrame, P Bernard, EP Bernstein, A Biesiadzinski, TP Boulton, EM Bramante, R Bras, P Byram, D Cahn, SB Carmona-Benitez, MC Chan, C Chiller, AA Chiller, C Currie, A Cutter, JE Davison, TJR Dobi, A Dobson, JEY Druszkiewicz, E Edwards, BN Faham, CH Fiorucci, S Gaitskell, RJ Gehman, VM Ghag, C Gibson, KR Gilchriese, MGD Hall, CR Hanhardt, M Haselschwardt, SJ Hertel, SA Hogan, DP Horn, M Huang, DQ Ignarra, CM Ihm, M Jacobsen, RG Ji, W Kamdin, K Kazkaz, K Khaitan, D Knoche, R Larsen, NA Lee, C Lenardo, BG Lesko, KT Lindote, A Lopes, MI Manalaysay, A Mannino, RL Marzioni, MF McKinsey, DN Mei, DM Mock, J Moongweluwan, M Morad, JA Murphy, AS Nehrkorn, C Nelson, HN Neves, F O'Sullivan, K Oliver-Mallory, KC Palladino, KJ Pease, EK Phelps, P Reichhart, L Rhyne, C Shaw, S Shutt, TA Silva, C Solmaz, M Solovov, VN Sorensen, P Stephenson, S Sumner, TJ Szydagis, M Taylor, DJ Taylor, WC Tennyson, BP Terman, PA Tiedt, DR To, WH Tripathi, M Tvrznikova, L Uvarov, S Verbus, JR Webb, RC White, JT Whitis, TJ Witherell, MS Wolfs, FLH Xu, J Yazdani, K Young, SK Zhang, C AF Akerib, D. S. Alsum, S. Araujo, H. M. Bai, X. Bailey, A. J. Balajthy, J. Beltrame, P. Bernard, E. P. Bernstein, A. Biesiadzinski, T. P. Boulton, E. M. Bramante, R. Bras, P. Byram, D. Cahn, S. B. Carmona-Benitez, M. C. Chan, C. Chiller, A. A. Chiller, C. Currie, A. Cutter, J. E. Davison, T. J. R. Dobi, A. Dobson, J. E. Y. Druszkiewicz, E. Edwards, B. N. Faham, C. H. Fiorucci, S. Gaitskell, R. J. Gehman, V. M. Ghag, C. Gibson, K. R. Gilchriese, M. G. D. Hall, C. R. Hanhardt, M. Haselschwardt, S. J. Hertel, S. A. Hogan, D. P. Horn, M. Huang, D. Q. Ignarra, C. M. Ihm, M. Jacobsen, R. G. Ji, W. Kamdin, K. Kazkaz, K. Khaitan, D. Knoche, R. Larsen, N. A. Lee, C. Lenardo, B. G. Lesko, K. T. Lindote, A. Lopes, M. I. Manalaysay, A. Mannino, R. L. Marzioni, M. F. McKinsey, D. N. Mei, D. -M. Mock, J. Moongweluwan, M. Morad, J. A. Murphy, A. St J. Nehrkorn, C. Nelson, H. N. Neves, F. O'Sullivan, K. Oliver-Mallory, K. C. Palladino, K. J. Pease, E. K. Phelps, P. Reichhart, L. Rhyne, C. Shaw, S. Shutt, T. A. Silva, C. Solmaz, M. Solovov, V. N. Sorensen, P. Stephenson, S. Sumner, T. J. Szydagis, M. Taylor, D. J. Taylor, W. C. Tennyson, B. P. Terman, P. A. Tiedt, D. R. To, W. H. Tripathi, M. Tvrznikova, L. Uvarov, S. Verbus, J. R. Webb, R. C. White, J. T. Whitis, T. J. Witherell, M. S. Wolfs, F. L. H. Xu, J. Yazdani, K. Young, S. K. Zhang, C. CA LUX Collaboration TI Results from a Search for Dark Matter in the Complete LUX Exposure SO PHYSICAL REVIEW LETTERS LA English DT Article ID CALORIMETER; CHAMBERS AB We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35 x 10(4) kg day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV c(-2), WIMP-nucleon spin-independent cross sections above 2.2 x 10-46 cm(2) are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1 x 10(-46) cm(2) at 50 GeV c(-2). C1 [Akerib, D. S.; Biesiadzinski, T. P.; Bramante, R.; Gibson, K. R.; Ji, W.; Lee, C.; Phelps, P.; Shutt, T. A.; To, W. H.; Whitis, T. J.] Case Western Reserve Univ, Dept Phys, 10900 Euclid Ave, Cleveland, OH 44106 USA. [Akerib, D. S.; Biesiadzinski, T. P.; Bramante, R.; Ignarra, C. M.; Ji, W.; Lee, C.; Palladino, K. J.; Shutt, T. A.; To, W. H.; Whitis, T. J.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94205 USA. [Akerib, D. S.; Biesiadzinski, T. P.; Bramante, R.; Ignarra, C. M.; Ji, W.; Lee, C.; Palladino, K. J.; Shutt, T. A.; To, W. H.; Whitis, T. J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94309 USA. [Alsum, S.; Palladino, K. J.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Araujo, H. M.; Bailey, A. J.; Currie, A.; Sumner, T. J.; Yazdani, K.] Imperial Coll London, Blackett Lab, High Energy Phys, London SW7 2BZ, England. [Bai, X.; Hanhardt, M.; Tiedt, D. R.] South Dakota Sch Mines & Technol, 501 East St Joseph St, Rapid City, SD 57701 USA. [Balajthy, J.; Hall, C. R.; Knoche, R.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beltrame, P.; Davison, T. J. R.; Marzioni, M. F.; Murphy, A. St J.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh EH9 3FD, Midlothian, Scotland. [Bernard, E. P.; Boulton, E. M.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Ihm, M.; Jacobsen, R. G.; Kamdin, K.; McKinsey, D. N.; O'Sullivan, K.; Oliver-Mallory, K. C.; Pease, E. K.; Tvrznikova, L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bernard, E. P.; Boulton, E. M.; Cahn, S. B.; Edwards, B. N.; Hertel, S. A.; Horn, M.; Larsen, N. A.; McKinsey, D. N.; O'Sullivan, K.; Pease, E. K.; Tennyson, B. P.; Tvrznikova, L.] Yale Univ, Dept Phys, 217 Prospect St, New Haven, CT 06511 USA. [Bernstein, A.; Kazkaz, K.; Lenardo, B. G.; Xu, J.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. [Bras, P.; Lindote, A.; Lopes, M. I.; Neves, F.; Silva, C.; Solovov, V. N.] Univ Coimbra, Dept Phys, LIP Coimbra, Rua Larga, P-3004516 Coimbra, Portugal. [Byram, D.; Chiller, A. A.; Chiller, C.; Mei, D. -M.; Zhang, C.] Univ South Dakota, Dept Phys, 414E Clark St, Vermillion, SD 57069 USA. [Byram, D.; Hanhardt, M.; Horn, M.; Taylor, D. J.] South Dakota Sci & Technol Author, Sanford Underground Res Facil, Lead, SD 57754 USA. [Carmona-Benitez, M. C.; Haselschwardt, S. J.; Nehrkorn, C.; Nelson, H. N.; Solmaz, M.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Chan, C.; Fiorucci, S.; Gaitskell, R. J.; Huang, D. Q.; Rhyne, C.; Taylor, W. C.; Verbus, J. R.] Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA. [Cutter, J. E.; Lenardo, B. G.; Manalaysay, A.; Morad, J. A.; Stephenson, S.; Tripathi, M.; Uvarov, S.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Dobi, A.; Faham, C. H.; Fiorucci, S.; Gehman, V. M.; Gilchriese, M. G. D.; Lesko, K. T.; McKinsey, D. N.; O'Sullivan, K.; Pease, E. K.; Sorensen, P.; Witherell, M. S.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Dobson, J. E. Y.; Ghag, C.; Reichhart, L.; Shaw, S.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Druszkiewicz, E.; Khaitan, D.; Moongweluwan, M.; Wolfs, F. L. H.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Mannino, R. L.; Terman, P. A.; Webb, R. C.; White, J. T.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Mock, J.; Szydagis, M.; Young, S. K.] SUNY Albany, Dept Phys, 1400 Washington Ave, Albany, NY 12222 USA. EM hertel@berkeley.edu; aaronm@ucdavis.edu OI Tvrznikova, Lucie/0000-0002-0394-7692 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231, DE-AC05-06OR23100, DE-AC52-07NA27344, DE-FG01-91ER40618, DE-FG02-08ER41549, DE-FG02-11ER41738, DE-FG02-91ER40674, DE-FG02-91ER40688, DE-FG02-95ER40917, DE-NA0000979, DE-SC0006605, DE-SC0010010, DE-SC0015535]; U.S. National Science Foundation [PHY-0750671, PHY-0801536, PHY-1003660, PHY-1004661, PHY-1102470, PHY-1312561, PHY-1347449, PHY-1505868, PHY-1636738]; Center for Ultra-low Background Experiments in the Dakotas (CUBED); South Dakota School of Mines and Technology (SDSMT); Fundacao para a Ciencia e a Tecnologia (FCT) [PTDC/FIS-NUC/1525/2014]; UK Royal Society [IE120804]; [RA0350] FX This work was partially supported by the U.S. Department of Energy (DOE) under Awards No. DE-AC02-05CH11231, No. DE-AC05-06OR23100, No. DE-AC52-07NA27344, No. DE-FG01-91ER40618, No. DE-FG02-08ER41549, No. DE-FG02-11ER41738, No. DE-FG02-91ER40674, No. DE-FG02-91ER40688, No. DE-FG02-95ER40917, No. DE-NA0000979, No. DE-SC0006605, No. DE-SC0010010, and No. DE-SC0015535; the U.S. National Science Foundation under Grants No. PHY-0750671, No. PHY-0801536, No. PHY-1003660, No. PHY-1004661, No. PHY-1102470, No. PHY-1312561, No. PHY-1347449, No. PHY-1505868, and No. PHY-1636738; the Research Corporation Grant No. RA0350; the Center for Ultra-low Background Experiments in the Dakotas (CUBED); and the South Dakota School of Mines and Technology (SDSMT). LIP-Coimbra acknowledges funding from Fundacao para a Ciencia e a Tecnologia (FCT) through the Project-Grant No. PTDC/FIS-NUC/1525/2014. Imperial College and Brown University thank the UK Royal Society for travel funds under the International Exchange Scheme (No. IE120804). The UK groups acknowledge institutional support from Imperial College London, University College London and Edinburgh University, and from the Science and Technology Facilities Council for PhD studentships No. ST/K502042/1 (AB), No. ST/K502406/1 (SS), and No. ST/M503538/1 (KY). The University of Edinburgh is a charitable body, registered in Scotland, with Registration No. SC005336. This research was conducted using computational resources and services at the Center for Computation and Visualization, Brown University, and also the Yale Science Research Software Core. The 83Rb used in this research to produce 83mKr was supplied by the United States Department of Energy Office of Science by the Isotope Program in the Office of Nuclear Physics. We gratefully acknowledge the logistical and technical support and the access to laboratory infrastructure provided to us by SURF and its personnel at Lead, South Dakota. SURF was developed by the South Dakota Science and Technology Authority, with an important philanthropic donation from T. Denny Sanford, and is operated by Lawrence Berkeley National Laboratory for the Department of Energy, Office of High Energy Physics. NR 46 TC 24 Z9 24 U1 8 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 11 PY 2017 VL 118 IS 2 AR 021303 DI 10.1103/PhysRevLett.118.021303 PG 8 WC Physics, Multidisciplinary SC Physics GA EH7BD UT WOS:000391926900002 PM 28128598 ER PT J AU Blum, T Christ, N Hayakawa, M Izubuchi, T Jin, LC Jung, C Lehner, C AF Blum, Thomas Christ, Norman Hayakawa, Masashi Izubuchi, Taku Jin, Luchang Jung, Chulwoo Lehner, Christoph TI Connected and Leading Disconnected Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment with a Physical Pion Mass SO PHYSICAL REVIEW LETTERS LA English DT Article ID G-2 AB We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 48(3) x 96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find a(mu)(HLbL) = 5.35(1.35) x 10(-10), where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed. C1 [Blum, Thomas] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Blum, Thomas; Izubuchi, Taku] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Christ, Norman; Jin, Luchang] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Hayakawa, Masashi] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Hayakawa, Masashi] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. [Hayakawa, Masashi] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM ljin.luchang@gmail.com FU ALCC Program of the U.S. DOE on the Blue Gene/Q (BG/Q) Mira computer at the Argonne Leadership Class Facility, a DOE Office of Science Facility [De-AC02-06CH11357]; U.S. DOE [DE-FG02-92ER40716, DE-SC0011941, AC-02-98CH10886(BNL)]; Japanese Ministry of Education [26400261]; DOE Office of Science Early Career Award; [16K05317] FX We would like to thank our RBC and UKQCD collaborators for helpful discussions and support. We would also like to thank RBRC for BG/Q computer time. The BAGEL [39] library is used to compute all the propagators. The CPS [40] software package is also used in the calculation. The computation is performed under the ALCC Program of the U.S. DOE on the Blue Gene/Q (BG/Q) Mira computer at the Argonne Leadership Class Facility, a DOE Office of Science Facility supported under Contract No. De-AC02-06CH11357. T. B. is supported by U.S. DOE Grant No. DE-FG02-92ER40716. N. C. and L. J. are supported in part by U.S. DOE Grant No. DE-SC0011941. M. H. is supported in part by Japan Grants-in-Aid for Scientific Research, No. 16K05317. T. I., C. J., and C. L. are supported in part by U.S. DOE Contract No. AC-02-98CH10886(BNL). T. I. is supported in part by the Japanese Ministry of Education Grant-in-Aid, No. 26400261. C. L. acknowledges support through a DOE Office of Science Early Career Award. NR 39 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 11 PY 2017 VL 118 IS 2 AR 022005 DI 10.1103/PhysRevLett.118.022005 PG 6 WC Physics, Multidisciplinary SC Physics GA EH7BD UT WOS:000391926900006 PM 28128628 ER PT J AU Kogar, A de la Pena, GA Lee, S Fang, Y Sun, SXL Lioi, DB Karapetrov, G Finkelstein, KD Ruff, JPC Abbamonte, P Rosenkranz, S AF Kogar, A. de la Pena, G. A. Lee, Sangjun Fang, Y. Sun, S. X. -L. Lioi, D. B. Karapetrov, G. Finkelstein, K. D. Ruff, J. P. C. Abbamonte, P. Rosenkranz, S. TI Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in CuxTiSe2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID 2H-TASE2; 1T-TAS2; PHASE; TISE2 AB X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in CuxTiSe2 as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. The results show a CDWincommensuration arising at an intercalation value coincident with the onset of superconductivity at around x = 0.055(5). Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up to x = 0.091(6), the highest copper concentration examined in this study. The phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state. C1 [Kogar, A.; de la Pena, G. A.; Lee, Sangjun; Sun, S. X. -L.; Abbamonte, P.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Kogar, A.; de la Pena, G. A.; Lee, Sangjun; Fang, Y.; Sun, S. X. -L.; Abbamonte, P.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Kogar, A.; Rosenkranz, S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lioi, D. B.; Karapetrov, G.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Finkelstein, K. D.; Ruff, J. P. C.] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA. EM kogar2@illinois.edu RI Rosenkranz, Stephan/E-4672-2011 OI Rosenkranz, Stephan/0000-0002-5659-0383 FU Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. DOE; DOE-BES Grant [DE-FG02-06ER46285]; NSF [ECCS-1408151]; National Science Foundation; National Institutes of Health/National Institute of General Medical Sciences under NSF [DMR-1332208]; Gordon and Betty Moore Foundation's EPiQS initiative [GBMF4542] FX We gratefully acknowledge J. van Wezel for fruitful discussions. Synchrotron experiments were supported by the Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. DOE. Lab-based x-ray experiments were supported by DOE-BES Grant No. DE-FG02-06ER46285. Growth of TiSe2Cux crystals was supported by NSF Grant No. ECCS-1408151. CHESS is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF Grant No. DMR-1332208. P. A. acknowledges support from the Gordon and Betty Moore Foundation's EPiQS initiative through Grant No. GBMF4542. NR 28 TC 1 Z9 1 U1 14 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 11 PY 2017 VL 118 IS 2 AR 027002 DI 10.1103/PhysRevLett.118.027002 PG 5 WC Physics, Multidisciplinary SC Physics GA EH7BD UT WOS:000391926900009 PM 28128591 ER PT J AU Levitas, VI Chen, H Xiong, LM AF Levitas, Valery I. Chen, Hao Xiong, Liming TI Triaxial-Stress-Induced Homogeneous Hysteresis-Free First-Order Phase Transformations with Stable Intermediate Phases SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULAR-DYNAMICS; ROOM-TEMPERATURE; FIELD-THEORY; SILICON; NUCLEATION; POTENTIALS; INTERFACE AB Starting with thermodynamic predictions and following with molecular dynamics simulations, special triaxial compression-tension states were found for which the stresses for the instability of the crystal lattice of silicon (Si) are the same for direct and reverse phase transformations (PTs) between semiconducting Si I and metallic Si II phases. This leads to unique homogeneous and hysteresis-free first-order PTs, for which each intermediate crystal lattice along the transformation path is in indifferent thermodynamic equilibrium and can be arrested and studied by fixing the strain in one direction. By approaching these stress states, a traditional two-phase system continuously transforms to homogenous intermediate phases. Zero hysteresis and homogeneous transformations are the optimal property for various PT applications, which drastically reduce damage and energy dissipation. C1 [Levitas, Valery I.] Iowa State Univ, Dept Aerosp Engn, Ames, IA 50011 USA. [Levitas, Valery I.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Levitas, Valery I.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Levitas, Valery I.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Chen, Hao; Xiong, Liming] Iowa State Univ, Dept Aerosp Engn, Ames, IA 50011 USA. FU NSF [CMMI-1536925, DMR-1434613]; ARO [W911NF-12-1-0340]; ONR [N00014-16-1-2079]; Iowa State University FX All authors acknowledge support of NSF (CMMI-1536925). V.I.L. also acknowledges support of NSF (DMR-1434613), ARO (W911NF-12-1-0340), ONR (N00014-16-1-2079), and Iowa State University (Schafer 2050 Challenge Professorship). NR 36 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 11 PY 2017 VL 118 IS 2 AR 025701 DI 10.1103/PhysRevLett.118.025701 PG 5 WC Physics, Multidisciplinary SC Physics GA EH7BD UT WOS:000391926900008 PM 28128597 ER PT J AU Li, Y Zhu, HX AF Li, Ye Zhu, Hua Xing TI Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation SO PHYSICAL REVIEW LETTERS LA English DT Article ID TO-LEADING-ORDER; HARMONIC POLYLOGARITHMS; HADRON COLLIDERS; BOSON PRODUCTION; CROSS-SECTIONS; LEPTON PAIRS; DISTRIBUTIONS; QCD AB A soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at hadron colliders is computed through to three loops in the expansion of strong coupling, with the help of the bootstrap technique and supersymmetric decomposition. The corresponding rapidity anomalous dimension is extracted. An intriguing relation between anomalous dimensions for transverse-momentum resummation and threshold resummation is found. C1 [Li, Ye] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Zhu, Hua Xing] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. EM yli32@fnal.gov; zhuhx@mit.edu FU Office of Nuclear Physics of the U.S. Department of Energy [DE-SC0011090]; U.S. Department of Energy [DE-AC02-07CH11359] FX We are grateful for a useful conversation with Duff Neill, and helpful comments on the Letter by Iain Stewart. This work was supported by the Office of Nuclear Physics of the U.S. Department of Energy under Contract No. DE-SC0011090. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 76 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 11 PY 2017 VL 118 IS 2 AR 022004 DI 10.1103/PhysRevLett.118.022004 PG 7 WC Physics, Multidisciplinary SC Physics GA EH7BD UT WOS:000391926900005 PM 28128600 ER PT J AU Yang, Q Beers, MH Mehta, V Gao, T Parkinson, D AF Yang, Qing Beers, Megan Hoarfrost Mehta, Vishrut Gao, Ting Parkinson, Dilworth TI Effect of Thermal Annealing on the Electrical Conductivity of Copper-Tin Polymer Composites SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE polymer composite; conductive composite; injection molding; electrical conductivity; X-ray tomography ID POINT METAL ALLOY; PERCOLATION-THRESHOLD; PARTICLE COMPOSITES; POLYETHYLENE; TEMPERATURE; MECHANISMS; MORPHOLOGY; BEHAVIOR; POWDERS; MATRIX AB Polyvinylidene fluoride (PVDF)-copolymer conductive composites containing 40 vol % copper (Cu) and tin (Sn) fillers are prepared by injection molding. Postmolding thermal annealing is found to increase the electrical conductivity of the composites by an order of magnitude. The volume ratio between Cu and Sn is found to have a significant effect on filler distribution but a weaker effect on electrical conductivity compared to the annealing conditions. Synchrotron X-ray tomography is used to visualize and quantitatively analyze the morphology and distribution of the filler particles, indicating that higher conductivity can be, attributed to better dispersion of the low-melting-point Sn filler, which provides better interparticle contact in the Cu network. C1 [Yang, Qing; Parkinson, Dilworth] Univ Calif Berkeley, Adv Light Source, Berkeley, CA 94720 USA. [Beers, Megan Hoarfrost; Mehta, Vishrut; Gao, Ting] TE Connect Ltd, Tyco Elect Corp, Menlo Pk, CA 94025 USA. RP Parkinson, D (reprint author), Univ Calif Berkeley, Adv Light Source, Berkeley, CA 94720 USA.; Beers, MH (reprint author), TE Connect Ltd, Tyco Elect Corp, Menlo Pk, CA 94025 USA. EM megan.beers@te.com; dyparkinson@lbl.gov RI Yang, Qing/C-9775-2017 FU Tyco Electronics Corporation, a TE Connectivity Ltd. company; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Michael Tang for running the MBIR tomographic reconstructions, Richard Lloyd for help with electrical measurements, as well as Min Zheng, Jaydip Das, Jerzy Gazda, Jim Toth, and Nick Pugliano for helpful discussions. This work was supported by Tyco Electronics Corporation, a TE Connectivity Ltd. company. The X-ray Tomography facility at the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 0 Z9 0 U1 13 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JAN 11 PY 2017 VL 9 IS 1 BP 958 EP 964 DI 10.1021/acsami.6b13956 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EH8QM UT WOS:000392037400110 PM 27933764 ER PT J AU Cheng, MCN Ferrari, F Harrison, SM Paquette, NM AF Cheng, Miranda C. N. Ferrari, Francesca Harrison, Sarah M. Paquette, Natalie M. TI Landau-Ginzburg orbifolds and symmetries of K3 CFTs SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Sigma Models; Conformal Field Theory ID INVARIANT PARTITION-FUNCTIONS; SUPERCONFORMAL FIELD-THEORY; MATHIEU-GROUP M-24; UMBRAL MOONSHINE; ELLIPTIC GENERA; VERTEX ALGEBRAS; STRING THEORY; SIGMA-MODELS; 2 DIMENSIONS; SURFACES AB Recent developments in the study of the moonshine phenomenon, including umbral and Conway moonshine, suggest that it may play an important role in encoding the action of finite symmetry groups on the BPS spectrum of K3 string theory. To test and clarify these proposed K3-moonshine connections, we study Landau-Ginzburg orbifolds that flow to conformal field theories in the moduli space of K3 sigma models. We compute K3 elliptic genera twined by discrete symmetries that are manifest in the UV description, though often inaccessible in the IR. We obtain various twining functions coinciding with moonshine predictions that have not been observed in physical theories before. These include twining functions arising from Mathieu moonshine, other cases of umbral moonshine, and Conway moonshine. For instance, all functions arising from M-11 subset of 2.M-12 moonshine appear as explicit twining genera in the LG models, which moreover admit a uniform description in terms of its natural 12-dimensional representation. Our results provide strong evidence for the relevance of umbral moonshine for K3 symmetries, as well as new hints for its eventual explanation. C1 [Cheng, Miranda C. N.] Korteweg De Vries Inst Math, Amsterdam, Netherlands. [Cheng, Miranda C. N.; Ferrari, Francesca] Univ Amsterdam, Inst Phys, Amsterdam, Netherlands. [Harrison, Sarah M.] Harvard Univ, Ctr Fundamental Laws Nat, Cambridge, MA 02138 USA. [Paquette, Natalie M.] Stanford Univ, Stanford Inst Theoret Phys, Dept Phys, SLAC, Stanford, CA 94305 USA. [Paquette, Natalie M.] Stanford Univ, SLAC, Theory Grp, Stanford, CA 94305 USA. RP Cheng, MCN (reprint author), Korteweg De Vries Inst Math, Amsterdam, Netherlands.; Cheng, MCN (reprint author), Univ Amsterdam, Inst Phys, Amsterdam, Netherlands. EM mcheng@uva.nl; f.ferrari@uva.nl; sarharr@physics.harvard.edu; npaquett@stanford.edu FU ERC starting grant H2020 ERC StG; Harvard University Golub Fellowship in the physical sciences; National Science Foundation FX We are indebted to John Duncan, Matthias Gaberdiel, Jeff Harvey, Gerald Hohn, Dan Israel, Shamit Kachru and in particular Roberto Volpato for many useful discussions. MC is supported by ERC starting grant H2020 ERC StG 2014. SMH is supported by a Harvard University Golub Fellowship in the physical sciences. NMP is supported by a National Science Foundation Graduate Fellowship, and also gratefully acknowledges the University of Amsterdam for hospitality and the Delta Institute for Theoretical Physics for additional support while this work was being completed. We would also like to thank the Perimeter Institute, Durham University, and Cambridge University for hospitality during the development of part of this work. NR 89 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JAN 11 PY 2017 IS 1 AR 046 DI 10.1007/JHEP01(2017)046 PG 49 WC Physics, Particles & Fields SC Physics GA EI2PG UT WOS:000392329300004 ER PT J AU Mulder, DW Guo, YS Ratzloff, MW King, PW AF Mulder, David W. Guo, Yisong Ratzloff, Michael W. King, Paul W. TI Identification of a Catalytic Iron-Hydride at the H-Cluster of [FeFe]-Hydrogenase SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FE-ONLY HYDROGENASE; DENSITY-FUNCTIONAL CALCULATIONS; ACTIVE-SITE; ELECTRONIC-STRUCTURE; DESULFOVIBRIO-DESULFURICANS; CHLAMYDOMONAS-REINHARDTII; INFRARED-SPECTROSCOPY; HETEROLYTIC CLEAVAGE; MODEL COMPLEX; REDOX STATES AB Hydrogenases couple electrochemical potential to the reversible chemical transformation of H-2 and protons, yet the reaction mechanism and composition of intermediates are not fully understood. In this Communication we describe the biophysical properties of a hydride-bound state (H-hyd) of the [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The catalytic H-cluster of [FeFe]-hydrogenase consists of a [4Fe-4S] subcluster ([4Fe-4S](H)) linked by a cysteine thiol to an azadithiolate-bridged 2Fe subcluster ([2Fe](H)) with CO and CN- ligands. Mossbauer analysis and density functional theory (DFT) calculations show that H-hyd consists of a reduced [4Fe-4S](H)(+) coupled to a diferrous [2Fe](H) with a terminally bound Fe-hydride. The existence of the Fe-hydride in H-hyd was demonstrated by an unusually low Mossbauer isomer shift of the distal Fe of the [2Fe](H) subcluster. A DFT model of H-hyd shows that the Fe-hydride is part of a H bonding network with the nearby bridging azadithiolate to facilitate fast proton exchange and catalytic turnover. C1 [Mulder, David W.; Ratzloff, Michael W.; King, Paul W.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Guo, Yisong] Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA. RP King, PW (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA.; Guo, YS (reprint author), Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA. EM ysguo@andrew.cmu.edu; paul.king@nrel.gov OI King, Paul/0000-0001-5039-654X; Guo, Yisong/0000-0002-4132-3565 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; U.S. Department of Energy [DE-AC36-08-GO28308]; Carnegie Mellon University FX Native and C169S variant CrHydA1 sample preparation, FTIR spectroscopy, and EPR redox titration experiments were performed at NREL under support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. Y.G. acknowledges financial support from Carnegie Mellon University and thanks Mr. Ruixi Fan for assistance with Mossbauer measurements and DFT calculations. NR 32 TC 1 Z9 1 U1 21 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 11 PY 2017 VL 139 IS 1 BP 83 EP 86 DI 10.1021/jacs.6b11409 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EH8QH UT WOS:000392036900019 PM 27973768 ER PT J AU Leow, WR Ng, WKH Peng, T Liu, XF Li, B Shi, WX Lum, Y Wang, XT Lang, XJ Li, SZ Mathews, N Ager, JW Sum, TC Hirao, H Chen, XD AF Leow, Wan Ru Ng, Wilson Kwok Hung Peng, Tai Liu, Xinfeng Li, Bin Shi, Wenxiong Lum, Yanwei Wang, Xiaotian Lang, Xianjun Li, Shuzhou Mathews, Nripan Ager, Joel W. Sum, Tze Chien Hirao, Hajime Chen, Xiaodong TI Al2O3 Surface Complexation for Photocatalytic Organic Transformations SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID VISIBLE-LIGHT-PHOTOREDOX; SINGLE-ELECTRON TRANSMETALATION; DYE-SENSITIZED TIO2; AEROBIC OXIDATION; NICKEL CATALYSIS; MERGING PHOTOREDOX; MOLECULAR-OXYGEN; DUAL CATALYSIS; TITANIUM-DIOXIDE; ALUMINA SURFACES AB The use of sunlight to drive organic reactions constitutes a green and sustainable strategy for organic synthesis. Herein, we discovered that the earth-abundant aluminum oxide (Al2O3) though paradigmatically known to be an insulator could induce an immense increase in the selective photo-oxidation of different benzyl alcohols in the presence of a large variety of dyes and O-2. This unique phenomenon is based on the surface complexation of benzyl alcohol (BnOH) with the Bronsted base sites on Al2O3, which reduces its oxidation potential and causes an upshift in its HOMO for electron abstraction by the dye. The surface complexation of O-2 with Al2O3 also activates the adsorbed O-2 for receiving electrons from the photoexcited dyes. This discovery brings forth a new understanding on utilizing surface complexation mechanisms between the reactants and earth abundant materials to effectively achieve a wider range of photoredox reactions. C1 [Leow, Wan Ru; Peng, Tai; Li, Bin; Shi, Wenxiong; Wang, Xiaotian; Lang, Xianjun; Li, Shuzhou; Mathews, Nripan; Chen, Xiaodong] Nanyang Technol Univ, Sch Mat Sci & Engn, Innovat Ctr Flexible Devices, 50 Nanyang Ave, Singapore 639798, Singapore. [Ng, Wilson Kwok Hung; Liu, Xinfeng; Sum, Tze Chien; Hirao, Hajime] Nanyang Technol Univ, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore. [Lum, Yanwei; Ager, Joel W.] Lawrence Berkeley Natl Lab, Div Mat Sci, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Lum, Yanwei; Ager, Joel W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Chen, XD (reprint author), Nanyang Technol Univ, Sch Mat Sci & Engn, Innovat Ctr Flexible Devices, 50 Nanyang Ave, Singapore 639798, Singapore.; Hirao, H (reprint author), Nanyang Technol Univ, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore. EM hirao@ntu.edu.sg; chenxd@ntu.edu.sg RI Li, Shuzhou/E-3146-2010; Lang, Xianjun/D-6386-2011; Chen, Xiaodong/A-4537-2009; Mathews, Nripan/C-8438-2011 OI Li, Shuzhou/0000-0002-2159-2602; Lang, Xianjun/0000-0001-7479-9044; Chen, Xiaodong/0000-0002-3312-1664; Mathews, Nripan/0000-0001-5234-0822 FU Singapore Ministry of Education [RG130/14, MOE2013-T2-1-081, MOE2014-T2-1-044]; Singapore NRF through the Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) CREATE Programme; JST-PRESTO grant FX We gratefully acknowledge financial support from Singapore Ministry of Education Tier 1 (RG130/14) and the Singapore NRF through the Singapore-Berkeley Research Initiative for Sustainable Energy (SinBeRISE) CREATE Programme. T.C.S. acknowledges the financial support from Singapore Ministry of Education Tier 2 (MOE2013-T2-1-081 and MOE2014-T2-1-044). H.H. is grateful for a Nanyang Assistant Professorship and a JST-PRESTO grant. NR 66 TC 0 Z9 0 U1 39 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 11 PY 2017 VL 139 IS 1 BP 269 EP 276 DI 10.1021/jacs.6b09934 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA EH8QH UT WOS:000392036900045 PM 27966340 ER PT J AU Choi, KM Kim, D Rungtaweevoranit, B Trickett, CA Barmanbek, JTD Alshammari, AS Yang, PD Yaghi, OM AF Choi, Kyung Min Kim, Dohyung Rungtaweevoranit, Bunyarat Trickett, Christopher A. Barmanbek, Jesika Trese Deniz Alshammari, Ahmad S. Yang, Peidong Yaghi, Omar M. TI Plasmon-Enhanced PhotoCatalytic CO2 Conversion within Metal Organic Frameworks under Visible Light SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CARBON-DIOXIDE REDUCTION; ARTIFICIAL PHOTOSYNTHESIS; SOLAR FUEL; CATALYSTS; NANOSTRUCTURES; NANOCRYSTALS; COMPLEXES; RESONANCE; LIGAND; SHELL AB Materials development for artificial photosynthesis, in particular, CO2 reduction, has been under extensive efforts, ranging from inorganic semiconductors to molecular complexes. In this report, we demonstrate a metal organic framework (MOF)-coated nanoparticle photocatalyst with enhanced CO2 reduction activity and stability, which stems from having two different functional units for activity enhancement and catalytic stability combined together as a single construct. Covalently attaching a CO2-to-CO conversion photocatalyst Re-I(CO)(3)(BPYDC)Cl, BPYDC = 2,2'-bipyridine-5,5'-dicarboxylate, to a zirconium MOF, UiO-67 (Re-n-MOF), prevents dimerization leading to deactivation. By systematically controlling its density in the framework (n = 0, 1, 2, 3, 5, 11, 16, and 24 complexes per unit cell), the highest photocatalytic activity was found for Re-3-MOF. Structural analysis of Re-MOFs suggests that a fine balance of proximity between photoactive centers is needed for cooperatively enhanced photocatalytic activity, where an optimum number of Re complexes per unit cell should reach the highest activity. Based on the structure-activity correlation of Ren-M0Fs, Rea-MOF was coated onto Ag nanocubes (AgCRe3-MOF), which spatially confined photoactive Re centers to the intensified near-surface electric fields at the surface of Ag nanocubes, resulting in a 7-fold enhancement of CO2-to-CO conversion under visible light with long-term stability maintained up to 48 h. C1 [Choi, Kyung Min; Rungtaweevoranit, Bunyarat; Trickett, Christopher A.; Barmanbek, Jesika Trese Deniz; Yang, Peidong; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kim, Dohyung; Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Kim, Dohyung; Yang, Peidong; Yaghi, Omar M.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Choi, Kyung Min; Rungtaweevoranit, Bunyarat; Trickett, Christopher A.; Yaghi, Omar M.] Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. [Yang, Peidong] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Choi, Kyung Min] Sookmyung Womens Univ, Dept Chem & Biol Engn, Seoul 04310, South Korea. [Alshammari, Ahmad S.; Yaghi, Omar M.] King Abdulaziz City Sci & Technol, POB 6086, Riyadh 11442, Saudi Arabia. RP Yang, PD; Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Yang, PD; Yaghi, OM (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Yaghi, OM (reprint author), Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.; Yaghi, OM (reprint author), King Abdulaziz City Sci & Technol, POB 6086, Riyadh 11442, Saudi Arabia. EM p_yang@berkeley.edu; yaghi@berkeley.edu OI Rungtaweevoranit, Bunyarat/0000-0002-9069-4370 FU BASF SE (Ludwigshafen, Germany); King Abdulaziz City for Science and Technology as part of a joint KACST-UC Berkeley collaboration (Center of Excellence for Nanomaterials and Clean Energy Applications); Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, & Biosciences Division, of the U.S. Department of Energy [DE-AC02-05CH11231, CH030201]; Samsung Scholarship; National Research Foundation of Korea (NRF) [2016R1C1B1010781]; Sookmyung Women's University Research Grant [1-1603-2038]; Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The research performed in the O.M.Y. laboratory was supported by BASF SE (Ludwigshafen, Germany) and King Abdulaziz City for Science and Technology as part of a joint KACST-UC Berkeley collaboration (Center of Excellence for Nanomaterials and Clean Energy Applications). Financial support for part of this work performed in the P.Y. laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, & Biosciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, FWP No. CH030201 (Catalysis Research Program). D.K. acknowledges support from Samsung Scholarship, and K.M.C. acknowledges support from Basic Science Research Program through the National Research Foundation of Korea (NRF) (2016R1C1B1010781) and Sookmyung Women's University Research Grant (1-1603-2038). Work performed at the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The NMR work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Chenlu Xie and Dr. Tsung Rong for help in the synthesis of Ag nanocubes, and Drs. Wooyeol Kim and Heinz Frei for the use of IR and UV-vis instruments. Drs. S. Teat and K. Gagnon are acknowledged for the synchrotron X-ray diffraction data acquisition support at the beamline 11.3.1 at Advanced Light Source, Lawrence Berkeley National Laboratory. NR 46 TC 1 Z9 1 U1 161 U2 161 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 11 PY 2017 VL 139 IS 1 BP 356 EP 362 DI 10.1021/jacs.6b11027 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA EH8QH UT WOS:000392036900054 PM 28004911 ER PT J AU Li, XF Dong, JC Idrobo, JC Puretzky, AA Rouleau, CM Geohegan, DB Ding, F Xiao, K AF Li, Xufan Dong, Jichen Idrobo, Juan C. Puretzky, Alexander A. Rouleau, Christopher M. Geohegan, David B. Ding, Feng Xiao, Kai TI Edge-Controlled Growth and Etching of Two-Dimensional GaSe Monolayers SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; TRANSITION-METAL DICHALCOGENIDES; SINGLE-CRYSTAL GRAPHENE; HEXAGONAL BORON-NITRIDE; LARGE-AREA SYNTHESIS; GRAIN-BOUNDARIES; LAYER MOS2; VAN; PHOTORESPONSE; TRANSISTORS AB Understanding the atomistic mechanisms governing the growth of two-dimensional (2D) materials is of great importance in guiding the synthesis of wafer-sized, single-crystalline, high-quality 2D crystals and heterostructures. Etching, in many cases regarded as the reverse process of material growth, has been used to study the growth kinetics of graphene. In this work, we explore a growth-etching-regrowth process of monolayer GaSe crystals, including single-crystalline triangles and irregularly shaped domains formed by merged triangles. We show that the etching begins at a slow rate, creating triangular, truncated triangular, or hexagonally shaped holes that eventually evolve to exclusively triangles that are rotated 60 degrees with respect to the crystalline orientation of the monolayer triangular crystals. The regrowth occurs much faster than etching, reversibly filling the etched holes and then enlarging the size of the monolayer crystals. A theoretical model developed based on kinetic Wulff construction (KWC) theory and density functional theory (DFT) calculations accurately describe the observed morphology evolution of the monolayer GaSe crystals and etched holes during the growth and etching processes, showing that they are governed by the probability of atom attachment/detachment to/from different types of edges with different formation energies of nucleus/dents mediated by chemical potential difference Ait between Ga and Se. Our growth-etching-regrowth study provides not only guidance to understand the growth mechanisms of 2D binary crystals but also a potential method for the synthesis of large, shape-controllable, high-quality single-crystalline 2D crystals and their lateral heterostructures. C1 [Li, Xufan; Idrobo, Juan C.; Puretzky, Alexander A.; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dong, Jichen; Ding, Feng] Inst Basic Sci, CMCM, Ulsan 689798, South Korea. [Ding, Feng] Ulsan Natl Inst Sci & Technol, Sch Mat Sci & Engn, Ulsan 689798, South Korea. RP Xiao, K (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.; Ding, F (reprint author), Inst Basic Sci, CMCM, Ulsan 689798, South Korea.; Ding, F (reprint author), Ulsan Natl Inst Sci & Technol, Sch Mat Sci & Engn, Ulsan 689798, South Korea. EM fding@ibs.re.kr; xiaok@ornl.gov RI Li, Xufan/A-8292-2013; OI Li, Xufan/0000-0001-9814-0383; Xiao, Kai /0000-0002-0402-8276 FU Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Institute for Basic Science of Korea [IBS-R019-D1] FX Synthesis science sponsored by the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. Materials characterization was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. J.D. and F.D. acknowledge support from the Institute for Basic Science (IBS-R019-D1) of Korea. NR 43 TC 0 Z9 0 U1 45 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 11 PY 2017 VL 139 IS 1 BP 482 EP 491 DI 10.1021/jacs.6b11076 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA EH8QH UT WOS:000392036900067 PM 27997212 ER PT J AU Monazam, ER Breault, RW Freed, AD Shadle, L Lawson, L Rowan, SL AF Monazam, Esmail R. Breault, Ronald W. Freed, Adam D. Shadle, Lawrence Lawson, Larry Rowan, Steven L. TI Development and Validation of a Dynamic Response Model for a Cold Flow Circulating Fluidized Bed SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID PRESSURE BALANCE; TRANSIENT METHOD; DROP AB A dynamic response model has been created of the Cold Flow Circulating Fluidized Bed at NETL in Morgantown, WV. The model is considered dynamic, as opposed to steady state, because it is used to predict the transient responses of gas and solids flows throughout the unit as process conditions vary. The model was built in ProTrax with Advanced Continuous Simulation Language (ACSL) custom code. Dynamic experiments, varying both gas and solids flows, in the CFB unit have been used to validate the accuracy of the model. The advantage of this model is its utility in predicting gas hold up and solids flow throughout the unit during transitions of process conditions. Accurate predictions of these phenomena are important in process control and optimization. The dynamic experiments used in validating the model include modulations of the system pressure, move air (solids flow), and riser gas velocity with step and sinusoidal changes. C1 [Monazam, Esmail R.; Breault, Ronald W.; Freed, Adam D.; Shadle, Lawrence; Lawson, Larry; Rowan, Steven L.] US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. [Monazam, Esmail R.; Freed, Adam D.] REM Engn Serv PLLC, 3537 Collins Ferry Rd, Morgantown, WV 26505 USA. [Rowan, Steven L.] Oak Ridge Inst Sci & Educ, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. RP Breault, RW (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM ronald.breault@netl.doe.gov FU Department of Energy; National Energy Technology Laboratory Research Participation Program; Oak Ridge Institute for Science and Education FX The authors acknowledge the Department of Energy for funding the research through the Fossil Energy's Integrated Gasification Combined Cycle program. Operations of the unit were made possible with support from Jim Devault, Todd Worstell, and Angela Sarra. Additionally, this research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. NR 22 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JAN 11 PY 2017 VL 56 IS 1 BP 288 EP 300 DI 10.1021/acs.iecr.6b03536 PG 13 WC Engineering, Chemical SC Engineering GA EH8QC UT WOS:000392036400029 ER PT J AU Myint, PC Nichols, AL AF Myint, Philip C. Nichols, Albert L., III TI Thermodynamics of HMX Polymorphs and HMX/RDX Mixtures SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID DELTA-PHASE-TRANSITION; EQUATION-OF-STATE; ENERGETIC NITRAMINE OCTAHYDRO-1,3,5,7-TETRANITRO-1,3,5,7-TETRAZOCINE; X-RAY-DIFFRACTION; THERMAL-DECOMPOSITION; TEMPERATURE-DEPENDENCE; VAPOR-PRESSURES; HEAT-CAPACITIES; GAS-PHASE; BETA AB We present thermodynamic models for the five most commonly studied phases of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.(HMX): liquid HMX and four solid polymorphs (alpha-, beta-, gamma-, and delta-HMX). We show results for the density, heat capacity, bulk modulus, and sound speed, as well as a phase diagram that illustrates the temperature and pressure, regions over which the various HMX phases are most thermodynamically stable. The models are based on the same equation of state presented in our recently published paper [Myint et al., Ind. Eng. Chem. Res., 2016, 55, 2252] on another energetic material, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). We combine our HMX arid RDX models together so that the equation of state can also be applied to liquid and solid mixtures of HMX/RDX. This allows us to generate an HMX/RDX phase diagram and calculate the enthalpy change associated with.a few different kinds of phase transitions that these mixtures may undergo. Our.paper is the first to present a single equation of state that is capable of modeling both pure HMX and HMX/RDX mixtures. A distinct feature of HMX is the strongly metastable nature of its polymorphs. This has caused some ambiguity in the literature regarding the thermodynamic stability of, alpha-HMX. By examining possible arrangements for the relative order of the six different solid solid transition (alpha-beta, alpha-gamma, alpha-delta, beta-gamma, beta-delta, and gamma-delta) temperatures, we conclude that alpha-HMX must be thermodynamically stable so that the HMX phase diagram must have an alpha phase region. C1 [Myint, Philip C.] Lawrence Livermore Natl Lab, Design Phys Div, Livermore, CA 94550 USA. [Nichols, Albert L., III] Lawrence Livermore Natl Lab, Mat Sci Div, Livermore, CA 94550 USA. RP Myint, PC (reprint author), Lawrence Livermore Natl Lab, Design Phys Div, Livermore, CA 94550 USA. EM myintl@llnl.gov OI Myint, Philip/0000-0003-4383-5350 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Joint DoD/DOE Munitions Technology Development Program (JMP) FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The research was partially funded by the Joint DoD/DOE Munitions Technology Development Program (JMP). NR 70 TC 0 Z9 0 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JAN 11 PY 2017 VL 56 IS 1 BP 387 EP 403 DI 10.1021/acs.iecr.6b03697 PG 17 WC Engineering, Chemical SC Engineering GA EH8QC UT WOS:000392036400038 ER PT J AU Jiang, Y Thapa, S Sanders, GD Stanton, CJ Zhang, Q Kono, J Lou, WK Chang, K Hawkins, SD Klem, JF Pan, W Smirnov, D Jiang, Z AF Jiang, Y. Thapa, S. Sanders, G. D. Stanton, C. J. Zhang, Q. Kono, J. Lou, W. K. Chang, K. Hawkins, S. D. Klem, J. F. Pan, W. Smirnov, D. Jiang, Z. TI Probing the semiconductor to semimetal transition in InAs/GaSb double quantum wells by magneto-infrared spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-HOLE SYSTEM; CYCLOTRON-RESONANCE; GROUND-STATE; GAP; SUPERLATTICES; HETEROSTRUCTURES; ENHANCEMENT; FIELDS AB We perform a magnetoinfrared spectroscopy study of the semiconductor to semimetal transition of InAs/GaSb double quantum wells from the normal to the inverted state. We show that owing to the low carrier density of our samples, the magnetoabsorption spectra evolve from a single cyclotron resonance peak in the normal state to multiple absorption peaks in the inverted state with distinct magnetic field dependence. Using an eight-band Pidgeon-Brown model, we explain all the major absorption peaks observed in our experiment. We demonstrate that the semiconductor to semimetal transition can be realized by manipulating the quantum confinement, the strain, and the magnetic field. Our work paves the way for band engineering of optimal InAs/GaSb structures for realizing novel topological states as well as for device applications in the terahertz regime. C1 [Jiang, Y.; Jiang, Z.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Thapa, S.; Sanders, G. D.; Stanton, C. J.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Zhang, Q.; Kono, J.] Rice Univ, Dept Phys & Astron, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Zhang, Q.; Kono, J.] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA. [Lou, W. K.; Chang, K.] Chinese Acad Sci, Inst Semicond, SKLSM, Beijing 100083, Peoples R China. [Lou, W. K.; Chang, K.] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China. [Hawkins, S. D.; Klem, J. F.; Pan, W.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Smirnov, D.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Jiang, Z (reprint author), Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. EM zhigang.jiang@physics.gatech.edu FU U.S. Department of Energy (DOE) [DE-FG02-07ER46451]; NSF [DMR-1311849, DMR-1310138, DMR-1157490]; AFOSR [FA9550-14-1-0376]; National High Magnetic Field Laboratory (NHMFL), Visiting Scientist Program; DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering; Sandia Laboratory Directed Research & Development (LDRD); DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; State of Florida FX We thank Danhong Huang for helpful discussion. This work was primarily supported by the U.S. Department of Energy (DOE) (Grant No. DE-FG02-07ER46451). S.T., G.D.S., and C.J.S. acknowledge support from the NSF (Grant No. DMR-1311849) and the AFOSR (Grant No. FA9550-14-1-0376). Q.Z. and J.K. acknowledge support from the NSF (Grant No. DMR-1310138). Z.J. acknowledges support from the National High Magnetic Field Laboratory (NHMFL), Visiting Scientist Program. The work at Sandia National Laboratories is supported by the DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering, and by Sandia Laboratory Directed Research & Development (LDRD). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The magneto-IR measurements were performed at the NHMFL, which is supported by the NSF Cooperative Agreement No. DMR-1157490 and the State of Florida. NR 38 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 11 PY 2017 VL 95 IS 4 AR 045116 DI 10.1103/PhysRevB.95.045116 PG 6 WC Physics, Condensed Matter SC Physics GA EH6AZ UT WOS:000391856000003 ER PT J AU Wuosmaa, AH Bedoor, S Brown, KW Buhro, WW Chajecki, Z Charity, RJ Lynch, WG Manfredi, J Marley, ST McNeel, DG Newton, AS Shetty, DV Showalter, RH Sobotka, LG Tsang, MB Winkelbauer, JR Wiringa, RB AF Wuosmaa, A. H. Bedoor, S. Brown, K. W. Buhro, W. W. Chajecki, Z. Charity, R. J. Lynch, W. G. Manfredi, J. Marley, S. T. McNeel, D. G. Newton, A. S. Shetty, D. V. Showalter, R. H. Sobotka, L. G. Tsang, M. B. Winkelbauer, J. R. Wiringa, R. B. TI Ground-state properties of H-5 from the He-6(d,He-3)H-5 reaction SO PHYSICAL REVIEW C LA English DT Article ID SUPERHEAVY HYDROGEN ISOTOPES; RESONANCE STATES; RICH NUCLEI; NEUTRON; SEARCH; MODEL; H-6(LAMBDA); LIMIT; HE-5; 5H AB We have studied the ground state of the unbound, very neutron-rich isotope of hydrogen H-5, using the He-6(d, He-3)H-5 reaction in inverse kinematics at a bombarding energy of E(He-6) = 55A MeV. The present results suggest a ground-state resonance energy E-R = 2.4 +/- 0.3 MeV above the H-3 + 2n threshold, with an intrinsic width of Gamma = 5.3 +/- 0.4 MeV in the H-5 system. Both the resonance energy and width are higher than those reported in some, but not all previous studies of H-5. The previously unreported He-6(d, t)He-5(g.s). reaction is observed in the same measurement, providing a check on the understanding of the response of the apparatus. The data are compared to expectations from direct two-neutron and dineutron decay. The possibility of excited states of H-5 populated in this reaction is discussed using different calculations of the He-6 -> H-5 + p spectroscopic overlaps from shell-model and ab initio nuclear-structure calculations. C1 [Wuosmaa, A. H.; Bedoor, S.; McNeel, D. G.] Univ Connecticut, Dept Phys, Storrs, CT 06268 USA. [Wuosmaa, A. H.; Bedoor, S.; McNeel, D. G.; Newton, A. S.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Brown, K. W.; Charity, R. J.; Sobotka, L. G.] Washington Univ, Dept Chem & Phys, St Louis, MO 63130 USA. [Buhro, W. W.; Chajecki, Z.; Lynch, W. G.; Manfredi, J.; Showalter, R. H.; Tsang, M. B.; Winkelbauer, J. R.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Buhro, W. W.; Chajecki, Z.; Lynch, W. G.; Manfredi, J.; Showalter, R. H.; Tsang, M. B.; Winkelbauer, J. R.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Marley, S. T.] Univ Notre Dame, Dept Phys & Astron, South Bend, IN 46558 USA. [Shetty, D. V.] Grand Valley State Univ, Dept Phys, Allendale, MI 49401 USA. [Wiringa, R. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Bedoor, S.] Texas A&M Univ, College Stn, TX 77843 USA. [Brown, K. W.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Brown, K. W.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Marley, S. T.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Winkelbauer, J. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wuosmaa, AH (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06268 USA.; Wuosmaa, AH (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM alan.wuosmaa@uconn.edu FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG02-04ER41320, DE-SC0014552, DE-FG02-87ER40316, DE-AC02-06CH11357]; U. S. National Science Foundation [PHY-1068192, PHY-1102511] FX The authors wish to thank the staff of the NSCL for their support and for steady and reliable beam delivery throughout the experiment. We also thank J.P. Greene of Argonne National Laboratory for preparation of the targets. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Awards No. DE-FG02-04ER41320, No. DE-SC0014552, No. DE-FG02-87ER40316, and No. DE-AC02-06CH11357, and the U.S. National Science Foundation under Grants No. PHY-1068192 and No. PHY-1102511. NR 56 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JAN 11 PY 2017 VL 95 IS 1 AR 014310 DI 10.1103/PhysRevC.95.014310 PG 11 WC Physics, Nuclear SC Physics GA EH6CH UT WOS:000391859600002 ER PT J AU Schutz, K Liu, A AF Schutz, Katelin Liu, Adrian TI Pulsar timing can constrain primordial black holes in the LIGO mass window SO PHYSICAL REVIEW D LA English DT Article ID CONTINUOUS GRAVITATIONAL-WAVES; DARK-MATTER SUBSTRUCTURE; HALO WIDE BINARIES; MILLISECOND PULSARS; MACHO ERA; GLOBULAR-CLUSTERS; MAGELLANIC CLOUDS; ARRAY LIMITS; DATA SET; PERTURBATIONS AB The recent discovery of gravitational waves from merging black holes has generated interest in primordial black holes as a possible component of dark matter. In this paper, we show that pulsar timing may soon have sufficient data to constrain 1-1000 M-circle dot primordial black holes (PBHs) via the nondetection of a third-order Shapiro time delay as the black holes move around the Galactic halo. We present the results of a Monte Carlo simulation which suggests that future data from known pulsars may be capable of constraining the PBH density more stringently than other existing methods in the mass range similar to 1-30 M-circle dot. We find that timing new pulsars discovered using the proposed Square Kilometre Array may constrain primordial black holes in this mass range to comprise less than similar to 1%-10% of the dark matter. C1 [Schutz, Katelin] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Schutz, Katelin] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Liu, Adrian] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Liu, Adrian] Univ Calif Berkeley, Radio Astron Lab, Berkeley, CA 94720 USA. RP Schutz, K (reprint author), Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA.; Schutz, K (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM kschutz@berkeley.edu FU NSF Graduate Research Fellowship; Hertz Foundation Fellowship; NASA through Hubble Fellowship Grant - Space Telescope Science Institute [HST-HF2-51363.001-A]; NASA [NAS5-26555]; Office of Science of U.S. Department of Energy [DE-AC02-05CH11231] FX It is an immense pleasure to thank Dorota Grabowska, Alan Guth, Chung-Pei Ma, Chiara Mingarelli, Christopher Mogni, Siddharth Mishra-Sharma, Scott Ransom, Justin Ripley, Tracy Slatyer, and Leo Stein for useful conversations and correspondence pertaining to this work. We also wish to thank the anonymous referees for their useful feedback on the original version of the manuscript. Additionally, we acknowledge the importance of equity and inclusion in this work and are committed to advancing such principles in our scientific communities. K. S. is supported by an NSF Graduate Research Fellowship and by a Hertz Foundation Fellowship. A. L. acknowledges support for this work by NASA through Hubble Fellowship Grant No. HST-HF2-51363.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under Contract No. NAS5-26555. This research used resources of the National Energy Research Scientific Computing Center, a Department of Energy Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 58 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 11 PY 2017 VL 95 IS 2 AR 023002 DI 10.1103/PhysRevD.95.023002 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EH6DK UT WOS:000391862700002 ER PT J AU Horn, T Mkrtchyan, H Ali, S Asaturyan, A Carmignotto, M Dittmann, A Dutta, D Ent, R Hlavin, N Illieva, Y Mkrtchyan, A Nadel-Turonski, P Pegg, I Ramos, A Reinhold, J Sapkota, I Tadevosyan, V Zhamkochyan, S Wood, SA AF Horn, T. Mkrtchyan, H. Ali, S. Asaturyan, A. Carmignotto, M. Dittmann, A. Dutta, D. Ent, R. Hlavin, N. Illieva, Y. Mkrtchyan, A. Nadel-Turonski, P. Pegg, I. Ramos, A. Reinhold, J. Sapkota, I. Tadevosyan, V. Zhamkochyan, S. Wood, S. A. TI The Aerogel Cerenkov detector for the SHMS magnetic spectrometer in Hall C at Jefferson Lab SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Silica aerogel; Threshold Cherenkov detector; Particle identification; Light yield; Diffusive reflectors ID HIGH MOMENTUM SPECTROMETER; SILICA AEROGEL; CHERENKOV COUNTERS; RADIATOR; RICH; UPGRADE; PMT AB Hadronic reactions producing strange quarks such as the exclusive p(e, e'K+)Lambda and p(e, e'K+)Sigma(0) reactions, or the semi-inclusive p (e, e'K+)X reaction, play an important role in studies of hadron structure and the dynamics that bind the most basic elements of nuclear physics. The small-angle capability of the new Super High Momentum Spectrometer (SHMS) in Hall C, coupled with its high momentum reach - up to the anticipated 11 GeV beam energy in Hall C - and coincidence capability with the well-understood High Momentum Spectrometer (HMS), will allow for probes of such hadron structure involving strangeness down to the smallest distance scales to date. To cleanly select the kaons, a threshold aerogel Cerenkov detector has been constructed for the SHMS. The detector consists of an aerogel tray followed by a diffusion box. Four trays for aerogel of nominal refractive indices of n=1.030, 1.020, 1.015 and 1.011 were constructed. The tray combination will allow for identification of kaons from 1 GeV/c up to 7.2 GeV/c, reaching similar to 10(-2) proton and 10(-3) pion rejection, with kaon detection efficiency better than 95%. The diffusion box of the detector is equipped with 14 five-inch diameter photomultiplier tubes. Its interior walls are covered with Gore diffusive reflector, which is superior to the commonly used Millipore paper and improved the detector performance by 35%. The inner surface of the two aerogel trays with higher refractive index is covered with Millipore paper, however, those two trays with lower aerogel refractive index are again covered with Gore diffusive reflector for higher performance. The measured mean number of photoelectrons in saturation is similar to 12 for n=1.030, similar to 8 for n=1.020, similar to 10 for n=1.015, and similar to 5.5 for n=1.011. The design details, the results of component characterization, and initial performance tests and optimization of the detector are presented. C1 [Horn, T.; Ali, S.; Carmignotto, M.; Hlavin, N.; Mkrtchyan, A.; Pegg, I.; Sapkota, I.] Catholic Univ Amer, Washington, DC 20064 USA. [Mkrtchyan, H.; Asaturyan, A.; Tadevosyan, V.; Zhamkochyan, S.] AI Alikhanyan Natl Sci Lab, Yerevan 0036, Armenia. [Ent, R.; Nadel-Turonski, P.; Wood, S. A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Dutta, D.] Mississippi State Univ, Mississippi State, MS 39762 USA. [Illieva, Y.] Univ South Carolina, Columbia, SC 29208 USA. [Dittmann, A.] Univ Illinois, Urbana, IL 61801 USA. [Ramos, A.; Reinhold, J.] Florida Int Univ, Miami, FL 33199 USA. RP Horn, T (reprint author), Catholic Univ Amer, Washington, DC 20064 USA. FU National Science Foundation (NSF) [PHY-1039446, PHY-1306227]; Catholic University of America (CUA) physics department; Vitreous State Laboratory (VSL); U.S. Department of Energy [DEAC05-84ER40150] FX This work was supported in part by National Science Foundation (NSF) grants PHY-1039446 and PHY-1306227, the Catholic University of America (CUA) physics department and the Vitreous State Laboratory (VSL). In particular, the authors wish to thank Marek Brandys, Eric Fisher, and David Horton from the VSL for their expertise and support in the construction of the detector. The detector benefited greatly from components graciously provided by both the MIT-BLAST collaboration (aerogel materials and PMTs) and Hall C (PMTs). We explicitly are grateful to Ricardo Alarcon and Richard Milner for help provided to acquire and transport the MIT-BLAST aerogel detector components. We would also like to thank Carl Zorn from the Detector Group of the Jefferson Lab Physics Division, the Hall C engineering staff, in particular Bert Metzger for help with the design of the detector and expertise during assembly, and Walter Kellner and the Hall C technical staff, Joe Beaufait, and Brad Sawatzky, as well as Mariana Khachatryan from ANSL for help during various stages of the work. The Southeastern Universities Research Association operates the Thomas Jefferson National Accelerator Facility under the U.S. Department of Energy contract DEAC05-84ER40150. NR 40 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JAN 11 PY 2017 VL 842 BP 28 EP 47 DI 10.1016/j.nima.2016.10.039 PG 20 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA EF1FM UT WOS:000390070700005 ER PT J AU Poulson, D Durham, JM Guardincerri, E Morris, CL Bacon, JD Plaud-Ramos, K Morley, D Hecht, AA AF Poulson, D. Durham, J. M. Guardincerri, E. Morris, C. L. Bacon, J. D. Plaud-Ramos, K. Morley, D. Hecht, A. A. TI Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Muon radiography; Tomography; Cosmic rays; Dry cask storage ID AXIAL SCANNING TOMOGRAPHY; RADIOLOGICAL APPLICATIONS; LINE INTEGRALS; REPRESENTATION; RADIOGRAPHY; SYSTEM AB Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This paper describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casks is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of similar to 18 sigma in less than two days exposure and a sensitivity at 1 sigma to a 5% missing portion of a fuel bundle. Potential detector technologies and geometries are discussed. C1 [Poulson, D.; Durham, J. M.; Guardincerri, E.; Morris, C. L.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Poulson, D.; Hecht, A. A.] Univ New Mexico, Albuquerque, NM 87131 USA. RP Poulson, D (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM poulsond@lanl.gov FU National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation Research Development FX This work is funded by the National Nuclear Security Administration's Office of Defense Nuclear Nonproliferation Research & Development. We thank Philip Winston of Idaho National Laboratory and Arden Dougan of NA-22 for useful discussions. NR 43 TC 1 Z9 1 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JAN 11 PY 2017 VL 842 BP 48 EP 53 DI 10.1016/j.nima.2016.10.040 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA EF1FM UT WOS:000390070700006 ER PT J AU Ciovati, G Geng, R Lushtak, Y Manini, P Maccallini, E Stutzman, M AF Ciovati, G. Geng, R. Lushtak, Y. Manini, P. Maccallini, E. Stutzman, M. TI Operation of a high-gradient superconducting radio-frequency cavity with a non-evaporable getter pump SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Superconducting cavities; Vacuum pumps; Field emission ID VACUUM-SYSTEM; GUN AB The use of non-evaporable getter (NEG) pumps in particle accelerators has increased significantly over the past few years because of their large pumping speed, particularly for hydrogen, compared to the size of the pump. A concern about using such pumps in superconducting radio-frequency (SRF) accelerators is the possibility of shedding particulates which could then migrate into the SRF cavities and produce field emission, therefore degrading the cavity performance. One option to mitigate such issue is to use sintered getter materials which intrinsically offer superior mechanical and particle retention properties. In this article we present the results from cryogenic RF tests of a high-gradient SRF cavity after being evacuated several times with an NEG pump equipped with sintered getter disks and placed in close proximity to the cavity. The results showed that the cavity performance was not affected by the pump up to the quench gradient of 34 MV/m. As a result of this study, two such NEG pumps have been installed next to a cryomodule in the CEBAF accelerator to maintain ultra-high vacuum in the SRF cryomodule and two adjacent warm girder sections. C1 [Ciovati, G.; Geng, R.; Stutzman, M.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Lushtak, Y.; Manini, P.; Maccallini, E.] SAES Getters SpA, Viale Italia 77, I-20020 Lainate, MI, Italy. RP Ciovati, G (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM gciovati@jlab.org FU U.S. DOE [DE-AC05-06OR23177] FX The authors would like to acknowledge the Cavity Production Group at Jefferson Lab for cleaning of the cavity, components and most of the assemblies. We would also like to acknowledge A. Fryeberger and R. Rimmer for encouraging us in pursuing this study. This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. NR 25 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JAN 11 PY 2017 VL 842 BP 92 EP 95 DI 10.1016/j.nima.2016.10.048 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA EF1FM UT WOS:000390070700012 ER PT J AU Garcia, EV Currie, T Guyon, O Stassun, KG Jovanovic, N Lozi, J Kudo, T Doughty, D Schlieder, J Kwon, J Uyama, T Kuzuhara, M Carson, JC Nakagawa, T Hashimoto, J Kusakabe, N Abe, L Brandner, W Brandt, TD Feldt, M Goto, M Grady, CA Hayano, Y Hayashi, M Hayashi, SS Henning, T Hodapp, KW Ishii, M Iye, M Janson, M Kandori, R Knapp, GR Matsuo, T McElwain, MW Miyama, S Morino, JI Moro-Martin, A Nishimura, T Pyo, TS Serabyn, E Suenaga, T Suto, H Suzuki, R Takahashi, YH Takami, H Takami, M Takato, N Terada, H Thalmann, C Turner, EL Watanabe, M Wisniewski, J Yamada, T Usuda, T Tamura, M AF Garcia, E. Victor Currie, Thayne Guyon, Olivier Stassun, Keivan G. Jovanovic, Nemanja Lozi, Julien Kudo, Tomoyuki Doughty, Danielle Schlieder, Josh Kwon, J. Uyama, T. Kuzuhara, M. Carson, J. C. Nakagawa, T. Hashimoto, J. Kusakabe, N. Abe, L. Brandner, W. Brandt, T. D. Feldt, M. Goto, M. Grady, C. A. Hayano, Y. Hayashi, M. Hayashi, S. S. Henning, T. Hodapp, K. W. Ishii, M. Iye, M. Janson, M. Kandori, R. Knapp, G. R. Matsuo, T. McElwain, M. W. Miyama, S. Morino, J. -I. Moro-Martin, A. Nishimura, T. Pyo, T. -S. Serabyn, E. Suenaga, T. Suto, H. Suzuki, R. Takahashi, Y. H. Takami, H. Takami, M. Takato, N. Terada, H. Thalmann, C. Turner, E. L. Watanabe, M. Wisniewski, J. Yamada, T. Usuda, T. Tamura, M. TI SCExAO AND GPI Y JH BAND PHOTOMETRY AND INTEGRAL FIELD SPECTROSCOPY OF THE YOUNG BROWN DWARF COMPANION TO HD 1160 SO ASTROPHYSICAL JOURNAL LA English DT Article DE instrumentation: adaptive optics; planetary systems; stars: low-mass; techniques: imaging spectroscopy ID LOW-MASS STARS; PRE-MAIN-SEQUENCE; FINDING CAMPAIGN DISCOVERY; STELLAR ASTROPHYSICS MESA; HYDROGEN-BURNING LIMIT; DIRECTLY IMAGED PLANET; BETA-PICTORIS B; UPPER SCORPIUS; DYNAMICAL MASSES; HR 8799 AB We present high signal-to-noise ratio, precise Y JH photometry and Y band (0.957-1.120 mu m) spectroscopy of HD 1160 B, a young substellar companion discovered from the Gemini NICI Planet Finding Campaign using the Subaru Coronagraphic Extreme Adaptive Optics instrument and the Gemini Planet Imager. HD 1160 B has typical mid-M dwarf-like infrared colors and a spectral type of M5.5(-0.5)(+1.0), where the blue edge of our Y band spectrum rules out earlier spectral types. Atmospheric modeling suggests HD 1160 B has an effective temperature of 3000-3100 K, a surface gravity of log g - 4-4.5, a radius of. 1.55 +/- 0.10 R-J, and a luminosity of log L/L circle dot - 2.76 +/- 0.05. Neither the primary's Hertzspring-Russell diagram position nor atmospheric modeling of HD 1160 B show evidence for a subsolar metallicity. Interpretation of the HD 1160 B spectroscopy depends on which stellar system components are used to estimate the age. Considering HD 1160 A, B and C jointly, we derive an age of 80-125 Myr, implying that HD 1160 B straddles the hydrogen-burning limit (70-90 M-J) If we consider HD 1160 A alone, younger ages (20-125 Myr) and a brown dwarf-like mass (35-90 M-J) are possible. Interferometric measurements of the primary, a precise Gaia parallax, and moderate-resolution spectroscopy can better constrain the system's age and how HD 1160 B fits within the context of (sub) stellar evolution. C1 [Garcia, E. Victor] Lowell Observ, Flagstaff, AZ 86001 USA. [Garcia, E. Victor; Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Garcia, E. Victor] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Currie, Thayne; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Kudo, Tomoyuki; Hayano, Y.; Hayashi, S. S.; Nishimura, T.; Pyo, T. -S.; Takato, N.] Natl Astron Observ Japan, Subaru Telescope, Hilo, HI 96720 USA. [Guyon, Olivier; Kuzuhara, M.; Hashimoto, J.; Kusakabe, N.; Suto, H.; Tamura, M.] Astrobiol Ctr NINS, Mitaka, Tokyo 1818588, Japan. [Guyon, Olivier] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Stassun, Keivan G.] Fisk Univ, Dept Phys, Nashville, TN 37208 USA. [Doughty, Danielle] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Schlieder, Josh] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Kwon, J.; Nakagawa, T.; Yamada, T.] Japan Aerosp Explorat Agcy JAXA, ISAS, Dept Space Astron & Astrophys, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Uyama, T.; Suenaga, T.; Tamura, M.] Univ Tokyo, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan. [Kuzuhara, M.; Hashimoto, J.; Kusakabe, N.; Hayashi, M.; Ishii, M.; Iye, M.; Kandori, R.; Morino, J. -I.; Moro-Martin, A.; Suto, H.; Suzuki, R.; Takahashi, Y. H.; Terada, H.; Usuda, T.; Tamura, M.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Kuzuhara, M.] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, Tokyo 1528551, Japan. [Carson, J. C.] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 USA. [Abe, L.; Henning, T.] Univ Nice Sophia Antipolis, Lab Lagrange UMR 7293, CNRS, Observ Cote Azur, F-06108 Nice 2, France. [Brandner, W.; Feldt, M.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Brandt, T. D.] Inst Adv Study, Dept Astrophys, Princeton, NJ 08540 USA. [Goto, M.; McElwain, M. W.] Ludwig Maximilians Univ Scheinerstr, Univ Sternwarte Munchen, D-81679 Munich, Germany. [Grady, C. A.] Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Greenbelt, MD 20771 USA. [Grady, C. A.] Eureka Sci, Oakland, CA 96002 USA. [Grady, C. A.] Goddard Ctr Astrobiol, Greenbelt, MD USA. [Hayashi, S. S.; Suenaga, T.] SOKENDAI Grad Univ Adv Studies, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan. [Hodapp, K. W.] Univ Hawaii, Inst Astron, Hilo, HI 96720 USA. [Janson, M.] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden. [Knapp, G. R.; Turner, E. L.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Matsuo, T.] Osaka Univ, Grad Sch Sci, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan. [Miyama, S.] Hiroshima Univ, Higashihiroshima, Hiroshima 7398511, Japan. [Moro-Martin, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Moro-Martin, A.] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Serabyn, E.; Takahashi, Y. H.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Takami, H.; Takami, M.] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Thalmann, C.] Swiss Fed Inst Technol, ETH Zurich, Inst Astron, CH-8093 Zurich, Switzerland. [Turner, E. L.] Univ Tokyo, Kavli Inst Phys & Math Univ, Kashiwa, Chiba 2778568, Japan. [Watanabe, M.] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Wisniewski, J.] Univ Oklahoma, HL Dodge Dept Phys & Astron, St Norman, OK 73019 USA. RP Garcia, EV (reprint author), Lowell Observ, Flagstaff, AZ 86001 USA. EM eugenio.v.garcia@gmail.com OI Stassun, Keivan/0000-0002-3481-9052 FU BF foundation; Fisk-Vanderbilt Bridge Program; JSPS [23103002, 23340051, 26220704, 25-8826]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-701012-DRAFT]; U.S. National Science Foundation [1009203] FX We thank Anna-Lise Marie for detailed, helpful discussions about and access to SPHERE HD 1160 B spectra. We thank Eric Mamajek for discussions about the metallicity of nearby, young stars. We thank Davy Kirkpatrick for providing NIR spectra of M-dwarf spectral standards. We thank Federico Spada for discussions and tests of the Yonsei-Yale models. EVG would like to acknowledge the gracious support of his Lowell Predoctoral Fellowship by the BF foundation and the excellent support of Fisk-Vanderbilt Bridge Program. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of the Keck Observatory Archive (KOA), which is operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. The authors acknowledge support from the JSPS (Grant-in-Aid for Research #23103002, #23340051, and #26220704). This work was partially supported by the Grant-in-Aid for JSPS fellows (Grant Number 25-8826). M.J. acknowledges support of the U.S. National Science Foundation, under Award No. 1009203. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with document release number LLNL-JRNL-701012-DRAFT. We wish to acknowledge the pivotal cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the privilege to conduct scientific observations from this mountain. NR 90 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2017 VL 834 IS 2 AR 162 DI 10.3847/1538-4357/834/2/162 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK2LQ UT WOS:000393759200024 ER PT J AU Adolph, C Aghasyan, M Akhunzyanov, R Alexeev, GD Alexeev, MG Amoroso, A Andrieux, V Anfimov, NV Anosov, V Augsten, K Augustyniak, W Austregesilo, A Azevedo, CDR Badelek, B Balestra, F Barth, J Beck, R Bedfer, Y Bernhard, J Bicker, K Bielert, ER Birsa, R Bisplinghoff, J Bodlak, M Boer, M Bordalom, P Bradamante, F Braun, C Bressan, A Buchele, M Capozza, L Chang, WC Chatterjee, C Chiosso, M Choi, I Chung, SU Cicuttin, A Crespo, ML Curiel, Q Dalla Torre, S Dasgupta, SS Dasgupta, S Denisov, OY Dhara, L Donskov, SV Doshita, N Duic, V Dunnweber, W Dziewiecki, M Efremov, A Eversheim, PD Eyrich, W Faessler, M Ferrero, A Finger, M Finger, M Fischer, H Franco, C von Hohenesche, NDV Friedrich, JM Frolov, V Fuchey, E Gautheron, F Gavrichtchouk, OP Gerassimov, S Giordano, F Gnesi, I Gorzellik, M Grabmuller, S Grasso, A Perdekamp, MG Grube, B Grussenmeyer, T Guskov, A Haas, F Hahne, D Vonharrach, D Hashimoto, R Heinsius, H Heitz, R Herrmann, F Hinterberger, F Horikawa, N d'Hose, N Hsieh, CY Huber, S Ishimoto, S Ivanov, A Ivanshin, Y Iwata, T Jahn, R Jary, V Joosten, R Jorg, P Kabuss, E Ketzer, B Khaustov, GV Khokhlov, YA Kisselev, Y Klein, F Klimaszewski, K Koivuniemi, JH Kolosov, VN Kondo, K Konigsmann, K Konorov, I Konstantinov, VF Kotzinian, AM Kouznetsov, OM Kramer, M Kremser, P Krinner, F Kroumchtein, ZV Kuhn, R Kulinich, Y Kunne, F Kurek, K Kurjata, RP Lednev, AA Lehmann, A Levillain, M Levorato, S Lian, YS Lichtenstadt, J Longo, R Maggiora, A Magnon, A Makins, N Makke, N Mallot, GK Marchand, C Marianski, B Martin, A Marzec, J Matousek, J Matsuda, H Matsuda, T Meshcheryakov, GV Meyer, M Meyer, W Michigami, T Mikhailov, YV Mikhasenko, M Mitrofanov, E Mitrofanov, N Miyachi, Y Montuenga, P Nagaytsev, A Nerling, F Neyret, D Nikolaenko, VI Novy, J Nowak, WD Nukazuka, G Nunes, AS Olshevsky, AG Orlov, I Ostrick, M Panzieri, D Parsamyan, B Paul, S Peng, JC Pereira, F Pesek, M Peshekhonov, DV Pierre, N Platchkov, S Pochodzalla, J Polyakov, VA Pretz, J Quaresma, M Quintans, C Ramos, S Regali, C Reicherz, G Riedl, C Roskot, M Rossiyskaya, NS Ryabchikov, DI Rybnikov, A Rychter, A Salac, R Samoylenko, VD Sandacz, A Santos, C Sarkar, S Savin, IA Sawada, T Sbrizzai, G Schiavon, P Schmidt, K Schmieden, H Schonning, K Schopferer, S Seder, E Selyunin, A Shevchenko, OY Silva, L Sinha, L Sirtl, S Slunecka, M Smolik, J Sozzi, F Srnka, A Steffen, D Stolarski, M Sulc, M Suzuki, H Szabelski, A Szameitat, T Sznajder, P Takekawa, S Tasevsky, M Tessaro, S Tessarotto, F Thibaud, F Tosello, F Tskhay, V Uhl, S Veloso, J Virius, M Vondra, J Weisrock, T Wilfert, M Windmolders, R Terwolbeek, J Zaremba, K Zavada, P Zavertyaev, M Zemlyanichkina, E Zhuravlev, N Ziembicki, M Zink, A AF Adolph, C. Aghasyan, M. Akhunzyanov, R. Alexeev, G. D. Alexeev, M. G. Amoroso, A. Andrieux, V. Anfimov, N. V. Anosov, V. Augsten, K. Augustyniak, W. Austregesilo, A. Azevedo, C. D. R. Badelek, B. Balestra, F. Barth, J. Beck, R. Bedfer, Y. Bernhard, J. Bicker, K. Bielert, E. R. Birsa, R. Bisplinghoff, J. Bodlak, M. Boer, M. Bordalom, P. Bradamante, F. Braun, C. Bressan, A. Buechele, M. Capozza, L. Chang, W. -C. Chatterjee, C. Chiosso, M. Choi, I. Chung, S. -U. Cicuttin, A. Crespo, M. L. Curiel, Q. Dalla Torre, S. Dasgupta, S. S. Dasgupta, S. Denisov, O. Yu. Dhara, L. Donskov, S. V. Doshita, N. Duic, V. Dunnweber, W. Dziewiecki, M. Efremov, A. Eversheim, P. D. Eyrich, W. Faessler, M. Ferrero, A. Finger, M. Finger, M. Fischer, H. Franco, C. von Hohenesche, N. du Fresne Friedrich, J. M. Frolov, V. Fuchey, E. Gautheron, F. Gavrichtchouk, O. P. Gerassimov, S. Giordano, F. Gnesi, I. Gorzellik, M. Grabmueler, S. Grasso, A. Perdekamp, M. Grosse Grube, B. Grussenmeyer, T. Guskov, A. Haas, F. Hahne, D. Vonharrach, D. Hashimoto, R. Heinsius, H. Heitz, R. Herrmann, F. Hinterberger, F. Horikawa, N. d'Hose, N. Hsieh, C. -Y. Huber, S. Ishimoto, S. Ivanov, A. Ivanshin, Yu. Iwata, T. Jahn, R. Jary, V. Joosten, R. Joerg, P. Kabuss, E. Ketzer, B. Khaustov, G. V. Khokhlov, Yu. A. Kisselev, Yu. Klein, F. Klimaszewski, K. Koivuniemi, J. H. Kolosov, V. N. Kondo, K. Koenigsmann, K. Konorov, I. Konstantinov, V. F. Kotzinian, A. M. Kouznetsov, O. M. Kraemer, M. Kremser, P. Krinner, F. Kroumchtein, Z. V. Kuhn, R. Kulinich, Y. Kunne, F. Kurek, K. Kurjata, R. P. Lednev, A. A. Lehmann, A. Levillain, M. Levorato, S. Lian, Y. -S. Lichtenstadt, J. Longo, R. Maggiora, A. Magnon, A. Makins, N. Makke, N. Mallot, G. K. Marchand, C. Marianski, B. Martin, A. Marzec, J. Matousek, J. Matsuda, H. Matsuda, T. Meshcheryakov, G. V. Meyer, M. Meyer, W. Michigami, T. Mikhailov, Yu. V. Mikhasenko, M. Mitrofanov, E. Mitrofanov, N. Miyachi, Y. Montuenga, P. Nagaytsev, A. Nerling, F. Neyret, D. Nikolaenko, V. I. Novy, J. Nowak, W. -D. Nukazuka, G. Nunes, A. S. Olshevsky, A. G. Orlov, I. Ostrick, M. Panzieri, D. Parsamyan, B. Paul, S. Peng, J. -C. Pereira, F. Pesek, M. Peshekhonov, D. V. Pierre, N. Platchkov, S. Pochodzalla, J. Polyakov, V. A. Pretz, J. Quaresma, M. Quintans, C. Ramos, S. Regali, C. Reicherz, G. Riedl, C. Roskot, M. Rossiyskaya, N. S. Ryabchikov, D. I. Rybnikov, A. Rychter, A. Salac, R. Samoylenko, V. D. Sandacz, A. Santos, C. Sarkar, S. Savin, I. A. Sawada, T. Sbrizzai, G. Schiavon, P. Schmidt, K. Schmieden, H. Schonning, K. Schopferer, S. Seder, E. Selyunin, A. Shevchenko, O. Yu. Silva, L. Sinha, L. Sirtl, S. Slunecka, M. Smolik, J. Sozzi, F. Srnka, A. Steffen, D. Stolarski, M. Sulc, M. Suzuki, H. Szabelski, A. Szameitat, T. Sznajder, P. Takekawa, S. Tasevsky, M. Tessaro, S. Tessarotto, F. Thibaud, F. Tosello, F. Tskhay, V. Uhl, S. Veloso, J. Virius, M. Vondra, J. Weisrock, T. Wilfert, M. Windmolders, R. Terwolbeek, J. Zaremba, K. Zavada, P. Zavertyaev, M. Zemlyanichkina, E. Zhuravlev, N. Ziembicki, M. Zink, A. TI Multiplicities of charged pions and charged hadrons from deep-inelastic scattering of muons off an isoscalar target SO PHYSICS LETTERS B LA English DT Article DE Deep inelastic scattering; Pion multiplicities; Fragmentation functions ID NUCLEON AB Multiplicities of charged pions and charged hadrons produced in deep-inelastic scattering were measured in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y and the relative hadron energy z. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target ((LiD)-Li-6). They cover the kinematic domain in the photon virtuality Q(2) > 1 (GeV/c) 2, 0.004 < x < 0.4, 0.2 < z < 0.85 and 0.1 < y < 0.7. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions. (C) 2016 The Author(s). Published by Elsevier B.V. C1 [Panzieri, D.] Univ Piemonte Orientale, I-15100 Alessandria, Italy. [Azevedo, C. D. R.; Veloso, J.] Univ Aveiro, Dept Phys, P-3810193 Aveiro, Portugal. [Gautheron, F.; Koivuniemi, J. H.; Meyer, W.; Reicherz, G.] Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Beck, R.; Bisplinghoff, J.; Eversheim, P. D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Ketzer, B.; Mikhasenko, M.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Barth, J.; Hahne, D.; Klein, F.; Pretz, J.; Schmieden, H.; Windmolders, R.] Univ Bonn, Phys Inst, D-53115 Bonn, Germany. [Srnka, A.] AS CR, Inst Sci Instruments, Brno 61264, Czech Republic. [Chatterjee, C.; Dasgupta, S. S.; Dhara, L.; Sarkar, S.; Sinha, L.] Matrivani Inst Expt Res & Educ, Kolkata 700030, W Bengal, India. [Akhunzyanov, R.; Alexeev, G. D.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Efremov, A.; Frolov, V.; Gavrichtchouk, O. P.; Guskov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O. M.; Kroumchtein, Z. V.; Meshcheryakov, G. V.; Mitrofanov, E.; Mitrofanov, N.; Nagaytsev, A.; Olshevsky, A. G.; Orlov, I.; Peshekhonov, D. V.; Rossiyskaya, N. S.; Rybnikov, A.; Savin, I. A.; Selyunin, A.; Shevchenko, O. Yu.; Slunecka, M.; Smolik, J.; Tasevsky, M.; Zavada, P.; Zemlyanichkina, E.; Zhuravlev, N.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Zink, A.] Univ Erlangen Nurnberg, Phys Inst, D-91054 Erlangen, Germany. [Buechele, M.; Fischer, H.; Gorzellik, M.; Grussenmeyer, T.; Heinsius, H.; Herrmann, F.; Joerg, P.; Koenigsmann, K.; Kremser, P.; Regali, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Szameitat, T.; Terwolbeek, J.] Univ Freiburg, Phys Inst, D-79104 Freiburg, Germany. [Bernhard, J.; Bicker, K.; Bielert, E. R.; Frolov, V.; Mallot, G. K.; Novy, J.; Schonning, K.; Steffen, D.] CERN, CH-1211 Geneva 23, Switzerland. [Sulc, M.] Tech Univ Liberec, Liberec 46117, Czech Republic. [Bordalom, P.; Franco, C.; Nunes, A. S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M.] LIP, P-1000149 Lisbon, Portugal. [Bernhard, J.; von Hohenesche, N. du Fresne; Vonharrach, D.; Kabuss, E.; Nerling, F.; Nowak, W. -D.; Ostrick, M.; Pierre, N.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Matsuda, T.] Miyazaki Univ, Miyazaki 8892192, Japan. [Gerassimov, S.; Konorov, I.; Tskhay, V.; Zavertyaev, M.] Lebedev Phys Inst, Moscow 119991, Russia. [Austregesilo, A.; Bicker, K.; Chung, S. -U.; Friedrich, J. M.; Gerassimov, S.; Grabmueler, S.; Grube, B.; Haas, F.; Huber, S.; Konorov, I.; Kraemer, M.; Krinner, F.; Kuhn, R.; Paul, S.; Steffen, D.; Uhl, S.] Tech Univ Munich, Phys Dept, D-85748 Garching, Germany. [Horikawa, N.] Nagoya Univ, Nagoya, Aichi 464, Japan. [Bodlak, M.; Finger, M.; Finger, M.; Matousek, J.; Pesek, M.; Roskot, M.] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague, Czech Republic. [Augsten, K.; Jary, V.; Novy, J.; Salac, R.; Virius, M.; Vondra, J.] Czech Tech Univ, Prague 16636, Czech Republic. [Donskov, S. V.; Khaustov, G. V.; Khokhlov, Yu. A.; Kolosov, V. N.; Konstantinov, V. F.; Lednev, A. A.; Mikhailov, Yu. V.; Nikolaenko, V. I.; Polyakov, V. A.; Ryabchikov, D. I.; Samoylenko, V. D.] Kurchatov Inst, Natl Res Ctr, State Sci Ctr Inst High Energy Phys, Protvino 142281, Russia. [Andrieux, V.; Bedfer, Y.; Boer, M.; Capozza, L.; Curiel, Q.; Ferrero, A.; Fuchey, E.; d'Hose, N.; Kunne, F.; Levillain, M.; Magnon, A.; Marchand, C.; Meyer, M.; Neyret, D.; Pierre, N.; Platchkov, S.; Seder, E.; Thibaud, F.] CEA IRFU SPhN Saclay, F-91191 Gif Sur Yvette, France. [Chang, W. -C.; Hsieh, C. -Y.; Lian, Y. -S.; Sawada, T.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Lichtenstadt, J.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bradamante, F.; Bressan, A.; Dasgupta, S.; Duic, V.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P.] Univ Trieste, Dept Phys, I-34127 Trieste, Italy. [Aghasyan, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Dasgupta, S.; Levorato, S.; Makke, N.; Martin, A.; Matousek, J.; Santos, C.; Sbrizzai, G.; Schiavon, P.; Sozzi, F.; Tessaro, S.; Tessarotto, F.] Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy. [Cicuttin, A.; Crespo, M. L.] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy. [Alexeev, M. G.; Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Ivanov, A.; Kotzinian, A. M.; Longo, R.; Parsamyan, B.; Pereira, F.; Takekawa, S.] Univ Turin, Dept Phys, I-10125 Turin, Italy. [Amoroso, A.; Balestra, F.; Chiosso, M.; Denisov, O. Yu.; Gnesi, I.; Grasso, A.; Ivanov, A.; Kotzinian, A. M.; Longo, R.; Maggiora, A.; Panzieri, D.; Parsamyan, B.; Takekawa, S.; Tosello, F.] Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy. [Choi, I.; Giordano, F.; Perdekamp, M. Grosse; Heitz, R.; Kulinich, Y.; Makins, N.; Meyer, M.; Montuenga, P.; Peng, J. -C.; Riedl, C.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Augustyniak, W.; Klimaszewski, K.; Kurek, K.; Marianski, B.; Sandacz, A.; Szabelski, A.; Sznajder, P.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. [Badelek, B.] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland. [Dziewiecki, M.; Kurjata, R. P.; Marzec, J.; Rychter, A.; Zaremba, K.; Ziembicki, M.] Warsaw Univ Technol, Inst Radioelectron, PL-00665 Warsaw, Poland. [Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Nukazuka, G.; Suzuki, H.] Yamagata Univ, Yamagata 9928510, Japan. [Bordalom, P.; Ramos, S.] Univ Lisbon, Inst Super Tecn, Lisbon, Portugal. [Chung, S. -U.] Pusan Natl Univ, Dept Phys, Busan 609735, South Korea. [Chung, S. -U.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Horikawa, N.; Suzuki, H.] Chubu Univ, Kasugai, Aichi 4878501, Japan. [Hsieh, C. -Y.] Natl Cent Univ, Dept Phys, 300 Jhongda Rd, Jhongli 32001, Taiwan. [Ishimoto, S.] KEK, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. [Khokhlov, Yu. A.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Lian, Y. -S.] Natl Kaohsiung Normal Univ, Dept Phys, Yanchao Township 824, Kaohsiung Count, Taiwan. [Pretz, J.] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany. [Schonning, K.] Uppsala Univ, Box 516, S-75120 Uppsala, Sweden. RP Mallot, GK (reprint author), CERN, CH-1211 Geneva 23, Switzerland.; Seder, E (reprint author), CEA IRFU SPhN Saclay, F-91191 Gif Sur Yvette, France.; Denisov, OY (reprint author), Ist Nazl Fis Nucl, Torino Sect, I-10125 Turin, Italy. EM oleg.denisov@cern.ch; gerhard.mallot@cern.ch; erin.seder@cern.ch RI Srnka, A/E-2441-2012; OI Veloso, Joao/0000-0002-7107-7203 FU DFG cluster of excellence 'Origin and Structure of the Universe'; DFG Research Training Group Programme "Physics at Hadron Accelerators" [1102]; German Bundesministerium fur Bildung und Forschung; EU FP7 (HadronPhysics3) [283286]; Czech Republic MEYS [LG13031]; SAIL (CSR), Govt. of India; CERN-RFBR [12-02-91500]; Portuguese FCT - Fundacao para a Ciencia e Tecnologia; COMPETE; QREN [CERN/FP 109323/2009, 116376/2010, 123600/2011, CERN/FIS-NUC/0017/2015]; MEXT; JSPS [18002006, 20540299, 18540281]; Daiko Foundation; Yamada Foundation; Polish NCN [2015/18/M/ST2/00550]; Israel Academy of Sciences and Humanities; [NSh-999.2014.2] FX Supported by the DFG cluster of excellence 'Origin and Structure of the Universe' (www.universe-cluster.de).; Supported by Presidential grant NSh-999.2014.2.; Supported by the DFG Research Training Group Programme 1102 "Physics at Hadron Accelerators".; Supported by the German Bundesministerium fur Bildung und Forschung.; Supported by EU FP7 (HadronPhysics3, Grant Agreement number 283286).; Supported by Czech Republic MEYS Grant LG13031.; Supported by SAIL (CSR), Govt. of India.; Supported by CERN-RFBR Grant 12-02-91500.; Supported by the Portuguese FCT - Fundacao para a Ciencia e Tecnologia, COMPETE and QREN, Grants CERN/FP 109323/2009, 116376/2010, 123600/2011 and CERN/FIS-NUC/0017/2015.; Supported by the MEXT and the JSPS under the Grants No. 18002006, No. 20540299 and No. 18540281; Daiko Foundation and Yamada Foundation.; Supported by the Israel Academy of Sciences and Humanities.; Supported by the Polish NCN Grant 2015/18/M/ST2/00550. NR 37 TC 1 Z9 1 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JAN 10 PY 2017 VL 764 BP 1 EP 10 DI 10.1016/j.physletb.2016.09.042 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EF2AR UT WOS:000390127100001 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adachi, S Adamczyka, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alshehri, AA Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska-Blenessy, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y BenharNoccioli, E Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethani, A Bethke, S Bevan, AJ Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Billoud, TRV Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bisanz, T Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazeka, T Bloch, I Blocker, C Blue, A Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Callea, G Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, V Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chenc, S Chen, S Chen, X Chen, Y Cheng, HC JChenga, H Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cueto, A Donszelmann, TC Cummings, J Curatolo, M Cuth, J Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDCS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Cornell, SD Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dolejsi, J Dolezal, Z Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudder, AC Duffield, EM Duflot, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Ezzie, M Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Feng, M Fenyuk, AB Feremeng, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gacha, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gasnikova, K Gatti, C Gaudiello, A Gaudio, G Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gellerstedt, K Gemme, C Genest, MH Geng, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, K Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdamic, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guoe, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Hagebock, S Hagihara, M Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Han, S Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, D Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Herde, H Herget, V Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Honda, T Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hoya, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, Q Hu, S Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodicea, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jeng, GY Jennens, D Jenni, P Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Jivan, H Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kaji, T Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Kentaro, K Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-zada, F Khanov, A Kharlamov, AG Kharlamova, T Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kilby, CR Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koehler, NM Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lanfermann, MC Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, B Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, C Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, EM Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopez, JA Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Mad, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Zu Theenhausen, HM Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Minegishi, Y Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Mlynarikova, M Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, S Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Pagacova, M Griso, SP Paganini, M Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D Panagiotopoulou, ES Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reed, RG Reeves, K Rehnisch, L Reichert, J Reiss, A Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sato, K Sauvan, E Savage, G Savard, P Savic, N Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, L Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schouwenberg, JFP Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shirabe, S Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shope, DR Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, IM Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, M Tanaka, R Tanaka, S Tanioka, R Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Tornambe, P Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tu, Y Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC Van Der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vasquez, GA Vazeille, F Schroeder, TV Veatch, J Veeraraghavan, V Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wangc, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Weber, SA Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolf, TMH Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacooba, S Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adachi, S. Adamczyka, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alshehri, A. A. Alstaty, M. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M-S Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska-Blenessy, Z. Baroncelli, A. Barone, G. Barr, A. J. Navarro, L. Barranco Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. BenharNoccioli, E. Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethani, A. Bethke, S. Bevan, A. J. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Billoud, T. R. V. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bisanz, T. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazeka, T. Bloch, I. Blocker, C. Blue, A. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buscher, D. Buscher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Callea, G. Caloba, L. P. Lopez, S. Calvente Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Alberich, L. Cerda Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chenc, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. JChenga, H. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cueto, A. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Cornell, S. Diez Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dolejsi, J. Dolezal, Z. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudder, A. Chr. Duffield, E. M. Duflot, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Ezzie, M. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Feng, M. Fenyuk, A. B. Feremeng, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gacha, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Navarro, J. E. Garcia Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gasnikova, K. Gatti, C. Gaudiello, A. Gaudio, G. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gellerstedt, K. Gemme, C. Genest, M. H. Geng, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. de la Hoz, S. Gonzalez Parra, G. Gonzalez Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Gossling, C. Gostkin, M. I. Goudet, C. R. Goujdamic, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guoe, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Hagebock, S. Hagihara, M. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Han, S. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, D. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Herde, H. Herget, V. Jimenez, Y. Hernandez Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Honda, T. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hoya, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, Q. Hu, S. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodicea, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jeng, G. -Y. Jennens, D. Jenni, P. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Pena, J. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Jivan, H. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kaji, T. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Kentaro, K. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Kharlamova, T. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kilby, C. R. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koehler, N. M. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Kopke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Krumnack, N. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lanfermann, M. C. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, B. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, C. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. M. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopez, J. A. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Losel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Mad, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, L. Mandic, I. Maneira, J. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mattig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Zu Theenhausen, H. Meyer Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Minegishi, Y. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Mlynarikova, M. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Monig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, S. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Seabra, L. F. Oleiro Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pages, A. Pacheco Rodriguez, L. Pacheco Aranda, C. Padilla Pagacova, M. Griso, S. Pagan Paganini, M. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. Panagiotopoulou, E. St. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Lopez, S. Pedraza Pedro, R. Peleganchuk, S. V. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reed, R. G. Reeves, K. Rehnisch, L. Reichert, J. Reiss, A. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Perez, A. Rodriguez Rodriguez, D. Rodriguez Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Adam, E. Romero Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruhr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Martinez, V. Sanchez Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sato, K. Sauvan, E. Savage, G. Savard, P. Savic, N. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, L. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schafer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schouwenberg, J. F. P. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shirabe, S. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shope, D. R. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, I. M. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, M. Tanaka, R. Tanaka, S. Tanioka, R. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Tornambe, P. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tu, Y. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Ferrer, J. A. Valls Van Den Wollenberg, W. Van Der Deijl, P. C. Van Der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vasquez, G. A. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veeraraghavan, V. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wangc, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Weber, S. A. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolf, T. M. H. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacooba, S. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zwalinski, L. CA ATLAS Collaboration TI Search for heavy resonances decaying to a Z boson and a photon in pp collisions at root s=13 TeV with the ATLAS detector SO PHYSICS LETTERS B LA English DT Article ID HADRON-COLLISIONS; Z-GAMMA; LHC AB This Letter presents a search for new resonances with mass larger than 250 GeV, decaying to a Z boson and a photon. The dataset consists of an integrated luminosity of 3.2 fb(-1) of pp collisions collected at root s = 13 TeV with the ATLAS detector at the Large Hadron Collider. The Z bosons are identified through their decays either to charged, light, lepton pairs (e(+) e(-), mu(+) mu(-)) or to hadrons. The data are found to be consistent with the expected background in the whole mass range investigated and upper limits are set on the production cross section times decay branching ratio to Z gamma of a narrow scalar boson with mass between 250 GeV and 2.75 TeV. (C) 2016 The Author(s). Published by Elsevier B.V. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska-Blenessy, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veeraraghavan, V.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Abdallah, J.; Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremeng, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E. St.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Parra, G. Gonzalez; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rizzi, C.; Perez, A. Rodriguez; Sorin, V.; Terzo, S.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Aloisio, A.; Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Andari, N.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Caudron, J.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Hagebock, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kroseberg, J.; Kruger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Phys Inst, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Dhaliwal, S.; Goblirsch-Kolb, M.; Herde, H.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes; Peralva, B. S.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Stucci, S. A.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Sola, J. D. Bossio; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Malone, C.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.; Weber, S. A.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backhaus, M.; Barak, L.; Barisits, M-S; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chisholm, A. S.; Chromek-Burckhart, D.; Conti, G.; Cortes-Gonzalez, A.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helary, L.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Morgenstern, S.; Mornacchi, G.; Nairz, A. M.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Aloisio, A.; Alonso, A.; Amorim, A.; Anderson, K. J.; Andreazza, A.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Lopez, J. A.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Araya, S. Tapia; Vasquez, G. A.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimaraes; JChenga, H.; Fang, Y.; Han, S.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Li, C.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chenc, S.; Wangc, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Du, Y.; Feng, C.; Mad, L. L.; Ma, Y.; Wang, C.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guoe, J.; Hu, S.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Aloisio, A.; Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Aloisio, A.; Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyka, L.; Bold, T.; Dabrowski, W.; Gacha, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Cornell, S. Diez; Dutta, B.; Dyndal, M.; Eckardt, C.; Ferrando, J.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Cornell, S. Diez; Dutta, B.; Dyndal, M.; Eckardt, C.; Ferrando, J.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E. M.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Monig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Gossling, C.; Homann, M.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Feng, M.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mijovic, L.; Mills, C.; Pino, S. A. Olivares; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buscher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruhr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tornambe, P.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lanfermann, M. C.; Lionti, A. E.; March, L.; Mermod, P.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Phys Inst 2, Giessen, Germany. [Alshehri, A. A.; Bates, R. L.; Blue, A.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Bisanz, T.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Phys Inst 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Bethani, A.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, Grenoble, France. [Aloisio, A.; Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Zu Theenhausen, H. Meyer; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Phys Inst, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.; Tu, Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Iwanski, W.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Argyropoulos, S.; Benitez, J.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Turchikhin, S.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Honda, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Tanioka, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Shirabe, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Hoya, J.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Hoya, J.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Aloisio, A.; Armitage, L. J.; Bevan, A. J.; Bona, M.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Giannelli, M. Faucci; Gadomski, S.; George, S.; Gibson, S. M.; Kempster, J. J.; Kilby, C. R.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Grout, Z. J.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Lopez, S. Calvente; Cueto, A.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buscher, V.; Cuth, J.; Dudder, A. Chr.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Kopke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Reiss, A.; Sander, H. G.; Schaeffer, J.; Schafer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Aloisio, A.; Alonso, A.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Lefebvre, B.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; De la Torre, H.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Billoud, T. R. V.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Koehler, N. M.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Savic, N.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Spettel, F.; Stonjek, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kentaro, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kentaro, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.] Univ Napoli, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Schouwenberg, J. F. P.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; Van Der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; Van Der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Univ Illinois, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Kharlamova, T.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Shope, D. R.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Dattagupta, A.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Snyder, I. M.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, Univ Paris Sud, LAL, CNRS IN2P3, Orsay, France. [Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Backes, M.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Radescu, V.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Aloisio, A.; Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Schaefer, L.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] Natl Res Ctr, Kurchatov Inst, BP Konstantinov Petesburg Nucl Inst, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. LIP, Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Aloisio, A.; Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Pedro, R.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Mlynarikova, M.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Vaniachine, A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy Phys Protvino, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cerrito, L.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cerrito, L.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodicea, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdamic, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Ezzie, M.; Fassi, F.; Haddad, N.; Idrissi, Z.; Tayalati, Y.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Perego, M. M.; Peyaud, A.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondament Univers, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazeka, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacooba, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Jivan, H.; Kar, D.; Garcia, B. R. Mellado; Reed, R. G.; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Aloisio, A.; Alonso, A.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Aloisio, A.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Adachi, S.; Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Minegishi, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Adachi, S.; Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Minegishi, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hayakawa, D.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Tanaka, M.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hagihara, M.; Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hagihara, M.; Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Aloisio, A.; Casper, D. W.; Colombo, T.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Ntekas, K.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cheatham, S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cheatham, S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Navarro, J. E. Garcia; de la Hoz, S. Gonzalez; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Pena, J. Jimenez; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Lopez, S. Pedraza; Rodriguez, D. Rodriguez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez, J.; Martinez, V. Sanchez; Soldevila, U.; Valero, A.; Ferrer, J. A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Kaji, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zhou, C.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Herget, V.; Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Strohmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburgyyy, Germany. [Bannoura, A. A. E.; Boerner, D.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Mattig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fak Math & Nat Wissensch, Fachgrp Phys, Wuppertal, Germany. [Baker, O. K.; BenharNoccioli, E.; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Paganini, M.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Dept Fis & Astron, Fac Ciencias, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys IPP, Ottawa, ON, Canada. [Ducu, O. A.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Geng, C.; Guo, Y.; Li, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Taipei, Taiwan. [Igonkina, O.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] Georgian Tech Univ GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Moss, J.] Calif State Univ Sacramento, Dept Phys, Sacramento, CA 95819 USA. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Piacquadio, G.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Piacquadio, G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy INRNE, Sofia, Bulgaria. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Song, H. Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. [Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Zhang, R.] CNRS IN2P3, Marseille, France. PKU CHEP, Beijing, Peoples R China. RP Aaboud, M (reprint author), Univ Mohamed Premier, Fac Sci, Oujda, Morocco.; Aaboud, M (reprint author), LPTPM, Oujda, Morocco. RI Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Prokoshin, Fedor/E-2795-2012; Tikhomirov, Vladimir/M-6194-2015; OI Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Prokoshin, Fedor/0000-0001-6389-5399; Tikhomirov, Vladimir/0000-0002-9634-0581; Belyaev, Nikita/0000-0002-1131-7121 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; VSC CR, Czech Republic; MPO CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; Canarie, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme; Thales programme; Aristeia programme; EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Spain; Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, Canarie, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. NR 57 TC 1 Z9 1 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JAN 10 PY 2017 VL 764 BP 11 EP 30 DI 10.1016/j.physletb.2016.11.005 PG 20 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EF2AR UT WOS:000390127100002 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Konig, A Kratschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rad, N Rahbaran, B Rohringer, H Schieck, J Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S De Wolf, EA Janssen, X Lauwers, J De Klundert, MV Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Lowette, S Moortgat, S Moreels, L Olbrechts, A Python, Q Tavernier, S Van Doninck, W Van Mulders, P Van Parijs, I Brun, H Caillol, C Clerbaux, B De Lentdecker, G Delannoy, H Fasanella, G Favart, L Goldouzian, R Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Luetic, J Maerschalk, T Marinov, A Randle-conde, A Seva, T Vander Velde, C Vanlaer, P Yonamine, R Zenoni, F Zhang, F Cimmino, A Cornelis, T Dobur, D Fagot, A Garcia, G Gul, M Poyraz, D Salva, S Schofbeck, R Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Bakhshiansohi, H Beluffi, C Bondu, O Brochet, S Bruno, G Caudron, A De Visscher, S Delaere, C Delcourt, M Forthomme, L Francois, B Giammanco, A Jafari, A Jez, P Komm, M Lemaitre, V Magitteri, A Mertens, A Musich, M Nuttens, C Piotrzkowski, K Quertenmont, L Selvaggi, M Marono, MV Wertz, S Beliy, N Alda, WL Alves, FL Alves, GA Brito, L Hensel, C Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Da Silveira, GG Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Herrera, CM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Fang, W Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Chen, Y Cheng, T Jiang, CH Leggat, D Liu, Z Romeo, F Shaheen, SM Spiezia, A Tao, J Wang, C Wang, Z Zhang, H Zhao, J Ban, Y Chen, G Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Hernandez, CFG Alvarez, JDR Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Antunovic, Z Kovac, M Brigljevic, V Ferencek, D Kadija, K Micanovic, S Sudic, L Susa, T Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Finger, M Finger, M Jarrin, EC El-Khateeb, E Elgammal, S Mohamed, A Calpas, B Kadastik, M Murumaa, M Perrini, L Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Peltola, T Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Ghosh, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Kucher, I Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Abdulsalam, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Davignon, O de Cassagnac, RG Jo, M Lisniak, S Mine, P Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Grenier, G Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Popov, A Sabes, D Sordini, V Vander Donckt, M Verdier, P Viret, S Khvedelidze, A Tsamalaidze, Z Autermann, C Beranek, S Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schomakers, C Schulte, JF Schulz, J Verlage, T Weber, H Zhukov, V Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hamer, M Hebbeker, T Heidemann, C Hoepfner, K Knutzen, S Merschmeyer, M Meyer, A Millet, P Mukherjee, S Olschewski, M Padeken, K Pook, T Radziej, M Reithler, H Rieger, M Scheuch, F Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Flugge, G Ahmad, WH Hoehle, F Kargoll, B Kress, T Kunsken, A Lingemann, J Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asawatangtrakuldee, C Beernaert, K Behnke, O Behrens, U Bin Anuar, AA Borras, K Campbell, A Connor, P Contreras-Campana, C Costanza, F Pardos, CD Dolinska, G Eckerlin, G Eckstein, D Eren, E Gallo, E Garcia, JG Geiser, A Gizhko, A Luyando, JMG Gunnellini, P Harb, A Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Keaveney, J Kieseler, J Kleinwort, C Korol, I Krucker, D Lange, W Lelek, A Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Ntomari, E Pitzl, D Placakyte, R Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Seitz, C Spannagel, S Stefaniuk, N Trippkewitz, KD Van Onsem, GP Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Dreyer, T Garutti, E Goebel, K Gonzalez, D Haller, J Hoffmann, M Junkes, A Klanner, R Kogler, R Kovalchuk, N Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Niedziela, M Nowatschin, D Ott, J Pantaleo, F Peiffer, T Perieanu, A Poehlsen, J Sander, C Scharf, C Schleper, P Schmidt, A Schumann, S Schwandt, J Stadie, H Steinbruck, G Stober, FM Stover, M Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Barth, C Baus, C Berger, J Butz, E Chwalek, T Colombo, F De Boer, W Dierlamm, A Fink, S Friese, R Giffels, M Gilbert, A Goldenzweig, P Haitz, D Hartmann, F Heindl, SM Husemann, U Katkov, I Pardo, PL Maier, B Mildner, H Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Schroder, M Shvetsov, I Sieber, G Simonis, HJ Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Williamson, S Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Filipovic, N Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Makovec, A Molnar, J Szillasi, Z Bartok, M Raics, P Trocsanyi, ZL Ujvari, B Bahinipati, S Choudhury, S Mal, P Mandal, K Nayak, A Sahoo, DK Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Keshri, S Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Bhattacharya, R Bhattacharya, S Chatterjee, K Dey, S Dutt, S Dutta, S Ghosh, S Majumdar, N Modak, A Mondal, K Mukhopadhyay, S Nandan, S Purohit, A Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Thakur, S Behera, PK Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Netrakanti, PK Pant, LM Shukla, P Topkar, A Aziz, T Dugad, S Kole, G Mahakud, B Mitra, S Mohanty, GB Parida, B Sur, N Sutar, B Banerjee, S Bhowmik, S Dewanjee, RK Ganguly, S Guchait, M Jain, S Kumar, S Maity, M Majumder, G Mazumdar, K Sarkar, T Wickramage, N Chauhan, S Dube, S Hegde, V Kapoor, A Kothekar, K Rane, A Sharma, S Behnamian, H Chenarani, S Tadavani, EE Etesami, SM Fahim, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Albergo, S Chiorboli, M Costa, S Di Mattia, A Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Primavera, F Calvelli, V Ferro, F LoVetere, M Monge, MR Robutti, E Tosi, S Brianza, L Dinardo, ME Dini, P Fiorendi, S Gennai, S Ghezzi, A Govoni, P Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Paganoni, M Pedrini, D Pigazzini, S Ragazzi, S de Fatis, TT Buontempo, S Cavallo, N De Nardo, G Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Benato, L Bisello, D Boletti, A Carlin, R Checchia, P Dall'Osso, M Manzano, PD Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Margoni, M Maron, G Michelotto, M Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Ventura, S Zanetti, M Zotto, P Zucchetta, A Zumerle, G Braghieri, A Magnani, A Montagna, P Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Bilei, GM Ciangottini, D Fano, L Lariccia, P Leonardi, R Mantovani, G Menichelli, M Saha, A Santocchia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Giassi, A Grippo, MT Ligabue, F Lomtadzea, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Cipriani, M D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bartosik, N Bellan, R Biino, C Cartiglia, N Costa, M Covarelli, R Degano, A Dellacasa, G Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Mazza, G Migliore, E Monaco, V Monteil, E Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Traczyk, P Belforte, S Casarsa, M Cossutti, F Della Ricca, G La Licata, C Schizzi, A Zanetti, A Kim, DH Kim, GN Kim, MS Lee, S Lee, SW Oh, YD Sekmen, S Son, DC Yang, YC Lee, A Cifuentes, JAB Kim, TJ Cho, S Choi, S Go, Y Gyun, D Ha, S Hong, B Jo, Y Kim, Y Lee, B Lee, K Lee, KS Lee, S Lim, J Park, SK Roh, Y Almond, J Kim, J Oh, SB Seo, SH Yang, UK Yoo, HD Yu, GB Choi, M Kim, H Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Ryu, MS Choi, Y Goh, J Hwang, C Lee, J Yu, I Dudenas, V Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Yusli, MN Zolkapli, Z Castilla-Valdez, H De La Cruz-Burelo, E Heredia-De La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Villalba, RM Guisao, JM Sanchez-Hernandez, A Moreno, SC Barrera, CO Valencia, FV Carpinteyro, S Pedraza, I Ibarguen, HAS Estrada, CU Pineda, AM Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Shah, MA Shoaib, M Waqas, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Hollar, J Leonardo, N Iglesias, LL Nemallapudi, MV Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Voytishin, N Zarubin, A Chtchipounov, L Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Murzin, V Oreshkin, V Sulimov, V Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Toms, M Vlasov, E Zhokin, A Bylinkin, A Chistov, R Danilov, M Rusinov, V Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Rusakov, SV Terkulov, A Baskakov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Miagkov, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Blinov, V Skovpen, Y Azhgirey, I Bayshev, I Bitioukov, S Elumakhov, D Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Cirkovic, P Devetak, D Dordevic, M Milosevic, J Rekovic, V Maestre, JA Luna, MB Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS de Troconiz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Caballero, IG Fernandez, JRG Cortezon, EP Cruz, SS Andres, IS Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Curras, E Fernandez, M Garcia-Ferrero, J Gomez, G Virto, AL Marco, J Rivero, CM Matorras, F Gomez, JP Rodrigo, T Ruiz-Jimeno, A Scodellaro, L Trevisani, N Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bloch, P Bocci, A Bonato, A Botta, C Camporesi, T Castello, R Cepeda, M Cerminara, G D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A Di Marco, E Dobson, M Dorney, B du Pree, T Duggan, D Dunser, M Dupont, N Elliott-Peisert, A Fartoukh, S Franzoni, G Fulcher, J Funk, W Gigi, D Gill, K Girone, M Glege, F Gulhan, D Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Knunz, V Kornmayer, A Kortelainen, MJ Kousouris, K Krammer, M Lecoq, P Lourenco, C Lucchini, MT Malgeri, L Mannelli, M Martelli, A Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Racz, A Reis, T Rolandi, G Rovere, M Ruan, M Sakulin, H Sauvan, JB Schafer, C Schwick, C Seidel, M Sharma, A Silva, P Simon, M Sphicas, P Steggemann, J Stoye, M Takahashi, Y Tosi, M Treille, D Triossi, A Tsirou, A Veckalns, V Veres, GI Wardle, N Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Rohe, T Bachmair, F Bani, L Bianchini, L Casal, B Dissertori, G Dittmar, M Donega, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lecomte, P Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Meinhard, MT Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrin, G Perrozzi, L Quittnat, M Rossini, M Schonenberger, M Starodumov, A Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF DeCosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Rauco, G Robmann, P Salerno, D Yang, Y Candelise, V Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Pozdnyakov, A Yu, SS Kumar, A Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Paganis, E Psallidas, A Tsai, JF Tzeng, YM Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Damarseckin, S Demiroglu, ZS Dozen, C Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Kara, O Kiminsu, U Oglakci, M Onengut, G Ozdemir, K Ozturk, S Polatoz, A Cerci, DS Turkcapar, S Zorbakir, IS Zorbilmez, C Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Gulmez, E Kaya, M Kaya, O Yetkin, EA Yetkin, T Cakir, A Cankocak, K Sen, S Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Burns, D Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-Storey, SS Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Calligaris, L Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Dauncey, P Davies, G De Wit, A Della Negra, M Di Maria, R Dunne, P Elwood, A Futyan, D Haddad, Y Hall, G Iles, G James, T Lane, R Laner, C Lucas, R Lyons, L Magnan, AM Malik, S Mastrolorenzo, L Nash, J Nikitenko, A Pela, J Penning, B Pesaresi, M Raymond, DM Richards, A Rose, A Seez, C Summers, S Tapper, A Uchida, K Acosta, MV Virdee, T Wright, J Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P Arcaro, D Avetisyan, A Bose, T Gastler, D Rankin, D Richardson, C Rohlf, J Sulak, L Zou, D Benelli, G Berry, E Cutts, D Garabedian, A Hakala, J Heintz, U Hogan, JM Jesus, O Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Spencer, E Syarif, R Breedon, R Breto, G Burns, D Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Flores, C Funk, G Gardner, M Ko, W Lander, R Mclean, C Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Florent, A Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Kennedy, E Lacroix, F Long, OR Malberti, M Negrete, MO Paneva, MI Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S Derdzinski, M Gerosa, R Holzner, A Klein, D Krutelyov, V Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wood, J Wurthwein, F Yagil, A Della Porta, GZ Bhandari, R Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Heller, R Incandela, J Mccoll, N Mullin, SD Ovcharova, A Richman, J Stuart, D Suarez, I West, C Yoo, J Anderson, D Apresyan, A Bendavid, J Bornheim, A Bunn, J Chen, Y Duarte, J Lawhorn, JM Mott, A Newman, HB Pena, C Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Carlson, B Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Jensen, F Johnson, A Krohn, M Mulholland, T Stenson, K Wagner, SR Alexander, J Chaves, J Chu, J Dittmer, S Mcdermott, K Mirman, N Kaufman, GN Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Soffi, L Tan, SM Tao, Z Thom, J Tucker, J Wittich, P Zientek, M Winn, D Abdullin, S Albrow, M Apollinari, G Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Cremonesi, M Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, RM Hasegawa, S Hirschauer, J Hu, Z Jayatilaka, B Jindariani, S Johnson, M Joshi, U Klima, B Kreis, B Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K Magini, N Marraffino, JM Maruyama, S Mason, D McBride, P Merkel, P Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Ristori, L Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Stoynev, S Strobbe, N Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Wang, M Weber, HA Whitbeck, A Acosta, D Avery, P Bortignon, P Bourilkov, D Brinkerhoff, A Carnes, A Carver, M Curry, D Das, S Field, RD Furic, IK Konigsberg, J Korytov, A Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Shchutska, L Sperka, D Thomas, L Wang, J Wang, S Yelton, J Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bein, S Diamond, B Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Santra, A Weinberg, M Baarmand, MM Bhopatkar, V Colafranceschi, S Hohlmann, M Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Turner, P Varelas, N Wang, H Wu, Z Zakaria, M Zhang, J Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tiras, E Wetzel, J Yi, K Anderson, I Blumenfeld, B Cocoros, A Eminizer, N Fehling, D Feng, L Gritsan, AV Maksimovic, P Osherson, M Roskes, J Sarica, U Swartz, M Xiao, M Xin, Y You, C Al-Bataineh, A Baringer, P Bean, A Bowen, J Bruner, C Castle, J Kenny, RP Kropivnitskaya, A Majumder, D Mcbrayer, W Murray, M Sanders, S Stringer, R Takaki, JDT Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Abercrombie, D Allen, B Apyan, A Barbieri, R Baty, A Bi, R Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Ceballos, GG Goncharov, M Hsu, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Krajczar, K Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Narayanan, S Niu, X Paus, C Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Tatar, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Benvenuti, AC Chatterjee, RM Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bartek, R Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Knowlton, D Kravchenko, I Rodrigues, AM Meier, F Monroy, J Siado, JE Snow, GR Stieger, B Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Parker, A Rappoccio, S Roozbahani, B Alverson, G Barberis, E Baumgartel, D Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Bhattacharya, S Hahn, KA Kubik, A Kumar, A Low, JF Mucia, N Odell, N Pollack, B Schmitt, MH Sung, K Trovato, M Velasco, M Dev, N Hildreth, M Anampa, KH Jessop, C Karmgard, DJ Kellams, N Lannon, K Marinelli, N Meng, F Mueller, C Musienko, Y Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Valls, N Wayne, M Wolf, M Woodard, A Alimena, J Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Francis, B Hart, A Hill, C Hughes, R Ji, W Liu, B Luo, W Puigh, D Winer, BL Wulsin, HW Cooperstein, S Driga, O Elmer, P Hardenbrook, J Hebda, P Luo, J Marlow, D Medvedeva, T Mei, K Mooney, M Olsen, J Palmer, C Piroue, P Stickland, D Tully, C Zuranski, A Malik, S Barker, A Barnes, VE Folgueras, S Gutay, L Jha, MK Jones, M Jung, AW Jung, K Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Duh, YT Ferbel, T Galanti, M Garcia-Bellido, A Han, J Hindrichs, O Khukhunaishvili, A Lo, KH Tan, P Verzetti, M Chou, JP Contreras-Campana, E Gershtein, Y Espinosa, TAG Halkiadakis, E Heindl, M Hidas, D Hughes, E Kaplan, S Elayavalli, RK Kyriacou, S Lath, A Nash, K Saka, H Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Heideman, J Riley, G Rose, K Spanier, S Thapa, K Bouhali, O Celik, A Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Gilmore, J Huang, T Juska, E Kamon, T Mueller, R Pakhotin, Y Patel, R Perloff, A Pernie, L Rathjens, D Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Wang, Z Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Melo, A Ni, H Sheldon, P Tuo, S Velkovska, J Xu, Q Arenton, MW Barria, P Cox, B Goodell, J Hirosky, R Ledovskoy, A Li, H Neu, C Sinthuprasith, T Sun, X Wang, Y Wolfe, E Xia, F Clarke, C Harr, R Karchin, PE Lamichhane, P Sturdy, J Belknap, DA Dasu, S Dodd, L Duric, S Gomber, B Grothe, M Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Ojalvo, I Perry, T Pierro, GA Polese, G Ruggles, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Koenig, A. Kraetschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rad, N. Rahbaran, B. Rohringer, H. Schieck, J. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. De Wolf, E. A. Janssen, X. Lauwers, J. De Klundert, M. Van Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Lowette, S. Moortgat, S. Moreels, L. Olbrechts, A. Python, Q. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Parijs, I. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Delannoy, H. Fasanella, G. Favart, L. Goldouzian, R. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Luetic, J. Maerschalk, T. Marinov, A. Randle-conde, A. Seva, T. Vander Velde, C. Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Cimmino, A. Cornelis, T. Dobur, D. Fagot, A. Garcia, G. Gul, M. Poyraz, D. Salva, S. Schoefbeck, R. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Bakhshiansohi, H. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Caudron, A. De Visscher, S. Delaere, C. Delcourt, M. Forthomme, L. Francois, B. Giammanco, A. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Magitteri, A. Mertens, A. Musich, M. Nuttens, C. Piotrzkowski, K. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Wertz, S. Beliy, N. Alda Junior, W. L. Alves, F. L. Alves, G. A. Brito, L. Hensel, C. Moraes, A. Pol, M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Da Silveira, G. G. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mora Herrera, C. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Fang, W. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Chen, Y. Cheng, T. Jiang, C. H. Leggat, D. Liu, Z. Romeo, F. Shaheen, S. M. Spiezia, A. Tao, J. Wang, C. Wang, Z. Zhang, H. Zhao, J. Ban, Y. Chen, G. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gonzalez Hernandez, C. F. Ruiz Alvarez, J. D. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Ribeiro Cipriano, P. M. Antunovic, Z. Kovac, M. Brigljevic, V. Ferencek, D. Kadija, K. Micanovic, S. Sudic, L. Susa, T. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Finger, M. Finger, M., Jr. Carrera Jarrin, E. El-Khateeb, E. Elgammal, S. Mohamed, A. Calpas, B. Kadastik, M. Murumaa, M. Perrini, L. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Peltola, T. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Ghosh, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Kucher, I. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Abdulsalam, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Davignon, O. de Cassagnac, R. Granier Jo, M. Lisniak, S. Mine, P. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Montoya, C. A. Carrillo Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Grenier, G. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Popov, A. Sabes, D. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Khvedelidze, A. Tsamalaidze, Z. Autermann, C. Beranek, S. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schomakers, C. Schulte, J. F. Schulz, J. Verlage, T. Weber, H. Zhukov, V. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hamer, M. Hebbeker, T. Heidemann, C. Hoepfner, K. Knutzen, S. Merschmeyer, M. Meyer, A. Millet, P. Mukherjee, S. Olschewski, M. Padeken, K. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, F. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Fluegge, G. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuensken, A. Lingemann, J. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asawatangtrakuldee, C. Beernaert, K. Behnke, O. Behrens, U. Bin Anuar, A. A. Borras, K. Campbell, A. Connor, P. Contreras-Campana, C. Costanza, F. Pardos, C. Diez Dolinska, G. Eckerlin, G. Eckstein, D. Eren, E. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Luyando, J. M. Grados Gunnellini, P. Harb, A. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Keaveney, J. Kieseler, J. Kleinwort, C. Korol, I. Krucker, D. Lange, W. Lelek, A. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Ntomari, E. Pitzl, D. Placakyte, R. Raspereza, A. Roland, B. Sahin, M. O. Saxena, P. Schoerner-Sadenius, T. Seitz, C. Spannagel, S. Stefaniuk, N. Trippkewitz, K. D. Van Onsem, G. P. Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Dreyer, T. Garutti, E. Goebel, K. Gonzalez, D. Haller, J. Hoffmann, M. Junkes, A. Klanner, R. Kogler, R. Kovalchuk, N. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Niedziela, M. Nowatschin, D. Ott, J. Pantaleo, F. Peiffer, T. Perieanu, A. Poehlsen, J. Sander, C. Scharf, C. Schleper, P. Schmidt, A. Schumann, S. Schwandt, J. Stadie, H. Steinbruck, G. Stober, F. M. Stoever, M. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Barth, C. Baus, C. Berger, J. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Dierlamm, A. Fink, S. Friese, R. Giffels, M. Gilbert, A. Goldenzweig, P. Haitz, D. Hartmann, F. Heindl, S. M. Husemann, U. Katkov, I. Pardo, P. Lobelle Maier, B. Mildner, H. Mozer, M. U. Mueller, T. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Schroeder, M. Shvetsov, I. Sieber, G. Simonis, H. J. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Williamson, S. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Filipovic, N. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Makovec, A. Molnar, J. Szillasi, Z. Bartok, M. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bahinipati, S. Choudhury, S. Mal, P. Mandal, K. Nayak, A. Sahoo, D. K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Keshri, S. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Bhattacharya, R. Bhattacharya, S. Chatterjee, K. Dey, S. Dutt, S. Dutta, S. Ghosh, S. Majumdar, N. Modak, A. Mondal, K. Mukhopadhyay, S. Nandan, S. Purohit, A. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Thakur, S. Behera, P. K. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Netrakanti, P. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Dugad, S. Kole, G. Mahakud, B. Mitra, S. Mohanty, G. B. Parida, B. Sur, N. Sutar, B. Banerjee, S. Bhowmik, S. Dewanjee, R. K. Ganguly, S. Guchait, M. Jain, Sa. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Sarkar, T. Wickramage, N. Chauhan, S. Dube, S. Hegde, V. Kapoor, A. Kothekar, K. Rane, A. Sharma, S. Behnamian, H. Chenarani, S. Tadavani, E. Eskandari Etesami, S. M. Fahim, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Albergo, S. Chiorboli, M. Costa, S. Di Mattia, A. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Primavera, F. Calvelli, V. Ferro, F. LoVetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Dinardo, M. E. Dini, P. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Paganoni, M. Pedrini, D. Pigazzini, S. Ragazzi, S. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Nardo, G. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Benato, L. Bisello, D. Boletti, A. Carlin, R. Checchia, P. Dall'Osso, M. Manzano, P. De Castro Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Margoni, M. Maron, G. Michelotto, M. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Ventura, S. Zanetti, M. Zotto, P. Zucchetta, A. Zumerle, G. Braghieri, A. Magnani, A. Montagna, P. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Solestizi, L. Alunni Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Leonardi, R. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadzea, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Cipriani, M. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bartosik, N. Bellan, R. Biino, C. Cartiglia, N. Costa, M. Covarelli, R. Degano, A. Dellacasa, G. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Mazza, G. Migliore, E. Monaco, V. Monteil, E. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Traczyk, P. Belforte, S. Casarsa, M. Cossutti, F. Della Ricca, G. La Licata, C. Schizzi, A. Zanetti, A. Kim, D. H. Kim, G. N. Kim, M. S. Lee, S. Lee, S. W. Oh, Y. D. Sekmen, S. Son, D. C. Yang, Y. C. Lee, A. Cifuentes, J. A. Brochero Kim, T. J. Cho, S. Choi, S. Go, Y. Gyun, D. Ha, S. Hong, B. Jo, Y. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Lim, J. Park, S. K. Roh, Y. Almond, J. Kim, J. Oh, S. B. Seo, S. H. Yang, U. K. Yoo, H. D. Yu, G. B. Choi, M. Kim, H. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Goh, J. Hwang, C. Lee, J. Yu, I. Dudenas, V. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Yusli, M. N. Zolkapli, Z. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-De La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Magana Villalba, R. Mejia Guisao, J. Sanchez-Hernandez, A. Carrillo Moreno, S. Oropeza Barrera, C. Vazquez Valencia, F. Carpinteyro, S. Pedraza, I. Salazar Ibarguen, H. A. Uribe Estrada, C. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Shah, M. A. Shoaib, M. Waqas, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beirao Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Hollar, J. Leonardo, N. Iglesias, L. Lloret Nemallapudi, M. V. Antunes, J. Rodrigues Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Voytishin, N. Zarubin, A. Chtchipounov, L. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Murzin, V. Oreshkin, V. Sulimov, V. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Toms, M. Vlasov, E. Zhokin, A. Bylinkin, A. Chistov, R. Danilov, M. Rusinov, V. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Rusakov, S. V. Terkulov, A. Baskakov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Miagkov, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Blinov, V. Skovpen, Y. Azhgirey, I. Bayshev, I. Bitioukov, S. Elumakhov, D. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Cirkovic, P. Devetak, D. Dordevic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Barrio Luna, M. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La cruz, B. Delgado Peris, A. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. de Troconiz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Gonzalez Fernandez, J. R. Palencia Cortezon, E. Sanchez Cruz, S. Suarez Andres, I. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. Curras, E. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Martinez Rivero, C. Matorras, F. Piedra Gomez, J. Rodrigo, T. Ruiz-Jimeno, A. Scodellaro, L. Trevisani, N. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bloch, P. Bocci, A. Bonato, A. Botta, C. Camporesi, T. Castello, R. Cepeda, M. Cerminara, G. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. Di Marco, E. Dobson, M. Dorney, B. du Pree, T. Duggan, D. Dunser, M. Dupont, N. Elliott-Peisert, A. Fartoukh, S. Franzoni, G. Fulcher, J. Funk, W. Gigi, D. Gill, K. Girone, M. Glege, F. Gulhan, D. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Knunz, V. Kornmayer, A. Kortelainen, M. J. Kousouris, K. Krammer, M. Lecoq, P. Lourenco, C. Lucchini, M. T. Malgeri, L. Mannelli, M. Martelli, A. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Racz, A. Reis, T. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Sauvan, J. B. Schafer, C. Schwick, C. Seidel, M. Sharma, A. Silva, P. Simon, M. Sphicas, P. Steggemann, J. Stoye, M. Takahashi, Y. Tosi, M. Treille, D. Triossi, A. Tsirou, A. Veckalns, V. Veres, G. I. Wardle, N. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lecomte, P. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meinhard, M. T. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrin, G. Perrozzi, L. Quittnat, M. Rossini, M. Schonenberger, M. Starodumov, A. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. DeCosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Rauco, G. Robmann, P. Salerno, D. Yang, Y. Candelise, V. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Pozdnyakov, A. Yu, S. S. Kumar, Arun Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Minano Moya, M. Paganis, E. Psallidas, A. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Damarseckin, S. Demiroglu, Z. S. Dozen, C. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Kara, O. Kiminsu, U. Oglakci, M. Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sunar Cerci, D. Turkcapar, S. Zorbakir, I. S. Zorbilmez, C. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Gulmez, E. Kaya, M. Kaya, O. Yetkin, E. A. Yetkin, T. Cakir, A. Cankocak, K. Sen, S. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Burns, D. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-Storey, S. Seif Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Calligaris, L. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Di Maria, R. Dunne, P. Elwood, A. Futyan, D. Haddad, Y. Hall, G. Iles, G. James, T. Lane, R. Laner, C. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mastrolorenzo, L. Nash, J. Nikitenko, A. Pela, J. Penning, B. Pesaresi, M. Raymond, D. M. Richards, A. Rose, A. Seez, C. Summers, S. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Wright, J. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Arcaro, D. Avetisyan, A. Bose, T. Gastler, D. Rankin, D. Richardson, C. Rohlf, J. Sulak, L. Zou, D. Benelli, G. Berry, E. Cutts, D. Garabedian, A. Hakala, J. Heintz, U. Hogan, J. M. Jesus, O. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Spencer, E. Syarif, R. Breedon, R. Breto, G. Burns, D. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Flores, C. Funk, G. Gardner, M. Ko, W. Lander, R. Mclean, C. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Florent, A. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Malberti, M. Negrete, M. Olmedo Paneva, M. I. Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. Derdzinski, M. Gerosa, R. Holzner, A. Klein, D. Krutelyov, V. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wood, J. Wurthwein, F. Yagil, A. Della Porta, G. Zevi Bhandari, R. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Heller, R. Incandela, J. Mccoll, N. Mullin, S. D. Ovcharova, A. Richman, J. Stuart, D. Suarez, I. West, C. Yoo, J. Anderson, D. Apresyan, A. Bendavid, J. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Lawhorn, J. M. Mott, A. Newman, H. B. Pena, C. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Carlson, B. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Stenson, K. Wagner, S. R. Alexander, J. Chaves, J. Chu, J. Dittmer, S. Mcdermott, K. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Tan, S. M. Tao, Z. Thom, J. Tucker, J. Wittich, P. Zientek, M. Winn, D. Abdullin, S. Albrow, M. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cremonesi, M. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jayatilaka, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kreis, B. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Magini, N. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Merkel, P. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Ristori, L. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Stoynev, S. Strobbe, N. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Wang, M. Weber, H. A. Whitbeck, A. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Brinkerhoff, A. Carnes, A. Carver, M. Curry, D. Das, S. Field, R. D. Furic, I. K. Konigsberg, J. Korytov, A. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Shchutska, L. Sperka, D. Thomas, L. Wang, J. Wang, S. Yelton, J. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bein, S. Diamond, B. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Santra, A. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Colafranceschi, S. Hohlmann, M. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Turner, P. Varelas, N. Wang, H. Wu, Z. Zakaria, M. Zhang, J. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Blumenfeld, B. Cocoros, A. Eminizer, N. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Osherson, M. Roskes, J. Sarica, U. Swartz, M. Xiao, M. Xin, Y. You, C. Al-Bataineh, A. Baringer, P. Bean, A. Bowen, J. Bruner, C. Castle, J. Kenny, R. P., III Kropivnitskaya, A. Majumder, D. Mcbrayer, W. Murray, M. Sanders, S. Stringer, R. Takaki, J. D. Tapia Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Abercrombie, D. Allen, B. Apyan, A. Barbieri, R. Baty, A. Bi, R. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Hsu, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Krajczar, K. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Narayanan, S. Niu, X. Paus, C. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Tatar, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Benvenuti, A. C. Chatterjee, R. M. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bartek, R. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Knowlton, D. Kravchenko, I. Rodrigues, A. Malta Meier, F. Monroy, J. Siado, J. E. Snow, G. R. Stieger, B. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Parker, A. Rappoccio, S. Roozbahani, B. Alverson, G. Barberis, E. Baumgartel, D. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Bhattacharya, S. Hahn, K. A. Kubik, A. Kumar, A. Low, J. F. Mucia, N. Odell, N. Pollack, B. Schmitt, M. H. Sung, K. Trovato, M. Velasco, M. Dev, N. Hildreth, M. Anampa, K. Hurtado Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Valls, N. Wayne, M. Wolf, M. Woodard, A. Alimena, J. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Francis, B. Hart, A. Hill, C. Hughes, R. Ji, W. Liu, B. Luo, W. Puigh, D. Winer, B. L. Wulsin, H. W. Cooperstein, S. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Luo, J. Marlow, D. Medvedeva, T. Mei, K. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Stickland, D. Tully, C. Zuranski, A. Malik, S. Barker, A. Barnes, V. E. Folgueras, S. Gutay, L. Jha, M. K. Jones, M. Jung, A. W. Jung, K. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Duh, Y. T. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Hindrichs, O. Khukhunaishvili, A. Lo, K. H. Tan, P. Verzetti, M. Chou, J. P. Contreras-Campana, E. Gershtein, Y. Espinosa, T. A. Gomez Halkiadakis, E. Heindl, M. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Kyriacou, S. Lath, A. Nash, K. Saka, H. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Heideman, J. Riley, G. Rose, K. Spanier, S. Thapa, K. Bouhali, O. Celik, A. Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Gilmore, J. Huang, T. Juska, E. Kamon, T. Mueller, R. Pakhotin, Y. Patel, R. Perloff, A. Pernie, L. Rathjens, D. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Wang, Z. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Melo, A. Ni, H. Sheldon, P. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Barria, P. Cox, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Neu, C. Sinthuprasith, T. Sun, X. Wang, Y. Wolfe, E. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Lamichhane, P. Sturdy, J. Belknap, D. A. Dasu, S. Dodd, L. Duric, S. Gomber, B. Grothe, M. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ruggles, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Observation of the decay B+ -> psi(2S)phi(1020)K+ in pp collisions at root s=8 TeV SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; B physics; Rare B decays AB The decay B+ -> psi(2S) phi(1020) K+ is observed for the first time using data collected from pp collisions at root S = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb(-1). The branching fraction of this decay is measured, using the mode B+ -> psi(2S) K+ as normalization, to be (4.0 +/- 0.4 (stat)+/- 0.6 (syst)+/- 0.2 (B)) x 10(-6), where the third uncertainty is from the measured branching fraction of the normalization channel. (C) 2016 The Author(s). Published by Elsevier B.V. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Koenig, A.; Kraetschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; De Klundert, M. Van; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Fang, W.] Univ Libre Bruxelles, Brussels, Belgium. [Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schoefbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, Ghent, Belgium. [Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Wertz, S.] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.] Univ Mons, Mons, Belgium. [Alda Junior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Ruiz Vargas, J. C.] Univ Estadual Paulista, Sao Paulo, Brazil. [Gregores, E. M.; Mercadante, P. G.; Romero Abad, D.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Univ Sofia, Sofia, Bulgaria. [Fang, W.] Beihang Univ, Beijing, Peoples R China. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.] Inst High Energy Phys, Beijing, Peoples R China. [Zhang, F.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gonzalez Hernandez, C. F.; Sanabria, J. C.; Ruiz-Jimeno, A.; Gomez, J. A.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Carrera Jarrin, E.] Univ San Francisco Quito, Quito, Ecuador. [El-Khateeb, E.; Elgammal, S.; Mohamed, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] Univ Paris Saclay, CEA, IRFU, Gif Sur Yvette, France. [Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Mine, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, Lab Leprince Ringuet, IN2P3, CNRS, Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Univ Haute Alsace Mulhouse, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.] Univ Claude Bernard Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, Villeurbanne, France. [Khvedelidze, A.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Tsamalaidze, Z.] Tbilisi State Univ, Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany. [Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Borras, K.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Fluegge, G.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuensken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Chen, Y.; Martin, M. Aldaya; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eren, E.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Luyando, J. M. Grados; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krucker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. O.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Gallo, E.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Dreyer, T.; Garutti, E.; Goebel, K.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbruck, G.; Stober, F. M.; Stoever, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Pardo, P. Lobelle; Maier, B.; Mildner, H.; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Schroeder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Woehrmann, C.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, Ioannina, Greece. [Filipovic, N.; Vesztergombi, G.; Bartok, M.; Veres, G. I.] Eotvos Lorand Univ, MTA ELTE Lendulet CMS Particle & Nucl Phys Grpy, Budapest, Hungary. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.] ATOMKI, Inst Nucl Res, Debrecen, Hungary. [Bartok, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.] Univ Delhi, Delhi, India. [Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Thakur, S.] Saha Inst Nucl Phys, Kolkata, India. [Behera, P. K.] Indian Inst Technol Madras, Madras, Tamil Nadu, India. [Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay, Maharashtra, India. [Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.] Tata Inst Fundamental Res A, Bombay, Maharashtra, India. [Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.] Tata Inst Fundamental Res B, Bombay, Maharashtra, India. [Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.] Indian Inst Sci Educ & Res, Pune, Maharashtra, India. [Behnamian, H.; Chenarani, S.; Tadavani, E. Eskandari; Etesami, S. M.; Fahim, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Viliani, L.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Calvelli, V.; Ferro, F.; LoVetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Calvelli, V.; LoVetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Brianza, L.; Dinardo, M. E.; Dini, P.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Esposito, M.; Iorio, A. O. M.; Sciacca, C.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, Potenza, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Manzano, P. De Castro; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Maron, G.; Michelotto, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Dall'Osso, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. Univ Trento, Trento, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Magnani, A.; Montagna, P.; Ratti, S. P.; Riccardi, C.; Vai, I.; Vitulo, P.] Univ Pavia, Pavia, Italy. [Solestizi, L. Alunni; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy. [Solestizi, L. Alunni; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Santocchia, A.] Univ Perugia, Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadzea, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Lomtadzea, T.; Martini, L.; Palla, F.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Donato, S.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Cipriani, M.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Dellacasa, G.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Mazza, G.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Sacchi, R.; Solano, A.; Traczyk, P.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Della Ricca, G.; La Licata, C.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.] Kyungpook Natl Univ, Daegu, South Korea. [Lee, A.] Chonbuk Natl Univ, Jeonju, South Korea. [Cifuentes, J. A. Brochero; Kim, T. J.] Hanyang Univ, Seoul, South Korea. [Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Almond, J.; Kim, J.; Oh, S. B.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Dudenas, V.; Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.; Zolkapli, Z.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magana Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Hollar, J.; Leonardo, N.; Iglesias, L. Lloret; Nemallapudi, M. V.; Antunes, J. Rodrigues; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Bylinkin, A.] MIPT, Moscow, Russia. [Chistov, R.; Danilov, M.; Rusinov, V.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Chistov, R.; Danilov, M.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Blinov, V.; Skovpen, Y.] Novosibirsk State Univ, Novosibirsk, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, Madrid, Spain. [de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Gonzalez Fernandez, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suarez Andres, I.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, Santander, Spain. [Merlin, J. A.; Stahl, A.; Pantaleo, F.; Hartmann, F.; Mohanty, A. K.; Tosi, N.; Viliani, L.; Manzoni, R. A.; Meola, S.; Azzi, P.; Pazzini, J.; Azzurri, P.; D'imperio, G.; Del Re, D.; Arcidiacono, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dunser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knunz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenco, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schafer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.; Virdee, T.] CERN, European Org Nucl Res, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schonenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; DeCosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Minano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ, Taipei, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Dept Phys, Fac Sci, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle East Tech Univ, Dept Phys, Ankara, Turkey. [Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cakir, A.; Cankocak, K.; Sen, S.] Istanbul Tech Univ, Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Natl Sci Ctr, Kharkov Inst Phys & Technol, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-Storey, S. Seif; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.] Rutherford Appleton Lab, Didcot, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Wright, J.; Zenz, S. C.] Imperial Coll, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Abdulsalam, A.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Burns, D.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Negrete, M. Olmedo; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Wurthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Kuznetsova, E.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.] Univ Illinois, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Al-Bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Takaki, J. D. Tapia; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Rodrigues, A. Malta; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.] Univ Nebraska, Lincoln, NE USA. [Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.] Northeastern Univ, Boston, MA 02115 USA. [Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Kumar, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Dev, N.; Hildreth, M.; Anampa, K. Hurtado; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Stickland, D.; Tully, C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. T.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.] Univ Rochester, Rochester, NY USA. [Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Espinosa, T. A. Gomez; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Pernie, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.] Texas Tech Univ, Lubbock, TX 79409 USA. [Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI USA. [Fruehwirth, R.; Jeitler, M.; Schieck, J.; Wulz, C. -E.; Krammer, M.] Vienna Univ Technol, Vienna, Austria. [Chinellato, J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Finger, M.; Finger, M., Jr.; Khvedelidze, A.; Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [El-Khateeb, E.; Elgammal, S.] Ain Shams Univ, Cairo, Egypt. British Univ Egypt, Cairo, Egypt. [Mohamed, A.] Zewail City Sci & Technol, Zewail, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Karacheban, O.; Lohmann, W.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Choudhury, S.] Indian Inst Sci Educ & Res, Bhopal, India. [Nayak, A.] Inst Phys, Bhubaneswar, Orissa, India. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Chenarani, S.; Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Maron, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.] Univ Siena, Siena, Italy. [Idris, F. Mohamad] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Abdullah, W. A. T. Wan] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia. [Heredia-De La Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Byszuk, A.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Matveev, V.; Musienko, Y.] Inst Nucl Res, Moscow, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Blinov, V.; Skovpen, Y.] Budker Inst Nucl Phys, Novosibirsk, Russia. [Di Marco, E.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Di Marco, E.] Univ Rome, Rome, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Veckalns, V.] Riga Tech Univ, Riga, Latvia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.] Gaziosmanpasa Univ, Tokat, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Sunar Cerci, D.] Adiyaman Univ, Adiyaman, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, E. A.] Istanbul Bilgi Univ, Istanbul, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Acosta, M. Vazquez] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan, Armenia. RI Della Ricca, Giuseppe/B-6826-2013; Lokhtin, Igor/D-7004-2012; Konecki, Marcin/G-4164-2015 OI Della Ricca, Giuseppe/0000-0003-2831-6982; Konecki, Marcin/0000-0001-9482-4841 FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MOST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); BUAP (Mexico); CINVESTAV (Mexico); CONACYT (Mexico); LNS (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie program (European Union); European Research Council (European Union); EPLANET (European Union); Leventis Foundation; Alfred P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS program of the Foundation for Polish Science; European Union; Regional Development Fund; Mobility Plus program of the Ministry of Science and Higher Education; OPUS program [2014/13/B/ST2/02543]; National Science Center (Poland) [Sonata-bis DEC-2012/07/E/ST2/01406]; EU-ESF; Greek NSRF; National Priorities Research Program, Qatar National Research Fund; Programa Clarin-COFUND del Principado de Asturias; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University; Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); Welch Foundation [C-1845] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the OPUS program contract 2014/13/B/ST2/02543 and contract Sonata-bis DEC-2012/07/E/ST2/01406 of the National Science Center (Poland); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarin-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. NR 21 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JAN 10 PY 2017 VL 764 BP 66 EP 86 DI 10.1016/j.physletb.2016.11.001 PG 21 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EF2AR UT WOS:000390127100009 ER PT J AU Konki, J Khuyagbaatar, J Uusitalo, J Greenlees, T Auranen, K Badran, H Block, M Briselet, R Cox, DM Dasgupta, M Di Nitto, A Dullmann, CE Grahn, T Hauschild, K Herzan, A Herzberg, RD Hessberger, FP Hinde, DJ Julin, R Juutinen, S Jager, E Kindler, B Krier, J Leino, M Lommel, B Lopez-Martens, A Luong, DH Mallaburn, M Nishio, K Pakarinen, J Papadakis, P Partanen, J Peura, P Rahkila, P Rezynkina, K Ruotsalainen, P Sandzelius, M Saren, J Scholey, C Sorri, J Stolze, S Sulignano, B Theisen, C Ward, A Yakushev, A Yakusheva, V AF Konki, J. Khuyagbaatar, J. Uusitalo, J. Greenlees, T. Auranen, K. Badran, H. Block, M. Briselet, R. Cox, D. M. Dasgupta, M. Di Nitto, A. Duellmann, Ch E. Grahn, T. Hauschild, K. Herzan, A. Herzberg, R. -D. Hessberger, F. P. Hinde, D. J. Julin, R. Juutinen, S. Jaeger, E. Kindler, B. Krier, J. Leino, M. Lommel, B. Lopez-Martens, A. Luong, D. H. Mallaburn, M. Nishio, K. Pakarinen, J. Papadakis, P. Partanen, J. Peura, P. Rahkila, P. Rezynkina, K. Ruotsalainen, P. Sandzelius, M. Saren, J. Scholey, C. Sorri, J. Stolze, S. Sulignano, B. Theisen, Ch. Ward, A. Yakushev, A. Yakusheva, V. TI Towards saturation of the electron-capture delayed fission probability: The new isotopes Es-240 and Bk-236 SO PHYSICS LETTERS B LA English DT Article DE Isotopes with mass 236-240; Es-240; Bk-236; alpha decay; Electron-capture delayed fission; Fusion-evaporation reactions ID TOTAL DATA READOUT AB The new neutron-deficient nuclei Es-240 and Bk-236 were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from Es-240 produced in the fusion-evaporation reaction Bi-209(S-34,3n)Es-240. Half-lives of 6(2) sand 22(-6)(+13) s were obtained for Es-240 and Bk-236, respectively. Two groups of alpha particles with energies E-alpha = 8.19(3) MeV and 8.09(3) MeV were unambiguously assigned to Es-240. Electron-capture delayed fission branches with probabilities of 0.16(6) and 0.04(2) were measured for Es-240 and Bk-236, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Konki, J.; Uusitalo, J.; Greenlees, T.; Auranen, K.; Badran, H.; Cox, D. M.; Grahn, T.; Herzan, A.; Julin, R.; Juutinen, S.; Leino, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Saren, J.; Scholey, C.; Sorri, J.; Stolze, S.] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland. [Khuyagbaatar, J.; Block, M.; Duellmann, Ch E.; Yakushev, A.; Yakusheva, V.] Helmholtz Inst Mainz, D-55099 Mainz, Germany. [Khuyagbaatar, J.; Block, M.; Di Nitto, A.; Duellmann, Ch E.; Hessberger, F. P.; Jaeger, E.; Kindler, B.; Krier, J.; Lommel, B.; Yakushev, A.; Yakusheva, V.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Block, M.; Di Nitto, A.; Duellmann, Ch E.] Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany. [Briselet, R.; Sulignano, B.; Theisen, Ch.] Univ Paris Saclay, CEA, IRFU, F-91191 Gif Sur Yvette, France. [Cox, D. M.; Herzan, A.; Herzberg, R. -D.; Ward, A.] Univ Liverpool, Oliver Lodge Lab, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Dasgupta, M.; Hinde, D. J.; Luong, D. H.] Australian Natl Univ, Res Sch Phys & Engn, Canberra, ACT 2601, Australia. [Hauschild, K.; Lopez-Martens, A.; Rezynkina, K.] Univ Paris 11, CSNSM, F-91405 Orsay, France. [Hauschild, K.; Lopez-Martens, A.; Rezynkina, K.] CNRS, IN2P3, F-91405 Orsay, France. [Mallaburn, M.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Nishio, K.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Auranen, K.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Peura, P.] Helsinki Inst Phys, FI-00014 Helsinki, Finland. RP Khuyagbaatar, J (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. EM J.Khuyagbaatar@gsi.de RI Block, Michael/I-2782-2015 OI Block, Michael/0000-0001-9282-8347 FU Alfred Kordelin Foundation; Academy of Finland under the Finnish Centre of Excellence Programme; EU 7th Framework Programme Project [262010]; Australian Research Council [FL110100098, DP140100784] FX J. Konki acknowledges support from the Alfred Kordelin Foundation. The use of the GAMMAPOOL loan pool germanium detectors is acknowledged. This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme (2012-2017). Support has also been provided by the EU 7th Framework Programme Project No. 262010 (ENSAR). MD, DHL and DJH acknowledge support from the Australian Research Council through grants FL110100098 and DP140100784. NR 23 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD JAN 10 PY 2017 VL 764 BP 265 EP 270 DI 10.1016/j.physletb.2016.11.038 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EF2AR UT WOS:000390127100040 ER PT J AU Li, Y Kuttiyiel, KA Wu, LJ Zhu, YM Fujita, E Adzic, RR Sasaki, K AF Li, Yang Kuttiyiel, Kurian A. Wu, Lijun Zhu, Yimei Fujita, Etsuko Adzic, Radoslav R. Sasaki, Kotaro TI Enhancing Electrocatalytic Performance of Bifunctional Cobalt-Manganese-Oxynitride Nanocatalysts on Graphene SO CHEMSUSCHEM LA English DT Article DE nitriding; oxygen evolution; oxygen reduction; oxynitride; spinel ID OXYGEN REDUCTION REACTION; FUEL-CELLS; EVOLUTION REACTION; HYDROGEN EVOLUTION; CATALYTIC-ACTIVITY; ALKALINE MEDIA; WATER; NITROGEN; NITRIDE; OXIDES AB We report the synthesis and characterization of graphene-supported cobalt-manganese-oxynitride nanocatalysts (CoMnON/G) as bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A nitriding treatment of spinel compound CoMnO increased the ORR activity considerably, and the most active material catalyzed the ORR with only a 30 mV half-wave potential difference from the commercial carbon-supported platinum (Pt/C) in alkaline media. In addition to high activity, the catalyst also exhibited an intrinsic stability that outperformed Pt/C. An appropriately designed nitridation thus facilitates new directions for developing active and durable non-precious-metal oxynitride electocatalysts. C1 [Li, Yang; Kuttiyiel, Kurian A.; Fujita, Etsuko; Adzic, Radoslav R.; Sasaki, Kotaro] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Li, Yang] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Wu, Lijun; Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Fujita, E; Sasaki, K (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM fujita@bnl.gov; ksasaki@bnl.gov FU U.S. Department of Energy [DESC0012704]; Synchrotron Catalysis Consortium, U.S. Department of Energy [DE-FG02-05ER15688] FX This manuscript has been authored by employees/guest of Brookhaven Science Associates, LLC under Contract No. DESC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Beamlines X18B and X19A at the NSLS and beamlines BL2-2 at the SSRL are supported in part by the Synchrotron Catalysis Consortium, U.S. Department of Energy Grant No DE-FG02-05ER15688. We thank Dr. Jia X. Wang for providing RuO2 nanoparticle samples and Dr. Enyuan Hu for providing XAS data for some reference Co and Mn oxides. NR 47 TC 0 Z9 0 U1 13 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD JAN 10 PY 2017 VL 10 IS 1 SI SI BP 68 EP 73 DI 10.1002/cssc.201601188 PG 6 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA EL4DL UT WOS:000394571800010 PM 27873467 ER PT J AU Koehle, M Saraci, E Dauenhauer, P Lobo, RF AF Koehle, Maura Saraci, Erisa Dauenhauer, Paul Lobo, Raul F. TI Production of p-Methylstyrene and p-Divinylbenzene from Furanic Compounds SO CHEMSUSCHEM LA English DT Article DE acylation; furans; para selectivity; sustainable chemistry; zeolites ID FRIEDEL-CRAFTS ACYLATION; DIELS-ALDER CYCLOADDITION; ACETIC-ANHYDRIDE; AROMATIC-COMPOUNDS; BETA ZEOLITES; H-BETA; CATALYST; TOLUENE; ACID; DEACTIVATION AB A four-step catalytic process was developed to produce p-methylstyrene from methylfuran, a biomass-derived species. First, methylfuran was acylated over zeolite H-Beta with acetic anhydride. Second, the acetyl group was reduced to an ethyl group with hydrogen over copper chromite. Third, p-ethyltoluene was formed through Diels-Alder cycloaddition and dehydration of 2-ethyl-5-methyl-furan with ethylene over zeolite H-Beta. Dehydrogenation of p-ethyltoluene to yield p-methylstyrene completes the synthesis but was not investigated because it is a known process. The first two steps were accomplished in high yield (> 88%) and the Diels-Alder step resulted in a 67% yield of p-ethyltoluene with a 99.5% selectivity to the para isomer (final yield of 53.5 %). The methodology was also used for the preparation of p-divinylbenzene. It is shown that acylation of furans over H-Beta zeolites is a highly selective and high-yield reaction that could be used to produce other valuable molecules from biomass-derived furans. C1 [Koehle, Maura; Saraci, Erisa; Dauenhauer, Paul; Lobo, Raul F.] Univ Delaware, Catalysis Ctr Energy Innovat, US DOE, Energy Frontier Res Ctr, 150 Acad St, Newark, DE 19716 USA. [Koehle, Maura; Saraci, Erisa; Lobo, Raul F.] Univ Delaware, Dept Chem & Biomol Engn, 150 Acad St, Newark, DE 19716 USA. [Dauenhauer, Paul] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. RP Lobo, RF (reprint author), Univ Delaware, Catalysis Ctr Energy Innovat, US DOE, Energy Frontier Res Ctr, 150 Acad St, Newark, DE 19716 USA.; Lobo, RF (reprint author), Univ Delaware, Dept Chem & Biomol Engn, 150 Acad St, Newark, DE 19716 USA. EM lobo@udel.edu OI Saraci, Erisa/0000-0001-6770-5986; Lobo, Raul/0000-0003-4027-3129 FU Catalysis Center for Energy Innovation, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001004] FX This material is based upon work supported as part of the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004. NR 45 TC 0 Z9 0 U1 13 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD JAN 10 PY 2017 VL 10 IS 1 SI SI BP 91 EP 98 DI 10.1002/cssc.201601554 PG 8 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA EL4DL UT WOS:000394571800015 PM 27943648 ER PT J AU Meng, XZ Pu, YQ Yoo, CG Li, M Bali, G Park, DY Gjersing, E Davis, MF Muchero, W Tuskan, GA Tschaplinski, TJ Ragauskas, AJ AF Meng, Xianzhi Pu, Yunqiao Yoo, Chang Geun Li, Mi Bali, Garima Park, Doh-Yeon Gjersing, Erica Davis, Mark F. Muchero, Wellington Tuskan, Gerald A. Tschaplinski, Timothy J. Ragauskas, Arthur J. TI An In-Depth Understanding of Biomass Recalcitrance Using Natural Poplar Variants as the Feedstock SO CHEMSUSCHEM LA English DT Article DE biomass recalcitrance; cellulose; crystallinity; degree of polymerization; lignin ID INDUCED FIBER HORNIFICATION; ENZYMATIC-HYDROLYSIS; DILUTE-ACID; LIGNIN CONTENT; LIGNOCELLULOSIC BIOMASS; MOLECULAR-WEIGHT; CELLULOSE; PRETREATMENT; POPULUS; SWITCHGRASS AB In an effort to better understand the biomass recalcitrance, six natural poplar variants were selected as feedstocks based on previous sugar release analysis. Compositional analysis and physicochemical characterizations of these poplars were performed and the correlations between these physicochemical properties and enzymatic hydrolysis yield were investigated. Gel permeation chromatography (GPC) and C-13 solid state NMR were used to determine the degree of polymerization (DP) and crystallinity index (CrI) of cellulose, and the results along with the sugar release study indicated that cellulose DP likely played a more important role in enzymatic hydrolysis. Simons' stain revealed that the accessible surface area of substrate significantly varied among these variants from 17.3 to 33.2 mg g(biomass)(-1) as reflected by dye adsorption, and cellulose accessibility was shown as one of the major factors governing substrates digestibility. HSQC and P-31 NMR analysis detailed the structural features of poplar lignin variants. Overall, cellulose relevant factors appeared to have a stronger correlation with glucose release, if any, than lignin structural features. Lignin structural features, such as a phenolic hydroxyl group and the ratio of syringyl and guaiacyl (S/G), were found to have a more convincing impact on xylose release. Low lignin content, low cellulose DP, and high cellulose accessibility generally favor enzymatic hydrolysis; however, recalcitrance cannot be simply judged on any single substrate factor. C1 [Meng, Xianzhi; Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Pu, Yunqiao; Yoo, Chang Geun; Li, Mi; Gjersing, Erica; Davis, Mark F.; Muchero, Wellington; Tuskan, Gerald A.; Tschaplinski, Timothy J.; Ragauskas, Arthur J.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Pu, Yunqiao; Yoo, Chang Geun; Li, Mi; Muchero, Wellington; Tuskan, Gerald A.; Tschaplinski, Timothy J.; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Bali, Garima; Park, Doh-Yeon] Georgia Inst Technol, Sch Chem & Biochem, Renewable Bioprod Inst, Atlanta, GA 30332 USA. [Gjersing, Erica; Davis, Mark F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ragauskas, Arthur J.] Univ Tennessee, Inst Agr, Dept Forestry Wildlife & Fisheries, Ctr Renewable Carbon, Knoxville, TN 37996 USA. RP Ragauskas, AJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.; Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA.; Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.; Ragauskas, AJ (reprint author), Univ Tennessee, Inst Agr, Dept Forestry Wildlife & Fisheries, Ctr Renewable Carbon, Knoxville, TN 37996 USA. EM aragausk@utk.edu FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy; Office of Biological and Environmental Research in the DOE Office of Science FX This manuscript was authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. This study was supported and performed as part of the BioEnergy Science Center (BESC). The BESC is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 45 TC 1 Z9 1 U1 4 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD JAN 10 PY 2017 VL 10 IS 1 SI SI BP 139 EP 150 DI 10.1002/cssc.201601303 PG 12 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA EL4DL UT WOS:000394571800021 PM 27882723 ER PT J AU Mansheim, AS Lemaux, BC Dawson, WA Lubin, LM Wittman, D Schmidt, S AF Mansheim, A. S. Lemaux, B. C. Dawson, W. A. Lubin, L. M. Wittman, D. Schmidt, S. TI STAR FORMATION IN THE CLUSTER MERGER DLSCL J0916.2+2953 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: clusters: individual (DLSCL J0916.2+2953); galaxies: evolution; galaxies: star formation ID COLOR-MAGNITUDE RELATION; HIGH-REDSHIFT CLUSTERS; HUBBLE-SPACE-TELESCOPE; EARLY-TYPE GALAXIES; DISTANT RICH CLUSTERS; DIGITAL SKY SURVEY; DEEP LENS SURVEY; SIMILAR-TO 1; RED-SEQUENCE; FORMATION HISTORIES AB We investigate star formation in DLSCL J0916.2+2953, a dissociative merger of two clusters at z = 0.53 that has progressed 1.1(-0.4)(+1.3) Gyr since the first pass-through. We attempt to reveal the effects a collision may have had on the evolution of the cluster galaxies by tracing their star formation history. We probe current and recent activity to identify a possible star formation event at the time of the merger, using EW(H delta), EW([O II]), and D-n(4000) measured from the composite spectra of 64 cluster and 153 coeval field galaxies. We supplement Keck DEep Imaging Multi-Object Spectrograph spectra with DLS and Hubble Space Telescope imaging, to determine the color, stellar mass, and morphology of each galaxy. We also conduct a comprehensive study of the populations in this complex structure. Spectral results indicate the average cluster and cluster red sequence galaxies experienced no enhanced star formation relative to the surrounding field during the merger, ruling out a predominantly merger-quenched population. We find that the average blue galaxy in the North cluster is currently active, and that the South cluster is currently post-starburst, having undergone a recent star formation event. Although the North activity could be latent or long-term merger effects, a young blue stellar population and irregular geometry suggest the cluster was still forming prior the collision. Even though the South activity coincides with the time of the merger, the blue early-type population could be a result of secular cluster processes. The evidence suggests that the dearth or surfeit of activity is indiscernible from normal cluster galaxy evolution. C1 [Mansheim, A. S.; Lemaux, B. C.; Lubin, L. M.; Wittman, D.; Schmidt, S.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Dawson, W. A.] Lawrence Livermore Natl Lab, POB 808 L-210, Livermore, CA 94551 USA. [Wittman, D.] Univ Lisbon, Fac Ciencias, Inst Astrofis & Ciencias Espaco, P-1649004 Lisbon, Portugal. RP Mansheim, AS (reprint author), Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. EM asmansheim@ucdavis.edu OI Wittman, David/0000-0002-0813-5888 NR 107 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 10 PY 2017 VL 834 IS 2 AR 205 DI 10.3847/1538-4357/834/2/205 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK5ST UT WOS:000393986900001 ER PT J AU Poudel, S Giannone, RJ Rodriguez, M Raman, B Martin, MZ Engle, NL Mielenz, JR Nookaew, I Brown, SD Tschaplinski, TJ Ussery, D Hettich, RL AF Poudel, Suresh Giannone, Richard J. Rodriguez, Miguel, Jr. Raman, Babu Martin, Madhavi Z. Engle, Nancy L. Mielenz, Jonathan R. Nookaew, Intawat Brown, Steven D. Tschaplinski, Timothy J. Ussery, David Hettich, Robert L. TI Integrated omics analyses reveal the details of metabolic adaptation of Clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Clostridium thermocellum; Switchgrass; Lignocellulosic; Biofuel; Ethanol; Mass spectrometry; Proteomics; Metabolomics; Transcriptomics; Cellulosome ID QUANTITATIVE PROTEOMIC ANALYSIS; ATCC 27405; ETHANOL; CELLULOSE; FERMENTATION; PATHWAYS; BIOMASS; DETOXIFICATION; ASSIMILATION; NITROGEN AB Background: Clostridium thermocellum is capable of solubilizing and converting lignocellulosic biomass into ethanol. Although much of the work-to-date has centered on characterizing this microbe's growth on model cellulosic substrates, such as cellobiose, Avicel, or filter paper, it is vitally important to understand its metabolism on more complex, lignocellulosic substrates to identify relevant industrial bottlenecks that could undermine efficient biofuel production. To this end, we have examined a time course progression of C. thermocellum grown on switchgrass to assess the metabolic and protein changes that occur during the conversion of plant biomass to ethanol. Results: The most striking feature of the metabolome was the observed accumulation of long-chain, branched fatty acids over time, implying an adaptive restructuring of C. thermocellum's cellular membrane as the culture progresses. This is undoubtedly a response to the gradual accumulation of lignocellulose-derived inhibitory compounds as the organism deconstructs the switchgrass to access the embedded cellulose. Corroborating the metabolomics data, proteomic analysis revealed a corresponding time-dependent increase in various enzymes, including those involved in the interconversion of branched amino acids valine, leucine, and isoleucine to iso- and anteiso-fatty acid precursors. Additionally, the metabolic accumulation of hemicellulose-derived sugars and sugar alcohols concomitant with increased abundance of enzymes involved in C5 sugar metabolism/pentose phosphate pathway indicates that C. thermocellum shifts glycolytic intermediates to alternate pathways to modulate overall carbon flux in response to C5 sugar metabolites that increase during lignocellulose deconstruction. Conclusions: Integrated omic platforms provided complementary systems biological information that highlight C. thermocellum's specific response to cytotoxic inhibitors released during the deconstruction and utilization of switchgrass. These additional viewpoints allowed us to fully realize the level to which the organism adapts to an increasingly challenging culture environment-information that will prove critical to C. thermocellum's industrial efficacy. C1 [Poudel, Suresh; Rodriguez, Miguel, Jr.; Raman, Babu; Martin, Madhavi Z.; Engle, Nancy L.; Mielenz, Jonathan R.; Nookaew, Intawat; Brown, Steven D.; Tschaplinski, Timothy J.; Ussery, David] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Giannone, Richard J.; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Poudel, Suresh; Brown, Steven D.; Hettich, Robert L.] Univ Tennessee, Dept Genome Sci & Technol, Knoxville, TN 37996 USA. [Raman, Babu] Dow AgroSci, 9330 Zionsville Rd, Indianapolis, IN 46268 USA. [Nookaew, Intawat; Ussery, David] Univ Arkansas Med Sci, Dept Biomed Informat, Little Rock, AR 72205 USA. RP Hettich, RL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.; Hettich, RL (reprint author), Univ Tennessee, Dept Genome Sci & Technol, Knoxville, TN 37996 USA. EM hettichrl@ornl.gov OI Engle, Nancy/0000-0003-0290-7987 FU BioEnergy Science Center, a US Department of Energy Bioenergy Research Center - Office of Biological and Environmental Research in the US DOE Office of Science FX This study was funded by the BioEnergy Science Center, a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the US DOE Office of Science. NR 55 TC 1 Z9 1 U1 6 U2 6 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD JAN 10 PY 2017 VL 10 AR 14 DI 10.1186/s13068-016-0697-5 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EK3RC UT WOS:000393842600001 PM 28077967 ER PT J AU Devault, AM Mortimer, TD Kitchen, A Kiesewetter, H Enk, JM Golding, GB Southon, J Kuch, M Duggan, AT Aylward, W Gardner, SN Allen, JE King, AM Wright, G Kuroda, M Kato, K Briggs, DEG Fornaciari, G Holmes, EC Poinar, HN Pepperell, CS AF Devault, Alison M. Mortimer, Tatum D. Kitchen, Andrew Kiesewetter, Henrike Enk, Jacob M. Golding, G. Brian Southon, John Kuch, Melanie Duggan, Ana T. Aylward, William Gardner, Shea N. Allen, Jonathan E. King, Andrew M. Wright, Gerard Kuroda, Makoto Kato, Kengo Briggs, Derek E. G. Fornaciari, Gino Holmes, Edward C. Poinar, Hendrik N. Pepperell, Caitlin S. TI A molecular portrait of maternal sepsis from Byzantine Troy SO ELIFE LA English DT Article ID URINARY-TRACT-INFECTION; HUMAN MITOCHONDRIAL-DNA; SOFT-BODIED FOSSILS; STAPHYLOCOCCUS-SAPROPHYTICUS; BLADDER STONE; GARDNERELLA-VAGINALIS; MULTIPLE ALIGNMENT; GENOME ASSEMBLIES; READ ALIGNMENT; ANCIENT DNA AB Pregnancy complications are poorly represented in the archeological record, despite their importance in contemporary and ancient societies. While excavating a Byzantine cemetery in Troy, we discovered calcified abscesses among a woman's remains. Scanning electron microscopy of the tissue revealed 'ghost cells', resulting from dystrophic calcification, which preserved ancient maternal, fetal and bacterial DNA of a severe infection, likely chorioamnionitis. Gardnerella vaginalis and Staphylococcus saprophyticus dominated the abscesses. Phylogenomic analyses of ancient, historical, and contemporary data showed that G. vaginalis Troy fell within contemporary genetic diversity, whereas S. saprophyticus Troy belongs to a lineage that does not appear to be commonly associated with human disease today. We speculate that the ecology of S. saprophyticus infection may have differed in the ancient world as a result of close contacts between humans and domesticated animals. These results highlight the complex and dynamic interactions with our microbial milieu that underlie severe maternal infections. C1 [Devault, Alison M.; Enk, Jacob M.; Kuch, Melanie; Duggan, Ana T.; Poinar, Hendrik N.] McMaster Univ, Dept Anthropol, McMaster Ancient DNA Ctr, Hamilton, ON, Canada. [Devault, Alison M.; Enk, Jacob M.] MYcroarray, Ann Arbor, MI USA. [Mortimer, Tatum D.; Pepperell, Caitlin S.] Univ Wisconsin, Dept Med Microbiol & Immunol, Sch Med & Publ Hlth, Madison, WI 53706 USA. [Mortimer, Tatum D.] Univ Wisconsin, Microbiol Doctoral Training Program, Madison, WI USA. [Kitchen, Andrew] Univ Iowa, Dept Anthropol, Iowa City, IA USA. [Kiesewetter, Henrike] Univ Tubingen, Project Troia, Inst Prehist Early Hist & Medieval Archaeol, Tubingen, Germany. [Golding, G. Brian; Poinar, Hendrik N.] McMaster Univ, Dept Biol, Hamilton, ON, Canada. [Southon, John] Univ Calif Irvine, Keck Carbon Cycle Accelerator Mass Spectrometer, Earth Syst Sci Dept, Irvine, CA USA. [Aylward, William; Pepperell, Caitlin S.] Univ Wisconsin, Ctr Biotechnol, Mol Archaeol Lab, Madison, WI 53705 USA. [Aylward, William] Univ Wisconsin, Dept Class & Ancient Near Eastern Studies, Madison, WI USA. [Gardner, Shea N.; Allen, Jonathan E.] Lawrence Livermore Natl Lab, Livermore, CA USA. [King, Andrew M.; Wright, Gerard; Poinar, Hendrik N.] McMaster Univ, Michael G DeGroote Inst Infect Dis Res, Hamilton, ON, Canada. [Kuroda, Makoto; Kato, Kengo] Natl Inst Infect Dis, Lab Basterial Genom, Pathogen Genom Ctr, Tokyo, Japan. [Briggs, Derek E. G.] Yale Univ, Dept Geol & Geophys, New Haven, CT USA. [Fornaciari, Gino] Univ Pisa, Div Paleopathol, Dept Translat Res New Technol Med & Surg, Pisa, Italy. [Holmes, Edward C.] Univ Sydney, Marie Bashir Inst Infect Dis & Biosecur, Charles Perkins Ctr, Sch Life & Environm Sci, Sydney, NSW, Australia. [Holmes, Edward C.] Univ Sydney, Sydney Med Sch, Sydney, NSW, Australia. [Poinar, Hendrik N.] Canadian Inst Adv Res, Humans & Microbiome Program, Toronto, ON, Canada. [Pepperell, Caitlin S.] Univ Wisconsin, Dept Med Infect Dis, Sch Med & Publ Hlth, Madison, WI 53706 USA. RP Poinar, HN (reprint author), McMaster Univ, Dept Anthropol, McMaster Ancient DNA Ctr, Hamilton, ON, Canada.; Pepperell, CS (reprint author), Univ Wisconsin, Dept Med Microbiol & Immunol, Sch Med & Publ Hlth, Madison, WI 53706 USA.; Poinar, HN (reprint author), McMaster Univ, Dept Biol, Hamilton, ON, Canada.; Pepperell, CS (reprint author), Univ Wisconsin, Ctr Biotechnol, Mol Archaeol Lab, Madison, WI 53705 USA.; Poinar, HN (reprint author), McMaster Univ, Michael G DeGroote Inst Infect Dis Res, Hamilton, ON, Canada.; Poinar, HN (reprint author), Canadian Inst Adv Res, Humans & Microbiome Program, Toronto, ON, Canada.; Pepperell, CS (reprint author), Univ Wisconsin, Dept Med Infect Dis, Sch Med & Publ Hlth, Madison, WI 53706 USA. EM poinarh@mcmaster.ca; cspepper@medicine.wisc.edu OI Mortimer, Tatum/0000-0001-6255-690X FU Canada Research Chairs; Natural Sciences and Engineering Research Council of Canada; National Institutes of Health [T32 GM07215, R01AI113287]; National Science Foundation [DGE-1256259]; McMaster University; University of Wisconsin-Madison; Wisconsin Alumni Research Foundation FX Canada Research Chairs Hendrik N Poinar; Natural Sciences and Engineering Research Council of Canada Hendrik N Poinar; National Institutes of Health National Research Service Award, T32 GM07215 Tatum D Mortimer; National Science Foundation Graduate Research Fellowship Program, DGE-1256259 Tatum D Mortimer; National Institutes of Health R01AI113287 Caitlin S Pepperell; McMaster University Michael G. DeGroote Institute for Infectious DiseaseResearch (IIDR) Hendrik N Poinar; University of Wisconsin-Madison Graduate School William Aylward Caitlin S Pepperell; Wisconsin Alumni Research Foundation William Aylward Caitlin S. Pepperell; The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. NR 140 TC 0 Z9 0 U1 3 U2 3 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD JAN 10 PY 2017 VL 6 AR e20983 DI 10.7554/eLife.20983 PG 31 WC Biology SC Life Sciences & Biomedicine - Other Topics GA EJ7QG UT WOS:000393416700001 ER PT J AU Dahlen, D Wilcox, R Leemans, W AF Dahlen, Dar Wilcox, Russell Leemans, Wim TI Modeling Herriott cells using the linear canonical transform SO APPLIED OPTICS LA English DT Article ID FEMTOSECOND LASERS; MULTIPASS CAVITIES AB We demonstrate a new way to analyze stable, multipass optical cavities (Herriott cells), using the linear canonical transform formalism, showing that re-entrant designs reproduce an arbitrary input field at the output, resulting in useful symmetries. We use this analysis to predict the stability of cavities used in interferometric delay lines for temporal pulse addition. C1 [Dahlen, Dar; Wilcox, Russell; Leemans, Wim] Lawrence Berkeley Natl Lab, Accelerator Technol & Appl Phys Div, Cyclotron Rd, Berkeley, CA 94720 USA. RP Wilcox, R (reprint author), Lawrence Berkeley Natl Lab, Accelerator Technol & Appl Phys Div, Cyclotron Rd, Berkeley, CA 94720 USA. EM rbwilcox@lbl.gov FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX U.S. Department of Energy (DOE) (DE-AC02-05CH11231). NR 9 TC 0 Z9 0 U1 4 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JAN 10 PY 2017 VL 56 IS 2 BP 267 EP 272 DI 10.1364/AO.56.000267 PG 6 WC Optics SC Optics GA EH9NH UT WOS:000392097500019 PM 28085861 ER PT J AU Katz, AM Tolokh, IS Pabit, SA Baker, N Onufriev, AV Pollack, L AF Katz, Andrea M. Tolokh, Igor S. Pabit, Suzette A. Baker, Nathan Onufriev, Alexey V. Pollack, Lois TI Spermine Condenses DNA, but Not RNA Duplexes SO BIOPHYSICAL JOURNAL LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; NUCLEIC-ACIDS; DEOXYRIBONUCLEIC-ACID; MULTIVALENT CATIONS; CIRCULAR-DICHROISM; POLYAMINE BINDING; FORCE-FIELD; MG2+ IONS; AGGREGATION; NA+ AB Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA and some RNAs, such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA, and compare our findings with predictions of molecular-dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence containing a mixture of 14 GC pairs and 11 AU pairs resists condensation relative to DNA of an equivalent sequence or to 25 bp poly(rA):poly(rU) RNA. A comparison of wide-angle x-ray scattering profiles with simulation results suggests that spermine is sequestered deep within the major groove of mixed-sequence RNA. This prevents condensation by limiting opportunities to bridge to other molecules and stabilizes the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds externally to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble and available for interaction with other molecules in the cell despite the presence of spermine at concentrations high enough to precipitate DNA. C1 [Katz, Andrea M.; Pabit, Suzette A.; Pollack, Lois] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Tolokh, Igor S.; Onufriev, Alexey V.] Virginia Tech, Dept Comp Sci, Blacksburg, VA USA. [Baker, Nathan] Pacific Northwest Natl Lab, Adv Comp Math & Data Div, Richland, WA USA. [Onufriev, Alexey V.] Virginia Tech, Dept Phys, Blacksburg, VA USA. RP Pollack, L (reprint author), Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. EM lp26@cornell.edu FU National Institutes of Health [R01 GM099450]; National Science Foundation (NSF) [CNS-0960081]; HokieSpeed supercomputer at Virginia Tech; NSF; National Institute of General Medical Sciences, National Institutes of Health, under NSF award [DMR-1332208]; NSF Graduate Research Fellowship [DGE-1144153] FX This work was funded by National Institutes of Health grant R01 GM099450 and in part by National Science Foundation (NSF) grant CNS-0960081, and the HokieSpeed supercomputer at Virginia Tech. This work is based on research conducted at the Cornell High Energy Synchrotron Source, which is supported by the NSF and the National Institute of General Medical Sciences, National Institutes of Health, under NSF award DMR-1332208. A.M.K. received an NSF Graduate Research Fellowship under grant DGE-1144153. NR 61 TC 0 Z9 0 U1 6 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD JAN 10 PY 2017 VL 112 IS 1 BP 22 EP 30 DI 10.1016/j.bpj.2016.11.018 PG 9 WC Biophysics SC Biophysics GA EI0KN UT WOS:000392163500006 PM 28076812 ER PT J AU Junker, LV Kleiber, A Jansen, K Wildhagen, H Hess, M Kayler, Z Kammerer, B Schnitzler, JP Kreuzwieser, J Gessler, A Ensminger, I AF Junker, Laura Verena Kleiber, Anita Jansen, Kirstin Wildhagen, Henning Hess, Moritz Kayler, Zachary Kammerer, Bernd Schnitzler, Joerg-Peter Kreuzwieser, Juergen Gessler, Arthur Ensminger, Ingo TI Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances SO SCIENTIFIC REPORTS LA English DT Article ID CARBON-ISOTOPE DISCRIMINATION; FAGUS-SYLVATICA L.; PSEUDOTSUGA-MENZIESII; DROUGHT STRESS; EUROPEAN BEECH; CHLOROPHYLL FLUORESCENCE; CAROTENOID OXIDATION; VOLATILE ISOPRENOIDS; PLANT PRODUCTIVITY; ORGANIC-COMPOUNDS AB For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation, including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, beta-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, beta-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change. C1 [Junker, Laura Verena; Hess, Moritz; Ensminger, Ingo] Univ Toronto, Dept Biol, Grad Program Cell & Syst Biol, 3359 Mississauga Rd, Mississauga, ON, Canada. [Junker, Laura Verena; Hess, Moritz; Ensminger, Ingo] Univ Toronto, Dept Biol, Grad Program Ecol & Evolutionary Biol, 3359 Mississauga Rd, Mississauga, ON, Canada. [Junker, Laura Verena; Wildhagen, Henning; Hess, Moritz; Ensminger, Ingo] Forstliche Versuchs & Forsch Anstalt Baden Wurtt, Wonnhaldestr 4, D-79100 Freiburg, Germany. [Junker, Laura Verena] Forschungszentrum Julich, Plant Sci, Inst Bio & Geosci IBG 2, Julich, Germany. [Kleiber, Anita; Kreuzwieser, Juergen] Albert Ludwigs Univ Freiburg, Inst Forest Sci, Chair Tree Physiol, Georges Kohler Allee 53, D-79110 Freiburg, Germany. [Jansen, Kirstin; Kayler, Zachary; Gessler, Arthur] Leibniz Ctr Agr Landscape Res ZALF, Inst Landscape Biogeochem, Eberswalderstr 84, D-15374 Muncheberg, Germany. [Jansen, Kirstin] Leuphana Univ Luneburg, Inst Ecol, Scharnhorststr 1, D-21335 Luneburg, Germany. [Wildhagen, Henning] HAWK Univ Appl Sci & Arts Hildesheim Holzminden G, Fac Resource Management, Busgenweg 1A, D-37077 Gottingen, Germany. [Hess, Moritz] Albert Ludwigs Univ Freiburg, Fac Biol, Inst Biol 3, Schanzlestr 1, D-79104 Freiburg, Germany. [Kayler, Zachary] US Forest Serv, USDA, Northern Res Stn, Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kammerer, Bernd] Albert Ludwigs Univ Freiburg, Ctr Biosyst Anal ZBSA, Habsburgerstr 49, D-79104 Freiburg, Germany. [Schnitzler, Joerg-Peter] Helmholtz Zentrum Munchen, Inst Biochem Plant Pathol, Res Unit Environm Simulat, Ingolstadter Landstr 1, D-85764 Neuherberg, Germany. [Gessler, Arthur] Berlin Brandenburg Inst Adv Biodivers Res BBIB, D-14195 Berlin, Germany. [Gessler, Arthur] Swiss Fed Res Inst WSL, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland. RP Ensminger, I (reprint author), Univ Toronto, Dept Biol, Grad Program Cell & Syst Biol, 3359 Mississauga Rd, Mississauga, ON, Canada.; Ensminger, I (reprint author), Univ Toronto, Dept Biol, Grad Program Ecol & Evolutionary Biol, 3359 Mississauga Rd, Mississauga, ON, Canada.; Ensminger, I (reprint author), Forstliche Versuchs & Forsch Anstalt Baden Wurtt, Wonnhaldestr 4, D-79100 Freiburg, Germany. EM ingo.ensminger@utoronto.ca RI Schnitzler, Joerg-Peter/C-5268-2011; Gessler, Arthur/C-7121-2008 OI Schnitzler, Joerg-Peter/0000-0002-9825-867X; Gessler, Arthur/0000-0002-1910-9589 FU German Science Foundation (DFG) [EN829/5-1, KR 2010/4-1, GE1090/7-1]; Forest Research Institute of the German State Baden-Wurttemberg (FVA); National Science and Engineering Research Council of Canada (NSERC) FX The study was financially supported by the German Science Foundation (DFG, grants EN829/5-1, KR 2010/4-1, GE1090/7-1), the Forest Research Institute of the German State Baden-Wurttemberg (FVA), and the National Science and Engineering Research Council of Canada (NSERC). NR 77 TC 0 Z9 0 U1 10 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 10 PY 2017 VL 7 AR 40145 DI 10.1038/srep40145 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EI1IV UT WOS:000392231300001 PM 28071755 ER PT J AU Vermaas, JV Tajkhorshid, E AF Vermaas, Josh V. Tajkhorshid, Emad TI Differential Membrane Binding Mechanics of Synaptotagmin Isoforms Observed in Atomic Detail SO BIOCHEMISTRY LA English DT Article ID REPLICA-EXCHANGE METHOD; PARTICLE MESH EWALD; MOLECULAR-DYNAMICS; NEUROTRANSMITTER RELEASE; FORCE-FIELD; C2 DOMAINS; CONFORMATIONAL TRANSITION; HYDROPHOBIC CONTRIBUTIONS; BIOMOLECULAR SYSTEMS; PERIPHERAL PROTEINS AB Synaptotagmin (Syt) is a membrane-associated protein involved in vesicle fusion through the SNARE complex that is found throughout the human body in 17 different isoforms. These isoforms have two membrane-binding C2 domains, which sense Ca2+ and thereby promote anionic membrane binding and lead to vesicle fusion. Through molecular dynamics simulations using the highly mobile membrane mimetic acclerated bilayer model, we have investigated how small protein sequence changes in the Ca2+-binding loops of the C2 domains may give rise to the experimentally determined difference in binding kinetics between Syt-1 and Syt-7 isoforms. Syt-7 C2 domains are found to form more close contacts with anionic phospholipid headgroups, particularly in loop 1, where an additional positive charge in Syt-7 draws the loop closer to the membrane and causes the anchoring residue F167 to insert deeper into the bilayer than the corresponding methionine in Syt-1 (M173). By performing additional replica exchange umbrella sampling calculations, we demonstrate that these additional contacts increase the energetic cost of unbinding the Syt-7 C2 domains from the bilayer, causing them to unbind more slowly than their counterparts in Syt-1. C1 [Tajkhorshid, Emad] Univ Illinois, Dept Biochem, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA. Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA. [Vermaas, Josh V.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Tajkhorshid, E (reprint author), Univ Illinois, Dept Biochem, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA. EM emad@life.illinois.edu OI Vermaas, Josh/0000-0003-3139-6469 FU Office of Science of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; National Science Foundation [MCA06N060]; Sandia National Laboratory Campus Executive Program; Laboratory Directed Research and Development (LDRD) Program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE CSGF Fellowship [DE-FG02-97ER25308]; National Institutes of Health [P41-GM104601, U54-GM087519] FX This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy (DOE) under Contract DE-AC02-05CH11231. Additional simulations were performed using Stampede, hosted at the Texas Advanced Computing Center (TACC) at The University of Texas at Austin through XSEDE (Grant MCA06N060 to E.T.) funded by the National Science Foundation. J.V.V. acknowledges support from the Sandia National Laboratory Campus Executive Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia is a multiprogram laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. J.V.V. also acknowledges previous support from a DOE CSGF Fellowship (DE-FG02-97ER25308). This research was also supported by the National Institutes of Health, through Grants P41-GM104601 and U54-GM087519 to E.T. NR 82 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JAN 10 PY 2017 VL 56 IS 1 BP 281 EP 293 DI 10.1021/acs.biochem.6b00468 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EH6QG UT WOS:000391898400028 PM 27997124 ER PT J AU Men, L White, MA Andaraarachchi, H Rosales, BA Vela, J AF Men, Long White, Miles A. Andaraarachchi, Himashi Rosales, Bryan A. Vela, Javier TI Synthetic Development of Low Dimensional Materials SO CHEMISTRY OF MATERIALS LA English DT Review ID PEROVSKITE SOLAR-CELLS; METAL PHOSPHIDE NANOPARTICLES; LEAD HALIDE PEROVSKITES; LIGHT-EMITTING-DIODES; NICKEL PHOSPHIDE; ORGANOMETALLIC CHEMISTRY; THERMAL-DECOMPOSITION; QUANTUM DOTS; NANOCRYSTALS; PHOSPHORUS AB In this invited paper, we highlight some of our most recent work on the synthesis of low dimensional nanomaterials. Current graduate students and members of our group present four specific case systems: Nowotny-Juza phases, nickel phosphides, germanium-based core/shells, and organolead mixed-halide perovskites. Each system is accompanied by commentary from the student involved, which explains the motivation behind their work, as well as a protocol detailing the key experimental considerations involved in their synthesis. We trust these and similar efforts will help further advance our understanding of the broader field of synthetic nanomaterials chemistry, while, at the same time, highlighting how important this area is to the development of new materials for technologically relevant applications. C1 [Men, Long; White, Miles A.; Andaraarachchi, Himashi; Rosales, Bryan A.; Vela, Javier] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Men, Long; Andaraarachchi, Himashi; Vela, Javier] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Vela, J (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.; Vela, J (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vela@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; U.S. National Science Foundation's Division of Chemistry, Macromolecular, Supramolecular and Nanochemistry program [1253058] FX Our research on germanium- and perovskite-based optical materials for solar energy is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Our research on nickel phosphides and I-II-V semiconductors is supported by the U.S. National Science Foundation's Division of Chemistry, Macromolecular, Supramolecular and Nanochemistry program CAREER grant No. 1253058. We thank Emily Smith, Jake Petrich, Aaron Rossini, Gordie Miller, and Levi Stanley for fruitful collaborations, and Brian Marczewski for video assistance. NR 84 TC 1 Z9 1 U1 50 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JAN 10 PY 2017 VL 29 IS 1 BP 168 EP 175 DI 10.1021/acs.chemmater.6b02906 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EH6QF UT WOS:000391898300016 ER PT J AU Chernomordik, BD Marshall, AR Pach, GF Luther, JM Beard, MC AF Chernomordik, Boris D. Marshall, Ashley R. Pach, Gregory F. Luther, Joseph M. Beard, Matthew C. TI Quantum Dot Solar Cell Fabrication Protocols SO CHEMISTRY OF MATERIALS LA English DT Review ID MULTIPLE-EXCITON GENERATION; EFFICIENCIES EXCEEDING 120-PERCENT; POWER CONVERSION EFFICIENCY; LIGHT-EMITTING DEVICES; HALIDE PASSIVATION; COLLOIDAL PBSE; PERFORMANCE; FILMS; NANOCRYSTALS; EXCHANGE AB Colloidally synthesized quantum-confined semiconducting spherical nanocrystals, often referred to as quantum dots (QDs), offer a high degree of chemical, optical, and electronic tunability. As a result, there is an increasing interest in employing colloidal QDs for electronic and optical applications that is reflected in a growing number of publications. In this protocol we provide detailed procedures for the fabrication of QD solar cells specifically employing PbSe and PbS QDs. We include details that are learned through experience, beyond those in typical methodology sections, and include example pictures and videos to aid in fabricating QD solar cells. Although successful solar cell fabrication is ultimately learned through experience, this protocol is intended to accelerate that process. The protocol developed here is be a general starting point for developing PbS and PbSe QD test bed solar cells. We include steps for forming conductive QD films via dip coating as well as spin coating. Finally, we provide protocols that detail the synthesis of PbS and PbSe QDs through a unique cation exchange reaction and discuss how different QD synthetic routes could impact the resulting solar cell performance. C1 [Chernomordik, Boris D.; Marshall, Ashley R.; Pach, Gregory F.; Luther, Joseph M.; Beard, Matthew C.] Natl Renewable Energy Lab, Chem & Mat Sci, Golden, CO 80401 USA. [Marshall, Ashley R.] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. [Pach, Gregory F.] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. RP Luther, JM; Beard, MC (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci, Golden, CO 80401 USA. EM joey.luther@nrel.gov; matt.beard@nrel.gov FU Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences; Global R&D program - KIAT, MOTIE [1415134409]; Department of Energy [DE-AC36-08GO28308] FX We acknowledge support from the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences for quantum dot coupling and solar cell structures. G.P. acknowledges the support from the Global R&D program (1415134409) funded by KIAT, MOTIE. All work is supported by the Department of Energy under contract No. DE-AC36-08GO28308 to NREL. NR 53 TC 0 Z9 0 U1 52 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD JAN 10 PY 2017 VL 29 IS 1 BP 189 EP 198 DI 10.1021/acs.chemmater.6b02939 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EH6QF UT WOS:000391898300018 ER PT J AU Feng, HB Changez, M Hong, KL Mays, JW Kang, NG AF Feng, Hongbo Changez, Mohammad Hong, Kunlun Mays, Jimmy W. Kang, Nam-Goo TI 2-lsopropenyl-2-oxazoline: Well-Defined Homopolymers and Block Copolymers via Living Anionic Polymerization SO MACROMOLECULES LA English DT Article ID DRUG-DELIVERY; MICELLES; POLYMERS; POLY(2-(4-VINYLPHENYL)PYRIDINE); MONOMER AB Poly(2-isopropenyl-2-oxazoline) (PIPOx) has drawn significant attention for numerous applications. However, the successful living anionic polymerization of 2-isopropenyl-2-oxazoline has not been reported previously. Herein, we describe how well-defined PIPOx with quantitative yields, controlled molecular weights from 6800 to over 100 000 g/mol and low polydispersity indices (PDI <= 1.17) were synthesized successfully via living anionic polymerization using diphenylmethylpotassium/diethylzinc (DPM-K/Et2Zn) in tetrahydrofuran (THF) at 0 degrees C. In particular, we report the precise synthesis of well-defined PIPOx with the highest molecular weight ever reported (over 100 000 g/mol) and low PDI of 1.17. The resulting polymers were characterized by H-1 and C-13 nuclear magnetic resonance spectroscopy (NMR) along with size exclusion chromatography (SEC). Additionally, the reactivity of living PIPOx was investigated by crossover block copolymerization with styrene (St), 2-vinylpyridine (2VP), and methyl methacrylate (MMA). It was found that the nucleophilicity of living PIPOx is of this order: living PS > living P2VP > living PMMA > living PIPOx. The self-assembly behavior in bulk of PIPOx-b-PS-b-PIPOx triblock copolymers having different block ratios of 10:80:10 and 25:50:25 was studied using transmission electron microscopy (TEM). The formation of spherical and lamellar nanostructures, respectively, was observed. C1 [Feng, Hongbo; Mays, Jimmy W.; Kang, Nam-Goo] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Changez, Mohammad] ASharqiyah Univ, Coll Appl Sci, Dept Basic Sci, Ibra 400, Oman. [Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Kang, NG (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM nkang1@utk.edu FU Materials Sciences and Engineering Division, Office of Science, Basic Energy Sciences, U.S. Department of Energy FX This work was supported by the Materials Sciences and Engineering Division, Office of Science, Basic Energy Sciences, U.S. Department of Energy. Part of the characterizations were conducted at the Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. The authors thank Dr. David Uhrig for his help in measuring dn/dc for homo PIPOx. The authors also appreciate Dr. Kostas Misichronis for his guidance on the preparation of TEM samples. Dr. Mohammad Changez thanks A. Sharqiyah University for providing fund for Joint Collaboration. NR 33 TC 0 Z9 0 U1 21 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD JAN 10 PY 2017 VL 50 IS 1 BP 54 EP 62 DI 10.1021/acs.macromol.6b02084 PG 9 WC Polymer Science SC Polymer Science GA EH6QC UT WOS:000391898000006 ER PT J AU Huang, J Tang, YM Gao, K Liu, F Guo, H Russell, TP Yang, TB Liang, YY Cheng, X Guo, XG AF Huang, Jun Tang, Yumin Gao, Ke Liu, Feng Guo, Han Russell, Thomas P. Yang, Tingbin Liang, Yongye Cheng, Xing Guo, Xugang TI Head-to-Head Linkage Containing Dialkoxybithiophene-Based Polymeric Semiconductors for Polymer Solar Cells with Large Open-Circuit Voltages SO MACROMOLECULES LA English DT Article ID THIN-FILM TRANSISTORS; FIELD-EFFECT TRANSISTORS; 25TH ANNIVERSARY ARTICLE; LOW-BANDGAP POLYMER; HIGH-PERFORMANCE; CONJUGATED POLYMERS; MOLECULAR DESIGN; SIDE-CHAIN; ELECTROCHEMICAL PROPERTIES; PHOTOVOLTAIC PROPERTIES AB High degree of polymer backbone planarity is achieved by incorporating intramolecular noncovalent sulfur center dot center dot center dot oxygen interaction, which also affords good solubility by attaching alkoxy chains at the 3,3'-positions of bithiophene. However, the applications of the resulting polymers are plagued by their high lying HOMOs due to the strong electron-donating alkoxy chains, resulting in small open-circuit voltages (V-oc(s)) in polymer solar cells. Herein, a novel head-to-head linkage containing 3,3'-dialkoxy-4,4'-dicyano-2,2'-bithiophene (BTCNOR) is invented. Single-crystal X-ray diffraction shows direct evidence of non covalent sulfur center dot center dot center dot oxygen interaction and coplanar backbone of BTCNOR Very low-lying HOMOs (-5.5 to -5.6 eV) of the corresponding polymers with high degree of backbone planarity and good solubility are achieved by introducing strong electron withdrawing cyano group onto the dialkoxybithiophene. The cyano offsets the effect of the electron-donating alkoxy chain, rendering the new BTCNOR as a weak donor unit. With this approach, polymer solar cells fabricated from BTCNOR-based polymers deliver very large V-oc(s) (0.9-1.0 V). By varying the BTCNOR side chains, the highest power conversion efficiency of 7.13% is obtained. Diverse characterization techniques are performed to elucidate the structure-property correlations of the new BTCNOR-based semiconductors. The results demonstrate that incorporating strong electron-withdrawing groups into the highly electron-rich dialkoxybithiophene can lead to improved optoelectrical property. The study offers a promising materials design strategy for high-performance organic electronics. C1 [Huang, Jun; Tang, Yumin; Guo, Han; Yang, Tingbin; Liang, Yongye; Cheng, Xing; Guo, Xugang] SUSTC, Dept Mat Sci & Engn, 1088 Xueyuan Rd, Shenzhen 518055, Guangdong, Peoples R China. [Gao, Ke; Liu, Feng] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Liu, Feng] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Russell, Thomas P.] Wuhan Univ, Dept Chem, Wuhan 430072, Peoples R China. [Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. RP Guo, XG (reprint author), SUSTC, Dept Mat Sci & Engn, 1088 Xueyuan Rd, Shenzhen 518055, Guangdong, Peoples R China. EM guoxg@sustc.edu.cn RI Gao, Ke/B-3412-2017; Liu, Feng/J-4361-2014 OI Liu, Feng/0000-0002-5572-8512 FU Basic Research fund of Shenzhen City [JCYJ20140714151402769, JCYJ20150630145302236]; Shenzhen Peacock Plan project [KQTD20140630110339343]; National Science Foundation of China (NSFC) [51573076]; Guangdong Natural Science Foundation [2015A030313900]; Shenzhen Key Lab [ZDSYS201505291525382]; South University of Science and Technology of China [FRG-SUSTC1501A-72]; U.S. Office of Naval Research [N00014-15-1-2244]; DOE, Office of Science, and Office of Basic Energy Sciences FX This work is financially supported by the Basic Research fund of Shenzhen City (JCYJ20140714151402769), Shenzhen Peacock Plan project (KQTD20140630110339343), National Science Foundation of China (NSFC) (51573076), the Guangdong Natural Science Foundation (2015A030313900), the Shenzhen Key Lab funding (ZDSYS201505291525382), and South University of Science and Technology of China (FRG-SUSTC1501A-72). T.P.R is supported by the U.S. Office of Naval Research under contract N00014-15-1-2244. Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, Molecular Foundry, and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences. T.Y. acknowledges support from the Basic Research fund of Shenzhen City (JCYJ20150630145302236). NR 102 TC 0 Z9 0 U1 24 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD JAN 10 PY 2017 VL 50 IS 1 BP 137 EP 150 DI 10.1021/acs.macromol.6b02275 PG 14 WC Polymer Science SC Polymer Science GA EH6QC UT WOS:000391898000013 ER PT J AU Lee, J Grein-Iankovski, A Narayanan, S Leheny, RL AF Lee, Jonghun Grein-Iankovski, Aline Narayanan, Suresh Leheny, Robert L. TI Nanorod Mobility within Entangled Wormlike Micelle Solutions SO MACROMOLECULES LA English DT Article ID PHOTON-CORRELATION SPECTROSCOPY; SEMIDILUTE POLYMER-SOLUTIONS; NANOPARTICLE DIFFUSION; LIVING POLYMERS; POLYELECTROLYTE SOLUTIONS; SURFACTANT SOLUTIONS; PARTICLE DYNAMICS; MELTS; NANOCOMPOSITES; MICRORHEOLOGY AB In the semidilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined X-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semidilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counterion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentration is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862] for nanoparticle "hopping" diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity. C1 [Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Grein-Iankovski, Aline] Univ Fed Parana, Dept Chem, Curitiba, PR, Brazil. [Leheny, Robert L.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. RP Leheny, RL (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. EM leheny@jhu.edu RI Grein Iankovski, Aline/E-3397-2017 OI Grein Iankovski, Aline/0000-0002-3159-8477 FU DOE Office of Science [DE-AC02-06CH11357]; Argonne's LDRD program; CAPES/PDSE [BEX 3193/14-4]; Argonne National Laboratory X-ray Science Division Visiting Scientist Program; CNPq [477467/2010-5]; National Science Foundation [NSF DMR-1207117, DMR-1610875] FX This research used resources of the Advanced Photon Source and the Center for Nanoscale Materials, U.S. Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. J.L. acknowledges the support from Argonne's LDRD program. A.G.I. acknowledges a scholarship from CAPES/PDSE (BEX 3193/14-4). R.L.L. thanks the Argonne National Laboratory X-ray Science Division Visiting Scientist Program for support. The authors also acknowledge the Brazilian funding agency CNPq (Grant 477467/2010-5) and the National Science Foundation (NSF DMR-1207117 and DMR-1610875). NR 66 TC 0 Z9 0 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD JAN 10 PY 2017 VL 50 IS 1 BP 406 EP 415 DI 10.1021/acs.macromol.6b02091 PG 10 WC Polymer Science SC Polymer Science GA EH6QC UT WOS:000391898000039 ER PT J AU Aron-Dine, S Pomrehn, GS Pribram-Jones, A Laws, KJ Bassman, L AF Aron-Dine, S. Pomrehn, G. S. Pribram-Jones, A. Laws, K. J. Bassman, L. TI First-principles investigation of structural and magnetic disorder in CuNiMnAl and CuNiMnSn Heusler alloys SO PHYSICAL REVIEW B LA English DT Article AB Two quaternary Heusler alloys, equiatomic CuNiMnAl and CuNiMnSn, are studied using density functional theory to understand their tendency for atomic disorder on the lattice and the magnetic effects of disorder. Disordered structures with antisite defects of atoms of the same and different sublattices are considered, with the level of atomic disorder ranging from 3% to 25%. Formation energies and magnetic moments are calculated relative to the ordered ground state and combined with a simple thermodynamical model to estimate temperature effects. We predict the relative levels of disordering in the two equiatomic alloys with good correlation to experimental x-ray diffraction results. The effect of swaps involving Mn is also discussed. C1 [Aron-Dine, S.; Bassman, L.] Harvey Mudd Coll, Claremont, CA 91711 USA. [Pomrehn, G. S.] Boeing Co, Seattle, WA 98108 USA. [Pribram-Jones, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Pribram-Jones, A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Laws, K. J.] UNSW Australia, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. RP Aron-Dine, S (reprint author), Harvey Mudd Coll, Claremont, CA 91711 USA. FU NSF [OISE-1261525]; Laspa Fellowship at Harvey Mudd College; University of California Presidents Postdoctoral Fellowship; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation [ACI-1053575] FX S.A.D., A.P.J., and L.B. acknowledge the financial support of NSF Grant No. OISE-1261525 and the Laspa Fellowship at Harvey Mudd College. Thank you to Patrick Conway for contributions to the XRD analysis. We appreciate the support and assistance of M. Ferry, R. Mahjoub, and P. Munroe in the School of Materials Science and Engineering at UNSW and the Mark Wainwright Analytical Centre at UNSW. A.P.J. was supported by the University of California Presidents Postdoctoral Fellowship. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI-1053575. NR 31 TC 0 Z9 0 U1 8 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 10 PY 2017 VL 95 IS 2 AR 024108 DI 10.1103/PhysRevB.95.024108 PG 7 WC Physics, Condensed Matter SC Physics GA EH5ZL UT WOS:000391851800002 ER PT J AU Tafti, FF Torikachvili, MS Stillwell, RL Baer, B Stavrou, E Weir, ST Vohra, YK Yang, HY McDonnell, EF Kushwaha, SK Gibson, QD Cava, RJ Jeffries, JR AF Tafti, F. F. Torikachvili, M. S. Stillwell, R. L. Baer, B. Stavrou, E. Weir, S. T. Vohra, Y. K. Yang, H. -Y. McDonnell, E. F. Kushwaha, S. K. Gibson, Q. D. Cava, R. J. Jeffries, J. R. TI Tuning the electronic and the crystalline structure of LaBi by pressure: From extreme magnetoresistance to superconductivity SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITION; GIANT MAGNETORESISTANCE; TUNGSTEN DITELLURIDE; ULTRAHIGH MOBILITY; DEPENDENCE; BISMUTH; ZRTE5; FIELD; WTE2; KBAR AB Extreme magnetoresistance (XMR) in topological semimetals is a recent discovery which attracts attention due to its robust appearance in a growing number of materials. To search for a relation between XMR and superconductivity, we study the effect of pressure on LaBi. By increasing pressure, we observe the disappearance of XMR followed by the appearance of superconductivity at P approximate to 3.5 GPa. We find a region of coexistence between superconductivity and XMR in LaBi in contrast to other superconducting XMR materials. The suppression of XMR is correlated with increasing zero-field resistance instead of decreasing in-field resistance. At higher pressures, P approximate to 11 GPa, we find a structural transition from the face-centered cubic lattice to a primitive tetragonal lattice, in agreement with theoretical predictions. The relationship between extreme magnetoresistance, superconductivity, and structural transition in LaBi is discussed. C1 [Tafti, F. F.; Yang, H. -Y.; McDonnell, E. F.] Boston Coll, Dept Phys, Boston, MA 02467 USA. [Tafti, F. F.; Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08540 USA. [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. [Stillwell, R. L.; Baer, B.; Stavrou, E.; Weir, S. T.; Jeffries, J. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vohra, Y. K.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. RP Tafti, FF (reprint author), Boston Coll, Dept Phys, Boston, MA 02467 USA.; Tafti, FF (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08540 USA. EM fazel.tafti@bc.edu FU U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) [DE-AC52- 07NA27344]; DOE-NNSA [DE-NA0001974, DE-NA0002014]; DOE-BES [DE-FG02-99ER45775]; NSF; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; Gordon and Betty Moore Foundation under the EPiQS program [GBMF 4412]; ARO MURI on topological insulators [W911NF-12-1-0461] FX We thank Barry Schaudt for installing and running the WIEN2k code on the BC cluster. This work was performed under LDRD (Tracking Code No. 14-ERD-041) and under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52- 07NA27344. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by the DOE-NNSA under Award No. DE-NA0001974 and the DOE-BES under Award No. DE-FG02-99ER45775 with partial instrumentation funding by the NSF. The Advanced Photon Source is a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Beam time was provided by the Carnegie DOE-Alliance Center (CDAC). Y.K.V. acknowledges support from DOE-NNSA Grant No. DE-NA0002014. We are grateful to Marcio Siqueira at Almax/EasyLab for use of the magnetic susceptibility diamond anvil cell. The research at Princeton was supported by the Gordon and Betty Moore Foundation under the EPiQS program, grant GBMF 4412 and the ARO MURI on topological insulators, grant W911NF-12-1-0461. NR 43 TC 0 Z9 0 U1 29 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 10 PY 2017 VL 95 IS 1 AR 014507 DI 10.1103/PhysRevB.95.014507 PG 10 WC Physics, Condensed Matter SC Physics GA EH5YT UT WOS:000391849900005 ER PT J AU Del Dotto, A Pace, E Salme, G Scopetta, S AF Del Dotto, Alessio Pace, Emanuele Salme, Giovanni Scopetta, Sergio TI Light-front spin-dependent spectral function and nucleon momentum distributions for a three-body system SO PHYSICAL REVIEW C LA English DT Article ID DEEP-INELASTIC-SCATTERING; 3-NUCLEON BOUND-STATES; POLARIZED HE-3; HAMILTONIAN-DYNAMICS; FORM-FACTORS; ELECTRONS; QUARKS; TARGETS AB Poincare covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian-Thomas construction of the Poincare generators, which allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, such as those needed for evaluating the European Muon Collaboration effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, since remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. Also shown is a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system. C1 [Del Dotto, Alessio; Salme, Giovanni] Ist Nazl Fis Nucl, Sez Roma, Ple A Moro 2, I-00185 Rome, Italy. [Del Dotto, Alessio] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Pace, Emanuele] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. [Pace, Emanuele] INFN, Sez Roma Tor Vergata, Via Ric Sci 1, I-00133 Rome, Italy. [Scopetta, Sergio] Univ Perugia, Dipartimento Fis & Geol, Via Alessandro Pascoli, I-06123 Perugia, Italy. [Scopetta, Sergio] INFN, Sez Perugia, Via Alessandro Pascoli, I-06123 Perugia, Italy. RP Del Dotto, A (reprint author), Ist Nazl Fis Nucl, Sez Roma, Ple A Moro 2, I-00185 Rome, Italy.; Del Dotto, A (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. NR 46 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JAN 10 PY 2017 VL 95 IS 1 AR 014001 DI 10.1103/PhysRevC.95.014001 PG 22 WC Physics, Nuclear SC Physics GA EH6CF UT WOS:000391859400002 ER PT J AU Hatta, Y Xiao, BW Yoshida, S Yuan, F AF Hatta, Yoshitaka Xiao, Bo-Wen Yoshida, Shinsuke Yuan, Feng TI Single spin asymmetry in forward pA collisions. II. Fragmentation contribution SO PHYSICAL REVIEW D LA English DT Article AB We compute the twist-three fragmentation contribution to the transverse single spin asymmetry (SSA) in light hadron production p up arrow p -> hX and p up arrow A -> hX including the gluon saturation effect in the unpolarized nucleon/nucleus. Together with the results in our previous paper, this completes the full evaluation of the SSA in this process in the "hybrid" formalism. We argue that the dependence of SSAs on the atomic mass number in the forward region can elucidate the relative importance of the soft gluon pole contribution from the twist-three quark-gluon-quark correlation in the polarized nucleon and the twist-three fragmentation contribution from the final state hadron. C1 [Hatta, Yoshitaka] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. [Xiao, Bo-Wen] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Xiao, Bo-Wen] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Yoshida, Shinsuke] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. [Yuan, Feng] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Hatta, Y (reprint author), Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan. FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231]; NSFC [11575070]; U.S. Department of Energy, Office of Science [DE-AC52-06NA25396]; LANL LDRD Program FX We thank Yuji Koike and Daniel Pitonyak for discussions. This research was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-05CH11231 and by the NSFC under Grant No. 11575070. S. Y. is supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC52-06NA25396 and the LANL LDRD Program. NR 20 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 10 PY 2017 VL 95 IS 1 AR 014008 DI 10.1103/PhysRevD.95.014008 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EH6CS UT WOS:000391860800002 ER PT J AU Sufian, RS de Teramond, GF Brodsky, SJ Deur, A Dosch, HG AF Sufian, Raza Sabbir de Teramond, Guy F. Brodsky, Stanley J. Deur, Alexandre Dosch, Hans Guenter TI Analysis of nucleon electromagnetic form factors from light-front holographic QCD: The spacelike region SO PHYSICAL REVIEW D LA English DT Article ID SUPERCONFORMAL QUANTUM-MECHANICS; SQUARED 4-MOMENTUM TRANSFERS; ELASTIC-SCATTERING; MOMENTUM-TRANSFER; PROTON; NEUTRON; (GEV/C)(2); DEUTERON; SPECTROSCOPY; RATIO AB We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front (LF) holographic QCD (LFHQCD) We show that the inclusion of the higher Fock components vertical bar qqqq (q) over bar > has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30% in the proton and about 40% in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter r, required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. The covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS(5) semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy. C1 [Sufian, Raza Sabbir] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [de Teramond, Guy F.] Univ Costa Rica, San Jose 11501, Costa Rica. [Brodsky, Stanley J.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Deur, Alexandre] Thomas Jefferson Natl Accelerator Fac, Newport News, VA 23606 USA. [Dosch, Hans Guenter] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. RP Sufian, RS (reprint author), Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. FU Department of Energy [DE-AC02-76SF00515, SLAC-PUB-16806]; U.S. Department of Energy Office of Science; U.S. Department of Energy Office of Nuclear Physics [DE-AC05-06OR23177] FX R. S. S. thanks Keh-Fei Liu and Bogdan Wojtsekhowski who provided insight and expertise which assisted this research. S. J. B. is supported by the Department of Energy, Contracts No. DE-AC02-76SF00515 and No. SLAC-PUB-16806. A. D. is supported by the U.S. Department of Energy Office of Science and Office of Nuclear Physics under Contract No. DE-AC05-06OR23177. NR 109 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 10 PY 2017 VL 95 IS 1 AR 014011 DI 10.1103/PhysRevD.95.014011 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EH6CS UT WOS:000391860800005 ER PT J AU Marciante, M Murillo, MS AF Marciante, M. Murillo, M. S. TI Thermodynamic and Kinetic Properties of Shocks in Two-Dimensional Yukawa Systems SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULAR-DYNAMICS; BURNETT DESCRIPTION; WAVE STRUCTURE; SUPERNOVA; DEPENDENCE; CRYSTALS AB Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. We also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equations of state. C1 [Marciante, M.] Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87544 USA. [Murillo, M. S.] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA. RP Marciante, M (reprint author), Los Alamos Natl Lab, Computat Phys & Methods Grp, Los Alamos, NM 87544 USA. EM mmarciante@lanl.gov; murillom@msu.edu FU NAMBE Project, Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors thank Professor J. Goree for fruitful discussions. This work has been performed under the NAMBE Project as part of Los Alamos National Laboratory Contract No. DE-AC52-06NA25396. NR 49 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 10 PY 2017 VL 118 IS 2 AR 025001 DI 10.1103/PhysRevLett.118.025001 PG 6 WC Physics, Multidisciplinary SC Physics GA EH7BC UT WOS:000391926800005 PM 28128627 ER PT J AU Shojaee, SA Qi, Y Wang, YQ Mehner, A Lucca, DA AF Shojaee, S. A. Qi, Y. Wang, Y. Q. Mehner, A. Lucca, D. A. TI Ion irradiation induced structural modifications and increase in elastic modulus of silica based thin films SO SCIENTIFIC REPORTS LA English DT Article ID POLYMER-DERIVED CERAMICS; LOW-DIELECTRIC-CONSTANT; INFRARED-SPECTROSCOPY; AMORPHOUS-CARBON; HIGH-PRESSURE; MECHANICAL-PROPERTIES; OXYCARBIDE GLASSES; RAMAN-SPECTROSCOPY; HYDROGEN LOSS; SIO2 GLASS AB Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. In this study, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. The results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. It was found that carbon was present in a non-graphitic sp(2)-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. A combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films. C1 [Shojaee, S. A.; Qi, Y.; Lucca, D. A.] Oklahoma State Univ, Sch Mech & Aerosp Engn, 218 Engn North, Stillwater, OK 74078 USA. [Wang, Y. Q.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Mehner, A.] Stiftung Inst Werkstofftech, Badgasteiner Str 3, D-28359 Bremen, Germany. RP Lucca, DA (reprint author), Oklahoma State Univ, Sch Mech & Aerosp Engn, 218 Engn North, Stillwater, OK 74078 USA. EM lucca@okstate.edu FU National Science Foundation [OISE-0352377, OISE-0128050]; Deutsche Forschungsgemeinschaft [Transregionaler Sonderforschungsbereich SFB/TR4]; U.S. Department of Energy [DE-AC52-06NA25396] FX The financial support for this project was provided by the National Science Foundation through Grant Nos. OISE-0352377 and OISE-0128050. Funding for the Transregionaler Sonderforschungsbereich SFB/TR4 was provided by the Deutsche Forschungsgemeinschaft and is gratefully acknowledged. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 94 TC 0 Z9 0 U1 8 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 10 PY 2017 VL 7 AR 40100 DI 10.1038/srep40100 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH1SL UT WOS:000391547400002 PM 28071696 ER PT J AU Gansle, KM Gash, AE Chambliss, CK Clapsaddle, BJ Newell, BS Miller, SM Anderson, OP Hughes, RP Strauss, SH AF Gansle, Kristina M. Gash, Alexander E. Chambliss, C. Kevin Clapsaddle, Brady J. Newell, Brian S. Miller, Susie M. Anderson, Oren P. Hughes, Russell P. Strauss, Steven H. TI X-ray structures and electronic properties of the 1,1 ',2,2 '- and 1,1 ',3,3 '-tetra-t-butylferrocenium(1+) cations SO POLYHEDRON LA English DT Article DE Tetraalkylferrocene; Ferrocenium salts; Perrhenate salts; X-ray structure; Reduction-potentials ID CRYSTAL-STRUCTURE; STRUCTURE REFINEMENT; EXCHANGE MATERIALS; ANION-EXCHANGE; FTIR DETECTION; PERCHLORATE; DERIVATIVES; PERRHENATE; FERROCENE; ALKYLFERROCENES AB The compounds 1,1',2,2'-and 1,1',3,3'-tetra-t-butylferrocene (1,2-BUT and 1,3-BUT, respectively) were oxidized with AgReO4 in dichloromethane and the ferrocenium(1+) salts were isolated, after recrystallization from acetone, as dark-blue or dark-green crystals of [1,2-BUT+][ReO4-] and [1,3-BUT+][ReO4-]center dot acetone, respectively, which were suitable for X-ray diffraction. As expected from the known structures of the neutral ferrocenes, the di-t-butylcyclopentadienyl (Cp') rings are virtually parallel in the 1,2-BUT+ cation and are tilted by 11.6 degrees in the 1,3-BUT+ cation. The Fe-C distances in both cations span a greater range and are, on average, longer than in the corresponding neutral ferrocenes. UV-Vis spectra revealed that lambda(max) for yellow 1,2-BUT (442 nm) is lower than for orange 1,3-BUT (466 nm) and that lambda(max) for blue 1,2-BUT+ (674 nm) is lower than for green 1,3-BUT+ (682 nm). In addition, E-1/2(+/0) values determined by cyclic voltammetry in dichloromethane, reported here for the first time,. show that 1,3-BUT (-0.24 V versus Fe(Cp)2(+/0)) is 50 mV easier to oxidize than 1,2-BUT (-0.19 V versus Fe(Cp)(2)(+/0)). A comparison of the structure of [1,2-BUT+][ReO4-] with that of the literature compound [1,3-DEC+][ReO4-] shows that the shortest Fe center dot center dot center dot Re distances in the two salts are ca. 5.8 angstrom, indicating that the effective ion-pairing radii of the two cations are essentially the same in spite of the much greater overall size of the 1,3-DEC+ cation (1,3-DEC+ = 1,1',3,3'-tetra(2-methyl-2-nonyl)ferrocenium(1+)). This surprising result is significant as far as differences in anion-extraction equilibria reported previously. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Gansle, Kristina M.; Gash, Alexander E.; Chambliss, C. Kevin; Clapsaddle, Brady J.; Newell, Brian S.; Miller, Susie M.; Anderson, Oren P.; Strauss, Steven H.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Hughes, Russell P.] Dept Chem, Dartmouth Coll, Hanover, NH 03755 USA. [Gansle, Kristina M.] Procter & Gamble Co, Cincinnati, OH 45226 USA. [Gash, Alexander E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chambliss, C. Kevin] Baylor Univ, Waco, TX 76798 USA. [Clapsaddle, Brady J.] TDA Res, Wheat Ridge, CO USA. RP Strauss, SH (reprint author), Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA.; Hughes, RP (reprint author), Dept Chem, Dartmouth Coll, Hanover, NH 03755 USA. EM rph@dartmouth.edu; steven.strauss@colostate.edu FU U.S. Department of Energy [DE-FG07-96ER14696]; National Science Foundation [CHE-9628769] FX This research was supported by grants from the U.S. Department of Energy (DE-FG07-96ER14696) and the National Science Foundation (CHE-9628769). NR 35 TC 0 Z9 0 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD JAN 10 PY 2017 VL 121 BP 88 EP 94 DI 10.1016/j.poly.2016.09.027 PG 7 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA EF9BR UT WOS:000390626200012 ER PT J AU Shete, M Kumar, M Kim, DH Rangnekar, N Xu, DD Topuz, B Agrawal, KV Karapetrova, E Stottrup, B Al-Thabaiti, S Basahel, S Narasimharao, K Rimer, JD Tsapatsis, M AF Shete, Meera Kumar, Manjesh Kim, Donghun Rangnekar, Neel Xu, Dandan Topuz, Berna Agrawal, Kumar Varoon Karapetrova, Evguenia Stottrup, Benjamin Al-Thabaiti, Shaeel Basahel, Sulaiman Narasimharao, Katabathini Rimer, Jeffrey D. Tsapatsis, Michael TI Nanoscale Control of Homoepitaxial Growth on a Two-Dimensional Zeolite SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE two-dimensional materials; crystal engineering; crystal growth; nanotechnology; zeolites ID STRUCTURE-DIRECTING AGENTS; PURE-SILICA ZEOLITES; SECONDARY GROWTH; MFI; NANOSHEETS; MEMBRANES; SEPARATION; FILMS; NANOPARTICLES; MECHANISM AB Nanoscale crystal growth control is crucial for tailoring two-dimensional (2D) zeolites (crystallites with thickness less than two unit cells) and thicker zeolite nanosheets for applications in separation membranes and as hierarchical catalysts. However, methods to control zeolite crystal growth with nanometer precision are still in their infancy. Herein, we report solution-based growth conditions leading to anisotropic epitaxial growth of 2D zeolites with rates as low as few nanometers per day. Contributions from misoriented surface nucleation and rotational intergrowths are eliminated. Growth monitoring at the single-unit-cell level reveals novel nanoscale crystal-growth phenomena associated with the lateral size and surface curvature of 2D zeolites. C1 [Shete, Meera; Kim, Donghun; Rangnekar, Neel; Xu, Dandan; Agrawal, Kumar Varoon; Tsapatsis, Michael] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. [Kumar, Manjesh; Rimer, Jeffrey D.] Univ Houston, Dept Chem & Biomol Engn, 4726 Calhoun Rd, Houston, TX 77204 USA. [Topuz, Berna] Ankara Univ, Dept Chem Engn, TR-06100 Ankara, Turkey. [Karapetrova, Evguenia] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Stottrup, Benjamin] Augsburg Coll, Dept Phys, 2211 Riverside Ave, Minneapolis, MN 55454 USA. [Al-Thabaiti, Shaeel; Basahel, Sulaiman; Narasimharao, Katabathini] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 21589, Saudi Arabia. RP Kim, DH; Tsapatsis, M (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA.; Rimer, JD (reprint author), Univ Houston, Dept Chem & Biomol Engn, 4726 Calhoun Rd, Houston, TX 77204 USA. EM kimx1408@umn.edu; jrimer@central.uh.edu; tsapatsis@umn.edu FU Center for Gas Separations Relevant to Clean Energy Technologies; Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Sciences [DE-SC000105]; Deanship of Scientific Research at the King Abdulaziz University [D-003/433]; National Science Foundation [1151098]; Welch Foundation [E-1794]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR 1207544, CHE 1040126]; Amundson chair fund at the University of Minnesota; NSF through the MRSEC; NNIN programs FX This work was mainly supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award DE-SC000105 (all the ex situ AFM experiments reported and the development of the TEAOH-based growth procedure were fully supported by the above award) and by the Deanship of Scientific Research at the King Abdulaziz University D-003/433 (TPAOH-based growth experiments, initial ex situ AFM experiments, certain LB deposition experiments, and XRD characterization). All in situ AFM experiments were performed at University of Houston and J.D.R. acknowledges financial support from the National Science Foundation (Award No. 1151098) and The Welch Foundation (Award No. E-1794). In-plane grazing incidence synchrotron XRD data was collected on beamline 33-BM-C at the Advanced Photon Source, Argonne National Laboratory supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The LB trough instrumentation purchase and maintenance at the Augsburg College was supported by NSF (DMR 1207544 and CHE 1040126). M.T. acknowledges generous support provided by the Amundson chair fund at the University of Minnesota. Parts of this work were carried out in the Characterization Facility, University of Minnesota and the Minnesota Nano Center (formerly NFC), which receive partial support from the NSF through the MRSEC and NNIN programs, respectively. NR 36 TC 1 Z9 1 U1 24 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD JAN 9 PY 2017 VL 56 IS 2 BP 535 EP 539 DI 10.1002/anie.201607063 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EM0GF UT WOS:000394996100014 PM 27936290 ER PT J AU Briceno, RA Dudek, JJ Edwards, RG Wilson, DJ AF Briceno, Raul A. Dudek, Jozef J. Edwards, Robert G. Wilson, David J. CA Hadron Spectrum Collaboration TI Isoscalar pi pi Scattering and the sigma Meson Resonance from QCD SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHIRAL PERTURBATION-THEORY; PHASE-SHIFT ANALYSIS; FINITE-VOLUME; SCALAR MESONS; LATTICE QCD; MATRIX; STATES AB We present for the first time a determination of the energy dependence of the isoscalar pi pi elastic scattering phase shift within a first-principles numerical lattice approach to QCD. Hadronic correlation functions are computed including all required quark propagation diagrams, and from these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum, we obtain the S-wave phase shift up to the K (K) over bar threshold. Calculations are performed at two values of the u, d quark mass corresponding to m(pi) = 236; 391 MeV, and the resulting amplitudes are described in terms of a sigma meson which evolves from a bound state below the pi pi threshold at the heavier quark mass to a broad resonance at the lighter quark mass. C1 [Briceno, Raul A.; Dudek, Jozef J.; Edwards, Robert G.] Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. [Dudek, Jozef J.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Wilson, David J.] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England. RP Briceno, RA; Dudek, JJ; Edwards, RG (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA.; Dudek, JJ (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA.; Wilson, DJ (reprint author), Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Wilberforce Rd, Cambridge CB3 0WA, England. EM briceno@jlab.org; dudek@jlab.org; edwards@jlab.org; d.j.wilson@damtp.cam.ac.uk FU Advanced Scientific Computing Research (ASCR); Advanced Leadership Computing Challenge (ALCC) grant; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-05CH11231]; National Science Foundation [OCI-0725070, ACI-1238993]; state of Illinois; U.S. Department of Energy Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program at Oak Ridge National Lab; NERSC; U.S. Department of Energy [DE-AC05-06OR23177, DE-SC0006765]; Isaac Newton Trust/University of Cambridge Early Career Support Scheme [RG74916] FX We thank our colleagues within the Hadron Spectrum Collaboration and, in particular, thank Balint Joo for help. We also thank Kate Clark for use of the QUDA codes. R. A. B. would like to thank I. Danilkin for useful discussions in the preparation of the manuscript. The software codes CHROMA [37], QUDA [38,39], QUDA-MG [40], QPHIX [41], and QOPQDP [42,43] were used for the computation of the quark propagators. The contractions were performed on clusters at Jefferson Lab under the USQCD Collaboration and the Scientific Discovery through Advanced Computing (ScIDAC) program. The research was supported in part under an Advanced Scientific Computing Research (ASCR), Advanced Leadership Computing Challenge (ALCC) grant, and used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research is also part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (Grants No. OCI-0725070 and No. ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computing resources. Gauge configurations were generated using resources awarded from the U.S. Department of Energy Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program at Oak Ridge National Lab and also resources awarded at NERSC. R. A. B., R. G. E., and J. J. D. acknowledge support from U.S. Department of Energy Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates Jefferson Lab. J. J. D. acknowledges support from the U.S. Department of Energy Early Career Contract No. DE-SC0006765. D. J. W. acknowledges support from the Isaac Newton Trust/University of Cambridge Early Career Support Scheme [RG74916]. NR 76 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 9 PY 2017 VL 118 IS 2 AR 022002 DI 10.1103/PhysRevLett.118.022002 PG 6 WC Physics, Multidisciplinary SC Physics GA EH7AU UT WOS:000391926000007 PM 28128604 ER PT J AU Hong, F Yue, BB Cheng, ZX Shen, H Yang, K Hong, XG Chen, B Mao, HK AF Hong, Fang Yue, Binbin Cheng, Zhenxiang Shen, Hui Yang, Ke Hong, Xinguo Chen, Bin Mao, Ho-Kwang TI Pressure-enhanced light emission and its structural origin in Er:GdVO4 SO APPLIED PHYSICS LETTERS LA English DT Article ID 2.7 MU-M; UP-CONVERSION NANOCRYSTALS; RARE-EARTH IONS; PHASE-TRANSITION; PHOTOLUMINESCENCE PROPERTIES; CARBON NANOTUBES; ENERGY-TRANSFER; QUANTUM DOTS; LUMINESCENCE; MONOLAYER AB Rare earth phosphors have been widely studied because of their sharp emission lines and excellent optical performance. However, photoluminescence (PL) tuning by crystal field in Er3+ embedded phosphors has always been a challenge. Here, we demonstrate that pressure can help to enhance the red and green light emission simultaneously in Er: GdVO4. Synchrotron X-ray diffraction investigations revealed that a structural phase transition was responsible for the enhancement. Our work brightens the future prospects for applications of Er3+-based PL materials in various fields, such as high power lasers and (bio) medical imaging. Published by AIP Publishing. C1 [Hong, Fang; Yue, Binbin; Chen, Bin; Mao, Ho-Kwang] Ctr High Pressure Sci & Technol Adv Res, 1690 Cailun Rd, Shanghai 201203, Peoples R China. [Hong, Fang; Yue, Binbin] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Cheng, Zhenxiang] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Innovat Campus,Squires Way, North Wollongong, NSW 2500, Australia. [Shen, Hui] Shanghai Inst Technol, Sch Mat Sci & Engn, Shanghai 201418, Peoples R China. [Yang, Ke] SSRF, 239 Zhangheng Rd, Shanghai 201204, Peoples R China. [Hong, Xinguo] Brookhaven Natl Lab, Photon Sci Directorate, Bldg 745,POB 5000, Upton, NY 11973 USA. [Mao, Ho-Kwang] Carnegie Inst Sci, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. RP Yue, BB; Chen, B (reprint author), Ctr High Pressure Sci & Technol Adv Res, 1690 Cailun Rd, Shanghai 201203, Peoples R China.; Yue, BB (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.; Cheng, ZX (reprint author), Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Innovat Campus,Squires Way, North Wollongong, NSW 2500, Australia. EM yuebb@hpstar.ac.cn; cheng@uow.edu.au; chenbin@hpstar.ac.cn RI Yue, Binbin/K-2399-2016; HONG, Fang/C-6070-2014 OI Yue, Binbin/0000-0002-7784-2850; HONG, Fang/0000-0003-0060-2063 FU NSAF [U1530402]; Australian Research Council [FT 0990287]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors acknowledge the support from the NSAF (Grant No. U1530402). Z. X. Cheng thanks the Australian Research Council through a Future Fellowship (FT 0990287). The X-ray diffraction experiment was performed at the BL15U1 beamline, Shanghai Synchrotron Radiation Facility (SSRF) in China. The National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-98CH10886. All authors thank Freyja O'Toole for her careful revision of the manuscript. NR 53 TC 1 Z9 1 U1 10 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 9 PY 2017 VL 110 IS 2 AR 021903 DI 10.1063/1.4973993 PG 5 WC Physics, Applied SC Physics GA EI9NP UT WOS:000392835300023 ER PT J AU Hong, H Kim, J Fang, XY Hong, S Chiang, TC AF Hong, Hawoong Kim, Jongjin Fang, Xinyue Hong, Seungbum Chiang, T-C TI Interfacial stability of ultrathin films of magnetite Fe3O4 (111) on Al2O3(001) grown by ozone-assisted molecular-beam epitaxy SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY; ALPHA-FE2O3; SAPPHIRE; SPINTRONICS; OXIDES AB The thin films of iron oxides including magnetite (Fe3O4) and hematite (alpha-Fe2O3) have many important applications. Both forms of oxide can occur naturally during film growth by iron deposition under various oxidation environments; an important issue is to understand and control the process resulting in a single-phase film. We have performed the in-situ -time studies using X-ray diffraction of such film growth on sapphire (001) under pure ozone by monitoring the (00L) rod. Stable magnetite growth can be maintained at growth temperatures below 600 degrees C up to a certain critical film thickness, beyond which the growth becomes hematite. The results demonstrate the importance of interfacial interaction in stabilizing the magnetite phase. Published by AIP Publishing. C1 [Hong, Hawoong] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Kim, Jongjin; Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Fang, Xinyue; Chiang, T-C] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Hong, Seungbum] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 34141, South Korea. RP Hong, H (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Hong, Seungbum/B-7708-2009 OI Hong, Seungbum/0000-0002-2667-1983 FU U.S. Department of Energy (DOE), Basic Energy Sciences [DE-AC02-06CH11357]; DOE, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-FG02-07ER46383] FX Work performed at Argonne National Laboratory, including the Advanced Photon Source, was supported by the U.S. Department of Energy (DOE), Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. T.C.C. and X.F. are supported by the DOE, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Grant No. DE-FG02-07ER46383. NR 19 TC 0 Z9 0 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JAN 9 PY 2017 VL 110 IS 2 AR 021601 DI 10.1063/1.4973808 PG 5 WC Physics, Applied SC Physics GA EI9NP UT WOS:000392835300019 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Aushev, V Aushev, Y Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Borysova, M Brandt, A Brandt, O Brochmann, M Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cuth, J Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, A Evdokimov, VN Faure, A Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Franc, J Fuess, S Garbincius, PH Garcia-Bellido, A Garcia-Gonzalez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Gogota, O Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kaur, M Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Savitskyi, M Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schott, M Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Shkola, O Simak, V Skubic, P Slattery, P Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stefaniuk, N Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Aushev, V. Aushev, Y. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Borysova, M. Brandt, A. Brandt, O. Brochmann, M. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cuth, J. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, A. Evdokimov, V. N. Faure, A. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Franc, J. Fuess, S. Garbincius, P. H. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Gogota, O. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grunendahl, S. Grunewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kaur, M. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Savitskyi, M. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schott, M. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Shkola, O. Simak, V. Skubic, P. Slattery, P. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stefaniuk, N. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Measurement of top quark polarization in t(t)over-bar lepton+jets final states SO PHYSICAL REVIEW D LA English DT Article ID RUN-II; IDENTIFICATION; JET; TEVATRON; DETECTOR; EVENTS AB We present a measurement of top quark polarization in t (t) over bar pair production in p (p) over bar collisions at root s = 1.96 TeV using data corresponding to 9.7 fb(-1) of integrated luminosity recorded with the D0 detector at the Fermilab Tevatron Collider. We consider final states containing a lepton and at least three jets. The polarization is measured through the distribution of lepton angles along three axes: the beam axis, the helicity axis, and the transverse axis normal to the t (t) over bar production plane. This is the first measurement of top quark polarization at the Tevatron using lepton + jet final states and the first measurement of the transverse polarization in t (t) over bar production. The observed distributions are consistent with standard model predictions of nearly no polarization. C1 [Hensel, C.; Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, BR-22290 Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550 Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, BR-09210 Sao Paulo, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota 111711, Colombia. [Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague 11636 1, Czech Republic. [Augsten, K.; Brandt, A.; Franc, J.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, Prague 11636 6, Czech Republic. [Kupco, A.; Lokajicek, M.; Royon, C.] Acad Sci Czech Republic, Inst Phys, Prague 18221, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito 170157, Ecuador. [Badaud, F.; Gris, Ph.] Univ Blaise Pascal, LPC, CNRS, IN2P3, F-63178 Aubiere, France. [Sajot, G.; Stark, J.] Univ Joseph Fourier Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, F-38026 Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, F-13288 Marseille 09, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris Saclay, CNRS, IN2P3, LAL,Univ Paris Sud, F-91898 Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 06, LPNHE, CNRS, IN2P3, F-75005 Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris 07, LPNHE, CNRS, IN2P3, F-75005 Paris, France. [Bassler, U.; Besancon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Faure, A.; Grohsjean, A.; Hubacek, Z.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA Saclay, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, F-67037 Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, IPNL, CNRS, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, F-69361 Lyon 07, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, D-52056 Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, D-79085 Freiburg, Germany. [Brandt, O.; Mansour, J.; Meyer, J.; Quadt, A.; Shabalina, E.] Georg August Univ Gottingen, Inst Phys 2, D-37073 Gottingen, Germany. [Buescher, V.; Cuth, J.; Fiedler, F.; Hohlfeld, M.; Schott, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Ludwig Maximilians Univ Munchen, D-80539 Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kaur, M.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Grunewald, M. W.] Univ Coll Dublin, Dublin 4, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul 02841, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 07360, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Sci Pk, NL-1098 XG Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 AJ Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna 141980, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow 119991, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia. [Juste, A.] ICREA, Bellaterra 08193, Barcelona, Spain. [Juste, A.] IFAE, Bellaterra 08193, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, S-75105 Uppsala, Sweden. [Aushev, V.; Aushev, Y.; Borysova, M.; Gogota, O.; Savitskyi, M.; Shkola, O.; Stefaniuk, N.] Taras Shevchenko Natl Univ Kyiv, UA-01601 Kiev, Ukraine. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Penning, B.; Scanlon, T.] Imperial Coll London, London SW7 2AZ, England. [Agnew, J. P.; Deterre, C.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Peters, Y.; Petridis, K.; Price, D.; Schwanenberger, C.; Shaw, S.; Soldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Garbincius, P. H.; Ginther, G.; Greenlee, H.; Grunendahl, S.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; de Sa, R. Lopes; Lyon, A. L.; Melnitchouk, A.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Evdokimov, A.; Gerber, C. E.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] Northern Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Ruchti, R.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, 601 Elmwood Ave, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Haley, J.; Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Schellman, H.] Oregon State Univ, Corvallis, OR 97331 USA. [Cutts, D.; Heintz, U.; Narain, M.; Orduna, J.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Das, A.; Ilchenko, Y.; Kehoe, R.; Liu, H.] Southern Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Bandurin, D. V.; Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.; Svoisky, P.] Univ Virginia, Charlottesville, VA 22904 USA. [Brochmann, M.; Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna 141980, Russia. RI Li, Liang/O-1107-2015 OI Li, Liang/0000-0001-6411-6107 FU Department of Energy (USA); National Science Foundation (USA); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation (Russia); National Research Center "Kurchatov Institute" of the Russian Federation (Russia); Russian Foundation for Basic Research (Russia); Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (Netherlands); Science and Technology Facilities Council (United Kingdom); Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research); Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); National Natural Science Foundation of China (China); Ministry of Education and Science of Ukraine (Ukraine); National Council for the Development of Science and Technology (Brazil); Department of Atomic Energy (India); China Academy of Sciences (China) FX We express our appreciation to Helen Edwards for her role in designing and building the Tevatron and her oversight of the D0 detector project in its early days. We thank R. M. Godbole and W. Bernreuther for enlightening discussions. We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the Department of Energy and National Science Foundation (USA); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center "Kurchatov Institute" of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine). NR 37 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 9 PY 2017 VL 95 IS 1 AR 011101 DI 10.1103/PhysRevD.95.011101 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EH6CR UT WOS:000391860700001 ER PT J AU Adamson, P Anghel, I Aurisano, A Barr, G Bishai, M Blake, A Bock, GJ Bogert, D Cao, SV Carroll, TJ Castromonte, CM Chen, R Childress, S Coelho, JAB Corwin, L Cronin-Hennessy, D de Jong, JK De Rijck, S Devan, AV Devenish, NE Diwan, MV Escobar, CO Evans, JJ Falk, E Feldman, GJ Flanagan, W Frohne, MV Gabrielyan, M Gallagher, HR Germani, S Gomes, RA Goodman, MC Gouffon, P Graf, N Gran, R Grzelak, K Habig, A Hahn, SR Hartnell, J Hatcher, R Holin, A Huang, J Hylen, J Irwin, GM Isvan, Z James, C Jensen, D Kafka, T Kasahara, SMS Koizumi, G Kordosky, M Kreymer, A Lang, K Ling, J Litchfield, PJ Lucas, P Mann, WA Marshak, ML Mayer, N McGivern, C Medeiros, MM Mehdiyev, R Meier, JR Messier, MD Miller, WH Mishra, SR Sher, SM Moore, CD Mualem, L Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Nowak, JA O'Connor, J Orchanian, M Pahlka, RB Paley, J Patterson, RB Pawloski, G Perch, A Pfutzner, MM Phan, DD Phan-Budd, S Plunkett, RK Poonthottathil, N Qiu, X Radovic, A Rebel, B Rosenfeld, C Rubin, HA Sail, P Sanchez, MC Schneps, J Schreckenberger, A Schreiner, P Sharma, R Sousa, A Tagg, N Talaga, RL Thomas, J Thomson, MA Tian, X Timmons, A Todd, J Tognini, SC Toner, R Torretta, D Tzanakos, G Urheim, J Vahle, P Viren, B Weber, A Webb, RC White, C Whitehead, L Whitehead, LH Wojcicki, SG Zwaska, R AF Adamson, P. Anghel, I. Aurisano, A. Barr, G. Bishai, M. Blake, A. Bock, G. J. Bogert, D. Cao, S. V. Carroll, T. J. Castromonte, C. M. Chen, R. Childress, S. Coelho, J. A. B. Corwin, L. Cronin-Hennessy, D. de Jong, J. K. De Rijck, S. Devan, A. V. Devenish, N. E. Diwan, M. V. Escobar, C. O. Evans, J. J. Falk, E. Feldman, G. J. Flanagan, W. Frohne, M. V. Gabrielyan, M. Gallagher, H. R. Germani, S. Gomes, R. A. Goodman, M. C. Gouffon, P. Graf, N. Gran, R. Grzelak, K. Habig, A. Hahn, S. R. Hartnell, J. Hatcher, R. Holin, A. Huang, J. Hylen, J. Irwin, G. M. Isvan, Z. James, C. Jensen, D. Kafka, T. Kasahara, S. M. S. Koizumi, G. Kordosky, M. Kreymer, A. Lang, K. Ling, J. Litchfield, P. J. Lucas, P. Mann, W. A. Marshak, M. L. Mayer, N. McGivern, C. Medeiros, M. M. Mehdiyev, R. Meier, J. R. Messier, M. D. Miller, W. H. Mishra, S. R. Sher, S. Moed Moore, C. D. Mualem, L. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nowak, J. A. O'Connor, J. Orchanian, M. Pahlka, R. B. Paley, J. Patterson, R. B. Pawloski, G. Perch, A. Pfutzner, M. M. Phan, D. D. Phan-Budd, S. Plunkett, R. K. Poonthottathil, N. Qiu, X. Radovic, A. Rebel, B. Rosenfeld, C. Rubin, H. A. Sail, P. Sanchez, M. C. Schneps, J. Schreckenberger, A. Schreiner, P. Sharma, R. Sousa, A. Tagg, N. Talaga, R. L. Thomas, J. Thomson, M. A. Tian, X. Timmons, A. Todd, J. Tognini, S. C. Toner, R. Torretta, D. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Weber, A. Webb, R. C. White, C. Whitehead, L. Whitehead, L. H. Wojcicki, S. G. Zwaska, R. CA MINOS Collaboration TI Search for flavor-changing nonstandard neutrino interactions using nu(e) appearance in MINOS SO PHYSICAL REVIEW D LA English DT Article ID LEPTON CHARGE; OSCILLATIONS; MATTER AB We report new constraints on flavor-changing nonstandard neutrino interactions from the MINOS long-baseline experiment using nu(e) and (nu) over bar (e) appearance candidate events from predominantly nu(mu) and (nu) over bar (mu) beams. We used a statistical selection algorithm to separate nu(e) candidates from background events, enabling an analysis of the combined MINOS neutrino and antineutrino data. We observe no deviations from standard neutrino mixing, and thus place constraints on the nonstandard interaction matter effect, vertical bar epsilon(e tau)vertical bar, and phase, (delta(CP) + delta(e tau)), using a 30-bin likelihood fit. C1 [Anghel, I.; Goodman, M. C.; Paley, J.; Phan-Budd, S.; Sanchez, M. C.; Schreiner, P.; Talaga, R. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bishai, M.; Diwan, M. V.; Isvan, Z.; Ling, J.; Viren, B.; Whitehead, L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Mualem, L.; Newman, H. B.; Orchanian, M.; Patterson, R. B.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Thomson, M. A.; Toner, R.] Univ Cambridge, Cavendish Lab, Madingley Rd, Cambridge CB3 0HE, England. [Escobar, C. O.] Univ Estadual Campinas, IFGW UNICAMP, CP 6165, BR-13083970 Campinas, SP, Brazil. [Aurisano, A.; Sousa, A.; Todd, J.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Adamson, P.; Bock, G. J.; Bogert, D.; Childress, S.; Hahn, S. R.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Sher, S. Moed; Moore, C. D.; Pahlka, R. B.; Plunkett, R. K.; Poonthottathil, N.; Rebel, B.; Sharma, R.; Torretta, D.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Castromonte, C. M.; Gomes, R. A.; Medeiros, M. M.; Tognini, S. C.] Univ Fed Goias, Inst Fis, BR-74690900 Goiania, Go, Brazil. [Feldman, G. J.; Sousa, A.; Toner, R.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Frohne, M. V.] Coll Holy Cross, Notre Dame, IN 46556 USA. [Whitehead, L.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Graf, N.; Rubin, H. A.; White, C.] IIT, Dept Phys, Chicago, IL 60616 USA. [Corwin, L.; Mayer, N.; Messier, M. D.; Musser, J.; Urheim, J.] Indiana Univ, Bloomington, IN 47405 USA. [Anghel, I.; Sanchez, M. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Germani, S.; Holin, A.; Nichol, R. J.; O'Connor, J.; Perch, A.; Pfutzner, M. M.; Thomas, J.; Whitehead, L. H.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Chen, R.; Evans, J. J.; Timmons, A.] Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England. [Cronin-Hennessy, D.; Gabrielyan, M.; Kasahara, S. M. S.; Litchfield, P. J.; Marshak, M. L.; Meier, J. R.; Miller, W. H.; Nowak, J. A.; Pawloski, G.; Schreckenberger, A.] Univ Minnesota, Minneapolis, MN 55455 USA. [Gran, R.; Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Tagg, N.] Otterbein Coll, Westerville, OH 43081 USA. [Barr, G.; de Jong, J. K.; Weber, A.] Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England. [Graf, N.; Isvan, Z.; McGivern, C.; Naples, D.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Litchfield, P. J.; Weber, A.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo, SP, Brazil. [Mishra, S. R.; Rosenfeld, C.; Tian, X.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Irwin, G. M.; Pawloski, G.; Qiu, X.; Wojcicki, S. G.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Devenish, N. E.; Falk, E.; Hartnell, J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Cao, S. V.; Carroll, T. J.; De Rijck, S.; Flanagan, W.; Huang, J.; Lang, K.; Mehdiyev, R.; Phan, D. D.; Sail, P.; Schreckenberger, A.] Univ Texas Austin, Dept Phys, 1 Univ Stn C1600, Austin, TX 78712 USA. [Coelho, J. A. B.; Gallagher, H. R.; Kafka, T.; Mann, W. A.; Mayer, N.; Schneps, J.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Grzelak, K.] Univ Warsaw, Dept Phys, Pasteura 5, PL-02093 Warsaw, Poland. [Devan, A. V.; Kordosky, M.; Nelson, J. K.; Radovic, A.; Vahle, P.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Tzanakos, G.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. Univ Lancaster, Lancaster LA1 4YB, England. South Dakota Sch Mines & Technol, Rapid City, SD 57701 USA. RI Gomes, Ricardo/B-6899-2008 OI Gomes, Ricardo/0000-0003-0278-4876 FU U.S. DOE; United Kingdom STFC; U.S. NSF; State and University of Minnesota; Brazil's FAPESP; CNPq; CAPES FX This work was supported by the U.S. DOE; the United Kingdom STFC; the U.S. NSF; the State and University of Minnesota; and Brazil's FAPESP, CNPq and CAPES. We are grateful to the Minnesota Department of Natural Resources, the crew of the Soudan Underground Lab, and the personnel of Fermilab for their contribution to this effort. We thank the Texas Advanced Computing Center at The University of Texas at Austin for the provision of computing resources. NR 34 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 9 PY 2017 VL 95 IS 1 AR 012005 DI 10.1103/PhysRevD.95.012005 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EH6CR UT WOS:000391860700002 ER PT J AU Briggs, R Gorman, MG Coleman, AL McWilliams, RS McBride, EE McGonegle, D Wark, JS Peacock, L Rothman, S Macleod, SG Bolme, CA Gleason, AE Collins, GW Eggert, JH Fratanduono, DE Smith, RF Galtier, E Granados, E Lee, HJ Nagler, B Nam, I Xing, Z McMahon, MI AF Briggs, R. Gorman, M. G. Coleman, A. L. McWilliams, R. S. McBride, E. E. McGonegle, D. Wark, J. S. Peacock, L. Rothman, S. Macleod, S. G. Bolme, C. A. Gleason, A. E. Collins, G. W. Eggert, J. H. Fratanduono, D. E. Smith, R. F. Galtier, E. Granados, E. Lee, H. J. Nagler, B. Nam, I. Xing, Z. McMahon, M. I. TI Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-PRESSURE; METALS; MATTER; IRON AB Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearance of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid. C1 [Briggs, R.; Gorman, M. G.; Coleman, A. L.; McWilliams, R. S.; McMahon, M. I.] Univ Edinburgh, SUPA, Sch Phys & Astron, Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland. [Briggs, R.; Gorman, M. G.; Coleman, A. L.; McWilliams, R. S.; McMahon, M. I.] Univ Edinburgh, Ctr Sci Extreme Condit, Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland. [McBride, E. E.] European XFEL, Albert Einstein Ring 19, D-22761 Hamburg, Germany. [McGonegle, D.; Wark, J. S.] Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. [Peacock, L.; Rothman, S.; Macleod, S. G.] Atom Weap Estab, Reading RG7 4PR, Berks, England. [Macleod, S. G.] Imperial Coll London, Inst Shock Phys, London SW7 2AZ, England. [Bolme, C. A.; Gleason, A. E.] Los Alamos Natl Lab, Shock & Detonat Phys, POB 1663, Los Alamos, NM 87545 USA. [Collins, G. W.; Eggert, J. H.; Fratanduono, D. E.; Smith, R. F.] Lawrence Livermore Natl Lab, 6000 East Ave, Livermore, CA 94500 USA. [Galtier, E.; Granados, E.; Lee, H. J.; Nagler, B.; Nam, I.; Xing, Z.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [McMahon, M. I.] Res Complex Harwell, Didcot OX11 0FA, Oxon, England. RP Briggs, R (reprint author), Univ Edinburgh, SUPA, Sch Phys & Astron, Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland.; Briggs, R (reprint author), Univ Edinburgh, Ctr Sci Extreme Condit, Mayfield Rd, Edinburgh EH9 3JZ, Midlothian, Scotland. OI Bolme, Cynthia/0000-0002-1880-271X FU EPSRC [EP/J017256/1, EP/J017051/1]; LLNS [B595954]; VolkswagenStiftung; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Science Campaign 2 at Los Alamos National Laboratory; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [SF00515]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Diamond Light Source (DLS) FX M.I.M. and J.S.W. would like to acknowledge support from EPSRC under Grants No. EP/J017256/1 and No. EP/J017051/1. D.M. is supported by LLNS under Contract No. B595954. E.E.M. acknowledges funding from the VolkswagenStiftung. The work by J.H.E., D.E.F., R.F.S., and G.W.C. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. C.A.B. would like to acknowledge support from Science Campaign 2 at Los Alamos National Laboratory, which is operated for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The MEC instrument is supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Contract No. SF00515. We would like to thank Carol A. Davis of LLNL for her help in preparing the Sc targets, and Dr Giulia De Lorenzi-Venneri of LANL for supplying the Sc EOS used in Fig. 5. We thank Diamond Light Source (DLS) for provision of synchrotron time and support, and thank Craig Wilson and Dominik Daisenberger of DLS for their help with the experiment. NR 36 TC 0 Z9 0 U1 11 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 9 PY 2017 VL 118 IS 2 AR 025501 DI 10.1103/PhysRevLett.118.025501 PG 6 WC Physics, Multidisciplinary SC Physics GA EH7AU UT WOS:000391926000012 PM 28128621 ER PT J AU Colangelo, G Lanz, S Leutwyler, H Passemar, E AF Colangelo, Gilberto Lanz, Stefan Leutwyler, Heinrich Passemar, Emilie TI eta -> 3 pi: Study of the Dalitz Plot and Extraction of the Quark Mass Ratio Q SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHIRAL PERTURBATION-THEORY; PI-PI SCATTERING; DECAY; ETA->3-PI AB The eta -> 3 pi amplitude is sensitive to the quark mass difference m(u) - m(d) and offers a unique way to determine the quark mass ratio Q(2) equivalent to (m(s)(2) - m(ud)(2))/(m(d)(2) - m(u)(2)) from experiment. We calculate the amplitude dispersively and fit the KLOE Collaboration data on the charged mode, varying the subtraction constants in the range allowed by chiral perturbation theory. The parameter-free predictions obtained for the neutral Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Our representation of the transition amplitude implies Q = 22.0 +/- 0.7. C1 [Colangelo, Gilberto; Lanz, Stefan; Leutwyler, Heinrich] Univ Bern, Inst Theoret Phys, Albert Einstein Ctr Fundamental Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. [Passemar, Emilie] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Passemar, Emilie] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA. [Passemar, Emilie] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, Newport News, VA 23606 USA. RP Colangelo, G (reprint author), Univ Bern, Inst Theoret Phys, Albert Einstein Ctr Fundamental Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. FU Schweizerischer Nationalfonds; U.S. Department of Energy [DE-AC05-06OR23177] FX We thank P. Adlarson, J. Bijnens, L. Caldeira Balkestahl, I. Danilkin, J. Gasser, K. Kampf, B. Kubis, A. Kupsc, S. Prakhov, A. Rusetsky, and P. Stoffer for useful information. This work is supported in part by Schweizerischer Nationalfonds and the U.S. Department of Energy (Contract No. DE-AC05-06OR23177). NR 35 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 9 PY 2017 VL 118 IS 2 AR 022001 DI 10.1103/PhysRevLett.118.022001 PG 5 WC Physics, Multidisciplinary SC Physics GA EH7AU UT WOS:000391926000006 PM 28128611 ER PT J AU Forst, M Beyerlein, KR Mankowsky, R Hu, W Mattoni, G Catalano, S Gibert, M Yefanov, O Clark, JN Frano, A Glownia, JM Chollet, M Lemke, H Moser, B Collins, SP Dhesi, SS Caviglia, AD Triscone, JM Cavalleri, A AF Foerst, M. Beyerlein, K. R. Mankowsky, R. Hu, W. Mattoni, G. Catalano, S. Gibert, M. Yefanov, O. Clark, J. N. Frano, A. Glownia, J. M. Chollet, M. Lemke, H. Moser, B. Collins, S. P. Dhesi, S. S. Caviglia, A. D. Triscone, J. -M. Cavalleri, A. TI Multiple Supersonic Phase Fronts Launched at a Complex-Oxide Heterointerface SO PHYSICAL REVIEW LETTERS LA English DT Article ID NDNIO3 THIN-FILMS; METAL-INSULATOR; PEROVSKITES; TRANSITION AB Selective optical excitation of a substrate lattice can drive phase changes across heterointerfaces. This phenomenon is a nonequilibrium analogue of static strain control in heterostructures and may lead to new applications in optically controlled phase change devices. Here, we make use of time-resolved nonresonant and resonant x-ray diffraction to clarify the underlying physics and to separate different microscopic degrees of freedom in space and time. We measure the dynamics of the lattice and that of the charge disproportionation in NdNiO3, when an insulator-metal transition is driven by coherent lattice distortions in the LaAlO3 substrate. We find that charge redistribution propagates at supersonic speeds from the interface into the NdNiO3 film, followed by a sonic lattice wave. When combined with measurements of magnetic disordering and of the metal-insulator transition, these results establish a hierarchy of events for ultrafast control at complex-oxide heterointerfaces. C1 [Foerst, M.; Mankowsky, R.; Hu, W.; Cavalleri, A.] Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany. [Foerst, M.; Beyerlein, K. R.; Mankowsky, R.; Hu, W.; Yefanov, O.; Clark, J. N.; Cavalleri, A.] Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany. [Beyerlein, K. R.; Yefanov, O.] DESY, D-22607 Hamburg, Germany. [Mattoni, G.; Caviglia, A. D.] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Catalano, S.; Gibert, M.; Triscone, J. -M.] Univ Geneva, Dept Quantum Matter Phys, CH-1211 Geneva, Switzerland. [Clark, J. N.] SLAC Natl Accelerator Lab, Stanford Pulse Inst, Menlo Pk, CA 94025 USA. [Frano, A.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Frano, A.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Glownia, J. M.; Chollet, M.; Lemke, H.] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. [Moser, B.; Collins, S. P.; Dhesi, S. S.] Diamond Light Source, Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England. [Cavalleri, A.] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England. [Lemke, H.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Forst, M (reprint author), Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany.; Forst, M (reprint author), Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany. EM michael.foerst@mpsd.mpg.de; andrea.cavalleri@mpsd.mpg.de RI Forst, Michael/D-8924-2012; Hu, Wanzheng/K-1171-2016; Lemke, Henrik Till/N-7419-2016 OI Lemke, Henrik Till/0000-0003-1577-8643 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; European Research Council under the European Union's Seventh Framework Program (FP7)/ERC Grant [319286]; Swiss National Science Foundation through Division II FX Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Also, we acknowledge the provision of beam time by Diamond Light Source under Proposal No. NT-11118. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC Grant Agreement No. 319286 (Q-MAC). The work was further supported by the Swiss National Science Foundation through Division II. NR 23 TC 0 Z9 0 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 9 PY 2017 VL 118 IS 2 AR 027401 DI 10.1103/PhysRevLett.118.027401 PG 6 WC Physics, Multidisciplinary SC Physics GA EH7AU UT WOS:000391926000018 PM 28128616 ER PT J AU Levine, DS Tilley, TD Andersen, RA AF Levine, Daniel S. Tilley, T. Don Andersen, Richard A. TI Evidence for the Existence of Group 3 Terminal Methylidene Complexes SO ORGANOMETALLICS LA English DT Article ID C-H ACTIVATION; SCANDIUM CARBENE COMPLEXES; ALKYLIDENE COMPLEXES; IMIDO COMPLEX; STRUCTURAL-CHARACTERIZATION; BOND ACTIVATION; REACTIVITY; ELIMINATION; 1ST; INTERCONVERSION AB Terminal group 3 methylidene complexes are generated by thermolysis of monoanionic PNP-supported scandium and yttrium dialkyl complexes. The reaction mechanism has been probed by deuterium-labeling experiments and DFT calculations. Abstraction of a y-hydrogen from one alkyl group by the other affords a metal-lacyclobutane that undergoes [2 + 2] cycloreversion, analogous to a key step in the olefin metathesis reaction, to generate a methylidene complex and isobutene. The resulting methylidene complex dimerizes in the case of scandium and decomposes to a mixture of products in the case of yttrium. C1 [Levine, Daniel S.; Tilley, T. Don; Andersen, Richard A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Levine, Daniel S.; Tilley, T. Don; Andersen, Richard A.] Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Tilley, TD; Andersen, RA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Tilley, TD; Andersen, RA (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu; raandersen@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF; National Institutes of Health [S10-RR027172]; [NSF CHE-0840505] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. D.S.L. acknowledges support of an NSF Graduate Research Fellowship. We thank Christophe Coperet for helpful discussions. We also acknowledge the National Institutes of Health for funding of the ChexRay X-ray crystallographic facility (College of Chemistry, University of California, Berkeley) under grant no. S10-RR027172. Computations were carried out at the University of California, Berkeley, Molecular Graphics and Computation Facility under grant no. NSF CHE-0840505. NR 45 TC 4 Z9 4 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 EI 1520-6041 J9 ORGANOMETALLICS JI Organometallics PD JAN 9 PY 2017 VL 36 IS 1 BP 80 EP 88 DI 10.1021/acs.organomet.6b00394 PG 9 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA EH4ZF UT WOS:000391781700011 ER PT J AU Sturm, FP Tong, XM Palacios, A Wright, TW Zalyubovskaya, I Ray, D Shivaram, N Martin, F Belkacem, A Ranitovic, P Weber, T AF Sturm, F. P. Tong, X. M. Palacios, A. Wright, T. W. Zalyubovskaya, I. Ray, D. Shivaram, N. Martin, F. Belkacem, A. Ranitovic, P. Weber, Th. TI Mapping and controlling ultrafast dynamics of highly excited H-2 molecules by VUV-IR pump-probe schemes SO PHYSICAL REVIEW A LA English DT Article ID GENERATION; IONIZATION; PULSES; FIELD AB We used ultrashort femtosecond vacuum ultraviolet (VUV) and infrared (IR) pulses in a pump-probe scheme to map the dynamics and nonequilibrium dissociation channels of excited neutral H-2 molecules. A nuclear wave packet is created in the B-1 Sigma(+)(u) state of the neutral H-2 molecule by absorption of the ninth harmonic of the driving infrared laser field. Due to the large stretching amplitude of the molecule excited in the B-1 Sigma(+)(u) electronic state, the effective H-2(+) ionization potential changes significantly as the nuclear wave packet vibrates in the bound, highly electronically and vibrationally excited B potential-energy curve. We probed such dynamics by ionizing the excited neutral molecule using time-delayed VUV-or-IR radiation. We identified the nonequilibrium dissociation channels by utilizing three-dimensional momentum imaging of the ion fragments. We found that different dissociation channels can be controlled, to some extent, by changing the IR laser intensity and by choosing the wavelength of the probe laser light. Furthermore, we concluded that even in a benchmark molecular system such as H-2(*), the interpretation of the nonequilibrium multiphoton and multicolor ionization processes is still a challenging task, requiring intricate theoretical analysis. C1 [Sturm, F. P.; Wright, T. W.; Zalyubovskaya, I.; Ray, D.; Shivaram, N.; Belkacem, A.; Ranitovic, P.; Weber, Th.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Sturm, F. P.] Goethe Univ Frankfurt, Inst Kernphys, Max von Laue Str 1, D-60438 Frankfurt, Germany. [Tong, X. M.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. [Palacios, A.; Martin, F.] Univ Autonoma Madrid, Dept Quim, E-28049 Madrid, Spain. [Martin, F.] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain. [Martin, F.] Inst Madrileo Estudios Avanzados Nanociencia IMDE, Madrid 28049, Spain. [Ranitovic, P.] ETH, Lab Phys Chem, CH-8093 Zurich, Switzerland. RP Sturm, FP; Ranitovic, P (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.; Sturm, FP (reprint author), Goethe Univ Frankfurt, Inst Kernphys, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM fpsturm@lbl.gov; pranitovic@lbl.gov RI Tong, Xiao-Min/A-2748-2011 OI Tong, Xiao-Min/0000-0003-4898-3491 FU Studienstiftung des deutschen Volkes; European Research Council [290853]; MINECO [FIS2013-42002-R]; Japan Society for the Promotion of Science; Interdisciplinary Computational Science Program in Center for Computational Sciences, University of Tsukuba; U.S. Department of Energy [DE-AC02-05CH11231] FX We acknowledge many fruitful discussions and advice from R. Dorner, M. S. Schoffler, L. Ph. Schmidt, and Wei Cao. We are indebted to O. Jagutzki and A. Czasch from Roentdek GmbH and T. Jahnke from Cronologic GmbH for outstanding support for their momentum imaging detectors readout and software. F.S. acknowledges financial support by Studienstiftung des deutschen Volkes. A.P. and F.M. acknowledge the European COST Action XLIC CM1204, the European Research Council Advanced Grant XCHEM No. 290853, and the MINECO Project No. FIS2013-42002-R. X.M.T. was supported by a Grand-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and Interdisciplinary Computational Science Program in Center for Computational Sciences, University of Tsukuba. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. NR 31 TC 0 Z9 0 U1 15 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD JAN 9 PY 2017 VL 95 IS 1 AR 012501 DI 10.1103/PhysRevA.95.012501 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA EH5XB UT WOS:000391845200008 ER PT J AU Sen, T Fischer, W AF Sen, Tanaji Fischer, Wolfram TI Diffusion measurement from observed transverse beam echoes SO PHYSICAL REVIEW ACCELERATORS AND BEAMS LA English DT Article AB We study the measurement of transverse diffusion through beam echoes. We revisit earlier observations of echoes in the Relativistic Heavy Ion Collider and apply an updated theoretical model to these measurements. We consider three possible models for the diffusion coefficient and show that only one is consistent with measured echo amplitudes and pulse widths. This model allows us to parameterize the diffusion coefficients as functions of the bunch charge. We demonstrate that echoes can be used to measure diffusion much quicker than present methods and could be useful to a variety of hadron synchrotrons. C1 [Sen, Tanaji] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. [Fischer, Wolfram] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sen, T (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, Batavia, IL 60510 USA. EM tsen@fnal.gov FU U.S. Department of Energy [DE-AC02-07CH11359, DE-AC02-98CH10886] FX Fermilab is operated by Fermi Research Alliance, LLC under U.S. Department of Energy Contract No. DE-AC02-07CH11359. Brookhaven National Laboratory is operated by Brookhaven Science Associates, LLC under U.S. Department of Energy Contract No. DE-AC02-98CH10886. NR 20 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9888 J9 PHYS REV ACCEL BEAMS JI Phys. Rev. Accel. Beams PD JAN 9 PY 2017 VL 20 IS 1 AR 011001 DI 10.1103/PhysRevAccelBeams.20.011001 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EH7GM UT WOS:000391941000001 ER PT J AU Hau-Riege, SP Weisheit, J AF Hau-Riege, Stefan P. Weisheit, Jon TI Microfield dynamics in dense hydrogen plasmas with high-Z impurities SO PHYSICAL REVIEW E LA English DT Article ID STRONGLY COUPLED PLASMAS; ELECTRIC-FIELD DISTRIBUTIONS; MOLECULAR-DYNAMICS; CHARGED POINT; SIMULATIONS; MATTER; POTENTIALS; MODEL; GAS AB We use large-scale classical molecular dynamics to determine microfield properties for several dense plasma mixtures. By employing quantum statistical potentials (QSPs) to regularize the Coulomb interaction, our simulations follow motions of electrons as well as ions for times long enough to track relaxation phenomena involving both types of particles. Coulomb coupling, relative to temperature, of different pairs of species in the hot, dense matter being simulated ranges from weak to strong. We first study the effect of such coupling differences, along with composition and QSP differences, on the roles of electrons and various mixture components in determining probability distributions of instantaneous, total microfields experienced by the ions. Then, we address two important dynamical questions: (1) How is the quasistatic part of the total field to be extracted from the time dependent simulation data? (2) Under what conditions does the commonly used approximation of ions with fixed Yukawa-like screening by free electrons accurately describe quasistatic fields? We identify a running, short-time average of the total field at each ion as its slowly evolving, quasistatic part. We consider several ways to specify the averaging interval, and note the influence of ion dynamics in this issue. When all species are weakly coupled, the quasistatic fields have probability distributions agreeing well with those we obtain from simulations of Yukawa-screened ions. However, agreement deteriorates as the coupling between high-Z ions increases well beyond unity, principally because the Yukawa model tends to underestimate the true screening of close high-Z pairs. Examples of this fact are given, and some consequences for the high-field portions of probability distributions are discussed. C1 [Hau-Riege, Stefan P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Weisheit, Jon] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU US Department of Energy [DE-AC52-07NA27344] FX We thank Dr. C. A. Iglesias and Dr. J. W. Dufty for very useful comments regarding a preliminary version of this work, and Dr. F. R. Graziani for his continuing interest and support. Our research was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 51 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JAN 9 PY 2017 VL 95 IS 1 AR 013204 DI 10.1103/PhysRevE.95.013204 PG 17 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EH6DT UT WOS:000391863600012 PM 28208318 ER PT J AU Rana, V Lim, H Melvin, J Glimm, J Cheng, B Sharp, DH AF Rana, V. Lim, H. Melvin, J. Glimm, J. Cheng, B. Sharp, D. H. TI Mixing with applications to inertial-confinement-fusion implosions SO PHYSICAL REVIEW E LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; RICHTMYER-MESHKOV INSTABILITIES; EQUATION-OF-STATE; NONLINEAR EVOLUTION; MOLECULAR-DYNAMICS; DENSE HYDROGEN; SIMULATIONS; IONIZATION; TURBULENT; MODEL AB Approximate one-dimensional (1D) as well as 2D and 3D simulations are playing an important supporting role in the design and analysis of future experiments at National Ignition Facility. This paper is mainly concerned with 1D simulations, used extensively in design and optimization. We couple a 1D buoyancy-drag mix model for the mixing zone edges with a 1D inertial confinement fusion simulation code. This analysis predicts that National Ignition Campaign (NIC) designs are located close to a performance cliff, so modeling errors, design features (fill tube and tent) and additional, unmodeled instabilities could lead to significant levels of mix. The performance cliff we identify is associated with multimode plastic ablator (CH) mix into the hot-spot deuterium and tritium (DT). The buoyancy-drag mix model is mode number independent and selects implicitly a range of maximum growth modes. Our main conclusion is that single effect instabilities are predicted not to lead to hot-spot mix, while combined mode mixing effects are predicted to affect hot-spot thermodynamics and possibly hot-spot mix. Combined with the stagnation Rayleigh-Taylor instability, we find the potential for mix effects in combination with the ice-to-gas DT boundary, numerical effects of Eulerian species CH concentration diffusion, and ablation-driven instabilities. With the help of a convenient package of plasma transport parameters developed here, we give an approximate determination of these quantities in the regime relevant to the NIC experiments, while ruling out a variety of mix possibilities. Plasma transport parameters affect the 1D buoyancy-drag mix model primarily through its phenomenological drag coefficient as well as the 1D hydro model to which the buoyancy-drag equation is coupled. C1 [Rana, V.; Lim, H.; Melvin, J.; Glimm, J.] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Cheng, B.; Sharp, D. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rana, V (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. FU Los Alamos National Laboratory [JL3K00 NYSB0000]; Office of Science of the U.S. Department of Energy [DF-AC02005CH11231] FX This manuscript has been coauthored by Los Alamos National Laboratory, under Contract No. JL3K00 NYSB0000, Inertial Confinement Fusion Campaign, Los Alamos preprint LA-UR 16-20021. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DF-AC02005CH11231. This research used computational resources of Lawrence Livermore National Laboratory. It is a pleasure to thank Lee Collins and Joel Kress for helpful comments. NR 71 TC 0 Z9 0 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JAN 9 PY 2017 VL 95 IS 1 AR 013203 DI 10.1103/PhysRevE.95.013203 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EH6DT UT WOS:000391863600011 PM 28208418 ER PT J AU Ando, D Gopinathan, A AF Ando, David Gopinathan, Ajay TI Cooperative Interactions between Different Classes of Disordered Proteins Play a Functional Role in the Nuclear Pore Complex of Baker's Yeast SO PLOS ONE LA English DT Article ID IMPORTIN-BETA; MOLECULAR-DYNAMICS; POLYMER BRUSHES; FG NUCLEOPORINS; REPEAT REGIONS; MESSENGER-RNA; TRANSPORT; ARCHITECTURE; BINDING; TRANSLOCATION AB Nucleocytoplasmic transport is highly selective, efficient, and is regulated by a poorly understood mechanism involving hundreds of disordered FG nucleoporin proteins (FG nups) lining the inside wall of the nuclear pore complex (NPC). Previous research has concluded that FG nups in Baker's yeast (S. cerevisiae) are present in a bimodal distribution, with the "Forest Model" classifying FG nups as either di-block polymer like "trees" or single-block polymer like "shrubs". Using a combination of coarse-grained modeling and polymer brush modeling, the function of the di-block FG nups has previously been hypothesized in the Di-block Copolymer Brush Gate (DCBG) model to form a higher-order polymer brush architecture which can open and close to regulate transport across the NPC. In this manuscript we work to extend the original DCBG model by first performing coarse grained simulations of the single-block FG nups which confirm that they have a single block polymer structure rather than the di-block structure of tree nups. Our molecular simulations also demonstrate that these single-block FG nups are likely cohesive, compact, collapsed coil polymers, implying that these FG nups are generally localized to their grafting location within the NPC. We find that adding a layer of single-block FG nups to the DCBG model increases the range of cargo sizes which are able to translocate the pore through a cooperative effect involving single-block and di-block FG nups. This effect can explain the puzzling connection between single-block FG nup deletion mutants in S. cerevisiae and the resulting failure of certain large cargo transport through the NPC. Facilitation of large cargo transport via single-block and di-block FG nup cooperativity in the nuclear pore could provide a model mechanism for designing future biomimetic pores of greater applicability. C1 [Ando, David] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. [Ando, David] Joint BioEnergy Inst, Emeryville, CA USA. [Gopinathan, Ajay] Univ Calif, Dept Phys, Merced, CA 95340 USA. RP Gopinathan, A (reprint author), Univ Calif, Dept Phys, Merced, CA 95340 USA. EM agopinathan@ucmerced.edu FU National Science Foundation (NSF) through the NSF CREST Center for Cellular and Biomolecular Machines [EF-1038697, NSF-DBI-0960480, NSF-DMS-1616926, NSF-HRD-1547848]; James S. McDonnell Foundation; National Science Foundation NSF grant [EF-1038697]; NSF grant [DMS-1616926]; NSF-CREST: Center for Cellular and Bio-molecular Machines at UC Merced [NSF-HRD-1547848] FX This work was partially supported by the following National Science Foundation (NSF: http://www.nsf.gov/) grants EF-1038697 (to AG), NSF-DBI-0960480 (to AG), NSF-DMS-1616926 (to AG), through the NSF CREST Center for Cellular and Biomolecular Machines (NSF-HRD-1547848 (to AG)) and a James S. McDonnell Foundation Award (to AG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; This work was partially supported by National Science Foundation NSF grant EF-1038697 and NSF grant DMS-1616926, a James S. McDonnell Foundation Award and in part by the NSF-CREST: Center for Cellular and Bio-molecular Machines at UC Merced (NSF-HRD-1547848). NR 53 TC 0 Z9 0 U1 8 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 9 PY 2017 VL 12 IS 1 AR e0169455 DI 10.1371/journal.pone.0169455 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH5WO UT WOS:000391843900036 PM 28068389 ER PT J AU Castelle, CJ Brown, CT Thomas, BC Williams, KH Banfield, JF AF Castelle, Cindy J. Brown, Christopher T. Thomas, Brian C. Williams, Kenneth H. Banfield, Jillian F. TI Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the Candidate Phyla Radiation SO SCIENTIFIC REPORTS LA English DT Article ID MULTIPLE SEQUENCE ALIGNMENT; PYROCOCCUS-FURIOSUS; QUINONE OXIDOREDUCTASES; COA DEHYDROGENASE; ELECTRON-TRANSFER; COMMUNITY; AQUIFER; GENOME; GENES; DIVERSITY AB The Candidate Phyla Radiation (CPR) is a large group of bacteria, the scale of which approaches that of all other bacteria. CPR organisms are inferred to depend on other community members for many basic cellular building blocks and all appear to be obligate anaerobes. To date, there has been no evidence for any significant respiratory capacity in an organism from this radiation. Here we report a curated draft genome for 'Candidatus Parcunitrobacter nitroensis' a member of the Parcubacteria (OD1) superphylum of the CPR. The genome encodes versatile energy pathways, including fermentative and respiratory capacities, nitrogen and fatty acid metabolism, as well as the first complete electron transport chain described for a member of the CPR. The sequences of all of these enzymes are highly divergent from sequences found in other organisms, suggesting that these capacities were not recently acquired from non-CPR organisms. Although the wide respiration-based repertoire points to a different lifestyle compared to other CPR bacteria, we predict similar obligate dependence on other organisms or the microbial community. The results substantially expand the known metabolic potential of CPR bacteria, although sequence comparisons indicate that these capacities are very rare in members of this radiation. C1 [Castelle, Cindy J.; Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Brown, Christopher T.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Williams, Kenneth H.; Banfield, Jillian F.] Lawrence Berkeley Natl Lab, Earth & Environm Sci Div, Berkeley, CA 94720 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.; Banfield, JF (reprint author), Lawrence Berkeley Natl Lab, Earth & Environm Sci Div, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu FU U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX DNA sequencing was conducted at the DOE Joint Genome Institute, a DOE Office of Science User Facility, via the Community Science Program. This material is partially based upon work supported through the Lawrence Berkeley National Laboratory's Genomes-to-Watershed Scientific Focus Area. The U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research funded the work under contract DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory; operated by the University of California). DNA sequencing was conducted at the DOE Joint Genome Institute, a DOE Office of Science User Facility, via the Community Science Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 69 TC 0 Z9 0 U1 5 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 9 PY 2017 VL 7 AR 40101 DI 10.1038/srep40101 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH1KH UT WOS:000391525000001 PM 28067254 ER PT J AU Ha, PT Lindemann, SR Shi, L Dohnalkova, AC Fredrickson, JK Madigan, MT Beyenal, H AF Ha, Phuc T. Lindemann, Stephen R. Shi, Liang Dohnalkova, Alice C. Fredrickson, James K. Madigan, Michael T. Beyenal, Haluk TI Syntrophic anaerobic photosynthesis via direct interspecies electron transfer SO NATURE COMMUNICATIONS LA English DT Article ID GEOBACTER-SULFURREDUCENS BIOFILMS; ELECTRICITY PRODUCTION; FUEL-CELLS; DIGESTION; REDUCTION; TRANSPORT; BACTERIA; EXCHANGE; METHANE; STRAIN AB Microbial phototrophs, key primary producers on Earth, use H2O, H-2, H2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call 'syntrophic anaerobic photosynthesis'. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii does not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. This process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities. C1 [Ha, Phuc T.; Beyenal, Haluk] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Lindemann, Stephen R.; Fredrickson, James K.] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Shi, Liang] China Univ Geosci, Sch Environm Studies, Dept Biol Sci & Technol, Wuhan 430074, Hubei, Peoples R China. [Dohnalkova, Alice C.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Madigan, Michael T.] Southern Illinois Univ, Dept Microbiol, Carbondale, IL 62901 USA. RP Beyenal, H (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM beyenal@wsu.edu FU Genomic Science Program (GSP) of the Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE); Department of Energy's Office of Biological and Environmental Research FX This research was supported by the Genomic Science Program (GSP) of the Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE) and is a contribution of the Pacific Northwest National Laboratory (PNNL) Foundational Scientific Focus Area. Part of this research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research, located at the Pacific Northwest National Laboratory. We acknowledge the staff at the Franceschi Microscopy and Imaging Center (Washington State University, WA, USA) for their assistance and for providing the facilities for image analysis. We also thank William B. Chrisler (PNNL) for conducting the flow cytometry. NR 34 TC 0 Z9 0 U1 43 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN 9 PY 2017 VL 8 AR 13924 DI 10.1038/ncomms13924 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG9HD UT WOS:000391368600001 PM 28067226 ER PT J AU Lantz, G Mansart, B Grieger, D Boschetto, D Nilforoushan, N Papalazarou, E Moisan, N Perfetti, L Jacques, VLR Le Bolloc'h, D Laulhe, C Ravy, S Rueff, JP Glover, TE Hertlein, MP Hussain, Z Song, S Chollet, M Fabrizio, M Marsi, M AF Lantz, G. Mansart, B. Grieger, D. Boschetto, D. Nilforoushan, N. Papalazarou, E. Moisan, N. Perfetti, L. Jacques, V. L. R. Le Bolloc'h, D. Laulhe, C. Ravy, S. Rueff, J. -P. Glover, T. E. Hertlein, M. P. Hussain, Z. Song, S. Chollet, M. Fabrizio, M. Marsi, M. TI Ultrafast evolution and transient phases of a prototype out-of-equilibrium Mott-Hubbard material SO NATURE COMMUNICATIONS LA English DT Article ID CR-DOPED V2O3; TRANSITION; TIME; VIBRATIONS; STATE; SPIN; VO2 AB The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott-Hubbard material V2O3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a(1g) orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A(1g) coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems. C1 [Lantz, G.; Mansart, B.; Nilforoushan, N.; Papalazarou, E.; Moisan, N.; Jacques, V. L. R.; Le Bolloc'h, D.; Ravy, S.; Marsi, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Phys Solides, F-91405 Orsay, France. [Lantz, G.] Swiss Fed Inst Technol, Dept Phys, Inst Quantum Elect, CH-8093 Zurich, Switzerland. [Grieger, D.; Fabrizio, M.] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy. [Boschetto, D.] Ecole Polytech, CNRS, ENSTA, LOA, F-91761 Palaiseau, France. [Perfetti, L.] Ecole Polytech CEA, SSM CNRS UMR 7642, Lab Solides Irradies, F-91128 Palaiseau, France. [Laulhe, C.; Ravy, S.; Rueff, J. -P.] Synchrotron SOLEIL, LOrme Merisiers, BP 48, F-91192 Gif Sur Yvette, France. [Laulhe, C.] Univ Paris Saclay, Univ Paris Sud, F-91405 Orsay, France. [Rueff, J. -P.] UPMC Univ Paris 06, Sorbonne Univ, CNRS UMR 7614, Lab Chim Phys Matiere & Rayonnement, 11 Rue Pierre & Marie Curie, F-75005 Paris, France. [Glover, T. E.; Hertlein, M. P.; Hussain, Z.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Song, S.; Chollet, M.] SLAC Natl Accelerator Lab, LCLS, Menlo Pk, CA 94025 USA. RP Lantz, G; Marsi, M (reprint author), Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Phys Solides, F-91405 Orsay, France.; Lantz, G (reprint author), Swiss Fed Inst Technol, Dept Phys, Inst Quantum Elect, CH-8093 Zurich, Switzerland.; Fabrizio, M (reprint author), Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy. EM lantzg@phys.ethz.ch; fabrizio@sissa.it; marino.marsi@u-psud.fr RI fabrizio, michele/N-3762-2014 OI fabrizio, michele/0000-0002-2943-3278 FU EU [280555]; ERC [692670]; Investissement d'Avenir Labex PALM [ANR-10-LABX-0039-PALM]; Equipex ATTOLAB [ANR11-EQPX0005-ATTO-LAB]; Region Ile-de-France through the programme DIM OxyMORE; French Procurement Agency (DGA) of the French Ministry of Defense; U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX This work has been partly supported by the EU under the contract Go Fast (Grant No. 280555) and under the ERC project No. 692670. G.L., N.M., L.P., E.P. and M.M. acknowledge financial support by Investissement d'Avenir Labex PALM (ANR-10-LABX-0039-PALM), by the Equipex ATTOLAB (ANR11-EQPX0005-ATTO-LAB) and by the Region Ile-de-France through the programme DIM OxyMORE. D.B. acknowledges the financial support of the French Procurement Agency (DGA) of the French Ministry of Defense. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. NR 38 TC 0 Z9 0 U1 22 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JAN 9 PY 2017 VL 8 AR 13917 DI 10.1038/ncomms13917 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG9GL UT WOS:000391366800001 PM 28067228 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Knunz, V Konig, A Krammer, M Kratschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schieck, J Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Suarez Gonzalez, J Alderweireldt, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Van de Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N Bruyn, I Deroover, K Heracleous, N Keaveney, J Lowette, S Maes, M Moreels, L Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Van Parijs, I Barria, P Brun, H Caillol, C Clerbaux, B De Lentdecker, G Fasanella, G Favart, L Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Maerschalk, T Marinov, A Pernie, L Randle-conde, A Reis, T Seva, T Vander Velde, C Vanlaer, P Yonamine, R Zenoni, F Zhang, F Beernaert, K Benucci, L Cimmino, A Costantini, S Crucy, S Dobur, D Fagot, A Garcia, G Gul, M Mccartin, J Ocampo Rios, AA Poyraz, D Ryckbosch, D Salva, S Sigamani, M Strobbe, N Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bondu, O Brochet, S Bruno, G Caudron, A Ceard, L Da Silveira, GG Delaere, C Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Mertens, A Musich, M Nuttens, C Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Vidal Marono, M Beliy, N Hammad, GH Alda, WL Alves, FL Alves, GA Brito, L Martins, MC Hamer, M Hensel, C Herrera, CM Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, E Damiao, DJ Martins, CD De Souza, S Guativa, LMH Malbouisson, H Figueiredo, D Mundim, L Nogima, H Da Silva, WL Santoro, A Sznajder, A Manganote, EJ Vilela Pereira, A Ahuja, S Bernardes, CA Santos, AD Dogra, S Tomei, TRP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Romero Abad, D Ruiz Vargas, JC Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Shaheen, SM Spiezia, A Tao, J Wang, C Wang, Z Zhang, H Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Avila, C Cabrera, A Sierra, LF Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Micanovic, S Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Bodlak, M Finger, M Finger, M Abdelalim, A Awad, A El Sawy, M Mahrous, A Radi, A Calpas, B Kadastik, M Murumaa, M Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Dahms, T Davignon, O Filipovic, N Florent, A de Cassagnac, RG Lisniak, S Mastrolorenzo, L Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Ruiz Alvarez, JD Sabes, D Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Toriashvili, T Tsamalaidze, Z Autermann, C Beranek, S Edelhoff, M Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schulte, JF Verlage, T Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Pook, T Radziej, M Reithler, H Rieger, M Scheuch, F Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Aldaya Martin, M Asin, I Bartosik, N Behnke, O Behrens, U Bell, AJ Borras, K Burgmeier, A Campbell, A Choudhury, S Costanza, F Diez Pardos, C Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Gallo, E Garay Garcia, J Geiser, A Gizhko, A Gunnellini, P Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trippkewitz, KD Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gonzalez, D Gorner, M Haller, J Hoffmann, M Hoing, RS Junkes, A Klanner, R Kogler, R Kovalchuk, N Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Nowatschin, D Ott, J Pantaleo, F Peiffer, T Perieanu, A Pietsch, N Poehlsen, J Rathjens, D Sander, C Scharf, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schwandt, J Sola, V Stadie, H Steinbruck, G Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Akbiyik, M Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T Colombo, F De Boer, W Descroix, A Dierlamm, A Fink, S Frensch, F Friese, R Giffels, M Gilbert, A Haitz, D Hartmann, F Heindl, SM Husemann, U Katkov, I Kornmayer, A Lobelle Pardo, P Maier, B Mildner, H Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Sieber, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hazi, A Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Szillasi, Z Bartok, M Makovec, A Raics, P Trocsanyi, ZL Ujvari, B Mal, P Mandal, K Sahoo, DK Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Gupta, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Kumar, A Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Bhattacharya, S Chatterjee, K Dey, S Dutta, S Jain, S Majumdar, N Modak, A Mondal, K Mukherjee, S Mukhopadhyay, S Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Abdulsalam, A Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Mahakud, B Maity, M Majumder, G Mazumdar, K Mitra, S Mohanty, GB Parida, B Sarkar, T Sur, N Sutar, B Wickramage, N Chauhan, S Dube, S Kothekar, K Sharma, S Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Benvenuti, A Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Cappello, G Chiorboli, M Costa, S Di Mattia, A Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Primavera, F Calvelli, V Ferro, F Lo Vetere, M Monge, MR Robutti, E Tosi, S Brianza, L Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Tabarelli de Fatis, T Buontempo, S Cavallo, N Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Merola, M Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Benato, L Bisello, D Boletti, A Branca, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Kanishchev, K Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Ventura, S Zanetti, M Zotto, P Zucchetta, A Zumerle, G Braghieri, A Magnani, A Montagna, P Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Ciocci, M Dell'Orso, R Donato, S Fedi, G Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Pinna Angioni, GL Ravera, F Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Zanetti, A Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Sakharov, A Son, DC Brochero Cifuentes, JA Kim, H Kim, TJ Song, S Choi, S Go, Y Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, K Lee, KS Lee, S Park, SK Roh, Y Yoo, HD Choi, M Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Ryu, MS Choi, Y Goh, J Kim, D Kwon, E Lee, J Yu, I Dudenas, V Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MAB Mohamad Idris, F Wan Abdullah, WAT Yusli, MN Casimiro Linares, E Castilla-Valdez, H De La Cruz-Burelo, E Heredia-De La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Carrillo Moreno, S Valencia, F Pedraza, I Salazar Ibarguen, HA Morelos Pineda, A Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Leonardo, N Lloret Iglesias, L Nguyen, F Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Vlasov, E Zhokin, A Bylinkin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Baskakov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Korneeva, N Lokhtin, I Myagkov, I Obraztsov, S Perfilov, M Savrin, V Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Milosevic, J Rekovic, V Maestre, JA Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Del Valle, A Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, O Lopez, SG Hernandez, JM Josa, MI De Martino, E Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Albajar, C de Trocniz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Folgueras, S Caballero, I Cortezon, EP Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Manzano, PD Duarte Campderros, J Fernandez, M Garcia-Ferrero, J Gomez, G Lopez Virto, A Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Piedra Gomez, J Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Trevisani, N Vila, I Vilar Cortabitarte, R Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Berruti, GM Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Castello, R Cerminara, G D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dorney, B du Pree, T Dunser, M Dupont, N Elliott-Peisert, A Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Kortelainen, MJ Kousouris, K Krajczar, K Lecoq, P Lourenco, C Lucchini, MT Magini, N Malgeri, L Mannelli, M Martelli, A Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Nemallapudi, MV Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Piparo, D Racz, A Rolandi, G Rovere, M Ruan, M Sakulin, H Schafer, C Schwick, C Seidel, M Sharma, A Silva, P Simon, M Sphicas, P Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Triossi, A Tsirou, A Veres, GI Wardle, N Wohri, HK Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Casal, B Dissertori, G Dittmar, M Donega, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lustermann, W Mangano, B Marionneau, M Martinez Ruiz del Arbol, P Masciovecchio, M Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrozzi, L Quittnat, M Rossini, M Starodumov, A Takahashi, M Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF Chiochia, V De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Robmann, P Ronga, FJ Salerno, D Yang, Y Cardaci, M Chen, KH Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Yu, SS Kumar, A Bartek, R Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Grundler, U Hou, WS Hsiung, Y Liu, YF Lu, RS Minano Moya, M Petrakou, E Tsai, JF Tzeng, YM Asavapibhop, B Kovitanggoon, K Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Cerci, S Demiroglu, ZS Dozen, C Dumanoglu, I Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Kayis Topaksu, A Onengut, G Ozdemir, K Ozturk, S Tali, B Topakli, H Vergili, M Zorbilmez, C Akin, IV Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Gulmez, E Kaya, M Kaya, O Yetkin, EA Yetkin, T Cakir, A Cankocak, K Sen, S Vardarli, FI Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T Seif El Nasr-storey, S Senkin, S Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Calligaris, L Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Cripps, N Dauncey, P Davies, G De Wit, A Della Negra, M Dunne, P Elwood, A Ferguson, W Fulcher, J Futyan, D Hall, G Iles, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Richards, A Rose, A Seez, C Tapper, A Uchida, K Vazquez Acosta, M Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P Arcaro, D Avetisyan, A Bose, T Fantasia, C Gastler, D Lawson, P Rankin, D Richardson, C Rohlf, J St John, J Sulak, L Zou, D Alimena, J Berry, E Bhattacharya, S Cutts, D Dhingra, N Ferapontov, A Garabedian, A Hakala, J Heintz, U Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Syarif, R Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Ivova Paneva, M Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Olmedo Negrete, M Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Derdzinski, M Holzner, A Kelley, R Klein, D Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wurthwein, F Yagil, A Zevi Della Porta, G Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Franco Sevilla, M Geffert, P George, C Golf, F Gouskos, L Gran, J Incandela, J Mccoll, N Mullin, SD Richman, J Stuart, D Suarez, I West, C Yoo, J Anderson, D Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Pierini, M Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Calamba, A Carlson, B Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Jensen, F Johnson, A Krohn, M Mulholland, T Nauenberg, U Stenson, K Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Nicolas Kaufman, G Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Soffi, L Sun, W Tan, SM Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Wittich, P Abdullin, S Albrow, M Anderson, J Apollinari, G Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hasegawa, S Hirschauer, J Hu, Z Jayatilaka, B Jindariani, S Johnson, M Joshi, U Jung, AW Klima, B Kreis, B Kwan, S Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T Lopes De Sa, R Lykken, J Maeshima, K Marraffino, JM Martinez Outschoorn, VI Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Weber, HA Whitbeck, A Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carnes, A Carver, M Curry, D Das, S Di Giovanni, GP Field, RD Furic, IK Gleyzer, SV Hugon, J Konigsberg, J Korytov, A Low, JF Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Rossin, R Shchutska, L Snowball, M Sperka, D Terentyev, N Thomas, L Wang, J Wang, S Yelton, J Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Weinberg, M Baarmand, MM Bhopatkar, V Colafranceschi, S Hohlmann, M Kalakhety, H Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Sandoval Gonzalez, ID Silkworth, C Turner, P Varelas, N Wu, Z Zakaria, M Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tiras, E Wetzel, J Yi, K Anderson, I Barnett, BA Blumenfeld, B Eminizer, N Fehling, D Feng, L Gritsan, AV Maksimovic, P Martin, C Osherson, M Roskes, J Sady, A Sarica, U Swartz, M Xiao, M Xin, Y You, C Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Majumder, D Malek, M Murray, M Sanders, S Stringer, R Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Baty, A Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Gomez Ceballos, G Goncharov, M Gulhan, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Narayanan, S Niu, X Paus, C Ralph, D Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Dahmes, B Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Klapoetke, K Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Gonzalez Suarez, R Kamalieddin, R Keller, J Knowlton, D Kravchenko, I Meier, F Monroy, J Ratnikov, F Siado, JE Snow, GR Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Rappoccio, S Roozbahani, B Alverson, G Barberis, E Baumgartel, D Chasco, M Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T Teixeira De Lima, R Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Trovato, M Velasco, M Brinkerhoff, A Dev, N Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Lynch, S Marinelli, N Meng, F Mueller, C Musienko, Y Pearson, T Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Ji, W Kotov, K Ling, TY Liu, B Luo, W Puigh, D Rodenburg, M Winer, BL Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Palmer, C Piroue, P Saka, H Stickland, D Tully, C Zuranski, A Malik, S Barnes, VE Benedetti, D Bortoletto, D Gutay, L Jha, MK Jones, M Jung, K Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Eshaq, Y Ferbel, T Galanti, M Garcia-Bellido, A Han, J Harel, A Hindrichs, O Khukhunaishvili, A Petrillo, G Tan, P Verzetti, M Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hughes, E Kaplan, S Kunnawalkam Elayavalli, R Lath, A Nash, K Panwalkar, S Park, M Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Riley, G Rose, K Spanier, S York, A Bouhali, O Castaneda Hernandez, A Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Gilmore, J Kamon, T Krutelyov, V Mueller, R Osipenkov, I Pakhotin, Y Patel, R Perloff, A Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Mao, Y Melo, A Ni, H Sheldon, P Snook, B Tuo, S Velkovska, J Xu, Q Arenton, MW Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Sinthuprasith, T Sun, X Wang, Y Wolfe, E Wood, J Xia, F Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Gomber, B Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ruggles, T Sarangi, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Ero, J. Flechl, M. Friedl, M. Fruhwirth, R. Ghete, V. M. Hartl, C. Hormann, N. Hrubec, J. Jeitler, M. Knunz, V. Konig, A. Krammer, M. Kratschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schieck, J. Schofbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Suarez Gonzalez, J. Alderweireldt, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. Bruyn, I. De Deroover, K. Heracleous, N. Keaveney, J. Lowette, S. Maes, M. Moreels, L. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Van Parijs, I. Barria, P. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Fasanella, G. Favart, L. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Maerschalk, T. Marinov, A. Pernie, L. Randle-conde, A. Reis, T. Seva, T. Vander Velde, C. Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Crucy, S. Dobur, D. Fagot, A. Garcia, G. Gul, M. Mccartin, J. Ocampo Rios, A. A. Poyraz, D. Ryckbosch, D. Salva, S. Sigamani, M. Strobbe, N. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Mertens, A. Musich, M. Nuttens, C. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Vidal Marono, M. Beliy, N. Hammad, G. H. Alda Junior, W. L. Alves, F. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Hamer, M. Hensel, C. Mora Herrera, C. Moraes, A. Pol, M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. De Souza Santos, A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Shaheen, S. M. Spiezia, A. Tao, J. Wang, C. Wang, Z. Zhang, H. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Ribeiro Cipriano, P. M. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Micanovic, S. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Bodlak, M. Finger, M. Finger, M., Jr. Abdelalim, A. A. Awad, A. El Sawy, M. Mahrous, A. Radi, A. Calpas, B. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. Hamel de Monchenault, G. Jarry, P. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Dahms, T. Davignon, O. Filipovic, N. Florent, A. Granier de Cassagnac, R. Lisniak, S. Mastrolorenzo, L. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Carrillo Montoya, C. A. Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Ruiz Alvarez, J. D. Sabes, D. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Toriashvili, T. Tsamalaidze, Z. Autermann, C. Beranek, S. Edelhoff, M. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schulte, J. F. Verlage, T. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Guth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, F. Sonnenschein, L. Teyssier, D. Thuer, S. Cherepanov, V. Erdogan, Y. Flugge, G. Geenen, H. Geisler, M. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kunsken, A. Lingemann, J. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Aldaya Martin, M. Asin, I. Bartosik, N. Behnke, O. Behrens, U. Bell, A. J. Borras, K. Burgmeier, A. Campbell, A. Choudhury, S. Costanza, F. Diez Pardos, C. Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Gallo, E. Garay Garcia, J. Geiser, A. Gizhko, A. Gunnellini, P. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Roland, B. Sahin, M. O-. Saxena, P. Schoerner-Sadenius, T. Schroder, M. Seitz, C. Spannagel, S. Trippkewitz, K. D. Walsh, R. Wissing, C. Blobel, V. Centis Vignali, M. Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Gonzalez, D. Gorner, M. Haller, J. Hoffmann, M. Hoing, R. S. Junkes, A. Klanner, R. Kogler, R. Kovalchuk, N. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Nowatschin, D. Ott, J. Pantaleo, F. Peiffer, T. Perieanu, A. Pietsch, N. Poehlsen, J. Rathjens, D. Sander, C. Scharf, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schwandt, J. Sola, V. Stadie, H. Steinbruck, G. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Akbiyik, M. Barth, C. Baus, C. Berger, J. Boser, C. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Descroix, A. Dierlamm, A. Fink, S. Frensch, F. Friese, R. Giffels, M. Gilbert, A. Haitz, D. Hartmann, F. Heindl, S. M. Husemann, U. Katkov, I. Kornmayer, A. Lobelle Pardo, P. Maier, B. Mildner, H. Mozer, M. U. Muller, T. Muller, Th. Plagge, M. Quast, G. Rabbertz, K. Rocker, S. Roscher, F. Sieber, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Wohrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hazi, A. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Szillasi, Z. Bartok, M. Makovec, A. Raics, P. Trocsanyi, Z. L. Ujvari, B. Mal, P. Mandal, K. Sahoo, D. K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Kumar, A. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Bhattacharya, S. Chatterjee, K. Dey, S. Dutta, S. Jain, Sa. Majumdar, N. Modak, A. Mondal, K. Mukherjee, S. Mukhopadhyay, S. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Abdulsalam, A. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Mahakud, B. Maity, M. Majumder, G. Mazumdar, K. Mitra, S. Mohanty, G. B. Parida, B. Sarkar, T. Sur, N. Sutar, B. Wickramage, N. Chauhan, S. Dube, S. Kothekar, K. Sharma, S. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Mohammadi Najafabadi, M. Naseri, M. Paktinat Mehdiabadi, S. Rezaei Hosseinabadi, F. Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Cappello, G. Chiorboli, M. Costa, S. Di Mattia, A. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Primavera, F. Calvelli, V. Ferro, F. Lo Vetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Tabarelli de Fatis, T. Buontempo, S. Cavallo, N. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Merola, M. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Benato, L. Bisello, D. Boletti, A. Branca, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Kanishchev, K. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Ventura, S. Zanetti, M. Zotto, P. Zucchetta, A. Zumerle, G. Braghieri, A. Magnani, A. Montagna, P. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Alunni Solestizi, L. Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Pinna Angioni, G. L. Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Zanetti, A. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Sakharov, A. Son, D. C. Brochero Cifuentes, J. A. Kim, H. Kim, T. J. Song, S. Choi, S. Go, Y. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Park, S. K. Roh, Y. Yoo, H. D. Choi, M. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Goh, J. Kim, D. Kwon, E. Lee, J. Yu, I. Dudenas, V. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Md Ali, M. A. B. Mohamad Idris, F. Wan Abdullah, W. A. T. Yusli, M. N. Casimiro Linares, E. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-De La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Carrillo Moreno, S. Valencia, F. Vazquez Pedraza, I. Salazar Ibarguen, H. A. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beirao Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Leonardo, N. Lloret Iglesias, L. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Vlasov, E. Zhokin, A. Bylinkin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Baskakov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Korneeva, N. Lokhtin, I. Myagkov, I. Obraztsov, S. Perfilov, M. Savrin, V. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Albajar, C. de Trocniz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Palencia Cortezon, E. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. De Castro Manzano, P. Duarte Campderros, J. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Trevisani, N. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Berruti, G. M. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Castello, R. Cerminara, G. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. du Pree, T. Dunser, M. Dupont, N. Elliott-Peisert, A. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Kortelainen, M. J. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Lucchini, M. T. Magini, N. Malgeri, L. Mannelli, M. Martelli, A. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Nemallapudi, M. V. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Piparo, D. Racz, A. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Schafer, C. Schwick, C. Seidel, M. Sharma, A. Silva, P. Simon, M. Sphicas, P. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Triossi, A. Tsirou, A. Veres, G. I. Wardle, N. Wohri, H. K. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lustermann, W. Mangano, B. Marionneau, M. Martinez Ruiz del Arbol, P. Masciovecchio, M. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrozzi, L. Quittnat, M. Rossini, M. Starodumov, A. Takahashi, M. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. Chiochia, V. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Robmann, P. Ronga, F. J. Salerno, D. Yang, Y. Cardaci, M. Chen, K. H. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Yu, S. S. Kumar, Arun Bartek, R. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Grundler, U. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Minano Moya, M. Petrakou, E. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Kovitanggoon, K. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Cerci, S. Demiroglu, Z. S. Dozen, C. Dumanoglu, I. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Kayis Topaksu, A. Onengut, G. Ozdemir, K. Ozturk, S. Tali, B. Topakli, H. Vergili, M. Zorbilmez, C. Akin, I. V. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Gulmez, E. Kaya, M. Kaya, O. Yetkin, E. A. Yetkin, T. Cakir, A. Cankocak, K. Sen, S. Vardarli, F. I. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. Seif El Nasr-storey, S. Senkin, S. Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Calligaris, L. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Cripps, N. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Dunne, P. Elwood, A. Ferguson, W. Fulcher, J. Futyan, D. Hall, G. Iles, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Richards, A. Rose, A. Seez, C. Tapper, A. Uchida, K. Vazquez Acosta, M. Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Arcaro, D. Avetisyan, A. Bose, T. Fantasia, C. Gastler, D. Lawson, P. Rankin, D. Richardson, C. Rohlf, J. St John, J. Sulak, L. Zou, D. Alimena, J. Berry, E. Bhattacharya, S. Cutts, D. Dhingra, N. Ferapontov, A. Garabedian, A. Hakala, J. Heintz, U. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Syarif, R. Breedon, R. Breto, G. Calderon De La Barca Sanchez, M. Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Ivova Paneva, M. Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Olmedo Negrete, M. Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Derdzinski, M. Holzner, A. Kelley, R. Klein, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wurthwein, F. Yagil, A. Zevi Della Porta, G. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Franco Sevilla, M. Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Incandela, J. Mccoll, N. Mullin, S. D. Richman, J. Stuart, D. Suarez, I. West, C. Yoo, J. Anderson, D. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Pierini, M. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Nauenberg, U. Stenson, K. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Nicolas Kaufman, G. Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Sun, W. Tan, S. M. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Wittich, P. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jayatilaka, B. Jindariani, S. Johnson, M. Joshi, U. Jung, A. W. Klima, B. Kreis, B. Kwan, S. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lopes De Sa, R. Lykken, J. Maeshima, K. Marraffino, J. M. Martinez Outschoorn, V. I. Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Weber, H. A. Whitbeck, A. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carnes, A. Carver, M. Curry, D. Das, S. Di Giovanni, G. P. Field, R. D. Furic, I. K. Gleyzer, S. V. Hugon, J. Konigsberg, J. Korytov, A. Low, J. F. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Rossin, R. Shchutska, L. Snowball, M. Sperka, D. Terentyev, N. Thomas, L. Wang, J. Wang, S. Yelton, J. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Colafranceschi, S. Hohlmann, M. Kalakhety, H. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Sandoval Gonzalez, I. D. Silkworth, C. Turner, P. Varelas, N. Wu, Z. Zakaria, M. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Barnett, B. A. Blumenfeld, B. Eminizer, N. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Martin, C. Osherson, M. Roskes, J. Sady, A. Sarica, U. Swartz, M. Xiao, M. Xin, Y. You, C. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Majumder, D. Malek, M. Murray, M. Sanders, S. Stringer, R. Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Baty, A. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Gomez Ceballos, G. Goncharov, M. Gulhan, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Narayanan, S. Niu, X. Paus, C. Ralph, D. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Dahmes, B. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Klapoetke, K. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Gonzalez Suarez, R. Kamalieddin, R. Keller, J. Knowlton, D. Kravchenko, I. Meier, F. Monroy, J. Ratnikov, F. Siado, J. E. Snow, G. R. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Rappoccio, S. Roozbahani, B. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Teixeira De Lima, R. Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Trovato, M. Velasco, M. Brinkerhoff, A. Dev, N. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Lynch, S. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Pearson, T. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Ji, W. Kotov, K. Ling, T. Y. Liu, B. Luo, W. Puigh, D. Rodenburg, M. Winer, B. L. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Saka, H. Stickland, D. Tully, C. Zuranski, A. Malik, S. Barnes, V. E. Benedetti, D. Bortoletto, D. Gutay, L. Jha, M. K. Jones, M. Jung, K. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Harel, A. Hindrichs, O. Khukhunaishvili, A. Petrillo, G. Tan, P. Verzetti, M. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hughes, E. Kaplan, S. Kunnawalkam Elayavalli, R. Lath, A. Nash, K. Panwalkar, S. Park, M. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Riley, G. Rose, K. Spanier, S. York, A. Bouhali, O. Castaneda Hernandez, A. Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Gilmore, J. Kamon, T. Krutelyov, V. Mueller, R. Osipenkov, I. Pakhotin, Y. Patel, R. Perloff, A. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Mao, Y. Melo, A. Ni, H. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Sinthuprasith, T. Sun, X. Wang, Y. Wolfe, E. Wood, J. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Gomber, B. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ruggles, T. Sarangi, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Measurements of the t(t)over-bar production cross section in lepton plus jets final states in pp collisions at 8 and ratio of 8 to 7 cross sections SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID TO-LEADING ORDER; LHC AB A measurement of the top quark pair production () cross section in proton-proton collisions at the centre-of-mass energy of 8 is presented using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.6. This analysis is performed in the decay channels with one isolated, high transverse momentum electron or muon and at least four jets, at least one of which is required to be identified as originating from hadronization of a b quark. The calibration of the jet energy scale and the efficiency of b jet identification are determined from data. The measured cross section is . This measurement is compared with an analysis of 7 data, corresponding to an integrated luminosity of 5.0, to determine the ratio of 8 to 7 cross sections, which is found to be . The measurements are in agreement with QCD predictions up to next-to-next-to-leading order. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Ero, J.; Flechl, M.; Friedl, M.; Fruhwirth, R.; Ghete, V. M.; Hartl, C.; Hormann, N.; Hrubec, J.; Jeitler, M.; Knunz, V.; Konig, A.; Krammer, M.; Kratschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schofbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; Bruyn, I. De; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Maerschalk, T.; Marinov, A.; Pernie, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.] Univ Libre Bruxelles, Brussels, Belgium. [Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.] Catholic Univ Louvain, Louvain, Belgium. [Beliy, N.; Hammad, G. H.] Univ Mons, Mons, Belgium. [Alda Junior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.] Univ Estadual Paulista, Sao Paulo, Brazil. [Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, Sofia, Bulgaria. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.] Inst High Energy Phys, Beijing, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Abdelalim, A. A.; Awad, A.; El Sawy, M.; Mahrous, A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, Palaiseau, France. [Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Strasbourg, CNRS, Inst Pluridisciplinaire Hubert Curien, Univ Haute Alsace Mulhouse,IN2P3, F-CNRS IN2P Strasbourg, France. [Gadrat, S.] CNRS, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.] Univ Lyon 1, Inst Phys Nucl Lyon, CNRS, IN2P3, Villeurbanne, France. [Toriashvili, T.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Tsamalaidze, Z.] Tbilisi State Univ, Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Guth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thuer, S.] Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Flugge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kunsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B3, Aachen, Germany. [Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. O-.; Saxena, P.; Schoerner-Sadenius, T.; Schroder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Gorner, M.; Haller, J.; Hoffmann, M.; Hoing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbruck, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany. [Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Boser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Muller, T.; Muller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Rocker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wohrmann, C.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys INPP, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Bartok, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi, India. [Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.] Tata Inst Fundamental Res, Mumbai, Maharashtra, India. [Chauhan, S.; Dube, S.; Kothekar, K.; Sharma, S.] Indian Inst Sci Educ & Res IISER, Pune, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] INFN, Sez Bari, Bari, Italy. [Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN, Sez Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.] INFN, Sez Firenze, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] INFN, Sez Genova, Genoa, Italy. [Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.] INFN, Sez Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.] INFN, Sez Napoli, Naples, Italy. [Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] INFN, Sez Padova, Padua, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] INFN, Sez Pavia, Pavia, Italy. [Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.] INFN, Sez Perugia, Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] INFN, Sez Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.] INFN, Sez Roma, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] INFN, Sez Torino, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.] INFN, Sez Trieste, Trieste, Italy. [Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.] Kyungpook Natl Univ, Daegu, South Korea. [Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.] Chonbuk Natl Univ, Jeonju, South Korea. [Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Dudenas, V.; Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Bylinkin, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.] PN Lebedev Phys Inst, Moscow, Russia. [Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.] CIEMAT, Madrid, Spain. [Albajar, C.; de Trocniz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; De Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Dunser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schafer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wohri, H. K.; Zagozdzinska, A.; Zeuner, W. D.] CERN, European Org Nucl Res, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Minano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ NTU, Taipei, Taiwan. [Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Dept Phys, Fac Sci, Bangkok, Thailand. [Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle East Tech Univ, Dept Phys, Ankara, Turkey. [Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cakir, A.; Cankocak, K.; Sen, S.] Istanbul Tech Univ, Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.] Imperial Coll, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wurthwein, F.; Yagil, A.; Zevi Della Porta, G.] Univ Calif San Diego, San Diego, CA 92103 USA. [Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.] Univ Colorado Boulder, Boulder, CO USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sa, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.] Univ Illinois, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.] Univ Nebraska Lincoln, Lincoln, NE USA. [Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.] Univ Rochester, Rochester, NY USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI USA. [Bernardes, C. A.; De Souza Santos, A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Univ Bologna, Bologna, Italy. [Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.; Viliani, L.] Univ Florence, Florence, Italy. [Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; Tabarelli de Fatis, T.] Univ Milano Bicocca, Milan, Italy. [Esposito, M.; Iorio, A. O. M.; Sciacca, C.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, Potenza, Italy. [Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Dall'Osso, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.] Univ Trento, Trento, Italy. [Montagna, P.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, Pavia, Italy. [Alunni Solestizi, L.; Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.] Univ Perugia, Perugia, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Donato, S.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.] Univ Piemonte Orientale, Novara, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Adzic, P.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Fruhwirth, R.; Jeitler, M.; Krammer, M.; Schieck, J.; Wulz, C. -E.] Vienna Univ Technol, Vienna, Austria. [Rabady, D.; Merlin, J. A.; Lingemann, J.; Pantaleo, F.; Hartmann, F.; Kornmayer, A.; Mohanty, A. K.; Silvestris, L.; Battilana, C.; Marzocchi, B.; Di Guida, S.; Meola, S.; Paolucci, P.; Zucchetta, A.; Ciangottini, D.; Donato, S.; D'imperio, G.; Traczyk, P.; Arcidiacono, R.; Finco, L.; Candelise, V.; Ulmer, K. A.] CERN, European Org Nucl Res, Geneva, Switzerland. [Zhang, F.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. [Beluffi, C.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Plestina, R.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, Palaiseau, France. [Finger, M.; Finger, M., Jr.; Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Abdelalim, A. A.; Mahrous, A.] Helwan Univ, Cairo, Egypt. [Abdelalim, A. A.] Zewail City Sci & Technol, Zewail, Egypt. [Awad, A.; Radi, A.] Ain Shams Univ, Cairo, Egypt. [Awad, A.; El Sawy, M.; Radi, A.] British Univ Egypt, Cairo, Egypt. [El Sawy, M.] Beni Suef Univ, Bani Sweif, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Toriashvili, T.] Tbilisi State Univ, Tbilisi, Rep of Georgia. [Borras, K.] Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany. [Choudhury, S.] Indian Inst Sci Educ & Res, Bhopal, India. [Gallo, E.] Univ Hamburg, Hamburg, Germany. [Hempel, M.; Karacheban, O.; Lohmann, W.; Marfin, I.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Karancsi, J.] Univ Debrecen, Debrecen, Hungary. [Bartok, M.] Wigner Res Ctr Phys, Budapest, Hungary. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.] Univ Siena, Siena, Italy. [Savoy-Navarro, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Md Ali, M. A. B.] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Mohamad Idris, F.] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia. [Heredia-De La Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Byszuk, A.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Matveev, V.; Musienko, Y.] Inst Nucl Res, Moscow, Russia. [Matveev, V.; Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dubinin, M.] CALTECH, Pasadena, CA 91125 USA. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Orfanelli, S.] Natl Tech Univ Athens, Athens, Greece. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Cerci, S.; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Newbold, D. M.; Lucas, R.] Rutherford Appleton Lab, Didcot, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Vazquez Acosta, M.] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.; Castaneda Hernandez, A.] Texas A&M Univ Qatar, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan, Armenia. RI Lokhtin, Igor/D-7004-2012; Della Ricca, Giuseppe/B-6826-2013; Fernandez Menendez, Javier/B-6550-2014; Manganote, Edmilson/K-8251-2013; TUVE', Cristina/P-3933-2015; Goh, Junghwan/Q-3720-2016; Konecki, Marcin/G-4164-2015 OI Della Ricca, Giuseppe/0000-0003-2831-6982; Fernandez Menendez, Javier/0000-0002-5213-3708; TUVE', Cristina/0000-0003-0739-3153; Goh, Junghwan/0000-0002-1129-2083; Konecki, Marcin/0000-0001-9482-4841 FU Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; Research Promotion Foundation, Cyprus; Ministry of Education and Research, Estonian Research Council; European Regional Development Fund, Estonia; Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat lI'Energie Atomique et Energies Alternatives / CEA, France; Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation, and National Innovation Office, Hungary; Department of Atomic Energy and the Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; Lithuanian Academy of Sciences; Ministry of Education, and University of Malaya (Malaysia); Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); Ministry of Business, Innovation and Employment, New Zealand; Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna;; Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; Science and Technology Facilities Council, UK; US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); Leventis Foundation; the A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR project [20108T4XTM]; Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); Welch Foundation FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses.; Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT236 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P.; Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation. NR 71 TC 0 Z9 0 U1 12 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN 7 PY 2017 VL 77 IS 1 BP 1 EP 27 AR 15 DI 10.1140/epjc/s10052-016-4504-z PG 27 WC Physics, Particles & Fields SC Physics GA EI0BK UT WOS:000392136500001 PM 28260978 ER PT J AU Ramirez-Hernandez, A Peters, BL Schneider, L Andreev, M Schieber, JD Muller, M de Pablo, JJ AF Ramirez-Hernandez, Abelardo Peters, Brandon L. Schneider, Ludwig Andreev, Marat Schieber, Jay D. Mueller, Marcus de Pablo, Juan J. TI A multi-chain polymer slip-spring model with fluctuating number of entanglements: Density fluctuations, confinement, and phase separation SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COARSE-GRAINED MODELS; LINK MODEL; DYNAMICS; DIFFUSION; RHEOLOGY; MELTS; FLOW; SOFT AB Coarse grained simulation approaches provide powerful tools for the prediction of the equilibrium properties of polymeric systems. Recent efforts have sought to develop coarse-graining strategies capable of predicting the non-equilibrium behavior of entangled polymeric materials. Slip-link and slip-spring models, in particular, have been shown to be capable of reproducing several key aspects of the linear response and rheology of polymer melts. In this work, we extend a previously proposed multi-chain slip-spring model in a way that correctly incorporates the effects of the fluctuating environment in which polymer segments are immersed. The model is used to obtain the equation of state associated with the slip-springs, and the results are compared to those of related numerical approaches and an approximate analytical expression. The model is also used to examine a polymer melt confined into a thin film, where an inhomogeneous distribution of polymer segments is observed, and the corresponding inhomogeneities associated with density fluctuations are reflected on the spatial slip-spring distribution. C1 [Ramirez-Hernandez, Abelardo; de Pablo, Juan J.] Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. [Ramirez-Hernandez, Abelardo; Peters, Brandon L.; Andreev, Marat; de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Schneider, Ludwig; Mueller, Marcus] Univ Gottingen, Inst Theoret Phys, D-37077 Gottingen, Germany. [Schieber, Jay D.] IIT, Ctr Mol Study Condensed Soft Matter, Chicago, IL 60616 USA. RP Ramirez-Hernandez, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA.; Ramirez-Hernandez, A (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. EM abelardo@anl.gov; mmueller@theorie.physik.uni-goettingen.de; depablo@uchicago.edu RI Ramirez-Hernandez, Abelardo/A-1717-2011; OI Ramirez-Hernandez, Abelardo/0000-0002-3569-5223; Schneider, Ludwig/0000-0002-3910-8217 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; German Science Foundation [DFG Mu 1674/16-1]; NIST through a CHiMaD postdoctoral award FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. L.S. and M.M. thank the German Science Foundation for financial support (No. DFG Mu 1674/16-1). Marat Andreev gratefully acknowledges the support from NIST through a CHiMaD postdoctoral award. We gratefully acknowledge the computing resources provided on Blues, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 33 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JAN 7 PY 2017 VL 146 IS 1 AR 014903 DI 10.1063/1.4972582 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EJ7VO UT WOS:000393431000033 PM 28063448 ER PT J AU Anderson, NA Zhang, Q Hupalo, M Rosenberg, RA Tringides, MC Vaknin, D AF Anderson, Nathaniel A. Zhang, Qiang Hupalo, Myron Rosenberg, Richard A. Tringides, Michael C. Vaknin, David TI Magnetite nano-islands on silicon-carbide with graphene SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID IRON-OXIDE NANOPARTICLES; LITHIUM ION BATTERIES; CIRCULAR-DICHROISM; ANODE MATERIAL; FE3O4; SIZE; GAMMA-FE2O3; TRANSITION; CAPACITY; XMCD AB X-ray magnetic circular dichroism (XMCD) measurements of iron nano-islands grown on graphene and covered with a Au film for passivation reveal that the oxidation through defects in the Au film spontaneously leads to the formation of magnetite nano-particles (i.e., Fe3O4). The Fe nano-islands (20 and 75 monolayers; MLs) are grown on epitaxial graphene formed by thermally annealing 6H-SiC(0001) and subsequently covered, in the growth chamber, with nominal 20 layers of Au. Our X-ray absorption spectroscopy and XMCD measurements at applied magnetic fields show that the thin film (20 ML) is totally converted to magnetite, whereas the thicker film (75 ML) exhibits properties of magnetite but also those of pure metallic iron. Temperature dependence of the XMCD signal (of both samples) shows a clear transition at T-V approximate to 120K consistent with the Verwey transition of bulk magnetite. These results have implications on the synthesis of magnetite nano-crystals and also on their regular arrangements on functional substrates such as graphene. Published by AIP Publishing. C1 [Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron; Tringides, Michael C.; Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron; Tringides, Michael C.; Vaknin, David] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Rosenberg, Richard A.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA. RP Anderson, NA (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.; Anderson, NA (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]; U.S. DOE [DE-AC02-06CH11357] FX Ames Laboratory is operated by Iowa State University by support from the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, is supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 26 TC 0 Z9 0 U1 12 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 7 PY 2017 VL 121 IS 1 AR 014310 DI 10.1063/1.4973571 PG 5 WC Physics, Applied SC Physics GA EI9PA UT WOS:000392839400030 ER PT J AU Cummings, M Shirato, N Kersell, H Chang, H Rosenmann, D Freeland, JW Miller, D Hla, SW Rose, V AF Cummings, Marvin Shirato, Nozomi Kersell, Heath Chang, Hao Rosenmann, Daniel Freeland, John W. Miller, Dean Hla, Saw-Wai Rose, Volker TI Controlled modulation of hard and soft X-ray induced tunneling currents utilizing coaxial metal-insulator-metal probe tips SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM; SYNCHROTRON-RADIATION; MICROSCOPY; SPECTROSCOPY; LAYERS AB The effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can be drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface. Published by AIP Publishing. C1 [Cummings, Marvin; Shirato, Nozomi; Freeland, John W.; Rose, Volker] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Hla, Saw-Wai; Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, Nanosci & Technol Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Kersell, Heath; Chang, Hao; Hla, Saw-Wai] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA. RP Cummings, M; Shirato, N; Freeland, JW; Rose, V (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA.; Kersell, H; Chang, H; Rosenmann, D; Miller, D; Hla, SW; Rose, V (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Nanosci & Technol Div, 9700 S Cass Ave, Argonne, IL 60439 USA.; Kersell, H; Chang, H; Hla, SW (reprint author), Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA. EM marvincummings@gmail.com; nshirato@aps.anl.gov; HKersell@lbl.gov; hc000211@ohio.edu; rosenmann@anl.gov; freeland@anl.gov; miller@anl.gov; shla@anl.gov; vrose@anl.gov RI Rose, Volker/B-1103-2008 OI Rose, Volker/0000-0002-9027-1052 FU Office of Science Early Career Research Program through the Division of Scientific User Facilities, Office of Basic Energy Sciences of the U.S. Department of Energy [SC70705]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was funded by the Office of Science Early Career Research Program through the Division of Scientific User Facilities, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant No. SC70705. Use of the Advanced Photon Source and the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 28 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 7 PY 2017 VL 121 IS 1 AR 015305 DI 10.1063/1.4973675 PG 6 WC Physics, Applied SC Physics GA EI9PA UT WOS:000392839400053 ER PT J AU Lopes, RF Carmo, D Colauto, F Ortiz, WA de Andrade, AMH Johansen, TH Baggio-Saitovitch, E Pureur, P AF Lopes, R. F. Carmo, D. Colauto, F. Ortiz, W. A. de Andrade, A. M. H. Johansen, T. H. Baggio-Saitovitch, E. Pureur, P. TI Spin texture on top of flux avalanches in Nb/Al2O3/Co thin film heterostructures SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SKYRMION LATTICE; MGB2 FILMS; CRYSTAL AB We report on magneto-optical imaging, magnetization, Hall effect, and magneto-resistance experiments in Nb/Al2O3/Co thin film heterostructures. The magneto-transport measurements were performed in samples where electrical contacts were placed on the Co layer. The magnetic field is applied perpendicularly to the plane of the film and gives rise to abrupt flux penetration of dendritic form. A magnetization texture is imprinted in the Co layer in perfect coincidence with these ramifications. The spin domains that mimic the vortex dendrites are stable upon the field removal. Moreover, the imprinted spin structure remains visible up to room temperature. In the region of the field-temperature diagram where flux instabilities are known to occur in bare Nb films, irregular jumps are observed in the magnetic hysteresis and large amplitude noise is detected in the magneto-resistance and Hall resistivity data when measured as a function of the field. Published by AIP Publishing. C1 [Lopes, R. F.; de Andrade, A. M. H.; Pureur, P.] Univ Fed Rio Grande do Sul, Inst Fis, POB 15051, BR-91501970 Porto Alegre, RS, Brazil. [Carmo, D.; Colauto, F.; Ortiz, W. A.] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil. [Colauto, F.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Johansen, T. H.] Univ Oslo, Dept Phys, POB 1048 Blindern, N-0316 Oslo, Norway. [Johansen, T. H.] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia. [Baggio-Saitovitch, E.] Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil. RP Lopes, RF (reprint author), Univ Fed Rio Grande do Sul, Inst Fis, POB 15051, BR-91501970 Porto Alegre, RS, Brazil. EM rovan.lopes@ufrgs.br; ppureur@if.ufrgs.br FU Brazilian agency "Conselho Nacional de Pesquisas Cientificas e Tecnologicas" (CNPq) FX We acknowledge Dr. Eduardo M. Bittar from the Centro Brasileiro de Pesquisas Fisicas (CBPF) for invaluable help during the realization of the magneto-transport experiments. One of the authors (RFL) acknowledges the Brazilian agency "Conselho Nacional de Pesquisas Cientificas e Tecnologicas" (CNPq) for financial support. The agencies "Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)" and "Fundacao de Amparo a Pesquisa do Estado de Sao Paulo" (FAPESP) are also acknowledged. NR 34 TC 0 Z9 0 U1 12 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 7 PY 2017 VL 121 IS 1 AR 013905 DI 10.1063/1.4973529 PG 6 WC Physics, Applied SC Physics GA EI9PA UT WOS:000392839400017 ER PT J AU Massabuau, FCP Chen, P Horton, MK Rhode, SL Ren, CX O'Hanlon, TJ Kovacs, A Kappers, MJ Humphreys, CJ Dunin-Borkowski, RE Oliver, RA AF Massabuau, F. C-P. Chen, P. Horton, M. K. Rhode, S. L. Ren, C. X. O'Hanlon, T. J. Kovacs, A. Kappers, M. J. Humphreys, C. J. Dunin-Borkowski, R. E. Oliver, R. A. TI Carrier localization in the vicinity of dislocations in InGaN SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MULTIPLE-QUANTUM WELLS; GAN; ENERGY; SEMICONDUCTORS; EFFICIENCY; SAPPHIRE; DEFECTS; STRAIN; LAYERS AB We present a multi-microscopy study of dislocations in InGaN, whereby the same threading dislocation was observed under several microscopes (atomic force microscopy, scanning electron microscopy, cathodoluminescence imaging and spectroscopy, transmission electron microscopy), and its morphological optical and structural properties directly correlated. We achieved this across an ensemble of defects large enough to be statistically significant. Our results provide evidence that carrier localization occurs in the direct vicinity of the dislocation through the enhanced formation of In-N chains and atomic condensates, thus limiting non-radiative recombination of carriers at the dislocation core. We highlight that the localization properties in the vicinity of threading dislocations arise as a consequence of the strain field of the individual dislocation and the additional strain field building between interacting neighboring dislocations. Our study therefore suggests that careful strain and dislocation distribution engineering may further improve the resilience of InGaN-based devices to threading dislocations. Besides providing a new understanding of dislocations in InGaN, this paper presents a proof-of-concept for a methodology which is relevant to many problems in materials science. Published by AIP Publishing. C1 [Massabuau, F. C-P.; Chen, P.; Ren, C. X.; O'Hanlon, T. J.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A.] Univ Cambridge, Dept Mat Sci & Met, Cambridge, England. [Horton, M. K.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Horton, M. K.; Rhode, S. L.] Imperial Coll London, Dept Mat, London, England. [Kovacs, A.; Dunin-Borkowski, R. E.] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, Julich, Germany. [Kovacs, A.; Dunin-Borkowski, R. E.] Forschungszentrum Julich, Peter Grunberg Inst, Julich, Germany. RP Massabuau, FCP (reprint author), Univ Cambridge, Dept Mat Sci & Met, Cambridge, England. EM fm350@cam.ac.uk FU European Research Council under the European Community [279361]; European Union Seventh Framework Programme [312483-ESTEEM2]; EPSRC Doctoral Prize Awards; Cambridge Philosophical Society; Lindemann Fellowship FX This project is funded in part by the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 279361 (MACONS). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure InitiativeI3). F.M. would also like to acknowledge the financial support from EPSRC Doctoral Prize Awards and Cambridge Philosophical Society. M.H. would like to acknowledge support from the Lindemann Fellowship. Datasets for the figures in this paper can be found at https://www.repository.cam.ac.uk/handle/1810/253410. NR 42 TC 0 Z9 0 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 7 PY 2017 VL 121 IS 1 AR 013104 DI 10.1063/1.4973278 PG 9 WC Physics, Applied SC Physics GA EI9PA UT WOS:000392839400005 ER PT J AU Specht, PE Weihs, TP Thadhani, NN AF Specht, Paul E. Weihs, Timothy P. Thadhani, Naresh N. TI Shock compression response of cold-rolled Ni/Al multilayer composites SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FIBER-REINFORCED COMPOSITES; STRESS WAVE-PROPAGATION; LAYERED COMPOSITES; CONSTITUTIVE MODEL; HARMONIC-WAVES; SAPPHIRE; HUGONIOT; SYSTEMS AB Uniaxial strain, plate-on-plate impact experiments were performed on cold-rolled Ni/Al multilayer composites and the resulting Hugoniot was determined through time-resolved measurements combined with impedance matching. The experimental Hugoniot agreed with that previously predicted by two dimensional (2D) meso-scale calculations [Specht et al., J. Appl. Phys. 111, 073527 (2012)]. Additional 2D meso-scale simulations were performed using the same computational method as the prior study to reproduce the experimentally measured free surface velocities and stress profiles. These simulations accurately replicated the experimental profiles, providing additional validation for the previous computational work. Published by AIP Publishing. C1 [Specht, Paul E.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Specht, Paul E.; Thadhani, Naresh N.] Georgia Inst Technol, Dept Mat Sci & Engn, Atlanta, GA 30332 USA. [Weihs, Timothy P.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. RP Specht, PE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Specht, PE (reprint author), Georgia Inst Technol, Dept Mat Sci & Engn, Atlanta, GA 30332 USA. EM pespech@sandia.gov FU MURI Grant [N00014-07-1-0740]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Special thanks to Adam Stover for fabricating the multilayer samples. This work was funded through MURI Grant No. N00014-07-1-0740, Dr. Cliff Bedford program manager, and involved the University of California at San Diego (Lead), the Johns Hopkins University, and the Georgia Institute of Technology. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 37 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 7 PY 2017 VL 121 IS 1 AR 015110 DI 10.1063/1.4973578 PG 6 WC Physics, Applied SC Physics GA EI9PA UT WOS:000392839400047 ER PT J AU Wingert, MC Jiang, Z Chen, RK Cai, SQ AF Wingert, Matthew C. Jiang, Zhang Chen, Renkun Cai, Shengqiang TI Strong size-dependent stress relaxation in electrospun polymer nanofibers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TISSUE ENGINEERING APPLICATIONS; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; PARTIAL DISENTANGLEMENT; TENSILE DEFORMATION; ELASTIC-MODULUS; FIBERS; POLYETHYLENE; ENERGY; NANOCOMPOSITES AB Electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with the dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation. Published by AIP Publishing. C1 [Wingert, Matthew C.; Chen, Renkun; Cai, Shengqiang] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Jiang, Zhang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Chen, RK; Cai, SQ (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. EM rkchen@ucsd.edu; shqcai@ucsd.edu FU National Science Foundation [DMR-1508420]; FEI Company; DOE Office of Science [DE-AC02-06CH11357] FX This work was supported by National Science Foundation (DMR-1508420). FIB work was performed in Nano3 cleanroom at UCSD, a CALIT-2 facility. We thank FEI Company and Dr. B. Fruhberger and R. Anderson of Nano3 for the support and assistance on FIB. This research also used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 52 TC 0 Z9 0 U1 13 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JAN 7 PY 2017 VL 121 IS 1 AR 015103 DI 10.1063/1.4973486 PG 6 WC Physics, Applied SC Physics GA EI9PA UT WOS:000392839400040 ER PT J AU Albert, A Anderson, B Bechtol, K Drlica-Wagner, A Meyer, M Sanchez-Conde, M Strigari, L Wood, M Abbott, TMC Abdalla, FB Benoit-Levy, A Bernstein, GM Bernstein, RA Bertin, E Brooks, D Burke, DL Rosell, AC Kind, MC Carretero, J Crocce, M Cunha, CE D'Andrea, CB da Costa, LN Desai, S Diehl, HT Dietrich, JP Doel, P Eifler, TF Evrard, AE Neto, AF Finley, DA Flaugher, B Fosalba, P Frieman, J Gerdes, DW Goldstein, DA Gruen, D Gruendl, RA Honscheid, K James, DJ Kent, S Kuehn, K Kuropatkin, N Lahav, O Li, TS Maia, MAG March, M Marshall, JL Martini, P Miller, CJ Miquel, R Neilsen, E Nord, B Ogando, R Plazas, AA Reil, K Romer, AK Rykoff, ES Sanchez, E Santiago, B Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Vikram, V Walker, AR Wechsler, RH AF Albert, A. Anderson, B. Bechtol, K. Drlica-Wagner, A. Meyer, M. Sanchez-Conde, M. Strigari, L. Wood, M. Abbott, T. M. C. Abdalla, F. B. Benoit-Levy, A. Bernstein, G. M. Bernstein, R. A. Bertin, E. Brooks, D. Burke, D. L. Rosell, A. Carnero Kind, M. Carrasco Carretero, J. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Desai, S. Diehl, H. T. Dietrich, J. P. Doel, P. Eifler, T. F. Evrard, A. E. Fausti Neto, A. Finley, D. A. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. W. Goldstein, D. A. Gruen, D. Gruendl, R. A. Honscheid, K. James, D. J. Kent, S. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Maia, M. A. G. March, M. Marshall, J. L. Martini, P. Miller, C. J. Miquel, R. Neilsen, E. Nord, B. Ogando, R. Plazas, A. A. Reil, K. Romer, A. K. Rykoff, E. S. Sanchez, E. Santiago, B. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Vikram, V. Walker, A. R. Wechsler, R. H. CA FERMI-LAT Collaboration DES Collaboration TI SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT SO ASTROPHYSICAL JOURNAL LA English DT Article DE dark matter; galaxies: dwarf; gamma rays: galaxies ID LARGE-AREA TELESCOPE; DWARF SPHEROIDAL GALAXY; PAN-STARRS1 3-PI SURVEY; GAMMA-RAY EMISSION; ENERGY SURVEY DATA; ALL-SKY SURVEY; GLOBULAR-CLUSTER; SOURCE CATALOG; TRIANGULUM II; RETICULUM II AB We search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted gamma-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are DM-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each similar to 2 sigma local) for gamma-ray emission in excess of the background. However, the ensemble of derived gamma-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance < 1 sigma). Our analysis has increased sensitivity compared to the analysis of 15 confirmed dSphs by Ackermann et al. The observed constraints on the DM annihilation cross section are statistically consistent with the background expectation, improving by a factor of similar to 2 for large DM masses (m(DM, b<(b)over bar>) greater than or similar to 1 TeV and m(DM, tau+tau-) greater than or similar to 70 GeV) and weakening by a factor of similar to 1.5 at lower masses relative to previously observed limits. C1 [Albert, A.; Wood, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Anderson, B.; Meyer, M.; Sanchez-Conde, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Anderson, B.; Meyer, M.; Sanchez-Conde, M.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Bechtol, K.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bechtol, K.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Drlica-Wagner, A.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Kent, S.; Kuropatkin, N.; Neilsen, E.; Nord, B.; Soares-Santos, M.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Strigari, L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Strigari, L.; Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Cerro Tololo Interamer Observ, Natl Opt Astron Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.; Lahav, O.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Benoit-Levy, A.; Bertin, E.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Bernstein, G. M.; Eifler, T. F.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Burke, D. L.; Cunha, C. E.; Gruen, D.; Rykoff, E. S.; Wechsler, R. H.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Burke, D. L.; Gruen, D.; Reil, K.; Rykoff, E. S.; Wechsler, R. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rosell, A. Carnero; Fausti Neto, A.; Maia, M. A. G.; Ogando, R.; Santiago, B.; Sobreira, F.] Lab Interinst eAstron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, Brazil. [Rosell, A. Carnero; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Crocce, M.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, J.; Miquel, R.] Barcelona Inst Sci & Technol, Inst Fisica Altes Energies, Campus UAB, E-08193 Barcelona, Spain. [D'Andrea, C. B.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Desai, S.; Dietrich, J. P.] Excellence Cluster Univ, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Martini, P.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Rec & Estud Avancats, E-08010 Barcelona, Spain. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, Madrid, Spain. [Santiago, B.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Wechsler, R. H.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. RP Albert, A; Wood, M (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.; Bechtol, K (reprint author), Univ Wisconsin, Dept Phys, Madison, WI 53706 USA.; Bechtol, K (reprint author), Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA.; Drlica-Wagner, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.; Strigari, L (reprint author), Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA.; Strigari, L (reprint author), Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. EM amalbert@lanl.gov; keith.bechtol@icecube.wisc.edu; kadrlica@fnal.gov; strigari@physics.tamu.edu; mdwood@slac.stanford.edu RI Ogando, Ricardo/A-1747-2010; OI Ogando, Ricardo/0000-0003-2120-1154; Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658 FU U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; ERDF funds from the European Union; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University FX Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the DES. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234, some of which include ERDF funds from the European Union.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. NR 82 TC 2 Z9 2 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 6 PY 2017 VL 834 IS 2 AR 110 DI 10.3847/1538-4357/834/2/110 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK1HZ UT WOS:000393677700004 ER PT J AU Blagorodnova, N Kotak, R Polshaw, J Kasliwal, MM Cao, Y Cody, AM Doran, GB Elias-Rosa, N Fraser, M Fremling, C Gonzalez-Fernandez, C Harmanen, J Jencson, J Kankare, E Kudritzki, RP Kulkarni, SR Magnier, E Manulis, I Masci, FJ Mattila, S Nugent, P Ochner, P Pastorello, A Reynolds, T Smith, K Sollerman, J Taddia, F Terreran, G Tomasella, L Turatto, M Vreeswijk, PM Wozniak, P Zaggia, S AF Blagorodnova, N. Kotak, R. Polshaw, J. Kasliwal, M. M. Cao, Y. Cody, A. M. Doran, G. B. Elias-Rosa, N. Fraser, M. Fremling, C. Gonzalez-Fernandez, C. Harmanen, J. Jencson, J. Kankare, E. Kudritzki, R. -P. Kulkarni, S. R. Magnier, E. Manulis, I. Masci, F. J. Mattila, S. Nugent, P. Ochner, P. Pastorello, A. Reynolds, T. Smith, K. Sollerman, J. Taddia, F. Terreran, G. Tomasella, L. Turatto, M. Vreeswijk, P. M. Wozniak, P. Zaggia, S. TI COMMON ENVELOPE EJECTION FOR A LUMINOUS RED NOVA IN M101 SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; novae, cataclysmic variables; stars: individual (M101 OT2015-1, PSN J14021678+5426205); stars: massive; stars: winds, outflows ID V838 MONOCEROTIS; SN 2008S; NGC 300; PHOTOMETRIC CALIBRATION; OPTICAL TRANSIENTS; V4332 SAGITTARII; SPACE-TELESCOPE; BLUE VARIABLES; CORE-COLLAPSE; UGC 2773-OT AB We present the results of optical, near-infrared, and mid-infrared observations of M101 OT2015-1 (PSN J14021678+ 5426205), a luminous red transient in the Pinwheel galaxy (M101), spanning a total of 16 years. The light curve showed two distinct peaks with absolute magnitudes M-r <= -12.4 and M-r similar or equal to -12, on 2014 November 11 and 2015 February 17, respectively. The spectral energy distributions during the second maximum show a cool outburst temperature of approximate to 3700 K and low expansion velocities (approximate to -300 km s(-1)) for the H I, Ca II, Ba II, and K I lines. From archival data spanning 15-8 years before the outburst, we find a single source consistent with the optically discovered transient, which we attribute to being the progenitor; it has properties consistent with being an F-type yellow supergiant with L similar to 8.7 x 10(4) L-circle dot, T-eff approximate to 7000. K, and an estimated mass of M1= 18 +/- 1 M-circle dot. This star has likely just finished the H-burning phase in the core, started expanding, and is now crossing the Hertzsprung gap. Based on the combination of observed properties, we argue that the progenitor is a binary system, with the more evolved system overfilling the Roche lobe. Comparison with binary evolution models suggests that the outburst was an extremely rare phenomenon, likely associated with the ejection of the common envelope of a massive star. The initial mass of the primary fills the gap between the merger candidates V838 Mon (5-10 M-circle dot) and NGC. 4490-OT. (30M(circle dot)). C1 [Blagorodnova, N.; Kasliwal, M. M.; Cao, Y.; Jencson, J.; Kulkarni, S. R.; Masci, F. J.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Blagorodnova, N.; Fraser, M.; Gonzalez-Fernandez, C.; Mattila, S.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Kotak, R.; Polshaw, J.; Kankare, E.; Smith, K.; Terreran, G.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Cody, A. M.] CALTECH, Spitzer Sci Ctr, 1200 East Calif Blvd, Pasadena, CA 91125 USA. [Doran, G. B.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA. [Elias-Rosa, N.; Ochner, P.; Pastorello, A.; Terreran, G.; Tomasella, L.; Turatto, M.; Zaggia, S.] INAF, Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Fremling, C.; Sollerman, J.; Taddia, F.] Stockholm Univ, Dept Astron, Oskar Klein Ctr, AlbaNova, SE-10691 Stockholm, Sweden. [Harmanen, J.; Mattila, S.; Reynolds, T.] Univ Turku, Dept Phys & Astron, Tuorla Observ, Vaisalantie 20, FI-21500 Piikkio, Finland. [Kudritzki, R. -P.; Magnier, E.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Manulis, I.; Vreeswijk, P. M.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-7610001 Rehovot, Israel. [Nugent, P.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Reynolds, T.] Nord Opt Telescope, Apartado 474, E-38700 Santa Cruz De La Palma, Spain. [Wozniak, P.] Los Alamos Natl Lab, MS-D466, Los Alamos, NM 87545 USA. RP Blagorodnova, N (reprint author), CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. OI Fraser, Morgan/0000-0003-2191-1674; Kotak, Rubina/0000-0001-5455-3653; Fremling, Christoffer/0000-0002-4223-103X FU European Union [264895]; European Union FP7 programme through ERC grant [320360]; European Science Foundation under the GREAT ESF RNP programme; GROWTH project - National Science Foundation [1545949]; US Department of Energy as part of the Laboratory Directed Research and Development program; PRIN-INAF FX The research leading to these results has received funding from the European Union Seventh Framework Programme ([FP7/2007-2013] under grant agreement no. 264895. This work was partly supported by the European Union FP7 programme through ERC grant no. 320360. This work was supported, in whole or in part, by the European Science Foundation under the GREAT ESF RNP programme. This work was supported by the GROWTH project funded by the National Science Foundation under grant no. 1545949. LANL participation in iPTF was funded by the US Department of Energy as part of the Laboratory Directed Research and Development program. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/IRFU, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix available at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. This paper makes use of data obtained from the Isaac Newton Group Archive, which is maintained as part of the CASU Astronomical Data Centre at the Institute of Astronomy, Cambridge. This work is partly based on observations obtained with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain. This work is partly based on observations made with the William Hershell Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias. The Gran Telescopio Canarias (GTC) operated on the island of La Palma at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This work is partly based on data from Copernico 1.82 m telescope operated by INAF Osservatorio Astronomico di Padova. NER, AP, GT, and MT are partially supported by the PRIN-INAF 2014 with the project "Transient universe: unveiling new types of stellar explosions with PESSTO." Finally, NBM would like to thank the anonymous referee, who helped to improve the manuscript, Robert G. Izzard, Philipp Podsiadlowski, Lars Bildsten, E. Sterl Phinney, and Noam Soker for helpful discussions, and Pablo and Lucia Solis, and Israel Zenteno for the motivation. NR 85 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 6 PY 2017 VL 834 IS 2 AR 107 DI 10.3847/1538-4357/834/2/107 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK1HZ UT WOS:000393677700001 ER PT J AU Mitsuda, K Doi, M Morokuma, T Suzuki, N Yasuda, N Perlmutter, S Aldering, G Meyers, J AF Mitsuda, Kazuma Doi, Mamoru Morokuma, Tomoki Suzuki, Nao Yasuda, Naoki Perlmutter, Saul Aldering, Greg Meyers, Joshua TI ISOPHOTE SHAPES OF EARLY-TYPE GALAXIES IN MASSIVE CLUSTERS AT z similar to 1 AND 0 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; galaxies: elliptical and lenticular, cD; galaxies: evolution; galaxies: photometry; galaxies: structure ID HUBBLE-SPACE-TELESCOPE; COLOR-MAGNITUDE RELATION; DIGITAL SKY SURVEY; HIGH-REDSHIFT CLUSTERS; MORPHOLOGY-DENSITY RELATION; IRAC SHALLOW SURVEY; RADIO-LOUD AGN; X-RAY-EMISSION; GREATER-THAN 1; ELLIPTIC GALAXIES AB We compare the isophote shape parameter a(4) of early-type galaxies (ETGs) between z similar to 1 and 0 as a proxy for dynamics to investigate the epoch at which the dynamical properties of ETGs are established, using cluster ETG samples with stellar masses of log(M-*/M-circle dot) >= 10.5 which have spectroscopic redshifts. We have 130 ETGs from the Hubble Space Telescope Cluster Supernova Survey for z similar to 1 and 355 ETGs from the Sloan Digital Sky Survey for z similar to 0. We have developed an isophote shape analysis method, which can be used for high-redshift galaxies and has been carefully compared with published results. We have applied the same method for both the z similar to 1 and 0 samples. We find similar dependence of the a(4) parameter on the mass and size at z similar to 1 and 0; the main population of ETGs changes from disky to boxy at a critical stellar mass of log(M-*/M-circle dot) similar to 11.5 with the massive end dominated by boxy. The disky ETG fraction decreases with increasing stellar mass both at z similar to 1 and 0, and is consistent between these redshifts in all stellar mass bins when the Eddington bias is taken into account. Although uncertainties are large, the results suggest that the isophote shapes and probably dynamical properties of ETGs in massive clusters are already in place at z > 1 and do not significantly evolve in z < 1, despite significant size evolution in the same galaxy population. The constant disky fraction favors less violent processes than mergers as the. main cause of the size and morphological evolution of intermediate mass ETGs in z < 1. C1 [Mitsuda, Kazuma] Univ Tokyo, Sch Sci, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Mitsuda, Kazuma; Doi, Mamoru; Morokuma, Tomoki] Univ Tokyo, Inst Astron, Sch Sci, 2-21-1 Osawa, Mitaka, Tokyo 1810015, Japan. [Doi, Mamoru; Morokuma, Tomoki; Suzuki, Nao; Yasuda, Naoki] Univ Tokyo, UTIAS, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan. [Doi, Mamoru] Univ Tokyo, Res Ctr Early Universe, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Perlmutter, Saul] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Perlmutter, Saul; Aldering, Greg] EO Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Meyers, Joshua] Stanford Univ, Dept Phys, 450 Serra Mall, Stanford, CA 94305 USA. RP Mitsuda, K (reprint author), Univ Tokyo, Sch Sci, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan.; Mitsuda, K (reprint author), Univ Tokyo, Inst Astron, Sch Sci, 2-21-1 Osawa, Mitaka, Tokyo 1810015, Japan. EM kazuma@ioa.s.u-tokyo.ac.jp FU NASA from the Space Telescope Science Institute [GO-10496]; NASA [NAS 5-26555]; Office of Science, Office of High Energy and Nuclear Physics, of the U.S. Department of Energy [AC02-05CH11231]; JSPS [20040003, 23340041, 26287029]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX We thank the. very helpful referee for comments and suggestions that improved the quality of this paper. We also thank Mitsuru Kokubo for a. number of discussions about the bias on the disky fraction. K.M. thanks Masami Ouchi and Stefano Andreon for helpful comments and advice. K.M. also thanks Chris Lidman for encouraging comments. Financial support for this work was provided by NASA through program GO-10496 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. This work was also supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the U.S. Department of Energy under Contract No. AC02-05CH11231, as well as a JSPS core-to-core program International Research Network for Dark Energy and by JSPS research grants (20040003, 23340041, 26287029). This work was supported by JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. Finally, this work would not have been possible without the dedicated efforts of the daytime and nighttime support staff at the Cerro Paranal Observatory. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. This research made use of NASA's Astrophysics Data System. This research made use of the NASA/IPAC Extragalactic Database (NED),. which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 154 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD JAN 6 PY 2017 VL 834 IS 2 AR 109 DI 10.3847/1538-4357/834/2/109 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EK1HZ UT WOS:000393677700003 ER PT J AU Nouioui, I Goker, M Carro, L Montero-Calasanz, MD Rohde, M Woyke, T Kyrpides, NC Klenk, HP AF Nouioui, Imen Goeker, Markus Carro, Lorena Montero-Calasanz, Maria del Carmen Rohde, Manfred Woyke, Tanja Kyrpides, Nikos C. Klenk, Hans-Peter TI High quality draft genome of Nakamurella lactea type strain, a rock actinobacterium, and emended description of Nakamurella lactea SO Standards in Genomic Sciences LA English DT Article DE Frankineae; Rare actinobacteria; Nakamurellaceae; Bioactive natural product; Next generation sequencing ID PHYLOGENETIC ANALYSIS; GEN. NOV.; ET-AL.; SEQUENCE; PROPOSAL; SYSTEM; ANNOTATION; CLASSIFICATION; BACTERIA; ARCHAEA AB Nakamurella lactea DLS-10(T), isolated from rock in Korea, is one of the four type strains of the genus Nakamurella. In this study, we describe the high quality draft genome of N. lactea DLS-10(T) and its annotation. A summary of phenotypic data collected from previously published studies was also included. The genome of strain DLS-10(T) presents a size of 5.82 Mpb, 5100 protein coding genes, and a C + G content of 68.9%. Based on the genome analysis, emended description of N. lactea in terms of G + C content was also proposed. C1 [Nouioui, Imen; Carro, Lorena; Montero-Calasanz, Maria del Carmen; Klenk, Hans-Peter] Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RY, Tyne & Wear, England. [Goeker, Markus] Leibniz Inst DSMZ, Inhoffenstr 7 B, D-38124 Braunschweig, Germany. [Rohde, Manfred] HZI Helmholtz Ctr Infect Res, Cent Facil Microscopy, Braunschweig, Germany. [Woyke, Tanja; Kyrpides, Nikos C.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Kyrpides, Nikos C.] King Abdulaziz Univ, Dept Biol Sci, Fac Sci, Jeddah, Saudi Arabia. RP Montero-Calasanz, MD (reprint author), Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RY, Tyne & Wear, England. EM maria.montero-calasanz@ncl.ac.uk RI Fac Sci, KAU, Biol Sci Dept/L-4228-2013 FU U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility [DE-AC02-05CH11231] FX We thank Katja Steenblock (DSMZ) for her help in preparing the culture of N. lactea DSM 19367T and Evelyne Brambilla (DSMZ) for her contribution in the DNA extraction. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No. DE-AC02-05CH11231. NR 39 TC 0 Z9 0 U1 1 U2 1 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD JAN 6 PY 2017 VL 12 AR 4 DI 10.1186/s40793-016-0216-0 PG 6 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA EJ1NJ UT WOS:000392977100001 PM 28074122 ER PT J AU Abe, K Haga, Y Hayato, Y Ikeda, M Iyogi, K Kameda, J Kishimoto, Y Miura, M Moriyama, S Nakahata, M Nakajima, T Nakano, Y Nakayama, S Orii, A Sekiya, H Shiozawa, M Takeda, A Tanaka, H Tomura, T Wendell, RA Akutsu, R Irvine, T Kajita, T Kaneyuki, K Nishimura, Y Richard, E Okumura, K Labarga, L Fernandez, P Gustafson, J Kachulis, C Kearns, E Raaf, JL Stone, JL Sulak, LR Berkman, S Nantais, CM Tanaka, HA Tobayama, S Goldhaber, M Kropp, WR Mine, S Weatherly, P Smy, MB Sobel, HW Takhistov, V Ganezer, KS Hartfiel, BL Hill, J Hong, N Kim, JY Lim, IT Park, RG Himmel, A Li, Z O'Sullivan, E Scholberg, K Walter, CW Wongjirad, T Ishizuka, T Tasaka, S Jang, JS Learned, JG Matsuno, S Smith, SN Friend, M Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Takeuchi, Y Yano, T Cao, SV Hiraki, T Hirota, S Huang, K Kikawa, T Minamino, A Nakaya, T Suzuki, K Fukuda, Y Choi, K Itow, Y Suzuki, T Mijakowski, P Frankiewicz, K Hignight, J Imber, J Jung, CK Li, X Palomino, JL Wilking, MJ Yanagisawa, C Fukuda, D Ishino, H Kayano, T Kibayashi, A Koshio, Y Mori, T Sakuda, M Xu, C Kuno, Y Tacik, R Kim, SB Okazawa, H Choi, Y Nishijima, K Koshiba, M Totsuka, Y Suda, Y Yokoyama, M Bronner, C Hartz, M Martens, K Marti, L Suzuki, Y Vagins, MR Martin, JF Konaka, A Chen, S Zhang, Y Wilkes, RJ AF Abe, K. Haga, Y. Hayato, Y. Ikeda, M. Iyogi, K. Kameda, J. Kishimoto, Y. Miura, M. Moriyama, S. Nakahata, M. Nakajima, T. Nakano, Y. Nakayama, S. Orii, A. Sekiya, H. Shiozawa, M. Takeda, A. Tanaka, H. Tomura, T. Wendell, R. A. Akutsu, R. Irvine, T. Kajita, T. Kaneyuki, K. Nishimura, Y. Richard, E. Okumura, K. Labarga, L. Fernandez, P. Gustafson, J. Kachulis, C. Kearns, E. Raaf, J. L. Stone, J. L. Sulak, L. R. Berkman, S. Nantais, C. M. Tanaka, H. A. Tobayama, S. Goldhaber, M. Kropp, W. R. Mine, S. Weatherly, P. Smy, M. B. Sobel, H. W. Takhistov, V. Ganezer, K. S. Hartfiel, B. L. Hill, J. Hong, N. Kim, J. Y. Lim, I. T. Park, R. G. Himmel, A. Li, Z. O'Sullivan, E. Scholberg, K. Walter, C. W. Wongjirad, T. Ishizuka, T. Tasaka, S. Jang, J. S. Learned, J. G. Matsuno, S. Smith, S. N. Friend, M. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Takeuchi, Y. Yano, T. Cao, S. V. Hiraki, T. Hirota, S. Huang, K. Kikawa, T. Minamino, A. Nakaya, T. Suzuki, K. Fukuda, Y. Choi, K. Itow, Y. Suzuki, T. Mijakowski, P. Frankiewicz, K. Hignight, J. Imber, J. Jung, C. K. Li, X. Palomino, J. L. Wilking, M. J. Yanagisawa, C. Fukuda, D. Ishino, H. Kayano, T. Kibayashi, A. Koshio, Y. Mori, T. Sakuda, M. Xu, C. Kuno, Y. Tacik, R. Kim, S. B. Okazawa, H. Choi, Y. Nishijima, K. Koshiba, M. Totsuka, Y. Suda, Y. Yokoyama, M. Bronner, C. Hartz, M. Martens, K. Marti, Ll. Suzuki, Y. Vagins, M. R. Martin, J. F. Konaka, A. Chen, S. Zhang, Y. Wilkes, R. J. CA Super-Kamiokande Collaboration TI Search for proton decay via p -> e(+) pi(0) and p -> mu(+) pi(0) in 0.31 megaton center dot years exposure of the Super-Kamiokande water Cherenkov detector SO PHYSICAL REVIEW D LA English DT Article ID CROSS-SECTIONS; NUCLEI; SCATTERING; ABSORPTION; RESONANCE; SPECTRA; PIONS; SU(5); PI(+); NEUT AB We have searched for proton decay via p -> e(+) pi(0) and p -> mu(+) pi(0) using Super-Kamiokande data from April 1996 to March 2015, 0.306 megaton center dot years exposure in total. The atmospheric neutrino background rate in Super-Kamiokande IV is reduced to almost half that of phase I-III by tagging neutrons associated with neutrino interactions. The reach of the proton lifetime is further enhanced by introducing new signal criteria that select the decay of a proton in a hydrogen atom. No candidates were seen in the p -> e(+) pi(0) search. Two candidates that passed all of the selection criteria for p -> mu(+) pi(0) have been observed, but these are consistent with the expected number of background events of 0.87. Lower limits on the proton lifetime are set at tau/B(p -> mu(+) pi(0)) > 1.6 x 10(34) years and tau/B(p -> mu(+) pi(0) ) > 7.7 x 10(33) years at 90% confidence level. C1 [Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tomura, T.; Wendell, R. A.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Gifu 5061205, Japan. [Akutsu, R.; Irvine, T.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.; Richard, E.; Okumura, K.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Kashiwa, Chiba 2778582, Japan. [Labarga, L.; Fernandez, P.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain. [Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Berkman, S.; Nantais, C. M.; Tanaka, H. A.; Tobayama, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kropp, W. R.; Mine, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Vagins, M. R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hartfiel, B. L.; Hill, J.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Ishizuka, T.] Fukuoka Inst Technol, Junior Coll, Fukuoka, Fukuoka 8110295, Japan. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu, Gifu 5011193, Japan. [Jang, J. S.] Gwangju Inst Sci & Technol, GIST Coll, Gwangju 500712, South Korea. [Learned, J. G.; Matsuno, S.; Smith, S. N.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.; Takeuchi, Y.; Yano, T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Cao, S. V.; Hiraki, T.; Hirota, S.; Huang, K.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.] Kyoto Univ, Dept Phys, Kyoto, Kyoto 6068502, Japan. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Choi, K.; Itow, Y.; Suzuki, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648602, Japan. [Mijakowski, P.; Frankiewicz, K.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. [Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Wilking, M. J.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Xu, C.] Okayama Univ, Dept Phys, Okayama, Okayama 7008530, Japan. [Kuno, Y.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Tacik, R.] Univ Regina, Dept Phys, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada. [Kim, S. B.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Yaizu, Shizuoka 4258611, Japan. [Choi, Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Nishijima, K.] Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Koshiba, M.; Totsuka, Y.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. [Suda, Y.; Yokoyama, M.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Abe, K.; Hayato, Y.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tomura, T.; Wendell, R. A.; Kajita, T.; Kaneyuki, K.; Okumura, K.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Takeuchi, Y.; Nakaya, T.; Yokoyama, M.; Bronner, C.; Hartz, M.; Martens, K.; Marti, Ll.; Suzuki, Y.; Vagins, M. R.] Univ Tokyo, Univ Tokyo Inst Adv Study, Kavli Inst Phys & Math Univ WPI, Kashiwa, Chiba 2778583, Japan. [Martin, J. F.] Univ Toronto, Dept Phys, 60 St, Toronto, ON M5S 1A7, Canada. [Tacik, R.; Konaka, A.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Chen, S.; Zhang, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Yanagisawa, C.] BMCC CUNY, Dept Sci, New York, NY USA. RP Abe, K (reprint author), Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Kamioka, Gifu 5061205, Japan.; Abe, K (reprint author), Univ Tokyo, Univ Tokyo Inst Adv Study, Kavli Inst Phys & Math Univ WPI, Kashiwa, Chiba 2778583, Japan. RI Koshio, Yusuke/C-2847-2015; Nakano, Yuuki/S-2684-2016 OI Koshio, Yusuke/0000-0003-0437-8505; FU Japanese Ministry of Education, Culture, Sports, Science and Technology; U.S. Department of Energy; U.S. National Science Foundation; National Research Foundation of Korea (KNRC) - Ministry of Science, ICT, and Future Planning [NRF-2009-0083526]; European Union H2020 [RISE-GA641540-SKPLUS]; Japan Society for the Promotion of Science; National Natural Science Foundation of China [11235006]; National Science and Engineering Research Council (NSERC) of Canada; Scinet and Westgrid consortia of Compute Canada FX We gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. The Super-Kamiokande experiment has been built and operated from funding by the Japanese Ministry of Education, Culture, Sports, Science and Technology, the U.S. Department of Energy, and the U.S. National Science Foundation. Some of us have been supported by funds from the National Research Foundation of Korea NRF-2009-0083526 (KNRC) funded by the Ministry of Science, ICT, and Future Planning, the European Union H2020 RISE-GA641540-SKPLUS), the Japan Society for the Promotion of Science, the National Natural Science Foundation of China under Grant No. 11235006, the National Science and Engineering Research Council (NSERC) of Canada, and the Scinet and Westgrid consortia of Compute Canada. NR 53 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 6 PY 2017 VL 95 IS 1 AR 012004 DI 10.1103/PhysRevD.95.012004 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EG8NQ UT WOS:000391314300002 ER PT J AU Dawson, S Lewis, IM AF Dawson, S. Lewis, I. M. TI Singlet model interference effects with high scale UV physics SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; ATLAS DETECTOR; PP COLLISIONS; ROOT-S=8 TEV; SEARCH; RESONANCES; BOSON AB One of the simplest extensions of the Standard Model (SM) is the addition of a scalar gauge singlet, S. If S is not forbidden by a symmetry from mixing with the Standard Model Higgs boson, the mixing will generate non-SM rates for Higgs production and decays. In general, there could also be unknown high energy physics that generates additional effective low energy interactions. We show that interference effects between the scalar resonance of the singlet model and the effective field theory (EFT) operators can have significant effects in the Higgs sector. We examine a non-Z(2) symmetric scalar singlet model and demonstrate that a fit to the 125 GeV Higgs boson couplings and to limits on high mass resonances, S, exhibit an interesting structure and possible large cancellations of effects between the resonance contribution and the new EFT interactions, that invalidate conclusions based on the renormalizable singlet model alone. C1 [Dawson, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. RP Dawson, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU U.S. Department of Energy [DE-SC0012704] FX This work is supported by the U.S. Department of Energy under Grant No. DE-SC0012704. We thank Chien-Yi Chen for many valuable discussions about the singlet model. NR 40 TC 1 Z9 1 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 6 PY 2017 VL 95 IS 1 AR 015004 DI 10.1103/PhysRevD.95.015004 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EG8NQ UT WOS:000391314300006 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Konig, A Kratschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rad, N Rahbaran, B Rohringer, H Schieck, J Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S De Wolf, EA Janssen, X Lauwers, J Van De Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Lowette, S Moortgat, S Moreels, L Olbrechts, A Python, Q Tavernier, S Van Doninck, W Van Mulders, P Van Parijs, I Brun, H Caillol, C Clerbaux, B De Lentdecker, G Delannoy, H Fasanella, G Favart, L Goldouzian, R Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Luetic, J Maerschalk, T Marinov, A Randle-conde, A Seva, T Vander Velde, C Vanlaer, P Yonamine, R Zenoni, F Zhang, F Cimmino, A Cornelis, T Dobur, D Fagot, A Garcia, G Gul, M Poyraz, D Salva, S Schofbeck, R Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Bakhshiansohi, H Beluffi, C Bondu, O Brochet, S Bruno, G Caudron, A De Visscher, S Delaere, C Delcourt, M Francois, B Giammanco, A Jafari, A Jez, P Komm, M Lemaitre, V Magitteri, A Mertens, A Musich, M Nuttens, C Piotrzkowski, K Quertenmont, L Selvaggi, M Marono, MV Wertz, S Beliy, N Alda, WL Alves, FL Alves, GA Brito, L Hensel, C Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Da Silveira, GG Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Herrera, C Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Fang, W Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Chen, Y Cheng, T Jiang, CH Leggat, D Liu, Z Romeo, F Shaheen, SM Spiezia, A Tao, J Wang, C Wang, Z Zhang, H Zhao, J Ban, Y Chen, G Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Hernandez, CFG Alvarez, JDR Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Sculac, T Antunovic, Z Kovac, M Brigljevic, V Ferencek, D Kadija, K Micanovic, S Sudic, L Susa, T Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Finger, M Jarrin, EC Assran, Y Elkafrawy, T Mahrous, A Calpas, B Kadastik, M Murumaa, M Perrini, L Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Peltola, T Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Ghosh, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Kucher, I Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Abdulsalam, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Davignon, O de Cassagnac, RG Jo, M Lisniak, S Mine, P Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Grenier, G Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Popov, A Sabes, D Sordini, V Vander Donckt, M Verdier, P Viret, S Toriashvili, T Tsamalaidze, Z Autermann, C Beranek, S Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schomakers, C Schulte, JF Schulz, J Verlage, T Weber, H Zhukov, V Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hamer, M Hebbeker, T Heidemann, C Hoepfner, K Knutzen, S Merschmeyer, M Meyer, A Millet, P Mukherjee, S Olschewski, M Padeken, K Pook, T Radziej, M Reithler, H Rieger, M Scheuch, F Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Flugge, G Ahmad, WH Hoehle, F Kargoll, B Kress, T Kunsken, A Lingemann, J Muller, T Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asawatangtrakuldee, C Beernaert, K Behnke, O Behrens, U Bin Anuar, AA Borras, K Campbell, A Connor, P Contreras-Campana, C Costanza, F Pardos, CD Dolinska, G Eckerlin, G Eckstein, D Eren, E Gallo, E Garcia, JG Geiser, A Gizhko, A Luyando, JMG Gunnellini, P Harb, A Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Keaveney, J Kieseler, J Kleinwort, C Korol, I Krucker, D Lange, W Lelek, A Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Ntomari, E Pitzl, D Placakyte, R Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Seitz, C Spannagel, S Stefaniuk, N Trippkewitz, KD Van Onsem, GP Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Dreyer, T Garutti, E Gonzalez, D Haller, J Hoffmann, M Junkes, A Klanner, R Kogler, R Kovalchuk, N Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Niedziela, M Nowatschin, D Pantaleo, F Peiffer, T Perieanu, A Poehlsen, J Sander, C Scharf, C Schleper, P Schmidt, A Schumann, S Schwandt, J Stadie, H Steinbruck, G Stober, FM Stover, M Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Barth, C Baus, C Berger, J Butz, E Chwalek, T Colombo, F De Boer, W Dierlamm, A Fink, S Friese, R Giffels, M Gilbert, A Goldenzweig, P Haitz, D Hartmann, F Heindl, SM Husemann, U Katkov, I Pardo, PL Maier, B Mildner, H Mozer, MU Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Schroder, M Shvetsov, I Sieber, G Simonis, HJ Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Williamson, S Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Filipovic, N Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Makovec, A Molnar, J Szillasi, Z Bartok, M Raics, P Trocsanyi, ZL Ujvari, B Bahinipati, S Choudhury, S Mal, P Mandal, K Nayak, A Sahoo, DK Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Keshri, S Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Bhattacharya, R Bhattacharya, S Chatterjee, K Dey, S Dutt, S Dutta, S Ghosh, S Majumdar, N Modak, A Mondal, K Mukhopadhyay, S Nandan, S Purohit, A Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Thakur, S Behera, PK Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Netrakanti, PK Pant, LM Shukla, P Topkar, A Aziz, T Dugad, S Kole, G Mahakud, B Mitra, S Mohanty, GB Parida, B Sur, N Sutar, B Banerjee, S Bhowmik, S Dewanjee, RK Ganguly, S Guchait, M Jain, S Kumar, S Maity, M Majumder, G Mazumdar, K Sarkar, T Wickramage, N Chauhan, S Dube, S Hegde, V Kapoor, A Kothekar, K Rane, A Sharma, S Behnamian, H Chenarani, S Tadavani, EE Etesami, SM Fahim, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Albergo, S Chiorboli, M Costa, S Di Mattia, A Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Primavera, F Calvelli, V Ferro, F Lo Vetere, M Monge, MR Robutti, E Tosi, S Brianza, L Dinardo, ME Fiorendi, S Gennai, S Ghezzi, A Govoni, P Malberti, M Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Pigazzini, S Ragazzi, S de Fatis, TT Buontempo, S Cavallo, N De Nardo, G Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Benato, L Bisello, D Boletti, A Carlin, R De Oliveira, ACA Checchia, P Dall'Osso, M Manzano, PD Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Zanetti, M Zotto, P Zucchetta, A Zumerle, G Braghieri, A Magnani, A Montagna, P Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Bilei, GM Ciangottini, D Fano, L Lariccia, P Leonardi, R Mantovani, G Menichelli, M Saha, A Santocchia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Cipriani, M D'imperio, G Del Re, D Diemoz, M Gelli, S Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bartosik, N Bellan, R Biino, C Cartiglia, N Cenna, F Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Shchelina, K Sola, V Solano, A Staiano, A Traczyk, P Belforte, S Casarsa, M Cossutti, F Della Ricca, G La Licata, C Schizzi, A Zanetti, A Kim, DH Kim, GN Kim, MS Lee, S Lee, SW Oh, YD Sekmen, S Son, DC Yang, YC Lee, A Cifuentes, JAB Kim, TJ Cho, S Choi, S Go, Y Gyun, D Ha, S Hong, B Jo, Y Kim, Y Lee, B Lee, K Lee, KS Lee, S Lim, J Park, SK Roh, Y Almond, J Kim, J Lee, H Oh, SB Radburn-Smith, BC Seo, SH Yang, UK Yoo, HD Yu, GB Choi, M Kim, H Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Ryu, MS Choi, Y Goh, J Hwang, C Lee, J Yu, I Dudenas, V Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Yusli, MN Zolkapli, Z Castilla-Valdez, H De la Cruz-Burelo, E Heredia-De la Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Magana Villalba, R Guisao, JM Sanchez-Hernandez, A Moreno, SC Barrera, CO Valencia, FV Carpinteyro, S Pedraza, I Ibarguen, HAS Estrada, CU Pineda, AM Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Shah, MA Shoaib, M Waqas, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Hollar, J Leonardo, N Iglesias, LL Nemallapudi, MV Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Alexakhin, V Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Skatchkov, N Smirnov, V Voytishin, N Zarubin, A Chtchipounov, L Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Murzin, V Oreshkin, V Sulimov, V Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Toms, M Vlasov, E Zhokin, A Bylinkin, A Chistov, R Danilov, M Rusinov, V Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Rusakov, SV Terkulov, A Baskakov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Miagkov, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Blinov, V Skovpen, Y Azhgirey, I Bayshev, I Bitioukov, S Elumakhov, D Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Cirkovic, P Devetak, D Dordevic, M Milosevic, J Rekovic, V Maestre, JA Luna, MB Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS de Troconiz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Caballero, IG Fernandez, JRG Cortezon, EP Cruz, SS Andres, IS Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Curras, E Fernandez, M Garcia-Ferrero, J Gomez, G Virto, AL Marco, J Rivero, CM Matorras, F Gomez, JP Rodrigo, T Ruiz-Jimeno, A Scodellaro, L Trevisani, N Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bloch, P Bocci, A Bonato, A Botta, C Camporesi, T Castello, R Cepeda, M Cerminara, G D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A Di Marco, E Dobson, M Dorney, B du Pree, T Duggan, D Dunser, M Dupont, N Elliott-Peisert, A Fartoukh, S Franzoni, G Fulcher, J Funk, W Gigi, D Gill, K Girone, M Glege, F Gulhan, D Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Knunz, V Kornmayer, A Kortelainen, MJ Kousouris, K Krammer, M Lecoq, P Lourenco, C Lucchini, MT Malgeri, L Mannelli, M Martelli, A Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Racz, A Reis, T Rolandi, G Rovere, M Ruan, M Sakulin, H Sauvan, JB Schafer, C Schwick, C Seidel, M Sharma, A Silva, P Simon, M Sphicas, P Steggemann, J Stoye, M Takahashi, Y Tosi, M Treille, D Triossi, A Tsirou, A Veckalns, V Veres, GI Wardle, N Wohri, HK Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Rohe, T Bachmair, F Bani, L Bianchini, L Casal, B Dissertori, G Dittmar, M Donega, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lecomte, P Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Meinhard, MT Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrin, G Perrozzi, L Quittnat, M Rossini, M Schonenberger, M Starodumov, A Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Rauco, G Robmann, P Salerno, D Yang, Y Candelise, V Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Pozdnyakov, A Yu, SS Kumar, A Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Paganis, E Psallidas, A Tsai, JF Tzeng, YM Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Damarseckin, S Demiroglu, ZS Dozen, C Dumanoglu, I Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Kara, O Topaksu, AK Kiminsu, U Oglakci, M Onengut, G Ozdemir, K Tali, B Turkcapar, S Zorbakir, IS Zorbilmez, C Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Gulmez, E Kaya, M Kaya, O Yetkin, EA Yetkin, T Cakir, A Cankocak, K Sen, S Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Burns, D Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-Storey, SS Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Calligaris, L Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Dauncey, P Davies, G De Wit, A Della Negra, M Di Maria, R Dunne, P Elwood, A Futyan, D Haddad, Y Hall, G Iles, G James, T Lane, R Laner, C Lucas, R Lyons, L Magnan, AM Malik, S Mastrolorenzo, L Nash, J Nikitenko, A Pela, J Penning, B Pesaresi, M Raymond, DM Richards, A Rose, A Seez, C Summers, S Tapper, A Uchida, K Acosta, MV Virdee, T Wright, J Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P West, C Arcaro, D Avetisyan, A Bose, T Gastler, D Rankin, D Richardson, C Rohlf, J Sulak, L Zou, D Benelli, G Berry, E Cutts, D Garabedian, A Hakala, J Heintz, U Hogan, JM Jesus, O Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Spencer, E Syarif, R Breedon, R Breto, G Burns, D Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Flores, C Funk, G Gardner, M Ko, W Lander, R Mclean, C Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Florent, A Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Kennedy, E Lacroix, F Long, OR Negrete, MO Paneva, MI Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S Derdzinski, M Gerosa, R Holzner, A Klein, D Krutelyov, V Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wood, J Wurthwein, F Yagil, A Della Porta, GZ Bhandari, R Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Heller, R Incandela, J Mccoll, N Mullin, SD Ovcharova, A Richman, J Stuart, D Suarez, I Yoo, J Anderson, D Apresyan, A Bendavid, J Bornheim, A Bunn, J Chen, Y Duarte, J Lawhorn, JM Mott, A Newman, HB Pena, C Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Jensen, F Johnson, A Krohn, M Mulholland, T Stenson, K Wagner, SR Alexander, J Chaves, J Chu, J Dittmer, S Mcdermott, K Mirman, N Kaufman, GN Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Soffi, L Tan, SM Tao, Z Thom, J Tucker, J Wittich, P Zientek, M Winn, D Abdullin, S Albrow, M Apollinari, G Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Cremonesi, M Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, RM Hasegawa, S Hirschauer, J Hu, Z Jayatilaka, B Jindariani, S Johnson, M Joshi, U Klima, B Kreis, B Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa RL Lykken, J Maeshima, K Magini, N Marraffino, JM Maruyama, S Mason, D McBride, P Merkel, P Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Ristori, L Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Stoynev, S Strobbe, N Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Wang, M Weber, HA Whitbeck, A Acosta, D Avery, P Bortignon, P Bourilkov, D Brinkerhoff, A Carnes, A Carver, M Curry, D Das, S Field, RD Furic, IK Konigsberg, J Korytov, A Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Shchutska, L Sperka, D Thomas, L Wang, J Wang, S Yelton, J Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bein, S Diamond, B Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Santra, A Weinberg, M Baarmand, MM Bhopatkar, V Colafranceschi, S Hohlmann, M Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Turner, P Varelas, N Wang, H Wu, Z Zakaria, M Zhang, J Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tiras, E Wetzel, J Yi, K Anderson, I Blumenfeld, B Cocoros, A Eminizer, N Fehling, D Feng, L Gritsan, AV Maksimovic, P Osherson, M Roskes, J Sarica, U Swartz, M Xiao, M Xin, Y You, C Al-Bataineh, A Baringer, P Bean, A Boren, S Bowen, J Bruner, C Castle, J Forthomme, L Kenny, RP Kropivnitskaya, A Majumder, D Mcbrayer, W Murray, M Sanders, S Stringer, R Takaki, JDT Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Abercrombie, D Allen, B Apyan, A Barbieri, R Baty, A Bi, R Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Ceballos, GG Goncharov, M Hsu, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Krajczar, K Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Narayanan, S Niu, X Paus, C Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Tatar, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Benvenuti, AC Chatterjee, RM Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bartek, R Bloom, K Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Kravchenko, I Rodrigues, AM Meier, F Monroy, J Siado, JE Snow, GR Stieger, B Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Parker, A Rappoccio, S Roozbahani, B Alverson, G Barberis, E Baumgartel, D Hortiangtham, A Knapp, B Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Bhattacharya, S Hahn, KA Kubik, A Kumar, A Low, JF Mucia, N Odell, N Pollack, B Schmitt, MH Sung, K Trovato, M Velasco, M Dev, N Hildreth, M Anampa, KH Jessop, C Karmgard, DJ Kellams, N Lannon, K Marinelli, N Meng, F Mueller, C Musienko, Y Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Wayne, M Wolf, M Woodard, A Alimena, J Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Francis, B Hart, A Hill, C Hughes, R Ji, W Liu, B Luo, W Puigh, D Winer, BL Wulsin, HW Cooperstein, S Driga, O Elmer, P Hardenbrook, J Hebda, P Lange, D Luo, J Marlow, D Medvedeva, T Mei, K Mooney, M Olsen, J Palmer, C Piroue P Stickland, D Tully, C Zuranski, A Malik, S Barker, A Barnes, VE Folgueras, S Gutay, L Jha, MK Jones, M Jung, AW Jung, K Miller, DH Neumeister, N Shi, X Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Duh, YT Ferbel, T Galanti, M Garcia-Bellido, A Han, J Hindrichs, O Khukhunaishvili, A Lo, KH Tan, P Verzetti, M Chou, JP Contreras-Campana, E Gershtein, Y Espinosa, TAG Halkiadakis, E Heindl, M Hidas, D Hughes, E Kaplan, S Elayavalli, RK Kyriacou, S Lath, A Nash, K Saka, H Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Heideman, J Riley, G Rose, K Spanier, S Thapa, K Bouhali, O Celik, A Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Gilmore, J Huang, T Juska, E Kamon, T Mueller, R Pakhotin, Y Patel, R Perloff, A Pernie, L Rathjens, D Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Wang, Z Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Melo, A Ni, H Sheldon, P Tuo, S Velkovska, J Xu, Q Arenton, MW Barria, P Cox, B Goodell, J Hirosky, R Ledovskoy, A Li, H Neu, C Sinthuprasith, T Wang, Y Wolfe, E Xia, F Clarke, C Harr, R Karchin, PE Lamichhane, P Sturdy, J Belknap, DA Dasu, S Dodd, L Duric, S Gomber, B Grothe, M Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Ojalvo, I Perry, T Pierro, GA Polese, G Ruggles, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Koenig, A. Kraetschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rad, N. Rahbaran, B. Rohringer, H. Schieck, J. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. De Wolf, E. A. Janssen, X. Lauwers, J. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Lowette, S. Moortgat, S. Moreels, L. Olbrechts, A. Python, Q. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Parijs, I. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Delannoy, H. Fasanella, G. Favart, L. Goldouzian, R. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Luetic, J. Maerschalk, T. Marinov, A. Randle-conde, A. Seva, T. Vander Velde, C. Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Cimmino, A. Cornelis, T. Dobur, D. Fagot, A. Garcia, G. Gul, M. Poyraz, D. Salva, S. Schofbeck, R. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Bakhshiansohi, H. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Caudron, A. De Visscher, S. Delaere, C. Delcourt, M. Francois, B. Giammanco, A. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Magitteri, A. Mertens, A. Musich, M. Nuttens, C. Piotrzkowski, K. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Wertz, S. Beliy, N. Alda Junior, W. L. Alves, F. L. Alves, G. A. Brito, L. Hensel, C. Moraes, A. Pol, M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Da Silveira, G. G. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mora Herrera, C. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Abad, D. Romero Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Fang, W. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Chen, Y. Cheng, T. Jiang, C. H. Leggat, D. Liu, Z. Romeo, F. Shaheen, S. M. Spiezia, A. Tao, J. Wang, C. Wang, Z. Zhang, H. Zhao, J. Ban, Y. Chen, G. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gonzalez Hernandez, C. F. Ruiz Alvarez, J. D. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Ribeiro Cipriano, P. M. Sculac, T. Antunovic, Z. Kovac, M. Brigljevic, V. Ferencek, D. Kadija, K. Micanovic, S. Sudic, L. Susa, T. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Finger, M., Jr. Carrera Jarrin, E. Assran, Y. Elkafrawy, T. Mahrous, A. Calpas, B. Kadastik, M. Murumaa, M. Perrini, L. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Peltola, T. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Ghosh, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Kucher, I. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Abdulsalam, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Davignon, O. de Cassagnac, R. Granier Jo, M. Lisniak, S. Mine, P. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Montoya, C. A. Carrillo Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Grenier, G. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Popov, A. Sabes, D. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Toriashvili, T. Tsamalaidze, Z. Autermann, C. Beranek, S. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schomakers, C. Schulte, J. F. Schulz, J. Verlage, T. Weber, H. Zhukov, V. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hamer, M. Hebbeker, T. Heidemann, C. Hoepfner, K. Knutzen, S. Merschmeyer, M. Meyer, A. Millet, P. Mukherjee, S. Olschewski, M. Padeken, K. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, F. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Fluegge, G. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuensken, A. Lingemann, J. Mueller, T. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asawatangtrakuldee, C. Beernaert, K. Behnke, O. Behrens, U. Bin Anuar, A. A. Borras, K. Campbell, A. Connor, P. Contreras-Campana, C. Costanza, F. Pardos, C. Diez Dolinska, G. Eckerlin, G. Eckstein, D. Eren, E. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Luyando, J. M. Grados Gunnellini, P. Harb, A. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Keaveney, J. Kieseler, J. Kleinwort, C. Korol, I. Kruecker, D. Lange, W. Lelek, A. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Ntomari, E. Pitzl, D. Placakyte, R. Raspereza, A. Roland, B. Sahin, M. O. Saxena, P. Schoerner-Sadenius, T. Seitz, C. Spannagel, S. Stefaniuk, N. Trippkewitz, K. D. Van Onsem, G. P. Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Dreyer, T. Garutti, E. Gonzalez, D. Haller, J. Hoffmann, M. Junkes, A. Klanner, R. Kogler, R. Kovalchuk, N. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Niedziela, M. Nowatschin, D. Pantaleo, F. Peiffer, T. Perieanu, A. Poehlsen, J. Sander, C. Scharf, C. Schleper, P. Schmidt, A. Schumann, S. Schwandt, J. Stadie, H. Steinbrueck, G. Stober, F. M. Stoever, M. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Barth, C. Baus, C. Berger, J. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Dierlamm, A. Fink, S. Friese, R. Giffels, M. Gilbert, A. Goldenzweig, P. Haitz, D. Hartmann, F. Heindl, S. M. Husemann, U. Katkov, I. Pardo, P. Lobelle Maier, B. Mildner, H. Mozer, M. U. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Schroeder, M. Shvetsov, I. Sieber, G. Simonis, H. J. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Williamson, S. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Filipovic, N. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Makovec, A. Molnar, J. Szillasi, Z. Bartok, M. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bahinipati, S. Choudhury, S. Mal, P. Mandal, K. Nayak, A. Sahoo, D. K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Keshri, S. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Bhattacharya, R. Bhattacharya, S. Chatterjee, K. Dey, S. Dutt, S. Dutta, S. Ghosh, S. Majumdar, N. Modak, A. Mondal, K. Mukhopadhyay, S. Nandan, S. Purohit, A. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Thakur, S. Behera, P. K. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Netrakanti, P. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Dugad, S. Kole, G. Mahakud, B. Mitra, S. Mohanty, G. B. Parida, B. Sur, N. Sutar, B. Banerjee, S. Bhowmik, S. Dewanjee, R. K. Ganguly, S. Guchait, M. Jain, Sa. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Sarkar, T. Wickramage, N. Chauhan, S. Dube, S. Hegde, V. Kapoor, A. Kothekar, K. Rane, A. Sharma, S. Behnamian, H. Chenarani, S. Tadavani, E. Eskandari Etesami, S. M. Fahim, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Albergo, S. Chiorboli, M. Costa, S. Di Mattia, A. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Primavera, F. Calvelli, V. Ferro, F. Lo Vetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Dinardo, M. E. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Malberti, M. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Pigazzini, S. Ragazzi, S. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Nardo, G. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Benato, L. Bisello, D. Boletti, A. Carlin, R. De Oliveira, A. Carvalho Antunes Checchia, P. Dall'Osso, M. Manzano, P. De Castro Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Zanetti, M. Zotto, P. Zucchetta, A. Zumerle, G. Braghieri, A. Magnani, A. Montagna, P. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Solestizi, L. Alunni Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Leonardi, R. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Cipriani, M. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bartosik, N. Bellan, R. Biino, C. Cartiglia, N. Cenna, F. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Shchelina, K. Sola, V. Solano, A. Staiano, A. Traczyk, P. Belforte, S. Casarsa, M. Cossutti, F. Della Ricca, G. La Licata, C. Schizzi, A. Zanetti, A. Kim, D. H. Kim, G. N. Kim, M. S. Lee, S. Lee, S. W. Oh, Y. D. Sekmen, S. Son, D. C. Yang, Y. C. Lee, A. Cifuentes, J. A. Brochero Kim, T. J. Cho, S. Choi, S. Go, Y. Gyun, D. Ha, S. Hong, B. Jo, Y. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Lim, J. Park, S. K. Roh, Y. Almond, J. Kim, J. Lee, H. Oh, S. B. Radburn-Smith, B. C. Seo, S. H. Yang, U. K. Yoo, H. D. Yu, G. B. Choi, M. Kim, H. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Goh, J. Hwang, C. Lee, J. Yu, I. Dudenas, V. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Yusli, M. N. Zolkapli, Z. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-De la Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Magana Villalba, R. Mejia Guisao, J. Sanchez-Hernandez, A. Carrillo Moreno, S. Oropeza Barrera, C. Vazquez Valencia, F. Carpinteyro, S. Pedraza, I. Salazar Ibarguen, H. A. Uribe Estrada, C. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Shah, M. A. Shoaib, M. Waqas, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beirao Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Hollar, J. Leonardo, N. Lloret Iglesias, L. Nemallapudi, M. V. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Alexakhin, V. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Skatchkov, N. Smirnov, V. Voytishin, N. Zarubin, A. Chtchipounov, L. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Murzin, V. Oreshkin, V. Sulimov, V. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Toms, M. Vlasov, E. Zhokin, A. Bylinkin, A. Chistov, R. Danilov, M. Rusinov, V. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Rusakov, S. V. Terkulov, A. Baskakov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Miagkov, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Blinov, V. Skovpen, Y. Azhgirey, I. Bayshev, I. Bitioukov, S. Elumakhov, D. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Cirkovic, P. Devetak, D. Dordevic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Barrio Luna, M. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Lopez, S. Goy Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. de Troconiz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Gonzalez Fernandez, J. R. Palencia Cortezon, E. Sanchez Cruz, S. Suarez Andres, I. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. Curras, E. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Martinez Rivero, C. Matorras, F. Piedra Gomez, J. Rodrigo, T. Ruiz-Jimeno, A. Scodellaro, L. Trevisani, N. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bloch, P. Bocci, A. Bonato, A. Botta, C. Camporesi, T. Castello, R. Cepeda, M. Cerminara, G. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. Di Marco, E. Dobson, M. Dorney, B. du Pree, T. Duggan, D. Duenser, M. Dupont, N. Elliott-Peisert, A. Fartoukh, S. Franzoni, G. Fulcher, J. Funk, W. Gigi, D. Gill, K. Girone, M. Glege, F. Gulhan, D. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Knuenz, V. Kornmayer, A. Kortelainen, M. J. Kousouris, K. Krammer, M. Lecoq, P. Lourenco, C. Lucchini, M. T. Malgeri, L. Mannelli, M. Martelli, A. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Racz, A. Reis, T. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Sauvan, J. B. Schaefer, C. Schwick, C. Seidel, M. Sharma, A. Silva, P. Simon, M. Sphicas, P. Steggemann, J. Stoye, M. Takahashi, Y. Tosi, M. Treille, D. Triossi, A. Tsirou, A. Veckalns, V. Veres, G. I. Wardle, N. Woehri, H. K. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lecomte, P. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meinhard, M. T. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrin, G. Perrozzi, L. Quittnat, M. Rossini, M. Schoenenberger, M. Starodumov, A. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Rauco, G. Robmann, P. Salerno, D. Yang, Y. Candelise, V. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Pozdnyakov, A. Yu, S. S. Kumar, Arun Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Paganis, E. Psallidas, A. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Damarseckin, S. Demiroglu, Z. S. Dozen, C. Dumanoglu, I. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Kara, O. Topaksu, A. Kayis Kiminsu, U. Oglakci, M. Onengut, G. Ozdemir, K. Tali, B. Turkcapar, S. Zorbakir, I. S. Zorbilmez, C. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Gulmez, E. Kaya, M. Kaya, O. Yetkin, E. A. Yetkin, T. Cakir, A. Cankocak, K. Sen, S. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Burns, D. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-Storey, S. Seif Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Calligaris, L. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Di Maria, R. Dunne, P. Elwood, A. Futyan, D. Haddad, Y. Hall, G. Iles, G. James, T. Lane, R. Laner, C. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mastrolorenzo, L. Nash, J. Nikitenko, A. Pela, J. Penning, B. Pesaresi, M. Raymond, D. M. Richards, A. Rose, A. Seez, C. Summers, S. Tapper, A. Uchida, K. Vazquez Acosta, M. Virdee, T. Wright, J. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. West, C. Arcaro, D. Avetisyan, A. Bose, T. Gastler, D. Rankin, D. Richardson, C. Rohlf, J. Sulak, L. Zou, D. Benelli, G. Berry, E. Cutts, D. Garabedian, A. Hakala, J. Heintz, U. Hogan, J. M. Jesus, O. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Spencer, E. Syarif, R. Breedon, R. Breto, G. Burns, D. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Flores, C. Funk, G. Gardner, M. Ko, W. Lander, R. Mclean, C. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Florent, A. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Negrete, M. Olmedo Paneva, M. I. Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. Derdzinski, M. Gerosa, R. Holzner, A. Klein, D. Krutelyov, V. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wood, J. Wurthwein, F. Yagil, A. Della Porta, G. Zevi Bhandari, R. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Heller, R. Incandela, J. Mccoll, N. Mullin, S. D. Ovcharova, A. Richman, J. Stuart, D. Suarez, I. Yoo, J. Anderson, D. Apresyan, A. Bendavid, J. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Lawhorn, J. M. Mott, A. Newman, H. B. Pena, C. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Stenson, K. Wagner, S. R. Alexander, J. Chaves, J. Chu, J. Dittmer, S. Mcdermott, K. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Tan, S. M. Tao, Z. Thom, J. Tucker, J. Wittich, P. Zientek, M. Winn, D. Abdullin, S. Albrow, M. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cremonesi, M. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jayatilaka, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kreis, B. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Magini, N. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Merkel, P. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Ristori, L. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Stoynev, S. Strobbe, N. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Wang, M. Weber, H. A. Whitbeck, A. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Brinkerhoff, A. Carnes, A. Carver, M. Curry, D. Das, S. Field, R. D. Furic, I. K. Konigsberg, J. Korytov, A. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Shchutska, L. Sperka, D. Thomas, L. Wang, J. Wang, S. Yelton, J. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bein, S. Diamond, B. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Santra, A. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Colafranceschi, S. Hohlmann, M. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Turner, P. Varelas, N. Wang, H. Wu, Z. Zakaria, M. Zhang, J. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Blumenfeld, B. Cocoros, A. Eminizer, N. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Osherson, M. Roskes, J. Sarica, U. Swartz, M. Xiao, M. Xin, Y. You, C. Al-Bataineh, A. Baringer, P. Bean, A. Boren, S. Bowen, J. Bruner, C. Castle, J. Forthomme, L. Kenny, R. P., III Kropivnitskaya, A. Majumder, D. Mcbrayer, W. Murray, M. Sanders, S. Stringer, R. Takaki, J. D. Tapia Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Abercrombie, D. Allen, B. Apyan, A. Barbieri, R. Baty, A. Bi, R. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Hsu, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Krajczar, K. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Narayanan, S. Niu, X. Paus, C. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Tatar, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Benvenuti, A. C. Chatterjee, R. M. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bartek, R. Bloom, K. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Kravchenko, I. Rodrigues, A. Malta Meier, F. Monroy, J. Siado, J. E. Snow, G. R. Stieger, B. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Parker, A. Rappoccio, S. Roozbahani, B. Alverson, G. Barberis, E. Baumgartel, D. Hortiangtham, A. Knapp, B. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Bhattacharya, S. Hahn, K. A. Kubik, A. Kumar, A. Low, J. F. Mucia, N. Odell, N. Pollack, B. Schmitt, M. H. Sung, K. Trovato, M. Velasco, M. Dev, N. Hildreth, M. Anampa, K. Hurtado Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Wayne, M. Wolf, M. Woodard, A. Alimena, J. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Francis, B. Hart, A. Hill, C. Hughes, R. Ji, W. Liu, B. Luo, W. Puigh, D. Winer, B. L. Wulsin, H. W. Cooperstein, S. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Lange, D. Luo, J. Marlow, D. Medvedeva, T. Mei, K. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Stickland, D. Tully, C. Zuranski, A. Malik, S. Barker, A. Barnes, V. E. Folgueras, S. Gutay, L. Jha, M. K. Jones, M. Jung, A. W. Jung, K. Miller, D. H. Neumeister, N. Shi, X. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Duh, Y. T. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Hindrichs, O. Khukhunaishvili, A. Lo, K. H. Tan, P. Verzetti, M. Chou, J. P. Contreras-Campana, E. Gershtein, Y. Espinosa, T. A. Gomez Halkiadakis, E. Heindl, M. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Kyriacou, S. Lath, A. Nash, K. Saka, H. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Heideman, J. Riley, G. Rose, K. Spanier, S. Thapa, K. Bouhali, O. Celik, A. Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Gilmore, J. Huang, T. Juska, E. Kamon, T. Mueller, R. Pakhotin, Y. Patel, R. Perloff, A. Pernie, L. Rathjens, D. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Wang, Z. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Melo, A. Ni, H. Sheldon, P. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Barria, P. Cox, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Neu, C. Sinthuprasith, T. Wang, Y. Wolfe, E. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Lamichhane, P. Sturdy, J. Belknap, D. A. Dasu, S. Dodd, L. Duric, S. Gomber, B. Grothe, M. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ruggles, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Inclusive search for supersymmetry using razor variables in pp collisions at root s=13 TeV SO PHYSICAL REVIEW D LA English DT Article ID GRAND UNIFIED THEORIES; GLUINO PRODUCTION; UNIFICATION; BREAKING; SQUARK; PREDICTIONS; NATURALNESS; EXTENSION; NEUTRINO; SCALE AB An inclusive search for supersymmetry using razor variables is performed in events with four or more jets and no more than one lepton. The results are based on a sample of proton-proton collisions corresponding to an integrated luminosity of 2.3 fb(-1) collected with the CMS experiment at a center-ofmass energy of s root s = 13 TeV. No significant excess over the background prediction is observed in data, and 95% confidence level exclusion limits are placed on the masses of new heavy particles in a variety of simplified models. Assuming that pair-produced gluinos decay only via three-body processes involving third-generation quarks plus a neutralino, and that the neutralino is the lightest supersymmetric particle with a mass of 200 GeV, gluino masses below 1.6 TeV are excluded for any branching fractions for the individual gluino decay modes. For some specific decay mode scenarios, gluino masses up to 1.65 TeVare excluded. For decays to first-and second-generation quarks and a neutralino with a mass of 200 GeV, gluinos with masses up to 1.4 TeVare excluded. Pair production of top squarks decaying to a top quark and a neutralino with a mass of 100 GeV is excluded for top squark masses up to 750 GeV. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Koenig, A.; Kraetschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Fang, W.; Attikis, A.] Univ Libre Bruxelles, Brussels, Belgium. [Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schofbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Apresyan, A.] Univ Ghent, Ghent, Belgium. [Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Wertz, S.; Baden, A.] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.] Univ Mons, Mons, Belgium. [Alda Junior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Merlin, J. A.; Stahl, A.; Pantaleo, F.; Hartmann, F.; Mohanty, A. K.; Silvestris, L.; Tosi, N.; Viliani, L.; Primavera, F.; Brianza, L.; Manzoni, R. A.; Di Guida, S.; Meola, S.; Paolucci, P.; Azzi, P.; Pazzini, J.; Azzurri, P.; D'imperio, G.; Del Re, D.; Arcidiacono, R.; Kornmayer, A.; Virdee, T.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Baden, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Ruiz Vargas, J. C.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.; Abad, D. Romero] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, Sofia, Bulgaria. [Fang, W.] Beihang Univ, Beijing, Peoples R China. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.] Inst High Energy Phys, Beijing, Peoples R China. [Zhang, F.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Qian, S. J.; Wang, D.; Xu, Z.; Mao, Z.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gonzalez Hernandez, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Carrera Jarrin, E.] Univ San Francisco Quito, Quito, Ecuador. [Assran, Y.; Elkafrawy, T.; Mahrous, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.; Agapitos, A.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] Univ Paris Saclay, CEA, IRFU, Gif Sur Yvette, France. [Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Mine, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Le Bihan, A. -C.; Merlin, J. A.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, IN2P3, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.] Univ Claude Bernard Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, Villeurbanne, France. [Toriashvili, T.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Toriashvili, T.; Tsamalaidze, Z.] Tbilisi State Univ, Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Thueer, S.; Borras, K.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Cherepanov, V.; Fluegge, G.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuensken, A.; Lingemann, J.; Mueller, T.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Inst Phys B 3, Aachen, Germany. [Martin, M. Aldaya; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eren, E.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Luyando, J. M. Grados; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kieseler, J.; Kleinwort, C.; Kruecker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. O.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Gallo, E.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrueck, G.; Stober, F. M.; Stoever, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Pardo, P. Lobelle; Maier, B.; Mozer, M. U.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Schroeder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Woehrmann, C.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.; Apyan, A.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, Ioannina, Greece. [Filipovic, N.; Vesztergombi, G.; Bartok, M.; Veres, G. I.] Eotvos Lorand Univ, MTA ELTE Lendulet CMS Particle & Nucl Phys Grpy, Budapest, Hungary. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Bartok, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi, India. [Ghosh, S.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Thakur, S.] Saha Inst Nucl Phys, Kolkata, India. [Behera, P. K.] Indian Inst Technol, Madras, Tamil Nadu, India. [Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay, Maharashtra, India. [Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.] Tata Inst Fundamental Res A, Bombay, Maharashtra, India. [Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.] Tata Inst Fundamental Res B, Bombay, Maharashtra, India. [Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.] Indian Inst Sci Educ & Res, Pune, Maharashtra, India. [Behnamian, H.; Chenarani, S.; Tadavani, E. Eskandari; Etesami, S. M.; Fahim, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Bonacorsi, D.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cavallo, N.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Paoletti, S.; Sguazzoni, G.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Viliani, L.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.] Ist Nazl Fis Nucl, Sez Napoli, Rome, Italy. [Esposito, M.; Iorio, A. O. M.; Sciacca, C.] Univ Napoli Federico II, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, Rome, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Checchia, P.; Dall'Osso, M.; Manzano, P. De Castro; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Attikis, A.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Dall'Osso, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. Univ Trento, Trento, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Magnani, A.; Montagna, P.; Ratti, S. P.; Riccardi, C.; Vai, I.; Vitulo, P.] Univ Pavia, Pavia, Italy. [Solestizi, L. Alunni; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy. [Solestizi, L. Alunni; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Santocchia, A.] Univ Perugia, Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Donato, S.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Cipriani, M.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Sacchi, R.; Shchelina, K.; Solano, A.; Traczyk, P.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Della Ricca, G.; La Licata, C.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.] Kyungpook Natl Univ, Daegu, South Korea. [Lee, A.] Chonbuk Natl Univ, Jeonju, South Korea. [Cifuentes, J. A. Brochero; Kim, T. J.] Hanyang Univ, Seoul, South Korea. [Lee, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lim, J.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Dudenas, V.; Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.; Zolkapli, Z.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-De la Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magana Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.] Ctr Invest & Estudios Avanzados IPN, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Finger, M., Jr.; Tsamalaidze, Z.; Alexakhin, V.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Perelygin, V.; Savina, M.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Inst Nucl Res, Moscow, Russia. [Attikis, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Bylinkin, A.] Moscow Inst Phys & Technol, Moscow, Russia. [Aleksandrov, A.; Matveev, V.; Bylinkin, A.; Chistov, R.; Danilov, M.; Rusinov, V.; Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Chistov, R.; Danilov, M.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Blinov, V.; Skovpen, Y.] NSU, Novosibirsk, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Lopez, S. Goy; Hernandez, J. M.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Gonzalez Fernandez, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suarez Andres, I.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Martinez Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Jimeno, A.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Avetisyan, A.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Duenser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knuenz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenco, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schaefer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Simon, S.; Askew, A.] European Org Nucl Res, CERN, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schoenenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Apyan, A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Paganis, E.; Psallidas, A.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ, Taipei, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Topaksu, A. Kayis; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, Ankara, Turkey. [Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Apresyan, A.] Bogazici Univ, Istanbul, Turkey. [Cakir, A.; Cankocak, K.; Sen, S.] Istanbul Tech Univ, Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-Storey, S. Seif; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Lucas, R.] Rutherford Appleton Lab, Didcot, Oxon, England. [Aubin, A.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.] Univ Alabama, Tuscaloosa, AL USA. [Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.] Brown Univ, Providence, RI 02912 USA. [Chauhan, S.; Burns, D.; Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Negrete, M. Olmedo; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Baskakov, A.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Wurthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA USA. [Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Chen, Y.; Attikis, A.; Dubinin, M.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Attikis, A.; Andrews, M. B.; Azzolini, V.; Ferguson, T.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Apyan, A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.] Cornell Univ, Ithaca, NY USA. [Winn, D.; Askew, A.] Fairfield Univ, Fairfield, CT 06430 USA. [Banerjee, S.; Avetisyan, A.; Abdullin, S.; Albrow, M.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.] Fermilab Natl Accelerator Lab, Batavia, NY USA. [Kuznetsova, E.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.] Univ Illinois, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Blumenfeld, B.; Cocoros, A.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Al-Bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Bruner, C.; Castle, J.; Forthomme, L.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Takaki, J. D. Tapia; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Innocente, V.; Wang, J.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Hsu, D.; Iiyama, Y.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Kravchenko, I.; Rodrigues, A. Malta; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.] Univ Nebraska, Lincoln, NE USA. [Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Knapp, B.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.] Northeastern Univ, Boston, MA 02115 USA. [Attikis, A.; Bhattacharya, S.; Kumar, A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Dev, N.; Hildreth, M.; Anampa, K. Hurtado; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Lange, C.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Stickland, D.; Tully, C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Attikis, A.; Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, Indiana, PA USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, IN USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. T.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.] Univ Rochester, Rochester, NY USA. [Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Espinosa, T. A. Gomez; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Perloff, A.; Pernie, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Wang, Z.; Lee, S. W.; Apyan, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Apyan, A.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Sharma, A.; Belknap, D. A.; Dasu, S.; Dodd, L.; Gomber, B.; Grothe, M.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI USA. [Fruehwirth, R.; Jeitler, M.; Schieck, J.; Wulz, C. -E.; Krammer, M.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, Brazil. [Da Silveira, G. G.] Univ Fed Pelotas, Pelotas, Brazil. [Chen, Y.; Aubin, A.] DESY, Hamburg, Germany. [Assran, Y.] Suez Univ, Suez, Egypt. [Assran, Y.] British Univ Egypt, Cairo, Egypt. [Elkafrawy, T.] Ain Shams Univ, Cairo, Egypt. [Mahrous, A.] Helwan Univ, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Karacheban, O.; Lohmann, W.; Apresyan, A.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Choudhury, S.] Indian Inst Sci Educ & Res, Bhopal, India. [Nayak, A.] Inst Phys, Bhubaneswar, Orissa, India. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Chenarani, S.; Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Mehdiabadi, S. Paktinat] Yazd Univ, Yazd, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.] Univ Siena, Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Idris, F. Mohamad] MOSTI, Malaysian Nucl Agcy, Kajang, Malaysia. [Heredia-De la Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Byszuk, A.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Matveev, V.; Musienko, Y.] Inst Nucl Res, Moscow, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Kuznetsova, E.] Univ Florida, Gainesville, FL USA. [Blinov, V.; Skovpen, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Di Marco, E.] Univ Rome, INFN Sez Roma, Rome, Italy. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Aubin, A.; Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Veckalns, V.; Askew, A.] Riga Tech Univ, Riga, Latvia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Isildak, B.; Apresyan, A.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.; Askew, A.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, E. A.] Istanbul Bilgi Univ, Istanbul, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Vazquez Acosta, M.] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT 84058 USA. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan, Armenia. RI Lokhtin, Igor/D-7004-2012; Della Ricca, Giuseppe/B-6826-2013; Manganote, Edmilson/K-8251-2013; Konecki, Marcin/G-4164-2015; Puljak, Ivica/D-8917-2017; Fernandez Menendez, Javier/B-6550-2014; TUVE', Cristina/P-3933-2015; Terkulov, Adel/M-8581-2015; Goh, Junghwan/Q-3720-2016 OI Della Ricca, Giuseppe/0000-0003-2831-6982; Konecki, Marcin/0000-0001-9482-4841; Fernandez Menendez, Javier/0000-0002-5213-3708; TUVE', Cristina/0000-0003-0739-3153; Goh, Junghwan/0000-0002-1129-2083 FU Austrian Federal Ministry of Science, Research and Economy; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; Brazilian Funding Agency (CNPq); Brazilian Funding Agency (CAPES); Brazilian Funding Agency (FAPERJ); Brazilian Funding Agency (FAPESP); Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology and National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Croatian Science Foundation; Research Promotion Foundation, Cyprus; Ministry of Education and Research, Estonian Research Council [IUT23-4, IUT23-6]; European Regional Development Fund, Estonia; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules/CNRS, France; Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; Bundesministerium fur Bildung und Forschung, Germany; Deutsche Forschungsgemeinschaft, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation, Hungary; National Innovation Office, Hungary; Department of Atomic Energy, India; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Science, ICT and Future Planning, Republic of Korea; National Research Foundation, Republic of Korea; Lithuanian Academy of Sciences; Ministry of Education, Malaysia; University of Malaya, Malaysia; Mexican Funding Agency (BUAP); Mexican Funding Agency (CINVESTAV); Mexican Funding Agency (CONACYT); Mexican Funding Agency (LNS); Mexican Funding Agency (SEP); Mexican Funding Agency (UASLP-FAI); Ministry of Business, Innovation and Employment, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education, Poland; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Joint Institute for Nunclear Research in Dubna; Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development of Serbia; Secretaria de Estado de Investigacion, Spain; Desarrollo e Innovacion and Programa Consolider-Ingenio, Spain; Swiss Funding Agency (ETH Board); Swiss Funding Agency (ETH Zurich); Swiss Funding Agency (PSI); Swiss Funding Agency (SNF); Swiss Funding Agency (UniZH); Swiss Funding Agency (Canton Zurich); Swiss Funding Agency (SER); Ministry of Science and Technology, Taiwan; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; Special Task Force for Activating Research; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; National Academy of Sciences of Ukraine; State Fund for Fundamental Researches; Science and Technology Facilities Council, UK; US Department of Energy; US National Science Foundation; Marie-Curie program; European Research Council; EPLANET; European Union; Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture, Belgium; Agentschap voor Innovatie door Wetenschap en Technologie, Belgium; Ministry of Education, Youth and Sports of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS program of the Foundation for Polish Science; European Union, Regional Development Fund; Mobility Plus program of the Ministry of Science and Higher Education, Poland; OPUS program of the National Science Center, Poland; Thalis program; Aristeia program; EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Programa Clarin-COFUND del Principado de Asturias; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Thailand; Chulalongkorn Academic into Its 2nd Century Project Advancement Project, Thailand; Welch Foundation [C-1845] FX Forschungs-zentren We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council, via Grants No. IUT23-4 and No.; IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS and Commissariat a l'Energie Atomique et aux Energies Alternatives/CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning and National Research Foundation, Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education and University of Malaya, Malaysia; the Mexican Funding Agencies (BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; Joint Institute for Nunclear Research in Dubna, the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taiwan; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine and State Fund for Fundamental Researches; the Science and Technology Facilities Council, UK; and the US Department of Energy and the US National Science Foundation. Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET, European Union; the Leventis Foundation; the A.P.; Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture, Belgium; the Agentschap voor Innovatie door Wetenschap en Technologie, Belgium; the Ministry of Education, Youth and Sports of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Mobility Plus program of the Ministry of Science and Higher Education, Poland; the OPUS program of the National Science Center, Poland; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarin-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University, Thailand; the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, Thailand; and the Welch Foundation, Contract No. C-1845. NR 100 TC 0 Z9 0 U1 24 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 6 PY 2017 VL 95 IS 1 AR 012003 DI 10.1103/PhysRevD.95.012003 PG 32 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EG8NQ UT WOS:000391314300001 ER PT J AU Alduino, C Alfonso, K Artusa, DR Avignone, FT Azzolini, O Banks, TI Bari, G Beeman, JW Bellini, F Bersani, A Biassoni, M Brofferio, C Bucci, C Camacho, A Caminata, A Canonica, L Cao, XG Capelli, S Cappelli, L Carbone, L Cardani, L Carniti, P Casali, N Cassina, L Chiesa, D Chott, N Clemenza, M Copello, S Cosmelli, C Cremonesi, O Creswick, RJ Cushman, JS D'Addabbo, A Dafinei, I Davis, CJ Dell'Oro, S Deninno, MM Di Domizio, S Di Vacri, ML Drobizhev, A Fang, DQ Faverzani, M Feintzeig, J Fernandes, G Ferri, E Ferroni, F Fiorini, E Franceschi, MA Freedman, SJ Fujikawa, BK Giachero, A Gironi, L Giuliani, A Gladstone, L Gorla, P Gotti, C Gutierrez, TD Haller, EE Han, K Hansen, E Heeger, KM Hennings-Yeomans, R Hickerson, KP Huang, HZ Kadel, R Keppel, G Kolomensky, YG Leder, A Ligi, C Lim, KE Liu, X Ma, YG Maino, M Marini, L Martinez, M Maruyama, RH Mei, Y Moggi, N Morganti, S Mosteiro, PJ Napolitano, T Nones, C Norman, EB Nucciotti, A O'Donnell, T Orio, F Ouellet, JL Pagliarone, CE Pallavicini, M Palmieri, V Pattavina, L Pavan, M Pessina, G Pettinacci, V Piperno, G Pira, C Pirro, S Pozzi, S Previtali, E Rosenfeld, C Rusconi, C Sangiorgio, S Santone, D Scielzo, ND Singh, V Sisti, M Smith, AR Taffarello, L Tenconi, M Terranova, F Tomei, C Trentalange, S Vignati, M Wagaarachchi, SL Wang, BS Wang, HW Wilson, J Winslow, LA Wise, T Woodcraft, A Zanotti, L Zhang, GQ Zhu, BX Zimmermann, S Zucchelli, S AF Alduino, C. Alfonso, K. Artusa, D. R. Avignone, F. T., III Azzolini, O. Banks, T. I. Bari, G. Beeman, J. W. Bellini, F. Bersani, A. Biassoni, M. Brofferio, C. Bucci, C. Camacho, A. Caminata, A. Canonica, L. Cao, X. G. Capelli, S. Cappelli, L. Carbone, L. Cardani, L. Carniti, P. Casali, N. Cassina, L. Chiesa, D. Chott, N. Clemenza, M. Copello, S. Cosmelli, C. Cremonesi, O. Creswick, R. J. Cushman, J. S. D'Addabbo, A. Dafinei, I. Davis, C. J. Dell'Oro, S. Deninno, M. M. Di Domizio, S. Di Vacri, M. L. Drobizhev, A. Fang, D. Q. Faverzani, M. Feintzeig, J. Fernandes, G. Ferri, E. Ferroni, F. Fiorini, E. Franceschi, M. A. Freedman, S. J. Fujikawa, B. K. Giachero, A. Gironi, L. Giuliani, A. Gladstone, L. Gorla, P. Gotti, C. Gutierrez, T. D. Haller, E. E. Han, K. Hansen, E. Heeger, K. M. Hennings-Yeomans, R. Hickerson, K. P. Huang, H. Z. Kadel, R. Keppel, G. Kolomensky, Yu. G. Leder, A. Ligi, C. Lim, K. E. Liu, X. Ma, Y. G. Maino, M. Marini, L. Martinez, M. Maruyama, R. H. Mei, Y. Moggi, N. Morganti, S. Mosteiro, P. J. Napolitano, T. Nones, C. Norman, E. B. Nucciotti, A. O'Donnell, T. Orio, F. Ouellet, J. L. Pagliarone, C. E. Pallavicini, M. Palmieri, V. Pattavina, L. Pavan, M. Pessina, G. Pettinacci, V. Piperno, G. Pira, C. Pirro, S. Pozzi, S. Previtali, E. Rosenfeld, C. Rusconi, C. Sangiorgio, S. Santone, D. Scielzo, N. D. Singh, V. Sisti, M. Smith, A. R. Taffarello, L. Tenconi, M. Terranova, F. Tomei, C. Trentalange, S. Vignati, M. Wagaarachchi, S. L. Wang, B. S. Wang, H. W. Wilson, J. Winslow, L. A. Wise, T. Woodcraft, A. Zanotti, L. Zhang, G. Q. Zhu, B. X. Zimmermann, S. Zucchelli, S. TI Measurement of the two-neutrino double-beta decay half-life of Te-130 with the CUORE-0 experiment SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID RADIOACTIVE CONTAMINATION; RARE EVENTS; ACTIVATION; VALIDATION; NEUTRINOS; NEUTRON; SEARCH; COPPER AB We report on the measurement of the twoneutrino double-beta decay half-life of Te-130 with the CUORE-0 detector. From an exposure of 33.4 kg year of TeO2, the half-life is determined to be T-1/2(2 nu) = [8.2 +/- 0.2 (stat.) +/- 0.6 (syst.)] x 10(20) year. This result is obtained after a detailed reconstruction of the sources responsible for the CUORE-0 counting rate, with a specific study of those contributing to the Te-130 neutrinoless double-beta decay region of interest. C1 [Alduino, C.; Artusa, D. R.; Avignone, F. T., III; Chott, N.; Creswick, R. J.; Rosenfeld, C.; Wilson, J.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Alfonso, K.; Hansen, E.; Hickerson, K. P.; Huang, H. Z.; Liu, X.; Trentalange, S.; Zhu, B. X.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Artusa, D. R.; Bucci, C.; Canonica, L.; Cappelli, L.; D'Addabbo, A.; Dell'Oro, S.; Di Vacri, M. L.; Gorla, P.; Pagliarone, C. E.; Pattavina, L.; Pirro, S.; Santone, D.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Laquila, Italy. [Azzolini, O.; Camacho, A.; Keppel, G.; Palmieri, V.; Pira, C.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy. [Banks, T. I.; Drobizhev, A.; Freedman, S. J.; Hennings-Yeomans, R.; Kolomensky, Yu. G.; O'Donnell, T.; Ouellet, J. L.; Singh, V.; Wagaarachchi, S. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Banks, T. I.; Drobizhev, A.; Feintzeig, J.; Freedman, S. J.; Fujikawa, B. K.; Hennings-Yeomans, R.; Kolomensky, Yu. G.; Mei, Y.; O'Donnell, T.; Ouellet, J. L.; Smith, A. R.; Wagaarachchi, S. L.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Bari, G.; Deninno, M. M.; Moggi, N.; Zucchelli, S.] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy. [Beeman, J. W.; Haller, E. E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bellini, F.; Cardani, L.; Casali, N.; Cosmelli, C.; Ferroni, F.; Martinez, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bellini, F.; Cardani, L.; Casali, N.; Cosmelli, C.; Dafinei, I.; Ferroni, F.; Martinez, M.; Morganti, S.; Mosteiro, P. J.; Orio, F.; Pettinacci, V.; Tomei, C.; Vignati, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Bersani, A.; Caminata, A.; Copello, S.; Di Domizio, S.; Fernandes, G.; Marini, L.; Pallavicini, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Brofferio, C.; Capelli, S.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Fiorini, E.; Gironi, L.; Gotti, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Pozzi, S.; Sisti, M.; Terranova, F.; Zanotti, L.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Biassoni, M.; Brofferio, C.; Capelli, S.; Carbone, L.; Carniti, P.; Cassina, L.; Chiesa, D.; Clemenza, M.; Cremonesi, O.; Faverzani, M.; Ferri, E.; Fiorini, E.; Giachero, A.; Gironi, L.; Gotti, C.; Maino, M.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pozzi, S.; Previtali, E.; Rusconi, C.; Sisti, M.; Terranova, F.; Zanotti, L.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Cao, X. G.; Fang, D. Q.; Ma, Y. G.; Wang, H. W.; Zhang, G. Q.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Pagliarone, C. E.] Univ Cassino & Lazio Merid, Dipartimento Ingn Civile & Meccan, I-03043 Cassino, Italy. [Copello, S.; Di Domizio, S.; Fernandes, G.; Marini, L.; Pallavicini, M.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Cushman, J. S.; Davis, C. J.; Han, K.; Heeger, K. M.; Lim, K. E.; Maruyama, R. H.; Wise, T.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Dell'Oro, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Santone, D.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67100 Laquila, Italy. [Franceschi, M. A.; Ligi, C.; Napolitano, T.; Piperno, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Rome, Italy. [Giuliani, A.; Tenconi, M.] Univ Paris Saclay, IN2P3, CNRS, CSNSM,Univ Paris Sud, F-91405 Orsay, France. [Canonica, L.; Gladstone, L.; Hansen, E.; Leder, A.; Ouellet, J. L.; Winslow, L. A.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Gutierrez, T. D.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Han, K.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Kadel, R.; Kolomensky, Yu. G.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Martinez, M.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain. [Moggi, N.] Univ Bologna, Alma Mater Studiorum, Dipartimento Sci Qualita Vita, I-47921 Bologna, Italy. [Nones, C.] CEA Saclay, Serv Phys Particules, F-91191 Gif Sur Yvette, France. [Norman, E. B.; Sangiorgio, S.; Scielzo, N. D.; Wang, B. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Norman, E. B.; Wang, B. S.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Taffarello, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Wise, T.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Woodcraft, A.] Univ Edinburgh, Inst Astron, SUPA, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Zimmermann, S.] Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. [Zucchelli, S.] Univ Bologna, Alma Mater Studiorum, Dipartimento Fis & Astron, I-40127 Bologna, Italy. RP Cremonesi, O (reprint author), Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. EM cuore-spokesperson@lngs.infn.it RI Bellini, Fabio/D-1055-2009; Martinez, Maria/K-4827-2012; Casali, Nicola/C-9475-2017; Han, Ke/D-3697-2017; Giachero, Andrea/I-1081-2013; Chiesa, Davide/H-7240-2014; Maruyama, Reina/A-1064-2013; Sisti, Monica/B-7550-2013 OI Bellini, Fabio/0000-0002-2936-660X; Martinez, Maria/0000-0002-9043-4691; Casali, Nicola/0000-0003-3669-8247; Han, Ke/0000-0002-1609-7367; Giachero, Andrea/0000-0003-0493-695X; Chiesa, Davide/0000-0003-1978-1727; Maruyama, Reina/0000-0003-2794-512X; Sisti, Monica/0000-0003-2517-1909 FU Istituto Nazionale di Fisica Nucleare (INFN); National Science Foundation [NSF-PHY-0605119, NSF-PHY-0500337, NSF-PHY-0855314, NSF-PHY-0902171, NSF-PHY-0969852, NSF-PHY-1307204, NSF-PHY-1314881, NSF-PHY-1401832, NSF-PHY-1404205]; Alfred P. Sloan Foundation; University of Wisconsin Foundation; Yale University; US Department of Energy (DOE) Office of Science [DE-AC02-05CH11231, DE-AC52-07NA27344, DE-SC0012654]; DOE Office of Science, Office of Nuclear Physics [DE-FG02-08ER41551, DE-FG03-00ER41138] FX The CUORE Collaboration thanks the directors and staff of the Laboratori Nazionali del Gran Sasso and the technical staff of our laboratories. This work was supported by the Istituto Nazionale di Fisica Nucleare (INFN); the National Science Foundation under Grant Nos. NSF-PHY-0605119, NSF-PHY-0500337, NSF-PHY-0855314, NSF-PHY-0902171, NSF-PHY-0969852, NSF-PHY-1307204, NSF-PHY-1314881, NSF-PHY-1401832, and NSF-PHY-1404205; the Alfred P. Sloan Foundation; the University of Wisconsin Foundation; and Yale University. This material is also based upon work supported by the US Department of Energy (DOE) Office of Science under Contract Nos. DE-AC02-05CH11231, DE-AC52-07NA27344, and DE-SC0012654; and by the DOE Office of Science, Office of Nuclear Physics under Contract Nos. DE-FG02-08ER41551 and DE-FG03-00ER41138. This research used resources of the National Energy Research Scientific Computing Center (NERSC). NR 39 TC 0 Z9 0 U1 12 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JAN 6 PY 2017 VL 77 IS 1 AR 13 DI 10.1140/epjc/s10052-016-4498-6 PG 18 WC Physics, Particles & Fields SC Physics GA EH9IO UT WOS:000392085200002 ER PT J AU Grierson, BA Wang, WX Ethier, S Staebler, GM Battaglia, DJ Boedo, JA deGrassie, JS Solomon, WM AF Grierson, B. A. Wang, W. X. Ethier, S. Staebler, G. M. Battaglia, D. J. Boedo, J. A. deGrassie, J. S. Solomon, W. M. TI Main-Ion Intrinsic Toroidal Rotation Profile Driven by Residual Stress Torque from Ion Temperature Gradient Turbulence in the DIII-D Tokamak SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSPORT; MOMENTUM AB Intrinsic toroidal rotation of the deuterium main ions in the core of the DIII-D tokamak is observed to transition from flat to hollow, forming an off-axis peak, above a threshold level of direct electron heating. Nonlinear gyrokinetic simulations show that the residual stress associated with electrostatic ion temperature gradient turbulence possesses the correct radial location and stress structure to cause the observed hollow rotation profile. Residual stress momentum flux in the gyrokinetic simulations is balanced by turbulent momentum diffusion, with negligible contributions from turbulent pinch. The prediction of the velocity profile by integrating the momentum balance equation produces a rotation profile that qualitatively and quantitatively agrees with the measured main-ion profile, demonstrating that fluctuation-induced residual stress can drive the observed intrinsic velocity profile. C1 [Grierson, B. A.; Wang, W. X.; Ethier, S.; Battaglia, D. J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Staebler, G. M.; deGrassie, J. S.; Solomon, W. M.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Boedo, J. A.] Univ Calif San Diego, Ctr Energy Res, 9500 Gilman Dr, La Jolla, CA 92093 USA. RP Grierson, BA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM bgriers@pppl.gov FU U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-07ER54917] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility under Grants No. DE-AC02-09CH11466 (Princeton University), No. DE-FC02-04ER54698 (General Atomics), and No. DE-FG02-07ER54917 (University of California San Diego). NR 35 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 6 PY 2017 VL 118 IS 1 AR 015002 DI 10.1103/PhysRevLett.118.015002 PG 5 WC Physics, Multidisciplinary SC Physics GA EH0SU UT WOS:000391474900009 PM 28106437 ER PT J AU Patel, K Blair, V Douglas, J Dai, QL Liu, YH Ren, SQ Brennan, R AF Patel, Ketan Blair, Victoria Douglas, Justin Dai, Qilin Liu, Yaohua Ren, Shenqiang Brennan, Raymond TI Structural Effects of Lanthanide Dopants on Alumina SO SCIENTIFIC REPORTS LA English DT Article ID EARTH-DOPED ALUMINA; SOLID-STATE NMR; RARE-EARTH; THERMAL STABILIZATION; QUADRUPOLAR NUCLEI; CERAMIC COMPOSITES; THIN-FILMS; CATALYSTS; COMBUSTION; STABILITY AB Lanthanide (Ln(3+)) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO(3), Ln(2)O(3)), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (theta -> alpha), and alteration of powder morphology, particle dimensions, and composition ratios between alpha- and theta-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable alpha-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications. C1 [Patel, Ketan; Dai, Qilin; Ren, Shenqiang] Temple Univ, Dept Mech Engn, Philadelphia, PA 19122 USA. [Patel, Ketan; Dai, Qilin; Ren, Shenqiang] Temple Univ, Temple Mat Inst, Philadelphia, PA 19122 USA. [Blair, Victoria; Brennan, Raymond] US Army Res Lab, Aberdeen Proving Ground, MD 21005 USA. [Douglas, Justin] Univ Kansas, Mol Struct Grp, Lawrence, KS 66045 USA. [Liu, Yaohua] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Ren, SQ (reprint author), Temple Univ, Dept Mech Engn, Philadelphia, PA 19122 USA.; Ren, SQ (reprint author), Temple Univ, Temple Mat Inst, Philadelphia, PA 19122 USA.; Brennan, R (reprint author), US Army Res Lab, Aberdeen Proving Ground, MD 21005 USA. EM shenqiang.ren@temple.edu; raymond.e.brennan.civ@mail.mil RI Liu, Yaohua/B-2529-2009 OI Liu, Yaohua/0000-0002-5867-5065 FU Army Research Office; Army Research Laboratory [W911NF-15-1-0610]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Division of Scientific User Facilities of the Office of Basic Energy Sciences (BES), US Department of Energy (DOE); NSF Chemical Instrumentation Grant [0840515] FX Work at the Temple University (S.R.) was supported by the Army Research Office and Army Research Laboratory (W911NF-15-1-0610). Use of the Advanced Photon Source (11-BM) at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at ORNL was supported by the Division of Scientific User Facilities of the Office of Basic Energy Sciences (BES), US Department of Energy (DOE). Support for the NMR instrumentation was provided NSF Chemical Instrumentation Grant #0840515. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 38 TC 0 Z9 0 U1 8 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 6 PY 2017 VL 7 AR 39946 DI 10.1038/srep39946 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG8MP UT WOS:000391311500001 PM 28059121 ER PT J AU Wallace, JB Aji, LBB Martin, AA Shin, SJ Shao, L Kucheyev, SO AF Wallace, J. B. Aji, L. B. Bayu Martin, A. A. Shin, S. J. Shao, L. Kucheyev, S. O. TI The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si SO SCIENTIFIC REPORTS LA English DT Article ID POINT-DEFECTS; TEMPERATURE-DEPENDENCE; DOSE-RATE; SILICON; GENERATION; TRANSITION; MECHANISM; REGROWTH; BEAMS AB The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 degrees C with 500 keV Ar ions. Results reveal a defect relaxation time constant of similar to 10-0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 +/- 5 meV and 420 +/- 10 meV, below and above 60 degrees C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies. C1 [Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Kucheyev, S. O.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wallace, J. B.; Shao, L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Wallace, JB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.; Wallace, JB (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM wallace55@llnl.gov FU Nuclear Energy Enabling Technology (NEET) Program of the U.S. DOE, Office of Nuclear Energy; U.S. DOE by LLNL [DE-AC52-07NA27344]; LGSP FX This work was funded by the Nuclear Energy Enabling Technology (NEET) Program of the U.S. DOE, Office of Nuclear Energy and performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. J.B.W. would like to acknowledge the LGSP for funding. NR 29 TC 0 Z9 0 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 6 PY 2017 VL 7 AR 39754 DI 10.1038/srep39754 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG7WL UT WOS:000391267100001 PM 28059109 ER PT J AU Van Buren, K Reilly, J Neal, K Edwards, H Hemez, F AF Van Buren, Kendra Reilly, Jack Neal, Kyle Edwards, Harry Hemez, Francois TI Guaranteeing robustness of structural condition monitoring to environmental variability SO JOURNAL OF SOUND AND VIBRATION LA English DT Article DE Structural health monitoring; Time series modeling; Uncertainty quantification ID DAMAGE DETECTION; IDENTIFICATION; FREQUENCY; OUTPUT AB Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-Making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October -28-2015, LA-UR-15-28442, unclassified). (C) 2016 Elsevier Ltd. All rights reserved. C1 [Van Buren, Kendra] Los Alamos Natl Lab, XCP-8,Mail Stop F644, Los Alamos, NM 87545 USA. [Reilly, Jack] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA. [Neal, Kyle] Vanderbilt Univ, Dept Civil & Environm Engn, Box 1831-B, Nashville, TN 37235 USA. [Edwards, Harry] Environm & Test Grp, Atom Weap Estab, Reading, Berks, England. [Hemez, Francois] XTD IDA, Los Alamos Natl Lab, Mail Stop T087, Los Alamos, NM 87545 USA. RP Hemez, F (reprint author), XTD IDA, Los Alamos Natl Lab, Mail Stop T087, Los Alamos, NM 87545 USA. EM klvan@lanl.gov; jpr2@princeton.edu; kyle.d.neal@vanderbilt.edu; Harry.Edwards@awe.co.uk; hemez@lanl.gov OI Hemez, Francois/0000-0002-5319-4078; Van Buren, Kendra/0000-0002-0495-2354 FU Advanced Scientific Computing program at Los Alamos National Laboratory (LANL); Dynamics Summer School at LANL; Los Alamos National Security, L.L.C. [DE-AC52-06NA25396] FX The first author acknowledges support from the Advanced Scientific Computing program at Los Alamos National Laboratory (LANL). The second, third, and fourth authors acknowledge the support of the 2015 Dynamics Summer School at LANL. The fifth author is grateful for continued support received from the Advanced Certification Campaign at LANL. The Los Alamos National Security, L.L.C., operates LANL under contract DE-AC52-06NA25396 on behalf of the National Nuclear Security Administration of the U.S. Department of Energy. NR 34 TC 0 Z9 0 U1 23 U2 23 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X EI 1095-8568 J9 J SOUND VIB JI J. Sound Vibr. PD JAN 6 PY 2017 VL 386 BP 134 EP 148 DI 10.1016/j.jsv.2016.08.038 PG 15 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA EC5DD UT WOS:000388152400009 ER PT J AU Campbell, JM Ellis, RK AF Campbell, John M. Ellis, R. Keith TI Top-quark loop corrections in Z plus jet and Z+2 jet production SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE NLO Computations; QCD Phenomenology ID FEYNMAN DIAGRAMS; AMPLITUDES; UNITARITY; INTEGRALS AB The sophistication of current predictions for Z+jet production at hadron colliders necessitates a re-evaluation of any approximations inherent in the theoretical calculations. In this paper we address one such issue, the inclusion of mass effects in top-quark loops. We ameliorate an existing calculation of Z+1 jet and Z+2 jet production by presenting exact analytic formulae for amplitudes containing top-quark loops that enter at next-to-leading order in QCD. Although approximations based on an expansion in powers of 1/m(t)(2) can lead to poor high-energy behavior, an exact treatment of top-quark loops demonstrates that their effect is small and has limited phenomenological interest. C1 [Campbell, John M.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Ellis, R. Keith] Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. RP Campbell, JM (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM johnmc@fnal.gov; keith.ellis@durham.ac.uk FU US DOE [DE-AC02-07CH11359] FX RKE would like to thank the Fermilab theory group for hospitality during the preparation of this paper. The research of JMC is supported by the US DOE under contract DE-AC02-07CH11359. NR 37 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JAN 5 PY 2017 IS 1 AR 020 DI 10.1007/JHEP01(2017)020 PG 36 WC Physics, Particles & Fields SC Physics GA EP8QX UT WOS:000397641000001 ER PT J AU Di Fenza, M Hogg, B Grant, J Barth, S AF Di Fenza, Mauro Hogg, Bridget Grant, Jim Barth, Susanne TI Transcriptomic response of maize primary roots to low temperatures at seedling emergence SO PEERJ LA English DT Article DE Maize; Cold stress; Chilling tolerance; Transcriptome; Roots; Low temperature ID COLD STRESS; CHILLING STRESS; SHOOT TRAITS; INBRED LINES; ZEA-MAYS; TOLERANCE; YIELD; PLANTS; ACCLIMATION; PROTEINS AB Background. Maize (Zea mays) is a C-4 tropical cereal and its adaptation to temperate climates can be problematic due to low soil temperatures at early stages of establishment. Methods. In the current study we have firstly investigated the physiological response of twelve maize varieties, from a chilling condition adapted gene pool, to sub-optimal growth temperature during seedling emergence. To identify transcriptomic markers of cold tolerance in already adapted maize genotypes, temperature conditions were set below the optimal growth range in both control and low temperature groups. The conditions were as follows; control (18 degrees C for 16 h and 12 degrees C for 8 h) and low temperature (12 degrees C for 16 h and 6 degrees C for 8 h). Four genotypes were identified from the condition adapted gene pool with significant contrasting chilling tolerance. Results. Picker and PR39B29 were the more cold-tolerant lines and Fergus and Codisco were the less cold-tolerant lines. These four varieties were subjected to microarray analysis to identify differentially expressed genes under chilling conditions. Exposure to low temperature during establishment in the maize varieties Picker, PR39B29, Fergus and Codisco, was reflected at the transcriptomic level in the varieties Picker and PR391129. No significant changes in expression were observed in Fergus and Codisco following chilling stress. A total number of 64 genes were differentially expressed in the two chilling tolerant varieties. These two varieties exhibited contrasting transcriptomic profiles, in which only four genes overlapped. Discussion. We observed that maize varieties possessing an enhanced root growth ratio under low temperature were more tolerant, which could be an early and inexpensive measure for germplasm screening under controlled conditions. We have identified novel cold inducible genes in an already adapted maize breeding gene pool. This illustrates that further varietal selection for enhanced chilling tolerance is possible in an already preselected gene pool. C1 [Di Fenza, Mauro; Hogg, Bridget] Univ Coll Dublin, Sch Biol & Environm Sci, Coll Life Sci, Dublin, Ireland. [Di Fenza, Mauro; Barth, Susanne] TEAGASC, Crops Environm & Land Use Programme, Crops Res Ctr Oak Pk, Carlow, Ireland. [Grant, Jim] TEAGASC, Res Operat Grp, Stat & Appl Phys Dept, Dublin, Ireland. RP Barth, S (reprint author), TEAGASC, Crops Environm & Land Use Programme, Crops Res Ctr Oak Pk, Carlow, Ireland. EM susanne.barth@teagasc.ie FU Irish Department of Agriculture, Food and the Marine (DAFM) Stimulus Research grant [RSF 07 501] FX This research was supported by the Irish Department of Agriculture, Food and the Marine (DAFM) Stimulus Research grant RSF 07 501. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 44 TC 0 Z9 0 U1 1 U2 1 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD JAN 5 PY 2017 VL 5 AR e2839 DI 10.7717/peerj.2839 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EL5XV UT WOS:000394695700001 PM 28168096 ER PT J AU Heler, R Wright, AV Vucelja, M Bikard, D Doudna, JA Marraffini, LA AF Heler, Robert Wright, Addison V. Vucelja, Marija Bikard, David Doudna, Jennifer A. Marraffini, Luciano A. TI Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response SO MOLECULAR CELL LA English DT Article ID ADAPTIVE IMMUNITY; STRUCTURAL BASIS; DNA RECOGNITION; RNA; ADAPTATION; PROKARYOTES; CLEAVAGE; SYSTEMS; ENDONUCLEASE; RESISTANCE AB CRISPR loci and their associated (Cas) proteins encode a prokaryotic immune system that protects against viruses and plasmids. Upon infection, a low fraction of cells acquire short DNA sequences from the invader. These sequences (spacers) are integrated in between the repeats of the CRISPR locus and immunize the host against the matching invader. Spacers specify the targets of the CRISPR immune response through transcription into short RNA guides that direct Cas nucleases to the invading DNA molecules. Here we performed random mutagenesis of the RNA-guided Cas9 nuclease to look for variants that provide enhanced immunity against viral infection. We identified a mutation, I473F, that increases the rate of spacer acquisition by more than two orders of magnitude. Our results highlight the role of Cas9 during CRISPR immunization and provide a useful tool to study this rare process and develop it as a biotechnological application. C1 [Heler, Robert; Bikard, David; Marraffini, Luciano A.] Rockefeller Univ, Bacteriol Lab, New York, NY 10065 USA. [Wright, Addison V.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [Vucelja, Marija] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Ctr RNA Syst Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Bikard, David] Inst Pasteur, Dept Microbiol, Synthet Biol Grp, F-75015 Paris, France. RP Marraffini, LA (reprint author), Rockefeller Univ, Bacteriol Lab, New York, NY 10065 USA. EM marraffini@rockefeller.edu FU Howard Hughes International Student Research Fellowship; Rita Allen Scholars Program; Irma T. Hirschl Award; Sinsheimer Foundation Award; NIH Director's New Innovator Award [1DP2AI104556-01]; National Science Foundation; Paul Allen Foundation; Howard Hughes Medical Institute FX We thank members of the lab for critical discussion of the experiments and their results. R.H. is the recipient of a Howard Hughes International Student Research Fellowship. L.A.M is supported by the Rita Allen Scholars Program, an Irma T. Hirschl Award, a Sinsheimer Foundation Award, and a NIH Director's New Innovator Award (1DP2AI104556-01). L.A.M. is a founder of Intellia Therapeutics and a member of its scientific advisory board. A.V.W. is supported by a graduate student fellowship from the National Science Foundation; J.A.D. acknowledges support from the National Science Foundation, the Paul Allen Foundation, and the Howard Hughes Medical Institute. NR 29 TC 1 Z9 1 U1 1 U2 1 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 EI 1097-4164 J9 MOL CELL JI Mol. Cell PD JAN 5 PY 2017 VL 65 IS 1 BP 168 EP 175 DI 10.1016/j.molcel.2016.11.031 PG 8 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA EM9MI UT WOS:000395635300016 PM 28017588 ER PT J AU Smith, JA Ndersen, TJA Shortt, M Gaffney, AM Truffer, M Stanton, TP Bindschadler, R Dutrieux, P Enkins, AJ Hillenbrand, CD Ehrmann, W Corr, HFJ Farley, N Crowhurst, S Vaughan, DG AF Smith, J. A. Ndersen, T. J. A. Shortt, M. Gaffney, A. M. Truffer, M. Stanton, T. P. Bindschadler, R. Dutrieux, P. Enkins, A. J. Hillenbrand, C. -D. Ehrmann, W. Corr, H. F. J. Farley, N. Crowhurst, S. Vaughan, D. G. TI Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier SO NATURE LA English DT Article ID AMUNDSEN SEA EMBAYMENT; WEST ANTARCTICA; GROUNDING-LINE; ROSS SEA; SHEET; OCEAN; CORES; BAY; ACCUMULATION; VARIABILITY AB The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels(1). Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate(2), and several numerical models suggest that unstable and irreversible retreat of the grounding line-which marks the boundary between grounded ice and floating ice shelf- is underway(3). Understanding this recent retreat requires a detailed knowledge of grounding-line history(4), but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (+/- 12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (+/- 4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Nino activity. Thus our results suggest that, even when climate forcing weakened, ice-sheet retreat continued. C1 [Smith, J. A.; Shortt, M.; Enkins, A. J.; Hillenbrand, C. -D.; Corr, H. F. J.; Farley, N.; Vaughan, D. G.] British Antarctic Survey, High Cross,Madingley Rd, Cambridge CB3 0ET, England. [Ndersen, T. J. A.] Univ Copenhagen, Ctr Permafrost CENPERM, Dept Geosci & Nat Resource Management, DK-1350 Copenhagen K, Denmark. [Gaffney, A. M.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94550 USA. [Truffer, M.] Univ Alaska, Inst Geophys, Fairbanks, AK 99775 USA. [Stanton, T. P.] Naval Postgrad Sch, Dept Oceanog, Monterey, CA 93943 USA. [Bindschadler, R.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Dutrieux, P.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Ehrmann, W.] Univ Leipzig, Inst Geophys & Geol, Talstr 35, D-04103 Leipzig, Germany. [Farley, N.] Univ Geneva, Dept Earth Sci, 13 Rue Maraichers, CH-1205 Geneva, Switzerland. [Crowhurst, S.] Univ Cambridge, Dept Earth Sci, Godwin Lab Palaeoclimate Res, Downing St, Cambridge CB2 3EQ, England. RP Smith, JA (reprint author), British Antarctic Survey, High Cross,Madingley Rd, Cambridge CB3 0ET, England. EM jaas@bas.ac.uk OI Andersen, Thorbjorn Joest/0000-0001-5032-9945; Dutrieux, Pierre/0000-0002-8066-934X FU NSF's Office of Polar Programs under NSF [ANT-0732926, ANT 0732730]; NASA's Cryospheric Sciences Program; New York University Abhu Dabi [1204]; Natural Environment Research Council-British Antarctic Survey Polar Science for Planet Earth Programme; [DE-AC52-07NA27344]; [LLNL-JRNL-697878] FX We thank D. Pomraning for help with designing and manning the hot-water drill equipment. Logistic and safety support was provided by K. Gibbon, D. Einerson, E. Steinarsson, F. McCarthy, S. Consalvi, S. King, the PIG support camp personnel, and the National Science Foundation (NSF) Antarctic support team. We particularly thank E. Steinarsson for his help with sediment coring. This research project was supported by NSF's Office of Polar Programs under NSF grants including ANT-0732926 and ANT 0732730; by funding from NASA's Cryospheric Sciences Program; by New York University Abhu Dabi grant 1204; and by the Natural Environment Research Council-British Antarctic Survey Polar Science for Planet Earth Programme. Work at the Lawrence Livermore National Laboratory (LLNL) was performed under contract DE-AC52-07NA27344; LLNL-JRNL-697878. NR 45 TC 1 Z9 1 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JAN 5 PY 2017 VL 541 IS 7635 BP 77 EP + DI 10.1038/nature20136 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EN6NA UT WOS:000396119500032 PM 27880756 ER PT J AU Chen, TH Popov, I Miljanic, OS AF Chen, Teng-Hao Popov, Ilya Miljanic, Ognjen S. TI A Zirconium Macrocyclic Metal-Organic Framework with Predesigned Shape-Persistent Apertures SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE 1D channels; macrocycles; metal-organic frameworks; shape persistency; zirconium ID ARYLENE ETHYNYLENE MACROCYCLES; ASSISTED LIGAND INCORPORATION; COORDINATION POLYMER; PI STACKING; POROUS FRAMEWORK; GUEST-EXCHANGE; HYDROGEN-BOND; ADSORPTION; SORPTION; TOPOLOGY AB A microporous metal-organic framework (MOF) was synthesized from [Zr6O4(OH)(4)(C6H5COO)(12)] clusters and a triacid ligand based on a shape-persistent arylene ethynylene macrocycle. This framework, dubbed Zr-MCMOF, is held together by metal-ligand coordination and multiple weak interactions: hydrogen bonding, [pi center dot center dot center dot pi] stacking, and [C H center dot center dot center dot pi] interactions. The rigid ligand has a 9 angstrom-wide central void, which serves as a predesigned aperture for the 1D channels; all of the porosity of Zr-MCMOF comes from the ligand. The resulting framework possesses high hydrolytic and thermal stability and a flexible structure unique among Zr-based MOFs. C1 [Chen, Teng-Hao] Tamkang Univ, Dept Chem, 151 Yingzhuan Rd, New Taipei 25137, Taiwan. [Popov, Ilya] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Miljanic, Ognjen S.] Univ Houston, Dept Chem, 112 Fleming Bldg, Houston, TX 77204 USA. RP Chen, TH (reprint author), Tamkang Univ, Dept Chem, 151 Yingzhuan Rd, New Taipei 25137, Taiwan.; Miljanic, OS (reprint author), Univ Houston, Dept Chem, 112 Fleming Bldg, Houston, TX 77204 USA. EM thchen@mail.tku.edu.tw; miljanic@uh.edu FU Tamkang University; University of Houston; National Science Foundation [DMR-1507664]; Welch Foundation [E-1768] FX We are indebted to Dr. James D. Korp (UH) for the collection and the refinement of crystallographic data. We thank Prof. Hsiu-Fu Hsu (TKU) for the assistance with TGA measurements. We acknowledge the financial support from Tamkang University (to T.H.C.), the University of Houston (to O.S.M.) and its Grant to Advance and Enhance Research, the National Science Foundation (award DMR-1507664 to O.S.M.), and the Welch Foundation (award E-1768 and to O.S.M.). O.S.M. is a Cottrell Scholar of the Research Corporation for Science Advancement. NR 74 TC 1 Z9 1 U1 10 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD JAN 5 PY 2017 VL 23 IS 2 BP 286 EP 290 DI 10.1002/chem.201605079 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EK0LS UT WOS:000393618700013 PM 27885737 ER PT J AU Qiao, BF Ferru, G Ellis, RJ AF Qiao, Baofu Ferru, Geoffroy Ellis, Ross J. TI Complexation Enhancement Drives Water-to-Oil Ion Transport: A Simulation Study SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE atomistic simulation; coordination; ion transport; lanthanides; ligand effects ID MOLECULAR-DYNAMICS SIMULATIONS; POLARIZABLE FORCE-FIELD; PARTICLE MESH EWALD; TRIVALENT LANTHANIDE; SOLVENT-EXTRACTION; AQUEOUS-SOLUTION; COORDINATION CHEMISTRY; LANTHANOID(III) IONS; EXCHANGE DYNAMICS; REVERSE MICELLES AB We address the structures and energetics of ion solvation in aqueous and organic solutions to understand liquid-liquid ion transport. Atomistic molecular dynamics (MD) simulations with polarizable force field are performed to study the coordination transformations driving lanthanide (Ln(III)) and nitrate ion transport between aqueous and an alkylamide-oil solution. An enhancement of the coordination behavior in the organic phase is achieved in contrast with the aqueous solution. In particular, the coordination number of Ce3+ increases from 8.9 in the aqueous to 9.9 in the organic solutions (from 8 in the aqueous to 8.8 in the organic systems for Yb3+). Moreover, the local coordination environ ment changes dramatically. Potential of mean force calculations show that the Ln(III)-ligand coordination interaction strengths follow the order of Ln(III-)nitrate> Ln(III)-water>Ln(III)-DMDBTDMA. They increase 2-fold in the lipophilic environment in comparison to the aqueous phase, and we attribute this to the shedding of the outer solvation shell. Our findings highlight the importance of outer sphere interactions on the competitive solvation energetics that cause ions to migrate between immiscible phases; an essential ingredient for advancing important applications such as rare earth metal separations. Some open questions in simulating the coordination behavior of heavy metals are also addressed. C1 [Qiao, Baofu; Ferru, Geoffroy; Ellis, Ross J.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Ellis, Ross J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Qiao, BF; Ellis, RJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.; Ellis, RJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM qiaobf@gmail.com; rossellis1984@gmail.com FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences [DE-AC02-06CH11357] FX This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences, under Contract DE-AC02-06CH11357. B.Q. gratefully acknowledges the computing resources provided on Blues, a high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. B.Q. wants to thank Meng Shen and Tao Wei for helpful discussion regarding the potential of mean force. NR 69 TC 0 Z9 0 U1 2 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD JAN 5 PY 2017 VL 23 IS 2 BP 427 EP 436 DI 10.1002/chem.201604470 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA EK0LS UT WOS:000393618700030 PM 27758053 ER PT J AU Klebanoff, LE Pratt, JW LaFleur, CB AF Klebanoff, L. E. Pratt, J. W. LaFleur, C. B. TI Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Liquid hydrogen; Liquid natural gas; Fuel cell ferry; Combustion properties; Safety properties ID DETONATION TRANSITION; POOL FIRES; SPONTANEOUS IGNITION; LNG SPILLS; DEFLAGRATION; METHANE; FLAME; AIR; VAPORIZATION; MECHANISMS AB We review liquid hydrogen (LH2) as a maritime vessel fuel, from descriptions of its fundamental properties to its practical application and safety aspects, in the context of the San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions (SF-BREEZE) highspeed fuel-cell ferry. Since marine regulations have been formulated to cover liquid natural gas (LNG) as a primary propulsion fuel, we frame our examination of LH2 as a comparison to LNG, for both maritime use in general, and the SF-BREEZE in particular. Due to weaker attractions between molecules, LH2 is colder than LNG, and evaporates more easily. We describe the consequences of these physical differences for the size and duration of spills of the two cryogenic fuels. The classical flammability ranges are reviewed, with a focus on how fuel buoyancy modifies these combustion limits. We examine the conditions for direct fuel explosion (detonation) and contrast them with initiation of normal (laminar) combustion. Direct fuel detonation is not a credible accident scenario for the SF-BREEZE. For both fuels, we review experiments and theory elucidating the deflagration to detonation transition (DDT). LH2 fires have a shorter duration than energy-equivalent LNG fires, and produce significantly less thermal radiation. The thermal (infrared) radiation from hydrogen fires is also strongly absorbed by humidity in the air. Hydrogen permeability is not a leak issue for practical hydrogen plumbing. We describe the chemistry of hydrogen and methane at iron surfaces, clarifying their impact on steel-based hydrogen storage and transport materials. These physical, chemical and combustion properties are pulled together in a comparison of how a LH2 or LNG pool fire on the Top Deck of the SF-BREEZE might influence the structural integrity of the aluminum deck. Neither pool fire scenario leads to net heating of the aluminum decking. Overall, LH2 and LNG.are very similar in their physical and combustion properties, thereby posing similar safety risks. For ships utilizing LH2 or LNG, precautions are needed to avoid fuel leaks, minimize ignition sources, minimize confined spaces, provide ample ventilation for required confined spaces, and to monitor the enclosed spaces to ensure any fuel accumulation is detected far below the fuel/air mix threshold for any type of combustion. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. C1 [Klebanoff, L. E.; Pratt, J. W.] Sandia Natl Labs, Livermore, CA 94551 USA. [LaFleur, C. B.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Klebanoff, LE (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM lekleba@sandia.gov FU U.S. Department of Transportation (DOT), Maritime Administration (MARAD); U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000.d] FX The authors thank Samantha Lawrence and Paul Gibbs (both at Sandia), as well as Jay Keller (Zero Carbon Energy Solutions), Kyle McKeown (Linde), Dave Farese and Brian O'Neil (Air Products), Jim Mullen (Gardner Cryogenics), Karl Verfondern (Research Center Julich) and James Fesmire (NASA) for very helpful discussions. Thanks are extended to the SF-BREEZE project partners Curt Leffers and Kelly Sonerholm from Elliott Bay Design Group for generating the engineering models depicted in Figure 3, and to Tom Escher and Joe Burgard of the Red and White Fleet for stimulating discussions. The U.S. Department of Transportation (DOT), Maritime Administration (MARAD) funded the SF-BREEZE project through MARAD's Maritime Environmental and Technical Assistance (META) program pursuant to an interagency agreement. The authors gratefully acknowledge Sujit Ghosh (MARAD) for skillfully managing the project. The work was performed at Sandia National Laboratories, which is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.d. NR 60 TC 0 Z9 0 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JAN 5 PY 2017 VL 42 IS 1 BP 757 EP 774 DI 10.1016/j.ijhydene.2016.11.024 PG 18 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA EL5AW UT WOS:000394634900070 ER PT J AU Panda, PP Hecht, ES AF Panda, Pratikash P. Hecht, Ethan S. TI Ignition and flame characteristics of cryogenic hydrogen releases SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Under-expanded jets; Hydrogen safety; Cryogenics; Laser spark ignition; Radiation ID UNINTENDED RELEASES; LIQUID-HYDROGEN; TURBULENT JETS; ENTRAINMENT; RADIATION; SAFETY AB In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2-6 bar(abs) through nozzles with diameters from 0.75 to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic.hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. This study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen infrastructure. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. C1 [Panda, Pratikash P.; Hecht, Ethan S.] Sandia Natl Labs, Combust Res Facil, MS 9052,7011 East Ave, Livermore, CA 94550 USA. RP Panda, PP (reprint author), Sandia Natl Labs, Combust Res Facil, MS 9052,7011 East Ave, Livermore, CA 94550 USA. EM pppanda@sandia.gov FU Office of Energy Efficiency and Renewable Energy's (EERE) Fuel Cell Technologies Office at the United States Department of Energy, under the Safety, Codes, and Standards subprogram; U.S. Department of Energy's National Security Administration [DE-AC04-94AL85000] FX This research was supported by the Office of Energy Efficiency and Renewable Energy's (EERE) Fuel Cell Technologies Office at the United States Department of Energy, under the Safety, Codes, and Standards subprogram. The authors would like to acknowledge, the support of subprogram manager Will James. The authors would also like to thank Rad Bozinoski for his implementation of the COLDPLUME model in Python. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000. NR 34 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JAN 5 PY 2017 VL 42 IS 1 BP 775 EP 785 DI 10.1016/j.ijhydene.2016.08.051 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA EL5AW UT WOS:000394634900071 ER PT J AU Li, CL Liang, L Sun, N Thompson, VS Xu, F Narani, A He, Q Tanjore, D Pray, TR Simmons, BA Singh, S AF Li, Chenlin Liang, Ling Sun, Ning Thompson, Vicki S. Xu, Feng Narani, Akash He, Qian Tanjore, Deepti Pray, Todd R. Simmons, Blake A. Singh, Seema TI Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Scale-up; Ionic liquid; Acidolysis; MSW/CS blends; Reactor compatibility ID CORN STOVER; DILUTE-ACID; SWITCHGRASS; HYDROLYSIS; RECALCITRANCE; PRETREATMENT; ETHANOL; BIOMASS; LIGNIN AB Background: Lignocellulosic biorefineries have tonnage and throughput requirements that must be met year round and there is no single feedstock available in any given region that is capable of meeting the price and availability demands of the biorefineries scheduled for deployment. Significant attention has been historically given to agriculturally derived feedstocks; however, a diverse range of wastes, including municipal solid wastes (MSW), also have the potential to serve as feedstocks for the production of advanced biofuels and have not been extensively studied. In addition, ionic liquid (IL) pretreatment with certain ILs is receiving great interest as a potential process that enables fractionation of a wide range of feedstocks. Acid catalysts have been used previously to hydrolyze polysaccharides into fermentable sugars following IL pretreatment, which could potentially provide a means of liberating fermentable sugars from lignocellulose without the use of costly enzymes. However, successful optimization and scale-up of the one-pot acid-assisted IL deconstruction for further commercialization involve challenges such as reactor compatibility, mixing at high solid loading, sugar recovery, and IL recycling, which have not been effectively resolved during the development stages at bench scale. Results: Here, we present the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6 vs 0.2 L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts toward developing a cost-effective IL-based deconstruction technology by drastically eliminating enzyme, reducing water usage, and simplifying the downstream sugar/lignin recovery and IL recycling. Conclusion: Results indicate that MSW blends are viable and valuable resource to consider when assessing biomass availability and affordability for lignocellulosic biorefineries. This scale-up evaluation demonstrates that the acid-assisted IL deconstruction technology can be effectively scaled up to larger operations and the current study established the baseline of scaling parameters for this process. C1 [Li, Chenlin; Liang, Ling; Sun, Ning; Narani, Akash; He, Qian; Tanjore, Deepti; Pray, Todd R.] Lawrence Berkeley Natl Lab, Adv Biofuels & BioProd Proc Demonstrat Unit, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Li, Chenlin] Idaho Natl Lab, Energy & Environm Sci & Technol, 2525 North Fremont Ave, Idaho Falls, ID 83415 USA. [Liang, Ling; Sun, Ning; Narani, Akash; He, Qian; Tanjore, Deepti; Pray, Todd R.; Simmons, Blake A.] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Xu, Feng; Simmons, Blake A.; Singh, Seema] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Xu, Feng; Singh, Seema] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, 7011 East Ave, Livermore, CA 94551 USA. RP Li, CL (reprint author), Lawrence Berkeley Natl Lab, Adv Biofuels & BioProd Proc Demonstrat Unit, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Li, CL (reprint author), Idaho Natl Lab, Energy & Environm Sci & Technol, 2525 North Fremont Ave, Idaho Falls, ID 83415 USA.; Singh, S (reprint author), Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Singh, S (reprint author), Sandia Natl Labs, Biomass Sci & Convers Technol Dept, 7011 East Ave, Livermore, CA 94551 USA. EM Chenlin.Li@inl.gov; Seesing@sandia.gov FU DOE Energy Efficiency and Renewable Energy (EERE)'s BioEnergy Technology Office (BETO); Office of Biomass Program within the DOE EERE; American Recovery and Reinvestment Act; DOE, EERE, BETO office under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported by funding from the DOE Energy Efficiency and Renewable Energy (EERE)'s BioEnergy Technology Office (BETO). ABPDU would like to acknowledge the funding support from Office of Biomass Program within the DOE EERE, and also the funding support from the American Recovery and Reinvestment Act. INL would like to acknowledge the funding support from the DOE, EERE, BETO office under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 34 TC 0 Z9 0 U1 11 U2 11 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD JAN 5 PY 2017 VL 10 AR 13 DI 10.1186/s13068-016-0694-8 PG 11 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EK3RB UT WOS:000393842500001 PM 28070222 ER PT J AU Mardirossian, N Pestana, LR Womack, JC Skylaris, CK Head-Gordon, T Head-Gordon, M AF Mardirossian, Narbe Pestana, Luis Ruiz Womack, James C. Skylaris, Chris-Kriton Head-Gordon, Teresa Head-Gordon, Martin TI Use of the rVV10 Nonlocal Correlation Functional in the B97M-V Density Functional: Defining B97M-rV and Related Functionals SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; NONCOVALENT INTERACTIONS; INTERACTION ENERGIES; HYBRID; DATABASE AB The VV10 and rVV10 nonlocal correlation functionals are consistently implemented and assessed, with the goal of determining if the rVV1O nonlocal correlation functional can replace the VV1O nonlocal correlation functional in the recently developed B97M-V density functional, to give the B97M-rV density functional. Along the way, four density functionals are simultaneously tested: VV1O, rVV10, B97M-V, and B97M-rV. An initial assessment is carried out across the S22 data set, and the short-range damping variable, b, is varied for all four density functionals in order to determine the sensitivity of the functionals to the empirical parameter. The results of this test indicate that a value of b = 6 (fortuitously the same as that in B97MV) is suitable for B97M-rV. The functionals are then compared across an extensive database of interaction energies, and it is demonstrated that B97M-rV either matches or outperforms B97M-V for all of the tests considered. Finally, the optimization of b across the S22 data set is extended to two range-separated hybrid density functionals, omega B97X-V and omega B97M-V, and a value of b = 6.2 is recommended for both omega B97X-rV and omega B97M-rV. C1 [Mardirossian, Narbe; Head-Gordon, Teresa; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Womack, James C.; Skylaris, Chris-Kriton] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England. [Pestana, Luis Ruiz; Head-Gordon, Teresa; Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA.; Head-Gordon, M (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM nmardirossian@berkeley.edu; lar739@lbl.gov; J.C.Womack@soton.ac.uk; C.Skylaris@soton.ac.uk; thg@berkeley.edu; mhg@cchem.berkeley.edu OI Womack, James/0000-0001-5497-4482 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Engineering and Physical Sciences Research Council (EPSRC) U.K. [EP/K039156/1, EP/J015059/1] FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362. L.R.P. and T.H.-G. were supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. J.C.W. acknowledges the Engineering and Physical Sciences Research Council (EPSRC) U.K. for postdoctoral funding (EPSRC Grant Numbers EP/K039156/1 and EP/J015059/1). We thank Yuezhi Mao, Susi Lehtola, and Jon Witte for helpful comments. NR 29 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 5 PY 2017 VL 8 IS 1 BP 35 EP 40 DI 10.1021/acs.jpclett.6b02527 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EH3EJ UT WOS:000391653200006 PM 27936759 ER PT J AU Gong, Y Joly, AG El-Khoury, PZ Hess, WP AF Gong, Yu Joly, Alan G. El-Khoury, Patrick Z. Hess, Wayne P. TI Polarization-Directed Surface Plasmon Polariton Launching SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID LIGHT; EXCITATION; SCATTERING; ARRAYS AB The relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges. Our combined experimental and computational results allude to the interplay between localized and propagating surface plasmon modes in the trench; strong coupling to the localized modes at the edges correlates to weak coupling to the PSP modes. Polarization-directed PSP launching measurements reveal an optimal PSP contrast ratio of 4.2 using a 500 nm wide trench. C1 [Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.] Pacific Northwest Natl Lab, Div Phys Sci, POB 999, Richland, WA 99352 USA. RP Hess, WP (reprint author), Pacific Northwest Natl Lab, Div Phys Sci, POB 999, Richland, WA 99352 USA. EM wayne.hess@pnnl.gov FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; DOE's Office of Biological and Environmental Research FX We acknowledge support from the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. This work was performed in EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute for the DOE. NR 35 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 5 PY 2017 VL 8 IS 1 BP 49 EP 54 DI 10.1021/acs.jpclett.6b02509 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EH3EJ UT WOS:000391653200009 PM 27936754 ER PT J AU Osti, NC Van Aken, KL Thompsoniig, MW Tiet, F Jiang, DE Cummings, PT Gogotsi, Y Mamontov, E AF Osti, Naresh C. Van Aken, Katherine L. Thompsoniig, Matthew W. Tiet, Felix Jiang, De-en Cummings, Peter T. Gogotsi, Yury Mamontov, Eugene TI Solvent Polarity Governs Ion Interactions and Transport in a Solvated Room-Temperature Ionic Liquid SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID ELECTROCHEMICAL CAPACITORS; CARBON ELECTRODES; DYNAMICS; SUPERCAPACITORS; ELECTROLYTES; PERFORMANCE; DIFFUSION; MIXTURES; STORAGE AB We explore the influence of the solvent dipole moment on cation anion interactions and transport in 1-butyl-3-methyl-imidazolium bis-(trifluoromethylsulfonyl), [BMIM+][Tf2N(-)]. Free energy profiles derived from atomistic molecular dynamics (MD) simulations show a correlation of the cation anion separation and the equilibrium depth of the potential of mean force with the dipole moment of the solvent. Correlations of the ion diffusivity with the dipole moment and the concentration of the solvent were further demonstrated by classical MD simulations. Quasi-elastic neutron scattering experiments with deuterated solvents reveal a complex picture of nanophase separation into the ionic liquid-rich and solvent-rich phases. The experiment corroborates the trend of concentration-and dipole moment-dependent enhancement of ion mobility by the solvent, as suggested by the simulations. Despite the considerable structural complexity of ionic liquid solvent mixtures, we can rationalize and generalize the trends governing ionic transport in these complex electrolytes. C1 [Osti, Naresh C.; Mamontov, Eugene] Oak Ridge Natl Lab, Chem & Engn Mat Div, POB 2008 MS6455, Oak Ridge, TN 37831 USA. [Van Aken, Katherine L.; Gogotsi, Yury] Drexel Univ, Dept Mat Sci & Engn, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Van Aken, Katherine L.; Gogotsi, Yury] Drexel Univ, AJ Drexel Nanomat Inst, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Thompsoniig, Matthew W.; Tiet, Felix; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, 2201 West End Ave, Nashville, TN 37235 USA. [Jiang, De-en] Univ Calif Riverside, Dept Chem, 900 Univ Ave, Riverside, CA 92521 USA. RP Osti, NC (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, POB 2008 MS6455, Oak Ridge, TN 37831 USA. EM ostinc@ornl.gov RI Mamontov, Eugene/Q-1003-2015; OI Mamontov, Eugene/0000-0002-5684-2675; Jiang, De-en/0000-0001-5167-0731; Osti, Naresh/0000-0002-0213-2299; Thompson, Matthew W./0000-0002-1460-3983; Gogotsi, Yury/0000-0001-9423-4032 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. DOE [DEAC05-00OR22725]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Work at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. DOE under Contract No. DEAC05-00OR22725. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 0 Z9 0 U1 17 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 5 PY 2017 VL 8 IS 1 BP 167 EP 171 DI 10.1021/acs.jpclett.6b02587 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EH3EJ UT WOS:000391653200026 PM 27966964 ER PT J AU Eilert, A Cavalca, F Roberts, FS Osterwalder, J Liu, C Favaro, M Crumlin, EJ Ogasawara, H Friebel, D Pettersson, LGM Nilsson, A AF Eilert, Andre Cavalca, Filippo Roberts, F. Sloan Osterwalder, Juerg Liu, Chang Favaro, Marco Crumlin, Ethan J. Ogasawara, Hirohito Friebel, Daniel Pettersson, Lars G. M. Nilsson, Anders TI Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; SELECTIVE ELECTROCHEMICAL REDUCTION; CORE-LEVEL SPECTROSCOPY; CO2 REDUCTION; ABSORPTION-SPECTROSCOPY; METAL-SURFACES; CU NANOWIRES; ELECTROREDUCTION; CATALYSTS; ETHYLENE AB Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stable under the strongly reducing conditions found in CO2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene. C1 [Eilert, Andre; Cavalca, Filippo; Roberts, F. Sloan; Ogasawara, Hirohito; Friebel, Daniel; Nilsson, Anders] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Eilert, Andre; Cavalca, Filippo; Roberts, F. Sloan; Nilsson, Anders] Stanford Univ, SUNCAT Ctr Interface Sci & Catalysis, Dept Chem Engn, 443 Via Ortega, Stanford, CA 95305 USA. [Eilert, Andre; Cavalca, Filippo; Roberts, F. Sloan; Liu, Chang; Pettersson, Lars G. M.; Nilsson, Anders] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden. [Osterwalder, Juerg] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. [Favaro, Marco; Crumlin, Ethan J.] Lawrence Berkeley Natl Lab, Adv Light Source, 6 Cyclotron Rd, Berkeley, CA 94720 USA. [Favaro, Marco] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynthesis, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Favaro, Marco] Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Nilsson, A (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.; Nilsson, A (reprint author), Stanford Univ, SUNCAT Ctr Interface Sci & Catalysis, Dept Chem Engn, 443 Via Ortega, Stanford, CA 95305 USA.; Nilsson, A (reprint author), Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, S-10691 Stockholm, Sweden. EM andersn@fysik.su.se OI Roberts, Francis/0000-0002-9794-0941 FU Air Force Office of Scientific Research through the MURI program under AFOSR Award [FA9550-10-1-0572]; Global Climate Energy Project at Stanford University; U.S. Department of Energy [DE-AC02-05CH11231]; Knut and Alice Wallenberg (KAW) Foundation; Swedish Energimyndigheten; Stanford Institute for Materials and Energy Sciences (SIMES); Swiss National Science Foundation; Office of Science, Office of Basic Energy Science (BES) of the U.S. Department of Energy (DOE) [DE-SC0004993] FX This work was supported by the Air Force Office of Scientific Research through the MURI program under AFOSR Award No. FA9550-10-1-0572 and the Global Climate Energy Project at Stanford University. Ambient pressure X-ray photoelectron spectroscopy (APXPS) was performed at beamline 9.3.1 at Advanced Light Source. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Scanning electron microscopy (SEM) and TEM were performed at Stanford Nano Shared Facilities (SNSF). We thank Fischione for providing the TEM vacuum transfer holder. DFT calculations were supported by the Knut and Alice Wallenberg (KAW) Foundation and the Swedish Energimyndigheten. CPU time was provided by the Swedish National Infrastructure for Computing (SNIC) at the HP2CN center. J.O. acknowledges financial support from the Stanford Institute for Materials and Energy Sciences (SIMES) and from the Swiss National Science Foundation. M.F. acknowledges Office of Science, Office of Basic Energy Science (BES) of the U.S. Department of Energy (DOE) under award no. DE-SC0004993 to the Joint Center for Artificial Photosynthesis (JCAP). NR 47 TC 1 Z9 1 U1 52 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JAN 5 PY 2017 VL 8 IS 1 BP 285 EP 290 DI 10.1021/acs.jpclett.6b02273 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EH3EJ UT WOS:000391653200042 PM 27983864 ER PT J AU Adamczyk, L Adkins, JK Agakishiev, G Aggarwal, MM Ahammed, Z Alekseev, I Anderson, DM Aoyama, R Aparin, A Arkhipkin, D Aschenauer, EC Ashraf, MU Attri, A Averichev, GS Bai, X Bairathi, V Bellwied, R Bhasin, A Bhati, AK Bhattarai, P Bielcik, J Bielcikova, J Bland, LC Bordyuzhin, IG Bouchet, J Brandenburg, JD Brandin, AV Bunzarov, I Butterworth, J Caines, H Sanchez, MCDLB Campbell, JM Cebra, D Chakaberia, I Chaloupka, P Chang, Z Chatterjee, A Chattopadhyay, S Chen, X Chen, JH Cheng, J Cherney, M Christie, W Contin, G Crawford, HJ Das, S De Silva, LC Debbe, RR Dedovich, TG Deng, J Derevschikov, AA di Ruzza, B Didenko, L Dilks, C Dong, X Drachenberg, JL Draper, JE Du, CM Dunkelberger, LE Dunlop, JC Efimov, LG Engelage, J Eppley, G Esha, R Esumi, S Evdokimov, O Eyser, O Fatemi, R Fazio, S Federic, P Fedorisin, J Feng, Z Filip, P Finch, E Fisyak, Y Flores, CE Fulek, L Gagliardi, CA Garand, D Geurts, F Gibson, A Girard, M Greiner, L Grosnick, D Gunarathne, DS Guo, Y Gupta, S Gupta, A Guryn, W Hamad, AI Hamed, A Haque, R Harris, JW He, L Heppelmann, S Heppelmann, S Hirsch, A Hoffmann, GW Horvat, S Huang, B Huang, X Huang, HZ Huang, T Huck, P Humanic, TJ Igo, G Jacobs, WW Jentsch, A Jia, J Jiang, K Jowzaee, S Judd, EG Kabana, S Kalinkin, D Kang, K Kauder, K Ke, HW Keane, D Kechechyan, A Khan, ZH Kikola, DP Kisel, I Kisiel, A Kochenda, L Koetke, DD Kosarzewski, LK Kraishan, AF Kravtsov, P Krueger, K Kumar, L Lamont, MAC Landgraf, JM Landry, KD Lauret, J Lebedev, A Lednicky, R Lee, JH Li, Y Li, C Li, W Li, X Li, X Lin, T Lisa, MA Liu, Y Liu, F Ljubicic, T Llope, WJ Lomnitz, M Longacre, RS Luo, X Luo, S Ma, GL Ma, R Ma, YG Ma, L Magdy, N Majka, R Manion, A Margetis, S Markert, C Matis, HS McDonald, D McKinzie, S Meehan, K Mei, JC Miller, ZW Minaev, NG Mioduszewski, S Mishra, D Mohanty, B Mondal, MM Morozov, DA Mustafa, MK Nandi, BK Nasim, M Nayak, TK Nigmatkulov, G Niida, T Nogach, LV Nonaka, T Novak, J Nurushev, SB Odyniec, G Ogawa, A Oh, K Okorokov, VA Olvitt, D Page, BS Pak, R Pan, YX Pandit, Y Panebratsev, Y Pawlik, B Pei, H Perkins, C Pile, P Pluta, J Poniatowska, K Porter, J Posik, M Poskanzer, AM Pruthi, NK Przybycien, M Putschke, J Qiu, H Quintero, A Ramachandran, S Ray, RL Reed, R Rehbein, MJ Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Roth, JD Ruan, L Rusnak, J Rusnakova, O Sahoo, NR Sahu, PK Sakrejda, I Salur, S Sandweiss, J Sarkar, A Schambach, J Scharenberg, RP Schmah, AM Schmidke, WB Schmitz, N Seger, J Seyboth, P Shah, N Shahaliev, E Shanmuganathan, PV Shao, M Sharma, A Sharma, MK Sharma, B Shen, WQ Shi, SS Shi, Z Shou, QY Sichtermann, EP Sikora, R Simko, M Singha, S Skoby, MJ Smirnov, D Smirnov, N Solyst, W Song, L Sorensen, P Spinka, HM Srivastava, B Stanislaus, TDS Stepanov, M Stock, R Strikhanov, M Stringfellow, B Sugiura, T Sumbera, M Summa, B Sun, Z Sun, Y Sun, XM Surrow, B Svirida, DN Tang, AH Tang, Z Tarnowsky, T Tawfik, A Thader, J Thomas, JH Timmins, AR Tlusty, D Todoroki, T Tokarev, M Trentalange, S Tribble, RE Tribedy, P Tripathy, SK Tsai, OD Ullrich, T Underwood, DG Upsal, I Van Buren, G Van Nieuwenhuizen, G Varma, R Vasiliev, AN Vertesi, R Videbaek, F Vokal, S Voloshin, SA Vossen, A Wang, G Wang, F Wang, JS Wang, Y Wang, H Wang, Y Webb, JC Webb, G Wen, L Westfall, GD Wieman, H Wissink, SW Witt, R Wu, Y Xiao, ZG Xie, W Xie, G Xin, K Xu, QH Xu, YF Xu, H Xu, Z Xu, N Xu, J Yang, C Yang, Y Yang, S Yang, Y Yang, Q Yang, Y Ye, Z Ye, Z Yi, L Yip, K Yoo, IK Yu, N Zbroszczyk, H Zha, W Zhang, J Zhang, XP Zhang, S Zhang, Y Zhang, JB Zhang, Z Zhang, S Zhang, J Zhao, J Zhong, C Zhou, L Zhu, X Zoulkarneeva, Y Zyzak, M AF Adamczyk, L. Adkins, J. K. Agakishiev, G. Aggarwal, M. M. Ahammed, Z. Alekseev, I. Anderson, D. M. Aoyama, R. Aparin, A. Arkhipkin, D. Aschenauer, E. C. Ashraf, M. U. Attri, A. Averichev, G. S. Bai, X. Bairathi, V. Bellwied, R. Bhasin, A. Bhati, A. K. Bhattarai, P. Bielcik, J. Bielcikova, J. Bland, L. C. Bordyuzhin, I. G. Bouchet, J. Brandenburg, J. D. Brandin, A. V. Bunzarov, I. Butterworth, J. Caines, H. de la Barca Sanchez, M. Calderon Campbell, J. M. Cebra, D. Chakaberia, I. Chaloupka, P. Chang, Z. Chatterjee, A. Chattopadhyay, S. Chen, X. Chen, J. H. Cheng, J. Cherney, M. Christie, W. Contin, G. Crawford, H. J. Das, S. De Silva, L. C. Debbe, R. R. Dedovich, T. G. Deng, J. Derevschikov, A. A. di Ruzza, B. Didenko, L. Dilks, C. Dong, X. Drachenberg, J. L. Draper, J. E. Du, C. M. Dunkelberger, L. E. Dunlop, J. C. Efimov, L. G. Engelage, J. Eppley, G. Esha, R. Esumi, S. Evdokimov, O. Eyser, O. Fatemi, R. Fazio, S. Federic, P. Fedorisin, J. Feng, Z. Filip, P. Finch, E. Fisyak, Y. Flores, C. E. Fulek, L. Gagliardi, C. A. Garand, D. Geurts, F. Gibson, A. Girard, M. Greiner, L. Grosnick, D. Gunarathne, D. S. Guo, Y. Gupta, S. Gupta, A. Guryn, W. Hamad, A. I. Hamed, A. Haque, R. Harris, J. W. He, L. Heppelmann, S. Heppelmann, S. Hirsch, A. Hoffmann, G. W. Horvat, S. Huang, B. Huang, X. Huang, H. Z. Huang, T. Huck, P. Humanic, T. J. Igo, G. Jacobs, W. W. Jentsch, A. Jia, J. Jiang, K. Jowzaee, S. Judd, E. G. Kabana, S. Kalinkin, D. Kang, K. Kauder, K. Ke, H. W. Keane, D. Kechechyan, A. Khan, Z. H. Kikola, D. P. Kisel, I. Kisiel, A. Kochenda, L. Koetke, D. D. Kosarzewski, L. K. Kraishan, A. F. Kravtsov, P. Krueger, K. Kumar, L. Lamont, M. A. C. Landgraf, J. M. Landry, K. D. Lauret, J. Lebedev, A. Lednicky, R. Lee, J. H. Li, Y. Li, C. Li, W. Li, X. Li, X. Lin, T. Lisa, M. A. Liu, Y. Liu, F. Ljubicic, T. Llope, W. J. Lomnitz, M. Longacre, R. S. Luo, X. Luo, S. Ma, G. L. Ma, R. Ma, Y. G. Ma, L. Magdy, N. Majka, R. Manion, A. Margetis, S. Markert, C. Matis, H. S. McDonald, D. McKinzie, S. Meehan, K. Mei, J. C. Miller, Z. W. Minaev, N. G. Mioduszewski, S. Mishra, D. Mohanty, B. Mondal, M. M. Morozov, D. A. Mustafa, M. K. Nandi, B. K. Nasim, Md. Nayak, T. K. Nigmatkulov, G. Niida, T. Nogach, L. V. Nonaka, T. Novak, J. Nurushev, S. B. Odyniec, G. Ogawa, A. Oh, K. Okorokov, V. A. Olvitt, D., Jr. Page, B. S. Pak, R. Pan, Y. X. Pandit, Y. Panebratsev, Y. Pawlik, B. Pei, H. Perkins, C. Pile, P. Pluta, J. Poniatowska, K. Porter, J. Posik, M. Poskanzer, A. M. Pruthi, N. K. Przybycien, M. Putschke, J. Qiu, H. Quintero, A. Ramachandran, S. Ray, R. L. Reed, R. Rehbein, M. J. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Roth, J. D. Ruan, L. Rusnak, J. Rusnakova, O. Sahoo, N. R. Sahu, P. K. Sakrejda, I. Salur, S. Sandweiss, J. Sarkar, A. Schambach, J. Scharenberg, R. P. Schmah, A. M. Schmidke, W. B. Schmitz, N. Seger, J. Seyboth, P. Shah, N. Shahaliev, E. Shanmuganathan, P. V. Shao, M. Sharma, A. Sharma, M. K. Sharma, B. Shen, W. Q. Shi, S. S. Shi, Z. Shou, Q. Y. Sichtermann, E. P. Sikora, R. Simko, M. Singha, S. Skoby, M. J. Smirnov, D. Smirnov, N. Solyst, W. Song, L. Sorensen, P. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Stepanov, M. Stock, R. Strikhanov, M. Stringfellow, B. Sugiura, T. Sumbera, M. Summa, B. Sun, Z. Sun, Y. Sun, X. M. Surrow, B. Svirida, D. N. Tang, A. H. Tang, Z. Tarnowsky, T. Tawfik, A. Thader, J. Thomas, J. H. Timmins, A. R. Tlusty, D. Todoroki, T. Tokarev, M. Trentalange, S. Tribble, R. E. Tribedy, P. Tripathy, S. K. Tsai, O. D. Ullrich, T. Underwood, D. G. Upsal, I. Van Buren, G. Van Nieuwenhuizen, G. Varma, R. Vasiliev, A. N. Vertesi, R. Videbaek, F. Vokal, S. Voloshin, S. A. Vossen, A. Wang, G. Wang, F. Wang, J. S. Wang, Y. Wang, H. Wang, Y. Webb, J. C. Webb, G. Wen, L. Westfall, G. D. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xiao, Z. G. Xie, W. Xie, G. Xin, K. Xu, Q. H. Xu, Y. F. Xu, H. Xu, Z. Xu, N. Xu, J. Yang, C. Yang, Y. Yang, S. Yang, Y. Yang, Q. Yang, Y. Ye, Z. Ye, Z. Yi, L. Yip, K. Yoo, I-K. Yu, N. Zbroszczyk, H. Zha, W. Zhang, J. Zhang, X. P. Zhang, S. Zhang, Y. Zhang, J. B. Zhang, Z. Zhang, S. Zhang, J. Zhao, J. Zhong, C. Zhou, L. Zhu, X. Zoulkarneeva, Y. Zyzak, M. CA STAR Collaboration TI Charge-Dependent Directed Flow in Cu plus Au Collisions at root S-NN=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-ION COLLISIONS; ENERGY NUCLEAR COLLISIONS; QUARK-GLUON PLASMA; COLLABORATION; MOMENTUM; QCD AB We present the first measurement of charge-dependent directed flow in Cu + Au collisions at root S-NN = 200 GeV. The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics model, which suggests that most of the electric charges, i.e., quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1 fm/c. C1 [Adamczyk, L.; Fulek, L.; Przybycien, M.; Sikora, R.] AGH Univ Sci & Technol, FPACS, PL-30059 Krakow, Poland. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Aoyama, R.; Arkhipkin, D.; Aschenauer, E. C.; Bland, L. C.; Chakaberia, I.; Christie, W.; Debbe, R. R.; di Ruzza, B.; Didenko, L.; Dunlop, J. C.; Esumi, S.; Eyser, O.; Fazio, S.; Fisyak, Y.; Guryn, W.; Jia, J.; Ke, H. W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; Ljubicic, T.; Longacre, R. S.; Ma, R.; Nonaka, T.; Ogawa, A.; Page, B. S.; Pak, R.; Pile, P.; Ruan, L.; Schmidke, W. B.; Smirnov, D.; Sorensen, P.; Sugiura, T.; Tang, A. H.; Todoroki, T.; Tribedy, P.; Ullrich, T.; Van Buren, G.; Van Nieuwenhuizen, G.; Videbaek, F.; Wang, H.; Webb, J. C.; Webb, G.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [de la Barca Sanchez, M. Calderon; Cebra, D.; Draper, J. E.; Flores, C. E.; Heppelmann, S.; Meehan, K.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Dunkelberger, L. E.; Esha, R.; Huang, H. Z.; Igo, G.; Landry, K. D.; Nasim, Md.; Pan, Y. X.; Trentalange, S.; Tsai, O. D.; Wang, G.; Wen, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Bai, X.; Feng, Z.; Huck, P.; Liu, F.; Luo, X.; Pei, H.; Shi, S. S.; Sun, X. M.; Wang, Y.; Xu, J.; Yang, Y.; Yu, N.; Zhang, J. B.] Cent China Normal Univ, Wuhan 430079, Hubei, Peoples R China. [Evdokimov, O.; Huang, B.; Khan, Z. H.; Luo, S.; Miller, Z. W.; Pandit, Y.; Ye, Z.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; De Silva, L. C.; Rehbein, M. J.; Roth, J. D.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Chaloupka, P.; Rusnakova, O.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Federic, P.; Rusnak, J.; Simko, M.; Sumbera, M.; Vertesi, R.] Nucl Phys Inst AS CR, Prague 25068, Czech Republic. [Kisel, I.; Stock, R.; Zyzak, M.] Frankfurt Inst Adv Studies FIAS, D-60438 Frankfurt, Germany. [Das, S.; Sahu, P. K.; Tripathy, S. K.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Sarkar, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Jacobs, W. W.; Kalinkin, D.; Lin, T.; Skoby, M. J.; Solyst, W.; Vossen, A.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Bordyuzhin, I. G.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bhasin, A.; Gupta, S.; Gupta, A.; Sharma, A.; Sharma, M. K.] Univ Jammu, Jammu 180001, India. [Agakishiev, G.; Aparin, A.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Bouchet, J.; Hamad, A. I.; Kabana, S.; Keane, D.; Lomnitz, M.; Margetis, S.; Shanmuganathan, P. V.; Singha, S.; Wu, Y.] Kent State Univ, Kent, OH 44242 USA. [Adkins, J. K.; Fatemi, R.; Ramachandran, S.] Univ Kentucky, Lexington, KY 40506 USA. [Drachenberg, J. L.] Lamar Univ, Dept Phys, Beaumont, TX 77710 USA. [Chen, X.; Du, C. M.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.; Zhang, J.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China. [Contin, G.; Dong, X.; Greiner, L.; Manion, A.; Matis, H. S.; McKinzie, S.; Mustafa, M. K.; Odyniec, G.; Porter, J.; Poskanzer, A. M.; Ritter, H. G.; Sakrejda, I.; Salur, S.; Schmah, A. M.; Shi, Z.; Sichtermann, E. P.; Thader, J.; Thomas, J. H.; Wieman, H.; Xu, N.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Reed, R.] Lehigh Univ, Bethlehem, PA 18015 USA. [Schmitz, N.; Seyboth, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Novak, J.; Tarnowsky, T.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Alekseev, I.; Brandin, A. V.; Kochenda, L.; Kravtsov, P.; Nigmatkulov, G.; Okorokov, V. A.; Strikhanov, M.] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia. [Bairathi, V.; Haque, R.; Mishra, D.; Mohanty, B.] Natl Inst Sci Educ & Res, Bhubaneswar 751005, Orissa, India. [Huang, T.; Yang, Y.] Natl Cheng Kung Univ, Tainan 70101, Taiwan. [Campbell, J. M.; Humanic, T. J.; Lisa, M. A.; Upsal, I.] Ohio State Univ, Columbus, OH 43210 USA. [Pawlik, B.] Inst Nucl Phys PAN, PL-31342 Krakow, Poland. [Aggarwal, M. M.; Attri, A.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.; Sharma, B.] Panjab Univ, Chandigarh 160014, India. [Dilks, C.; Heppelmann, S.; Summa, B.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino 142281, Russia. [Garand, D.; He, L.; Hirsch, A.; Qiu, H.; Scharenberg, R. P.; Srivastava, B.; Stepanov, M.; Stringfellow, B.; Wang, F.; Xie, W.; Zhao, J.] Purdue Univ, W Lafayette, IN 47907 USA. [Oh, K.; Yoo, I-K.] Pusan Natl Univ, Pusan 46241, South Korea. [Brandenburg, J. D.; Butterworth, J.; Eppley, G.; Geurts, F.; Roberts, J. B.; Tlusty, D.; Xin, K.] Rice Univ, Houston, TX 77251 USA. [Guo, Y.; Jiang, K.; Li, C.; Li, X.; Shao, M.; Sun, Y.; Tang, Z.; Xie, G.; Yang, C.; Yang, S.; Yang, Q.; Zha, W.; Zhang, S.; Zhang, Y.; Zhou, L.] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China. [Deng, J.; Mei, J. C.; Xu, Q. H.; Zhang, J.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Chen, J. H.; Li, W.; Ma, G. L.; Ma, Y. G.; Ma, L.; Shah, N.; Shen, W. Q.; Shou, Q. Y.; Xu, Y. F.; Zhang, Z.; Zhang, S.; Zhong, C.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Jia, J.; Magdy, N.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Gunarathne, D. S.; Kraishan, A. F.; Li, X.; Olvitt, D., Jr.; Posik, M.; Quintero, A.; Surrow, B.] Temple Univ, Philadelphia, PA 19122 USA. [Anderson, D. M.; Chang, Z.; Gagliardi, C. A.; Hamed, A.; Liu, Y.; Mioduszewski, S.; Mondal, M. M.; Sahoo, N. R.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Bhattarai, P.; Hoffmann, G. W.; Jentsch, A.; Markert, C.; Ray, R. L.; Schambach, J.] Univ Texas Austin, Austin, TX 78712 USA. [Bellwied, R.; McDonald, D.; Song, L.; Timmins, A. R.] Univ Houston, Houston, TX 77204 USA. [Ashraf, M. U.; Cheng, J.; Huang, X.; Kang, K.; Li, Y.; Wang, Y.; Xiao, Z. G.; Zhang, X. P.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Finch, E.] Southern Connecticut State Univ, New Haven, CT 06515 USA. [Witt, R.] US Naval Acad, Annapolis, MD 21402 USA. [Gibson, A.; Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chatterjee, A.; Chattopadhyay, S.; Nayak, T. K.] Variable Energy Cyclotron Ctr, Kolkata 700064, India. [Girard, M.; Kikola, D. P.; Kisiel, A.; Kosarzewski, L. K.; Pluta, J.; Poniatowska, K.; Zbroszczyk, H.] Warsaw Univ Technol, PL-00661 Warsaw, Poland. [Jowzaee, S.; Kauder, K.; Llope, W. J.; Niida, T.; Putschke, J.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Tawfik, A.] World Lab Cosmol & Particle Phys WLCAPP, Cairo 11571, Egypt. [Caines, H.; Harris, J. W.; Horvat, S.; Majka, R.; Sandweiss, J.; Smirnov, N.; Yi, L.] Yale Univ, New Haven, CT 06520 USA. RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, FPACS, PL-30059 Krakow, Poland. RI Ma, Yu-Gang/M-8122-2013; Gunarathne, Devika/C-4903-2017 OI Ma, Yu-Gang/0000-0002-0233-9900; Gunarathne, Devika/0000-0002-7155-7418 FU RHIC Operations Group; RCF at BNL; NERSC Center at LBNL; Open Science Grid consortium; Office of Nuclear Physics within the U.S. DOE Office of Science; U.S. National Science Foundation; Ministry of Education and Science of the Russian Federation; National Natural Science Foundation of China, Chinese Academy of Science; Ministry of Science and Technology of China; Chinese Ministry of Education; National Research Foundation of Korea; Czech Science Foundation; Ministry of Education, Youth and Sports of the Czech Republic; Department of Atomic Energy; Department of Science and Technology of the Government of India; National Science Centre of Poland; Ministry of Science, Education and Sports of the Republic of Croatia; RosAtom of Russia; German Bundesministerium fur Bildung, Wissenschaft, Forschung and Technologie (BMBF); Helmholtz Association FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, the Ministry of Education and Science of the Russian Federation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, RosAtom of Russia and German Bundesministerium fur Bildung, Wissenschaft, Forschung and Technologie (BMBF) and the Helmholtz Association. NR 52 TC 0 Z9 0 U1 13 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 5 PY 2017 VL 118 IS 1 AR 012301 DI 10.1103/PhysRevLett.118.012301 PG 8 WC Physics, Multidisciplinary SC Physics GA EH0SL UT WOS:000391474000008 PM 28106415 ER PT J AU Turnbull, D Goyon, C Kemp, GE Pollock, BB Mariscal, D Divol, L Ross, JS Patankar, S Moody, JD Michel, P AF Turnbull, D. Goyon, C. Kemp, G. E. Pollock, B. B. Mariscal, D. Divol, L. Ross, J. S. Patankar, S. Moody, J. D. Michel, P. TI Refractive Index Seen by a Probe Beam Interacting with a Laser-Plasma System SO PHYSICAL REVIEW LETTERS LA English DT Article ID IMPLOSIONS; FREQUENCY AB We report the first complete set of measurements of a laser-plasma optical system's refractive index, as seen by a second probe laser beam, as a function of the relative wavelength shift between the two laser beams. Both the imaginary and real refractive index components are found to be in good agreement with linear theory using plasma parameters measured by optical Thomson scattering and interferometry; the former is in contrast to previous work and has implications for crossed-beam energy transfer in indirectdrive inertial confinement fusion, and the latter is measured for the first time. The data include the first demonstration of a laser-plasma polarizer with 85%-87% extinction for the particular laser and plasma parameters used in this experiment, complementing the existing suite of high-power, tunable, and ultrafast plasma-based photonic devices. C1 [Turnbull, D.; Goyon, C.; Kemp, G. E.; Pollock, B. B.; Mariscal, D.; Divol, L.; Ross, J. S.; Patankar, S.; Moody, J. D.; Michel, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Turnbull, D (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM turnbull@lle.rochester.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL-LDRD Program [42074] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was supported by the LLNL-LDRD Program under Project No. 42074. We thank the staff of the Jupiter Laser Facility and Suzanne Ali for enabling a successful experimental campaign. D.T. also acknowledges useful discussions regarding species separation with C. Bellei, P. Amendt, and G. Kagan. NR 33 TC 0 Z9 0 U1 7 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 5 PY 2017 VL 118 IS 1 AR 015001 DI 10.1103/PhysRevLett.118.015001 PG 5 WC Physics, Multidisciplinary SC Physics GA EH0SL UT WOS:000391474000015 PM 28106452 ER PT J AU Sinha, M Weyda, I Sorensen, A Bruno, KS Ahring, BK AF Sinha, Malavika Weyda, Istvan Sorensen, Annette Bruno, Kenneth S. Ahring, Birgitte K. TI Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes SO AMB EXPRESS LA English DT Article DE Advanced biofuels; Alkane biosynthesis; Aspergillus carbonarius ITEM 5010; Fungal transformation ID FATTY ALDEHYDE; ACID PRODUCTION; HYDROCARBONS; METABOLISM AB In this study we describe the heterologous expression of the recently identified cyanobacterial pathway for long chain alkane biosynthesis, involving the reduction of fatty acyl-ACP to fatty aldehyde and the subsequent conversion of this into alkanes, in the filamentous fungus Aspergillus carbonarius ITEM 5010. Genes originating from Synechococcus elongatus strain PCC7942, encoding acyl-ACP/CoA reductase and aldehyde deformylating oxygenase enzymes, were successfully expressed in A. carbonarius, which lead to the production of pentadecane and heptadecane, alkanes that have not been previously produced by this fungus. Titers of 0.2, 0.5 and 2.7 mg/l pentadecane and 0.8, 1.6 and 10.2 mg/l heptadecane were achieved using glucose, Yeast malt and oatmeal media, respectively. Besides producing alkanes, we found elevated levels of internal free fatty acids and triglycerides in the alkane producing transformant. These findings can indicate that a yet unidentified, native fatty aldehyde dehydrogenase channels back the fatty aldehydes into the fatty acid metabolism, thus competing for substrate with the heterologously expressed fatty aldehyde deformylating oxygenase. These findings will potentially facilitate the future application of robust, fungal cell factories for the production of advanced biofuels from various substrates. C1 [Sinha, Malavika; Sorensen, Annette; Ahring, Birgitte K.] Washington State Univ, Bioprod Sci & Engn Lab, 2710 Crimson Way, Richland, WA 99354 USA. [Weyda, Istvan; Sorensen, Annette] Aalborg Univ, Sect Sustainable Biotechnol, AC Meyers Vaenge 15, DK-2450 Copenhagen SV, Denmark. [Bruno, Kenneth S.] Pacific Northwest Natl Lab, Chem & Biol Proc Dev Grp, Richland, WA 99354 USA. RP Ahring, BK (reprint author), Washington State Univ, Bioprod Sci & Engn Lab, 2710 Crimson Way, Richland, WA 99354 USA. EM bka@wsu.edu FU Danish Strategic Research Council under the program Myco-Fuels and Myco-Chemicals [13G 5604 2032] FX This work was supported by the Danish Strategic Research Council under the program Myco-Fuels and Myco-Chemicals (Grant Number 13G 5604 2032). NR 30 TC 0 Z9 0 U1 6 U2 6 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 2191-0855 J9 AMB EXPRESS JI AMB Express PD JAN 5 PY 2017 VL 7 AR 18 DI 10.1186/s13568-016-0321-x PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EG9WL UT WOS:000391410500001 PM 28058634 ER PT J AU Brambleby, J Goddard, PA Singleton, J Jaime, M Lancaster, T Huang, L Wosnitza, J Topping, CV Carreiro, KE Tran, HE Manson, ZE Manson, JL AF Brambleby, J. Goddard, P. A. Singleton, J. Jaime, M. Lancaster, T. Huang, L. Wosnitza, J. Topping, C. V. Carreiro, K. E. Tran, H. E. Manson, Z. E. Manson, J. L. TI Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point fluctuations, and possible two-dimensional universal behavior SO PHYSICAL REVIEW B LA English DT Article ID BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; QUANTUM CRITICALITY; METASTABILITY; MAGNETS AB We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states and highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. The data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system. C1 [Brambleby, J.; Goddard, P. A.] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. [Singleton, J.; Jaime, M.] Los Alamos Natl Lab, Natl High Magnet Field Lab, MS-E536, Los Alamos, NM 87545 USA. [Lancaster, T.] Univ Durham, Ctr Phys Mat, South Rd, Durham DH1 3LE, England. [Huang, L.; Wosnitza, J.] Helmholtz Zentrum Dresden Rossendorf, Hochfeld Magnetlabor Dresden HLD EMFL, D-01314 Dresden, Germany. [Topping, C. V.] Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. [Carreiro, K. E.; Tran, H. E.; Manson, Z. E.; Manson, J. L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. RP Brambleby, J (reprint author), Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. EM j.d.brambleby@warwick.ac.uk; p.goddard@warwick.ac.uk OI Goddard, Paul/0000-0002-0666-5236 FU EPSRC; European Research Council (ERC) under the European Union's Horizon research and innovation programme [681260]; National Science Foundation [DMR-1157490]; State of Florida; Strongly Correlated Magnets thrust of the DoE BES "Science in 100 T" program; NSF [DMR-1306158] FX J.B., T.L., and C.V.T. thank EPSRC for support. P.A.G. acknowledges that this project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 681260). A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida, as well as the Strongly Correlated Magnets thrust of the DoE BES "Science in 100 T" program. C.V.T. thanks Gavin Stenning for help on the Quantum Design PPMS instrument in the Materials Characterisation Laboratory at the ISIS Neutron and Muon Source. Data presented in this paper resulting from the UK effort will be made available at http://wrap.warwick.ac.uk/84340. The work at EWU was supported by the NSF through Grant No. DMR-1306158. NR 33 TC 0 Z9 0 U1 10 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JAN 5 PY 2017 VL 95 IS 2 AR 024404 DI 10.1103/PhysRevB.95.024404 PG 12 WC Physics, Condensed Matter SC Physics GA EG8LE UT WOS:000391307700003 ER EF