FN Thomson Reuters Web of Science™ VR 1.0 PT J AU McDowell, A Barnard, E Liu, J Li, HY Patrick, S AF McDowell, Andrew Barnard, Emma Liu, Jared Li, Huiying Patrick, Sheila TI Proposal to reclassify Propionibacterium acnes type I as Propionibacterium acnes subsp acnes subsp nov and Propionibacterium acnes type II as Propionibacterium acnes subsp defendens subsp nov. SO INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY LA English DT Article ID PROGRESSIVE MACULAR HYPOMELANOSIS; HUMAN SKIN; EVOLUTIONARY; GENETICS; STRAINS; PCR AB Recently, it has been proposed that strains of Propionibacterium acnes from the type III genetic division should be classified as P. acnessubsp. elongatum subsp. nov., with strains from the type I and II divisions collectively classified as P. acnessubsp. acnes subsp. nov. Under such a taxonomic re-appraisal, we believe that types I and II should also have their own separate rank of subspecies. In support of this, we describe a polyphasic taxonomic study based on the analysis of publicly available multilocus and whole-genome sequence datasets, alongside a systematic review of previously published phylogenetic, genomic, phenotypic and clinical data. Strains of types I and II form highly distinct clades on the basis of multilocus sequence analysis (MLSA) and whole-genome phylogenetic reconstructions. In silico or digital DNA-DNA similarity values also fall within the 70-80 % boundary recommended for bacterial subspecies. Furthermore, we see important differences in genome content, including the presence of an active CRISPR/Cas system in type II strains, but not type I, and evidence for increasing linkage equilibrium within the separate divisions. Key biochemical differences include positive test results for beta-haemolytic, neuraminidase and sorbitol fermentation activities with type I strains, but not type II. We now propose that type I strains should be classified as P. acnessubsp. acnes subsp. nov., and type II as P. acnessubsp. defendens subsp. nov. The type strain of P. acnessubsp. acnes subsp. nov. is NCTC 737(T) (=ATCC 6919(T)=JCM 6425(T)=DSM 1897(T)=CCUG 1794(T)), while the type strain of P. acnessubsp. defendens subsp. nov. is ATCC 11828 (=JCM 6473=CCUG 6369). C1 [McDowell, Andrew] Univ Ulster, Altnagelvin Area Hosp, Biomed Sci Res Inst, Northern Ireland Ctr Stratified Med, C TRIC Bldg, Coleraine BT52 1SA, Londonderry, North Ireland. [Barnard, Emma; Liu, Jared; Li, Huiying] Univ Calif Los Angeles, David Geffen Sch Med, Crump Inst Mol Imaging, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA. [Li, Huiying] Univ Calif Los Angeles, DOE Inst Genom & Prote, Los Angeles, CA USA. [Patrick, Sheila] Queens Univ, Sch Med Dent & Biomed Sci, Ctr Infect & Immun, Belfast, Antrim, North Ireland. RP McDowell, A (reprint author), Univ Ulster, Altnagelvin Area Hosp, Biomed Sci Res Inst, Northern Ireland Ctr Stratified Med, C TRIC Bldg, Coleraine BT52 1SA, Londonderry, North Ireland. EM a.mcdowell@ulster.ac.uk OI McDowell, Andrew/0000-0002-9649-0504 FU National Institutes of Health (NIH) from the National Institute of General Medical Sciences (NIGMS) [R01GM099530]; Ruth L. Kirschstein National Research Service Award [AI007323]; European Union Regional Development Fund (ERDF) EU Sustainable Competitiveness Programme for Northern Ireland [11.5M]; Northern Ireland Public Health Agency (HSC R and D); Ulster University FX E. B., J. L. and H. L. are funded by the National Institutes of Health (NIH) grant R01GM099530 from the National Institute of General Medical Sciences (NIGMS) awarded to H. L. J. L. is also supported by the Ruth L. Kirschstein National Research Service Award AI007323. This work was also supported by a grant of 11.5M awarded to Professor Tony Bjourson from European Union Regional Development Fund (ERDF) EU Sustainable Competitiveness Programme for Northern Ireland; Northern Ireland Public Health Agency (HSC R and D) and Ulster University. NR 44 TC 0 Z9 0 U1 0 U2 0 PU MICROBIOLOGY SOC PI LONDON PA CHARLES DARWIN HOUSE, 12 ROGER ST, LONDON WC1N 2JU, ERKS, ENGLAND SN 1466-5026 EI 1466-5034 J9 INT J SYST EVOL MICR JI Int. J. Syst. Evol. Microbiol. PD DEC PY 2016 VL 66 BP 5358 EP 5365 DI 10.1099/ijsem.0.001521 PN 12 PG 8 WC Microbiology SC Microbiology GA EJ6VM UT WOS:000393357900071 PM 27670798 ER PT J AU Hackett, R AF Hackett, R. TI Response of two-row and six-row barley to fertiliser N under Irish conditions SO IRISH JOURNAL OF AGRICULTURAL AND FOOD RESEARCH LA English DT Article DE fertiliser N; N accumulation; six-row barley; two-row barley; yield ID WINTER BARLEY; NITROGEN-FERTILIZATION; USE EFFICIENCY; YIELD; STABILITY; CEREALS; WHEAT AB A range of cultivar types, including two-row and six-row types as well as line and hybrid types, are used for winter barley production in Ireland. There is little information available on the fertiliser nitrogen (N) requirements or the N use efficiency of these different types, particularly under Irish conditions. The objectives of the work presented here were to compare the response to fertiliser N of a two-row line cultivar, a six-row line cultivar and a six-row hybrid cultivar in terms of grain yield and aspects of N use efficiency. Experiments were carried out over three growing seasons, in the period 2012-2014, on a light-textured soil comparing the response of the three cultivars of winter barley to fertiliser N application rates ranging from 0 to 260 kg N/ha. There was no evidence that cultivar type, regardless of whether it was a two-row or six-row line cultivar or a six-row hybrid cultivar, influenced the response to fertiliser N of winter barley. There were some indications that six-row cultivars were less efficient at recovering soil N but used accumulated N more efficiently than the two-row cultivar. This work provided no evidence to support adjustment of fertiliser N inputs to winter barley based on cultivar type. C1 [Hackett, R.] TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. RP Hackett, R (reprint author), TEAGASC, Crops Res Ctr, Oak Pk, Carlow, Ireland. EM Richie.Hackett@teagasc.ie NR 22 TC 0 Z9 0 U1 0 U2 0 PU TEAGASC PI CARLOW PA OAK PARK, CARLOW 00000, IRELAND SN 0791-6833 J9 IRISH J AGR FOOD RES JI Irish J. Agr. Food Res. PD DEC PY 2016 VL 55 IS 2 BP 136 EP 144 DI 10.1515/ijafr-2016-0013 PG 9 WC Agriculture, Multidisciplinary; Food Science & Technology SC Agriculture; Food Science & Technology GA EK0FS UT WOS:000393602700006 ER PT J AU Parkison, AJ Parker, SS Nelson, AT AF Parkison, Adam J. Parker, Stephen S. Nelson, Andrew T. TI Fabrication of ThN Using a Carbothermic Reduction to Nitridation Process SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article DE nitridation; nitrides; reduction; thermal treatment; thermogravimetry; carbothermic ID LIGHT-WATER REACTORS; THERMAL-CONDUCTIVITY; THORIUM; PRESSURE AB A carbothermic reduction to nitridation process was developed which is capable of producing high-purity thorium mononitride (ThN) in bulk quantities. This was accomplished through study of three distinct processing routes using thermogravimetric analysis. The information gathered was then used to guide development of a draft process, which was tested within a tungsten production furnace. Scaling issues were identified and corrected following the draft process. Finally, a partitioned process was developed in response to the draft process which separates the reduction from the nitridation and carbon cleanup steps. This partitioned process was demonstrated to be capable of producing phase-pure ThN, with oxygen and carbon impurities of 990 +/- 130 wppm and 240 +/- 30 wppm, respectively. C1 [Parkison, Adam J.; Parker, Stephen S.; Nelson, Andrew T.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Parkison, AJ (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM ajparkison@lanl.gov OI Nelson, Andrew/0000-0002-4071-3502 FU U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development program FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development program. The authors would like to thank Amber Telles for performing the combustion and inert gas fusion analyses. NR 13 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD DEC PY 2016 VL 99 IS 12 BP 3909 EP 3914 DI 10.1111/jace.14453 PG 6 WC Materials Science, Ceramics SC Materials Science GA EK3RQ UT WOS:000393844100009 ER PT J AU Soderquist, CZ Buck, EC McCloy, JS Schweiger, MJ Kruger, AA AF Soderquist, Chuck Z. Buck, Edgar C. McCloy, John S. Schweiger, Mike J. Kruger, Albert A. TI Formation of Technetium Salts in Hanford Low-Activity Waste Glass SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article DE nuclear waste; radioactive waste; volatilization ID BOROSILICATE GLASS; SOLUBILITY; RHENIUM; BEHAVIOR AB The distribution and physical form of technetium in a Hanford low-activity waste (LAW) glass was examined with scanning electron microscopy (SEM) and X-ray diffraction (XRD). A simulated Hanford LAW glass was spiked with varying amounts of potassium pertechnetate and melted at 1000 degrees C. The glass was melted in a sealed quartz ampoule with the air pumped out, so that volatile material could leave the glass but would not be lost from the system. Previous studies have shown that technetium remains in the glass up to about 2000 ppm, but rises to the top of the melt as a separate salt phase above this concentration. Examination by SEM shows that crystals of technetium compounds appear to grow out of the hot glass, which implies that the hot glass was supersaturated in technetium salts. Some of the technetium compound crystals had apparently melted, but other crystals had obviously not melted and must have formed after the glass had partially cooled. The technetium compounds in the salt layer are KTcO4 and NaTcO4, according to SEM and XRD. No TcO2 was found in the salt phase, even though Tc(IV) has been previously reported in the glass. C1 [Soderquist, Chuck Z.; Buck, Edgar C.; Schweiger, Mike J.] Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. [McCloy, John S.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [McCloy, John S.] Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA. [Kruger, Albert A.] US DOE, Off River Protect, Richland, WA 99352 USA. RP Soderquist, CZ (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM chuck.soderquist@pnnl.gov FU Department of Energy's Hanford Tank Waste Treatment and Immobilization Plant; U.S. DOE [DE-AC05-76RL01830] FX The authors are grateful for the financial support provided by the Federal Project Director William F. Hamel, Jr. of the Department of Energy's Hanford Tank Waste Treatment and Immobilization Plant. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. DOE under contract DE-AC05-76RL01830. The authors thank Peggy Smoot, Jarrod Crum, and Jose Marcial for assistance with XRD measurement and phase fitting. NR 23 TC 1 Z9 1 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD DEC PY 2016 VL 99 IS 12 BP 3924 EP 3931 DI 10.1111/jace.14442 PG 8 WC Materials Science, Ceramics SC Materials Science GA EK3RQ UT WOS:000393844100011 ER PT J AU Xie, ZL Blair, RG Orlovskaya, N Cullen, DA Kata, D Rutkowski, P Lis, J Qin, N T-Raissi, A AF Xie, Zhilin Blair, Richard G. Orlovskaya, Nina Cullen, David A. Kata, Dariusz Rutkowski, Pawel Lis, Jerzy Qin, Nan T-Raissi, Ali TI Oxygen Interaction with Hexagonal OsB2 at High Temperature SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article DE osmium diboride; ceramics; STEM; thermal analysis ID MECHANICAL-PROPERTIES; TITANIUM DIBORIDE; OSMIUM DIBORIDE; POWDER; MECHANOCHEMISTRY; COMPOSITES; STABILITY; SUPERHARD; CERAMICS; PRESSURE AB The stability of ReB2-type hexagonal OsB2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure, sintering of OsB2 powders occurred at a relatively low temperature (900 degrees C). Hexagonal OsB2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures. C1 [Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. [Blair, Richard G.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Cullen, David A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kata, Dariusz; Rutkowski, Pawel; Lis, Jerzy] AGH Univ Sci & Technol Krakow, Dept Ceram & Refractories, Fac Mat Sci & Ceram, Al Mickiewicza 30, PL-30059 Krakow, Poland. [Qin, Nan; T-Raissi, Ali] Univ Cent Florida, Florida Solar Energy Ctr, Cocoa, FL 32922 USA. RP Orlovskaya, N (reprint author), Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA. EM Nina.Orlovskaya@ucf.edu OI Cullen, David/0000-0002-2593-7866 FU NSF [DMR - 0748364] FX This work was supported by NSF project DMR - 0748364. Electron microscopy and high-temperature XRD were supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. NR 30 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD DEC PY 2016 VL 99 IS 12 BP 4057 EP 4065 DI 10.1111/jace.14434 PG 9 WC Materials Science, Ceramics SC Materials Science GA EK3RQ UT WOS:000393844100029 ER PT J AU Berger, CM Mahmoud, A Hermann, RP Braun, W Yazhenskikh, E Sohn, YJ Menzler, NH Guillon, O Bram, M AF Berger, Cornelius M. Mahmoud, Abdelfattah Hermann, Raphael P. Braun, Waldemar Yazhenskikh, Elena Sohn, Yoo Jung Menzler, Norbert H. Guillon, Olivier Bram, Martin TI Calcium-Iron Oxide as Energy Storage Medium in Rechargeable Oxide Batteries SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article DE solid oxide fuel cell; Mossbauer spectroscopy; iron/iron compounds; electrolysis; Rechargeable oxide battery ID CHEMICAL-LOOPING COMBUSTION; REDOX FLOW BATTERY; REDUCTION EQUILIBRIA; AIR BATTERY; FUEL-CELLS; MOSSBAUER; TEMPERATURE; SYSTEM; FERRITES; FE-FE2O3-CAO AB Rechargeable oxide batteries (ROB) comprise a regenerative solid oxide cell (rSOC) and a storage medium for oxygen ions. A sealed ROB avoids pumping loss, heat loss, and gas purity expenses in comparison with conventional rSOC. However, the iron oxide base storage medium degrades during charging-discharging cycles. In comparison, CaFe3O5 has improved cyclability and a high reversible oxygen storage capacity of 22.3 mol%. In this study, we analyzed the redox mechanism of this compound. After a solid-state synthesis of CaFe3O5, we verified the phase composition and studied the redox reaction by means of X-ray diffraction, Mossbauer spectrometry, and scanning electron microscopy. Results show a great potential to operate the battery with this storage material during multiple charging-discharging cycles. C1 [Berger, Cornelius M.; Braun, Waldemar; Yazhenskikh, Elena; Sohn, Yoo Jung; Menzler, Norbert H.; Guillon, Olivier; Bram, Martin] Forschungszentrum Julich, Inst Energy & Climate Res IEK, D-52428 Julich, Germany. [Berger, Cornelius M.; Sohn, Yoo Jung; Menzler, Norbert H.; Guillon, Olivier; Bram, Martin] JARA, Julich, Germany. [Mahmoud, Abdelfattah; Hermann, Raphael P.] Forschungszentrum Julich, JARA FIT, JCNS, D-52428 Julich, Germany. [Mahmoud, Abdelfattah; Hermann, Raphael P.] Forschungszentrum Julich, JARA FIT, PGI, D-52428 Julich, Germany. [Mahmoud, Abdelfattah] Univ Liege, Inst Chem B6, LCIS GREENMAT, B-4000 Liege, Belgium. [Hermann, Raphael P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Berger, CM (reprint author), Forschungszentrum Julich, Inst Energy & Climate Res IEK, D-52428 Julich, Germany.; Berger, CM (reprint author), JARA, Julich, Germany. EM c.berger@fz-juelich.de OI Berger, Cornelius M./0000-0003-4155-0191; Bram, Martin/0000-0002-1203-2777 FU German Federal Ministry of Education and Research (BMBF) [03EK3017]; U.S. Department of Energy, the Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX The authors thank Dr. D. Sebold for the support at the SEM as well as Prof. F. Grandjean and G. J. Long for useful comments on the Mossbauer spectral results. Furthermore, the authors gratefully acknowledge the financial support by the German Federal Ministry of Education and Research (BMBF) under the project grant 03EK3017 and the support of the U.S. Department of Energy, the Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 42 TC 0 Z9 0 U1 3 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD DEC PY 2016 VL 99 IS 12 BP 4083 EP 4092 DI 10.1111/jace.14439 PG 10 WC Materials Science, Ceramics SC Materials Science GA EK3RQ UT WOS:000393844100032 ER PT J AU Xu, Y Feygenson, M Page, K Nickles, LS Brinkman, KS AF Xu, Yun Feygenson, Mikhail Page, Katharine Nickles, Lindsay Shuller Brinkman, Kyle S. TI Structural Evolution in Hollandite Solid Solutions Across the A-Site Compositional Range from Ba1.33Ga2.66Ti5.34O16 to Cs1.33Ga1.33Ti6.67O16 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article DE nuclear waste; density functional theory; hollandite; neutron diffraction; structural ID NUCLEAR-WASTE IMMOBILIZATION; LEAD SCANDIUM TANTALATE; STABILITY; THERMOCHEMISTRY; SYNROC; PHASE AB Hollandite solid solutions along the A-site compositional range from the pure barium end-member Ba1.33Ga2.66Ti5.34O16 to the pure cesium end-member Cs1.33Ga1.33Ti6.67O16 have been synthesized using a solid-state reaction technique. The crystal structure of the hollandite across the entire compositional range remained in the I4/m space group. Structural evolution was resolved by neutron diffraction, total scattering data, and density functional theory calculations. A trend of decreasing thermodynamic stability with smaller tunnel cations was attributed to increased structural distortion observed in the system. In addition, the tunnel cations' local environment was studied in the eightfold coordinated oxygen cavities. Local binding features of the tunnel cations reveals that the hollandite structure can strongly stabilize tunnel cations, even at elevated temperatures up to 500 K. C1 [Xu, Yun; Brinkman, Kyle S.] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA. [Feygenson, Mikhail; Page, Katharine] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Nickles, Lindsay Shuller] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. RP Brinkman, KS (reprint author), Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA. EM ksbrink@clemson.edu OI Feygenson, Mikhail /0000-0002-0316-3265 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; DOE-EPSCoR Project [DE-SC0012530] FX The research performed at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors gratefully acknowledge financial support from the DOE-EPSCoR Project Number: DE-SC0012530, "Radionuclide Waste Disposal: Development of Multi-scale Experimental and Modeling Capabilities". NR 27 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD DEC PY 2016 VL 99 IS 12 BP 4100 EP 4106 DI 10.1111/jace.14443 PG 7 WC Materials Science, Ceramics SC Materials Science GA EK3RQ UT WOS:000393844100034 ER PT J AU Prsa, K Nehrkorn, J Corbey, JF Evans, WJ Demir, S Long, JR Guidi, T Waldmann, O AF Prsa, Krunoslav Nehrkorn, Joscha Corbey, Jordan F. Evans, William J. Demir, Selvan Long, Jeffrey R. Guidi, Tatiana Waldmann, Oliver TI Perspectives on Neutron Scattering in Lanthanide-Based Single-Molecule Magnets and a Case Study of the Tb-2(mu-N-2) System SO MAGNETOCHEMISTRY LA English DT Review DE single-molecule magnet; lanthanide ions; inelastic neutron scattering; ligand field; Ising model; magnetic exchange ID ANISOTROPIC EXCHANGE; DYSPROSIUM TRIANGLES; ION MAGNETS; AB-INITIO; COMPLEXES; RELAXATION; MAGNETIZATION; SPECTROSCOPY; DIFFRACTION; SPLITTINGS AB Single-molecule magnets (SMMs) based on lanthanide ions display the largest known blocking temperatures and are the best candidates for molecular magnetic devices. Understanding their physical properties is a paramount task for the further development of the field. In particular, for the poly-nuclear variety of lanthanide SMMs, a proper understanding of the magnetic exchange interaction is crucial. We discuss the strengths and weaknesses of the neutron scattering technique in the study of these materials and particularly for the determination of exchange. We illustrate these points by presenting the results of a comprehensive inelastic neutron scattering study aimed at a radical-bridged diterbium(III) cluster, Tb-2(mu-N-2(3)), which exhibits the largest blocking temperature for a poly-nuclear SMM. Results on the YIII analogue Y-2(mu-N-2(3-)) and the parent compound Tb-2(mu-N-2(2-)) (showing no SMM features) are also reported. The results on the parent compound include the first direct determination of the lanthanide-lanthanide exchange interaction in a molecular cluster based on inelastic neutron scattering. In the SMM compound, the resulting physical picture remains incomplete due to the difficulties inherent to the problem. C1 [Prsa, Krunoslav; Nehrkorn, Joscha; Waldmann, Oliver] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. [Nehrkorn, Joscha] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Corbey, Jordan F.; Evans, William J.] Univ Calif Irvine, Dept Chem, Irvine, CA 92617 USA. [Demir, Selvan; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Demir, Selvan] Georg August Univ Gottingen, Inst Anorgan Chem, Tammannstr 4, D-37077 Gottingen, Germany. [Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Guidi, Tatiana] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Waldmann, O (reprint author), Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany. EM krunoslav.prsa@physik.uni-freiburg.de; nehrkorn@uw.edu; jcorbey@uci.edu; wevans@uci.edu; selvan.demir@chemie.uni-goettingen.de; jrlong@berkeley.edu; tatiana.guidi@stfc.ac.uk; oliver.waldmann@physik.uni-freiburg.de FU U.S. National Science Foundation [CHE-1565776]; National Science Foundation (NSF) [CHE-1464841] FX K.P. and O.W. thank J. Mutschler for help with point-charge model calculations. W.J.E. thanks the U.S. National Science Foundation for support (CHE-1565776). The work performed at University of California, Berkeley was supported by the National Science Foundation (NSF) under Grant CHE-1464841. NR 64 TC 0 Z9 0 U1 3 U2 3 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2312-7481 J9 MAGNETOCHEMISTRY JI Magnetochemistry PD DEC PY 2016 VL 2 IS 4 AR 45 DI 10.3390/magnetochemistry2040045 PG 19 WC Chemistry, Physical SC Chemistry GA EJ9WY UT WOS:000393579100005 ER PT J AU Guo, W Sneed, BT Zhou, L Tang, W Kramer, MJ Cullen, DA Poplawsky, JD AF Guo, Wei Sneed, Brian T. Zhou, Lin Tang, Wei Kramer, Matthew J. Cullen, David A. Poplawsky, Jonathan D. TI Correlative Energy-Dispersive X-Ray Spectroscopic Tomography and Atom Probe Tomography of the Phase Separation in an Alnico 8 Alloy SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE phase separation; atom probe tomography (APT); electron tomography; correlative tomography; alnico alloy ID TRANSMISSION ELECTRON-MICROSCOPY; HAADF-STEM TOMOGRAPHY; MATERIALS SCIENCE; SCALE; EVOLUTION; SPECIMENS; FIELD AB Alnico alloys have long been used as strong permanent magnets because of their ferromagnetism and high coercivity. Understanding their structural details allows for better prediction of the resulting magnetic properties. However, quantitative three-dimensional characterization of the phase separation in these alloys is still challenged by the spatial quantification of nanoscale phases. Herein, we apply a dual tomography approach, where correlative scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectroscopic (EDS) tomography and atom probe tomography (APT) are used to investigate the initial phase separation process of an alnico 8 alloy upon non-magnetic annealing. STEM-EDS tomography provides information on the morphology and volume fractions of Fe-Co-rich and Ni-Al-rich phases after spinodal decomposition in addition to quantitative information of the composition of a nanoscale volume. Subsequent analysis of a portion of the same specimen by APT offers quantitative chemical information of each phase at the sub-nanometer scale. Furthermore, APT reveals small, 2-4 nm Fe-rich alpha(1) phases that are nucleated in the Ni-rich alpha(2) matrix. From this information, we show that phase separation of the alnico 8 alloy consists of both spinodal decomposition and nucleation and growth processes. The complementary benefits and challenges associated with correlative STEM-EDS and APT are discussed. C1 [Guo, Wei; Sneed, Brian T.; Poplawsky, Jonathan D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhou, Lin; Tang, Wei; Kramer, Matthew J.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Cullen, David A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Guo, W; Poplawsky, JD (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM wguo2007@gmail.com; poplawskyJD@ornl.gov OI Cullen, David/0000-0002-2593-7866 FU US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, under its Vehicle Technologies Program, through the Ames Laboratory, Iowa State University [DE-AC02-07CH11358] FX The research is supported by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, under its Vehicle Technologies Program, through the Ames Laboratory, Iowa State University under contract DE-AC02-07CH11358. This research was performed, in part, using instrumentation provided by the DOE, Office of Nuclear Energy, Fuel Cycle R&D Program, and the Nuclear Science User Facilities. APT research was conducted at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 40 TC 1 Z9 1 U1 2 U2 2 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 EI 1435-8115 J9 MICROSC MICROANAL JI Microsc. microanal. PD DEC PY 2016 VL 22 IS 6 BP 1251 EP 1260 DI 10.1017/S1431927616012496 PG 10 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA EK3UE UT WOS:000393853100014 PM 27998366 ER PT J AU Zhong, XL Schilling, S Zaluzec, NJ Burke, MG AF Zhong, Xiang Li Schilling, Sibylle Zaluzec, Nestor J. Burke, M. Grace TI Sample Preparation Methodologies for In Situ Liquid and Gaseous Cell Analytical Transmission Electron Microscopy of Electropolished Specimens SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE liquid; gas; E-cell; sample preparation; S/TEM; AEM ID TEM; GROWTH; ELECTRODEPOSITION; KINETICS; COPPER; WATER; LIFT AB In recent years, an increasing number of studies utilizing in situ liquid and/or gaseous cell scanning/transmission electron microscopy (S/TEM) have been reported. Because of the difficulty in the preparation of suitable specimens, these environmental S/TEM studies have been generally limited to studies of nanoscale structured materials such as nanoparticles, nanowires, or sputtered thin films. In this paper, we present two methodologies which have been developed to facilitate the preparation of electron-transparent samples from conventional bulk metals and alloys for in situ liquid/gaseous cell S/TEM experiments. These methods take advantage of combining sequential electrochemical jet polishing followed by focused ion beam extraction techniques to create large electron-transparent areas for site-specific observation. As an example, we illustrate the application of this methodology for the preparation of in situ specimens from a cold-rolled Type 304 austenitic stainless steel sample, which was subsequently examined in both 1 atm of air as well as fully immersed in a H2O environment in the S/TEM followed by hyperspectral imaging. These preparation techniques can be successfully applied as a general procedure for a wide range of metals and alloys, and are suitable for a variety of in situ analytical S/TEM studies in both aqueous and gaseous environments. C1 [Zhong, Xiang Li; Schilling, Sibylle; Zaluzec, Nestor J.; Burke, M. Grace] Univ Manchester, Sch Mat, Mat Performance Ctr, Manchester M13 9PL, Lancs, England. [Zhong, Xiang Li; Schilling, Sibylle; Zaluzec, Nestor J.; Burke, M. Grace] Univ Manchester, Ctr Electron Microscopy, Manchester M13 9PL, Lancs, England. [Zaluzec, Nestor J.] Argonne Natl Lab, Ctr Electron Microscopy, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Zaluzec, NJ (reprint author), Univ Manchester, Sch Mat, Mat Performance Ctr, Manchester M13 9PL, Lancs, England.; Zaluzec, NJ (reprint author), Univ Manchester, Ctr Electron Microscopy, Manchester M13 9PL, Lancs, England.; Zaluzec, NJ (reprint author), Argonne Natl Lab, Ctr Electron Microscopy, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zaluzec@microscopy.com FU Engineering and Physical Sciences Research Council UK PROMINENT program; Defense Threat Reduction Agency [HDTRA1-12-1-0013]; BP DRL Innovation Fund; Electron Microscopy Center in the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility [DE-AC02-06CH11357]; [EP/G035954/1]; [EP/J021172/1] FX Dr. A. Janssen and Dr. M.A. Kulzick are acknowledged for their insightful comments. S.S. acknowledges the Engineering and Physical Sciences Research Council UK PROMINENT program for support. In addition, this work was supported in part by research grants including grant nos. EP/G035954/1 and EP/J021172/1 and Defense Threat Reduction Agency grant no. HDTRA1-12-1-0013, the BP 2013 DRL Innovation Fund, as well as the Electron Microscopy Center in the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility under contract no. DE-AC02-06CH11357. NR 29 TC 0 Z9 0 U1 5 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 EI 1435-8115 J9 MICROSC MICROANAL JI Microsc. microanal. PD DEC PY 2016 VL 22 IS 6 BP 1350 EP 1359 DI 10.1017/S1431927616011855 PG 10 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA EK3UE UT WOS:000393853100022 PM 27819208 ER PT J AU Schwab, J Quataert, E Kasen, D AF Schwab, Josiah Quataert, Eliot Kasen, Daniel TI The evolution and fate of super-Chandrasekhar mass white dwarf merger remnants SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; white dwarfs ID STELLAR ASTROPHYSICS MESA; ACCRETION-INDUCED COLLAPSE; CORONAE-BOREALIS STARS; IA SUPERNOVAE; AGB STARS; ELECTRON-CAPTURE; O+NE+MG CORES; NEUTRON-STAR; DARK-MATTER; PROGENITORS AB We present stellar evolution calculations of the remnant of the merger of two carbon-oxygen white dwarfs (CO WDs). We focus on cases that have a total mass in excess of the Chandrasekhar mass. After the merger, the remnant manifests as an L similar to 3 x 10(4) L-circle dot source for similar to 10(4) yr. A dusty wind may develop, leading these sources to be self-obscured and to appear similar to extreme asymptotic giant branch (AGB) stars. Roughly similar to 10 such objects should exist in the Milky Way and M31 at any time. As found in previous work, off-centre carbon fusion is ignited within the merger remnant and propagates inwards via a carbon flame, converting the WD to an oxygen-neon (ONe) composition. By following the evolution for longer than previous calculations, we demonstrate that after carbon-burning reaches the centre, neutrino-cooled Kelvin-Helmholtz contraction leads to off-centre neon ignition in remnants with masses >= 1.35 M-circle dot. The resulting neon-oxygen flame converts the core to a silicon WD. Thus, super-Chandrasekhar WD merger remnants do not undergo electron-capture induced collapse as traditionally assumed. Instead, if the remnant mass remains above the Chandrasekhar mass, we expect that it will form a low-mass iron core and collapse to form a neutron star. Remnants that lose sufficient mass will end up as massive, isolated ONe or Si WDs. C1 [Schwab, Josiah; Quataert, Eliot; Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Schwab, Josiah; Quataert, Eliot; Kasen, Daniel] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Schwab, Josiah; Quataert, Eliot; Kasen, Daniel] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Kasen, Daniel] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Schwab, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Schwab, J (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.; Schwab, J (reprint author), Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. EM jwschwab@berkeley.edu FU NSF Graduate Research Fellowship Program [DGE-1106400]; NSF [AST-1205732]; Simons Investigator award from Simons Foundation; David and Lucile Packard Foundation; Gordon and Betty Moore Foundation [GBMF5076]; Department of Energy Office of Nuclear Physics; Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics of the US Department of Energy [DE-AC02-05CH11231]; Office of the CIO FX We thank Lars Bildsten, Jared Brooks, Rob Farmer, Jason Ferguson, Ken Shen, and Frank Timmes for helpful discussions. We thank Marius Dan and Cody Raskin for providing the results of their SPH simulations as part of previous work. We thank Ken'ichi Nomoto, Todd Thompson, and Stan Woosley for useful conversations following the presentation of these results in preliminary form. We thank an anonymous referee for comments that led to improvements in the manuscript. We acknowledge stimulating workshops at Sky House and Palomar Observatory where these ideas germinated. JS is supported by the NSF Graduate Research Fellowship Program under grant DGE-1106400 and by NSF grant AST-1205732. EQ is supported in part by a Simons Investigator award from the Simons Foundation and the David and Lucile Packard Foundation. This research is funded in part by the Gordon and Betty Moore Foundation through Grant GBMF5076. DK was supported in part by a Department of Energy Office of Nuclear Physics Early Career Award, and by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US Department of Energy under Contract no. DE-AC02-05CH11231. This research used the SAVIO computational cluster resource provided by the Berkeley Research Computing program at the University of California Berkeley (supported by the UC Chancellor, the UC Berkeley Vice Chancellor of Research, and the Office of the CIO). This research has made use of NASA's Astrophysics Data System and GNU Parallel (Tange 2011). NR 70 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC PY 2016 VL 463 IS 4 BP 3461 EP 3475 DI 10.1093/mnras/stw2249 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ9SW UT WOS:000393568200004 ER PT J AU Kacprzak, T Kirk, D Friedrich, O Amara, A Refregier, A Marian, L Dietrich, JP Suchyta, E Aleksic, J Bacon, D Becker, MR Bonnett, C Bridle, SL Chang, C Eifler, TF Hartley, WG Huff, EM Krause, E MacCrann, N Melchior, P Nicola, A Samuroff, S Sheldon, E Troxel, MA Weller, J Zuntz, J Abbott, TMC Abdalla, FB Armstrong, R Benoit-Levy, A Bernstein, GM Bernstein, RA Bertin, E Brooks, D Burke, DL Rosell, AC Kind, MC Carretero, J Castander, FJ Crocce, M D'Andrea, CB da Costa, LN Desai, S Diehl, HT Evrard, AE Neto, AF Flaugher, B Fosalba, P Frieman, J Gerdes, DW Goldstein, DA Gruen, D Gruendl, RA Gutierrez, G Honscheid, K Jain, B James, DJ Jarvis, M Kuehn, K Kuropatkin, N Lahav, O Lima, M March, M Marshall, JL Martini, P Miller, CJ Miquel, R Mohr, JJ Nichol, RC Nord, B Plazas, AA Romer, AK Roodman, A Rykoff, ES Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Swanson, MEC Tarle, G Thomas, D Vikram, V Walker, AR Zhang, Y AF Kacprzak, T. Kirk, D. Friedrich, O. Amara, A. Refregier, A. Marian, L. Dietrich, J. P. Suchyta, E. Aleksic, J. Bacon, D. Becker, M. R. Bonnett, C. Bridle, S. L. Chang, C. Eifler, T. F. Hartley, W. G. Huff, E. M. Krause, E. MacCrann, N. Melchior, P. Nicola, A. Samuroff, S. Sheldon, E. Troxel, M. A. Weller, J. Zuntz, J. Abbott, T. M. C. Abdalla, F. B. Armstrong, R. Benoit-Levy, A. Bernstein, G. M. Bernstein, R. A. Bertin, E. Brooks, D. Burke, D. L. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Castander, F. J. Crocce, M. D'Andrea, C. B. da Costa, L. N. Desai, S. Diehl, H. T. Evrard, A. E. Fausti Neto, A. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. W. Goldstein, D. A. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. Jain, B. James, D. J. Jarvis, M. Kuehn, K. Kuropatkin, N. Lahav, O. Lima, M. March, M. Marshall, J. L. Martini, P. Miller, C. J. Miquel, R. Mohr, J. J. Nichol, R. C. Nord, B. Plazas, A. A. Romer, A. K. Roodman, A. Rykoff, E. S. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Swanson, M. E. C. Tarle, G. Thomas, D. Vikram, V. Walker, A. R. Zhang, Y. CA DES Collaboration TI Cosmology constraints from shear peak statistics in Dark Energy Survey Science Verification data SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitational lensing: weak; methods: data analysis; methods: statistical; cosmological parameter; cosmology: observations; dark matter ID WEAK-LENSING SURVEYS; PRIMORDIAL NON-GAUSSIANITY; BONN DEEP SURVEY; COSMIC SHEAR; INTRINSIC ALIGNMENTS; GALAXY CLUSTERS; CROSS-CORRELATION; SHAPE MEASUREMENT; NOISE BIAS; COVARIANCE-MATRIX AB Shear peak statistics has gained a lot of attention recently as a practical alternative to the two-point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg(2) field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 0 < S/N < 4. To predict the peak counts as a function of cosmological parameters, we use a suite of N-body simulations spanning 158 models with varying Omega(m) and sigma(8), fixing w = -1, Omega(b) = 0.04, h = 0.7 and n(s) = 1, to which we have applied the DES SV mask and redshift distribution. In our fiducial analysis we measure sigma(8)(Omega(m)/0.3)(0.6) = 0.77 +/- 0.07, after marginalizing over the shear multiplicative bias and the error on the mean redshift of the galaxy sample. We introduce models of intrinsic alignments, blending and source contamination by cluster members. These models indicate that peaks with S/N > 4 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two-point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data. C1 [Kacprzak, T.; Amara, A.; Refregier, A.; Chang, C.; Hartley, W. G.; Nicola, A.] Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. [Kirk, D.; Hartley, W. G.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Friedrich, O.; Weller, J.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Friedrich, O.; Weller, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Univ Sternwarte, Scheinerstr 1, D-81679 Munich, Germany. [Marian, L.; Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Dietrich, J. P.; Weller, J.; Desai, S.; Mohr, J. J.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Dietrich, J. P.; Desai, S.; Mohr, J. J.] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Suchyta, E.; Bernstein, G. M.; Jain, B.; Jarvis, M.; March, M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Aleksic, J.; Bonnett, C.; D'Andrea, C. B.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Bacon, D.; Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Becker, M. R.; Krause, E.; Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Becker, M. R.; Carretero, J.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Bridle, S. L.; MacCrann, N.; Samuroff, S.; Troxel, M. A.; Zuntz, J.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Huff, E. M.; Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Huff, E. M.; Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Melchior, P.; Armstrong, R.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Sheldon, E.] Brookhaven Natl Lab, Bldg 510, Upton, NY 11973 USA. [Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Benoit-Levy, A.; Bertin, E.] Inst Astrophys Paris, UMR 7095, CNRS, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] UPMC Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Bernstein, R. A.] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Burke, D. L.; Gruen, D.; Roodman, A.; Rykoff, E. S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Carnero Rosell, A.; da Costa, L. N.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Fausti Neto, A.; Sobreira, F.] Lab Interinst & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Lima, M.] CSIC, IEEC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Bellaterra, Barcelona, Spain. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Diehl, H. T.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Zhang, Y.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Complutense 40, E-28040 Madrid, Spain. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Kacprzak, T (reprint author), Swiss Fed Inst Technol, Dept Phys, Wolfgang Pauli Str 16, CH-8093 Zurich, Switzerland. EM tomasz.kacprzak@phys.ethz.ch OI Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658 FU US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Dark Energy Survey; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas; Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under European Union, ERC [240672, 291329, 306478]; European Research Council [FP7/291329]; ETHZ ISG; Brutus cluster team; Dark Universe by Deutsche Forschungsgemeinschaft (DFG) [SFB-Transregio 33] FX Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329 and 306478.; DK acknowledges support from a European Research Council Advanced Grant FP7/291329. TK thanks the support of ETHZ ISG and the Brutus cluster team. OF was supported by SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG). NR 125 TC 4 Z9 4 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC PY 2016 VL 463 IS 4 BP 3653 EP 3673 DI 10.1093/mnras/stw2070 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ9SW UT WOS:000393568200019 ER PT J AU Hamada, MS Margevicius, KJ AF Hamada, M. S. Margevicius, K. J. TI An Application of a Zero-inflated Lifetime Distribution with Multiple and Incomplete Data Sources SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE Bayesian inference; binomial and exponential distribution; goodness-of-fit; eft-censored and right-censored data; prediction AB We analyze data sampled from a population of parts in which an associated anomaly can occur at assembly or after assembly. Using a zero-inflated lifetime distribution to fit left-censored and right-censored data as well data from a supplementary sample, we make predictions about the proportion of the population with anomalies today and in the future. Goodness-of-fit is also addressed. Copyright (C) 2016 John Wiley & Sons, Ltd. C1 [Hamada, M. S.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87544 USA. [Margevicius, K. J.] Los Alamos Natl Lab, Div W, Los Alamos, NM USA. RP Hamada, MS (reprint author), Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87544 USA. EM hamada@lanl.gov OI Margevicius, Kristen/0000-0002-4116-8307 NR 7 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0748-8017 EI 1099-1638 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD DEC PY 2016 VL 32 IS 8 SI SI BP 2883 EP 2887 DI 10.1002/qre.1972 PG 5 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA EJ6EC UT WOS:000393310400020 ER PT J AU Farmer, MT Robb, KR Francis, MW AF Farmer, M. T. Robb, K. R. Francis, M. W. TI Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core Melt Spreading SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE Fukushima; ex-vessel; melt spreading AB Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for the analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis has been carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. The best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and the extent of spreading during relocation from the vessel. This information was then used as input for the long-term debris coolability analysis with CORQUENCH, which is reported in a companion paper. C1 [Farmer, M. T.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Robb, K. R.; Francis, M. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Farmer, MT (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM farmer@anl.gov NR 22 TC 1 Z9 1 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD DEC PY 2016 VL 196 IS 3 SI SI BP 446 EP 460 DI 10.13182/NT16-44 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EF7QK UT WOS:000390524000004 ER PT J AU Cao, Y Yang, SZ Jesse, S Kravchenko, I Yu, P Chen, LQ Kalinin, SV Balke, N Li, Q AF Cao, Ye Yang, Shuzhen Jesse, Stephen Kravchenko, Ivan Yu, Pu Chen, Long-Qing Kalinin, Sergei V. Balke, Nina Li, Qian TI Exploring Polarization Rotation Instabilities in Super-Tetragonal BiFeO3 Epitaxial Thin Films and Their Technological Implications SO ADVANCED ELECTRONIC MATERIALS LA English DT Article ID STRAINED BIFEO3; ELECTROMECHANICAL RESPONSE; MULTIFERROIC BIFEO3; PHASE-TRANSITIONS; DOMAIN-WALLS; NANOSCALE; MECHANISM; BOUNDARY C1 [Cao, Ye; Jesse, Stephen; Kravchenko, Ivan; Kalinin, Sergei V.; Balke, Nina; Li, Qian] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Yang, Shuzhen; Yu, Pu] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Yang, Shuzhen; Yu, Pu] Tsinghua Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. [Yang, Shuzhen; Yu, Pu] RIKEN, CEMS, Wako, Saitama 3510198, Japan. [Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Balke, N; Li, Q (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM balken@ornl.gov; liq1@ornl.gov RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU U.S. DOE, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division (MSED) through the Office of Science Early Career Research Program; FWP [ERKCZ07]; National Basic Research Program of China [2015CB921700]; National Natural Science Foundation of China [11274194]; U.S. DOE, Office of BES, MSED [DE-FG02-07ER46417] FX This study was supported by the U.S. DOE, Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division (MSED) through the Office of Science Early Career Research Program (Q.L., N.B.) and FWP Grant No. ERKCZ07 (Y.C., S.V.K.). The experiments were performed at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. The work at Tsinghua University (S.Y., P.Y.) was supported by the National Basic Research Program of China (Grant No. 2015CB921700) and National Natural Science Foundation of China (No. 11274194). L.-Q.C. was supported by the U.S. DOE, Office of BES, MSED under Award No. DE-FG02-07ER46417. Author contributions-Study design: Q.L., Y.C., N.B., S.V.K.; PFM experiments: Q.L., S.J.; Phase-field modeling: Y.C., L.-Q.C.; Thin film growth: S.Y., P.Y.; Device fabrication: I.K.; Data analysis: Q.L.; Q.L. and Y.C. cowrote the paper with inputs from all authors. NR 39 TC 0 Z9 0 U1 10 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD DEC PY 2016 VL 2 IS 12 AR 1600307 DI 10.1002/aelm.201600307 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EJ0ZH UT WOS:000392939300009 ER PT J AU O'Boyle, S Quinn, R Dunne, N Mockler, EM Longphuirt, SN AF O'Boyle, Shane Quinn, Rebecca Dunne, Noelle Mockler, Eva M. Longphuirt, Sorcha Ni TI WHAT HAVE WE LEARNED FROM OVER TWO DECADES OF MONITORING RIVERINE NUTRIENT INPUTS TO IRELAND'S MARINE ENVIRONMENT? SO BIOLOGY AND ENVIRONMENT-PROCEEDINGS OF THE ROYAL IRISH ACADEMY LA English DT Article ID EUTROPHICATION; ECOSYSTEMS; EVOLUTION; NITROGEN; ESTUARY AB Excessive nutrient loading to the marine environment from different sources and pathways, including rivers, has led to nutrient over-enrichment and the phenomenon of eutrophication in estuaries and coastal waters. The systematic monitoring of riverine nutrient inputs to Ireland's marine environment began in 1990. Over this period there has been a large reduction in nutrient inputs with loads of total phosphorus, total ammonia and total nitrogen decreasing by 71.8% (4,716 tonnes), 77.3% (5,505 tonnes) and 39.0% (59,396 tonnes), respectively. The largest reductions, particularly in total phosphorus and total ammonia, were seen in the main rivers discharging to the Celtic and Irish Sea coasts, with smaller or no reductions in rivers discharging along the western and north-western Atlantic coast. The reductions indicate the success of measures to reduce nutrient loss but also the disproportionate reduction in phosphorus over nitrogen. The ratio between nitrogen and phosphorus loads has increased by 2.5% per year and by as much as 4.1% per year for discharges to the Celtic Sea. As a consequence, the stoichiometric N:P ratio of river inputs to the Celtic Sea has more than doubled. The potential for this disparity to create a nutrient imbalance in downstream estuarine and coastal waters is discussed. C1 [O'Boyle, Shane; Quinn, Rebecca; Dunne, Noelle] Environm Protect Agcy, McCumiskey House,Clonskeagh Rd, Dublin 14, Ireland. [O'Boyle, Shane] European Commiss, DG Environm, Brussels, Belgium. [Dunne, Noelle] TEAGASC, Agr & Food Dev Author, Wexford, Ireland. [Mockler, Eva M.] Univ Coll Dublin, UCD Dooge Ctr Water Resources Res, Dublin 4, Ireland. [Longphuirt, Sorcha Ni] Environm Protect Agcy, Inniscarra, Coral Sea Isl, Australia. RP O'Boyle, S (reprint author), Environm Protect Agcy, McCumiskey House,Clonskeagh Rd, Dublin 14, Ireland.; O'Boyle, S (reprint author), European Commiss, DG Environm, Brussels, Belgium. EM shane.OBOYLE@ec.europa.eu NR 28 TC 1 Z9 1 U1 1 U2 1 PU ROYAL IRISH ACAD PI DUBLIN PA 19 DAWSON STREET, DUBLIN 2, IRELAND SN 0791-7945 EI 2009-003X J9 BIOL ENVIRON JI Biol. Environ.-Proc. R. Irish Acad. PD DEC PY 2016 VL 116B IS 3 SI SI BP 313 EP 327 DI 10.3318/BIOE.2016.23 PG 15 WC Biology; Environmental Sciences SC Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology GA EJ3YO UT WOS:000393148900014 ER PT J AU Yang, WH Lu, WC Xue, XY Zang, QJ Wang, CZ AF Yang Wenhua Lu Wencai Xue Xuyan Zang Qingjun Wang Caizhuang TI Studies on Optical Properties of Si-220 Nanoclusters via Time-dependent Density Functional Theory Calculations SO CHEMICAL RESEARCH IN CHINESE UNIVERSITIES LA English DT Article DE Si-220 nanocluster; Optical property; Time-dependent density functional theory(TD-DFT) ID SILICON QUANTUM DOTS; SURFACE-PLASMON RESONANCE; ELECTRONIC-STRUCTURE; SI NANOCRYSTALS; NANOPARTICLES; LUMINESCENCE; SHELL AB The optical properties of bare and hydrogen passivated Si-220 nanoclusters(NCs) in four typical motifs(i.e., bulk-like, onion-like, bucky-diamond and icosahedral motifs) were studied via time-dependent density functional theory(TD-DFT) calculations. The calculation results show that there is a significant blue shift in the optical absorption spectra when the Si NCs are passivated with hydrogen. A strong absorption peak in the visible light region appears for the hydrogenated bulk-like, onion-like and bucky-diamond Si NCs. C1 [Yang Wenhua; Lu Wencai] Jilin Univ, Inst Theoret Chem, Changchun 130021, Peoples R China. [Yang Wenhua; Lu Wencai; Xue Xuyan; Zang Qingjun] Qingdao Univ, Coll Phys, Growing Base State Key Lab, Lab Fiber Mat & Modern Text, Qingdao 266071, Peoples R China. [Wang Caizhuang] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Wang Caizhuang] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Lu, WC (reprint author), Jilin Univ, Inst Theoret Chem, Changchun 130021, Peoples R China.; Lu, WC (reprint author), Qingdao Univ, Coll Phys, Growing Base State Key Lab, Lab Fiber Mat & Modern Text, Qingdao 266071, Peoples R China. EM wencailu@jlu.edu.cn FU US Department of Energy by Iowa State University [DE-AC02-07CH11358]; Director for Energy Research, Office of Basic Energy Sciences, Division of Material Science and Engineering FX Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Work at Ames Laboratory was supported by the Director for Energy Research, Office of Basic Energy Sciences, Division of Material Science and Engineering including a grant for computer time at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, CA. NR 47 TC 0 Z9 0 U1 4 U2 4 PU HIGHER EDUCATION PRESS PI BEIJING PA NO 4 DEWAI DAJIE, BEIJING 100120, PEOPLES R CHINA SN 1005-9040 EI 2210-3171 J9 CHEM RES CHINESE U JI Chem. Res. Chin. Univ. PD DEC PY 2016 VL 32 IS 6 BP 1028 EP 1033 DI 10.1007/s40242-016-6085-7 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA EJ2PV UT WOS:000393053600025 ER PT J AU Ahmad, R Nicora, CD Shukla, AK Smith, RD Qian, WJ Liu, AY AF Ahmad, Rumana Nicora, Carrie D. Shukla, Anil K. Smith, Richard D. Qian, Wei-Jun Liu, Alvin Y. TI An efficient method for native protein purification in the selected range from prostate cancer tissue digests SO CHINESE CLINICAL ONCOLOGY LA English DT Article DE Prostate cancer proteins (CP proteins); purification of 10-30 kDa proteins; anterior gradient 2 (AGR2); cancer biomarkers; proteomic analysis ID MASS-SPECTROMETRY; CELLS; PROTEOMICS; ABUNDANCE; BIOMARKER AB Background: Prostate cancer (CP) cells differ from their normal counterpart in gene expression. Genes encoding secreted or extracellular proteins with increased expression in CP may serve as potential biomarkers. For their detection and quantification, assays based on monoclonal antibodies are best suited for development in a clinical setting. One approach to obtain antibodies is to use recombinant proteins as immunogen. However, the synthesis of recombinant protein for each identified candidate is time-consuming and expensive. It is also not practical to generate high quality antibodies to all identified candidates individually. Furthermore, non-native forms (e.g., recombinant) of proteins may not always lead to useful antibodies. Our approach was to purify a subset of proteins from CP tissue specimens for use as immunogen. Methods: In the present investigation, ten cancer specimens obtained from cases scored Gleason 3+3, 3+4 and 4+3 were digested by collagenase to single cells in serum-free tissue culture media. Cells were pelleted after collagenase digestion, and the cell-free supernatant from each specimen was pooled and used for isolation of proteins in the 10-30 kDa molecular weight range using a combination of sonication, dialysis and Amicon ultrafiltration. Western blotting and mass spectrometry (MS) proteomics were performed to identify the proteins in the selected size fraction. Results: The presence of cancer-specific anterior gradient 2 (AGR2) and absence of prostate-specific antigen (PSA)/KLK3 were confirmed by Western blotting. Proteomics also detected AGR2 among many other proteins, some outside the selected molecular weight range, as well. Conclusions: Using this approach, the potentially harmful (to the mouse host) exogenously added collagenase was removed as well as other abundant prostatic proteins like ACPP/PAP and AZGP1 to preclude the generation of antibodies against these species. The paper presents an optimized scheme for convenient and rapid isolation of native proteins in any desired size range with minor modifications. C1 [Ahmad, Rumana; Liu, Alvin Y.] Univ Washington, Dept Urol, Seattle, WA 98195 USA. [Ahmad, Rumana; Liu, Alvin Y.] Univ Washington, Inst Stem Cell & Regenerat Med, Seattle, WA 98195 USA. [Nicora, Carrie D.; Shukla, Anil K.; Smith, Richard D.; Qian, Wei-Jun] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99352 USA. [Nicora, Carrie D.; Shukla, Anil K.; Smith, Richard D.; Qian, Wei-Jun] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Ahmad, R (reprint author), Eras Lucknow Med Coll & Hosp, Dept Biochem, Hardoi Rd, Lucknow 226003, Uttar Pradesh, India. EM rumana_ahmad@yahoo.co.in FU NCI-EDRN [CA111244]; NIH [P41GM103493] FX This work was supported by NCI-EDRN grant CA111244 and NIH P41GM103493. NR 13 TC 0 Z9 0 U1 0 U2 0 PU AME PUBL CO PI SHEUNG WAN PA ROOM 604 6-F HOLLYWOOD CENTER, 77-91, QUEENS ROAD, SHEUNG WAN, HONG KONG 00000, PEOPLES R CHINA SN 2304-3865 EI 2304-3873 J9 CHIN CLIN ONCOL JI Chin. Clin. Oncol. PD DEC PY 2016 VL 5 IS 6 AR UNSP 78 DI 10.21037/cco.2016.12.03 PG 15 WC Oncology SC Oncology GA EJ3QZ UT WOS:000393128000007 PM 28061542 ER PT J AU Matias, TA Mangoni, AP Toma, SH Rein, FN Rocha, RC Toma, HE Araki, K AF Matias, Tiago A. Mangoni, Ana P. Toma, Sergio H. Rein, Francisca N. Rocha, Reginaldo C. Toma, Henrique E. Araki, Koiti TI Catalytic Water-Oxidation Activity of a Weakly Coupled Binuclear Ruthenium Polypyridyl Complex SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Electrocatalysis; Electronic coupling; Oxygen; Ruthenium; Water splitting ID SMALL-MOLECULE ACTIVATION; SOLAR-ENERGY; ARTIFICIAL PHOTOSYNTHESIS; BIOLOGICAL PRINCIPLES; EXCITATION-ENERGIES; RU COMPLEX; BASIS-SET; CHEMISTRY; DIOXYGEN; ELEMENTS AB The catalytic oxidation of water by the binuclear complex [Ru-2(H2O)(2)(bpy)(2)(tpy(2)ph)](PF6)(4) [bpy = 2,2'-bipyridine; tpy(2)ph = 1,3-bis(4'-2,2': 6', 2 ''-terpyridin-4-yl) benzene] was investigated comparatively to its mononuclear counterpart [Ru(H2O)(bpy)(phtpy)](PF6)(2) (phtpy = 4'-phenyl-2,2': 6', 2 ''-terpyridine). These catalysts were prepared from the synthesis of their precursor chloride complexes, which were also extensively characterized in this work. The H2O-Ru-II complexes were found to undergo proton-coupled electron-transfer processes to generate the redox species HO-Ru-III, O=Ru-IV, and O=Ru-V. The catalytically active species, [RuV2(O)(2)(bpy)(2)(tpy(2)ph)](6+) and [RuV(O)(bpy)(phtpy)](3+), were generated electrochemically and by using cerium(IV) ammonium nitrate. In the presence of Ce-IV, the catalytic rates for O-2 production by the binuclear and mononuclear species were 1.9 x 10(-3) and 9.5 x 10(-5) s(-1), respectively. This superior catalytic performance of the binuclear complex suggests that, despite weak electronic coupling between the Ru centers, the second site could play an important mechanistic role in the formation of the activated species [(bpy)(OO) RuIV(tpy(2)ph) RuIII(OH)(bpy)](4+). C1 [Matias, Tiago A.; Mangoni, Ana P.; Toma, Sergio H.; Toma, Henrique E.; Araki, Koiti] Univ Sao Paulo, Dept Chem, Inst Chem, Ave Lineu Prestes 748, BR-05508000 Sao Paulo, SP, Brazil. [Rein, Francisca N.; Rocha, Reginaldo C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Araki, K (reprint author), Univ Sao Paulo, Dept Chem, Inst Chem, Ave Lineu Prestes 748, BR-05508000 Sao Paulo, SP, Brazil. EM koiaraki@iq.usp.br RI Araki, Koiti/H-1086-2012 OI Araki, Koiti/0000-0003-3485-4592 FU Sao Paulo Research Foundation (FAPESP); National Council for Scientific and Technological Development (CNPq); CNPq fellowship FX The authors thank the Sao Paulo Research Foundation (FAPESP) and the National Council for Scientific and Technological Development (CNPq) for funding, including a CNPq fellowship (T.A.M. and A.P.M.). NR 52 TC 0 Z9 0 U1 5 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD DEC PY 2016 IS 36 BP 5547 EP 5556 DI 10.1002/ejic.201600889 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EJ2YT UT WOS:000393078200006 ER PT J AU Xu, W Sun, X AF Xu, Wei Sun, Xin TI A Discrete Element Model of Armor Glass Fragmentation and Comminution Failure Under Compression SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article ID BOROSILICATE GLASS; SILICON-CARBIDE; CONFINED BOROSILICATE; DAMAGE DEVELOPMENT; POISSONS RATIO; PENETRATION; FRACTURE; IMPACT; SIMULATION; CERAMICS AB Because of its good optical properties and exceptional compressive strength, lightweight borosilicate glass has been increasingly used in transparent armor applications. Due to its brittle nature, glass fails differently from ductile materials in the sense that fragmentation occurs instantly upon impact penetration ahead of the projectile tip. Therefore, the penetration resistance of glass armor typically is measured by the effective residual strength of predamaged glass under compression loading, which primarily is sustained by the interactions and accommodations of various-sized glass fragments in the comminuted zones under confinement from the surrounding intact body. As a result, a mechanistic description of this damage evolution process is needed to develop a predictive model for simulating glass strength for transparent armor applications. In the present study, a discrete element-based modeling framework has been established to understand and predict the transient compressive fragmentation and comminution failure processes within the confined borosilicate glass by explicitly resolving the experimentally observed dynamic initiation and propagation of local instabilities. The predicted results are found to aptly capture the most essential characteristic loading behaviors of the damaged glass, for which the effects of crucial material properties also were numerically evaluated. C1 [Xu, Wei; Sun, Xin] Pacific Northwest Natl Lab, Adv Comp Math & Data Div, Richland, WA 99354 USA. RP Xu, W (reprint author), Pacific Northwest Natl Lab, Adv Comp Math & Data Div, Richland, WA 99354 USA. EM wei.xu@pnnl.gov FU U.S. Department of Energy [DE-AC05-76RL01830]; TAR-DEC through the "Purdue Project" FX Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. The authors gratefully acknowledge the financial support from TAR-DEC through the "Purdue Project." We also appreciate the technical guidance from Dr. Douglas Templeton and Mr. Timothy Talladay during the project's execution, as well as the fruitful technical discussions with all other "Purdue Project" contributors. NR 52 TC 0 Z9 0 U1 1 U2 1 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 EI 2041-1294 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD DEC PY 2016 VL 7 IS 4 SI SI BP 503 EP 512 DI 10.1111/ijag.12184 PG 10 WC Materials Science, Ceramics SC Materials Science GA EJ2QC UT WOS:000393054400012 ER PT J AU Danczak, RE Sawyer, AH Williams, KH Stegen, JC Hobson, C Wilkins, MJ AF Danczak, Robert E. Sawyer, Audrey H. Williams, Kenneth H. Stegen, James C. Hobson, Chad Wilkins, Michael J. TI Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID DISSOLVED ORGANIC-MATTER; ASSEMBLY PROCESSES; CLIMATE-CHANGE; ZONE; GROUNDWATER; STREAM; COMMUNITIES; HYDROLOGY; AQUIFER; CARBON AB Riverbed microbial communities play an oversized role in many watershed ecosystem functions, including the processing of organic carbon, cycling of nitrogen, and alterations to metal mobility. The structure and activity of microbial assemblages depend in part on geochemical conditions set by river-groundwater exchange or hyporheic exchange. To assess how seasonal changes in river-groundwater mixing affect these populations in a snowmelt-dominated fluvial system, vertical sediment and pore water profiles were sampled at three time points at one location in the hyporheic zone of the Colorado River and analyzed by using geochemical measurements, 16S rRNA gene sequencing, and ecological modeling. Oxic river water penetrated deepest into the subsurface during peak river discharge, while under base flow conditions, anoxic groundwater dominated shallower depths. Over a 70 cmthick interval, riverbed sediments were therefore exposed to seasonally fluctuating redox conditions and hosted microbial populations statistically different from those at both shallower and deeper locations. Additionally, microbial populations within this zone were shown to be the most dynamic across sampling time points, underlining the critical role that hyporheic mixing plays in constraining microbial abundances. Given such mixing effects, we anticipate that future changes in river discharge in mountainous, semiarid western U.S. watersheds may affect microbial community structure and function in riverbed environments, with potential implications for biogeochemical processes in riparian regions. C1 [Danczak, Robert E.; Wilkins, Michael J.] Ohio State Univ, Dept Microbiol, 484 W 12th Ave, Columbus, OH 43210 USA. [Sawyer, Audrey H.; Wilkins, Michael J.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Williams, Kenneth H.; Hobson, Chad] Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA USA. [Stegen, James C.] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA USA. RP Wilkins, MJ (reprint author), Ohio State Univ, Dept Microbiol, 484 W 12th Ave, Columbus, OH 43210 USA.; Wilkins, MJ (reprint author), Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. EM wilkins.231@osu.edu OI Wilkins, Michael/0000-0002-3595-0853 FU Genomes to Watershed Scientific Focus Area at Lawrence Berkeley National Laboratory; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DEAC02-05CH11231]; U.S. Department of Energy (DOE), Office of Biological and Environmental Research, as part of Subsurface Biogeochemical Research Program's Scientific Focus Area at the Pacific Northwest National Laboratory (PNNL); DOE [DE-AC06-76RLO 1830]; NCBI [PRJNA31818] FX This work was supported as part of the Genomes to Watershed Scientific Focus Area at Lawrence Berkeley National Laboratory, which is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under award DEAC02-05CH11231. J.C.S. was supported by the U.S. Department of Energy (DOE), Office of Biological and Environmental Research, as part of Subsurface Biogeochemical Research Program's Scientific Focus Area at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle under contract DE-AC06-76RLO 1830. A portion of the research was performed by using Institutional Computing at PNNL. Supporting information is available at the journal website. 16S rRNA gene data from this study have been deposited at NCBI under bioproject number PRJNA31818. NR 51 TC 0 Z9 0 U1 10 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD DEC PY 2016 VL 121 IS 12 BP 2976 EP 2987 DI 10.1002/2016JG003527 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA EJ3TL UT WOS:000393134800005 ER PT J AU Zhu, Q Iversen, CM Riley, WJ Slette, IJ Vander Stel, HM AF Zhu, Qing Iversen, Colleen M. Riley, William J. Slette, Ingrid J. Vander Stel, Holly M. TI Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID DEEP SOIL LAYERS; TERRESTRIAL ECOSYSTEMS; GLOBAL ANALYSIS; UPTAKE KINETICS; BOREAL FOREST; ECTOMYCORRHIZAL FUNGI; NUTRIENT-UPTAKE; CO2 ENRICHMENT; LOBLOLLY-PINE; ARCTIC TUNDRA AB Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. However, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit N-15 tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, to explain the observations. Observations using an N-15 tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. In addition, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. Our results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development. C1 [Zhu, Qing; Riley, William J.] Lawrence Berkeley Natl Lab, Climate Sci Dept, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. [Iversen, Colleen M.; Vander Stel, Holly M.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Iversen, Colleen M.; Vander Stel, Holly M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Slette, Ingrid J.] Colorado State Univ, Ecol, Ft Collins, CO 80523 USA. [Slette, Ingrid J.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA. RP Zhu, Q (reprint author), Lawrence Berkeley Natl Lab, Climate Sci Dept, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. EM qzhu@lbl.gov OI Riley, William/0000-0002-4615-2304; Vander Stel, Holly/0000-0003-0077-3858; ZHU, QING/0000-0003-2441-944X; Iversen, Colleen/0000-0001-8293-3450 FU Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231]; NGEE Arctic; US Department of Energy [DE-AC05-00OR22725]; Department of Energy FX This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under contract DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory as part of the Next-Generation Ecosystem Experiments in the Arctic (NGEE Arctic) project. NGEE Arctic supported C.M.I., I.J.S., and H.M.V.S. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 82 TC 0 Z9 0 U1 8 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD DEC PY 2016 VL 121 IS 12 BP 3101 EP 3112 DI 10.1002/2016JG003554 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA EJ3TL UT WOS:000393134800014 ER PT J AU Ma, Q Li, W Thorne, RM Bortnik, J Reeves, GD Kletzing, CA Kurth, WS Hospodarsky, GB Spence, HE Baker, DN Blake, JB Fennell, JF Claudepierre, SG Angelopoulos, V AF Ma, Q. Li, W. Thorne, R. M. Bortnik, J. Reeves, G. D. Kletzing, C. A. Kurth, W. S. Hospodarsky, G. B. Spence, H. E. Baker, D. N. Blake, J. B. Fennell, J. F. Claudepierre, S. G. Angelopoulos, V. TI Characteristic energy range of electron scattering due to plasmaspheric hiss SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID OUTER RADIATION BELT; DISCRETE CHORUS EMISSIONS; RELATIVISTIC ELECTRONS; STATISTICAL PROPERTIES; RESONANT SCATTERING; LOCAL ACCELERATION; GEOMAGNETIC STORM; PITCH-ANGLE; SIMULATIONS; DIFFUSION AB We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant mu=4-200 MeV/ G. The electron diffusion coefficients due to hiss scattering are calculated at L=2-6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant mu lines and is consistent with the observed energy range of electron decay. Using the previously developed statistical plasmaspheric hiss model during modestly disturbed periods, we perform a 2-D Fokker-Planck simulation of the electron phase space density evolution at L=3.5 and demonstrate that plasmaspheric hiss causes the significant decay of 100 keV-1 MeV electrons with the largest decay rate occurring at around 340 keV, forming anisotropic pitch angle distributions at lower energies and more flattened distributions at higher energies. Our study provides reasonable estimates of the electron populations that can be most significantly affected by plasmaspheric hiss and the consequent electron decay profiles. C1 [Ma, Q.; Li, W.; Thorne, R. M.; Bortnik, J.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Li, W.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Baker, D. N.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.] Aerosp Corp, Space Sci Lab, Los Angeles, CA 90009 USA. [Angelopoulos, V.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. RP Ma, Q (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM qianlima@atmos.ucla.edu OI Ma, Qianli/0000-0001-5452-4756; Spence, Harlan/0000-0002-2526-2205; Kurth, William/0000-0002-5471-6202; Reeves, Geoffrey/0000-0002-7985-8098; Hospodarsky, George/0000-0001-9200-9878 FU NASA [NNX15AI96G, NNX15AF61G, NNX14AN85G, NNX13AI61G, NNX14AI18G]; National Sciences Foundation (NSF) [AGS 1405054, 1564510]; NSF/DOE basic plasma physics partnership program [DE-SC0010578]; AFOSR grant [FA9550-15-1-0158]; JHU/APL contracts under NASA's prime contract [967399, 921647, NAS5-01072]; EMFISIS subaward [1001057397:01] FX The authors would like to gratefully acknowledge the support from NASA grants NNX15AI96G, NNX15AF61G, NNX14AN85G, NNX13AI61G, and NNX14AI18G, National Sciences Foundation (NSF) grants AGS 1405054 and 1564510, NSF/DOE basic plasma physics partnership program grant DE-SC0010578, AFOSR grant FA9550-15-1-0158, and JHU/APL contracts 967399 and 921647 under NASA's prime contract NAS5-01072. The analysis at UCLA was supported by the EMFISIS subaward 1001057397:01. We acknowledge the Van Allen Probes data from the EMFISIS instrument obtained from http://emfisis.physics.uiowa.edu/Flight/, data from the MagEIS and REPT instruments obtained from http://www.rbspect.lanl.gov/data_pub/, and the THEMIS data obtained from http://themis.ssl.berkeley.edu/data/themis/. We thank the World Data Center for Geomagnetism, Kyoto for providing Kp, Dst, and AL indices (http://wdc.kugi.kyoto-u.ac.jp/kp/index.html). NR 52 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2016 VL 121 IS 12 BP 11737 EP 11749 DI 10.1002/2016JA023311 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ4JQ UT WOS:000393183300010 ER PT J AU Tang, CL Zhang, JC Reeves, GD Su, ZP Baker, DN Spence, HE Funsten, HO Blake, JB Wygant, JR AF Tang, C. L. Zhang, J. -C. Reeves, G. D. Su, Z. P. Baker, D. N. Spence, H. E. Funsten, H. O. Blake, J. B. Wygant, J. R. TI Prompt enhancement of the Earth's outer radiation belt due to substorm electron injections SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID TIME-DOMAIN STRUCTURES; INNER MAGNETOSPHERE; CHORUS WAVES; RELATIVISTIC ELECTRONS; GEOSYNCHRONOUS ORBIT; ENERGETIC PARTICLE; FIELD STRUCTURES; MAGNETIC STORMS; HILDCAA EVENTS; HIGH-INTENSITY AB We present multipoint simultaneous observations of the near-Earth magnetotail and outer radiation belt during the substorm electron injection event on 16 August 2013. Time History of Events and Macroscale Interactions during Substorms A in the near-Earth magnetotail observed flux-enhanced electrons of 300 keV during the magnetic field dipolarization. Geosynchronous orbit satellites also observed the intensive electron injections. Located in the outer radiation belt, RBSP-A observed enhancements of MeV electrons accompanied by substorm dipolarization. The phase space density (PSD) of MeV electrons at L*similar to 5.4 increased by 1 order of magnitude in 1 h, resulting in a local PSD peak of MeV electrons, which was caused by the direct effect of substorm injections. Enhanced MeV electrons in the heart of the outer radiation belt were also detected within 2 h, which may be associated with intensive substorm electron injections and subsequent local acceleration by chorus waves. Multipoint observations have shown that substorm electron injections not only can be the external source of MeV electrons at the outer edge of the outer radiation belt (L*similar to 5.4) but also can provide the intensive seed populations in the outer radiation belt. These initial higher-energy electrons from injection can reach relativistic energy much faster. The observations also provide evidence that enhanced substorm electron injections can explain rapid enhancements of MeV electrons in the outer radiation belt. C1 [Tang, C. L.] Shandong Univ, Inst Space Sci, Shandong Prov Key Lab Opt Astron & Solar Terr Env, Weihai, Peoples R China. [Zhang, J. -C.; Spence, H. E.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Zhang, J. -C.; Spence, H. E.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Reeves, G. D.; Funsten, H. O.] Los Alamos Natl Lab, ISR Div, Los Alamos, NM USA. [Su, Z. P.] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei, Peoples R China. [Baker, D. N.] Univ Colorado, Lab Atmospher & Space Res, Boulder, CO 80309 USA. [Blake, J. B.] Aerosp Corp, POB 92957, Los Angeles, CA 90009 USA. [Wygant, J. R.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Tang, CL (reprint author), Shandong Univ, Inst Space Sci, Shandong Prov Key Lab Opt Astron & Solar Terr Env, Weihai, Peoples R China. EM tcl@sdu.edu.cn OI Zhang, Jichun/0000-0003-4405-0619; Su, Zhenpeng/0000-0001-5577-4538; Spence, Harlan/0000-0002-2526-2205; Reeves, Geoffrey/0000-0002-7985-8098 FU National Natural Science Foundation of China [41004075, 41274170]; National Basic Research Program of China [2012CB825601]; Shandong Province Natural Science Foundation [ZR2014DM003] FX This work was supported by the National Natural Science Foundation of China grants 41004075 and 41274170, the National Basic Research Program of China (2012CB825601), and the Shandong Province Natural Science Foundation grant ZR2014DM003. We acknowledge CDAWeb (http://cdaweb.gsfc.nasa.gov/) for the use of AE and SYM-H data. All the Van Allen Probes data are publicly available at http://www.rbsp-ect.lanl.gov/by the MagEIS and REPT instruments, http://emfisis.physics.uiowa.edu/data/index by the EMFISIS instrument, and http://rbsp.space.um.edu/data/rbsp/by the EFW instrument. We thank V. Angelopoulos for the use of data from the THEMIS mission. We acknowledge the THEMIS investigators for the use of the data and the analysis software. THEMIS data are available at http://themis.ssl.berkeley.edu/data/themis/. GOES data are made available at http://satdat.ngdc.noaa.gov/sem/goes/data. LANL-GEO data are provided by Geoffrey D. Reeves. Global distribution of chorus wave amplitudes is provided by W. Li at University of California, Los Angeles. C.L. Tang thanks L. Dai, W. Li, Aaron Breneman, and George Hospodarsky for their helpful discussions. NR 82 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2016 VL 121 IS 12 BP 11826 EP 11838 DI 10.1002/2016JA023550 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ4JQ UT WOS:000393183300015 ER PT J AU Zheng, LH Chan, AA O'Brien, TP Tu, W Cunningham, GS Albert, JM Elkington, SR AF Zheng, Liheng Chan, A. A. O'Brien, T. P. Tu, W. Cunningham, G. S. Albert, J. M. Elkington, S. R. TI Effects of magnetic drift shell splitting on electron diffusion in the radiation belts SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PITCH-ANGLE SCATTERING; VAN ALLEN PROBES; VANALLEN RADIATION; SEED POPULATION; CHORUS WAVES; MAGNETOSPHERE; FIELD; PRECIPITATION; MOTION; EVENT AB Drift shell splitting in the presence of pitch angle scattering breaks all three adiabatic invariants of radiation belt electron motion and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. The Radbelt Electron Model (REM) solves such a Fokker-Planck equation and is used to investigate the phase space density sources. Our simulation results and theoretical arguments suggest that drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces outer zone phase space density enhancements, and this reduction has a limit corresponding to two-dimensional local diffusion on a curved surface in the phase space. C1 [Zheng, Liheng; Chan, A. A.] Rice Univ, Dept Phys & Astron, Houston, TX USA. [Zheng, Liheng] Univ Texas Dallas, William B Hanson Ctr Space Sci, Richardson, TX 75083 USA. [O'Brien, T. P.] Aerosp Corp, Dept Space Sci, El Segundo, CA 90245 USA. [Tu, W.] West Virginia Univ, Dept Phys & Astron, Morgantown, WV USA. [Cunningham, G. S.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Albert, J. M.] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM USA. [Elkington, S. R.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. RP Zheng, LH (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX USA.; Zheng, LH (reprint author), Univ Texas Dallas, William B Hanson Ctr Space Sci, Richardson, TX 75083 USA. EM zhengliheng@gmail.com FU NASA Heliophysics Supporting Research (H-SR) Program [NNX15AI93G]; NASA Geospace Science Program [NNX10AL02G]; NASA Heliophysics Theory Program [NNX11AJ38G]; NASA's Living With a Star Program through a Heliophysics Guest Investigator [NNX10AQ51G]; NASA's Living With a Star Program through theory and modeling - Van Allen Probes Mission's Energetic Particle, Composition, and Thermal Plasma (ECT) investigation; U.S. Department of Energy through the LANL Laboratory Directed Research and Development (LDRD) Program; NSF [AGS-1613081]; NASA [NNX15AW06G] FX This material is based upon work supported by the NASA Heliophysics Supporting Research (H-SR) Program under grant NNX15AI93G, the NASA Geospace Science Program under grant NNX10AL02G, the NASA Heliophysics Theory Program under grant NNX11AJ38G, NASA's Living With a Star Program through a Heliophysics Guest Investigator under grant NNX10AQ51G and through theory and modeling funding from the Van Allen Probes Mission's Energetic Particle, Composition, and Thermal Plasma (ECT) investigation, and by the U.S. Department of Energy through the LANL Laboratory Directed Research and Development (LDRD) Program. Van Allen Probes electron flux data used in this paper are taken from Tu et al. [2014]. The work by W. Tu was supported by NSF grant AGS-1613081 and NASA grant NNX15AW06G. We also acknowledge the PI and instrument team of the NOAA/POES SEM-2 instrument for providing data to the LANL coauthors. The drift shell splitting chorus wave diffusion coefficients can be obtained by contacting T.P. O'Brien at paul.obrien@aero.org. NR 43 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD DEC PY 2016 VL 121 IS 12 BP 11985 EP 12000 DI 10.1002/2016JA023438 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ4JQ UT WOS:000393183300026 ER PT J AU Littlefield, JA Marriott, J Schivley, GA Cooney, G Skone, TJ AF Littlefield, James A. Marriott, Joe Schivley, Greg A. Cooney, Gregory Skone, Timothy J. TI Using Common Boundaries to Assess Methane Emissions A Life Cycle Evaluation of Natural Gas and Coal Power Systems SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Article DE GHG; GWP; industrial ecology; LCA; methane; natural gas emissions ID GLOBAL WARMING POTENTIALS; SHALE GAS; LEAKAGE AB There is consensus on the importance of upstream methane (CH4) emissions to the life cycle greenhouse gas (GHG) footprint of natural gas systems, but inconsistencies among recent studies explain why some researchers calculate a CH4 emission rate of less than 1% whereas others calculate a CH4 emission rate as high as 10%. These inconsistencies arise from differences in data collection methods, data collection time frames, and system boundaries. This analysis focuses on system boundary inconsistencies. Our results show that the calculated CH4 emission rate can increase nearly fourfold not by changing the magnitude of any particular emission source, but by merely changing the portions of the supply chain that are included within the system boundary. Our calculated CH4 emission rate for extraction through pipeline transmission is 1.2% for current practices. Our model allows us to identify GHG contributors in the upstream supply chain, but also allows us to tie upstream findings to complete life cycle scenarios. If applied to the life cycles of power systems and assessed in terms of cumulative radiative forcing, the upstream CH4 emission rate can be as high as 3.2% before the GHG impacts from natural gas power exceed those from coal power at any point during a 100-year time frame. C1 [Littlefield, James A.; Marriott, Joe; Schivley, Greg A.; Cooney, Gregory] Booz Allen Hamilton, Pittsburgh, PA USA. [Skone, Timothy J.] NETL, Strateg Energy Anal & Planning Div, Pittsburgh, PA USA. RP Littlefield, JA (reprint author), 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. EM littlefield_james@bah.com OI Schivley, Greg/0000-0002-8947-694X FU DOE NETL [DE-FE0004001] FX This analysis was prepared by the Energy Sector Planning and Analysis (ESPA) team for the United States Department of Energy (DOE), National Energy Technology Laboratory (NETL). This work was completed under DOE NETL Contract Number DE-FE0004001. NR 29 TC 0 Z9 0 U1 4 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1088-1980 EI 1530-9290 J9 J IND ECOL JI J. Ind. Ecol. PD DEC PY 2016 VL 20 IS 6 BP 1360 EP 1369 DI 10.1111/jiec.12394 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA EJ3OA UT WOS:000393120300010 ER PT J AU Tsai, L Kelly, JC Simon, BS Chalat, RM Keoleian, GA AF Tsai, Liang Kelly, Jarod C. Simon, Brett S. Chalat, Rachel M. Keoleian, Gregory A. TI Life Cycle Assessment of Offshore Wind Farm Siting Effects of Locational Factors, Lake Depth, and Distance from Shore SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Article DE industrial ecology; life cycle assessment (LCA); offshore wind farm; wind energy; wind farm siting; wind turbine foundations ID GREENHOUSE-GAS EMISSIONS; POWER-SYSTEMS; TURBINE; ELECTRICITY; PLANTS; MW AB According to previous studies, the life cycle energy intensity of an offshore wind farm (OWF) varies between 0.03 and 0.13 megawatt-hours (MWh) of primary energy for each MWh of electricity generated. The variation in these life cycle energy intensity studies, after normalizing for capacity factor and life span, is significantly affected by OWF location because of geographical properties, namely, wind speed and water depth. To improve OWF siting, this study investigates how an OWF's distance from shore and geographical location impacts its environmental benefit. A process-based life cycle assessment is conducted to compare 20 OWF siting scenarios in Michigan's Great Lakes for their cumulative fossil energy demand, global warming potential, and acidification potential. Each scenario (four lake locations at five offshore distances) has unique foundation, transmission, installation, and operational requirements based on site characteristics. The results demonstrate that the cumulative environmental burden from an OWF is most significantly affected by (1) water depth, (2) distance from shore, and (3) distance to power grid, in descending order of importance, if all other site-relevant variables are held constant. The results also show that when OWFs are sited further offshore, the benefit of increased wind energy generation does not necessarily outweigh the increase in negative environmental impacts. This suggests that siting OWF nearer to shore may result in a better life cycle environmental performance. Finally, we demonstrate how much an OWF's environmental burdens can be reduced if the OWF system is either recycled, transported a shorter distance, or manufactured in a region with a high degree of renewable energy on the grid. C1 [Tsai, Liang; Kelly, Jarod C.; Simon, Brett S.; Chalat, Rachel M.] Univ Michigan, Ann Arbor, MI 48109 USA. [Tsai, Liang] Natl Quemoy Univ, Dept Business Adm, Kinmen, Taiwan. [Kelly, Jarod C.] Argonne Natl Lab, Chicago, IL USA. [Simon, Brett S.] GTM Res, Boston, MA USA. [Chalat, Rachel M.] DTE Energy Elect Co, Ann Arbor, MI USA. [Keoleian, Gregory A.] Univ Michigan, Sch Nat Resources & Environm, Sustainable Syst, Ann Arbor, MI 48109 USA. [Keoleian, Gregory A.] Univ Michigan, Civil & Environm Engn, Ann Arbor, MI 48109 USA. [Keoleian, Gregory A.] Univ Michigan, Ctr Sustainable Syst, Ann Arbor, MI 48109 USA. RP Keoleian, GA (reprint author), Univ Michigan, Sch Nat Resources & Environm, 3012 Dana Bldg,440 Church St, Ann Arbor, MI 48109 USA. EM gregak@umich.edu FU National Science Foundation [1235671] FX This material is based upon work supported by the National Science Foundation under Grant No. 1235671. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. NR 36 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1088-1980 EI 1530-9290 J9 J IND ECOL JI J. Ind. Ecol. PD DEC PY 2016 VL 20 IS 6 BP 1370 EP 1383 DI 10.1111/jiec.12400 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA EJ3OA UT WOS:000393120300011 ER PT J AU Moran, KR Fairchild, G Generous, N Hickmann, K Osthus, D Priedhorsky, R Hyman, J Del Valle, SY AF Moran, Kelly R. Fairchild, Geoffrey Generous, Nicholas Hickmann, Kyle Osthus, Dave Priedhorsky, Reid Hyman, James Del Valle, Sara Y. TI Epidemic Forecasting is Messier Than Weather Forecasting: The Role of Human Behavior and Internet Data Streams in Epidemic Forecast SO JOURNAL OF INFECTIOUS DISEASES LA English DT Article DE disease; weather; forecasting; Internet data; modeling ID BIG DATA; INFLUENZA; SURVEILLANCE AB Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection and Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. We conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting. C1 [Moran, Kelly R.; Fairchild, Geoffrey; Generous, Nicholas; Del Valle, Sara Y.] Los Alamos Natl Lab, Analyt Intelligence & Technol Div, Los Alamos, NM USA. [Hickmann, Kyle; Hyman, James] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM USA. [Osthus, Dave] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA. [Priedhorsky, Reid] Los Alamos Natl Lab, High Performance Comp Div, Los Alamos, NM USA. [Hyman, James] Tulane Univ, Dept Math, New Orleans, LA 70118 USA. RP Del Valle, SY (reprint author), Los Alamos Natl Lab, Analyt Intelligence & Technol, POB 1663,MS F609, Los Alamos, NM 87545 USA. EM sdelvall@lanl.gov FU National Institute of General Medical Sciences, National Institutes of Health [U01-GM097658-01]; Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Models of Infectious Disease Agent Study, National Institute of General Medical Sciences, National Institutes of Health (grant U01-GM097658-01). Los Alamos National Laboratory is operated by Los Alamos National Security, for the Department of Energy, under contract DE-AC52-06NA25396. NR 29 TC 1 Z9 1 U1 4 U2 4 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0022-1899 EI 1537-6613 J9 J INFECT DIS JI J. Infect. Dis. PD DEC 1 PY 2016 VL 214 SU 4 BP S404 EP S408 DI 10.1093/infdis/jiw375 PG 5 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA EJ3RW UT WOS:000393130300006 ER PT J AU Wang, X Lamprou, A Svec, F Bai, Y Liu, HW AF Wang, Xin Lamprou, Alexandros Svec, Frantisek Bai, Yu Liu, Huwei TI Polymer-based monolithic column with incorporated chiral metal-organic framework for enantioseparation of methyl phenyl sulfoxide using nano-liquid chromatography SO JOURNAL OF SEPARATION SCIENCE LA English DT Article DE Chiral stationary phases; Enantioselectivity; Nano-liquid chromatography; Metal-organic frameworks; Polymer monoliths ID STATIONARY-PHASE; MASS-SPECTROMETRY; SMALL MOLECULES; SEPARATION; MICROEXTRACTION; PERFORMANCE AB A new approach to the preparation of enantioselective porous polymer monolithic columns with incorporated chiral metal-organic framework for nano-liquid chromatography has been developed. While no enantioseparation was achieved with monolithic poly(4-vinylpyridine-co-ethylene dimethacrylate) column, excellent separations of both enantiomers of (+/-)methyl phenyl sulfoxide were achieved with its counterpart prepared after admixing metalorganic framework [Zn-2(benzene dicarboxylate)(l-lactic acid)(dmf)], which is synthesized from zinc nitrate, L-lactic acid, and benzene dicarboxylic acid in the polymerization mixture. These novel monolithic columns combined selectivity of the chiral framework with the excellent hydrodynamic properties of polymer monoliths, may provide a great impact on future studies in the field of chiral analysis by liquid chromatography. C1 [Wang, Xin; Bai, Yu; Liu, Huwei] Peking Univ, Beijing Natl Lab Mol Sci, Key Lab Bioorgan Chem & Mol Engn, Minist Educ,Inst Analyt Chem,Coll Chem & Mol Engn, Beijing, Peoples R China. [Wang, Xin; Lamprou, Alexandros; Svec, Frantisek] EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.; Liu, HW (reprint author), Peking Univ, Coll Chem & Mol Engn, 202 Chengfu Rd, Beijing 100871, Peoples R China. EM fsvec@lbl.gov; hwliu@pku.edu.cn FU National Natural Science Foundation of China [2152780016, 21175008]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work was financially supported by the National Natural Science Foundation of China (Grant Nos. 2152780016 and 21175008). All analytical experiments presented in this paper were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 23 TC 0 Z9 0 U1 7 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1615-9306 EI 1615-9314 J9 J SEP SCI JI J. Sep. Sci. PD DEC PY 2016 VL 39 IS 23 BP 4544 EP 4548 DI 10.1002/jssc.201600810 PG 5 WC Chemistry, Analytical SC Chemistry GA EJ2HG UT WOS:000393030100009 PM 27730732 ER PT J AU Ginley, DS Aggarwal, S Singh, R Gennett, T van Hest, MFAM Perkins, JD AF Ginley, David S. Aggarwal, Shruti Singh, Rajiv Gennett, Tom van Hest, Maikel F. A. M. Perkins, John D. TI Development of solution-processed nanowire composites for opto-electronics SO MRS COMMUNICATIONS LA English DT Article ID TRANSPARENT CONDUCTIVE ELECTRODES; PEROVSKITE SOLAR-CELLS; SILVER NANOWIRES; NETWORK; STABILITY; LAYER AB Silver nanowire-based contacts represent one of the major new directions in transparent contacts for opto-electronic devices with the added advantage that they can have Indium-Tin-Oxide-like properties at substantially reduced processing temperatures and without the use of vacuum-based processing. However, nanowires alone often do not adhere well to the substrate or other film interfaces; even after a relatively high-temperature anneal and unencapsulated nanowires show environmental degradation at high temperature and humidity. Here we report on the development of ZnO/Ag-nanowire composites that have sheet resistance below 10 Omega/sq and >90% transmittance from a solution-based process with process temperatures below 200 degrees C. These films have significant applications potential in photovoltaics and displays. C1 [Ginley, David S.; Gennett, Tom; van Hest, Maikel F. A. M.; Perkins, John D.] Natl Renewable Energy Lab, Proc Tech & Adv Concepts, Golden, CO 80401 USA. [Aggarwal, Shruti] Guro Gobind Singh Indraprastha Univ, Univ Sch Basic & Appl Sci, New Delhi 110075, India. [Singh, Rajiv] Natl Phys Lab, New Delhi 110012, India. RP Ginley, DS (reprint author), Natl Renewable Energy Lab, Proc Tech & Adv Concepts, Golden, CO 80401 USA. EM David.ginley@nrel.gov FU US Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Solar Energy Technology [DE-AC36-08GO28308]; Solar Energy Research Institute for India and the U.S. (SERIIUS) - U.S. Department of Energy (Office of Science) [DE AC36-08G028308]; Solar Energy Research Institute for India and the U.S. (SERIIUS) - U.S. Department of Energy (Office of Basic Energy Sciences) [DE AC36-08G028308]; Solar Energy Research Institute for India and the U.S. (SERIIUS) - U.S. Department of Energy (Energy Efficiency and Renewable Energy, Solar Energy Technology Program) [DE AC36-08G028308]; Solar Energy Research Institute for India and the U.S. (SERIIUS) - U.S. Department of Energy (Office of International Affairs) [DE AC36-08G028308]; Government of India [IUSSTF/JCERDC-SERIIUS/2012]; Baskara Fellowship; Raman Fellowship FX This work was supported as part of the SunShot Initiative by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Solar Energy Technology under Award Number DE-AC36-08GO28308 to the National Renewable Energy Laboratory (NREL). This research is based upon work supported in part by the Solar Energy Research Institute for India and the U.S. (SERIIUS) funded jointly by the U.S. Department of Energy subcontract DE AC36-08G028308 (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, with support from the Office of International Affairs) and the Government of India subcontract IUSSTF/JCERDC-SERIIUS/2012 dated 22nd Nov. 2012. Shruti Aggarwal would like to acknowledge the support of the Baskara Fellowship and Rajiv Singh would like to acknowledge the support of the Raman Fellowship. NR 24 TC 0 Z9 0 U1 5 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 2159-6859 EI 2159-6867 J9 MRS COMMUN JI MRS Commun. PD DEC PY 2016 VL 6 IS 4 BP 341 EP 347 DI 10.1557/mrc.2016.49 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA EJ3QW UT WOS:000393127700003 ER PT J AU Garten, LM Zakutayev, A Perkins, JD Gorman, BP Ndione, PF Ginley, DS AF Garten, Lauren M. Zakutayev, Andriy Perkins, John D. Gorman, Brian P. Ndione, Paul F. Ginley, David S. TI Structure property relationships in gallium oxide thin films grown by pulsed laser deposition SO MRS COMMUNICATIONS LA English DT Article AB Beta-gallium oxide (beta-Ga2O3) is of increasing interest to the optoelectronic community for transparent conductor and power electronic applications. Considerable variability exists in the literature on the growth and doping of Ga2O3 films, especially as a function of growth approach, temperature, and oxygen partial pressure. Here pulsed laser deposition (PLD) was used to grow high-quality beta-Ga2O3 films on (0001) sapphire and (-201) Ga2O3 single crystals and to explore the growth, stability, and dopability of these films as function of temperature and oxygen partial pressure. There is a strong temperature dependence to the phase formation, morphology, and electronic properties of beta-Ga2O3 from 350 to 550 degrees C. C1 [Garten, Lauren M.; Zakutayev, Andriy; Perkins, John D.; Ndione, Paul F.; Ginley, David S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Gorman, Brian P.] Colorado Sch Mines, Golden, CO 80401 USA. RP Garten, LM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Lauren.garten@nrel.gov FU Center for the Next Generation of Materials by Design, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC36-08GO28308] FX This work was funded by the Center for the Next Generation of Materials by Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC36-08GO28308 to NREL. NR 12 TC 0 Z9 0 U1 10 U2 10 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 2159-6859 EI 2159-6867 J9 MRS COMMUN JI MRS Commun. PD DEC PY 2016 VL 6 IS 4 BP 348 EP 353 DI 10.1557/mrc.2016.50 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA EJ3QW UT WOS:000393127700004 ER PT J AU Ndione, PF Zakutayev, A Kumar, M Packard, CE Berry, JJ Perkins, JD Ginley, DS AF Ndione, P. F. Zakutayev, A. Kumar, M. Packard, C. E. Berry, J. J. Perkins, J. D. Ginley, D. S. TI Tuning the physical properties of amorphous In-Zn-Sn-O thin films using combinatorial sputtering SO MRS COMMUNICATIONS LA English DT Article ID TRANSPARENT CONDUCTING OXIDES; SINTERED ZINC-OXIDE; ELECTRICAL-PROPERTIES; INDIUM-OXIDE; TRANSPORT AB Transparent conductive oxides and amorphous oxide semiconductors are important materials for many modern technologies. Here, we explore the ternary indium zinc tin oxide (IZTO) using combinatorial synthesis and spatially resolved characterization. The electrical conductivity, work function, absorption onset, mechanical hardness, and elastic modulus of the optically transparent (>85%) amorphous IZTO thin films were found to be in the range of 10-2415 S/cm, 4.6-5.3 eV, 3.20-3.34 eV, 9.0-10.8 GPa, and 111-132 GPa, respectively, depending on the cation composition and the deposition conditions. This study enables control of IZTO performance over a broad range of cation compositions. C1 [Ndione, P. F.; Zakutayev, A.; Packard, C. E.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Kumar, M.; Packard, C. E.] Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA. RP Ndione, PF (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM paul.ndione@nrel.gov OI Packard, Corinne/0000-0002-5815-8586 FU U.S. Department of Energy [DE-AC36-08GO28308]; U.S. Department of Energy, Office of Science, Basic Energy Sciences Program, as part of the CNMGD Energy Frontier Research Center; Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Program, as a part of SunShot initiative; Center for Revolutionary Solar Photoconversion (CRSP); NREL FX This work was supported by the U.S. Department of Energy, under Award Number DE-AC36-08GO28308 to the National Renewable Energy Laboratory (NREL). P.F.N. and A.Z. gratefully acknowledge support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences Program, as part of the CNMGD Energy Frontier Research Center. J.D.P. and D.S.G. gratefully acknowledge support from Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Program, as a part of SunShot initiative. M.K. gratefully acknowledges funding from Center for Revolutionary Solar Photoconversion (CRSP). C.P. gratefully acknowledges funding from a joint appointment at NREL. P.F.N. would like to thank Dr. Thomas Gennett and Dr. Philip Parilla at NREL for useful discussions. NR 38 TC 0 Z9 0 U1 1 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 2159-6859 EI 2159-6867 J9 MRS COMMUN JI MRS Commun. PD DEC PY 2016 VL 6 IS 4 BP 360 EP 366 DI 10.1557/mrc.2016.57 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA EJ3QW UT WOS:000393127700006 ER PT J AU Alexander, KC Ganesh, P Chi, MF Kent, P Sumpter, BG AF Alexander, Kathleen C. Ganesh, P. Chi, Miaofang Kent, Paul Sumpter, Bobby G. TI Grain boundary stability and influence on ionic conductivity in a disordered perovskite-a first-principles investigation of lithium lanthanum titanate SO MRS COMMUNICATIONS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; SOLID-STATE ELECTROLYTE; ELASTIC BAND METHOD; WAVE BASIS-SET; SADDLE-POINTS; BATTERIES; PATHS AB The origin of ionic conductivity in bulk lithium lanthanum titanate, a promising solid electrolyte for Li-ion batteries, has long been under debate, with experiments showing lower conductivity than predictions. Using first-principles-based calculations, we find that experimentally observed type I boundaries are more stable compared with the type II grain boundaries, consistent with their observed relative abundance. Grain boundary stability appears to strongly anti-correlate with the field strength as well as the spatial extent of the space charge region. Ion migration is faster along type II grain boundaries than across, consistent with recent experiments of increased conductivity when type II densities were increased. C1 [Alexander, Kathleen C.] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Ganesh, P.; Chi, Miaofang; Kent, Paul; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kent, Paul; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Alexander, KC (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.; Ganesh, P (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM katcalex@mit.edu; ganeshp@ornl.gov FU U.S. DOE Office of Science [DE-AC02-05CH11231]; DOE Computational Science Graduate Fellowship [DE-FG02-97ER25308]; Fannie and John Hertz Foundation FX This work was performed at the Center for Nanophase Materials Sciences, a US Department of Energy Office of Science User Facility. This work made use of computational resources at the NERSC computing facility which is supported by the U.S. DOE Office of Science under Contract No. DE-AC02-05CH11231. K.C.A. acknowledges support from a DOE Computational Science Graduate Fellowship under Grant No. DE-FG02-97ER25308 and support from the Fannie and John Hertz Foundation. P. G. would like to acknowledge the Laboratory Directed Research and Development Program (LDRD) of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. NR 30 TC 0 Z9 0 U1 11 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 2159-6859 EI 2159-6867 J9 MRS COMMUN JI MRS Commun. PD DEC PY 2016 VL 6 IS 4 BP 455 EP 463 DI 10.1557/mrc.2016.58 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA EJ3QW UT WOS:000393127700018 ER PT J AU Xu, YF Chen, JH Ma, YG Tang, AH Xu, ZB Zhu, YH AF Xu, Yi-Fei Chen, Jin-Hui Ma, Yu-Gang Tang, Ai-Hong Xu, Zhang-Bu Zhu, Yu-Hui TI Physics performance of the STAR zero degree calorimeter at relativistic heavy ion collider SO NUCLEAR SCIENCE AND TECHNIQUES LA English DT Article; Proceedings Paper CT International Workshop on Nuclear Dynamics in Heavy-Ion Reactions (IWND) CY MAY 15-20, 2016 CL Xinxiang, PEOPLES R CHINA DE Zero degree calorimeter; Calibration; Energy resolution; STAR ID QUARK-GLUON PLASMA; COLLISIONS; COLLABORATION; PERSPECTIVE AB The zero degree calorimeter (ZDC) at RHIC-STAR was installed in the year 2000. After running for more than 10 years, the performance of the STAR-ZDC cannot maintain a proper status because of the radiation damage. The ZDC on RHIC-BRAHMS had been moved to STAR in 2011 after some tests. We present here the result of the tests as well as the physical performance of those ZDC modules between the 2011 and 2015 RHIC runs. The excellent energy resolution of the ZDC in heavy ion collision provides a good candidate for future detector development, such as the CSR experiment at CAS-Lanzhou facility. C1 [Xu, Yi-Fei; Chen, Jin-Hui; Ma, Yu-Gang; Zhu, Yu-Hui] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Xu, Yi-Fei; Zhu, Yu-Hui] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Ma, Yu-Gang] ShanghaiTech Univ, Shanghai 200031, Peoples R China. [Tang, Ai-Hong; Xu, Zhang-Bu] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ma, YG (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China.; Ma, YG (reprint author), ShanghaiTech Univ, Shanghai 200031, Peoples R China. EM chenjinhui@sinap.ac.cn; ygma@sinap.ac.cn FU Major State Basic Research Development Program in China [2014CB845400]; National Natural Science Foundation of China [11421505, 11520101004, 11322547, 11275250] FX This work was supported by the Major State Basic Research Development Program in China (2014CB845400), and the National Natural Science Foundation of China (Nos. 11421505, 11520101004, 11322547, and 11275250). NR 12 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER SINGAPORE PTE LTD PI SINGAPORE PA #04-01 CENCON I, 1 TANNERY RD, SINGAPORE 347719, SINGAPORE SN 1001-8042 EI 2210-3147 J9 NUCL SCI TECH JI Nucl. Sci. Tech. PD DEC PY 2016 VL 27 IS 6 AR 126 DI 10.1007/s41365-016-0129-z PG 6 WC Nuclear Science & Technology; Physics, Nuclear SC Nuclear Science & Technology; Physics GA EJ3MU UT WOS:000393117100001 ER PT J AU Sloan, JV Hotz, M Boutan, C Bradley, R Carosi, G Carter, D Clarke, J Crisosto, N Daw, EJ Gleason, J Hoskins, J Khatiwada, R Lyapustin, D Malagon, A O'Kelley, S Ottens, RS Rosenberg, LJ Rybka, G Stern, I Sullivan, NS Tanner, DB van Bibber, K Wagner, A Will, D AF Sloan, J. V. Hotz, M. Boutan, C. Bradley, R. Carosi, G. Carter, D. Clarke, J. Crisosto, N. Daw, E. J. Gleason, J. Hoskins, J. Khatiwada, R. Lyapustin, D. Malagon, A. O'Kelley, S. Ottens, R. S. Rosenberg, L. J. Rybka, G. Stern, I. Sullivan, N. S. Tanner, D. B. van Bibber, K. Wagner, A. Will, D. TI Limits on axion-photon coupling or on local axion density: Dependence on models of the Milky Way's dark halo SO PHYSICS OF THE DARK UNIVERSE LA English DT Article DE Axions; Halo models; Dark matter; Microwave cavity; Direct detections ID STRONG CP PROBLEM; INVISIBLE AXION; SECONDARY INFALL; MATTER HALOS; INVARIANCE; UNIVERSE AB The mu eV-scale axion is a compelling cold dark matter candidate. The Axion Dark Matter eXperiment (ADMX) searches for axions by stimulating the decay of galactic dark matter halo axions into detectable microwave photons by their conversion in a resonant cavity permeated by a strong, static magnetic field. The signal depends on properties of the Milky Way's dark matter halo; the choice of halo model has significant implications for the sensitivity of direct detection searches, e.g., ADMX. This paper explores the sensitivity of the data taken by ADMX from 2008 to 2010 to various dark matter halo models. New models for the phase-space distribution of local axions are considered; the analysis demonstrates that certain assumptions about the dark matter halo improve limits on axion-photon coupling. In addition, new ADMX data covering 860-892 MHz are included in the analysis. (C) 2016 Published by Elsevier B.V. C1 [Sloan, J. V.; Hotz, M.; Boutan, C.; Khatiwada, R.; Lyapustin, D.; Malagon, A.; Ottens, R. S.; Rosenberg, L. J.; Wagner, A.; Will, D.] Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Sloan, J. V.; Hotz, M.; Boutan, C.; Khatiwada, R.; Lyapustin, D.; Malagon, A.; Ottens, R. S.; Rosenberg, L. J.; Rybka, G.; Wagner, A.; Will, D.] Univ Washington, Seattle, WA 98195 USA. [Carosi, G.; Carter, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bradley, R.; Sullivan, N. S.; Tanner, D. B.] Natl Radio Astron Observ, Charlottesville, VA 22903 USA. [Clarke, J.; O'Kelley, S.; van Bibber, K.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Crisosto, N.; Gleason, J.; Hoskins, J.; Stern, I.] Univ Florida, Gainesville, FL 32611 USA. [Daw, E. J.] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England. [Wagner, A.] Raytheon BBN Technol, Cambridge, MA 02138 USA. RP Sloan, JV (reprint author), Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA.; Sloan, JV (reprint author), Univ Washington, Seattle, WA 98195 USA. EM jvsloan@uw.edu OI Stern, Ian/0000-0002-1166-465X FU DOE [DE-SC00098000, DE-SC0011665, DE-AC52-07NA27344, DE-AC03-76SF00098, DE-AC02-05CH11231]; Heising-Simons Foundation [2014-185]; Lawrence Livermore National Laboratory LDRD program [05-ERD-073, 09-ERD-052, 10-SI-015] FX Supported by DOE Grants DE-SC00098000, DOE grant DE-SC0011665, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation 2014-185, and the Lawrence Livermore National Laboratory LDRD program 05-ERD-073, 09-ERD-052, and 10-SI-015. SQUID development was supported by DOE grant DE-AC02-05CH11231. NR 40 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-6864 J9 PHYS DARK UNIVERSE JI Phys. Dark Universe PD DEC PY 2016 VL 14 BP 95 EP 102 DI 10.1016/j.dark.2016.09.003 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EJ3DE UT WOS:000393092000013 ER PT J AU Abramson, BW Kachel, B Kramer, DM Ducat, DC AF Abramson, Bradley W. Kachel, Benjamin Kramer, David M. Ducat, Daniel C. TI Increased Photochemical Efficiency in Cyanobacteria via an Engineered Sucrose Sink SO PLANT AND CELL PHYSIOLOGY LA English DT Article DE Calvin-Benson cycle; Cyanobacteria; Energy balance; Photosynthesis; Source-sink; Synechococcus elongatus PCC 7942 ID STATE 1 TRANSITION; PHOTOSYSTEM-II; CHLAMYDOMONAS-REINHARDTII; CHLOROPHYLL FLUORESCENCE; SYNECHOCOCCUS-ELONGATUS; SALT STRESS; PCC 7942; PHOTOSYNTHESIS; SUGAR; PRODUCTIVITY AB In plants, a limited capacity to utilize or export the endproducts of the Calvin-Benson cycle (CB) from photosynthetically active source cells to non-photosynthetic sink cells can result in reduced carbon capture and photosynthetic electron transport (PET), and lowered photochemical efficiency. The down-regulation of photosynthesis caused by reduced capacity to utilize photosynthate has been termed ` sink limitation'. Recently, several cyanobacterial and algal strains engineered to overproduce target metabolites have exhibited increased photochemistry, suggesting that possible source-sink regulatory mechanisms may be involved. We directly examined photochemical properties following induction of a heterologous sucrose 'sink' in the unicellular cyanobacterium Synechococcus elongatus PCC 7942. We show that total photochemistry increases proportionally to the experimentally controlled rate of sucrose export. Importantly, the quantum yield of PSII (phi II) increases in response to sucrose export while the PET chain becomes more oxidized from less PSI acceptor-side limitation, suggesting increased CB activity and a decrease in sink limitation. Enhanced photosynthetic activity and linear electron flow are detectable within hours of induction of the heterologous sink and are independent of pigmentation alterations or the ionic/ osmotic effects of the induction system. These observations provide direct evidence that secretion of heterologous carbon bioproducts can be used as an alternative approach to improve photosynthetic efficiency, presumably by by-passing sink limitation. Our results also suggest that engineered microalgal production strains are valuable alternative models for examining photosynthetic sink limitation because they enable greater control and monitoring of metabolite fluxes relative to plants. C1 [Abramson, Bradley W.; Kramer, David M.; Ducat, Daniel C.] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Abramson, Bradley W.] Michigan State Univ, Dept Cell & Mol Biol, E Lansing, MI 48824 USA. [Kachel, Benjamin] Heidelberg Univ, Dept Pharm & Mol Biotechnol, Heidelberg, Germany. [Kramer, David M.; Ducat, Daniel C.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Ducat, DC (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA.; Ducat, DC (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM ducatdan@msu.edu FU Office of Science of the US Department of Energy [DE-FG02-91ER20021] FX This work was supported by the Office of Science of the US Department of Energy [DE-FG02-91ER20021]. NR 56 TC 0 Z9 0 U1 4 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0032-0781 EI 1471-9053 J9 PLANT CELL PHYSIOL JI Plant Cell Physiol. PD DEC PY 2016 VL 57 IS 12 BP 2451 EP 2460 DI 10.1093/pcp/pcw169 PG 10 WC Plant Sciences; Cell Biology SC Plant Sciences; Cell Biology GA EJ4AZ UT WOS:000393159600001 PM 27742883 ER PT J AU Fang, L Ishikawa, T Rennie, EA Murawska, GM Lao, JM Yan, JW Tsai, AYL Baidoo, EEK Xu, J Keasling, JD Demura, T Kawai-Yamada, M Scheller, HV Mortimer, JC AF Fang, Lin Ishikawa, Toshiki Rennie, Emilie A. Murawska, Gosia M. Lao, Jeemeng Yan, Jingwei Tsai, Alex Yi-Lin Baidoo, Edward E. K. Xu, Jun Keasling, Jay D. Demura, Taku Kawai-Yamada, Maki Scheller, Henrik V. Mortimer, Jenny C. TI Loss of Inositol Phosphorylceramide Sphingolipid Mannosylation Induces Plant Immune Responses and Reduces Cellulose Content in Arabidopsis SO PLANT CELL LA English DT Article ID TANDEM MASS-SPECTROMETRY; CELL-WALL BIOSYNTHESIS; PLASMA-MEMBRANE; SYNTHASE COMPLEXES; GENETIC-EVIDENCE; TOBACCO-LEAVES; IDENTIFICATION; THALIANA; GLYCOSYLTRANSFERASE; METABOLISM AB Glycosylinositol phosphorylceramides (GIPCs) are a class of glycosylated sphingolipids found in plants, fungi, and protozoa. These lipids are abundant in the plant plasma membrane, forming; 25% of total plasma membrane lipids. Little is known about the function of the glycosylated headgroup, but two recent studies have indicated that they play a key role in plant signaling and defense. Here, we show that a member of glycosyltransferase family 64, previously named ECTOPICALLY PARTING CELLS1, is likely a Golgi-localized GIPC-specific mannosyl-transferase, which we renamed GIPC MANNOSYL-TRANSFERASE1 (GMT1). Sphingolipid analysis revealed that the Arabidopsis thaliana gmt1 mutant almost completely lacks mannose-carrying GIPCs. Heterologous expression of GMT1 in Saccharomyces cerevisiae and tobacco (Nicotiana tabacum) cv Bright Yellow 2 resulted in the production of non-native mannosylated GIPCs. gmt1 displays a severe dwarfed phenotype and a constitutive hypersensitive response characterized by elevated salicylic acid and hydrogen peroxide levels, similar to that we previously reported for the Golgi-localized, GIPC-specific, GDP-Man transporter GONST1 (Mortimer et al., 2013). Unexpectedly, we show that gmt1 cell walls have a reduction in cellulose content, although other matrix polysaccharides are unchanged. C1 [Fang, Lin; Rennie, Emilie A.; Murawska, Gosia M.; Lao, Jeemeng; Yan, Jingwei; Tsai, Alex Yi-Lin; Baidoo, Edward E. K.; Keasling, Jay D.; Scheller, Henrik V.; Mortimer, Jenny C.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Fang, Lin; Rennie, Emilie A.; Murawska, Gosia M.; Lao, Jeemeng; Yan, Jingwei; Tsai, Alex Yi-Lin; Baidoo, Edward E. K.; Keasling, Jay D.; Scheller, Henrik V.; Mortimer, Jenny C.] Lawrence Berkeley Natl Lab, Biol Syst & Engn, Berkeley, CA 94720 USA. [Ishikawa, Toshiki; Kawai-Yamada, Maki] Saitama Univ, Grad Sch Sci & Engn, Saitama 3388570, Japan. [Xu, Jun; Keasling, Jay D.; Mortimer, Jenny C.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Demura, Taku] RIKEN, Ctr Sustainable Resource Sci, Biomass Engn Program, Cellulose Prod Res Team, Yokohama, Kanagawa 2300045, Japan. [Demura, Taku] Nara Inst Sci & Technol, Grad Sch Biol Sci, Nara 6300192, Japan. [Scheller, Henrik V.] Univ Calif Berkeley, Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Mortimer, JC (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA.; Mortimer, JC (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn, Berkeley, CA 94720 USA.; Mortimer, JC (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM jcmortimer@lbl.gov OI Xu, Jun/0000-0003-3507-0159 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; RIKEN FPR fellowship; JSPS KAKENHI [24010084, 15K20909, 26292190] FX We thank Ramana Pidatala for assistance with callus culture, Mi-Yeon Lee for assistance with plant growth, Leanne Chan and Chris Petzold for protein sequencing, and Misato Ohtani and the Demura team for their support whilst J.C.M. was at RIKEN. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy (L.F., E.A.R., J.L., E.E.K.B., J.D.K., J.C.M., H.V.S.), by a RIKEN FPR fellowship (J.C.M.), and by JSPS KAKENHI 24010084 and 15K20909 to T.I. and 26292190 to M.K.-Y. NR 63 TC 0 Z9 0 U1 6 U2 6 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD DEC PY 2016 VL 28 IS 12 BP 2991 EP 3004 DI 10.1105/tpc.16.00186 PG 14 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA EJ4DY UT WOS:000393167800009 PM 27895225 ER PT J AU Lan, W Rencoret, J Lu, FC Karlen, SD Smith, BG Harris, PJ del Rio, JC Ralph, J AF Lan, Wu Rencoret, Jorge Lu, Fachuang Karlen, Steven D. Smith, Bronwen G. Harris, Philip J. Carlos del Rio, Jose Ralph, John TI Tricin-lignins: occurrence and quantitation of tricin in relation to phylogeny SO PLANT JOURNAL LA English DT Article DE thioacidolysis; acidolysis; derivatization followed by reductive cleavage; Poaceae; tricin-d(6); stable isotopically labeled internal standard; liquid chromatography-mass spectrometry; multiple reaction monitoring ID ANTIOXIDANT FLAVONE GLYCOSIDES; STRUCTURAL-CHARACTERIZATION; BRACHYPODIUM-DISTACHYON; MONOCOT LIGNIFICATION; ACID DEGRADATION; FLAVONOLIGNANS; BIOSYNTHESIS; CLEAVAGE; IDENTIFICATION; ACIDOLYSIS AB Tricin [5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-chromen-4-one], a flavone, was recently established as an authentic monomer in grass lignification that likely functions as a nucleation site. It is linked onto lignin as an aryl alkyl ether by radical coupling with monolignols or their acylated analogs. However, the level of tricin that incorporates into lignin remains unclear. Herein, three lignin characterization methods: acidolysis; thioacidolysis; and derivatization followed by reductive cleavage; were applied to quantitatively assess the amount of lignin-integrated tricin. Their efficiencies at cleaving the tricin-(4'-O-beta)-ether bonds and the degradation of tricin under the corresponding reaction conditions were evaluated. A hexadeuterated tricin analog was synthesized as an internal standard for accurate quantitation purposes. Thioacidolysis proved to be the most efficient method, liberating more than 91% of the tricin with little degradation. A survey of different seed-plant species for the occurrence and content of tricin showed that it is widely distributed in the lignin from species in the family Poaceae (order Poales). Tricin occurs at low levels in some commelinid monocotyledon families outside the Poaceae, such as the Arecaceae (the palms, order Arecales) and Bromeliaceae (Poales), and the non-commelinid monocotyledon family Orchidaceae (Orchidales). One eudicotyledon was found to have tricin (Medicago sativa, Fabaceae). The content of lignin-integrated tricin is much higher than the extractable tricin level in all cases. Lignins, including waste lignin streams from biomass processing, could therefore provide a large and alternative source of this valuable flavone, reducing the costs, and encouraging studies into its application beyond its current roles. C1 [Lan, Wu; Lu, Fachuang; Karlen, Steven D.; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Lan, Wu; Ralph, John] Univ Wisconsin, Dept Biol Syst Engn, Madison, WI 53706 USA. [Rencoret, Jorge; Carlos del Rio, Jose] CSIC, IRNAS, Ave Reina Mercedes 10, Seville 41012, Spain. [Lu, Fachuang; Karlen, Steven D.; Ralph, John] Univ Wisconsin, Dept Biochem, 420 Henry Mall, Madison, WI 53705 USA. [Lu, Fachuang] South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou, Guangdong, Peoples R China. [Smith, Bronwen G.] Univ Auckland, Sch Chem Sci, Auckland, New Zealand. [Harris, Philip J.] Univ Auckland, Sch Biol Sci, Auckland, New Zealand. RP Lu, FC (reprint author), Univ Wisconsin, Wisconsin Energy Inst, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA.; Ralph, J (reprint author), Univ Wisconsin, Dept Biol Syst Engn, Madison, WI 53706 USA.; Lu, FC; Ralph, J (reprint author), Univ Wisconsin, Dept Biochem, 420 Henry Mall, Madison, WI 53705 USA.; Lu, FC (reprint author), South China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou, Guangdong, Peoples R China. EM fachuanglu@wisc.edu; jralph@wisc.edu RI RENCORET, JORGE/E-1747-2013 OI RENCORET, JORGE/0000-0003-2728-7331 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; FEDER funds [CTQ2014-60764-JIN]; University of Auckland; US Department of Energy, Energy Biosciences Program [DE-AI02-06ER64299] FX The authors thank the China Scholarship Council, State Education Department, for supporting living expenses for Wu Lan's PhD Program in the Department of Biological System Engineering, University of Wisconsin, Madison, USA. WL, FL, SK and JRa were funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). JRe was funded by the Spanish Project CTQ2014-60764-JIN (co-financed by FEDER funds), BGS and PJH by the University of Auckland, and JRa, BGS and PJH in part by US Department of Energy, Energy Biosciences Program, Grant #DE-AI02-06ER64299 (2006). NR 58 TC 1 Z9 1 U1 6 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD DEC PY 2016 VL 88 IS 6 BP 1046 EP 1057 DI 10.1111/tpj.13315 PG 12 WC Plant Sciences SC Plant Sciences GA EJ3QH UT WOS:000393126200011 PM 27553717 ER PT J AU Romm, H Beinke, C Garcia, O Di Giorgio, M Gregoire, E Livingston, G Lloyd, DC Martinez-Lopez, W Moquet, JE Sugarman, SL Wilkins, RC Ainsbury, EA AF Romm, Horst Beinke, Christina Garcia, Omar Di Giorgio, Marina Gregoire, Eric Livingston, Gordon Lloyd, David C. Martinez-Lopez, Wilner Moquet, Jayne E. Sugarman, Stephen L. Wilkins, Ruth C. Ainsbury, Elizabeth A. TI A NEW CYTOGENETIC BIODOSIMETRY IMAGE REPOSITORY FOR THE DICENTRIC ASSAY SO RADIATION PROTECTION DOSIMETRY LA English DT Article; Proceedings Paper CT 4th EPR BioDose Meeting CY OCT 04-08, 2015 CL Hanover, NH SP Int Assoc Biol & EPR Radiat Dosimetry ID SCALE RADIATION ACCIDENTS; BIOLOGICAL DOSIMETRY; CHROMOSOME ANALYSIS; POPULATION TRIAGE; RADIOLOGICAL EMERGENCY; EUROPEAN NETWORK; LABORATORIES; CASUALTIES; CAPACITY; BIODOSENET AB The BioDoseNet was founded by the World Health Organization as a global network of biodosimetry laboratories for building biodosimetry laboratory capacities in countries. The newly established BioDoseNet image repository is a databank of similar to 25 000 electronically captured images of metaphases from the dicentric assay, which have been previously analysed by international experts. The detailed scoring results and dose estimations have, in most cases, already been published. The compilation of these images into one image repository provides a valuable tool for training and research purposes in biological dosimetry. No special software is needed to view and score the image galleries. For those new to the dicentric assay, the BioDoseNet Image Repository provides an introduction to and training for the dicentric assay. It is an excellent instrument for intra-laboratory training purposes or inter-comparisons between laboratories, as recommended by the International Organization for Standardisation standards. In the event of a radiation accident, the repository can also increase the surge capacity and reduce the turnaround time for dose estimations. Finally, it provides a mechanism for the discussion of scoring discrepancies in difficult cases. C1 [Romm, Horst] Bundesamt Strahlenschutz, Neuherberg, Salzgitter, Germany. [Beinke, Christina] Bundeswehr Inst Radiobiol, Munich, Germany. [Garcia, Omar] Ctr Protecc & Higiene Radiac, Havana, Cuba. [Di Giorgio, Marina] Autoridad Regulatoria Nucl, Buenos Aires, DF, Argentina. [Gregoire, Eric] Inst Radioprotect & Surete Nucl, Fontenay Aux Roses, France. [Livingston, Gordon; Wilkins, Ruth C.] Oak Ridge Associated Univ, REAC TS, Oak Ridge, TN USA. [Lloyd, David C.; Moquet, Jayne E.; Ainsbury, Elizabeth A.] Publ Hlth England, Chilton, England. [Martinez-Lopez, Wilner] Inst Invest Biol Clemente Estable, Montevideo, Uruguay. [Wilkins, Ruth C.] Hlth Canada, Ottawa, ON, Canada. RP Romm, H (reprint author), Bundesamt Strahlenschutz, Neuherberg, Salzgitter, Germany. EM hromm@bfs.de NR 45 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD DEC 1 PY 2016 VL 172 IS 1-3 BP 192 EP 200 DI 10.1093/rpd/ncw158 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA EJ4HX UT WOS:000393178600021 PM 27412509 ER PT J AU Garty, G Turner, HC Salerno, A Bertucci, A Zhang, J Chen, Y Dutta, A Sharma, P Bian, D Taveras, M Wang, H Bhatla, A Balajee, A Bigelow, AW Repin, M Lyulko, OV Simaan, N Yao, YL Brenner, DJ AF Garty, G. Turner, H. C. Salerno, A. Bertucci, A. Zhang, J. Chen, Y. Dutta, A. Sharma, P. Bian, D. Taveras, M. Wang, H. Bhatla, A. Balajee, A. Bigelow, A. W. Repin, M. Lyulko, O. V. Simaan, N. Yao, Y. L. Brenner, D. J. TI THE DECADE OF THE RABIT (2005-15) SO RADIATION PROTECTION DOSIMETRY LA English DT Article; Proceedings Paper CT 4th EPR BioDose Meeting CY OCT 04-08, 2015 CL Hanover, NH SP Int Assoc Biol & EPR Radiat Dosimetry ID HIGH-THROUGHPUT BIODOSIMETRY; BLOCK MICRONUCLEUS ASSAY; CYTOGENETIC BIODOSIMETRY; BIOLOGICAL DOSIMETRY; RADIATION; EXPOSURE; SYSTEM; TRIAGE; TOOL; CHROMOSOMES AB The RABiT (Rapid Automated Biodosimetry Tool) is a dedicated Robotic platform for the automation of cytogenetics-based biodosimetry assays. The RABiT was developed to fulfill the critical requirement for triage following a mass radiological or nuclear event. Starting from well-characterized and accepted assays we developed a custom robotic platform to automate them. We present here a brief historical overview of the RABiT program at Columbia University from its inception in 2005 until the RABiT was dismantled at the end of 2015. The main focus of this paper is to demonstrate how the biological assays drove development of the custom robotic systems and in turn new advances in commercial robotic platforms inspired small modifications in the assays to allow replacing customized robotics with 'off the shelf' systems. Currently, a second-generation, RABiT II, system at Columbia University, consisting of a PerkinElmer cell:: explorer, was programmed to perform the RABiT assays and is undergoing testing and optimization studies. C1 [Garty, G.; Turner, H. C.; Bertucci, A.; Dutta, A.; Sharma, P.; Taveras, M.; Balajee, A.; Bigelow, A. W.; Repin, M.; Lyulko, O. V.; Brenner, D. J.] Columbia Univ, Ctr Radiol Res, VC11-230,630 West 168th St, New York, NY 10032 USA. [Salerno, A.; Zhang, J.; Chen, Y.; Wang, H.; Bhatla, A.; Simaan, N.; Yao, Y. L.] Columbia Univ, Dept Mech Engn, 500 West 120th St, New York, NY 10027 USA. [Salerno, A.] Pratt & Whitney Canada Corp, 1000 Marie Victorin, Longueuil, PQ J4G 1A1, Canada. [Zhang, J.] Auris Surg Robot Inc, 125 Shoreway Rd, San Carlos, CA 94070 USA. [Dutta, A.] BioReliance Corp, 9630 Med Ctr Dr, Rockville, MD 20850 USA. [Wang, H.] Gen Motors Co, 30500 Mound Rd, Warren, MI 48090 USA. [Bhatla, A.] Curios Lab Inc, 54 Mallard Pl, Secaucus, NJ 07094 USA. [Balajee, A.] Oak Ridge Associated Univ, Oak Ridge Inst Sci & Educ, Cytogenet Biodosimetry Lab, Radiat Emergency Assistance Ctr & Training Site, Bldg SC-10,1299 Bethel Valley Rd, Oak Ridge, TN 37830 USA. [Simaan, N.] Vanderbuilt Univ, Dept Mech Engn, PMB 351592, Nashville, TN 37235 USA. RP Garty, G (reprint author), Columbia Univ, Ctr Radiol Res, VC11-230,630 West 168th St, New York, NY 10032 USA. EM gyg2101@cumc.columbia.edu FU National Institute of Allergy and Infectious Diseases (NIAID) [U19-AI067773]; National Institute of Environmental Health Sciences (NIEHS) [R21-ES019494] FX This work was supported by the National Institute of Allergy and Infectious Diseases (NIAID) [U19-AI067773 to the Center for High-Throughput Minimally Invasive Radiation Biodosimetry], and the National Institute of Environmental Health Sciences (NIEHS) [R21-ES019494]. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIAID, NIEHS or the National Institutes of Health. NR 34 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD DEC 1 PY 2016 VL 172 IS 1-3 BP 201 EP 206 DI 10.1093/rpd/ncw172 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA EJ4HX UT WOS:000393178600022 PM 27412510 ER PT J AU Li, ZQ Lau, WKM Ramanathan, V Wu, G Ding, Y Manoj, MG Liu, J Qian, Y Li, J Zhou, T Fan, J Rosenfeld, D Ming, Y Wang, Y Huang, J Wang, B Xu, X Lee, SS Cribb, M Zhang, F Yang, X Zhao, C Takemura, T Wang, K Xia, X Yin, Y Zhang, H Guo, J Zhai, PM Sugimoto, N Babu, SS Brasseur, GP AF Li, Zhanqing Lau, W. K. -M. Ramanathan, V. Wu, G. Ding, Y. Manoj, M. G. Liu, J. Qian, Y. Li, J. Zhou, T. Fan, J. Rosenfeld, D. Ming, Y. Wang, Y. Huang, J. Wang, B. Xu, X. Lee, S. -S. Cribb, M. Zhang, F. Yang, X. Zhao, C. Takemura, T. Wang, K. Xia, X. Yin, Y. Zhang, H. Guo, J. Zhai, P. M. Sugimoto, N. Babu, S. S. Brasseur, G. P. TI Aerosol and monsoon climate interactions over Asia SO REVIEWS OF GEOPHYSICS LA English DT Review ID CLOUD CONDENSATION NUCLEI; INDIAN-SUMMER MONSOON; BLACK CARBON AEROSOLS; EURASIAN SNOW COVER; DEEP CONVECTIVE CLOUDS; DIURNAL TEMPERATURE-RANGE; TROPICAL CONVERGENCE ZONE; GENERAL-CIRCULATION MODEL; INCIDENT SOLAR-RADIATION; SEA-SURFACE TEMPERATURE AB The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcing of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections. C1 [Li, Zhanqing; Li, J.; Zhang, F.; Yang, X.; Zhao, C.; Wang, K.] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China. [Li, Zhanqing; Li, J.; Zhang, F.; Yang, X.; Zhao, C.; Wang, K.] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China. [Li, Zhanqing; Lau, W. K. -M.; Manoj, M. G.; Liu, J.; Lee, S. -S.; Cribb, M.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Li, Zhanqing; Lau, W. K. -M.; Manoj, M. G.; Liu, J.; Lee, S. -S.; Cribb, M.] Univ Maryland, ESSIC, College Pk, MD 20742 USA. [Ramanathan, V.] Univ Calif San Diego, Dept Atmospher & Climate Sci, San Diego, CA 92103 USA. [Wu, G.; Zhou, T.; Xia, X.] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China. [Ding, Y.; Zhang, H.] China Meteorol Adm, Natl Climate Ctr, Beijing, Peoples R China. [Qian, Y.; Fan, J.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Rosenfeld, D.] Hebrew Univ Jerusalem, Inst Earth Sci, Jerusalem, Israel. [Ming, Y.] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA. [Wang, Y.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Huang, J.] Lanzhou Univ, Coll Atmospher Sci, Lanzhou, Peoples R China. [Wang, B.] Univ Hawaii, Dept Atmospher Sci, Honolulu, HI 96822 USA. [Wang, B.; Yin, Y.] Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, Nanjing, Jiangsu, Peoples R China. [Xu, X.; Guo, J.; Zhai, P. M.] Chinese Acad Meteorol Sci, Beijing, Peoples R China. [Takemura, T.] Kyushu Univ, Res Inst Appl Mech, Fukuoka, Japan. [Sugimoto, N.] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Babu, S. S.] Vikram Sarabhai Space Ctr, Space Phys Lab, Thiruvananthapuram, Kerala, India. [Brasseur, G. P.] Max Planck Inst Meteorol, Hamburg, Germany. RP Li, ZQ (reprint author), Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China.; Li, ZQ (reprint author), Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China.; Li, ZQ (reprint author), Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA.; Li, ZQ (reprint author), Univ Maryland, ESSIC, College Pk, MD 20742 USA. EM zli@atmos.umd.edu RI qian, yun/E-1845-2011; Wang, Kaicun/F-7813-2012; Kyushu, RIAM/F-4018-2015; Takemura, Toshihiko/C-2822-2009; Cribb, Maureen/K-1341-2013 OI Wang, Kaicun/0000-0002-7414-5400; Takemura, Toshihiko/0000-0002-2859-6067; Cribb, Maureen/0000-0002-9745-3676 FU China's National Basic Research Program on Global Change [2013CB955804]; National Natural Science Foundation of China [91544217]; U.S. National Science Foundation [AGS1534670]; NOAA [NA15NWS4680011]; U.S. Department of Energy [DESC0007171]; DOE ESM Program [DE-AC05-76RL01830] FX We are grateful to the following people who provided some of the original figures used in this article: Jaehwa Lee (Figure 1), F. Song (Figure 2), J. Wu and J. Lin (Figure 6), J. Xin (Figure 7a), K. Lee (Figures 4c and 7b), A. Robock (Figure 11), S. Dey (Figure 14), V. Vinoj (Figure 18), R. Zhang (Figure 19), and Jun Matsumoto (Figure 30). The bulk of the writing was done while the lead author was on sabbatical leave at the Beijing Normal University and the Max-Planck Institutes of Germany. Major funding supports pertinent to this work have been provided by the China's National Basic Research Program on Global Change (grant 2013CB955804), National Natural Science Foundation of China (grant 91544217), U.S. National Science Foundation (AGS1534670), NOAA (NA15NWS4680011), and the U.S. Department of Energy (DESC0007171), DOE ESM Program under contract DE-AC05-76RL01830. NR 474 TC 2 Z9 2 U1 25 U2 25 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD DEC PY 2016 VL 54 IS 4 BP 866 EP 929 DI 10.1002/2015RG000500 PG 64 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EJ4WM UT WOS:000393217800004 ER PT J AU Berkowitz, B Dror, I Hansen, SK Scher, H AF Berkowitz, Brian Dror, Ishai Hansen, Scott K. Scher, Harvey TI Measurements and models of reactive transport in geological media SO REVIEWS OF GEOPHYSICS LA English DT Review ID HETEROGENEOUS POROUS-MEDIA; BIMOLECULAR REACTION-KINETICS; NATURAL GRADIENT EXPERIMENT; LANDFILL LEACHATE PLUME; NON-FICKIAN TRANSPORT; SOLUTE TRANSPORT; LABORATORY EXPERIMENTS; BIOGEOCHEMICAL PROCESSES; CO2-INDUCED DISSOLUTION; HYDRAULIC CONDUCTIVITY AB Reactive chemical transport plays a key role in geological media across scales, from pore scale to aquifer scale. Systems can be altered by changes in solution chemistry and a wide variety of chemical transformations, including precipitation/dissolution reactions that cause feedbacks that directly affect the flow and transport regime. The combination of these processes with advective-dispersive-diffusive transport in heterogeneous media leads to a rich spectrum of complex dynamics. The principal challenge in modeling reactive transport is to account for the subtle effects of fluctuations in the flow field and species concentrations; spatial or temporal averaging generally suppresses these effects. Moreover, it is critical to ground model conceptualizations and test model outputs against laboratory experiments and field measurements. This review emphasizes the integration of these aspects, considering carefully designed and controlled experiments at both laboratory and field scales, in the context of development and solution of reactive transport models based on continuum-scale and particle tracking approaches. We first discuss laboratory experiments and field measurements that define the scope of the phenomena and provide data for model comparison. We continue by surveying models involving advection-dispersion-reaction equation and continuous time random walk formulations. The integration of measurements and models is then examined, considering a series of case studies in different frameworks. We delineate the underlying assumptions, and strengths and weaknesses, of these analyses, and the role of probabilistic effects. We also show the key importance of quantifying the spreading and mixing of reactive species, recognizing the role of small-scale physical and chemical fluctuations that control the initiation of reactions. C1 [Berkowitz, Brian; Dror, Ishai; Hansen, Scott K.; Scher, Harvey] Weizmann Inst Sci, Dept Earth & Planetary Sci, Rehovot, Israel. [Hansen, Scott K.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM USA. RP Berkowitz, B (reprint author), Weizmann Inst Sci, Dept Earth & Planetary Sci, Rehovot, Israel. EM brian.berkowitz@weizmann.ac.il RI BERKOWITZ, BRIAN/K-1497-2012; OI BERKOWITZ, BRIAN/0000-0003-3078-1859; Hansen, Scott/0000-0001-8022-0123 FU Minerva Foundation; Federal German Ministry for Education and Research; Azrieli Foundation postdoctoral fellowship FX The authors thank the Editor, Fabio Florindo, and two anonymous referees for particularly constructive comments. B.B. holds the Sam Zuckerberg Professorial Chair in Hydrology. The financial support by the Minerva Foundation with funding from the Federal German Ministry for Education and Research (B.B.) and the Azrieli Foundation postdoctoral fellowship (S.K.H.) is gratefully acknowledged. The data presented in this study are listed in the provided references. Requests for data of the authors' publications can be directed to B. Berkowitz (brian.berkowitz@weizmann.ac.il). NR 175 TC 0 Z9 0 U1 7 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 8755-1209 EI 1944-9208 J9 REV GEOPHYS JI Rev. Geophys. PD DEC PY 2016 VL 54 IS 4 BP 930 EP 986 DI 10.1002/2016RG000524 PG 57 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EJ4WM UT WOS:000393217800005 ER PT J AU Zamora, RJ Voter, AF Perez, D Santhi, N Mniszewski, SM Thulasidasan, S Eidenbenz, SJ AF Zamora, Richard J. Voter, Arthur F. Perez, Danny Santhi, Nandakishore Mniszewski, Susan M. Thulasidasan, Sunil Eidenbenz, Stephan J. TI Discrete event performance prediction of speculatively parallel temperature-accelerated dynamics SO SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL LA English DT Article DE Discrete-event simulation; performance prediction; accelerated molecular dynamics; temperature-accelerated dynamics; distributed computing7 ID FINDING SADDLE-POINTS; SIMULATION; SURFACES AB Due to its unrivaled ability to predict the dynamical evolution of interacting atoms, molecular dynamics (MD) is a widely used computational method in theoretical chemistry, physics, biology, and engineering. Despite its success, MD is only capable of modeling timescales within several orders of magnitude of thermal vibrations, leaving out many important phenomena that occur at slower rates. The temperature-accelerated dynamics (TAD) method overcomes this limitation by thermally accelerating the state-to-state evolution captured by MD. Due to the algorithmically complex nature of the serial TAD procedure, implementations have yet to improve performance by parallelizing the concurrent exploration of multiple states. Here we utilize a discrete-event-based application simulator to introduce and explore a new speculatively parallel TAD (SpecTAD) method. We investigate the SpecTAD algorithm, without a full-scale implementation, by constructing an application simulator proxy (SpecTADSim). Following this method, we discover that a non-trivial relationship exists between the optimal SpecTAD parameter set and the number of CPU cores available at run-time. Furthermore, we find that a majority of the available SpecTAD boost can be achieved within an existing TAD application using relatively simple algorithm modifications. C1 [Zamora, Richard J.; Voter, Arthur F.; Perez, Danny] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Santhi, Nandakishore; Mniszewski, Susan M.; Thulasidasan, Sunil; Eidenbenz, Stephan J.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA. RP Zamora, RJ (reprint author), Los Alamos Natl Lab, T-1 B214, Los Alamos, NM 87545 USA. EM rjzamora@lanl.gov OI Santhi, Nandakishore/0000-0002-4755-7821 FU United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; National Nuclear Security Administration of the U.S. DOE [DE-AC52-O6NA25396] FX This work was supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE, under contract DE-AC52-O6NA25396. NR 43 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0037-5497 EI 1741-3133 J9 SIMUL-T SOC MOD SIM JI Simul.-Trans. Soc. Model. Simul. Int. PD DEC PY 2016 VL 92 IS 12 BP 1065 EP 1086 DI 10.1177/0037549716674806 PG 22 WC Computer Science, Interdisciplinary Applications; Computer Science, Software Engineering SC Computer Science GA EJ4QS UT WOS:000393202500003 ER PT J AU Hasty, P Campisi, J Sharp, ZD AF Hasty, Paul Campisi, Judith Sharp, Z. Dave TI Do p53 stress responses impact organismal aging? SO TRANSLATIONAL CANCER RESEARCH LA English DT Review DE p53; stress response; cellular senescence; aging ID EXTENDS LIFE-SPAN; GENETICALLY HETEROGENEOUS MICE; DNA-DAMAGE RESPONSE; WILD-TYPE P53; TUMOR SUPPRESSION; P53-DEFICIENT MICE; CALORIE RESTRICTION; EMBRYONIC LETHALITY; SIRTUIN ACTIVATORS; MAMMALIAN TARGET AB p53 is a transcriptional regulator that responds to cellular stresses to suppress oncogenesis, but some of these responses can have unintended consequences that influence non-cancer-related aging processes. The impact of these consequences is not well understood-partly due to the many complex processes that influence p53 function and partly due to the vast array of processes that p53 affects. p53 has the potential to both accelerate and hinder cellular aging processes, which would likely have antithetical biological outcomes with regard to organismal aging. To accelerate aging, p53 induces apoptosis or cell cycle arrest as a prerequisite to cellular senescence; both can impair the mobilization of stem and progenitor cell populations. To suppress aging, p53 inhibits unregulated proliferation pathways that could lead to cellular senescence and a senescence-associated secretory phenotype (SASP), which creates a pro-inflammatory and degenerative tissue milieu. A review of mouse models supports both possibilities, highlighting the complexity of the p53 influence over organismal aging. A deeper knowledge of how p53 integrates and is integrated with various biological processes will improve our understanding of its influence over the aging process. C1 [Hasty, Paul; Sharp, Z. Dave] Univ Texas Hlth Sci Ctr San Antonio, Inst Biotechnol, Dept Mol Med, San Antonio, TX 78245 USA. [Hasty, Paul; Sharp, Z. Dave] Univ Texas Hlth Sci Ctr San Antonio, Canc Therapy & Res Ctr, San Antonio, TX 78245 USA. [Hasty, Paul; Sharp, Z. Dave] Univ Texas Hlth Sci Ctr San Antonio, Barshop Inst Longev & Aging Studies, San Antonio, TX 78245 USA. [Campisi, Judith] Buck Inst Res Aging, 8001 Redwood Blvd, Novato, CA 94945 USA. [Campisi, Judith] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Hasty, P (reprint author), Barshop Inst Longev & Aging Studies, Dept Mol Med, Inst Biotechnol, 15355 Lambda Dr, San Antonio, TX 78245 USA. EM hastye@uthscsa.edu FU CTRC [CA054174]; [NIH: P01-AG017242]; [P30-AG013319]; [R01-CA193835] FX This work was supported by the following grants from the NIH: P01-AG017242 to PH and JC, P30-AG013319 to PH and R01-CA193835 to ZDS and PH. We also thank the CTRC (CA054174) for support. NR 93 TC 0 Z9 0 U1 1 U2 1 PU AME PUBL CO PI SHEUNG WAN PA ROOM 604 6-F HOLLYWOOD CENTER, 77-91, QUEENS ROAD, SHEUNG WAN, HONG KONG 00000, PEOPLES R CHINA SN 2218-676X EI 2219-6803 J9 TRANSL CANCER RES JI Transl. Cancer Res. PD DEC PY 2016 VL 5 IS 6 BP 685 EP 691 DI 10.21037/tcr.2016.12.02 PG 7 WC Oncology SC Oncology GA EJ5YE UT WOS:000393294300008 ER PT J AU Hansen, SK Berkowitz, B Vesselinov, VV O'Malley, D Karra, S AF Hansen, Scott K. Berkowitz, Brian Vesselinov, Velimir V. O'Malley, Daniel Karra, Satish TI Push-pull tracer tests: Their information content and use for characterizing non-Fickian, mobile-immobile behavior SO WATER RESOURCES RESEARCH LA English DT Article ID SOLUTE TRANSPORT; MASS-TRANSFER; RANDOM-WALK; RATE COEFFICIENTS; DISTRIBUTIONS; AQUIFER; DIFFUSION; SORPTION; MODELS; FLOW AB Path reversibility and radial symmetry are often assumed in push-pull tracer test analysis. In reality, heterogeneous flow fields mean that both assumptions are idealizations. To understand their impact, we perform a parametric study which quantifies the scattering effects of ambient flow, local-scale dispersion, and velocity field heterogeneity on push-pull breakthrough curves and compares them to the effects of mobile-immobile mass transfer (MIMT) processes including sorption and diffusion into secondary porosity. We identify specific circumstances in which MIMT overwhelmingly determines the breakthrough curve, which may then be considered uninformative about drift and local-scale dispersion. Assuming path reversibility, we develop a continuous-time-random-walk-based interpretation framework which is flow-field-agnostic and well suited to quantifying MIMT. Adopting this perspective, we show that the radial flow assumption is often harmless: to the extent that solute paths are reversible, the breakthrough curve is uninformative about velocity field heterogeneity. Our interpretation method determines a mapping function (i.e., subordinator) from travel time in the absence of MIMT to travel time in its presence. A mathematical theory allowing this function to be directly "plugged into'' an existing Laplace-domain transport model to incorporate MIMT is presented and demonstrated. Algorithms implementing the calibration are presented and applied to interpretation of data from a push-pull test performed in a heterogeneous environment. A successful four-parameter fit is obtained, of comparable fidelity to one obtained using a million-node 3-D numerical model. Finally, we demonstrate analytically and numerically how push-pull tests quantifying MIMT are sensitive to remobilization, but not immobilization, kinetics. C1 [Hansen, Scott K.; Vesselinov, Velimir V.; O'Malley, Daniel; Karra, Satish] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87544 USA. [Hansen, Scott K.; Berkowitz, Brian] Weizmann Inst Sci, Dept Earth & Planetary Sci, Rehovot, Israel. RP Hansen, SK (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Los Alamos, NM 87544 USA.; Hansen, SK (reprint author), Weizmann Inst Sci, Dept Earth & Planetary Sci, Rehovot, Israel. EM skh3@lanl.gov RI BERKOWITZ, BRIAN/K-1497-2012; OI BERKOWITZ, BRIAN/0000-0003-3078-1859; Hansen, Scott/0000-0001-8022-0123; Karra, Satish/0000-0001-7847-6293; Vesselinov, Velimir/0000-0002-6222-0530 FU Azrieli Foundation; LANL Environmental Programs; P. & A. Guggenheim-Ascarelli Foundation; DiaMonD project (An Integrated Multifaceted Approach to Mathematics at the Interfaces of Data, Models, and Decisions, U.S. Department of Energy Office of Science) [11145687]; Sam Zuckerberg Professorial Chair in Hydrology FX S.K.H. gratefully acknowledges partial financial support in the form of a postdoctoral fellowship from the Azrieli Foundation, as well as support from the LANL Environmental Programs. B.B. gratefully acknowledges the support of a research grant from the P. & A. Guggenheim-Ascarelli Foundation from. B.B. holds the Sam Zuckerberg Professorial Chair in Hydrology. V.V.V. was supported by the LANL Environmental Programs and the DiaMonD project (An Integrated Multifaceted Approach to Mathematics at the Interfaces of Data, Models, and Decisions, U.S. Department of Energy Office of Science, grant 11145687). The authors thank Gaisheng Liu and his coauthors for sharing the data against which we calibrated in section 6. All other numerical results derive from simulations performed by the authors; the corresponding author maintains an archive of the relevant codes. The authors thank the Editor, Associate Editor, and anonymous reviewers for constructive comments. NR 39 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC PY 2016 VL 52 IS 12 BP 9565 EP 9585 DI 10.1002/2016WR018769 PG 21 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA EJ6HV UT WOS:000393321000022 ER PT J AU Lu, D Zhang, GN Webster, C Barbier, C AF Lu, Dan Zhang, Guannan Webster, Clayton Barbier, Charlotte TI An improved multilevel Monte Carlo method for estimating probability distribution functions in stochastic oil reservoir simulations SO WATER RESOURCES RESEARCH LA English DT Article ID PARTIAL-DIFFERENTIAL-EQUATIONS; RANDOM POROUS-MEDIA; STEADY-STATE FLOW; RANDOM INPUT DATA; COLLOCATION METHOD; LOCALIZED ANALYSES; UNCERTAINTY; EFFICIENT; MODEL AB In this work, we develop an improved multilevel Monte Carlo (MLMC) method for estimating cumulative distribution functions (CDFs) of a quantity of interest, coming from numerical approximation of large-scale stochastic subsurface simulations. Compared with Monte Carlo (MC) methods, that require a significantly large number of high-fidelity model executions to achieve a prescribed accuracy when computing statistical expectations, MLMC methods were originally proposed to significantly reduce the computational cost with the use of multifidelity approximations. The improved performance of the MLMC methods depends strongly on the decay of the variance of the integrand as the level increases. However, the main challenge in estimating CDFs is that the integrand is a discontinuous indicator function whose variance decays slowly. To address this difficult task, we approximate the integrand using a smoothing function that accelerates the decay of the variance. In addition, we design a novel a posteriori optimization strategy to calibrate the smoothing function, so as to balance the computational gain and the approximation error. The combined proposed techniques are integrated into a very general and practical algorithm that can be applied to a wide range of subsurface problems for high-dimensional uncertainty quantification, such as a fine-grid oil reservoir model considered in this effort. The numerical results reveal that with the use of the calibrated smoothing function, the improved MLMC technique significantly reduces the computational complexity compared to the standard MC approach. Finally, we discuss several factors that affect the performance of the MLMC method and provide guidance for effective and efficient usage in practice. C1 [Lu, Dan] Oak Ridge Natl Lab, Climate Change Sci Inst, Comp Sci & Math Div, Oak Ridge, TN 37830 USA. [Zhang, Guannan; Webster, Clayton] Oak Ridge Natl Lab, Dept Computat & Appl Math, Oak Ridge, TN USA. [Webster, Clayton] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. [Barbier, Charlotte] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. RP Lu, D (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Comp Sci & Math Div, Oak Ridge, TN 37830 USA. EM lud1@ornl.gov OI Zhang, Guannan/0000-0001-7256-150X; Lu, Dan/0000-0001-5162-9843 FU U.S. Defense Advanced Research Projects Agency, Defense Sciences Office [HR0011619523]; U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program [ERKJ259, ERKJ314]; U.S. Air Force Office of Scientific Research [1854-V521-12]; U.S. National Science Foundation, Computational Mathematics program [1620280, 1620027]; Laboratory Directed Research and Development program at the Oak Ridge National Laboratory [DE-AC05-00OR22725] FX The author would like to thank the anonymous referees for their insightful comments and suggestions that have helped improve the paper. This work is partially supported by the U.S. Defense Advanced Research Projects Agency, Defense Sciences Office under contract HR0011619523; the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under contracts ERKJ259 and ERKJ314; the U.S. Air Force Office of Scientific Research under grants 1854-V521-12; the U.S. National Science Foundation, Computational Mathematics program under awards 1620280 and 1620027; and by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory, which is operated by UT-Battelle, LLC., for the U.S. Department of Energy, under contract DE-AC05-00OR22725. NR 46 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD DEC PY 2016 VL 52 IS 12 BP 9642 EP 9660 DI 10.1002/2016WR019475 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA EJ6HV UT WOS:000393321000026 ER PT J AU Matsubara, Y Grills, DC Koide, Y AF Matsubara, Yasuo Grills, David C. Koide, Yoshihiro TI Experimental Insight into the Thermodynamics of the Dissolution of Electrolytes in Room-Temperature Ionic Liquids: From the Mass Action Law to the Absolute Standard Chemical Potential of a Proton SO ACS Omega LA English DT Article ID ETHANOL-WATER SOLVENTS; ELECTROCATALYTIC CO2 REDUCTION; TRANSFER ACTIVITY-COEFFICIENTS; EQUILIBRIUM ACIDITY PK(A); AQUEOUS-ORGANIC SOLVENTS; SOLVATION FREE-ENERGIES; GIBBS FREE-ENERGY; BINARY-MIXTURES; SINGLE IONS; MOLTEN-SALT AB Room-temperature ionic liquids (ILs) are a class of nonaqueous solvents that have expanded the realm of modern chemistry, drawing increasing interest over the last few decades, not only in terms of their own unique physical chemistry but also in many applications including organic synthesis, electrochemistry, and biological systems, wherein charged solutes (i.e., electrolytes) often play vital roles. However, our fundamental understanding of the dissolution of an electrolyte in an IL is still rather limited. For example, the activity of a charged species has frequently been assumed to be unity without a clear experimental basis. In this study, we have discussed a standard component-based scheme for the dissolution of an electrolyte in an IL, supported by our observation of ideal Nernstian responses for the reduction of silver and ferrocenium salts in a representative IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide ([emim(+)][NTf2-] or [emim(+)][TFSI-]). Using this scheme, which was also supported by temperature-dependent measurements with ILs having longer alkyl chains in the imidazolium ring, and the solubility of the IL in water, we established the concept of Gibbs transfer energies of "pseudo-single ions" from the IL to conventional neutral molecular solvents (water, acetonitrile, and methanol). This concept, which bridges component-and constituent-based energetics, utilizes an extrathermodynamic assumption, which itself was justified by experimental observations. These energies enable us to eliminate inner potential differences between the IL and molecular solvents (solvent-solvent interactions), that is, on a practical level, conditional liquid junction potential differences, so that we can discuss ion-solvent interactions independently. Specifically, we have examined the standard electrode potential of the ferrocenium/ferrocene redox couple, Fc(+)/Fc, and the absolute intrinsic standard chemical potential of a proton in [emim(+)][NTf2-], finding that the proton is more acidic in the IL than in water by 6.5 +/- 0.6 units on the unified pH scale. These results strengthen the progress on the physical chemistry of ions in IL solvent systems on the basis of their activities, providing a rigorous thermodynamic framework. C1 [Matsubara, Yasuo; Koide, Yoshihiro] Kanagawa Univ, Dept Mat & Life Chem, Kanagawa Ku, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 2218686, Japan. [Grills, David C.] Brookhaven Natl Lab, Div Chem, POB 5000, Upton, NY 11973 USA. RP Matsubara, Y (reprint author), Kanagawa Univ, Dept Mat & Life Chem, Kanagawa Ku, 3-27-1 Rokkakubashi, Yokohama, Kanagawa 2218686, Japan.; Grills, DC (reprint author), Brookhaven Natl Lab, Div Chem, POB 5000, Upton, NY 11973 USA. EM ft101936fb@kanagawa-u.ac.jp; dcgrills@bnl.gov OI Grills, David/0000-0001-8349-9158 FU PRESTO project: "Chemical Conversion of Light Energy" of the Japan Science and Technology Agency (JST) [JST-PROJECT-11102684]; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences [DE-SC0012704] FX This work was partially supported by the PRESTO project: "Chemical Conversion of Light Energy" of the Japan Science and Technology Agency (JST) under grant JST-PROJECT-11102684. We acknowledge the work of Shota Ishii, Kazuya Ando, Kaito Abe, Tetsuya Iijima, and Kazuki Saito on measurements of solubilities and potential differences. Work at BNL was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences under contract DE-SC0012704. We thank Assoc. Prof. Dr. Shoji Akai for kindly supporting elemental analysis and Drs. James Wishart and Stephen Feldberg for helpful discussions. NR 175 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2470-1343 J9 ACS OMEGA JI ACS Omega PD DEC PY 2016 VL 1 IS 6 BP 1393 EP 1411 DI 10.1021/acsomega.6b00129 PG 19 WC Chemistry, Multidisciplinary SC Chemistry GA EI7YQ UT WOS:000392721200035 ER PT J AU Chen, BL Wang, GY Chen, SY Muralidharan, G Stalheim, D Sun, AC Huang, EW Liaw, PK AF Chen, Bilin Wang, Gongyao Chen, Shuying Muralidharan, Govindarajan Stalheim, Doug Sun, An-Cheng Huang, E-Wen Liaw, Peter K. TI Fatigue-Crack-Growth Behavior of Two Pipeline Steels SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID NEUTRON-DIFFRACTION; STRESS RATIOS; TIP; ALLOY; EVOLUTION; CLOSURE AB The fatigue-crack-growth behavior of two types of pipeline steels, Alloy B [Fe-0.05C-1.52Mn-0.12Si-0.092Nb, weight percent (wt%)] and Alloy C (Fe-0.04C-1.61Mn-0.14Si-0.096Nb, wt%), have been investigated. Compact-tension (CT) specimens have been tested at various frequencies (10, 1, and 0.1 Hz) and different R ratios (0.1 and 0.5, R = P-min/P-max where P-min is the minimum applied load, and P-max is the maximum applied load) in air. It is concluded that higher R ratios lead to faster crack-growth rates (FCGRs), while frequency does not have much influence on FCGRs. Moreover, Alloy B tends to have better fatigue resistance than Alloy C under various test conditions in air. C1 [Chen, Bilin; Wang, Gongyao; Chen, Shuying; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Muralidharan, Govindarajan] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Stalheim, Doug] DGS Met Solut Inc, 15003 NE 10th St, Vancouver, WA 98684 USA. [Sun, An-Cheng] Yuan Ze Univ, Dept Chem Engn & Mat Sci, 135 Yuan Tung Rd, Chungli 32003, Taiwan. [Huang, E-Wen] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 300, Taiwan. [Huang, E-Wen] Ind Technol Res Inst, Mat & Chem Res Labs, Zhudong 31040, Hsinchu County, Taiwan. RP Liaw, PK (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM pliaw@utk.edu FU U.S. Department of Transportation Federal Aviation [USDOTDTPH56-10-T-000001]; U.S. Army Research Office project [W911NF-13-1-0438]; National Science Foundation [CMMI-1100080, DMR-1611180]; U.S. Department of Energy Office of Science User Facility operated for the DOE Office of Science by the Argonne National Laboratory [DE-AC02-06CH11357] FX P. K. L. genuinely appreciates the U.S. Department of Transportation Federal Aviation, under Grant No. of USDOTDTPH56-10-T-000001, with Jim Merritt as the program manager. E. W. H. would like to acknowledge the Ministry of Science and Technology (MOST) Program of 104-2628-E-009-003-MY3 and Atomic Energy Council (AEC) Program of 105A3015EJ. P. K. L. is very grateful to the Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855, DE-FE-0024054, and DE-FE-0011194), with Mr. V. Cedro, Mr. R. Dunst, and Dr. J. Mullen as program managers. P. K. L. very much appreciates the support of the U.S. Army Research Office project (W911NF-13-1-0438) with the program manager, Dr. D. M. Stepp. P. K. L. thanks the support from the National Science Foundation (CMMI-1100080 and DMR-1611180) with the program directors, Dr. C. Cooper and Dr. D. Farkas. We acknowledge the use of the Advanced Photon Source, a U.S. Department of Energy Office of Science User Facility operated for the DOE Office of Science by the Argonne National Laboratory under Contract No. DE-AC02-06CH11357, with Dr. Y. Ren as the beamline scientist. NR 32 TC 0 Z9 0 U1 6 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1438-1656 EI 1527-2648 J9 ADV ENG MATER JI Adv. Eng. Mater. PD DEC PY 2016 VL 18 IS 12 SI SI BP 2028 EP 2039 DI 10.1002/adem.201600340 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA EJ1AB UT WOS:000392941400006 ER PT J AU Baxter, HL Mazarei, M Fu, CX Cheng, QK Turner, GB Sykes, RW Windham, MT Davis, MF Dixon, RA Wang, ZY Stewart, CN AF Baxter, Holly L. Mazarei, Mitra Fu, Chunxiang Cheng, Qunkang Turner, Geoffrey B. Sykes, Robert W. Windham, Mark T. Davis, Mark F. Dixon, Richard A. Wang, Zeng-Yu Stewart, C. Neal, Jr. TI Time Course Field Analysis of COMT-Downregulated Switchgrass: Lignification, Recalcitrance, and Rust Susceptibility SO BioEnergy Research LA English DT Article DE Biomass; Caffeic acid O-methyltransferase (COMT); Lignin; Lignocellulosic biofuel; Switchgrass ID ACID O-METHYLTRANSFERASE; MAIZE STEM TISSUES; CELL-WALL; PANICUM-VIRGATUM; LIGNIN BIOSYNTHESIS; BIOFUEL PRODUCTION; LIGNOCELLULOSIC BIOMASS; GENETIC MANIPULATION; BIOENERGY FEEDSTOCK; PUCCINIA-EMACULATA AB Modifying plant cell walls by manipulating lignin biosynthesis can improve biofuel yields from lignocellulosic crops. For example, transgenic switchgrass lines with down-regulated expression of caffeic acid O-methyltransferase, a lignin biosynthetic enzyme, produce up to 38 % more ethanol than controls. The aim of the present study was to understand cell wall lignification over the second and third growing seasons of COMT-downregulated field-grown switchgrass. COMT gene expression, lignification, and cell wall recalcitrance were assayed for two independent transgenic lines at monthly intervals. Switchgrass rust (Puccinia emaculata) incidence was also tracked across the seasons. Trends in lignification over time differed between the 2 years. In 2012, sampling was initiated in mid-growing season on reproductivestage plants and there was little variation in the lignin content of all lines (COMT-downregulated and control) over time. COMT-downregulated lines maintained 11-16 % less lignin, 33-40 % lower S/G (syringyl-to-guaiacyl) ratios, and 1542 % higher sugar release relative to controls for all time points. In 2013, sampling was initiated earlier in the season on elongation-stage plants and the lignin content of all lines steadily increased over time, while sugar release expectedly decreased. S/G ratios increased in non-transgenic control plants as biomass accumulated over the season, while remaining relatively stable across the season in the COMT-downregulated lines. Differences in cell wall chemistry between transgenic and non-transgenic lines were not apparent until plants transitioned to reproductive growth inmid-season, after which the cell walls of COMT-downregulated plants exhibited phenotypes consistent with what was observed in 2012. There were no differences in rust damage between transgenics and controls at any time point. These results provide relevant fundamental insights into the process of lignification in a maturing field-grown biofuel feedstock with downregulated lignin biosynthesis. C1 [Baxter, Holly L.; Mazarei, Mitra; Stewart, C. Neal, Jr.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Baxter, Holly L.; Mazarei, Mitra; Fu, Chunxiang; Turner, Geoffrey B.; Sykes, Robert W.; Davis, Mark F.; Dixon, Richard A.; Wang, Zeng-Yu; Stewart, C. Neal, Jr.] Oak Ridge Natl Lab, BESC, Oak Ridge, TN 37831 USA. [Fu, Chunxiang; Wang, Zeng-Yu] Samuel Roberts Noble Fdn Inc, Ardmore, OK 73401 USA. [Cheng, Qunkang; Windham, Mark T.] Univ Tennessee, Dept Entomol & Plant Pathol, Knoxville, TN 37996 USA. [Turner, Geoffrey B.; Sykes, Robert W.; Davis, Mark F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Dixon, Richard A.] Univ North Texas, Dept Biol Sci, Denton, TX 76203 USA. RP Stewart, CN (reprint author), Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA.; Stewart, CN (reprint author), Oak Ridge Natl Lab, BESC, Oak Ridge, TN 37831 USA. EM nealstewart@utk.edu OI davis, mark/0000-0003-4541-9852 FU Southeastern Sun Grant Center; BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science FX We thank Angela Ziebell, Erica Gjersing, Crissa Doeppke, and Melvin Tucker for assistance with the cell wall characterization. We also thank Ben Wolfe, Marcus Laxton, and the UT field staff for general field maintenance and assistance with sample collection, Reggie Millwood for assistance with the USDA APHIS BRS permit regulations, Erika Barton for assistance with sample preparation, and Susan Holladay for assistance with data entry into LIMS. This work was supported by funding from the Southeastern Sun Grant Center and the BioEnergy Science Center. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 51 TC 0 Z9 0 U1 6 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 EI 1939-1242 J9 BIOENERG RES JI BioEnergy Res. PD DEC PY 2016 VL 9 IS 4 BP 1087 EP 1100 DI 10.1007/s12155-016-9751-1 PG 14 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA EI8CI UT WOS:000392731900011 ER PT J AU Baer, DR Munusamy, P Thrall, BD AF Baer, Donald R. Munusamy, Prabhakaran Thrall, Brian D. TI Provenance information as a tool for addressing engineered nanoparticle reproducibility challenges SO Biointerphases LA English DT Article ID CORE-SHELL NANOPARTICLES; ZERO-VALENT IRON; OXIDE NANOPARTICLES; BIOMEDICAL APPLICATIONS; SILVER NANOPARTICLES; SURFACE-CHEMISTRY; CARBON NANOTUBES; RISK-ASSESSMENT; NANOMATERIALS; TOXICITY AB Nanoparticles of various types are of increasing research and technological importance in biological and other applications. Difficulties in the production and delivery of nanoparticles with consistent and well defined properties appear in many forms and have a variety of causes. Among several issues are those associated with incomplete information about the history of particles involved in research studies, including the synthesis method, sample history after synthesis, including time and nature of storage, and the detailed nature of any sample processing or modification. In addition, the tendency of particles to change with time or environmental condition suggests that the time between analysis and application is important and some type of consistency or verification process can be important. The essential history of a set of particles can be identified as provenance information and tells the origin or source of a batch of nano-objects along with information related to handling and any changes that may have taken place since it was originated. A record of sample provenance information for a set of particles can play a useful role in identifying some of the sources and decreasing the extent of particle variability and the lack of reproducibility observed by many researchers. (C) 2016 Author(s). C1 [Baer, Donald R.; Munusamy, Prabhakaran; Thrall, Brian D.] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA. RP Baer, DR (reprint author), Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA. EM don.baer@pnnl.gov FU Office of Biological and Environmental Research (BER); DOE Office of Science, Offices of Basic Energy Science (or BES) and BER; National Institutes of Environmental Health Sciences (or NIEHS) Centers for Nanotechnology Health Implications Research (NCNHIR) Consortium [U19 ES019544] FX Much of the work reported in this paper was conducted using the Environmental Molecular Sciences Laboratory (or EMSL), a Department of Energy (DOE) Office of Science User Facility sponsored by the Office of Biological and Environmental Research (BER). Parts of the work were supported by the DOE Office of Science, Offices of Basic Energy Science (or BES) and BER, and the National Institutes of Environmental Health Sciences (or NIEHS) Centers for Nanotechnology Health Implications Research (NCNHIR) Consortium under Center Grant No. U19 ES019544. The ideas included in this perspective have evolved from two different but related sources. (1) For more than a decade, laboratories at Pacific Northwest National Laboratory (or PNNL) and EMSL have worked with a range of colleagues from around the world to study the behaviors of nanomaterials of many types. These research efforts have identified information the authors have found to be important for reproducible studies. (2) In addition, DRB has participated within ISO Committee T201 on Surface Chemical Analysis in cooperation of ISO Committee 229 Nanotechnology to prepare a document on the information that needs to be reported regarding the handling and preparation of nano-objects for surface analysis. The nano-object sample handling document (ISO 20579-4) highlights the need for the methods used for preparing nano-objects for surface analysis to be documented, along with the data collected, to become part of the provenance information associated with a batch of material. NR 79 TC 3 Z9 3 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1934-8630 EI 1559-4106 J9 BIOINTERPHASES JI Biointerphases PD DEC PY 2016 VL 11 IS 4 AR 04B401 DI 10.1116/1.4964867 PG 9 WC Biophysics; Materials Science, Biomaterials SC Biophysics; Materials Science GA EI8JL UT WOS:000392752400016 PM 27936809 ER PT J AU Bergeron, N Williams, PT Lamendella, R Faghihnia, N Grube, A Li, XM Wang, ZN Knight, R Jansson, JK Hazen, SL Krauss, RM AF Bergeron, Nathalie Williams, Paul T. Lamendella, Regina Faghihnia, Nastaran Grube, Alyssa Li, Xinmin Wang, Zeneng Knight, Rob Jansson, Janet K. Hazen, Stanley L. Krauss, Ronald M. TI Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk SO BRITISH JOURNAL OF NUTRITION LA English DT Article DE Trimethylamine-N-oxide; Resistant starch; Carbohydrate; Lipids; Insulin; Glucose; CVD ID CONTAINING MONOOXYGENASE 3; APOLIPOPROTEIN-A-I; REDUCED-FAT DIET; INSULIN SENSITIVITY; HIGH-AMYLOSE; L-CARNITINE; LIQUID-CHROMATOGRAPHY; LIPOPROTEIN RESPONSE; RUMINOCOCCUS-BROMII; AMYLOPECTIN STARCH AB Production of trimethylamine-N-oxide (TMAO), a biomarker of CVD risk, is dependent on intestinal microbiota, but little is known of dietary conditions promoting changes in gut microbial communities. Resistant starches (RS) alter the human microbiota. We sought to determine whether diets varying in RS and carbohydrate (CHO) content affect plasma TMAO levels. We also assessed postprandial glucose and insulin responses and plasma lipid changes to diets high and low in RS. In a cross-over trial, fifty-two men and women consumed a 2week baseline diet (41 percentage of energy (% E) CHO, 40% fat, 19% protein), followed by 2-week high-and low-RS diets separated by 2week washouts. RS diets were assigned at random within the context of higher (51-53 % E) v. lower CHO (39-40 % E) intake. Measurements were obtained in the fasting state and, for glucose and insulin, during a meal test matching the composition of the assigned diet. With lower CHO intake, plasma TMAO, carnitine, betaine and gamma-butyrobetaine concentrations were higher after the high-v. low-RS diet (P < 0.01 each). These metabolites were not differentially affected by high v. low RS when CHO intake was high. Although the high-RS meal reduced postprandial insulin and glucose responses when CHO intake was low (P < 0.01 each), RS did not affect fasting lipids, lipoproteins, glucose or insulin irrespective of dietary CHO content. In conclusion, a lower-CHO diet high in RS was associated with higher plasma TMAO levels. These findings, together with the absence of change in fasting lipids, suggest that short-term high-RS diets do not improve markers of cardiometabolic health. C1 [Bergeron, Nathalie; Faghihnia, Nastaran; Krauss, Ronald M.] Childrens Hosp, Oakland Res Inst, Oakland, CA 94609 USA. [Bergeron, Nathalie] Touro Univ, Coll Pharm, Vallejo, CA 94592 USA. [Williams, Paul T.] Lawrence Berkeley Natl Lab, Dept Genome Sci, Div Life Sci, Berkeley, CA 94720 USA. [Lamendella, Regina; Grube, Alyssa] Juniata Coll, Huntingdon, PA 16652 USA. [Li, Xinmin; Wang, Zeneng; Hazen, Stanley L.] Cleveland Clin, Dept Cellular & Mol Med, Cleveland, OH 44195 USA. [Knight, Rob] Univ Calif San Diego, Dept Pediat & Comp Sci & Engn, San Diego, CA 92093 USA. [Knight, Rob] Univ Colorado Boulder, Dept Chem & Biochem & Comp Sci, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado Boulder, BioFrontiers Inst, Boulder, CO 80309 USA. [Jansson, Janet K.] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Bergeron, N; Krauss, RM (reprint author), Childrens Hosp, Oakland Res Inst, Oakland, CA 94609 USA.; Bergeron, N (reprint author), Touro Univ, Coll Pharm, Vallejo, CA 94592 USA. EM nbergeron@chori.org; rkrauss@chori.org FU National Institutes of Health (NIH) [DK086472]; NIH National Center for Advancing Translational Sciences, University of California, San Francisco (UCSF) Clinical and Translational Science Unit [UL1 TR000004]; Ingredion Inc.; NIH; Office of Dietary Supplements [HL103866, DK106000]; Lenard Krieger Endowment FX The authors received the following financial supports: National Institutes of Health (NIH) (DK086472); NIH National Center for Advancing Translational Sciences, University of California, San Francisco (UCSF) Clinical and Translational Science Unit (UL1 TR000004); Ingredion Inc.; NIH and Office of Dietary Supplements (HL103866 and DK106000); S. L. H. is also partially supported by funds from the Lenard Krieger Endowment. NR 60 TC 0 Z9 0 U1 5 U2 5 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 0007-1145 EI 1475-2662 J9 BRIT J NUTR JI Br. J. Nutr. PD DEC PY 2016 VL 116 IS 12 BP 2020 EP 2029 DI 10.1017/S0007114516004165 PG 10 WC Nutrition & Dietetics SC Nutrition & Dietetics GA EI8AK UT WOS:000392726300003 PM 27993177 ER PT J AU Matos, MN Lozada, M Anselmino, LE Musumeci, MA Henrissat, B Jansson, JK Mac Cormack, WP Carroll, J Sjoling, S Lundgren, L Dionisi, HM AF Matos, Marina N. Lozada, Mariana Anselmino, Luciano E. Musumeci, Matias A. Henrissat, Bernard Jansson, Janet K. Mac Cormack, Walter P. Carroll, JoLynn Sjoling, Sara Lundgren, Leif Dionisi, Hebe M. TI Metagenomics unveils the attributes of the alginolytic guilds of sediments from four distant cold coastal environments SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID BACTERIAL COMMUNITY STRUCTURE; COMPARATIVE-ANALYSIS SYSTEM; BALTIC SEA; ALGAL POLYSACCHARIDES; MICROBIAL COMMUNITY; ESCHERICHIA-COLI; MARINE BACTERIUM; ALGINATE LYASE; SP-NOV.; DEGRADATION AB Alginates are abundant polysaccharides in brown algae that constitute an important energy source for marine heterotrophic bacteria. Despite the key role of alginate degradation processes in the marine carbon cycle, little information is available on the bacterial populations involved in these processes. The aim of this work was to gain a better understanding of alginate utilization capabilities in cold coastal environments. Sediment metagenomes from four high-latitude regions of both Hemispheres were interrogated for alginate lyase gene homologue sequences and their genomic context. Sediments contained highly abundant and diverse bacterial assemblages with alginolytic potential, including members of Bacteroidetes and Proteobacteria, as well as several poorly characterized taxa. The microbial communities in Arctic and Antarctic sediments exhibited the most similar alginolytic profiles, whereas brackish sediments showed distinct structures with a higher proportion of novel genes. Examination of the gene neighbourhood of the alginate lyase homologues revealed distinct patterns depending on the potential lineage of the scaffolds, with evidence of evolutionary relationships among alginolytic gene clusters from Bacteroidetes and Proteobacteria. This information is relevant for understanding carbon fluxes in cold coastal environments and provides valuable information for the development of biotechnological applications from brown algae biomass. C1 [Matos, Marina N.; Lozada, Mariana; Anselmino, Luciano E.; Musumeci, Matias A.; Dionisi, Hebe M.] Consejo Nacl Invest Cient & Tecn, Ctr El Estudio Sistemas Marinos CESIMAR, Lab Microbiol Ambiental, U9120ACD, Puerto Madryn, Argentina. [Henrissat, Bernard] Aix Marseille Univ, CNRS, Architecture & Fonct Macromol Biol, F-13288 Marseille, France. [Henrissat, Bernard] INRA, USC AFMB 1408, F-13288 Marseille, France. [Henrissat, Bernard] King Abdulaziz Univ, Dept Biol Sci, Jeddah 21589, Saudi Arabia. [Jansson, Janet K.] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA. [Mac Cormack, Walter P.] Inst Antartico Argentino, C1064ABR, Buenos Aires, DF, Argentina. [Mac Cormack, Walter P.] Univ Buenos Aires, CONICET, Inst Nanobiotec, C1113AAC, Buenos Aires, DF, Argentina. [Carroll, JoLynn] Fram High North Res Ctr Climate & Environm, Akvaplan Niva, NO-9296 Tromso, Norway. [Carroll, JoLynn] UiT Arctic Univ Norway, CAGE Ctr Arctic Gas Hydrate Environm & Climate, N-9037 Tromso, Norway. [Sjoling, Sara] Sodertorn Univ, Sch Nat Sci & Environm Studies, S-14189 Huddinge, Sweden. [Lundgren, Leif] Stockholm Univ, SE-10691 Stockholm, Sweden. RP Dionisi, HM (reprint author), Consejo Nacl Invest Cient & Tecn, Ctr El Estudio Sistemas Marinos CESIMAR, Lab Microbiol Ambiental, U9120ACD, Puerto Madryn, Argentina. EM hdionisi@cenpat-conicet.gob.ar RI Fac Sci, KAU, Biol Sci Dept/L-4228-2013 FU Department of Energy-Joint Genome Institute (DOE-JGI) under the Community Sequencing Program (CSP) [403959, 404206, 404777-404782, 404786, 404788-404801]; CONICET [112-200801-01736]; National Agency for the Promotion of Science and Technology of Argentina [0468]; University of Buenos Aires [UBA 2014-2017 20020130100569BA]; European Commission through the Marie Curie Action IRSES IMCONet [318718]; Argentinean Antarctic Institute; ANPCyT [0124]; Pacific Northwest National Laboratory [DE-AC05-76RLO1830]; Agence Nationale de la Recherche [ANR-10-BINF-03-04]; Research Council of Norway [223259] FX ML, MAM and HMD are staff members from The National Research Council of Argentina (CONICET). MNM is a post-doctoral fellow from CONICET. The metagenomic dataset was generated at the Department of Energy-Joint Genome Institute (DOE-JGI) under the Community Sequencing Program (CSP proposal ID 328, project IDs 403959, 404206, 404777-404782, 404786, 404788-404801). HMD and ML were supported by Grants from CONICET (No. 112-200801-01736) and The National Agency for the Promotion of Science and Technology of Argentina (ANPCyT PICT2008 No. 0468). WMC was supported by Grants from the University of Buenos Aires (UBA 2014-2017 20020130100569BA), the European Commission through the Marie Curie Action IRSES IMCONet (Project No. 318718), the Argentinean Antarctic Institute and ANPCyT (PICTO 2010 No. 0124). JKJ was supported by the Pacific Northwest National Laboratory under Contract DE-AC05-76RLO1830. BH was supported by Agence Nationale de la Recherche, Grant BIP:BIP (ANR-10-BINF-03-04). JC's research contribution is supported by the Research Council of Norway (Grant No. 223259). We thank Krystle Chavarria for her technical support and Ricardo Vera and Horacio Ocariz for their help in sample collection. We would like to dedicate this work to our late colleagues Horacio Ocariz and Leif Lundgren, who left us too early. NR 70 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD DEC PY 2016 VL 18 IS 12 BP 4471 EP 4484 DI 10.1111/1462-2920.13433 PG 14 WC Microbiology SC Microbiology GA EJ1CD UT WOS:000392946900014 PM 27348213 ER PT J AU Alfaro, M Castanera, R Lavin, JL Grigoriev, IV Oguiza, JA Ramirez, L Pisabarro, AG AF Alfaro, Manuel Castanera, Raul Lavin, Jose L. Grigoriev, Igor V. Oguiza, Jose A. Ramirez, Lucia Pisabarro, Antonio G. TI Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID PATHOGEN USTILAGO-MAYDIS; PROTEIN FAMILIES; CERATO-PLATANIN; GENOME SEQUENCE; PHYLOGENETIC ANALYSIS; FILAMENTOUS FUNGI; LACCARIA-BICOLOR; EDIBLE MUSHROOM; INSIGHTS; MECHANISMS AB Fungi interact with their environment by secreting proteins to obtain nutrients, elicit responses and modify their surroundings. Because the set of proteins secreted by a fungus is related to its lifestyle, it should be possible to use it as a tool to predict fungal lifestyle. To test this hypothesis, we bioinformatically identified 538 and 554 secretable proteins in the monokaryotic strains PC9 and PC15 of the white rot basidiomycete Pleurotus ostreatus. Functional annotation revealed unknown functions (37.2%), glycosyl hydrolases (26.5%) and redox enzymes (11.5%) as the main groups in the two strains. When these results were combined with RNA-seq analyses, we found that the relative importance of each group was different in different strains and culture conditions and the relevance of the unknown function proteins was enhanced. Only a few genes were actively expressed in a given culture condition in expanded multigene families, suggesting that family expansi on could increase adaptive opportunities rather than activity under a specific culture condition. Finally, we used the set of P. ostreatus secreted proteins as a query to search their counterparts in other fungal genomes and found that the secretome profiles cluster the tested basidiomycetes into lifestyle rather than phylogenetic groups. C1 [Alfaro, Manuel; Castanera, Raul; Lavin, Jose L.; Oguiza, Jose A.; Ramirez, Lucia; Pisabarro, Antonio G.] Univ Publ Navarra, Dept Agr Prod, Genet & Microbiol Res Grp, Pamplona 31006, Spain. [Lavin, Jose L.] CIC bioGUNE, Genome Anal Platform, Bizkaia Technol Pk, Derio 48160, Spain. [Lavin, Jose L.] CIBERehd, Bizkaia Technol Pk, Derio 48160, Spain. [Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Pisabarro, AG (reprint author), Univ Publ Navarra, Dept Agr Prod, Genet & Microbiol Res Grp, Pamplona 31006, Spain. EM gpisabarro@unavarra.es OI Lavin, Jose Luis/0000-0003-0914-3211 FU Spanish National Research Plan [AGL2011-30495]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Basque Country Government; Innovation Technology Dept. of Bizkaia FX This work was supported by funds from the project AGL2011-30495 of the Spanish National Research Plan, by additional institutional support from the Public University of Navarre, and by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (work conducted by the U.S. Department of Energy Joint Genome Institute). JLL is supported by the Basque Country Government (Etortek Research Programs 2011/2014) and from the Innovation Technology Dept. of Bizkaia. NR 75 TC 1 Z9 1 U1 4 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD DEC PY 2016 VL 18 IS 12 BP 4710 EP 4726 DI 10.1111/1462-2920.13360 PG 17 WC Microbiology SC Microbiology GA EJ1CD UT WOS:000392946900032 PM 27117896 ER PT J AU Yan, QY Li, JJ Yu, YH Wang, JJ He, ZL Van Nostrand, JD Kempher, ML Wu, LY Wang, YP Liao, LJ Li, XH Wu, S Ni, JJ Wang, C Zhou, JZ AF Yan, Qingyun Li, Jinjin Yu, Yuhe Wang, Jianjun He, Zhili Van Nostrand, Joy D. Kempher, Megan L. Wu, Liyou Wang, Yaping Liao, Lanjie Li, Xinghao Wu, Shu Ni, Jiajia Wang, Chun Zhou, Jizhong TI Environmental filtering decreases with fish development for the assembly of gut microbiota SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID INTESTINAL MICROBIOTA; BACTERIAL COMMUNITIES; ECOLOGICAL PROCESSES; ISLAND BIOGEOGRAPHY; NEUTRAL THEORY; DIVERSITY; METABOLISM; ZEBRAFISH; EVOLUTION; MICE AB Gut microbiota typically occupy habitats with definable limits/borders that are comparable to oceanic islands. The gut therefore can be regarded as an 'island' for the assembly of microbial communities within the 'sea' of surrounding environments. This study aims to reveal the ecological mechanisms that govern microbiota in the fish gut 'island' ecosystem. Taxonomic compositions, phylogenetic diversity, and community turnover across host development were analyzed via the high-throughput sequencing of 16S rRNA gene amplicons. The results indicate that the Shannon diversity of gut microbiota in the three examined freshwater fish species all significantly decreased with host development, and the dominant bacterial taxa also changed significantly during host development. Null model and phylogenetic-based mean nearest taxon distance (MNTD) analyses suggest that host gut environmental filtering led to the assembly of microbial communities in the fish gut 'island'. However, the phylogenetic clustering of local communities and deterministic processes that governed community turnover became less distinct as the fish developed. The observed mechanisms that shaped fish gut microbiota seemed to be mainly shaped by the gut environment and by some other selective changes accompanying the host development process. These findings greatly enhance our understanding of stage-specific community assembly patterns in the fish gut ecosystem. C1 [Yan, Qingyun; Li, Jinjin; Yu, Yuhe; Wang, Yaping; Liao, Lanjie; Li, Xinghao; Wu, Shu; Ni, Jiajia; Wang, Chun] Chinese Acad Sci, Key Lab Aquat Biodivers & Conservat, Wuhan 430072, Peoples R China. [Yan, Qingyun; Li, Jinjin; Yu, Yuhe; Wang, Yaping; Liao, Lanjie; Li, Xinghao; Wu, Shu; Ni, Jiajia; Wang, Chun] Chinese Acad Sci, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Peoples R China. [Li, Jinjin] Qilu Normal Univ, Jinan 250013, Peoples R China. [Wang, Jianjun; He, Zhili; Van Nostrand, Joy D.; Kempher, Megan L.; Wu, Liyou; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Wang, Jianjun; He, Zhili; Van Nostrand, Joy D.; Kempher, Megan L.; Wu, Liyou; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Wang, Jianjun] Chinese Acad Sci, State Key Lab Lake Sci & Environm, Nanjing Inst Geog & Limnol, Nanjing 210008, Peoples R China. [Li, Xinghao; Wang, Chun] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Ni, Jiajia] Guangdong Inst Microbiol, State Key Lab Appl Microbiol Southern China, Guangzhou 510070, Guangdong, Peoples R China. [Wang, Chun] Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China. [Zhou, Jizhong] Tsinghua Univ, State Key Joint Lab Environm Simulat & Pollut Con, Sch Environm, Beijing 100084, Peoples R China. [Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Yan, QY (reprint author), Chinese Acad Sci, Key Lab Aquat Biodivers & Conservat, Wuhan 430072, Peoples R China.; Yan, QY (reprint author), Chinese Acad Sci, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Peoples R China.; Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Tsinghua Univ, State Key Joint Lab Environm Simulat & Pollut Con, Sch Environm, Beijing 100084, Peoples R China.; Zhou, JZ (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM yanqyun@ihb.ac.cn; yhyu@ihb.ac.cn; jzhou@ou.edu OI Wang, Jianjun/0000-0001-7039-7136 FU National Natural Science Foundation of China [31400109, 31372202]; Youth Innovation Promotion Association of the Chinese Academy of Sciences [Y22Z07]; Office of the Vice President for Research at the University of Oklahoma FX This work was supported by the National Natural Science Foundation of China (31400109, 31372202), by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y22Z07), and by the Office of the Vice President for Research at the University of Oklahoma. NR 67 TC 4 Z9 4 U1 17 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD DEC PY 2016 VL 18 IS 12 BP 4739 EP 4754 DI 10.1111/1462-2920.13365 PG 16 WC Microbiology SC Microbiology GA EJ1CD UT WOS:000392946900034 PM 27130138 ER PT J AU Bloom-Ackermann, Z Steinberg, N Rosenberg, G Oppenheimer-Shaanan, Y Pollack, D Ely, S Storzi, N Levy, A Kolodkin-Gal, I AF Bloom-Ackermann, Zohar Steinberg, Nitai Rosenberg, Gili Oppenheimer-Shaanan, Yaara Pollack, Dan Ely, Shir Storzi, Nimrod Levy, Asaf Kolodkin-Gal, Ilana TI Toxin-Antitoxin systems eliminate defective cells and preserve symmetry in Bacillus subtilis biofilms SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ESCHERICHIA-COLI; MASTER REGULATOR; DNA RELEASE; BACTERIA; DEATH; TNRA; CANNIBALISM; COMPETENCE; DISPERSAL; DISCOVERY AB Toxin-antitoxin modules are gene pairs encoding a toxin and its antitoxin, and are found on the chromosomes of many bacteria, including pathogens. Here, we characterize the specific contribution of the TxpA and YqcG toxins in elimination of defective cells from developing Bacillus subtilis biofilms. On nutrient limitation, defective cells accumulated in the biofilm breaking its symmetry. Deletion of the toxins resulted in accumulation of morphologically abnormal cells, and interfered with the proper development of the multicellular community. Dual physiological responses are of significance for TxpA and YqcG activation: nitrogen deprivation enhances the transcription of both TxpA and YqcG toxins, and simultaneously sensitizes the biofilm cells to their activity. Furthermore, we demonstrate that while both toxins when overexpressed affect the morphology of the developing biofilm, the toxin TxpA can act to lyse and dissolve pre-established B. subtilis biofilms. C1 [Bloom-Ackermann, Zohar; Steinberg, Nitai; Rosenberg, Gili; Oppenheimer-Shaanan, Yaara; Pollack, Dan; Ely, Shir; Storzi, Nimrod; Levy, Asaf; Kolodkin-Gal, Ilana] Weizmann Inst Sci, Dept Mol Genet, IL-76100 Rehovot, Israel. [Levy, Asaf] Broad Inst MIT & Harvard, Boston, MA USA. [Bloom-Ackermann, Zohar] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Kolodkin-Gal, I (reprint author), Weizmann Inst Sci, Dept Mol Genet, IL-76100 Rehovot, Israel. EM ilana.kolodkin-gal@weizmann.ac.il FU ISF-icore grant [152/1]; Larson Charitable Foundation; Ruth and Herman Albert Scholars Program for New Scientists; Ilse Katz Institute for Materials Sciences and Magnetic Resonance Research grant; Ministry of Health grant for alternative research methods; Rowland and Sylvia Career Development Chair FX This research was supported by the ISF-icore grant 152/1, Mr. and Mrs. Dan Kane, Ms. Lois Rosen, by the Larson Charitable Foundation, by Ruth and Herman Albert Scholars Program for New Scientists, by the Ilse Katz Institute for Materials Sciences and Magnetic Resonance Research grant, and by the Ministry of Health grant for alternative research methods. IKG is a recipient of the Rowland and Sylvia Career Development Chair. NR 63 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD DEC PY 2016 VL 18 IS 12 BP 5032 EP 5047 DI 10.1111/1462-2920.13471 PG 16 WC Microbiology SC Microbiology GA EJ1CD UT WOS:000392946900054 PM 27450630 ER PT J AU Sun, RB Dsouza, M Gilbert, JA Guo, XS Wang, DZ Guo, ZB Ni, YY Chu, HY AF Sun, Ruibo Dsouza, Melissa Gilbert, Jack A. Guo, Xisheng Wang, Daozhong Guo, Zhibin Ni, Yingying Chu, Haiyan TI Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ARBUSCULAR MYCORRHIZAL FUNGI; NITROGEN-FERTILIZATION; MICROBIAL COMMUNITIES; CHAETOMIUM-GLOBOSUM; ACREMONIUM ALCALOPHILUM; MULTIVARIATE ANALYSES; SAPROTROPHIC FUNGI; NORTHEAST CHINA; WHEAT-STRAW; ARABLE SOIL AB Organic matter application is a widely used practice to increase soil carbon content and maintain soil fertility. However, little is known about the effect of different types of organic matter, or the input of exogenous species from these materials, on soil fungal communities. In this study, fungal community composition was characterized from soils amended with three types of organic matter over a 30-year fertilization experiment. Chemical fertilization significantly changed soil fungal community composition and structure, which was exacerbated by the addition of organic matter, with the direction of change influenced by the type of organic matter used. The addition of organic matter significantly increased soil fungal richness, with the greatest richness achieved in soils amended with pig manure. Importantly, following addition of cow and pig manure, fungal taxa associated with these materials could be found in the soil, suggesting that these exogenous species can augment soil fungal composition. Moreover, the addition of organic matter decreased the relative abundance of potential pathogenic fungi. Overall, these results indicate that organic matter addition influences the composition and structure of soil fungal communities in predictable ways. C1 [Sun, Ruibo; Ni, Yingying; Chu, Haiyan] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, East Beijing Rd 71, Nanjing 210008, Jiangsu, Peoples R China. [Dsouza, Melissa; Gilbert, Jack A.] Univ Chicago, Marine Biol Lab, Woods Hole, MA 02543 USA. [Dsouza, Melissa; Gilbert, Jack A.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA. [Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Guo, Xisheng; Wang, Daozhong; Guo, Zhibin] Anhui Acad Agr Sci, Soil & Fertilizer Res Inst, Key Lab Nutrient Cycling & Resources Environm Anh, South Nongke Rd 40, Hefei 230031, Peoples R China. RP Chu, HY (reprint author), Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, East Beijing Rd 71, Nanjing 210008, Jiangsu, Peoples R China. EM hychu@issas.ac.cn FU Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15010101]; National Program on Key Basic Research Project [2014CB954002]; National Natural Science Foundation of China [41371254] FX We thank Congcong Shen, Xingjia Xiang and Yuntao Li for assistance in soil sampling, and Keke Hua for the management of the experimental field. We also thank Rong Huang for assistance in sequencing. This work was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15010101), the National Program on Key Basic Research Project (2014CB954002) and the National Natural Science Foundation of China (41371254). The authors declare no conflicts of interest. NR 115 TC 0 Z9 0 U1 22 U2 22 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD DEC PY 2016 VL 18 IS 12 BP 5137 EP 5150 DI 10.1111/1462-2920.13512 PG 14 WC Microbiology SC Microbiology GA EJ1CD UT WOS:000392946900062 PM 27581342 ER PT J AU Holby, EF AF Holby, E. F. TI First-Principles Molecular Dynamics Study of Carbon Corrosion in PEFC Catalyst Materials SO FUEL CELLS LA English DT Article DE Ab initio calculations; Carbon; Corrosion; First-principles Molecular Dynamics; Graphene; Molecular Modeling ID OXYGEN REDUCTION REACTION; TOTAL-ENERGY CALCULATIONS; MEMBRANE FUEL-CELLS; WAVE BASIS-SET; DEFECTS; METALS; ELECTROCATALYSTS; DEGRADATION; INSTABILITY; DURABILITY AB Carbon corrosion plays an important role in ORR catalyst durability for both Pt-based catalysts as well as Pt group metal-free (PGM-free) catalysts. This corrosion process is attributed to CO2 generation during one of several probable, kinetically controlled electrochemical reactions. Previous relative stability studies considered only thermodynamic formation energy and thus do not include the kinetic nature of the carbon corrosion mechanism. In this manuscript, a model for electron beam damage utilizing first-principles molecular dynamics is applied to the understanding of how defects and surface species may affect the durability and corrosion susceptibility of graphene support structures at the atomic scale. Based on the outcomes of these studies, the calculated knockon displacement threshold energy is hypothesized to be a computationally accessible durability descriptor sensitive to kinetics of C removal and local atomic structure. C1 [Holby, E. F.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM holby@lanl.gov FU DOE-EERE through the Fuel Cell Technologies Office; U.S. Department of Energy [DE-AC528-06NA25396] FX The author deeply appreciates financial assistance for this research from DOE-EERE through the Fuel Cell Technologies Office and wishes to thank the Los Alamos National Laboratory for institutional computing resources. Los Alamos National Laboratory is operated by Los Alamos National Security LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC528-06NA25396. The author would also like to thank P. Zelenay for aid in proofing the manuscript. NR 32 TC 1 Z9 1 U1 7 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1615-6846 EI 1615-6854 J9 FUEL CELLS JI Fuel Cells PD DEC PY 2016 VL 16 IS 6 BP 669 EP 674 DI 10.1002/fuce.201600012 PG 6 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA EI5KA UT WOS:000392531900002 ER PT J AU Medici, EF Zenyuk, IV Parkinson, DY Weber, AZ Allen, JS AF Medici, E. F. Zenyuk, I. V. Parkinson, D. Y. Weber, A. Z. Allen, J. S. TI Understanding Water Transport in Polymer Electrolyte Fuel Cells Using Coupled Continuum and Pore-Network Models SO FUEL CELLS LA English DT Article DE Continuum Model; Polymer Electrolyte Fuel Cells; Pore-network Model; Water and Thermal Management; X-ray Computed Tomography ID GAS-DIFFUSION LAYERS; RAY COMPUTED-TOMOGRAPHY; POROUS-MEDIA; LOW-TEMPERATURES; 2-PHASE FLOW; MANAGEMENT; PERFORMANCE; EVAPORATION; SATURATION AB Water management remains a critical issue for polymer electrolyte fuel cell performance and durability, especially at lower temperatures and with ultrathin electrodes. To understand and explain experimental observations better, water transport in gas diffusion layers (GDLs) with macroscopically heterogeneous morphologies was simulated using a novel coupling of continuum and pore-network models. X-ray computed tomography was used to extract GDL material parameters for use in the pore-network model. The simulations were conducted to explain experimental observations associated with stacking of anode GDLs, where stacking of the anode GDLs increased the limiting current density. Through imaging, it is shown that the stacked anode GDL exhibited an interfacial region of high porosity. The coupled model shows that this morphology allowed more efficient water movement through the anode and higher temperatures at the cathode compared to the single GDL case. As a result, the cathode exhibited less flooding and hence better low temperature performance with the stacked anode GDL. C1 [Medici, E. F.; Allen, J. S.] Michigan Technol Univ, Dept Mech Engn Engn Mech, Houghton, MI 49931 USA. [Zenyuk, I. V.] Tufts Univ, Dept Mech Engn, Medford, MA 02155 USA. [Parkinson, D. Y.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Weber, A. Z.] Lawrence Berkeley Natl Lab, Energy Technol Area, Energy Convers Grp, Berkeley, CA 94720 USA. EM azweber@lbl.gov FU FERE, Fuel Cell Technologies Office of the U.S. DOE [DE-AC02-05CH11231, DE-EE-0005667]; 3M; John F. and Joan M. Calder Endowed Professorship in Mechanical Engineering; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We would like to thank Dr. Andrew Steinbach for providing experimental data and insightful discussion. This work was supported by FERE, Fuel Cell Technologies Office of the U.S. DOE under contract number DE-AC02-05CH11231 and DE-EE-0005667 in collaboration with 3M (who provided cost share) as well as with funds from the John F. and Joan M. Calder Endowed Professorship in Mechanical Engineering. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 32 TC 2 Z9 2 U1 5 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1615-6846 EI 1615-6854 J9 FUEL CELLS JI Fuel Cells PD DEC PY 2016 VL 16 IS 6 BP 725 EP 733 DI 10.1002/fuce.201500213 PG 9 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA EI5KA UT WOS:000392531900008 ER PT J AU Perez-Gelvez, YN Kurz, S Tiemeyer, M Rhodes, OE Bergmann, CW Gutierrez-Sanchez, G AF Perez-Gelvez, Yeni N. Kurz, Simone Tiemeyer, Michael Rhodes, Olin E. Bergmann, Carl W. Gutierrez-Sanchez, Gerardo TI N-GLYCOME PROFILE IN MEDAKA FISH EXPOSE TO LOW DOSES OF IONIZATION RADIATION SO GLYCOBIOLOGY LA English DT Meeting Abstract CT Annual Meeting of the Society-for-Glycobiology CY NOV 19-22, 2016 CL New Orleans, LA SP Soc Glycobiol C1 [Perez-Gelvez, Yeni N.; Kurz, Simone; Tiemeyer, Michael; Bergmann, Carl W.; Gutierrez-Sanchez, Gerardo] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Rhodes, Olin E.] Univ Georgia, Savannah River Ecol Lab, Athens, GA 30602 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 EI 1460-2423 J9 GLYCOBIOLOGY JI Glycobiology PD DEC PY 2016 VL 26 IS 12 MA 41 BP 1390 EP 1390 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EJ0XX UT WOS:000392935600045 ER PT J AU Scheller, HV Ebert, B Rautengarten, C Birdseye, DS Heazlewood, JL AF Scheller, Henrik V. Ebert, Berit Rautengarten, Carsten Birdseye, Devon S. Heazlewood, Joshua L. TI Identification of novel transporters for UDP-arabinose in plants SO GLYCOBIOLOGY LA English DT Meeting Abstract CT Annual Meeting of the Society-for-Glycobiology CY NOV 19-22, 2016 CL New Orleans, LA SP Soc Glycobiol C1 [Scheller, Henrik V.; Ebert, Berit; Rautengarten, Carsten; Birdseye, Devon S.; Heazlewood, Joshua L.] Lawrence Berkeley Natl Lab, Joint Bioenergy Inst, Berkeley, CA USA. [Scheller, Henrik V.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Ebert, Berit; Rautengarten, Carsten; Heazlewood, Joshua L.] Univ Melbourne, ARC Ctr Excellence Plant Cell Walls, Melbourne, Vic 3010, Australia. NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 EI 1460-2423 J9 GLYCOBIOLOGY JI Glycobiology PD DEC PY 2016 VL 26 IS 12 MA 43 BP 1391 EP 1391 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EJ0XX UT WOS:000392935600047 ER PT J AU Huang, XH Schurman, N Handa, K Hakomori, S AF Huang, Xiaohua Schurman, Nathan Handa, Kazuko Hakomori, Senitiroh TI Glycosphingolipids involved in contact inhibition of cell growth SO GLYCOBIOLOGY LA English DT Meeting Abstract CT Annual Meeting of the Society-for-Glycobiology CY NOV 19-22, 2016 CL New Orleans, LA SP Soc Glycobiol C1 [Huang, Xiaohua; Schurman, Nathan; Handa, Kazuko; Hakomori, Senitiroh] Pacific Northwest Res Inst, Div Biomembrane Res, Seattle, WA USA. [Hakomori, Senitiroh] Univ Washington, Dept Pathobiol, Seattle, WA 98195 USA. [Hakomori, Senitiroh] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 EI 1460-2423 J9 GLYCOBIOLOGY JI Glycobiology PD DEC PY 2016 VL 26 IS 12 MA 151 BP 1435 EP 1436 PG 2 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EJ0XX UT WOS:000392935600154 ER PT J AU Aoki, K Camus, A Beasley, J Tuberville, T Peterson, D Bergman, C Tiemeyer, M AF Aoki, Kazuhiro Camus, Alvin Beasley, James Tuberville, Tracey Peterson, Douglas Bergman, Carl Tiemeyer, Michael TI Dissecting glycan diversity across animal species by mass spectrometry SO GLYCOBIOLOGY LA English DT Meeting Abstract CT Annual Meeting of the Society-for-Glycobiology CY NOV 19-22, 2016 CL New Orleans, LA SP Soc Glycobiol C1 [Aoki, Kazuhiro; Bergman, Carl; Tiemeyer, Michael] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Camus, Alvin] UGA Coll Vet Med, Dept Pathol, Athens, GA USA. [Beasley, James; Tuberville, Tracey] Univ Georgia, Savannah River Ecol Lab, Athens, GA 30602 USA. [Peterson, Douglas] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 EI 1460-2423 J9 GLYCOBIOLOGY JI Glycobiology PD DEC PY 2016 VL 26 IS 12 MA 240 BP 1472 EP 1473 PG 2 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EJ0XX UT WOS:000392935600243 ER PT J AU Throckmorton, HM Newman, BD Heikoop, JM Perkins, GB Feng, XH Graham, DE O'Malley, D Vesselinov, VV Young, J Wullschleger, SD Wilson, CJ AF Throckmorton, Heather M. Newman, Brent D. Heikoop, Jeffrey M. Perkins, George B. Feng, Xiahong Graham, David E. O'Malley, Daniel Vesselinov, Velimir V. Young, Jessica Wullschleger, Stan D. Wilson, Cathy J. TI Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes SO HYDROLOGICAL PROCESSES LA English DT Article DE active layer; arctic; hydrology; tundra; water isotopes ID THAW-LAKE BASINS; NONNEGATIVE MATRIX FACTORIZATION; COASTAL-PLAIN; SUBSURFACE DRAINAGE; NORTHERN SIBERIA; ICE WEDGES; PERMAFROST; ALASKA; CARBON; SOIL AB Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (H-2 and O-18) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (H-2 vs O-18). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. This research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Throckmorton, Heather M.] MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Newman, Brent D.; Heikoop, Jeffrey M.; Perkins, George B.; O'Malley, Daniel; Vesselinov, Velimir V.; Wilson, Cathy J.] Los Alamos Natl Lab, Earth & Environm Sci Div, Bikini Atoll Rd, Los Alamos, NM 87545 USA. [Feng, Xiahong] Dept Earth Sci, Dartmouth Coll, 6105 Fairchild, Hanover, NH 03755 USA. [Graham, David E.; Wullschleger, Stan D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Young, Jessica] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99775 USA. RP Throckmorton, HM (reprint author), MIT, Dept Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM heather.throckmorton@gmail.com OI Graham, David/0000-0001-8968-7344 FU LANL Laboratory Directed Research and Development Project [LDRD201200068DR]; Next-Generation Ecosystem Experiments (NGEE Arctic) project; Office of Biological and Environmental Research in the DOE Office of Science [ERKP 757] FX This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science, Project ERKP 757. Logistical support was provided by UIC Science and the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) Climate Research Facility. The authors wish to thank Marvin Gard, Garrett Altmann, Lily Cohen and Michael Hudak, Walter Brower, and Jimmy Ivanhoff for their support and assistance in fieldwork and preparation; Lauren Charsley- Groffman for her assistance with map design; and Emily Kluk for her assistance in sample analyses and laboratory management. The data for the paper are available at the Next Generation Ecosystem Experiments Arctic Data Collection, Carbon Dioxide Information Analysis Center (Throckmorton et al., 2016). NR 62 TC 1 Z9 1 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0885-6087 EI 1099-1085 J9 HYDROL PROCESS JI Hydrol. Process. PD DEC PY 2016 VL 30 IS 26 BP 4972 EP 4986 DI 10.1002/hyp.10883 PG 15 WC Water Resources SC Water Resources GA EI9YY UT WOS:000392866700007 ER PT J AU Hagos, SM Zhang, CD Feng, Z Burleyson, CD De Mott, C Kerns, B Benedict, JJ Martini, MN AF Hagos, Samson M. Zhang, Chidong Feng, Zhe Burleyson, Casey D. De Mott, Charlotte Kerns, Brandon Benedict, James J. Martini, Matus N. TI The impact of the diurnal cycle on the propagation of Madden-Julian Oscillation convection across the Maritime Continent SO Journal of Advances in Modeling Earth Systems LA English DT Article ID TROPICAL WESTERN PACIFIC; MJO; MODEL; SIMULATION; TRACKING; SYSTEM AB Influences of the diurnal cycle on the propagation of the Madden-Julian Oscillation (MJO) convection across the Maritime Continent (MC) are examined using cloud-permitting regional model simulations and observations. A pair of ensembles of control (CONTROL) and no-diurnal cycle (NODC) simulations of the November 2011 MJO episode are performed. In the CONTROL simulations, the MJO signal is weakened as it propagates across the MC, with much of the convection stalling over the large islands of Sumatra and Borneo. In the NODC simulations, where the incoming shortwave radiation at the top of the atmosphere is maintained at its daily mean value, the MJO convection signal propagating across the MC is enhanced. Examination of the surface energy fluxes in the simulations indicates that the surface downwelling shortwave radiation is larger in the presence of the diurnal cycle (CONTROL simulations) primarily because clouds preferentially form in the afternoon and are smaller during day time in comparison to nighttime. Furthermore, the diurnal covariability of surface wind speed and skin temperature results in a larger sensible heat flux and a cooler land surface in the CONTROL runs compared to NODC runs. An analysis of observations indicates that ahead of and behind the MJO active phase, the diurnal cycle of cloudiness enhances downwelling shortwave radiation and hence convection over the MC islands. This enhanced stationary convection competes with and disrupts the convective signal of MJO events that propagate over the waters surrounding the islands. C1 [Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Zhang, Chidong; Kerns, Brandon; Benedict, James J.] Univ Miami, Miami, FL 33136 USA. [De Mott, Charlotte] Colorado State Univ, Ft Collins, CO 80523 USA. [Martini, Matus N.] Naval Res Lab, Monterey, CA USA. RP Hagos, SM (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM samson.hagos@pnnl.gov FU U.S. Department of Energy Office of Science Biological and Environmental Research as part of the Atmospheric Systems Research Program and Regional and Global Climate Modeling Programs; NOAA CPO grant [NA13OAR4310161]; Battelle for the U.S. Department of Energy [DE-AC05-76RLO1830] FX This research was supported by the U.S. Department of Energy Office of Science Biological and Environmental Research as part of the Atmospheric Systems Research Program and Regional and Global Climate Modeling Programs (authors S.H., C.B., Z.F., and M.M.) and a NOAA CPO grant NA13OAR4310161 (author C.Z.). Data from the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility Manus site are used. Computing resources for the model simulations are provided by the National Energy Research Scientific Computing Center (NERSC). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RLO1830. NR 35 TC 2 Z9 2 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2016 VL 8 IS 4 BP 1552 EP 1564 DI 10.1002/2016MS000725 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI9FL UT WOS:000392813100003 ER PT J AU Blossey, PN Bretherton, CS Cheng, AN Endo, S Heus, T Lock, AP van der Dussen, JJ AF Blossey, Peter N. Bretherton, Christopher S. Cheng, Anning Endo, Satoshi Heus, Thijs Lock, Adrian P. van der Dussen, Johan J. TI CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO2 quadrupling and a CMIP3 composite forcing change SO Journal of Advances in Modeling Earth Systems LA English DT Article ID MIXED-LAYER MODEL; STRATOCUMULUS RESPONSE; CLIMATE SENSITIVITY; FEEDBACK; COVER; CIRCULATION AB Phase 1 of the CGILS large-eddy simulation (LES) intercomparison is extended to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide ("fast adjustment'') and to a composite climate perturbation representative of CMIP3 multimodel mean 2XCO(2) near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. The results are generally consistent with a single-LES study of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. The cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height. C1 [Blossey, Peter N.; Bretherton, Christopher S.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Cheng, Anning] Sci Syst & Applicat Inc, Hampton, VA USA. [Cheng, Anning] NASA, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23665 USA. [Endo, Satoshi] Brookhaven Natl Lab, Upton, NY 11973 USA. [Heus, Thijs] Cleveland State Univ, Dept Phys, Cleveland, OH 44115 USA. [Lock, Adrian P.] Met Off, Exeter, Devon, England. [van der Dussen, Johan J.] Delft Univ Technol, Delft, Netherlands. RP Blossey, PN (reprint author), Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. EM pblossey@uw.edu RI Heus, Thijs/E-7336-2012 OI Heus, Thijs/0000-0003-2650-2423 FU NSF Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes (CMMAP) [ATM-0425247]; DOE Atmospheric System Research Program [DE-SC0005450, DE-SC0008779]; Laboratory Directed Research and Development (LDRD) Program of Brookhaven National Laboratory; Deutscher Wetter Dienst (DWD) through the Hans-Ertel Centre for Weather Research; European Union CLoud Intercomparison, Process Study & Evaluation (EUCLIPSE) project from European Union, Seventh Framework Programme (FP7) [244067] FX P.N.B. and C.S.B. acknowledge support from the NSF Science and Technology Center for Multi-Scale Modeling of Atmospheric Processes (CMMAP), led by David Randall and managed by Colorado State University under cooperative agreement ATM-0425247. A.C. was supported by the DOE Atmospheric System Research Program under Interagency agreement DE-SC0005450 and DE-SC0008779 and used computational resources provided by Argonne National Laboratory, DOE's Office of Science and the local computation clusters: K-cluster and Icluster. S.E. was partly supported by the Laboratory Directed Research and Development (LDRD) Program of Brookhaven National Laboratory. T.H. was supported by the Deutscher Wetter Dienst (DWD) through the Hans-Ertel Centre for Weather Research. J.J.v.d.D. was supported by the European Union CLoud Intercomparison, Process Study & Evaluation (EUCLIPSE) project through funding from European Union, Seventh Framework Programme (FP7/2007-2013) under grant agreement 244067. The model output data and scripts used to produce the plots in this paper, along with a description of the simulation setup and forcings for the different cases, may be accessed at http://hdl.handle.net/1773/37295. NR 33 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2016 VL 8 IS 4 BP 1714 EP 1726 DI 10.1002/2016MS000765 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI9FL UT WOS:000392813100011 ER PT J AU Zhao, C Leung, LR Park, SH Hagos, S Lu, J Sakaguchi, K Yoon, J Harrop, BE Skamarock, W Duda, MG AF Zhao, Chun Leung, L. Ruby Park, Sang-Hun Hagos, Samson Lu, Jian Sakaguchi, Koichi Yoon, Jinho Harrop, Bryce E. Skamarock, William Duda, Michael G. TI Exploring the impacts of physics and resolution on aqua-planet simulations from a nonhydrostatic global variable-resolution modeling framework SO Journal of Advances in Modeling Earth Systems LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; CENTROIDAL VORONOI TESSELLATIONS; CLOUD MICROPHYSICS SCHEME; SHALLOW-WATER EQUATIONS; AQUAPLANET SIMULATIONS; CLIMATE SIMULATIONS; DYNAMICAL CORE; STANDARD TEST; VERSION 3; CIRCULATION AB The nonhydrostatic Model for Prediction Across Scales (NH-MPAS) provides a global framework to achieve high resolution using regional mesh refinement. Previous studies using the hydrostatic version of MPAS (H-MPAS) with the physics parameterizations of Community Atmosphere Model version 4 (CAM4) found notable resolution-dependent behaviors. This study revisits the resolution sensitivity using NH-MPAS with both CAM4 and CAM5 physics. A series of aqua-planet simulations at global quasiuniform resolutions and global variable resolution with a regional mesh refinement over the tropics are analyzed, with a primary focus on the distinct characteristics of NH-MPAS in simulating precipitation, clouds, and large-scale circulation features compared to H-MPAS-CAM4. The resolution sensitivity of total precipitation and column integrated moisture in NH-MPAS is smaller than that in H-MPAS-CAM4. This contributes importantly to the reduced resolution sensitivity of large-scale circulation features such as the intertropical convergence zone and Hadley circulation in NH-MPAS compared to H-MPAS. In addition, NH-MPAS shows almost no resolution sensitivity in the simulated westerly jet, in contrast to the obvious poleward shift in H-MPAS with increasing resolution, which is partly explained by differences in the hyperdiffusion coefficients used in the two models that influence wave activity. With the reduced resolution sensitivity, simulations in the refined region of the NH-MPAS global variable resolution configuration exhibit zonally symmetric features that are more comparable to the quasiuniform high-resolution simulations than those from H-MPAS that displays zonal asymmetry in simulations inside the refined region. Overall, NH-MPAS with CAM5 physics shows less resolution sensitivity compared to CAM4. C1 [Zhao, Chun; Leung, L. Ruby; Hagos, Samson; Lu, Jian; Sakaguchi, Koichi; Yoon, Jinho; Harrop, Bryce E.] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Park, Sang-Hun; Skamarock, William; Duda, Michael G.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Yoon, Jinho] Gwanju Inst Sci & Technol, Sch Earth Sci & Environm Engn, Gwangju, South Korea. RP Zhao, C (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM chun.zhao@pnnl.gov FU Office of Science of the U.S. Department of Energy (DOE), Regional & Global Climate Modeling (RGCM) program; Korean Polar Research Institute; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357]; DOE [DE-AC05-76RL01830] FX This research was supported by the Office of Science of the U.S. Department of Energy (DOE) as part of the Regional & Global Climate Modeling (RGCM) program. Dr. J.-H. Yoon was partially supported by funding from the Korean Polar Research Institute. This study used computing resources from the National Energy Research Scientific Computing Center, which is the DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231 and contract DE-AC02-06CH11357, respectively. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830. NR 55 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2016 VL 8 IS 4 BP 1751 EP 1768 DI 10.1002/2016MS000727 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI9FL UT WOS:000392813100013 ER PT J AU Sakaguchi, K Lu, J Leung, LR Zhao, C Li, YJ Hagos, S AF Sakaguchi, Koichi Lu, Jian Leung, L. Ruby Zhao, Chun Li, Yanjie Hagos, Samson TI Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAM4 variable-resolution simulations SO Journal of Advances in Modeling Earth Systems LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; ROSSBY-WAVE PROPAGATION; STATIONARY WAVES; STORM-TRACKS; SUMMER MONSOON; DYNAMICAL CORE; VERSION 3; MPAS-A; WINTER; CLIMATE AB Impacts of regional grid refinement on large-scale circulations ("upscale effects'') were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations, precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. The result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework. C1 [Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby; Zhao, Chun; Hagos, Samson] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Li, Yanjie] Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing, Peoples R China. RP Leung, LR (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM ruby.leung@pnnl.gov FU U.S. Department of Energy (DOE) Office of Science Biological and Environmental Research, Regional and Global Climate Modeling program; National Natural Science Foundation of China [41575060]; Office of Science [DE-AC02-05CH11231]; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX All data and simulation output used in this study are archived at the National Energy Research Scientific Computing Center (NERSC) and can be accessed by contacting L. Ruby Leung (ruby. leung@pnnl.gov). The authors thank the anonymous reviewers for their valuable comments and Bryce Harrop for helpful discussions. This study was supported by the U.S. Department of Energy (DOE) Office of Science Biological and Environmental Research as part of the Regional and Global Climate Modeling program. The contribution of Y. Li was supported by grant 41575060 from the National Natural Science Foundation of China. This research used computational resources from the National Energy Research Scientific Computing Center (NERSC), a DOE User Facility supported by the Office of Science under contract DE-AC02-05CH11231. Additional computational resources were provided by the Pacific Northwest National Laboratory (PNNL) Institutional Computing program. PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 82 TC 1 Z9 1 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2016 VL 8 IS 4 BP 1786 EP 1805 DI 10.1002/2016MS000743 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI9FL UT WOS:000392813100015 ER PT J AU Voigt, A Biasutti, M Scheff, J Bader, J Bordoni, S Codron, F Dixon, RD Jonas, J Kang, SM Klingaman, NP Leung, R Lu, J Mapes, B Maroon, EA McDermid, S Park, JY Roehrig, R Rose, BEJ Russell, GL Seo, JB Toniazzo, T Wei, HH Yoshimori, M Zeppetello, LRV AF Voigt, Aiko Biasutti, Michela Scheff, Jacob Bader, Juergen Bordoni, Simona Codron, Francis Dixon, Ross D. Jonas, Jeffrey Kang, Sarah M. Klingaman, Nicholas P. Leung, Ruby Lu, Jian Mapes, Brian Maroon, Elizabeth A. McDermid, Sonali Park, Jong-yeon Roehrig, Romain Rose, Brian E. J. Russell, Gary L. Seo, Jeongbin Toniazzo, Thomas Wei, Ho-Hsuan Yoshimori, Masakazu Zeppetello, Lucas R. Vargas TI The tropical rain belts with an annual cycle and a continent model intercomparison project: TRACMIP SO Journal of Advances in Modeling Earth Systems LA English DT Article ID GENERAL-CIRCULATION MODELS; ENERGY FLUX EQUATOR; CLIMATE SENSITIVITY; SAHEL RAINFALL; ATMOSPHERIC CIRCULATION; OVERTURNING CIRCULATION; INTERANNUAL VARIATIONS; RADIATIVE FEEDBACKS; HYDROLOGICAL CYCLE; OCEAN CIRCULATION AB This paper introduces the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project (TRACMIP). TRACMIP studies the dynamics of tropical rain belts and their response to past and future radiative forcings through simulations with 13 comprehensive and one simplified atmosphere models coupled to a slab ocean and driven by seasonally varying insolation. Five idealized experiments, two with an aquaplanet setup and three with a setup with an idealized tropical continent, fill the space between prescribed-SST aquaplanet simulations and realistic simulations provided by CMIP5/6. The simulations reproduce key features of present-day climate and expected future climate change, including an annual-mean intertropical convergence zone (ITCZ) that is located north of the equator and Hadley cells and eddy-driven jets that are similar to present-day climate. Quadrupling CO2 leads to a northward ITCZ shift and preferential warming in Northern high latitudes. The simulations show interesting CO2-induced changes in the seasonal excursion of the ITCZ and indicate a possible state dependence of climate sensitivity. The inclusion of an idealized continent modulates both the control climate and the response to increased CO2; for example, it reduces the northward ITCZ shift associated with warming and, in some models, climate sensitivity. In response to eccentricity-driven seasonal insolation changes, seasonal changes in oceanic rainfall are best characterized as a meridional dipole, while seasonal continental rainfall changes tend to be symmetric about the equator. This survey illustrates TRACMIP's potential to engender a deeper understanding of global and regional climate and to address questions on past and future climate change. C1 [Voigt, Aiko] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Dept Troposphere Res, Karlsruhe, Germany. [Voigt, Aiko; Biasutti, Michela; Scheff, Jacob; Zeppetello, Lucas R. Vargas] Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10027 USA. [Bader, Juergen; Park, Jong-yeon] Max Planck Inst Meteorol, Hamburg, Germany. [Bordoni, Simona; Wei, Ho-Hsuan] CALTECH, Pasadena, CA 91125 USA. [Codron, Francis] UPMC, Sorbonne Univ, Lab Oceanog & Climat, Paris, France. [Dixon, Ross D.] Univ Wisconsin, Madison, WI USA. [Jonas, Jeffrey] Columbia Univ, Ctr Climate Syst Res, New York, NY USA. [Kang, Sarah M.; Seo, Jeongbin] Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, Ulsan, South Korea. [Klingaman, Nicholas P.] Univ Reading, Natl Ctr Atmospher Sci Climate, Reading, Berks, England. [Klingaman, Nicholas P.] Univ Reading, Dept Meteorol, Reading, Berks, England. [Leung, Ruby; Lu, Jian] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Mapes, Brian] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL USA. [Maroon, Elizabeth A.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [McDermid, Sonali] NYU, New York, NY USA. [Roehrig, Romain] CNRS, Ctr Natl Rech Meteorol, UMR Meteo France 3589, Toulouse, France. [Rose, Brian E. J.] SUNY Albany, Albany, NY USA. [Russell, Gary L.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Toniazzo, Thomas] Bjerknes Ctr Climate Res, Uni Res, Bergen, Norway. [Yoshimori, Masakazu] Hokkaido Univ, Fac Environm Earth Sci, Sapporo, Hokkaido, Japan. [Yoshimori, Masakazu] Hokkaido Univ, Arctic Res Ctr, Sapporo, Hokkaido, Japan. RP Voigt, A (reprint author), Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Dept Troposphere Res, Karlsruhe, Germany.; Voigt, A (reprint author), Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10027 USA. EM aiko.voigt@kit.edu RI Voigt, Aiko/H-4691-2012; Klingaman, Nicholas/H-4610-2012; Biasutti, Michela/G-3804-2012 OI Voigt, Aiko/0000-0002-7394-8252; Klingaman, Nicholas/0000-0002-2927-9303; Biasutti, Michela/0000-0001-6681-1533 FU NSF [AGS-1565522, AGS-1433551, AGS-1462544, AGS-1455071]; Earth Institute of Columbia University; German Ministry of Education and Research (BMBF); FONA: Research for Sustainable Development [01LK1509A]; Department of Energy BER award [DE-SC0014423]; IDRIS supercomputing center; project MORDICUS of the French National Research Agency (ANR) [ANR-13-SENV-0002]; National Science Foundation; Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2016R1A1A3A04005520]; Independent Research Fellowship from the UK Natural Environment Research Council [NE/L010976/1]; U.S. Department of Energy Office of Science Biological and Environmental Research (BER), Regional and Global Climate Modeling program; NSF IGERT Program on Ocean Change; JSPS KAKENHI [15K05280]; Program for Risk Information on Climate Change (SOUSEI program) of MEXT, Japan FX We are indebted to RSMAS (University of Miami) for hosting the TRACMIP data sets on their data repository. M.B., A.V. and J. Scheff are supported by NSF award AGS-1565522. A.V. and M.B. acknowledge support from the undergraduate research program of the Earth Institute of Columbia University for LRVZ. A.V. received support from the German Ministry of Education and Research (BMBF) and FONA: Research for Sustainable Development (www.fona.de) under grant 01LK1509A. M.B. was supported by a Department of Energy BER award DE-SC0014423. J. Scheff was funded by NSF award AGS-1433551. SB and HHW were supported by the NSF under grant AGS-1462544. F.C. acknowledges support from the IDRIS supercomputing center and the project MORDICUS ANR-13-SENV-0002 of the French National Research Agency (ANR). R.D.D. acknowledges high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. S.M.K. and J. Seo were supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2016R1A1A3A04005520). N.P.K. was funded by an Independent Research Fellowship from the UK Natural Environment Research Council (NE/L010976/1). MetUM simulations were performed on the ARCHER UK national supercomputing service (http://www.archer.ac.uk). R.L. and J.L. were supported by the U.S. Department of Energy Office of Science Biological and Environmental Research (BER) as part of the Regional and Global Climate Modeling program. E.A.M. was supported by the NSF IGERT Program on Ocean Change. S.M. acknowledges and thanks Larissa Nazarenko for her help in making the GISS ModelE2 contributions possible. B.E.J.R. acknowledges support from NSF grant AGS-1455071. M.Y. acknowledges support from JSPS KAKENHI grant 15K05280 and the Program for Risk Information on Climate Change (SOUSEI program) of MEXT, Japan. The MIROC5 simulations were conducted using the Fujitsu PRIMEHPC FX10 System in the Information Technology Center and collaborating with the Atmosphere and Ocean Research Institute, both in the University of Tokyo. We thank Catherine Pomposi for comments on an earlier version of the manuscript. Tracmip simulations are made publicly available on an OpenDAP data server of BM's group at the University of Miami. Detailed instructions on how to obtain the simulations are provided on the project's website www.sites.google.com/site/tracmip/ and can also be obtained from AV and MB via tracmip@gmail.com. NR 100 TC 1 Z9 1 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2016 VL 8 IS 4 BP 1868 EP 1891 DI 10.1002/2016MS000748 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI9FL UT WOS:000392813100019 ER PT J AU Leng, GY Zhang, XS Huang, MY Yang, QC Rafique, R Asrar, GR Leung, LR AF Leng, Guoyong Zhang, Xuesong Huang, Maoyi Yang, Qichun Rafique, Rashid Asrar, Ghassem R. Leung, L. Ruby TI Simulating county-level crop yields in the Conterminous United States using the Community Land Model: The effects of optimizing irrigation and fertilization SO Journal of Advances in Modeling Earth Systems LA English DT Article ID ASSIMILATION SYSTEM NLDAS; CLIMATE-CHANGE; WATER MANAGEMENT; CARBON BUDGETS; SURFACE MODEL; NITROGEN; VARIABILITY; SENSITIVITY; FIXATION; IMPACT AB In this study, we applied version 4.5 of the Community Land Model (CLM) at a 0.125 degrees resolution to provide the first county-scale model validation for simulating crop yields over the Conterminous United States (CONUS). Large bias was found in simulating crop yields against U.S. Department of Agriculture (USDA) survey data, with county-level root-mean-square error (RMSE) of 42% and 38% for simulated US mean corn and soybean yields, respectively. We then synthesized crop yield, irrigation and fertilization data sets from USDA and U. S. Geological Survey (USGS) to constrain model simulations. Compared with fertilization, irrigation has limited effects on crop yields with improvements limited to irrigated regions. In most current-generation Earth system models (ESMs), fertilizers are applied spatially uniformly with fixed amounts and timing without considering crop fertilizer demand. To address this weakness, we propose a prognostic fertilization scheme that dynamically determines the timing and rate of each fertilizer application, with the annual amounts and valid fertilization time windows constrained by surveyed data. The optimized fertilization scheme reduces RMSE to 22% and 21% of the US mean corn and soybean yields, respectively. Compared with the default CLM4.5, our fertilization scheme substantially improves crop yield simulations especially over major crop growing regions. However, to compensate for the widely documented biases in denitrification rates simulated by CLM4.5, the dynamically determined fertilization timing and rates do not match the fertilization practices of farmers exactly. Therefore, caution should be exercised when extending this method beyond the contemporary conditions. C1 [Leng, Guoyong; Zhang, Xuesong; Yang, Qichun; Rafique, Rashid; Asrar, Ghassem R.] Pacific Northwest Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. [Huang, Maoyi; Leung, L. Ruby] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Earth Syst Anal & Modeling Grp, Richland, WA 99354 USA. RP Huang, MY (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Earth Syst Anal & Modeling Grp, Richland, WA 99354 USA. EM maoyi.huang@pnnl.gov OI Huang, Maoyi/0000-0001-9154-9485; Leung, Ruby/0000-0002-3221-9467 FU DOE Great Lakes Bioenergy Research Center; NASA Terrestrial Ecology Program [NNH12AU03I]; Laboratory Directed Research and Development Project - Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy [DE-AC05-76RLO1830]; Integrated Assessment Research program through the Integrated Multi-sector, Multi-scale Modeling (IM3) Scientific Focus Area (SFA) - Biological and Environmental Research Division of Office of Science, U.S. Department of Energy FX We thank the editor Dr. Paul Dirmeyer, the anonymous associate editor and two anonymous reviewers for their constructive comments and suggestions that helped to improve the quality of this paper. This study was carried out with support from the Integrated Assessment Research program through the Integrated Multi-sector, Multi-scale Modeling (IM3) Scientific Focus Area (SFA) sponsored by the Biological and Environmental Research Division of Office of Science, U.S. Department of Energy. The work related to the comparison between surveyed and modeled crop yields are also partially funded by the DOE Great Lakes Bioenergy Research Center and NASA Terrestrial Ecology Program (NNH12AU03I), and a Laboratory Directed Research and Development Project by the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RLO1830. Data set for configuring the model is available from the corresponding author upon request. The gridded crop area data are downloaded from ftp://ftp.rz.uni-frankfurt.de/pub/uni-frankfurt/physische_geographie/hyd rologie/public/data/MIRCA2000/harvested_area_grids. The USGS irrigation amounts are downloaded from http://water.usgs.gov/watuse/. The USDA fertilizer use data are downloaded from http://www.ers.usda.gov/dataproducts/fertilizer-use-and-price.aspx. The USDA crop yields data are downloaded from http://www.nass.usda.gov/Quick_Stats/. Field data from the Kellogg Biological Station (KBS) are downloaded from http://lter.kbs.msu.edu/. NR 62 TC 0 Z9 0 U1 9 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD DEC PY 2016 VL 8 IS 4 BP 1912 EP 1931 DI 10.1002/2016MS000645 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI9FL UT WOS:000392813100021 ER PT J AU Reinig, MR Novak, SW Tao, XD Bentolila, LA Roberts, DG MacKenzie-Graham, A Godshalk, SE Raven, MA Knowles, DW Kubby, J AF Reinig, Marc R. Novak, Samuel W. Tao, Xiaodong Bentolila, Laurent A. Roberts, Dustin G. MacKenzie-Graham, Allan Godshalk, Sirie E. Raven, Mary A. Knowles, David W. Kubby, Joel TI Enhancing image quality in cleared tissue with adaptive optics SO JOURNAL OF BIOMEDICAL OPTICS LA English DT Article DE adaptive optics; CLARITY; multiphoton microscope; brain; neural circuits ID LIGHT-SCATTERING; BIOLOGICAL CELLS; REFRACTIVE-INDEX; ABERRATION CORRECTION; MICROSCOPY; RESOLUTION; CLARITY AB Our ability to see fine detail at depth in tissues is limited by scattering and other refractive characteristics of the tissue. For fixed tissue, we can limit scattering with a variety of clearing protocols. This allows us to see deeper but not necessarily clearer. Refractive aberrations caused by the bulk index of refraction of the tissue and its variations continue to limit our ability to see fine detail. Refractive aberrations are made up of spherical and other Zernike modes, which can be significant at depth. Spherical aberration that is common across the imaging field can be corrected using an objective correcting collar, although this can require manual intervention. Other aberrations may vary across the imaging field and can only be effectively corrected using adaptive optics. Adaptive optics can also correct other aberrations simultaneously with the spherical aberration, eliminating manual intervention and speeding imaging. We use an adaptive optics two-photon microscope to examine the impact of the spherical and higher order aberrations on imaging and contrast the effect of compensating only for spherical aberration against compensating for the first 22 Zernike aberrations in two tissue types. Increase in image intensity by 1.6x and reduction of root mean square error by 3x are demonstrated. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Reinig, Marc R.; Novak, Samuel W.; Tao, Xiaodong; Kubby, Joel] Univ Calif Santa Cruz, WM Keck Ctr Adapt Opt Microscopy, Baskin Engn, 1154 High St, Santa Cruz, CA 95064 USA. [Bentolila, Laurent A.] Univ Calif Los Angeles, Calif Nanosyst Inst, Adv Light Microscopy Spect Lab, 570 Westwood Plaza,Bldg 114, Los Angeles, CA 90095 USA. [Roberts, Dustin G.] Univ Calif Los Angeles, Brain Mapping Ctr, 660 Charles E Young Dr South, Los Angeles, CA 90095 USA. [MacKenzie-Graham, Allan] Univ Calif Los Angeles, Neurol, 710 Westwood Plaza,POB 951769, Los Angeles, CA 90095 USA. [Godshalk, Sirie E.] Univ Calif Santa Barbara, Neurosci Res Inst, Microscopy Facil, 3087 Calle Rosales, Santa Barbara, CA 93105 USA. [Raven, Mary A.] UCSBs Off Technol & Ind Alliances, 342 Lagoon Rd,Mail Code 2055, Santa Barbara, CA 93106 USA. [Knowles, David W.] Lawrence Berkeley Natl Lab, Berkeley Drosophila Transcript Network Project, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Reinig, MR (reprint author), Univ Calif Santa Cruz, WM Keck Ctr Adapt Opt Microscopy, Baskin Engn, 1154 High St, Santa Cruz, CA 95064 USA. EM mrr10837@ucsc.edu FU W.M. Keck Foundation; UC Office of the President for the UC Work Group for Adaptive Optics in Biological Imaging; Multicampus Research Programs and Initiatives [MR-15-327968]; National Science Foundation [1353461, 1429810] FX The results presented herein were obtained at the W.M. Keck Center for Adaptive Optical Microscopy (CfAOM) at the University of California, Santa Cruz. The CfAOM was made possible by the generous financial support of the W.M. Keck Foundation. This material is based upon work supported by the UC Office of the President for the UC Work Group for Adaptive Optics in Biological Imaging, by the Multicampus Research Programs and Initiatives, Grant No. MR-15-327968. This material is also based upon work supported by the National Science Foundation under Grant Nos. 1353461 and 1429810. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 28 TC 0 Z9 0 U1 4 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1083-3668 EI 1560-2281 J9 J BIOMED OPT JI J. Biomed. Opt. PD DEC PY 2016 VL 21 IS 12 AR 121508 DI 10.1117/1.JBO.21.12.121508 PG 9 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA EJ0QG UT WOS:000392914600010 PM 27735018 ER PT J AU Bygd, HC Bratlie, KM AF Bygd, Hannah C. Bratlie, Kaitlin M. TI Investigating the Synergistic Effects of Combined Modified Alginates on Macrophage Phenotype SO POLYMERS LA English DT Article DE alginate; macrophage phenotype; TNF-; synergy ID TRANSDERMAL DRUG-DELIVERY; FOREIGN-BODY RESPONSE; POLYLYSINE MICROCAPSULES; ALTERNATIVE ACTIVATION; BIOCOMPATIBILITY; CHEMISTRY; ISLETS; COMBINATORIAL; POLARIZATION; PLASTICITY AB Understanding macrophage responses to biomaterials is crucial to the success of implanted medical devices, tissue engineering scaffolds, and drug delivery vehicles. Cellular responses to materials may depend synergistically on multiple surface chemistries, due to the polyvalent nature of cell-ligand interactions. Previous work in our lab found that different surface functionalities of chemically modified alginate could sway macrophage phenotype toward either the pro-inflammatory or pro-angiogenic phenotype. Using these findings, this research aims to understand the relationship between combined material surface chemistries and macrophage phenotype. Tumor necrosis factor- (TNF-) secretion, nitrite production, and arginase activity were measured and used to determine the ability of the materials to alter macrophage phenotype. Cooperative relationships between pairwise modifications of alginate were determined by calculating synergy values for the aforementioned molecules. Several materials appeared to improve M1 to M2 macrophage reprogramming capabilities, giving valuable insight into the complexity of surface chemistries needed for optimal incorporation and survival of implanted biomaterials. C1 [Bygd, Hannah C.; Bratlie, Kaitlin M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Bratlie, Kaitlin M.] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Bratlie, Kaitlin M.] Ames Natl Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM hcbygd@iastate.edu; kbratlie@iastate.edu OI Bratlie, Kaitlin/0000-0002-5197-0176 FU National Science Foundation [CBET-1227867]; Roy J. Carver Charitable Trust [13-4265]; NSF ARI-R2 [CMMI-0963224] FX This work was supported by the National Science Foundation under Grant No. CBET-1227867 and the Roy J. Carver Charitable Trust Grant No. 13-4265. The authors also acknowledge support from NSF ARI-R2 (CMMI-0963224) for funding the renovation of the research laboratories used for these studies. NR 63 TC 0 Z9 0 U1 4 U2 4 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2073-4360 J9 POLYMERS-BASEL JI Polymers PD DEC PY 2016 VL 8 IS 12 AR 422 DI 10.3390/polym8120422 PG 16 WC Polymer Science SC Polymer Science GA EI4VL UT WOS:000392491500015 ER PT J AU Bao, WL Hong, CW Chunduri, S Krishnamoorthy, S Pouchet, LN Rastello, F Sadayappan, P AF Bao, Wenlei Hong, Changwan Chunduri, Sudheer Krishnamoorthy, Sriram Pouchet, Louis-Noel Rastello, Fabrice Sadayappan, P. TI Static and Dynamic Frequency Scaling on Multicore CPUs SO ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION LA English DT Article DE Static Analysis; Voltage and Frequency Scaling; CPU Energy; Affine Programs ID FRAMEWORK; VOLTAGE; ENERGY AB Dynamic Voltage and Frequency Scaling (DVFS) typically adapts CPU power consumption by modifying a processor's operating frequency (and the associated voltage). Typical DVFS approaches include using default strategies such as running at the lowest or the highest frequency or reacting to the CPU's runtime load to reduce or increase frequency based on the CPU usage. In this article, we argue that a compile-time approach to CPU frequency selection is achievable for affine program regions and can significantly outperform runtime-based approaches. We first propose a lightweight runtime approach that can exploit the properties of the power profile specific to a processor, outperforming classical Linux governors such as powersave or on-demand for computational kernels. We then demonstrate that, for affine kernels in the application, a purely compile-time approach to CPU frequency and core count selection is achievable, providing significant additional benefits over the runtime approach. Our framework relies on a one-time profiling of the target CPU, along with a compile-time categorization of loop-based code segments in the application. These are combined to determine at compile-time the frequency and the number of cores to use to execute each affine region to optimize energy or energy-delay product. Extensive evaluation on 60 benchmarks and 5 multi-core CPUs show that our approach systematically outperforms the powersave Linux governor while also improving overall performance. C1 [Bao, Wenlei; Hong, Changwan; Sadayappan, P.] Ohio State Univ, Dept Comp Sci & Engn, Dreese Lab 395, 2015 Neil Ave, Columbus, OH 43210 USA. [Chunduri, Sudheer] IBM Res, New Delhi, India. [Krishnamoorthy, Sriram] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Pouchet, Louis-Noel] Colorado State Univ, Dept Comp Sci, 1873 Campus Delivery, Ft Collins, CO 80523 USA. [Rastello, Fabrice] Univ Grenoble Alpes, Inria, CNRS, LIG, F-38000 Grenoble, France. [Krishnamoorthy, Sriram] POB 999 MSIN J4-30, Richland, WA 99352 USA. [Chunduri, Sudheer] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. RP Bao, WL (reprint author), Ohio State Univ, Dept Comp Sci & Engn, Dreese Lab 395, 2015 Neil Ave, Columbus, OH 43210 USA. EM bao.79@osu.edu; hong.589@osu.edu; sudheer@anl.gov; sriram@pnnl.gov; pouchet@colostate.edu; fabrice.rastello@inria.fr; saday@cse.ohio-state.edu FU U.S. National Science Foundation [1524127]; U.S. Department of Energys (DOE) Office of Science, Office of Advanced Scientific Computing Research [63823, DE-SC0014135]; DOE [DE-AC05-76RL01830] FX This work was supported in part by the U.S. National Science Foundation, award 1524127; by the U.S. Department of Energys (DOE) Office of Science, Office of Advanced Scientific Computing Research, under award 63823 and DE-SC0014135. Pacific Northwest National Laboratory is operated by Battelle for DOE under Contract DE-AC05-76RL01830. We would like to thank Charles Lefurgy for his guidance in using the AMESTER tool and power monitoring on POWER8 nodes. NR 39 TC 0 Z9 0 U1 1 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1544-3566 EI 1544-3973 J9 ACM T ARCHIT CODE OP JI ACM Trans. Archit. Code Optim. PD DEC PY 2016 VL 13 IS 4 AR 51 DI 10.1145/3011017 PG 26 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods SC Computer Science GA EI3UD UT WOS:000392416400020 ER PT J AU Kurt, MC Krishnamoorthy, S Agrawal, G Ren, B AF Kurt, Mehmet Can Krishnamoorthy, Sriram Agrawal, Gagan Ren, Bin TI User-Assisted Store Recycling for Dynamic Task Graph Schedulers SO ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION LA English DT Article DE Task parallelism; memory management; dynamic scheduling AB The emergence of the multi-core era has led to increased interest in designing effective yet practical parallel programming models. Models based on task graphs that operate on single-assignment data are attractive in several ways. Notably, they can support dynamic applications and precisely represent the available concurrency. However, for efficient execution, they also require nuanced algorithms for scheduling and memory management. In this article, we consider memory-efficient dynamic scheduling of task graphs. Specifically, we present a novel approach for dynamically recycling the memory locations assigned to data items as they are produced by tasks. We develop algorithms to identify memory-efficient store recycling functions by systematically evaluating the validity of a set of user-provided or automatically generated alternatives. Because recycling functions can be input data-dependent, we have also developed support for continued correct execution of a task graph in the presence of a potentially incorrect store recycling function. Experimental evaluation demonstrates that this approach to automatic store recycling incurs little to no overheads, achieves memory usage comparable to the best manually derived solutions, often produces recycling functions valid across problem sizes and input parameters, and efficiently recovers from an incorrect choice of store recycling functions. C1 [Kurt, Mehmet Can] Quantcast Corp, 795 Folsom St, San Francisco, CA 94103 USA. [Agrawal, Gagan] Ohio State Univ, 395 Dreese Labs,2015 Neil Ave, Columbus, OH 43210 USA. [Krishnamoorthy, Sriram] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. [Ren, Bin] Coll William & Mary, McGlothlin St Hall 126,251 Jamestown Rd, Williamsburg, VA 23185 USA. RP Kurt, MC (reprint author), Quantcast Corp, 795 Folsom St, San Francisco, CA 94103 USA. EM mcankurt@quantcast.com; sriram@pnnl.gov; agrawal@cse.ohio-state.edu; bren@cs.wm.edu FU U.S. Department of Energy's (DOE) Office of Science, Office of Advanced Scientific Computing Research [63823]; DOE [DE-AC05-76RL01830]; NSF [CCF-1319420, CCF-1629392]; Department of Energy (DOE) [DE-SC0014135] FX This work was supported in part by the U.S. Department of Energy's (DOE) Office of Science, Office of Advanced Scientific Computing Research, under award 63823. Pacific Northwest National Laboratory is operated by Battelle for DOE under Contract DE-AC05-76RL01830. This work was also partially supported by NSF awards CCF-1319420 and CCF-1629392 and the Department of Energy (DOE) award DE-SC0014135 to The Ohio State University. NR 28 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 1544-3566 EI 1544-3973 J9 ACM T ARCHIT CODE OP JI ACM Trans. Archit. Code Optim. PD DEC PY 2016 VL 13 IS 4 AR 55 DI 10.1145/3018111 PG 24 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods SC Computer Science GA EI3UD UT WOS:000392416400024 ER PT J AU Okamoto, NL Yuge, K Tanaka, K Inui, H George, EP AF Okamoto, Norihiko L. Yuge, Koretaka Tanaka, Katsushi Inui, Haruyuki George, Easo P. TI Atomic displacement in the CrMnFeCoNi high-entropy alloy - A scaling factor to predict solid solution strengthening SO AIP ADVANCES LA English DT Article ID MULTICOMPONENT ALLOYS; AB-INITIO; PRINCIPAL ELEMENTS; ALUMINUM-ALLOYS; DIFFRACTION; EFFICIENT; STRESS; METALS AB Although metals strengthened by alloying have been used for millennia, models to quantify solid solution strengthening (SSS) were first proposed scarcely seventy years ago. Early models could predict the strengths of only simple alloys such as dilute binaries and not those of compositionally complex alloys because of the difficulty of calculating dislocation-solute interaction energies. Recently, models and theories of SSS have been proposed to tackle complex high-entropy alloys (HEAs). Here we show that the strength at 0 K of a prototypical HEA, CrMnFeCoNi, can be scaled and predicted using the root-mean-square atomic displacement, which can be deduced from X-ray diffraction and first-principles calculations as the isotropic atomic displacement parameter, that is, the average displacements of the constituent atoms from regular lattice positions. We show that our approach can be applied successfully to rationalize SSS in FeCoNi, MnFeCoNi, MnCoNi, MnFeNi, CrCoNi, CrFeCoNi, and CrMnCoNi, which are all medium-entropy subsets of the CrMnFeCoNi HEA. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). C1 [Okamoto, Norihiko L.; Yuge, Koretaka; Inui, Haruyuki] Kyoto Univ, Dept Mat Sci & Engn, Kyoto 6068501, Japan. [Okamoto, Norihiko L.; Inui, Haruyuki] Kyoto Univ, Ctr Elements Strategy Initiat Struct Mat ESISM, Kyoto 6068501, Japan. [Tanaka, Katsushi] Kobe Univ, Dept Mech Engn, Nada Ku, Kobe, Hyogo 6578501, Japan. [George, Easo P.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [George, Easo P.] Ruhr Univ Bochum, Inst Mat, Univ Str 150, D-44801 Bochum, Germany. RP Okamoto, NL (reprint author), Kyoto Univ, Dept Mat Sci & Engn, Kyoto 6068501, Japan.; Okamoto, NL (reprint author), Kyoto Univ, Ctr Elements Strategy Initiat Struct Mat ESISM, Kyoto 6068501, Japan. EM okamoto.norihiko.7z@kyoto-u.ac.jp RI TANAKA, Katsushi/P-7887-2016 FU JSPS; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; DFG in Germany [GE 2736/1-1]; JSPS [15H02300, 16K14373, 16K14415]; Elements Strategy Initiative for Structural Materials (ESISM) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan; Advanced Low Carbon Technology Research and Development Program (ALCA) from the Japan Science and Technology Agency (JST) FX The study was conceived during a short-term research stay by E.P.G. in the group of H.I. at Kyoto University sponsored by an invitation fellowship of JSPS; the HEA was fabricated while E.P.G. was at the Oak Ridge National Laboratory funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. E.P.G. acknowledges DFG funding in Germany through project GE 2736/1-1. This work was also supported by JSPS KAKENHI grant numbers 15H02300, 16K14373 and 16K14415, and the Elements Strategy Initiative for Structural Materials (ESISM) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and in part by Advanced Low Carbon Technology Research and Development Program (ALCA) from the Japan Science and Technology Agency (JST). The synchrotron radiation experiments were performed at the BL02B1 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2014B1228, 2014B1553, 2015A1468 & 2016B1096). We wish to thank Dr K. Sugimoto and Dr N. Yasuda for their assistance at the BL02B1 of SPring-8. NR 38 TC 1 Z9 1 U1 13 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD DEC PY 2016 VL 6 IS 12 AR 125008 DI 10.1063/1.4971371 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EH9KZ UT WOS:000392091500031 ER PT J AU Reinke, CM El-Kady, I AF Reinke, Charles M. El-Kady, Ihab TI Phonon-based scalable platform for chip-scale quantum computing SO AIP ADVANCES LA English DT Article; Proceedings Paper CT 3rd International Conference on Phononic Crystals/Metamaterials, Phonon Transport and Phonon Coupling CY MAY 31-JUN 05, 2015 CL Paris, FRANCE ID RESONATORS AB We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). C1 [Reinke, Charles M.; El-Kady, Ihab] Sandia Natl Labs, Dept Appl Photon Microsyst, POB 8500 MS 1082, Albuquerque, NM 87185 USA. [El-Kady, Ihab] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. RP El-Kady, I (reprint author), Sandia Natl Labs, Dept Appl Photon Microsyst, POB 8500 MS 1082, Albuquerque, NM 87185 USA.; El-Kady, I (reprint author), Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. EM ielkady@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Susan Clark for enlightening discussions of the qubit entanglement scheme and Edward Bielejec for providing indispensable information regarding ion implantation. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 22 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD DEC PY 2016 VL 6 IS 12 AR 122002 DI 10.1063/1.4972568 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EH9KZ UT WOS:000392091500023 ER PT J AU Singh, M Gulati, R Srinivasan, RS Bhandari, M AF Singh, Manan Gulati, Rupesh Srinivasan, Ravi S. Bhandari, Mahabir TI Three-Dimensional Heat Transfer Analysis of Metal Fasteners in Roofing Assemblies SO BUILDINGS LA English DT Article DE roofing assemblies; steel fasteners; heat transfer; energy impact AB Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases-without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG) approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ) namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta, GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software) and 3D analysis using HEAT3 is also discussed proving the relevance of 3D over 2D heat transfer analysis. C1 [Singh, Manan] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA. [Gulati, Rupesh] Walt Disney World Resort, Architecture Facil Engn, Orlando, FL 32830 USA. [Srinivasan, Ravi S.] Univ Florida, ME Rinker Sr Sch Construct Management, Gainesville, FL 32611 USA. [Bhandari, Mahabir] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Bldg Technol Program, Oak Ridge, TN 37831 USA. RP Singh, M (reprint author), Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA.; Srinivasan, RS (reprint author), Univ Florida, ME Rinker Sr Sch Construct Management, Gainesville, FL 32611 USA. EM manansingh5@gmail.com; Rupesh.K.Gulati@disney.com; sravi@ufl.edu; bhandarims@ornl.gov NR 6 TC 0 Z9 0 U1 1 U2 1 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2075-5309 J9 BUILDINGS JI Buildings PD DEC PY 2016 VL 6 IS 4 AR 49 DI 10.3390/buildings6040049 PG 18 WC Construction & Building Technology SC Construction & Building Technology GA EI1KE UT WOS:000392235200001 ER PT J AU Zuidema, P Haggerty, J Cadeddu, M Jensen, J Orlandi, E Mech, M Vivekanandan, J Wang, ZE AF Zuidema, Paquita Haggerty, Julie Cadeddu, Maria Jensen, Jorgen Orlandi, Emiliano Mech, Mario Vivekanandan, J. Wang, Zhien TI Recommendations for Improving US NSF-Supported Airborne Microwave Radiometry SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article C1 [Zuidema, Paquita] Univ Miami, Miami, FL USA. [Haggerty, Julie; Jensen, Jorgen; Vivekanandan, J.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Cadeddu, Maria] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Orlandi, Emiliano; Mech, Mario] Univ Cologne, Cologne, Germany. [Wang, Zhien] Univ Wyoming, Laramie, WY 82071 USA. RP Zuidema, P (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM pzuidema@rsmas.miami.edu NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD DEC PY 2016 VL 97 IS 12 BP 2257 EP 2261 DI 10.1175/BAMS-D-15-00081.1 PG 5 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI3CN UT WOS:000392367400005 ER PT J AU Schwarz, K Sham, LJ Mattsson, AE Scheffler, M AF Schwarz, Karlheinz Sham, Lu J. Mattsson, Ann E. Scheffler, Matthias TI Obituary for Walter Kohn (1923-2016) SO COMPUTATION LA English DT Editorial Material C1 [Schwarz, Karlheinz] Vienna Univ Technol, Inst Mat Chem, Getreidemarkt 9-165, A-1060 Vienna, Austria. [Sham, Lu J.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Mattsson, Ann E.] Sandia Natl Labs, Multi Scale Sci, Albuquerque, NM 87185 USA. [Scheffler, Matthias] Max Planck Gesell, Fritz Haber Inst, Faradayweg 4-6, Berlin, Germany. [Scheffler, Matthias] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Scheffler, Matthias] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Schwarz, K (reprint author), Vienna Univ Technol, Inst Mat Chem, Getreidemarkt 9-165, A-1060 Vienna, Austria. EM kschwarz@theochem.tuwien.ac.at; lsham@ucsd.edu; aematts@sandia.gov; scheffler@fhi-berlin.mpg.de NR 3 TC 1 Z9 1 U1 3 U2 3 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2079-3197 J9 COMPUTATION JI Computation PD DEC PY 2016 VL 4 IS 4 AR 40 DI 10.3390/computation4040040 PG 5 WC Mathematics, Interdisciplinary Applications SC Mathematics GA EI1VM UT WOS:000392274200003 ER PT J AU Sapkota, D Mukherjee, R Mandrus, D AF Sapkota, Deepak Mukherjee, Rupam Mandrus, David TI Single Crystal Growth, Resistivity, and Electronic Structure of the Weyl Semimetals NbP and TaP SO CRYSTALS LA English DT Article DE phosphide; Weyl semimetal; chemical vapor transport; density functional theory; resistivity ID FERMI ARCS; DISCOVERY AB We have successfully synthesized niobium monophosphide and tantalum monophosphide crystals by a chemical vapor transport technique. We report resistivity vs. temperature of both materials in the temperature range from 2 K to 300 K. We have also performed electronic structure calculations and present the band structure and density of states of these two compounds. The calculations show that both compounds are semimetals, as their conduction and valence bands overlap near the Fermi energy. C1 [Sapkota, Deepak; Mandrus, David] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Mukherjee, Rupam; Mandrus, David] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mandrus, David] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Mandrus, D (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.; Mandrus, D (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.; Mandrus, D (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM dsapkota@vols.utk.edu; rmukherj@utk.edu; dmandrus@utk.edu FU National Science Foundation [NSF-EFRI-1433496] FX This work was supported by the National Science Foundation under grant NSF-EFRI-1433496. NR 21 TC 0 Z9 0 U1 6 U2 6 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2073-4352 J9 CRYSTALS JI Crystals PD DEC PY 2016 VL 6 IS 12 AR 160 DI 10.3390/cryst6120160 PG 7 WC Crystallography; Materials Science, Multidisciplinary SC Crystallography; Materials Science GA EI1VO UT WOS:000392274400004 ER PT J AU Schoonen, M Smirnov, A AF Schoonen, Martin Smirnov, Alexander TI Staging Life in an Early Warm 'Seltzer' Ocean SO ELEMENTS LA English DT Article DE Hadean; origin of life; water-rock interaction; carbon dioxide; catalysis; clay minerals ID PREBIOTIC SYNTHESIS; SERPENTINIZATION; REDUCTION; NITROGEN; NITRITE; NITRATE; CARBON; EARTH AB The stage for the origin of life may have been set during a period that was as short as 20 million years within the first 100 million years after the formation of the Moon (at similar to 4.5 Ga). The atmosphere at that time contained more carbon dioxide than at any other period thereafter. Carbon dioxide sustained greenhouse conditions, accelerated the weathering of a primitive crust, and may have led to conditions conducive to forming the building blocks of life. The conversion of inorganic carbon and nitrogen to the essential building blocks of life may have been facilitated by clays, zeolites, sulfides, and metal alloys that had been formed as the crust reacted with a warm and carbonated (seltzer) ocean. Geochemical modeling constrains the conditions favorable for the formation of these potential mineral catalysts. C1 [Schoonen, Martin] Brookhaven Natl Lab, Upton, NY 11793 USA. [Schoonen, Martin] RIS4E, Dept Geosci, Stony Brook, NY 11764 USA. [Smirnov, Alexander] Lone Star Coll Kingwood, Dept Geol, 20000 Kingwood Dr, Kingwood, TX 77339 USA. RP Schoonen, M (reprint author), Brookhaven Natl Lab, Upton, NY 11793 USA.; Schoonen, M (reprint author), RIS4E, Dept Geosci, Stony Brook, NY 11764 USA. EM martin.schoonen@stonybrook.edu; alexander.smirnov@lonestar.edu FU NASA's Exobiology and Astrobiology program; RIS4E node of the NASA Solar System Exploration Research Virtual Institute (SSERVI); Department of Energy, Office of Science FX NASA's Exobiology and Astrobiology program provided more than a decade of funding to Schoonen's group at Stony Brook University to investigate the role of minerals, particularly sulfides, in shaping the conditions during the Hadean through theoretical and experimental approaches. Many students, including Alexander Smirnov, contributed to this research effort. Collaborations, discussions, and student exchanges with Scott McLennan (Stony Brook University), Daniel Strongin (Temple University), John Peters (University of Montana), Hiroshi Ohmoto and Jim Kasting (Penn State), Tom McCollum (University of Colorado), George Cody (Carnegie), and Nita Sahai (Akron University) helped shape our work and thinking on this topic. Alexander Smirnov would like to thank Francis McCubbin (Johnson Space Center) for providing ongoing petrological perspectives into his work. Schoonen is particularly thankful for the mentorship by Hu Barnes (Penn State) and the interaction with the late Dick Holland, who instilled an interest in the geochemistry of the early Earth. Jan Schoonen, Scott McLennan, two reviewers and Element's editors are thanked for reviewing an earlier draft of the paper. Work on this paper was supported in part by the RIS4E node of the NASA Solar System Exploration Research Virtual Institute (SSERVI). This is SSERVI publication SERVI-2016-032. Brookhaven National Laboratory is supported by the Department of Energy, Office of Science. NR 30 TC 3 Z9 3 U1 8 U2 8 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 1811-5209 EI 1811-5217 J9 ELEMENTS JI Elements PD DEC PY 2016 VL 12 IS 6 BP 395 EP 400 DI 10.2113/gselements.12.6.395 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA EI1TL UT WOS:000392260800004 ER PT J AU Lee, SH Uin, J Guenther, AB de Gouw, JA Yu, FQ Nadykto, AB Herb, J Ng, NL Koss, A Brune, WH Baumann, K Kanawade, VP Keutsch, FN Nenes, A Olsen, K Goldstein, A Ouyang, Q AF Lee, Shan-Hu Uin, Janek Guenther, Alex B. de Gouw, Joost A. Yu, Fangqun Nadykto, Alex B. Herb, Jason Ng, Nga L. Koss, Abigail Brune, William H. Baumann, Karsten Kanawade, Vijay P. Keutsch, Frank N. Nenes, Athanasios Olsen, Kevin Goldstein, Allen Ouyang, Qi TI Isoprene suppression of new particle formation: Potential mechanisms and implications SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SECONDARY ORGANIC AEROSOL; IONIZATION MASS-SPECTROMETRY; NUCLEATION MODE PARTICLES; BOREAL FOREST SITE; SIZE-DISTRIBUTION; SULFURIC-ACID; ATMOSPHERIC PARTICLES; BIOGENIC EMISSIONS; OH CONCENTRATIONS; BOUNDARY-LAYER AB Secondary aerosols formed from anthropogenic pollutants and natural emissions have substantial impacts on human health, air quality, and the Earth's climate. New particle formation (NPF) contributes up to 70% of the global production of cloud condensation nuclei (CCN), but the effects of biogenic volatile organic compounds (BVOCs) and their oxidation products on NPF processes in forests are poorly understood. Observations show that isoprene, the most abundant BVOC, suppresses NPF in forests. But the previously proposed chemical mechanism underlying this suppression process contradicts atmospheric observations. By reviewing observations made in other forests, it is clear that NPF rarely takes place during the summer when emissions of isoprene are high, even though there are sufficient concentrations of monoterpenes. But at present it is not clear how isoprene and its oxidation products may change the oxidation chemistry of terpenes and how NOx and other atmospheric key species affect NPF in forest environments. Future laboratory experiments with chemical speciation of gas phase nucleation precursors and clusters and chemical composition of particles smaller than 10 nm are required to understand the role of isoprene in NPF. Our results show that climate models can overpredict aerosol's first indirect effect when not considering the absence of NPF in the southeastern U.S. forests during the summer using the current nucleation algorithm that includes only sulfuric acid and total concentrations of low-volatility organic compounds. This highlights the importance of understanding NPF processes as function of temperature, relative humidity, and BVOC compositions to make valid predictions of NPF and CCN at a wide range of atmospheric conditions. C1 [Lee, Shan-Hu; Ouyang, Qi] Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35899 USA. [Uin, Janek] Brookhaven Natl Lab, Dept Biol Environm & Climate Sci, Upton, NY 11973 USA. [Guenther, Alex B.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [de Gouw, Joost A.; Koss, Abigail] NOAA, Chem Sci Div, Boulder, CO USA. [Yu, Fangqun; Nadykto, Alex B.; Herb, Jason] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA. [Nadykto, Alex B.] Moscow State Univ Technol Stankin, Dept Appl Math, Moscow, Russia. [Ng, Nga L.; Nenes, Athanasios] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Ng, Nga L.; Nenes, Athanasios] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Brune, William H.] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA. [Baumann, Karsten] Atmospher Res & Anal Inc, Morrisville Cary, NC USA. [Kanawade, Vijay P.] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden. [Keutsch, Frank N.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Olsen, Kevin; Goldstein, Allen] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP Lee, SH (reprint author), Univ Alabama, Dept Atmospher Sci, Huntsville, AL 35899 USA. EM shanhu.lee@uah.edu RI de Gouw, Joost/A-9675-2008; Koss, Abigail/B-5421-2015 OI de Gouw, Joost/0000-0002-0385-1826; FU NSF [AGS-1137821, 1241498, AGS-1242258, 1247421] FX S.H.L. thanks NSF (AGS-1137821 and 1241498) for the funding support; Paul Ziemann, Katrianne Lehtipalo, Bin Yuan, Neil Donahue, and Jason Surratt for their useful discussions; Yi You and Roxana Sierra for the assistance on measurements in SOAS; and Joel Thornton, Ben Lee, Felipe D. Lopez-Hilfiker, and Claudia Mohr for providing the concentrations of oxygenated organic compounds measured by the UW HRTOF-CIMS. The Caltech-CIMS measured IEPOX data are provided by Paul Wennberg, Tran Nguyen, Alex Teng, Jason St. Clair, and John Crounse, in support of NSF (AGS-1240604). N.L.N. and F.N.K. acknowledge funding from NSF (AGS-1242258 and 1247421). Data presented here care available at the SOAS data archive website: http://esrl.noaa.gov/csd/groups/csd7/measurements/2013senex/. Please contact Shanhu Lee (sl0056@uah.edu) for questions. NR 89 TC 0 Z9 0 U1 18 U2 18 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD DEC PY 2016 VL 121 IS 24 BP 14621 EP 14635 DI 10.1002/2016JD024844 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EI1OR UT WOS:000392247400020 ER PT J AU Yang, Y Peng, XD Ren, FJ Wen, HM Su, JF Xie, WD AF Yang, Yan Peng, Xiaodong Ren, Fengjuan Wen, Haiming Su, Junfei Xie, Weidong TI Constitutive Modeling and Hot Deformation Behavior of Duplex Structured Mg-Li-Al--Sr Alloy SO JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY LA English DT Article DE Mg-Li alloys; Hot deformation; Constitutive equation; Processing maps; Dynamic recrystallization ID DYNAMIC RECRYSTALLIZATION BEHAVIOR; PROCESSING MAP; MECHANICAL-PROPERTIES; MAGNESIUM ALLOY; AS-CAST; ZR ALLOY; MICROSTRUCTURE; COMPRESSION; EVOLUTION; WORKABILITY AB Hot deformation behavior of an as-extruded duplex structured Mg-9Li-3Al-2.5Sr alloy is investigated via hot compression tests conducted at 200-350 degrees C with strain rate of 0.001-1 s(-1). The flow behavior of Mg-9Li-3Al-2.5Sr alloy can be described accurately by hyperbolic sine constitutive equation and the average activation energy for deformation is calculated as 143.5 kJ/mol. Based on a dynamic materials model, the processing maps of Mg-9Li-3AI-2.5Sr alloy which describe the variation of power dissipation efficiency are constructed as a function of temperature and strain rate. The processing maps exhibit an area of discontinuous dynamic recrystallization occurring at 280-300 degrees C with strain rate of 0.001-0.01 s(-1), which corresponds to the optimum hot working conditions. Copyright (C) 2016, The editorial office of Journal of Materials Science & Technology. Published by Elsevier Limited. C1 [Yang, Yan; Peng, Xiaodong; Ren, Fengjuan; Su, Junfei; Xie, Weidong] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China. [Yang, Yan; Peng, Xiaodong; Xie, Weidong] Chongqing Univ, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China. [Wen, Haiming] Idaho State Univ, Dept Nucl Engn & Hlth Phys, Idaho Falls, ID 83402 USA. [Wen, Haiming] Idaho Natl Lab, Characterizat & Adv PIE Div, Idaho Falls, ID 83415 USA. RP Yang, Y (reprint author), Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China.; Yang, Y (reprint author), Chongqing Univ, Natl Engn Res Ctr Magnesium Alloys, Chongqing 400044, Peoples R China. EM yanyang@cqu.edu.cn RI Wen, Haiming/B-3250-2013 OI Wen, Haiming/0000-0003-2918-3966 FU National Natural Science Foundation [51601024]; National Key Research and Development plan [2016YFB0700403]; Chongqing Research Program of Basic Research and Frontier Technology [cstc2016jcyjA0418]; Fundamental Research Funds for the Central Universities [106112015CDJXY130011, CDJZR14130007] FX The authors are grateful to the financial support from the National Natural Science Foundation (Project No. 51601024), the National Key Research and Development plan (Project No. 2016YFB0700403), the Chongqing Research Program of Basic Research and Frontier Technology (Project No. cstc2016jcyjA0418), the Fundamental Research Funds for the Central Universities (Project No. 106112015CDJXY130011 and No. CDJZR14130007). H.M. Wen utilized his private time to perform related work. NR 34 TC 0 Z9 0 U1 7 U2 7 PU JOURNAL MATER SCI TECHNOL PI SHENYANG PA 72 WENHUA RD, SHENYANG 110015, PEOPLES R CHINA SN 1005-0302 J9 J MATER SCI TECHNOL JI J. Mater. Sci. Technol. PD DEC PY 2016 VL 32 IS 12 BP 1289 EP 1296 DI 10.1016/j.jmst.2016.11.015 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EI5TL UT WOS:000392557600011 ER PT J AU Coleman, JE AF Coleman, J. E. TI A spectral pyrometer to spatially resolve the blackbody temperature of a warm dense plasma SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH-SPEED; INFRARED PYROMETER; EMISSIVITY AB A pyrometer has been developed to spatially resolve the blackbody temperature of a radiatively cooling warm dense plasma. The pyrometer is composed of a lens coupled fiber array, Czerny-Turner visible spectrometer, and an intensified gated CCD for the detector. The radiatively cooling warm dense plasma is generated by a similar to 100-ns-long intense relativistic electron bunch with an energy of 19.1 MeV and a current of 0.2 kA interacting with 100-mu m-thick low-Z foils. The continuum spectrum is measured over 250 nm with a low groove density grating. These plasmas emit visible light or blackbody radiation on relatively long time scales (similar to 0.1 to 100 mu s). The diagnostic layout, calibration, and proof-of-principle measurement of a radiatively cooling aluminum plasma is presented, which includes a spatially resolved temperature gradient and the ability to temporally resolve it also. Published by AIP Publishing. C1 [Coleman, J. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Coleman, JE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. I would like to take the opportunity to thank Don Roeder, Valerie Fatherley, Anthony Chavez, and Sharon Dominguez for their manufacturing and design support. I would like to thank the operators, technicians, and engineers Sam Snider, Melissa Reed, Tim McCurdy, Rudy Valdez, Armando Martinez, and Travis Weaver for their continued support. NR 23 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2016 VL 87 IS 12 AR 123113 DI 10.1063/1.4973433 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EH9NA UT WOS:000392096800013 PM 28040936 ER PT J AU Hoffman, AS Debefve, LM Bendjeriou-Sedjerari, A Ould-Chikh, S Bare, SR Basset, JM Gates, BC AF Hoffman, A. S. Debefve, L. M. Bendjeriou-Sedjerari, A. Ould-Chikh, S. Bare, Simon R. Basset, J. -M. Gates, B. C. TI Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres (vol 97, 073108, 2016) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Correction C1 [Hoffman, A. S.; Debefve, L. M.; Gates, B. C.] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA. [Bendjeriou-Sedjerari, A.; Ould-Chikh, S.; Basset, J. -M.] KAUST, KCC, Thuwal 239556900, Saudi Arabia. [Bare, Simon R.] SSRL, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA. EM bcgates@ucdavis.edu NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2016 VL 87 IS 12 AR 129901 DI 10.1063/1.4971181 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EH9NA UT WOS:000392096800081 PM 28040947 ER PT J AU Schollmeier, MS Loisel, GP AF Schollmeier, Marius S. Loisel, Guillaume P. TI Systematic search for spherical crystal X-ray microscopes matching 1-25 keV spectral line sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NATIONAL IGNITION FACILITY; BENT CRYSTALS; HIGH-ENERGY; LASER-FUSION; PLASMA; CONFINEMENT; DENSITY AB Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90 degrees which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this article, after performing a systematic, automated search over more than 9 x 10(6) possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every He-alpha or K-alpha x-ray source for the elements Ne to Sn. Using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date. Published by AIP Publishing. C1 [Schollmeier, Marius S.; Loisel, Guillaume P.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Schollmeier, MS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mscholl@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Tommy Ao, Ross E. Falcon, Matthias Geissel, Eric C. Harding, John L. Porter, Patrick K. Rambo, Jens Schwarz, Daniel B. Sinars, and Christopher S. Speas at Sandia National Laboratories, and Jeffrey A. Koch at National Security Technologies LLC for the support and helpful discussions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 58 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2016 VL 87 IS 12 AR 123511 DI 10.1063/1.4972248 PG 20 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EH9NA UT WOS:000392096800026 PM 28040953 ER PT J AU Terentyev, S Blank, V Kolodziej, T Shvyd'ko, Y AF Terentyev, Sergey Blank, Vladimir Kolodziej, Tomasz Shvyd'ko, Yuri TI Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SYNCHROTRON-RADIATION; SPECTROMETER; OPTICS; REFLECTIVITY AB We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-mu m thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for similar or equal to 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations. Published by AIP Publishing. C1 [Terentyev, Sergey; Blank, Vladimir] Technol Inst Superhard & Novel Carbon Mat, Troitsk 142190, Russia. [Kolodziej, Tomasz; Shvyd'ko, Yuri] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Shvyd'ko, Y (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM shvydko@aps.anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DEA-C02-06CH11357]; Ministry of Education and Science of Russian Federation [RFMEF1586114X0001, 14.586.21.0001] FX Work at the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DEA-C02-06CH11357. Work at TISCNM was supported by the Ministry of Education and Science of Russian Federation: scientific Project No. RFMEF1586114X0001, Grant No. 14.586.21.0001. NR 30 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2016 VL 87 IS 12 AR 125117 DI 10.1063/1.4973326 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EH9NA UT WOS:000392096800072 PM 28040980 ER PT J AU Thaler, A Northen, E Aczel, AA MacDougall, GJ AF Thaler, A. Northen, E. Aczel, A. A. MacDougall, G. J. TI A mechanical rotator for neutron scattering measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID QUANTUM CRITICALITY; MAGNETIC-STRUCTURE; MN3O4; CRYOSTAT; CELL AB We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses and future extension possibilities. Published by AIP Publishing. C1 [Thaler, A.; Northen, E.; MacDougall, G. J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Thaler, A.; Northen, E.; MacDougall, G. J.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Thaler, A.; Aczel, A. A.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP MacDougall, GJ (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.; MacDougall, GJ (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. EM gmacdoug@illinois.edu OI Thaler, Alexander/0000-0001-5066-8904; MacDougall, Gregory/0000-0002-7490-9650 FU National Science Foundation [DMR-1455264-CAR]; Scientific User Facilities Division, Office of Basic Energy Sciences, (U.S.) Department of Energy (DOE) FX This work was sponsored by the National Science Foundation, under Grant No. DMR-1455264-CAR. Experiments performed at Oak Ridge National Laboratory's High Flux Isotope Reactor were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, (U.S.) Department of Energy (DOE). We would like to thank Chris Redmon and Todd Sherline of Oak Ridge National Laboratory for their feedback regarding several design components. We would also like to thank Alex Zakjevskii, Annie Farwick, and Brian Nguyen for their help in taking the measurements. NR 34 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2016 VL 87 IS 12 AR 125109 DI 10.1063/1.4972279 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EH9NA UT WOS:000392096800064 PM 28040949 ER PT J AU Engelhard, MH Lyubinetsky, A Baer, DR AF Engelhard, Mark H. Lyubinetsky, Andre Baer, Don R. TI Gallium arsenide (GaAs) (001) after sublimation of arsenic (As) thin-film cap, by XPS SO SURFACE SCIENCE SPECTRA LA English DT Article DE gallium arsenide; GaAs; As-capped GaAs; XPS; x-ray photoelectron spectroscopy; ESCA AB Survey and high-energy-resolution spectra are reported for MBE grown GaAs (001) that had been capped with As. The As cap was removed by heating in situ prior to analysis. The current data expands upon the spectral regions previously reported in Surface Science Spectra. High energy resolution spectral features reported include: 2p, 3s, 3p, 3d, and L3M4,5M4,5 peaks for As; 2p, 3s, 3p, 3d, and L3M4,5M4,5 peaks for Ga; and the valence band region. (C) 2016 American Vacuum Society. C1 [Engelhard, Mark H.; Lyubinetsky, Andre; Baer, Don R.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, 3335 Innovat Blvd, Richland, WA 99354 USA. RP Engelhard, MH (reprint author), Pacific Northwest Natl Lab, Environm Mol Sci Lab, 3335 Innovat Blvd, Richland, WA 99354 USA. FU DOE's Office of Biological and Environmental Research FX The specimen was provided by Professor Ravi Droopad, Dept. of Physics, Texas State University, San Marcos, TX. These spectra were collected using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory (PNNL). NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1055-5269 EI 1520-8575 J9 SURF SCI SPECTRA JI Surf. Sci. Spectra PD DEC PY 2016 VL 23 IS 2 BP 83 EP 92 DI 10.1116/1.4962156 PG 10 WC Physics, Condensed Matter SC Physics GA EI5JT UT WOS:000392531200001 ER PT J AU Myhre, K Meyer, H Du, M AF Myhre, Kristian Meyer, Harry Du, Miting TI Samarium and europium beta"-alumina derivatives characterized by XPS SO SURFACE SCIENCE SPECTRA LA English DT Article DE beta"-alumina; europium; samarium ID THIN-FILMS; PHOSPHOR AB Characterization of samarium, and europium beta"-alumina derivatives has been carried out using x-ray photoelectron spectroscopy (XPS). Beta"-alumina has been widely studied as a material capable of incorporating many different cations into its lattice structure, such as sodium and many of the lanthanide elements. This unique behavior has been recently explored at Oak Ridge National Laboratory for separating samarium and europium from each other. The XPS of samarium and europium in the beta"-alumina structure are reported here. Additionally, the XPS spectra of the europium and samarium trichloride starting materials are presented in the database. (C) 2017 American Vacuum Society. C1 [Myhre, Kristian] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, 821 Volunteer Blvd, Knoxville, TN 37996 USA. [Meyer, Harry; Du, Miting] Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, POB 2008, Oak Ridge, TN 37831 USA. RP Myhre, K (reprint author), Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, 821 Volunteer Blvd, Knoxville, TN 37996 USA. OI Myhre, Kristian/0000-0002-5947-5743 FU Laboratory Directed Research and Development Program at Oak Ridge National Laboratory FX The authors thank Jason Craig for sealing samples in quartz tubes and Randy Parten for cutting and grinding various samples. This Research is sponsored by the Laboratory Directed Research and Development Program at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. NR 16 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1055-5269 EI 1520-8575 J9 SURF SCI SPECTRA JI Surf. Sci. Spectra PD DEC PY 2016 VL 23 IS 2 BP 102 EP 111 DI 10.1116/1.4972828 PG 10 WC Physics, Condensed Matter SC Physics GA EI5JT UT WOS:000392531200003 ER PT J AU Haasch, RT Abraham, DA AF Haasch, Richard T. Abraham, Daniel A. TI Introduction to a series of LiNi0.8Co0.2O2-based high-power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy SO SURFACE SCIENCE SPECTRA LA English DT Editorial Material ID CELLS C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. [Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. EM r-haasch@illinois.edu; abraham@cmt.anl.gov FU Office of Vehicle Technologies at the U.S. Department of Energy FX D.A. gratefully acknowledges support from the Office of Vehicle Technologies at the U.S. Department of Energy. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. NR 3 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1055-5269 EI 1520-8575 J9 SURF SCI SPECTRA JI Surf. Sci. Spectra PD DEC PY 2016 VL 23 IS 2 BP 112 EP 117 DI 10.1116/1.4972829 PG 6 WC Physics, Condensed Matter SC Physics GA EI5JT UT WOS:000392531200004 ER PT J AU Haasch, RT Abraham, DA AF Haasch, Richard T. Abraham, Daniel A. TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 1. Fresh electrode SO SURFACE SCIENCE SPECTRA LA English DT Article DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy conversion and storage ID PHOTOEMISSION AB X-ray photoelectron spectroscopy (XPS) was used to analyze a fresh LiNi0.8Co0.2O2-based high power lithium-ion battery cathode. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, S 2p, P 2p, and Li 1s are presented. In addition, XP spectra were obtained using incident Mg K-alpha radiation at 0.98903 nm. A survey spectrum together with Ni 2p, Co 2p, and C 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals and show only minor sulfur contamination. (C) 2017 American Vacuum Society. C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61081 USA. [Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61081 USA. FU Office of Vehicle Technologies at U.S. Department of Energy FX D.A. gratefully acknowledges support from the Office of Vehicle Technologies at the U.S. Department of Energy. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. NR 3 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1055-5269 EI 1520-8575 J9 SURF SCI SPECTRA JI Surf. Sci. Spectra PD DEC PY 2016 VL 23 IS 2 BP 118 EP 128 DI 10.1116/1.4972837 PG 11 WC Physics, Condensed Matter SC Physics GA EI5JT UT WOS:000392531200005 ER PT J AU Haasch, RT Abraham, DA AF Haasch, Richard T. Abraham, Daniel A. TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 2. Following 3 formation cycles SO SURFACE SCIENCE SPECTRA LA English DT Article DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy conversion and storage ID PHOTOEMISSION AB X-ray photoelectron spectroscopy (XPS) was used to analyze rinsed and not rinsed LiNi0.8Co0.2O2-based high power lithium-ion battery cathodes following 3 formation cycles. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, P 2p and Li 1s are presented. In addition, XP spectra were obtained using incident Mg K-alpha radiation at 0.98903 nm. A survey spectrum together with Ni 2p, Co 2p, and C 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals and the not rinsed cathode shows only minor sulfur contamination. (C) 2017 American Vacuum Society. C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. [Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. FU Office of Vehicle Technologies at U.S. Department of Energy FX D.A. gratefully acknowledges support from the Office of Vehicle Technologies at the U.S. Department of Energy. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. NR 3 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1055-5269 EI 1520-8575 J9 SURF SCI SPECTRA JI Surf. Sci. Spectra PD DEC PY 2016 VL 23 IS 2 BP 129 EP 140 DI 10.1116/1.4972840 PG 12 WC Physics, Condensed Matter SC Physics GA EI5JT UT WOS:000392531200006 ER PT J AU Haasch, RT Abraham, DA AF Haasch, Richard T. Abraham, Daniel A. TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 3. Following calendar-life test for 12 weeks at 40 degrees C, 60% state-of-charge (3.747 V) SO SURFACE SCIENCE SPECTRA LA English DT Article DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy conversion and storage ID PHOTOEMISSION AB X-ray photoelectron spectroscopy (XPS) was used to analyze rinsed and not rinsed LiNi0.8Co0.2O2-based high power lithium-ion battery cathodes following calendar-life testing at 40 degrees C, 60% state-of-charge. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, P 2p, and Li 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals. Both cathodes show only minor nitrogen contamination. (C) 2017 American Vacuum Society. C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. [Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. FU Office of Vehicle Technologies at the U.S. Department of Energy FX D.A. gratefully acknowledges support from the Office of Vehicle Technologies at the U.S. Department of Energy. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1055-5269 EI 1520-8575 J9 SURF SCI SPECTRA JI Surf. Sci. Spectra PD DEC PY 2016 VL 23 IS 2 BP 141 EP 148 DI 10.1116/1.4972841 PG 8 WC Physics, Condensed Matter SC Physics GA EI5JT UT WOS:000392531200007 ER PT J AU Haasch, RT Abraham, DA AF Haasch, Richard T. Abraham, Daniel A. TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 4. Following calendar-life test for 8 weeks at 50 degrees C, 60% state-of-charge (3.747 V) SO SURFACE SCIENCE SPECTRA LA English DT Article DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy conversion and storage ID PHOTOEMISSION AB X-ray photoelectron spectroscopy (XPS) was used to analyze rinsed and not rinsed LiNi0.8Co0.2O2-based high power lithium-ion battery cathodes following calendar-life testing at 50 degrees C, 60% state-of-charge. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, P 2p and Li 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals. (C) 2017 American Vacuum Society. C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. [Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. FU Office of Vehicle Technologies at the U.S. Department of Energy FX D.A. gratefully acknowledges support from the Office of Vehicle Technologies at the U.S. Department of Energy. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1055-5269 EI 1520-8575 J9 SURF SCI SPECTRA JI Surf. Sci. Spectra PD DEC PY 2016 VL 23 IS 2 BP 149 EP 156 DI 10.1116/1.4972842 PG 8 WC Physics, Condensed Matter SC Physics GA EI5JT UT WOS:000392531200008 ER PT J AU Haasch, R Abraham, DA AF Haasch, Richard Abraham, Daniel A. TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 5. Following calendar-life test for 8 weeks at 60 degrees C, 60% state-of-charge (3.747 V) SO SURFACE SCIENCE SPECTRA LA English DT Article DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy conversion and storage ID PHOTOEMISSION AB X-ray photoelectron spectroscopy (XPS) was used to analyze rinsed and not rinsed LiNi0.8Co0.2O2-based high power lithium-ion battery cathodes following calendar-life testing at 60 degrees C, 60% state-of-charge. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, P 2p and Li 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals. (C) 2017 American Vacuum Society. C1 [Haasch, Richard] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. [Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Haasch, R (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. FU Office of Vehicle Technologies at U.S. Department of Energy FX D.A. gratefully acknowledges support from the Office of Vehicle Technologies at the U.S. Department of Energy. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1055-5269 EI 1520-8575 J9 SURF SCI SPECTRA JI Surf. Sci. Spectra PD DEC PY 2016 VL 23 IS 2 BP 157 EP 164 DI 10.1116/1.4972865 PG 8 WC Physics, Condensed Matter SC Physics GA EI5JT UT WOS:000392531200009 ER PT J AU Haasch, RT Abraham, DA AF Haasch, Richard T. Abraham, Daniel A. TI LiNi0.8Co0.2O2-based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 6. Following calendar-life test for 2 weeks at 70 degrees C, 60% state-of-charge (3.747 V) SO SURFACE SCIENCE SPECTRA LA English DT Article DE lithium nickel cobalt oxide; lithium-ion battery cathode; energy conversion and storage ID PHOTOEMISSION AB X-ray photoelectron spectroscopy (XPS) was used to analyze rinsed and not rinsed LiNi0.8Co0.2O2-based high power lithium-ion battery cathodes following calendar-life testing at 70 degrees C, 60% state-of-charge. XP spectra were obtained using incident monochromatic Al K-alpha radiation at 0.83401 nm. A survey spectrum together with F 1s, O 1s, C 1s, P 2p, and Li 1s are presented. The spectra indicate the principal core level photoelectron and Auger electron signals. (C) 2017 American Vacuum Society. C1 [Haasch, Richard T.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. [Abraham, Daniel A.] Argonne Natl Lab, Div Chem Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Haasch, RT (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 S Goodwin Ave, Urbana, IL 61801 USA. FU Office of Vehicle Technologies at the U.S. Department of Energy FX D.A. gratefully acknowledges support from the Office of Vehicle Technologies at the U.S. Department of Energy. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1055-5269 EI 1520-8575 J9 SURF SCI SPECTRA JI Surf. Sci. Spectra PD DEC PY 2016 VL 23 IS 2 BP 165 EP 172 DI 10.1116/1.4972866 PG 8 WC Physics, Condensed Matter SC Physics GA EI5JT UT WOS:000392531200010 ER PT J AU Bridges, RA Imam, N Mintz, TM AF Bridges, Robert A. Imam, Neena Mintz, Tiffany M. TI Understanding GPU Power: A Survey of Profiling, Modeling, and Simulation Methods SO ACM COMPUTING SURVEYS LA English DT Article DE Experimentation; Performance; GPU; GPGPU; power profile; power model; simulation ID PERFORMANCE; ARCHITECTURES AB Modern graphics processing units (GPUs) have complex architectures that admit exceptional performance and energy efficiency for high-throughput applications. Although GPUs consume large amounts of power, their use for high-throughput applications facilitate state-of-the-art energy efficiency and performance. Consequently, continued development relies on understanding their power consumption. This work is a survey of GPU power modeling and profiling methods with increased detail on noteworthy efforts. As direct measurement of GPU power is necessary for model evaluation and parameter initiation, internal and external power sensors are discussed. Hardware counters, which are low-level tallies of hardware events, share strong correlation to power use and performance. Statistical correlation between power and performance counters has yielded worthwhile GPU power models, yet the complexity inherent to GPU architectures presents new hurdles for power modeling. Developments and challenges of counter-based GPU power modeling are discussed. Often building on the counter-based models, research efforts for GPU power simulation, which make power predictions from input code and hardware knowledge, provide opportunities for optimization in programming or architectural design. Noteworthy strides in power simulations for GPUs are included along with their performance or functional simulator counterparts when appropriate. Last, possible directions for future research are discussed. C1 [Bridges, Robert A.; Imam, Neena; Mintz, Tiffany M.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Bridges, RA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM bridgesra@ornl.gov; imamn@ornl.gov; mintztm@ornl.gov FU United States Department of Defense; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy; United States Government FX This work was supported by the United States Department of Defense and used resources of the Computational Research and Development Programs at Oak Ridge National Laboratory. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan http://energy.gov/downloads/doe-public-access-plan. NR 98 TC 1 Z9 1 U1 1 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0360-0300 EI 1557-7341 J9 ACM COMPUT SURV JI ACM Comput. Surv. PD DEC PY 2016 VL 49 IS 3 AR 41 DI 10.1145/2962131 PG 27 WC Computer Science, Theory & Methods SC Computer Science GA EH3AH UT WOS:000391639400001 ER PT J AU Jiao, F Chen, YL Jin, HB He, PG Chen, CL De Yoreo, JJ AF Jiao, Fang Chen, Yulin Jin, Haibao He, Pingang Chen, Chun-Long De Yoreo, James J. TI Self-Repair and Patterning of 2D Membrane-Like Peptoid Materials SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE 2D membranes; nanopatterns; peptoids; self-repair ID SEQUENCE-SPECIFIC POLYPEPTOIDS; MECHANICAL CALCULATIONS; 2-DIMENSIONAL POLYMERS; FORCE-FIELD; NANOSHEETS; PEPTIDE; PROTEINS; SURFACE; GROWTH; CHARGE AB Due to their unique physical and chemical properties, 2D materials have attracted intense interest for applications in filtration, sensing, nanoelectronics, and biomedical devices. Peptoids are a class of biomimetic sequence-defined polymers for which certain amphiphillic sequences self-assemble into 2D crystalline materials with properties that mimic those of cell membranes. In this study the ability of these membrane-like materials to self-repair following damage on a range of substrates is explored. In situ atomic force microscopy (AFM) is used to both create damage and image the subsequent repair process. Damage is induced by using the AFM to scribe peptoid-free patterns within a preassembled membrane. The results show here that, upon introduction of a peptoid-containing solution, for a suitable range of pH conditions, the damage is eliminated through assembly of the peptoids at the newly created edges, regardless of whether the substrates are negatively or positively charged and even in the absence of an underlying surface. The rate of the advancing edge depends on the edge orientation, the pH, and the composition of the substrate. Moreover, if the solution contains a second peptoid having an identical sequence in the hydrophobic block, repair of the defects results in nanoscale patterns of the new peptoid, even if the hydrophilic regions are distinct. Consequently, this ability to self-repair can be exploited to create nm-sized patterns of distinct functional groups within a single coherent membrane. C1 [Jiao, Fang; He, Pingang] East China Normal Univ, Sch Chem & Mol Engn, Shanghai 200241, Peoples R China. [Jiao, Fang; Chen, Yulin; Jin, Haibao; Chen, Chun-Long; De Yoreo, James J.] Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [De Yoreo, James J.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Chen, CL; De Yoreo, JJ (reprint author), Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA.; De Yoreo, JJ (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. EM chunlong.chen@pnnl.gov; james.deyoreo@pnnl.gov FU Materials Synthesis and Simulation Across Scales (MS3) Initiative through the LDRD program at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy, Office of Basic Energy Sciences, Biomolecular Materials Program at PNNL; China Scholarship Council; Department of Energy by Battelle [DE-AC05-76RL01830] FX Peptoid synthesis was supported by the Materials Synthesis and Simulation Across Scales (MS3) Initiative through the LDRD program at Pacific Northwest National Laboratory (PNNL). In situ AFM studies were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Biomolecular Materials Program at PNNL. F.J. gratefully acknowledges financial support from China Scholarship Council. PNNL is multiprogram national laboratory operated for Department of Energy by Battelle under Contract No. DE-AC05-76RL01830. NR 35 TC 0 Z9 0 U1 23 U2 23 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD DEC PY 2016 VL 26 IS 48 BP 8960 EP 8967 DI 10.1002/adfm.201602365 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EH5KT UT WOS:000391812700010 ER PT J AU Chen, XF Guo, PJ He, C Dong, BQ Ocola, LE Schaller, RD Chang, RPH Sun, C AF Chen, Xiangfan Guo, Peijun He, Cheng Dong, Biqin Ocola, Leonidas E. Schaller, Richard D. Chang, Robert P. H. Sun, Cheng TI Scaling the Artificial Polariton Bandgap at Infrared Frequencies Using Indium Tin Oxide Nanorod Arrays SO ADVANCED OPTICAL MATERIALS LA English DT Article ID SURFACE-PLASMON RESONANCES; OPTICAL-PROPERTIES; SILICON NANOWIRES; METAMATERIALS; NANOCRYSTALS; TRANSPARENCY; CONDUCTIVITY; NANOANTENNAS; ABSORPTION; NANOSCALE AB Artificial polariton bandgaps at infrared frequencies are investigated by exploiting the strong coupling of electromagnetic waves with induced electric dipoles in two-dimensional (2D) indium tin oxide nanorod arrays (ITO-NRAs). The electric dipoles originate from the collective oscillations of free electrons within the individual ITO nanorods undergoing plasmonic resonance. Controlling the near-field interactions among the neighboring electric dipoles allows for manipulation of the collective polariton modes that are manifested as a polariton bandgap. A theoretical model is developed to understand the coupled phenomena underlying the unique characteristics of plasmon-polariton bandgaps. With high-degree geometric control of the ITO-NRAs, it is experimentally demonstrated that reducing the spacing between ITO nanorods in a square array strengthens the near-field interactions and thus results in a redshift as well as broadening of the polariton bandgap. Furthermore, arranging ITO-NRAs in a rectangular lattice breaks the symmetry with respect to the principle axis, which leads to a splitting of the collective polariton modes owing to the competition between the quasi-longitudinally and quasi-transversely coupled plasmon-polariton modes. The work highlights the use of a classical dipole coupling method for scaling polariton bandgaps to the infrared in artificial plasmonic lattices, thereby offering a new design dimension for infrared sensing, absorbers, and optical communications. C1 [Chen, Xiangfan; He, Cheng; Dong, Biqin; Sun, Cheng] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Guo, Peijun; Chang, Robert P. H.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Ocola, Leonidas E.; Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Schaller, Richard D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Sun, C (reprint author), Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA.; Chang, RPH (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM r-chang@northwestern.edu; c-sun@northwestern.edu OI Chen, Xiangfan/0000-0002-5627-7530; Ocola, Leonidas/0000-0003-4990-1064 FU National Science Foundation (NSF) [EEC-1530734, DBI-1353952]; MRSEC program at Northwestern University [NSF DMR-1121262]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; State of Illinois; Northwestern University; Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF NNCI-1542205]; MRSEC at the Materials Research Center [NSF DMR-1121262]; International Institute for Nanotechnology (IIN); Keck Foundation; State of Illinois through the IIN FX X.C. and P.G. contributed equally to this work. This work was supported by the National Science Foundation (NSF) under Grant Nos. EEC-1530734 and DBI-1353952, and the MRSEC program (Grant No. NSF DMR-1121262) at Northwestern University. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work used the Northwestern University Micro/Nano Fabrication Facility (NUFAB), which was supported by the State of Illinois and Northwestern University. This work also made use of the EPIC facility of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (Grant No. NSF NNCI-1542205), the MRSEC program (Grant No. NSF DMR-1121262) at the Materials Research Center, the International Institute for Nanotechnology (IIN), the Keck Foundation, and the State of Illinois, through the IIN. NR 54 TC 1 Z9 1 U1 11 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2195-1071 J9 ADV OPT MATER JI Adv. Opt. Mater. PD DEC PY 2016 VL 4 IS 12 BP 2077 EP 2084 DI 10.1002/adom.201600439 PG 8 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA EI3QA UT WOS:000392405100025 ER PT J AU Tilka, JA Park, J Sampson, KC Cai, Z Evans, PG AF Tilka, J. A. Park, J. Sampson, K. C. Cai, Z. Evans, P. G. TI Fabrication and convergent X-ray nanobeam diffraction characterization of submicron-thickness SrTiO3 crystalline sheets SO APL MATERIALS LA English DT Article ID FIB-INDUCED DAMAGE; ELECTRON-MICROSCOPY; SINGLE-CRYSTAL; ION; NANOMEMBRANES; RECOVERY; SILICON; OXIDES AB The creation of thin SrTiO3 crystals from (001)-oriented SrTiO3 bulk single crystals using focused ion beam milling techniques yields sheets with submicron thickness and arbitrary orientation within the (001) plane. Synchrotron x-ray nanodiffraction rocking curve widths of these SrTiO3 sheets are less than 0.02 degrees, less than a factor of two larger than bulk SrTiO3, making these crystals suitable substrates for epitaxial thin film growth. The change in the rocking curve width is sufficiently small that we deduce that dislocations are not introduced into the SrTiO3 sheets. Observed lattice distortions are consistent with a low concentration of point defects. (C) 2016 Author(s). C1 [Tilka, J. A.; Park, J.; Sampson, K. C.; Evans, P. G.] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. [Cai, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Evans, PG (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. EM pgevans@wisc.edu RI Evans, Paul/A-9260-2009 OI Evans, Paul/0000-0003-0421-6792 FU U.S. DOE, Basic Energy Sciences, Materials Sciences and Engineering [DE-FG02-04ER46147]; National Science Foundation Graduate Research Fellowship Program [DGE-1256259]; NSF [DMR-1106050]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; University of Wisconsin Materials Research Science and Engineering Center, NSF [DMR-1121288] FX The development of the x-ray nanobeam analysis methods employed in this work was supported by the U.S. DOE, Basic Energy Sciences, Materials Sciences and Engineering, Contract No. DE-FG02-04ER46147. J.A.T. acknowledges support from the National Science Foundation Graduate Research Fellowship Program, Grant No. DGE-1256259 and from NSF Grant No. DMR-1106050. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research used shared facilities supported by the University of Wisconsin Materials Research Science and Engineering Center, NSF Grant No. DMR-1121288. The authors would like to thank Eli Mueller for carefully reviewing the simulation. NR 28 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD DEC PY 2016 VL 4 IS 12 AR 126108 DI 10.1063/1.4972528 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EH7ZL UT WOS:000391991100009 ER PT J AU Zhang, XD Vesselinov, VV AF Zhang, Xiaodong Vesselinov, Velimir V. TI Energy-water nexus: Balancing the tradeoffs between two-level decision makers SO APPLIED ENERGY LA English DT Article DE Energy-water nexus; Two-level decision making; Tradeoff; GHG emission control ID MULTILEVEL PROGRAMMING-PROBLEMS; ELECTRICITY-GENERATION; UNITED-STATES; FUZZY; MODEL; MANAGEMENT; SYSTEM; TEXAS AB Energy-water nexus has substantially increased importance in the recent years. Synergistic approaches based on systems-analysis and mathematical models are critical for helping decision makers better understand the interrelationships and tradeoffs between energy and water. In energy-water nexus management, various decision makers with different goals and preferences, which are often conflicting, are involved. These decision makers may have different controlling power over the management objectives and the decisions. They make decisions sequentially from the upper level to the lower level, challenging decision making in energy-water nexus. In order to address such planning issues, a bi-level decision model is developed, which improves upon the existing studies by integration of bi-level programming into energy-water nexus management. The developed model represents a methodological contribution to the challenge of sequential decision-making in energy-water nexus through provision of an integrated modeling framework/tool. An interactive fuzzy optimization methodology is introduced to seek a satisfactory solution to meet the overall satisfaction of the two-level decision makers. The tradeoffs between the two-level, decision makers in energy-water nexus management are effectively addressed and quantified. Application of the proposed model to a synthetic example problem has demonstrated its applicability in practical energy-water nexus management. Optimal solutions for electricity generation, fuel supply, water supply including groundwater, surface water and recycled water, capacity expansion of the power plants, and GHG emission control are generated. These analyses are capable of helping decision makers or stakeholders adjust their tolerances to make informed" decisions to achieve the overall satisfaction of energy-water nexus management where bi-level sequential decision making process is involved. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zhang, Xiaodong; Vesselinov, Velimir V.] Los Alamos Natl Lab, Earth & Environm Sci Div, Computat Earth Sci EES 16, Los Alamos, NM 87545 USA. RP Zhang, XD (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, Computat Earth Sci EES 16, Los Alamos, NM 87545 USA. EM gerryzxd@gmail.com OI Zhang, Xiaodong/0000-0001-5353-1647 NR 49 TC 1 Z9 1 U1 8 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD DEC 1 PY 2016 VL 183 BP 77 EP 87 DI 10.1016/j.apenergy.2016.08.156 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EH6PY UT WOS:000391897600006 ER PT J AU Ke, XD Wu, D Rice, J Kintner-Meyer, M Lu, N AF Ke, Xinda Wu, Di Rice, Jennie Kintner-Meyer, Michael Lu, Ning TI Quantifying impacts of heat waves on power grid operation SO APPLIED ENERGY LA English DT Article DE Climate change; Heat wave; Power grid operation; Production cost model; Unit commitment ID STOCHASTIC UNIT COMMITMENT; CLIMATE-CHANGE; ENERGY-CONSUMPTION; UNCERTAINTY; BUILDINGS; SYSTEMS; LEVEL AB Climate change is projected to cause an increase in the severity and frequency of extreme weather events such as heat waves and droughts. Such changes present planning and operating challenges and risks to many economic sectors. In the electricity sector, statistics of extreme events in the past have been used to help plan for future peak loads, determine associated infrastructure requirements, and evaluate operational risks, but industry-standard planning tools have yet to be coupled with or informed by temperature models to explore the irhpacts of the "new normal" on planning studies. For example, high ambient temperatures during heat waves reduce the output capacity and efficiency of gas-fired combustion turbines just when they are needed most to meet peak demands. This paper describes the development and application of a production cost and unit commitment model coupled to high resolution, hourly temperature data and a temperature-dependent load model. The coupled system has the ability to represent the impacts of hourly temperature on load conditions and available capacity and efficiency of combustion turbines, and therefore capture the potential impacts on system reserve and production cost. Ongoing work expands this capability to address the impacts of water availability and temperature on power grid operation. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lu, Ning] North Carolina State Univ, Raleigh, NC 27606 USA. [Ke, Xinda; Wu, Di; Rice, Jennie; Kintner-Meyer, Michael] Pacific Northwest Natl Lab, Richland, WA 99354 USA. RP Wu, D (reprint author), Pacific Northwest Natl Lab, Richland, WA 99354 USA. EM di.wu@pnnl.gov OI Wu, Di/0000-0001-6955-4333 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research as part of the Integrated Assessment Research Program; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research as part of the Integrated Assessment Research Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 35 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD DEC 1 PY 2016 VL 183 BP 504 EP 512 DI 10.1016/j.apenergy.2016.08.188 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EH6PY UT WOS:000391897600041 ER PT J AU Wei, W Liu, F Wang, JH Chen, LJ Mei, SW Yuan, TJ AF Wei, Wei Liu, Feng Wang, Jianhui Chen, Laijun Mei, Shengwei Yuan, Tiejiang TI Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants SO APPLIED ENERGY LA English DT Article DE Carbon-capture plants; Environmental-economic dispatch; Nash bargaining problem; Wind generation; Robust optimization ID UNIT COMMITMENT; PROGRAMMING APPROACH; RESERVE DISPATCH; ENERGY; OPTIMIZATION; OPERATION; SYSTEMS; ALGORITHMS; MARKETS AB Utilizing clean renewable generation and carbon capture plants (CCPs) can remarkably reduce the carbon emission from electricity production. Because operating carbon capture facility consumers additional energy, minimizing the production cost and reducing the carbon emission may conflict with each other. To compromise these two objectives and cope with uncertain wind generation, this paper proposes a robust environmental-economic dispatch (EED) method that jointly optimizes energy and reserve schedules in the upcoming dispatch period. The operating characteristic of CCP and the volatility of wind energy are considered in the proposed model. Because both objectives are convex functions, the Pareto front can be readily computed by using the 8-constraint method. The Nash bargaining criterion is adopted to determine a fair trade-off between the generation cost and the carbon emission in the absence of a clear carbon tax or emission cap. A second-order cone program (SOCP) is proposed to locate the bargaining solution on the Pareto front. An adaptive scenario generation algorithm is derived to solve the robust EED problem in a tractable manner. The PJM 5-bus system is used to illustrate the obtained dispatch strategy, and demonstrate the contribution of CCPs on reducing the carbon emissions and enhancing the operational flexibility. Case studies on the IEEE 118-bus system corroborate the applicability of the proposed method. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Wei, Wei; Liu, Feng; Chen, Laijun; Mei, Shengwei] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China. [Wang, Jianhui] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Yuan, Tiejiang] Xinjiang Univ, Dept Elect Engn, Urumqi 830046, Peoples R China. RP Wei, W (reprint author), Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China. EM wei-wei04@mails.tsinghua.edu.cn FU National Natural Science Foundation of China [51007041, 51577163]; Foundation for Innovative Research Groups of the National Natural Science Foundation of China [51321005] FX This work is supported in part by the National Natural Science Foundation of China (No. 51007041), in part by the National Natural Science Foundation of China (No. 51577163), and in part by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 51321005). NR 38 TC 3 Z9 3 U1 6 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD DEC 1 PY 2016 VL 183 BP 674 EP 684 DI 10.1016/j.apenergy.2016.09.013 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EH6PY UT WOS:000391897600054 ER PT J AU Yu, XQ Yan, D Sun, KY Hong, TZ Zhu, DD AF Yu, Xinqiao Yan, Da Sun, Kaiyu Hong, Tianzhen Zhu, Dandan TI Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings SO APPLIED ENERGY LA English DT Article DE Variable refrigerant flow (VRF) systems; Variable air volume (VAV) systems; Field measurement; Building simulation; Energy performance; Comparative analysis ID CONDITIONING SYSTEM; THERMAL COMFORT; CLIMATE-CHANGE; SIMULATION; CONSUMPTION; TOOLKIT; MODEL; INFORMATION; TEMPERATURE; IMPACT AB Variable air volume (VAV) and variable refrigerant flow (VRF) systems are widely used in office buildings. This study investigated VAV and VRF systems in five typical office buildings in China, and compared their cooling energy use. Site survey and field measurements were conducted to collect the data of building characteristics and operation. Measured cooling electricity use was collected from sub-metering in the five buildings. The sub-metering data normalized by climate and operating hours indicated that the cooling energy consumed by VRF systems was up to 70% lower than that consumed by VAV systems. This was mainly because of the different operation modes of both system types that led to significantly fewer operating hours for the VRF systems. Building simulations were used to quantify the impact of operation modes of VRF and VAV systems on cooling loads. A prototype office building in China was used as the model. The simulation results showed that the VRF operation mode required much lower cooling load when compared to the VAV operation mode. For example, the cooling loads decreased by 42% in Hong Kong and 53% in Qingdao. The key findings include the following: the VRF systems operated in the part-time-part-space mode enabling occupants to turn on the air-conditioning only when needed and when the spaces were occupied. However, the VAV systems operated in the full-time-full-space mode limiting occupants' control of operation. These findings provide insights into VRF systems operation and controls as well as their energy performance, which could help guide HVAC designers on system selection and building operators or facility managers on system operations to achieve low- or zero-net energy buildings. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Yu, Xinqiao; Yan, Da] Tsinghua Univ, Sch Architecture, Beijing, Peoples R China. [Sun, Kaiyu; Hong, Tianzhen] Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, Berkeley, CA USA. [Zhu, Dandan] Beijing Inst Architectural Design, Beijing, Peoples R China. RP Yan, D (reprint author), Tsinghua Univ, Sch Architecture, Beijing, Peoples R China. EM yanda@tsinghua.edu.cn FU Engineering and Physical Sciences Research Council (EPSRC) [EP/N009703/1]; National Natural Science Foundation of China (NSFC) [51561135001]; Innovative Research Groups of the National Natural Science Foundation of China [51521005]; Daikin-Tsinghua Joint Research Center; Assistant Secretary of the Office of Energy Efficiency & Renewable Energy of the U.S. Department of Energy through the U.S.-China joint program of Clean Energy Research Center on Building Energy Efficiency [DE-AC02-05CH11231] FX This research was funded by the Engineering and Physical Sciences Research Council (EPSRC) grant (EP/N009703/1) and the National Natural Science Foundation of China (NSFC) grant (51561135001) for the Total Performance of Low Carbon Buildings in China and the UK, and Innovative Research Groups of the National Natural Science Foundation of China (grant number 51521005). It was also supported by Daikin-Tsinghua Joint Research Center and the Assistant Secretary of the Office of Energy Efficiency & Renewable Energy of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the U.S.-China joint program of Clean Energy Research Center on Building Energy Efficiency. NR 44 TC 2 Z9 2 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD DEC 1 PY 2016 VL 183 BP 725 EP 736 DI 10.1016/j.apenergy.2016.09.033 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EH6PY UT WOS:000391897600058 ER PT J AU Manic, M Amarasinghe, K Rodriguez-Andina, JJ Rieger, C AF Manic, Milos Amarasinghe, Kasun Rodriguez-Andina, Juan J. Rieger, Craig TI Intelligent Buildings of the Future Cyberaware, Deep Learning Powered, and Human Interacting SO IEEE INDUSTRIAL ELECTRONICS MAGAZINE LA English DT Article ID SMART GRIDS C1 [Manic, Milos] Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23284 USA. [Manic, Milos] Virginia Commonwealth Univ, Modern Heurist Res Grp, Richmond, VA 23284 USA. [Amarasinghe, Kasun] Virginia Commonwealth Univ, Comp Sci, Richmond, VA 23284 USA. [Amarasinghe, Kasun] Univ Vigo, Dept Elect Technol, Vigo, Spain. [Rieger, Craig] Idaho Natl Lab, Idaho Falls, ID USA. RP Manic, M (reprint author), Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23284 USA.; Manic, M (reprint author), Virginia Commonwealth Univ, Modern Heurist Res Grp, Richmond, VA 23284 USA. EM misko@ieee.org; amarasinghek@vcu.edu; jjrdguez@uvigo.es; craig.rieger@inl.gov OI Rodriguez-Andina, Juan J./0000-0002-0919-1793; Manic, Milos/0000-0003-1484-7678 NR 56 TC 0 Z9 0 U1 4 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1932-4529 EI 1941-0115 J9 IEEE IND ELECTRON M JI IEEE Ind. Electron. Mag. PD DEC PY 2016 VL 10 IS 4 BP 32 EP 49 DI 10.1109/MIE.2016.2615575 PG 18 WC Engineering, Electrical & Electronic SC Engineering GA EH3ZU UT WOS:000391711500005 ER PT J AU Aalseth, CE Colaresi, J Collar, JI Fast, JE Hossbach, TW Orrell, JL Overman, CT Scholz, B Vandevender, BA Yocum, KM AF Aalseth, Craig E. Colaresi, Jim Collar, Juan I. Fast, James E. Hossbach, Todd W. Orrell, John L. Overman, Cory T. Scholz, Bjorn Vandevender, Brent A. Yocum, K. Michael TI A Low-Noise Germanium Ionization Spectrometer for Low-Background Science SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE COMSOL thermal model; cryostat; dark matter; low-noise detector; neutrino nucleus coherent scattering; p-type point contact high purity germanium ionization spectrometer ID DETECTORS; COPPER AB Recent progress on the development of very low noise high purity germanium ionization spectrometers has produced an instrument of 1.2 kg mass and excellent noise performance. The detector was installed in a low-background cryostat intended for use in a direct detection search for low mass, WIMP dark matter. This transaction reports the thermal characterization of the cryostat, specifications of the newly prepared 1.2 kg p-type point contact germanium detector, and the spectroscopic performance of the integrated system. The integrated detector and low background cryostat achieved full-width-at-half-maximum noise performance of 98 eV for an electronic pulse generator peak and 1.9 keV for the 1332-keV Co-60 gamma ray. C1 [Aalseth, Craig E.; Fast, James E.; Hossbach, Todd W.; Orrell, John L.; Overman, Cory T.; Vandevender, Brent A.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Colaresi, Jim; Yocum, K. Michael] CANBERRA Ind, Meriden, CT 06450 USA. [Collar, Juan I.; Scholz, Bjorn] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Collar, Juan I.; Scholz, Bjorn] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. RP Orrell, JL (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM john.orrell@pnnl.gov RI Orrell, John/E-9313-2015 OI Orrell, John/0000-0001-7968-4051 FU National Science Foundation [PHYS-1003940] FX The authors would like to thank Eric W. Hoppe and Jason Merriman for fabrication of the cryostat end cap and infrared shield using their ultra-pure copper electroforming capability. The Ultra-Sensitive Nuclear Measurement Initiative, a Laboratory Directed Research and Development program at the Pacific Northwest National Laboratory, supported the development of the low background cryostat. The National Science Foundation supported the development of the low noise germanium detector via a grant to the University of Chicago (PHYS-1003940). NR 23 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2016 VL 63 IS 6 BP 2782 EP 2792 DI 10.1109/TNS.2016.2614431 PG 11 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA EH3SV UT WOS:000391693100006 ER PT J AU Bentoumi, G Rogge, RB Andrews, MT Corcoran, EC Dimayuga, I Kelly, DG Li, L Sur, B AF Bentoumi, G. Rogge, R. B. Andrews, M. T. Corcoran, E. C. Dimayuga, I. Kelly, D. G. Li, L. Sur, B. TI A Novel In-Beam Delayed Neutron Counting Technique for Characterization of Special Nuclear Materials SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Delayed neutron counting; fissile material; non-destructive assay; neutron beam; nuclear forensics; nuclear non-proliferation ID DIE-AWAY ANALYSIS; DIFFERENTIAL DIE; GAMMA-RAYS; ACTIVATION-ANALYSIS; FISSILE MATERIALS; URANIUM; SYSTEM; PLUTONIUM; NP-237; ENERGY AB A delayed neutron counting (DNC) system, where the sample to be analyzed remains stationary in a thermal neutron beam outside of the reactor, has been developed at the National Research Universal (NRU) reactor of the Canadian Nuclear Laboratories (CNL) at Chalk River. The new in-beam DNC is a novel approach for non-destructive characterization of special nuclear materials (SNM) that could enable identification and quantification of fissile isotopes within a large and shielded sample. Despite the orders of magnitude reduction in neutron flux, the in-beam DNC method can be as informative as the conventional in-core DNC for most cases while offering practical advantages and mitigated risk when dealing with large radioactive samples of unknown origin. This paper addresses (1) the qualification of in-beam DNC using a monochromatic thermal neutron beam in conjunction with a proven counting apparatus designed originally for in-core DNC, and (2) application of in-beam DNC to an examination of large sealed capsules containing unknown radioactive materials. Initial results showed that the in-beam DNC setup permits non-destructive analysis of bulky and gamma shielded samples. The method does not lend itself to trace analysis, and at best could only reveal the presence of a few milligrams of U-235 via the assay of in-beam DNC total counts. Through analysis of DNC count rates, the technique could be used in combination with other neutron or gamma techniques to quantify isotopes present within samples. C1 [Bentoumi, G.; Rogge, R. B.; Dimayuga, I.; Li, L.; Sur, B.] Canadian Nucl Labs, Chalk River, ON K0J 1J0, Canada. [Andrews, M. T.; Corcoran, E. C.; Kelly, D. G.] Royal Mil Coll Canada, Kingston, ON K7K 7B4, Canada. [Andrews, M. T.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Bentoumi, G (reprint author), Canadian Nucl Labs, Chalk River, ON K0J 1J0, Canada. EM ghaouti.bentoumi@cnl.ca; ronald.rogger@cnl.ca; madison@lanl.gov; corcoran-e@rmc.ca; ike.dimayuga@cnl.ca; david.kelly@rmc.ca; Liqian.li@cnl.ca; bhaskar.sur@cnl.ca OI Andrews, Madison/0000-0002-8503-1011 NR 32 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2016 VL 63 IS 6 BP 2807 EP 2814 DI 10.1109/TNS.2016.2624146 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA EH3SV UT WOS:000391693100009 ER PT J AU Peterson, GG Wang, YQ Ianno, NJ Nastasi, M AF Peterson, George G. Wang, Yongqiang Ianno, N. J. Nastasi, Michael TI Modeling Changes in Measured Conductance of Thin Boron Carbide Semiconducting Films Under Irradiation SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Alpha particle radiation; conductance; hydrogenated boron carbides; neutron detector; p-n heterojunction; semiconducting boron carbides ID SILICON DETECTORS; NEUTRON-IRRADIATION; RADIATION-DAMAGE; RICH SOLIDS; DIODE; PION; TEMPERATURE; EVOLUTION AB Semiconducting, p-type, amorphous partially dehydrogenated boron carbide films (a-B10C2+x:H-y) were deposited utilizing plasma enhanced chemical vapor deposition (PECVD) onto n-type silicon thus creating a heterojunction diode. A model was developed for the conductance of the device as a function of perturbation frequency (f) that incorporates changes of the electrical properties for both the a-B10C2+x:H-y film and the silicon substrate when irradiated. The virgin model has 3 independent variables (R1, C1, R3), and 1 dependent variable (f). Samples were then irradiated with 200 keV He+ ions, and the conductance model was matched to the measured data. It was found that initial irradiation (0.1 displacements per atom (dpa) equivalent) resulted in a decrease in the parallel junction resistance parameter from 6032 Omega to 2705 Omega. Further irradiation drastically increased the parallel junction resistance parameter to 39000 Omega (0.2 dpa equivalent), 77440 Omega (0.3 dpa equivalent), and 190000 Omega (0.5 dpa equivalent). It is believed that the initial irradiation causes type inversion of the silicon substrate changing the original junction from a p-n to a p-p+ with a much lower barrier height leading to a lower junction resistance component between the a-B10C2+x:H-y and irradiated silicon. Additionally, it was found that after irradiation, a second parallel resistor and capacitor component is required for the model, introducing 2 additional independent variables (R2, C2). This is interpreted as the junction between the irradiated and virgin silicon near ion end of range. C1 [Peterson, George G.] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. [Wang, Yongqiang] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Ianno, N. J.] Univ Nebraska, Dept Elect Engn, Ctr Microelect & Opt Mat Res, Lincoln, NE 68588 USA. [Nastasi, Michael] Univ Nebraska, Nebraska Ctr Energy Sci Res, Lincoln, NE 68583 USA. [Nastasi, Michael] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. RP Nastasi, M (reprint author), Univ Nebraska, Nebraska Ctr Energy Sci Res, Lincoln, NE 68583 USA.; Nastasi, M (reprint author), Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. EM mnastasi2@unl.edu FU National Science Foundation [ECCS: 1542182]; Nebraska Research Initiative; Center for Integrated Nanotechnologies, a DOE Nanoscience user facility FX This work was performed in part in the Nebraska Nanoscale Facility: National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Materials and Nanoscience, which are supported by the National Science Foundation under Award ECCS: 1542182, and the Nebraska Research Initiative. This work was supported in part by the Center for Integrated Nanotechnologies, a DOE Nanoscience user facility jointly operated by Los Alamos and Sandia National laboratories. NR 55 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2016 VL 63 IS 6 BP 2815 EP 2822 DI 10.1109/TNS.2016.2626268 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA EH3SV UT WOS:000391693100010 ER PT J AU Roecker, C Bernstein, A Marleau, P Vetter, K AF Roecker, Caleb Bernstein, Adam Marleau, Peter Vetter, Kai TI Measurement of High-Energy Neutron Flux Above Ground Utilizing a Spallation Based Multiplicity Technique SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Cosmogenic neutrons; high-energy neutron spectroscopy ID COSMIC-RAY STARS; ANGULAR-DISTRIBUTION; SPECTRUM; DETECTORS AB Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Monte Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. These results demonstrate the feasibility of future below ground measurements with MARS. C1 [Roecker, Caleb] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Bernstein, Adam] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. [Marleau, Peter] Sandia Natl Labs, Radiat & Nucl Detect Syst, Livermore, CA 94550 USA. [Vetter, Kai] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Roecker, C (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM calebroecker@berkeley.edu FU Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium [DE-NA0000979]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC5-07NA27344, LLNL-JRNL-695883]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number: DE-NA0000979 through the Nuclear Science and Security Consortium. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC5-07NA27344. LLNL-JRNL-695883. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for unlimited release, SAND2016-6353. NR 28 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD DEC PY 2016 VL 63 IS 6 BP 2823 EP 2829 DI 10.1109/TNS.2016.2628644 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA EH3SV UT WOS:000391693100011 ER PT J AU Kwon, YW Ponshock, T Molitoris, JD AF Kwon, Y. W. Ponshock, T. Molitoris, J. D. TI Failure Loading of Metallic and Composite Cylinders Under Internal Pressure Loading SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE mechanical device for internal pressure loading; failure of cylindrical structure; composite materials; multiscale analysis ID MICROMECHANICS MODEL; MULTISCALE ANALYSIS; MULTILEVEL; VESSELS AB A new mechanical device was developed to apply internal pressure loading to a cylindrical structure in order to determine its failure strength and failure mode under pressure loading. The device can be used for a uniaxial testing machine to apply internal pressure to a cylindrical structure. As a result, the developed device does not require any fluid to generate internal pressure loading. The device consists of two truncated conical shape of rams and eight pieces of the identical shape of wedges. The effectiveness of the device was assessed using both detailed finite element analyses of metallic cylinders as well as the analytical analysis. Then, a set of experimental tests were undertaken for aluminum alloy cylinders in order to evaluate experimental failure strength against the numerical and analytical results. Finally, composite cylinders made of glass-fiber or carbon-fiber woven fabrics were tested using the device, and the experimental results were compared to the predicted results using a multiscale analysis model. Those results agreed well with each other. C1 [Kwon, Y. W.; Ponshock, T.] Naval Postgrad Sch, Dept Mech & Aerosp Engn, Monterey, CA 93943 USA. [Molitoris, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kwon, YW (reprint author), Naval Postgrad Sch, Dept Mech & Aerosp Engn, Monterey, CA 93943 USA. FU Defense Threat Reduction Agency (DTRA) FX The authors appreciate the assistance by Dr. C.-M. Park for helping with the experimental tests, and J. Mobley and J. Batteux for machining the experimental apparatus. Finally, we appreciate the financial support from Defense Threat Reduction Agency (DTRA). NR 13 TC 0 Z9 0 U1 2 U2 2 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 EI 1528-8978 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD DEC PY 2016 VL 138 IS 6 AR 060903 DI 10.1115/1.4033772 PG 8 WC Engineering, Mechanical SC Engineering GA EH4DB UT WOS:000391720200004 ER PT J AU Guimond, SR Reisner, JM Marras, S Giraldo, FX AF Guimond, Stephen R. Reisner, Jon M. Marras, Simone Giraldo, Francis X. TI The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID NONHYDROSTATIC ATMOSPHERIC MODEL; DISCONTINUOUS GALERKIN METHODS; KINETIC-ENERGY SPECTRUM; SEA INTERACTION THEORY; VORTEX ROSSBY-WAVES; TROPICAL CYCLONES; 3-DIMENSIONAL PERTURBATIONS; NUMERICAL DIFFUSION; AXISYMMETRIZATION; CYCLOGENESIS AB The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy. C1 [Guimond, Stephen R.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, 5825 Univ Res Ct 4001, College Pk, MD 20742 USA. [Reisner, Jon M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Marras, Simone; Giraldo, Francis X.] Naval Postgrad Sch, Dept Appl Math, Monterey, CA USA. [Marras, Simone] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA. RP Guimond, SR (reprint author), Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, 5825 Univ Res Ct 4001, College Pk, MD 20742 USA. EM sguimond@umd.edu OI Marras, Simone/0000-0002-7498-049X FU Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) at Los Alamos National Laboratory; Office of Naval Research [PE-0602435] FX The first author would like to thank the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) at Los Alamos National Laboratory for supporting this work. The first author thanks Dr. David Nolan for many useful comments on the work and for providing his initial conditions. The first author also thanks Dr. Michael Waite for discussions on the spectral dynamics portion of the study. We thank Dr. Michal Kopera for assistance with NUMA parallel I/O. Input from Dr. Paul Reasor on early versions of this work was valuable. In addition, we thank Dr. George Bryan, Dr. Bill Skamarock, and Dr. Mike Montgomery for their comments. The contribution of SM and FXG was supported by the Office of Naval Research through program element PE-0602435. Finally, we thank three anonymous reviewers for their constructive criticism, which helped improve the conclusions and clarity of the paper. NR 42 TC 0 Z9 0 U1 2 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD DEC PY 2016 VL 73 IS 12 BP 4661 EP 4684 DI 10.1175/JAS-D-16-0055.1 PG 24 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EH3CK UT WOS:000391646500003 ER PT J AU Virts, KS Houze, RA AF Virts, Katrina S. Houze, Robert A., Jr. TI Seasonal and Intraseasonal Variability of Mesoscale Convective Systems over the South Asian Monsoon Region SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID TRMM PRECIPITATION RADAR; INDIAN-SUMMER MONSOON; BOREAL SUMMER; HIMALAYAN REGION; CLOUD CLUSTERS; WARM POOL; A-TRAIN; RAINFALL; OSCILLATION; BENGAL AB Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Premonsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do premonsoon MCSs. During the monsoon, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30-60-day northward propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeastward over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa. C1 [Virts, Katrina S.; Houze, Robert A., Jr.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Houze, Robert A., Jr.] Pacific Northwest Natl Lab, Richland, WA USA. [Virts, Katrina S.] NASA, Marshall Space Flight Ctr, ZP-11,320 Sparkman Dr, Huntsville, AL 35805 USA. RP Virts, KS (reprint author), NASA, Marshall Space Flight Ctr, ZP-11,320 Sparkman Dr, Huntsville, AL 35805 USA. EM katrina.virts@nsstc.uah.edu FU National Aeronautics and Space Administration [NNX13AQ37G]; U.S. Department of Energy Biological and Environmental Research Atmospheric System Research [DE-SC008452]; Regional and Global Climate Modeling programs; DOE [DE-AC05-76RL01830] FX The authors thank Beth Tully for her expert processing of the graphics and three reviewers for their helpful comments. This work was supported by the National Aeronautics and Space Administration (Grant NNX13AQ37G), and the U.S. Department of Energy Biological and Environmental Research Atmospheric System Research (Grant DE-SC008452) and the Regional and Global Climate Modeling programs. PNNL is operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. Lightning location data were provided by WWLLN (http://wwlln.net), a collaboration of over 50 universities and institutions. ERA-Interim data are available from the European Centre for Medium-Range Weather Forecasts and CloudSat data from the CloudSat Data Processing Center, as described in the reference list. NR 62 TC 0 Z9 0 U1 0 U2 0 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD DEC PY 2016 VL 73 IS 12 BP 4753 EP 4774 DI 10.1175/JAS-D-16-0022.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EH3CK UT WOS:000391646500008 ER PT J AU Vardelle, A Moreau, C Akedo, J Ashrafizadeh, H Berndt, CC Berghaus, JO Boulos, M Brogan, J Bourtsalas, AC Dolatabadi, A Dorfman, M Eden, TJ Fauchais, P Fisher, G Gaertner, F Gindrat, M Henne, R Hyland, M Irissou, E Jordan, EH Khor, KA Killinger, A Lau, YC Li, CJ Li, L Longtin, J Markocsan, N Masset, PJ Matejicek, J Mauer, G McDonald, A Mostaghimi, J Sampath, S Schiller, G Shinoda, K Smith, MF Syed, AA Themelis, NJ Toma, FL Trelles, JP Vassen, R Vuoristo, P AF Vardelle, Armelle Moreau, Christian Akedo, Jun Ashrafizadeh, Hossein Berndt, Christopher C. Berghaus, Jorg Oberste Boulos, Maher Brogan, Jeffrey Bourtsalas, Athanasios C. Dolatabadi, Ali Dorfman, Mitchell Eden, Timothy J. Fauchais, Pierre Fisher, Gary Gaertner, Frank Gindrat, Malko Henne, Rudolf Hyland, Margaret Irissou, Eric Jordan, Eric H. Khor, Khiam Aik Killinger, Andreas Lau, Yuk-Chiu Li, Chang-Jiu Li, Li Longtin, Jon Markocsan, Nicolaie Masset, Patrick J. Matejicek, Jiri Mauer, Georg McDonald, Andre Mostaghimi, Javad Sampath, Sanjay Schiller, Guenter Shinoda, Kentaro Smith, Mark F. Syed, Asif Ansar Themelis, Nickolas J. Toma, Filofteia-Laura Trelles, Juan Pablo Vassen, Robert Vuoristo, Petri TI The 2016 Thermal Spray Roadmap SO JOURNAL OF THERMAL SPRAY TECHNOLOGY LA English DT Article DE anti-wear and anti-corrosion coatings; biomedical; electronics; energy generation; functional coatings; gas turbines; thermal spray processes ID PRECURSOR PLASMA SPRAY; AEROSOL DEPOSITION METHOD; HIGH-TEMPERATURE CORROSION; PHYSICAL VAPOR-DEPOSITION; OXIDE FUEL-CELLS; STABILIZED ZIRCONIA COATINGS; HIGH-PERFORMANCE ELECTRODES; HYDROGEN EVOLUTION REACTION; GAS-TURBINE ENGINES; IN-VITRO BEHAVIOR AB Considerable progress has been made over the last decades in thermal spray technologies, practices and applications. However, like other technologies, they have to continuously evolve to meet new problems and market requirements. This article aims to identify the current challenges limiting the evolution of these technologies and to propose research directions and priorities to meet these challenges. It was prepared on the basis of a collection of short articles written by experts in thermal spray who were asked to present a snapshot of the current state of their specific field, give their views on current challenges faced by the field and provide some guidance as to the R&D required to meet these challenges. The article is divided in three sections that deal with the emerging thermal spray processes, coating properties and function, and biomedical, electronic, aerospace and energy generation applications. C1 [Vardelle, Armelle; Fauchais, Pierre] Univ Limoges, Limoges, France. [Moreau, Christian; Dolatabadi, Ali] Concordia Univ, Montreal, PQ, Canada. [Akedo, Jun; Shinoda, Kentaro] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan. [Ashrafizadeh, Hossein; McDonald, Andre] Univ Alberta, Edmonton, AB, Canada. [Berndt, Christopher C.] Swinburne Univ Technol, Hawthorn, Vic, Australia. [Berghaus, Jorg Oberste] Soleras Adv Coatings, Deinze, Belgium. [Boulos, Maher] Univ Sherbrooke, Sherbrooke, PQ, Canada. [Brogan, Jeffrey] Mesoscribe Technol Inc, St James, NY USA. [Bourtsalas, Athanasios C.; Themelis, Nickolas J.] Columbia Univ, New York, NY USA. [Dorfman, Mitchell] Oerlikon Metco Inc, Westbury, NY USA. [Eden, Timothy J.] Penn State Univ, State Coll, PA USA. [Fisher, Gary] Alberta Innovates Technol Futures, Edmonton, AB, Canada. [Gaertner, Frank] Helmut Schmidt Univ, Hamburg, Germany. [Gindrat, Malko] Oerlikon Metco AG, Wohlen, Switzerland. [Henne, Rudolf; Schiller, Guenter; Syed, Asif Ansar] German Aerosp Ctr DLR, Stuttgart, Germany. [Hyland, Margaret] Univ Auckland, Auckland, New Zealand. [Irissou, Eric] Natl Res Council Canada, Boucherville, PQ, Canada. [Jordan, Eric H.] Univ Connecticut, Storrs, CT USA. [Khor, Khiam Aik] Nanyang Technol Univ, Singapore, Singapore. [Killinger, Andreas] Univ Stuttgart, Stuttgart, Germany. [Lau, Yuk-Chiu] GE Power, Niskayuna, NY USA. [Li, Chang-Jiu] Xi An Jiao Tong Univ, Xian, Shaanxi, Peoples R China. [Li, Li] Praxair Surface Technol Inc, Indianapolis, IN USA. [Longtin, Jon; Sampath, Sanjay] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Markocsan, Nicolaie] Univ West, Trollhattan, Sweden. [Masset, Patrick J.] Fraunhofer UMSICHT, Sulzbach Rosenberg, Germany. [Matejicek, Jiri] Inst Plasma Phys, Prague, Czech Republic. [Mauer, Georg; Vassen, Robert] Forschungszentrum Julich, Inst Energy & Climate Res, Julich, Germany. [Mostaghimi, Javad] Univ Toronto, Toronto, ON, Canada. [Smith, Mark F.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Toma, Filofteia-Laura] Fraunhofer Inst Mat & BeamTechnol IWS, Dresden, Germany. [Trelles, Juan Pablo] Univ Massachusetts Lowell, Lowell, MA USA. [Vuoristo, Petri] Tampere Univ Technol, Tampere, Finland. RP Vardelle, A (reprint author), Univ Limoges, Limoges, France.; Moreau, C (reprint author), Concordia Univ, Montreal, PQ, Canada. EM armelle.vardelle@unilim.fr; christian.moreau@concordia.ca RI Gaertner, Frank/K-2905-2014; Vuoristo, Petri/G-4257-2014; Khor, Khiam Aik/G-2827-2010; OI Gaertner, Frank/0000-0002-6757-5605; Toma, Filofteia-Laura/0000-0001-6164-8933 NR 362 TC 1 Z9 1 U1 20 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9630 EI 1544-1016 J9 J THERM SPRAY TECHN JI J. Therm. Spray Technol. PD DEC PY 2016 VL 25 IS 8 BP 1376 EP 1440 DI 10.1007/s11666-016-0473-x PG 65 WC Materials Science, Coatings & Films SC Materials Science GA EF0UF UT WOS:000390041000002 ER PT J AU Makela, MR Bredeweg, EL Magnuson, JK Baker, SE De Vries, RP Hilden, K AF Makela, Miia R. Bredeweg, Erin L. Magnuson, Jon K. Baker, Scott E. De Vries, Ronald P. Hilden, Kristiina TI Fungal Ligninolytic Enzymes and Their Applications SO MICROBIOLOGY SPECTRUM LA English DT Article ID ARYL-ALCOHOL OXIDASE; SITE-DIRECTED MUTAGENESIS; WHITE-ROT FUNGUS; LACCASE-CATALYZED POLYMERIZATION; DYE-DECOLORIZING PEROXIDASE; RECYCLE PERCOLATION PROCESS; PLANT-CELL WALLS; PHANEROCHAETE-CHRYSOSPORIUM; LIGNOCELLULOSIC BIOMASS; VERSATILE PEROXIDASE AB The global push toward an efficient and economical biobased economy has driven research to develop more cost-effective applications for the entirety of plant biomass, including lignocellulosic crops. As discussed elsewhere (Karlsson M, Atanasova L, Funck Jensen D, Zeilinger S, in Heitman J et al. [ed], Tuberculosis and the Tubercle Bacillus, 2nd ed, in press), significant progress has been made in the use of polysaccharide fractions from lignocellulose, cellulose, and various hemicellulose types. However, developing processes for use of the lignin fraction has been more challenging. In this chapter, we discuss characteristics of lignolytic enzymes and the fungi that produce them as well as potential and current uses of lignin-derived products. C1 [Makela, Miia R.; De Vries, Ronald P.; Hilden, Kristiina] Univ Helsinki, Dept Food & Environm Sci, Div Microbiol & Biotechnol, FIN-00014 Helsinki, Finland. [Bredeweg, Erin L.; Baker, Scott E.] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA. [Magnuson, Jon K.; Baker, Scott E.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Magnuson, Jon K.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [De Vries, Ronald P.] Univ Utrecht, CBS KNAW Fungal Biodivers Ctr & Fungal Mol Physio, Fungal Physiol, NL-3584 CT Utrecht, Netherlands. RP De Vries, RP (reprint author), Univ Helsinki, Dept Food & Environm Sci, Div Microbiol & Biotechnol, FIN-00014 Helsinki, Finland.; Baker, SE (reprint author), Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA.; Baker, SE (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA.; De Vries, RP (reprint author), Univ Utrecht, CBS KNAW Fungal Biodivers Ctr & Fungal Mol Physio, Fungal Physiol, NL-3584 CT Utrecht, Netherlands. EM scott.baker@pnnl.gov; r.devries@cbs.knaw.nl OI Makela, Miia/0000-0003-0771-2329 NR 176 TC 0 Z9 0 U1 6 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA EI 2165-0497 J9 MICROBIOL SPECTR JI Microbiol. Spectr. PD DEC PY 2016 VL 4 IS 6 AR UNSP FUNK-0017-2016 DI 10.1128/microbiolspec.FUNK-0017-2016 PG 13 WC Microbiology SC Microbiology GA EI1AU UT WOS:000392208200006 ER PT J AU Marin, O Vinuesa, R Obabko, AV Schlatter, P AF Marin, O. Vinuesa, R. Obabko, A. V. Schlatter, P. TI Characterization of the secondary flow in hexagonal ducts SO PHYSICS OF FLUIDS LA English DT Article ID DIRECT NUMERICAL-SIMULATION; REGULAR POLYGONAL DUCTS; HIGH REYNOLDS-NUMBERS; SQUARE DUCT; TURBULENT-FLOW; HEAT-TRANSFER; LAMINAR-FLOW; FORCED-CONVECTION; ENTRANCE REGION; ASPECT RATIO AB In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Re-tau,Re- c similar or equal to 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondary flow integrated over the cross-sectional area < K >(yz) decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress (uw) over bar on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120 degrees aperture of its vertex, whereas in the square duct the 90 degrees corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15D(H) measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90 degrees corner sets the location of a high-speed streak at a distance z(nu)(+) similar or equal to 50 from it, whereas in hexagons the 120 degrees aperture leads to a shorter distance of z(nu)(+) similar or equal to 38. At these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow. Published by AIP Publishing. C1 [Marin, O.; Obabko, A. V.] Argonne Natl Lab, MCS Div, 9700 Cass Ave, Lemont, IL 60439 USA. [Vinuesa, R.; Schlatter, P.] KTH Mech, Linne FLOW Ctr, Stockholm, Sweden. [Vinuesa, R.; Schlatter, P.] Swedish E Sci Res Ctr SeRC, Stockholm, Sweden. RP Vinuesa, R (reprint author), KTH Mech, Linne FLOW Ctr, Stockholm, Sweden.; Vinuesa, R (reprint author), Swedish E Sci Res Ctr SeRC, Stockholm, Sweden. EM rvinuesa@mech.kth.se OI Vinuesa, Ricardo/0000-0001-6570-5499 FU NE Advanced Modeling and Simulation (NEAMS) Program of Nuclear Energy, Office of Science of the U.S. Department of Energy; Knut and Alice Wallenberg Foundation; Swedish Research Council (VR); Office of Science and Advanced Scientific Computing Research of the U.S. Department of Energy [DE-AC02-06CH11357] FX O.M. and A.V.O. acknowledge the support of NE Advanced Modeling and Simulation (NEAMS) Program of Nuclear Energy, Office of Science of the U.S. Department of Energy. R.V. and P.S. acknowledge the financial support from the Knut and Alice Wallenberg Foundation and the Swedish Research Council (VR). Computer time was provided by the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science and Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 48 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD DEC PY 2016 VL 28 IS 12 AR 125101 DI 10.1063/1.4968844 PG 26 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA EH9LH UT WOS:000392092300024 ER PT J AU Apruzese, JP Giuliani, JL Ouart, ND Tangri, V Harvey-Thompson, AJ Jones, B Jennings, CA Hansen, SB Ampleford, DJ Rochau, GA Coverdale, CA AF Apruzese, J. P. Giuliani, J. L. Ouart, N. D. Tangri, V. Harvey-Thompson, A. J. Jones, B. Jennings, C. A. Hansen, S. B. Ampleford, D. J. Rochau, G. A. Coverdale, C. A. TI Effects of a Xe dopant on an Ar gas-puff implosion on Z SO PHYSICS OF PLASMAS LA English DT Article ID Z-PINCH; RADIATION TRANSPORT; PLASMAS; ARGON AB Two Ar gas-puff experiments, each using loads consisting of two annuli and a center jet, were recently performed on Sandia National Laboratories' Z machine. These shots had the same load except that one of them (Z2603) employed a Xe dopant of 0.8% by number in the jet, which was not present in the otherwise identical Z2605. The extensive diagnostics deployed in these experiments reveal that the presence of this small fraction of Xe had a significant effect on the emitted K-shell radiation. Use of the Xe dramatically reduced the Ar K-shell yield from 373+/-9% to 129+/-9% kJ. However, the total yield increased, from 1.02+/-17% to 1.14+/-17% MJ. Also, the K-shell power pulse for Z2603 exhibited two nearly equal peaks separated by similar to 5 ns, but that of Z2605 consisted of a more conventional single peak. Analysis of time-and space resolved K-shell spectra using a detailed atomic model for Ar ions indicates that a much greater fraction of the load mass was heated to the K-shell in the non-Xe shot Z2605. Previous average-ion atomic calculations of Xe cooling rates [Post et al., At. Data Nucl. Data Tables 20, 397 (1977)] show that the radiative cooling of the small 0.8% Xe fraction is nonetheless significant compared to that of the Ar and is therefore likely responsible for the differences in the shots. Published by AIP Publishing. C1 [Apruzese, J. P.; Giuliani, J. L.; Ouart, N. D.; Tangri, V.] Naval Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Harvey-Thompson, A. J.; Jones, B.; Jennings, C. A.; Hansen, S. B.; Ampleford, D. J.; Rochau, G. A.; Coverdale, C. A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Apruzese, J. P.] Syntek Technol, Arlington, VA 22203 USA. [Tangri, V.] Berkeley Res Associates Inc, Beltsville, MD 20705 USA. RP Apruzese, JP (reprint author), Naval Res Lab, Div Plasma Phys, Washington, DC 20375 USA.; Apruzese, JP (reprint author), Syntek Technol, Arlington, VA 22203 USA. FU U.S. Department of Energy, National Nuclear Security Administration; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, and by Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration, under Contract No. DE-AC04-94AL85000. NR 20 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 123303 DI 10.1063/1.4972877 PG 7 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000094 ER PT J AU Cheng, B Kwan, TJT Wang, YM Yi, SA Batha, SH Wysocki, FJ AF Cheng, B. Kwan, T. J. T. Wang, Y. M. Yi, S. A. Batha, S. H. Wysocki, F. J. TI Effects of preheat and mix on the fuel adiabat of an imploding capsule SO PHYSICS OF PLASMAS LA English DT Article ID SIMULATIONS; TARGETS; GAIN AB We demonstrate the effect of preheat, hydrodynamic mix and vorticity on the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. We show that the adiabat of the DT fuel increases resulting from hydrodynamic mixing due to the phenomenon of entropy of mixture. An upper limit of mix, M-clean/M-DT >= 0.98, is found necessary to keep the DT fuel on a low adiabat. We demonstrate in this study that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of 3D effects and mix in capsule implosion. Furthermore, we can infer from our physics model and the observed neutron images the adiabat of the DT fuel in the capsule and the amount of mix produced on the hot spot. Published by AIP Publishing. C1 [Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Yi, S. A.; Batha, S. H.; Wysocki, F. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Cheng, B (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. FU U.S. Department of Energy by Los Alamos National Laboratory [W-7405-ENG-36] FX The authors wish to thank the referees for valuable suggestions. The authors are grateful to C. Cerjan and O. L. Landen for sharing the experimental data and analysis and for valuable discussions. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36. NR 38 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 120702 DI 10.1063/1.4971814 PG 6 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000002 ER PT J AU Ebrahimi, F AF Ebrahimi, F. TI Dynamo-driven plasmoid formation from a current-sheet instability SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC RECONNECTION AB Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. We utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from (1) the oppositely directed field lines in the injector region (primary reconnecting current sheet), and (2) the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearing parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. The plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas. Published by AIP Publishing. C1 [Ebrahimi, F.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Ebrahimi, F.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. RP Ebrahimi, F (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.; Ebrahimi, F (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. FU DOE [DE-SC0010565, DE-AC02-09CHI1466, DE-SC0012467] FX We acknowledge Professor S. Prager, and Dr. R. Raman for their thoughtful comments on this Manuscript. This work was supported by DOE Grant Nos. DE-SC0010565, DE-AC02-09CHI1466, and DE-SC0012467. NR 20 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 120705 DI 10.1063/1.4972218 PG 5 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000005 ER PT J AU Egedal, J Wetherton, B Daughton, W Le, A AF Egedal, J. Wetherton, B. Daughton, W. Le, A. TI Processes setting the structure of the electron distribution function within the exhausts of anti-parallel reconnection SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETIC RECONNECTION; DIFFUSION REGION; ACCELERATION; EVENTS AB In situ spacecraft observations within the exhausts of magnetic reconnection document a large variation in the velocity space structure of the electron distribution function. Multiple mechanisms help govern the underlying electron dynamics, yielding a range of signatures for collisionless reconnection. These signatures include passing beams of electrons separated by well-defined boundaries from betatron heated/cooled trapped electrons. The present study emphasizes how localized regions of non-adiabatic electron dynamics can mix electrons across the trapped/passing boundaries and impact the form of the electron distributions in the full width of the exhaust. While our study is based on 2D simulations, the described principles shaping the velocity space distributions also apply to 3D geometries making our findings relevant to spacecraft observation of reconnection in the Earth's magnetosphere. Published by AIP Publishing. C1 [Egedal, J.; Wetherton, B.] Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA. [Daughton, W.; Le, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Egedal, J (reprint author), Univ Wisconsin Madison, Dept Phys, Madison, WI 53706 USA. FU NASA [NNX14AC68G, NNX14AL38G]; NASA Heliophysics Theory Program at LANL FX The work at UW-Madison was funded in part by NASA Grant No. NNX14AC68G. The numerical simulation work was supported by the NASA Heliophysics Theory Program at LANL, and A. Le acknowledges NASA Grant No. NNX14AL38G. Initial simulations were carried out using LANL institutional computing resources and the Pleiades computer at NASA, while the final simulation was carried out on Kraken with an allocation of advanced computing resources provided by the National Science Foundation at the National Institute for Computational Sciences (http://www.nics.tennessee.edu/). NR 30 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 122904 DI 10.1063/1.4972135 PG 8 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000067 ER PT J AU Liu, ZX Xu, XQ Gao, X Hubbard, AE Hughes, JW Walk, JR Theiler, C Xia, TY Baek, SG Golfinopoulos, T Whyte, D Zhang, T Li, JG AF Liu, Z. X. Xu, X. Q. Gao, X. Hubbard, A. E. Hughes, J. W. Walk, J. R. Theiler, C. Xia, T. Y. Baek, S. G. Golfinopoulos, T. Whyte, D. Zhang, T. Li, J. G. TI The physics mechanisms of the weakly coherent mode in the Alcator C-Mod Tokamak SO PHYSICS OF PLASMAS LA English DT Article ID TURBULENCE AB The weakly coherent mode (WCM) in I-mode has been studied by a six-field two-fluid model based on the Braginskii equations under the BOUT++ framework for the first time. The calculations indicate that a tokamak pedestal exhibiting a WCM is linearly unstable to drift Alfven wave (DAW) instabilities and the resistive ballooning mode. The nonlinear simulation shows promising agreement with the experimental measurements of the WCM. The shape of the density spectral and location of the spectral peak of the dominant toroidal number mode n = 20 agrees with the experimental data from reflectometry. The simulated mode propagates in electron diamagnetic direction is consistent with the results from the magnetic probes in the laboratory frame, a large ratio of particle to heat diffusivity is consistent with the distinctive experimental feature of I-mode, and the value of the simulated chi(e) at the edge is in the range of experimental errors of chi(eff) from the experiment. The prediction of the WCM shows that free energy is mainly provided by the electron pressure gradient, which gives guidance for pursuing future I-mode studies. Published by AIP Publishing. C1 [Liu, Z. X.; Gao, X.; Xia, T. Y.; Zhang, T.; Li, J. G.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Liu, Z. X.; Xu, X. Q.; Xia, T. Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hubbard, A. E.; Hughes, J. W.; Walk, J. R.; Theiler, C.; Baek, S. G.; Golfinopoulos, T.; Whyte, D.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Liu, ZX (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China.; Liu, ZX (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM zxliu316@ipp.ac.cn FU National Magnetic Confinement Fusion Program of China [2014GB106001, 2014GB106003]; National Natural Science Foundation of China [11021565, 11275234, 11405213, 1405215, 11405217, 11422546]; U.S. DOE by LLNL [DE-AC52-07NA27344]; Alcator C-Mod [DE-FC02-99ER54512]; PPPL [DE-AC02-09CH11466] FX The authors wish to acknowledge Dr. Ben Dudson and Dr. M. V. Umansky for their contribution to the BOUT++ framework, Mr. E. Davis for useful physics discussions. This work was supported by the National Magnetic Confinement Fusion Program of China (Grant Nos. 2014GB106001 and 2014GB106003), and the National Natural Science Foundation of China (Grant Nos. 11021565, 11275234, 11405213, 11405215, 11405217, and 11422546), and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344, by Alcator C-Mod under Contract No. DE-FC02-99ER54512, and by PPPL under Contract No. DE-AC02-09CH11466. NR 23 TC 1 Z9 1 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 120703 DI 10.1063/1.4972088 PG 5 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000003 ER PT J AU Narkis, J Rahman, HU Ney, P Desjarlais, MP Wessel, FJ Conti, F Valenzuela, JC Beg, FN AF Narkis, J. Rahman, H. U. Ney, P. Desjarlais, M. P. Wessel, F. J. Conti, F. Valenzuela, J. C. Beg, F. N. TI Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions SO PHYSICS OF PLASMAS LA English DT Article ID STAGED Z-PINCH; INERTIAL CONFINEMENT FUSION; RAYLEIGH-TAYLOR; INSTABILITIES; TARGETS; PHYSICS; DRIVER; GAIN AB 1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J x B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compression heating the target to high energy density. Shock compression of the target coincides with the development of a J x B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. Delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe. Published by AIP Publishing. C1 [Narkis, J.; Valenzuela, J. C.; Beg, F. N.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Rahman, H. U.; Ney, P.; Wessel, F. J.; Conti, F.] Magneto Inertial Fus Technol Inc, Irvine, CA 92612 USA. [Desjarlais, M. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Narkis, J (reprint author), Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. EM jnarkis@ucsd.edu FU ARPA-E [DE-AR0000569]; U.S. Department of Energy's National Nuclear Security Administration [De-AC04-94AL8500] FX Funding for this work was provided by ARPA-E, Grant No. DE-AR0000569.; Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. De-AC04-94AL8500. NR 29 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 122706 DI 10.1063/1.4972547 PG 7 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000062 ER PT J AU Ralph, JE Strozzi, D Ma, T Moody, JD Hinkel, DE Callahan, DA MacGowan, BJ Michel, P Kline, JL Glenzer, SH Albert, F Benedetti, LR Divol, L MacKinnon, AJ Pak, A Rygg, JR Schneider, MB Town, RPJ Widmann, K Hsing, W Edwards, MJ AF Ralph, J. E. Strozzi, D. Ma, T. Moody, J. D. Hinkel, D. E. Callahan, D. A. MacGowan, B. J. Michel, P. Kline, J. L. Glenzer, S. H. Albert, F. Benedetti, L. R. Divol, L. MacKinnon, A. J. Pak, A. Rygg, J. R. Schneider, M. B. Town, R. P. J. Widmann, K. Hsing, W. Edwards, M. J. TI Experimental room temperature hohlraum performance study on the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article ID CONFINEMENT; LIGHT AB Room temperature or "warm" (273 K) indirect drive hohlraum experiments have been conducted on the National Ignition Facility with laser energies up to 1.26 MJ and compared to similar cryogenic or "cryo" (similar to 20 K) experiments. Warm experiments use neopentane (C5H12) as the low pressure hohlraum fill gas instead of helium, and propane (C3H8) to replace the cryogenic DT or DHe3 capsule fill. The increased average Z of the hohlraum fill leads to increased inverse bremsstrahlung absorption and an overall hotter hohlraum plasma in simulations. The cross beam energy transfer (CBET) from outer laser beams (pointed toward the laser entrance hole) to inner beams (pointed at the equator) was inferred indirectly from measurements of Stimulated Raman Scattering (SRS). These experiments show that a similar hot spot self-emission shape can be produced with less CBET in warm hohlraums. The measured inner cone SRS reflectivity (as a fraction of incident power neglecting CBET) is similar to 2.5x less in warm than cryo shots with similar hot spot shapes, due to a less need for CBET. The measured outer-beam stimulated the Brillouin scattering power that was higher in the warm shots, leading to a ceiling on power to avoid the optics damage. These measurements also show that the CBET induced by the flow where the beams cross can be effectively mitigated by a 1.5 angstrom wavelength shift between the inner and outer beams. A smaller scale direct comparison indicates that warm shots give a more prolate implosion than cryo shots with the same wavelength shift and pulse shape. Finally, the peak radiation temperature was found to be between 5 and 7 eV higher in the warm than the corresponding cryo experiments after accounting for differences in backscatter. Published by AIP Publishing. C1 [Ralph, J. E.; Strozzi, D.; Ma, T.; Moody, J. D.; Hinkel, D. E.; Callahan, D. A.; MacGowan, B. J.; Michel, P.; Albert, F.; Benedetti, L. R.; Divol, L.; Pak, A.; Rygg, J. R.; Schneider, M. B.; Town, R. P. J.; Widmann, K.; Hsing, W.; Edwards, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kline, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Glenzer, S. H.; MacKinnon, A. J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Ralph, JE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Albert, Felicie/G-2645-2013; OI Strozzi, David/0000-0001-8814-3791 FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work provides the physics basis for new uses of the warm gas filled hohlraum platform on the NIF with a laser energy exceeding 1MJ. The results indicate that the warm platform could be used for surrogate implosion experiments on new designs with a high x-ray drive. Additionally, the relative simplicity of fielding of this platform will allow for more complicated experiments such as the planned magnetized hohlraum experiments and others. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 22 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 122707 DI 10.1063/1.4972548 PG 15 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000063 ER PT J AU Romadanov, I Smolyakov, A Raitses, Y Kaganovich, I Tian, T Ryzhkov, S AF Romadanov, Ivan Smolyakov, Andrei Raitses, Yevgeny Kaganovich, Igor Tian, Tang Ryzhkov, Sergei TI Structure of nonlocal gradient-drift instabilities in Hall E x B discharges SO PHYSICS OF PLASMAS LA English DT Article ID SIMON-HOH INSTABILITY; PLASMA; THRUSTERS; OSCILLATIONS AB Gradient-drift (collisionless Simon-Hoh) instability is a robust instability often considered to be important for Hall plasma discharges supported by the electron current due to the E x B drift. Most of the previous studies of this mode were based on the local approximation. Here, we consider the nonlocal model which takes into account the electron inertia as well as the effects of the entire profiles of plasma parameters such as the electric, magnetic fields, and plasma density. Contrary to local models, nonlocal analysis predicts multiple unstable modes, which exist in the regions, where local instability criteria are not satisfied. This is especially pronounced for the long wavelength modes which provide larger contribution to the anomalous transport. Published by AIP Publishing. C1 [Romadanov, Ivan; Smolyakov, Andrei] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. [Raitses, Yevgeny; Kaganovich, Igor] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Tian, Tang] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China. [Ryzhkov, Sergei] Bauman Moscow State Tech Univ, Moscow 105005, Russia. RP Romadanov, I (reprint author), Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada. EM ivr509@mail.usask.ca; andrei.smolyakov@usask.ca; yraitses@pppl.gov; ikaganovich@pppl.gov; tt961108@gmail.com; svryzhkov@bmstu.ru RI Рыжков, Сергей/E-6619-2017; OI Рыжков, Сергей/0000-0003-0351-718X; Romadanov, Ivan/0000-0003-3291-3341 FU NSERC of Canada; U.S. Air Force Office for Scientific Research [FA9550-15-1-0226]; Russian Ministry of Science and Education (Minobrnauka) Project [13.79.2014/K] FX The authors thank Ivan Halzov and Winston Frias for the help with numerical methods and model formulation, and Edward Startsev for the fruitful discussion. This work was supported in part by NSERC of Canada and U.S. Air Force Office for Scientific Research FA9550-15-1-0226. S.R. was partially supported by the Russian Ministry of Science and Education (Minobrnauka), Project No. 13.79.2014/K. NR 43 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 122111 DI 10.1063/1.4971816 PG 13 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000018 ER PT J AU Ruiz, DE Parker, JB Shi, EL Dodin, IY AF Ruiz, D. E. Parker, J. B. Shi, E. L. Dodin, I. Y. TI Zonal-flow dynamics from a phase-space perspective SO PHYSICS OF PLASMAS LA English DT Article ID MAGNETOROTATIONAL TURBULENCE; MODE TURBULENCE; GENERATION; STABILITY; WAVES; JETS AB The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. However, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. We derive a modified theory that takes both of these effects into account, while still treating DW quanta ("driftons") as particles in phase space. The drifton dynamics is described by an equation of the Wigner-Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional terms missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. Numerical simulations are presented to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2. Published by AIP Publishing. C1 [Ruiz, D. E.; Shi, E. L.; Dodin, I. Y.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Parker, J. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dodin, I. Y.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Ruiz, DE (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. FU U.S. DOE [DE-AC02-09CH11466, DE-AC52-07NA27344]; NNSA SSAA Program through DOE [DE-NA0002948]; U.S. DOD NDSEG Fellowship [32-CFR-168 a] FX The authors thank J. A. Krommes for valuable discussions. This work was supported by the U.S. DOE through Contract Nos. DE-AC02-09CH11466 and DE-AC52-07NA27344, by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168 a. NR 36 TC 2 Z9 2 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 122304 DI 10.1063/1.4971813 PG 12 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000037 ER PT J AU Ryazantsev, SN Skobelev, IY Faenov, AY Pikuz, TA Higginson, DP Chen, SN Revet, G Beard, J Portugall, O Soloviev, AA Grum-Grzhimailo, AN Fuchs, J Pikuz, SA AF Ryazantsev, S. N. Skobelev, I. Yu. Faenov, A. Ya. Pikuz, T. A. Higginson, D. P. Chen, S. N. Revet, G. Beard, J. Portugall, O. Soloviev, A. A. Grum-Grzhimailo, A. N. Fuchs, J. Pikuz, S. A. TI Diagnostics of laser-produced plasmas based on the analysis of intensity ratios of He-like ions X-ray emission SO PHYSICS OF PLASMAS LA English DT Article ID RECOMBINATION; CRITERIA AB In this paper, we detail the diagnostic technique used to infer the spatially resolved electron temperatures and densities in experiments dedicated to investigate the generation of magnetically collimated plasma jets. It is shown that the relative intensities of the resonance transitions in emitting He-like ions can be used to measure the temperature in such recombining plasmas. The intensities of these transitions are sensitive to the plasma density in the range of 10(16) - 10(20) cm(-3) and to plasma temperature ranges from 10 to 100 eV for ions with a nuclear charge Z(n) similar to 10. We show how detailed calculations of the emissivity of F VIII ions allow to determine the parameters of the plasma jets that were created using ELFIE ns laser facility (Ecole Polytechnique, France). The diagnostic and analysis technique detailed here can be applied in a broader context than the one of this study, i.e., to diagnose any recombining plasma containing He-like fluorine ions. Published by AIP Publishing. C1 [Ryazantsev, S. N.; Skobelev, I. Yu.; Faenov, A. Ya.; Pikuz, T. A.; Pikuz, S. A.] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia. [Ryazantsev, S. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia. [Skobelev, I. Yu.; Pikuz, S. A.] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia. [Faenov, A. Ya.; Pikuz, T. A.] Osaka Univ, Inst Acad Initiat, Suita, Osaka 5650871, Japan. [Higginson, D. P.; Chen, S. N.; Revet, G.; Fuchs, J.] Ecole Polytech, LULI, CEA, CNRS, F-91128 Palaiseau, France. [Higginson, D. P.; Chen, S. N.; Revet, G.; Fuchs, J.] Univ Paris Saclay, F-91128 Palaiseau, France. [Higginson, D. P.; Chen, S. N.; Revet, G.; Fuchs, J.] UPMC Univ Paris 06, F-91128 Palaiseau, France. [Higginson, D. P.; Chen, S. N.; Revet, G.; Fuchs, J.] Sorbonne Univ, F-91128 Palaiseau, France. [Higginson, D. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chen, S. N.; Revet, G.; Soloviev, A. A.; Fuchs, J.] Inst Appl Phys, 46 Ulyanov St, Nizhnii Novgorod 603950, Russia. [Beard, J.; Portugall, O.] UPS, LNCMI, UPR 3228, CNRS,UGA,INSA, F-31400 Toulouse, France. [Grum-Grzhimailo, A. N.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia. RP Faenov, AY (reprint author), Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia.; Faenov, AY (reprint author), Osaka Univ, Inst Acad Initiat, Suita, Osaka 5650871, Japan. EM tapikuz@yahoo.com RI Grum-Grzhimailo, Alexei/D-6274-2012 FU Russian Foundation for Basic Research [14-29-06099, 15-32-21121, 16-32-60183]; RAS Presidium Program for Basic Research [11]; Competitiveness Program of NRNU MEPhI; ANR Blanc Grant (France) [12-BS09-025-01 SILAMPA]; Ministry of Education and Science of the Russian Federation [14.Z50.31.0007]; Agence Nationale de la Recherche [11-IDEX-0004-02]; U.S. Department of Energy [DE-AC52-07NA27344] FX The work was supported by the Russian Foundation for Basic Research in the frame of the Project Nos. ##14-29-06099, 15-32-21121, 16-32-60183 and by RAS Presidium Program for Basic Research #11. Also this work was supported by the Competitiveness Program of NRNU MEPhI. The authors acknowledge the support of the LULI technical teams in the execution of this work. We thank the Dresden High Magnetic Field Laboratory at Helmholtz-Zentrum Dresden-Rossendorf for the development of the pulsed power generator. We thank B. Albertazzi and M. Nakatsutsumi for their prior work in laying the groundwork for the experimental platform. It was also supported by ANR Blanc Grant (France) No. 12-BS09-025-01 SILAMPA and in part by the Ministry of Education and Science of the Russian Federation under Contract No. 14.Z50.31.0007. This work was partly done within the LABEX Plas@Par project and supported by Grant No. 11-IDEX-0004-02 from Agence Nationale de la Recherche. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 29 TC 0 Z9 0 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 123301 DI 10.1063/1.4971805 PG 7 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000092 ER PT J AU Sydorenko, D Kaganovich, ID Ventzek, PLG Chen, L AF Sydorenko, D. Kaganovich, I. D. Ventzek, P. L. G. Chen, L. TI Effect of collisions on the two-stream instability in a finite length plasma SO PHYSICS OF PLASMAS LA English DT Article ID BEAM; SIMULATION AB The instability of a monoenergetic electron beam in a collisional one-dimensional plasma bounded between grounded walls is considered both analytically and numerically. Collisions between electrons and neutrals are accounted for the plasma electrons only. Solution of a dispersion equation shows that the temporal growth rate of the instability is a decreasing linear function of the collision frequency which becomes zero when the collision frequency is two times the collisionless growth rate. This result is confirmed by fluid simulations. Practical formulas are given for the estimate of the threshold beam current which is required for the two-stream instability to develop for a given system length, neutral gas pressure, plasma density, and beam energy. Particle-in-cell simulations carried out with different neutral densities and beam currents demonstrate a good agreement with the fluid theory predictions for both the growth rate and the threshold beam current. Published by AIP Publishing. C1 [Sydorenko, D.] Univ Alberta, Edmonton, AB T6G 2E1, Canada. [Kaganovich, I. D.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Ventzek, P. L. G.; Chen, L.] Tokyo Electron Amer, Austin, TX 78741 USA. RP Sydorenko, D (reprint author), Univ Alberta, Edmonton, AB T6G 2E1, Canada. FU U.S. Department of Energy FX D. Sydorenko and I. D. Kaganovich are supported by the U.S. Department of Energy. The authors thank A. Khrabrov for his assistance in carrying out the simulations. NR 19 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 122119 DI 10.1063/1.4972543 PG 8 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000026 ER PT J AU Tang, XZ Guo, ZH AF Tang, Xian-Zhu Guo, Zehua TI Critical role of electron heat flux on Bohm criterion SO PHYSICS OF PLASMAS LA English DT Article ID SHEATH; PLASMA; DISCHARGE; EQUATIONS AB Bohm criterion, originally derived for an isothermal-electron and cold-ion plasma, is often used as a rule of thumb for more general plasmas. Here, we establish a more precise determination of the Bohm criterion that are quantitatively useful for understanding and modeling collisional plasmas that still have collisional mean-free-path much greater than plasma Debye length. Specifically, it is shown that electron heat flux, rather than the isothermal electron assumption, is what sets the Bohm speed to be root k(B)(T-e parallel to + 3T(i parallel to))/m(i) with T-e,T-i parallel to the electron and ion parallel temperature at the sheath entrance and m(i) the ion mass. Published by AIP Publishing. C1 [Tang, Xian-Zhu; Guo, Zehua] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Tang, XZ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences and Advanced Scientific Computing Research under National Nuclear Security Administration of the U.S. Department of Energy by Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences and Advanced Scientific Computing Research, under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy by Los Alamos National Laboratory, operated by Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396. NR 29 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 120701 DI 10.1063/1.4971808 PG 5 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000001 ER PT J AU Tu, XBA Zhu, BB Tang, YF Qin, H Liu, J Zhang, RL AF Tu, Xiongbiao Zhu, Beibei Tang, Yifa Qin, Hong Liu, Jian Zhang, Ruili TI A family of new explicit, revertible, volume-preserving numerical schemes for the system of Lorentz force SO PHYSICS OF PLASMAS LA English DT Article ID GUIDING CENTER MOTION; CONSTRUCTION; FORMULATION AB The Lorentz system underlies the fundamental rules for the motion of charged particle in electromagnetic field, which is proved volume-preserving. In this paper, we construct a family of new revertible numerical schemes for general autonomous systems, which in particular, are explicit and volume-preserving for Lorentz systems. These new schemes can prevent the extra numerical errors caused by mismatched initial half-step values in the Boris-like algorithm. Numerical experiments demonstrate the superiorities of our second-order methods in long-term simulations and energy preservation over the Boris algorithm and a higher order Runge-Kutta method (RK3). We also apply these new methods to the guiding center system and find that they behave much better than RK3. Published by AIP Publishing. C1 [Tu, Xiongbiao; Zhu, Beibei; Tang, Yifa] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China. [Tu, Xiongbiao; Zhu, Beibei; Tang, Yifa] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China. [Qin, Hong; Liu, Jian; Zhang, Ruili] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. [Qin, Hong; Liu, Jian; Zhang, Ruili] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Liu, J (reprint author), Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China.; Liu, J (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. EM jliuphy@ustc.edu.cn OI Liu, Jian/0000-0001-7484-401X FU National Magnetic Confinement Fusion Energy Research Project [2014GB124005, 2015GB111003]; National Natural Science Foundation of China [11371357, 11505186]; GeoAlgorithmic Plasma Simulator (GAPS) Project FX This research was supported by the National Magnetic Confinement Fusion Energy Research Project (2014GB124005, 2015GB111003), the National Natural Science Foundation of China (Grant Nos. 11371357 and 11505186), and the GeoAlgorithmic Plasma Simulator (GAPS) Project. NR 27 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 122514 DI 10.1063/1.4972878 PG 8 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000054 ER PT J AU Wang, YL Liu, J Qin, H AF Wang, Yulei Liu, Jian Qin, Hong TI Lorentz covariant canonical symplectic algorithms for dynamics of charged particles SO PHYSICS OF PLASMAS LA English DT Article ID HAMILTONIAN-SYSTEMS; INTEGRATORS AB In this paper, the Lorentz covariance of algorithms is introduced. Under Lorentz transformation, both the form and performance of a Lorentz covariant algorithm are invariant. To acquire the advantages of symplectic algorithms and Lorentz covariance, a general procedure for constructing Lorentz covariant canonical symplectic algorithms (LCCSAs) is provided, based on which an explicit LCCSA for dynamics of relativistic charged particles is built. LCCSA possesses Lorentz invariance as well as long-term numerical accuracy and stability, due to the preservation of a discrete symplectic structure and the Lorentz symmetry of the system. For situations with time-dependent electromagnetic fields, which are difficult to handle in traditional construction procedures of symplectic algorithms, LCCSA provides a perfect explicit canonical symplectic solution by implementing the discretization in 4-spacetime. We also show that LCCSA has built-in energy-based adaptive time steps, which can optimize the computation performance when the Lorentz factor varies. Published by AIP Publishing. C1 [Wang, Yulei; Liu, Jian; Qin, Hong] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. [Wang, Yulei; Liu, Jian; Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Wang, Yulei; Liu, Jian] Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Liu, J (reprint author), Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China.; Liu, J (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.; Liu, J (reprint author), Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. EM jliuphy@ustc.edu.cn OI Liu, Jian/0000-0001-7484-401X; Wang, Yulei/0000-0001-9863-5917 FU National Magnetic Confinement Fusion Energy Research Project [2015GB111003, 2014GB124005]; National Natural Science Foundation of China [NSFC-11575185, 11575186, 11305171]; JSPS-NRF-NSFC A3 Foresight Program [NSFC-11261140328]; Key Research Program of Frontier Sciences CAS [QYZDB-SSW-SYS004]; GeoAlgorithmic Plasma Simulator (GAPS) Project FX This research was supported by National Magnetic Confinement Fusion Energy Research Project (2015GB111003, 2014GB124005), National Natural Science Foundation of China (NSFC-11575185, 11575186, 11305171), JSPS-NRF-NSFC A3 Foresight Program (NSFC-11261140328), Key Research Program of Frontier Sciences CAS (QYZDB-SSW-SYS004), and the GeoAlgorithmic Plasma Simulator (GAPS) Project. NR 40 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 122513 DI 10.1063/1.4972824 PG 10 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000053 ER PT J AU Weidl, MS Winske, D Jenko, F Niemann, C AF Weidl, Martin S. Winske, Dan Jenko, Frank Niemann, Chris TI Hybrid simulations of a parallel collisionless shock in the large plasma device SO PHYSICS OF PLASMAS LA English DT Article ID ION-BEAM INSTABILITIES; BOW SHOCK; ELECTROMAGNETIC INSTABILITIES; MAGNETIC PULSATIONS; ALFVEN WAVES; UPSTREAM; LASERS; CONSEQUENCES; ASTROPHYSICS AB We present two-dimensional hybrid kinetic/magnetohydrodynamic simulations of planned laser-ablation experiments in the Large Plasma Device. Our results, based on parameters that have been validated in previous experiments, show that a parallel collisionless shock can begin forming within the available space. Carbon-debris ions that stream along the magnetic-field direction with a blow-off speed of four times the Alfven velocity excite strong magnetic fluctuations, eventually transferring part of their kinetic energy to the surrounding hydrogen ions. This acceleration and compression of the background plasma creates a shock front, which satisfies the Rankine-Hugoniot conditions and can therefore propagate on its own. Furthermore, we analyze the upstream turbulence and show that it is dominated by the right-hand resonant instability. Published by AIP Publishing. C1 [Weidl, Martin S.; Jenko, Frank; Niemann, Chris] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Winske, Dan] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Weidl, MS (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. OI Weidl, Martin/0000-0002-3440-3225 FU DTRA [HDTRA1-12-1-0024]; DOE [DE-SC0006583:0003, DE-NA0001995]; NSF [1414591] FX This work was facilitated by the Max-Planck/Princeton Center for Plasma Physics and supported by DTRA under Contract No. HDTRA1-12-1-0024, by DOE under Contract Nos. DE-SC0006583:0003 and DE-NA0001995, and by NSF Award No. 1414591. NR 41 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 122102 DI 10.1063/1.4971231 PG 11 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000009 ER PT J AU Williams, GJ Barnak, D Fiksel, G Hazi, A Kerr, S Krauland, C Link, A Manuel, MJE Nagel, SR Park, J Peebles, J Pollock, BB Beg, FN Betti, R Chen, H AF Williams, G. J. Barnak, D. Fiksel, G. Hazi, A. Kerr, S. Krauland, C. Link, A. Manuel, M. J. -E. Nagel, S. R. Park, J. Peebles, J. Pollock, B. B. Beg, F. N. Betti, R. Chen, Hui TI Target material dependence of positron generation from high intensity laser-matter interactions SO PHYSICS OF PLASMAS LA English DT Article ID PAIR PRODUCTION; ULTRAINTENSE LASERS; POWER AB The effective scaling of positron-electron pair production by direct, ultraintense laser-matter interaction is investigated for a range of target materials and thicknesses. An axial magnetic field, acting as a focusing lens, was employed to measure positron signals for targets with atomic numbers as low as copper (Z = 29). The pair production yield was found to be consistent with the Bethe-Heitler mechanism, where the number of positrons emitted into a 1 steradian cone angle from the target rear was found to be proportional to Z(2). The unexpectedly low scaling results from Coulomb collisions that act to stop or scatter positrons into high angles. Monte Carlo simulations support the experimental results, providing a comprehensive power-law scaling relationship for all elemental materials and densities. Published by AIP Publishing. C1 [Williams, G. J.; Hazi, A.; Link, A.; Nagel, S. R.; Park, J.; Pollock, B. B.; Chen, Hui] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Williams, G. J.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Barnak, D.; Fiksel, G.; Betti, R.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Fiksel, G.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Kerr, S.] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2R3, Canada. [Krauland, C.; Peebles, J.; Beg, F. N.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Manuel, M. J. -E.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Williams, GJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.; Williams, GJ (reprint author), Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. OI Williams, Gerald Jackson/0000-0002-6495-5696; Nagel, Sabrina/0000-0002-7768-6819; Kerr, Shaun/0000-0003-4822-564X; Barnak, Daniel/0000-0002-4646-7517 FU U.S. Department of Energy (DOE) [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program [13-LW-076]; LLNL Graduate Livermore Scholar Program FX We thank D. Cloyne, R. Costa, C. Bruns, J. Bonlie, and R. Cauble, for their support at the Jupiter Laser Facility. This work was performed under the auspices of the U.S. Department of Energy (DOE) by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program under project tracking codes 13-LW-076. GJW acknowledges the support of the LLNL Graduate Livermore Scholar Program. NR 29 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2016 VL 23 IS 12 AR 123109 DI 10.1063/1.4971235 PG 6 WC Physics, Fluids & Plasmas SC Physics GA EH8HP UT WOS:000392013000078 ER PT J AU Siranart, N Blakely, EA Cheng, A Handa, N Sachs, RK AF Siranart, Nopphon Blakely, Eleanor A. Cheng, Alden Handa, Naval Sachs, Rainer K. TI Mixed Beam Murine Harderian Gland Tumorigenesis: Predicted Dose-Effect Relationships if neither Synergism nor Antagonism Occurs SO RADIATION RESEARCH LA English DT Article ID RELATIVE BIOLOGICAL EFFECTIVENESS; SPACE RADIATION; MAMMALIAN-CELLS; LET RADIATIONS; HEAVY-IONS; 2 AGENTS; X-RAYS; CARCINOGENESIS; EXPOSURES; IRRADIATION AB Complex mixed radiation fields exist in interplanetary space, and little is known about their late effects on space travelers. In silico synergy analysis default predictions are useful when planning relevant mixed-ion-beam experiments and interpreting their results. These predictions are based on individual dose-effect relationships (IDER) for each component of the mixed-ion beam, assuming no synergy or antagonism. For example, a default hypothesis of simple effect additivity has often been used throughout the study of biology. However, for more than a century pharmacologists interested in mixtures of therapeutic drugs have analyzed conceptual, mathematical and practical questions similar to those that arise when analyzing mixed radiation fields, and have shown that simple effect additivity often gives unreasonable predictions when the IDER are curvilinear. Various alternatives to simple effect additivity proposed in radiobiology, pharmacometrics, toxicology and other fields are also known to have important limitations. In this work, we analyze upcoming murine Harderian gland (HG) tumor prevalence mixed-beam experiments, using customized open-source software and published IDER from past single-ion experiments. The upcoming experiments will use acute irradiation and the mixed beam will include components of high atomic number and energy (HZE). We introduce a new alternative to simple effect additivity, "incremental effect additivity'', which is more suitable for the HG analysis and perhaps for other end points. We use incremental effect additivity to calculate default predictions for mixture dose-effect relationships, including 95% confidence intervals. We have drawn three main conclusions from this work. 1. It is important to supplement mixed-beam experiments with single-ion experiments, with matching end point(s), shielding and dose timing. 2. For HG tumorigenesis due to a mixed beam, simple effect additivity and incremental effect additivity sometimes give default predictions that are numerically close. However, if nontargeted effects are important and the mixed beam includes a number of different HZE components, simple effect additivity becomes unusable and another method is needed such as incremental effect additivity. 3. Eventually, synergy analysis default predictions of the effects of mixed radiation fields will be replaced by more mechanistic, biophysically-based predictions. However, optimizing synergy analyses is an important first step. If mixed-beam experiments indicate little synergy or antagonism, plans by NASA for further experiments and possible missions beyond low earth orbit will be substantially simplified. (C) 2016 by Radiation Research Society C1 [Siranart, Nopphon; Cheng, Alden; Handa, Naval; Sachs, Rainer K.] Univ Calif Berkeley, Dept Math, MC 3840,Evans Hall, Berkeley, CA 94720 USA. [Blakely, Eleanor A.] Lawrence Berkeley Natl Lab, Biosci Area, Berkeley, CA USA. RP Sachs, RK (reprint author), Univ Calif Berkeley, Dept Math, MC 3840,Evans Hall, Berkeley, CA 94720 USA. EM sachs@math.berkeley.edu FU NASA under U.S. Department of Energy [NNJ16HP22I, DE-AC02-05CH11231]; Undergraduate Research Apprenticeship Program (URAP) at UC Berkeley FX We thank F.A. Cucinotta and P.Y. Chang for highly informative discussions. This research was supported by NASA [grant no. NNJ16HP22I (RKS and EAB)] under U.S. Department of Energy contract no. DE-AC02-05CH11231. Additional support was provided by the Undergraduate Research Apprenticeship Program (URAP) at UC Berkeley (NS, AC and NH). NR 56 TC 0 Z9 0 U1 0 U2 0 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD DEC PY 2016 VL 186 IS 6 BP 577 EP 591 DI 10.1667/RR14411.1 PG 15 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA EH5OA UT WOS:000391821400005 PM 27874325 ER PT J AU Templin, T Sharma, P Guida, P Grabham, P AF Templin, Thomas Sharma, Preety Guida, Peter Grabham, Peter TI Short-Term Effects of Low-LET Radiation on the Endothelial Barrier: Uncoupling of PECAM-1 and the Production of Endothelial Microparticles SO RADIATION RESEARCH LA English DT Article ID RELATIVE BIOLOGICAL EFFECTIVENESS; ATHEROSCLEROTIC DISEASE; EXTRACELLULAR VESICLES; PROTON IRRADIATION; IONIZING-RADIATION; CELLS; RELEASE; GROWTH; TISSUE; MECHANISMS AB A significant target for radiation-induced effects is the microvascular system, which is critical to healthy tissue function and its pathology is linked to disrupted endothelial barrier function. Low-linear energy transfer (LET) ionizing radiation is a source of noncancer pathologies in humans and little is known about the early events that could initiate subsequent diseases. However, it is well known that gamma radiation causes a very early disruption of the endothelial barrier at doses below those required for cytotoxic effects. After irradiation of human umbilical vein endothelial cells (HUVECs) to doses as low as 2 Gy, transendothelial electrical resistance (TEER) is transiently reduced at 3 h, and the platelet-derived endothothelial cell adhesion molecule (PE-CAM-1 or CD31) is uncoupled from the cells along with the release of endothelial microparticles (EMPs). In this study, we measured TEER reduction as an indicator of barrier function loss, and specifically examined the shedding of EMPs from human endothelial barrier models after a variety of low-LET irradiations, including photons and charged particles. Our findings showed two TEER responses, dependent on radiation type and environmental conditions. The first response was diminishing oscillations of TEER, which occurred during the first 10 h postirradiation. This response occurred after a 5 Gy proton or helium-ion (1 GeV/n) dose in addition to a 5 Gy gamma or X radiation dose. This occurred only in the presence of multiple growth factors and did not show a dose response, nor was it associated with EMP release. The second response was a single acute drop in TEER at 3 h after photon irradiation. Dose response was observed and was associated with the shedding of EMPs in 2D barrier cultures and in 3D vessel models. In this case, helium-ion and proton irradiations did not induce a drop in TEER or shedding of EMPs. The photon radiation effects was observed both in serum-free media and in the presence of multiple growth factors, indicating that it occurs under a range of environmental conditions. These results show an acute response of the human endothelial barrier that is relevant to photon irradiation. Significantly, it involves the release of EMPs, which have recently attracted attention due to their emerging clinical importance. (C) 2016 by Radiation Research Society C1 [Templin, Thomas; Sharma, Preety; Grabham, Peter] Columbia Univ, Coll Phys & Surg, Ctr Radiol Res, P & S 11-243,630 West 168th St, New York, NY 10032 USA. [Guida, Peter] Brookhaven Natl Lab, Biosci Dept, Upton, NY 11973 USA. RP Grabham, P (reprint author), Columbia Univ, Coll Phys & Surg, Dept Pathol, P & S 11-243,630 West 168th St, New York, NY 10032 USA.; Grabham, P (reprint author), Columbia Univ, Coll Phys & Surg, Dept Anat & Cell Biol, P & S 11-243,630 West 168th St, New York, NY 10032 USA. EM pwg2@columbia.edu FU NASA [NNJ09ZSA001N, NNJ11ZSA001N] FX We thank the Medical Center team at Brookhaven National Laboratory (BNL), Adam Rusek and the NSRL team at BNL. This work was supported by NASA, grant nos. NNJ09ZSA001N and NNJ11ZSA001N. NR 38 TC 0 Z9 0 U1 1 U2 1 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD DEC PY 2016 VL 186 IS 6 BP 602 EP 613 DI 10.1667/RR14510.1 PG 12 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA EH5OA UT WOS:000391821400007 PM 27905868 ER PT J AU Hermann, SL Xue, SS Rowe, L Davidson-Lowe, E Myers, A Eshchanov, B Bahlai, CA AF Hermann, Sara L. Xue, Saisi Rowe, Logan Davidson-Lowe, Elizabeth Myers, Andrew Eshchanov, Bahodir Bahlai, Christie A. TI Thermally moderated firefly activity is delayed by precipitation extremes SO ROYAL SOCIETY OPEN SCIENCE LA English DT Article DE lightning bug; Lampyridae; phenology; ecoinformatics; long-term ecological research ID CLIMATE-CHANGE; COLEOPTERA-LAMPYRIDAE; ELEVATION GRADIENT; LUCIOLA-CRUCIATA; ECOLOGY; BIOLUMINESCENCE; LANDSCAPE; RESPONSES; ECOINFORMATICS; POPULATIONS AB The timing of events in the life history of temperate insects is most typically primarily cued by one of two drivers: photoperiod or temperature accumulation over the growing season. However, an insect's phenology can also be moderated by other drivers like rainfall or the phenology of its host plants. When multiple drivers of phenology interact, there is greater potential for phenological asynchronies to arise between an organism and those with which it interacts. We examined the phenological patterns of a highly seasonal group of fireflies (Photinus spp., predominantly P. pyralis) over a 12-year period (2004-2015) across 10 plant communities to determine whether interacting drivers could explain the variability observed in the adult flight activity density (i.e. mating season) of this species. We found that temperature accumulation was the primary driver of phenology, with activity peaks usually occurring at a temperature accumulation of approximately 800 degree days (base 10 degrees C); however, our model found this peak varied by nearly 180 degree-day units among years. This variation could be explained by a quadratic relationship with the accumulation of precipitation in the growing season; in years with either high or low precipitation extremes at our study site, flight activity was delayed. More fireflies were captured in general in herbaceous plant communities with minimal soil disturbance (alfalfa and no-till field crop rotations), but only weak interactions occurred between within-season responses to climatic variables and plant community. The interaction we observed between temperature and precipitation accumulation suggests that, although climate warming has the potential to disrupt phenology of many organisms, changes to regional precipitation patterns can magnify these disruptions. C1 [Hermann, Sara L.; Rowe, Logan; Davidson-Lowe, Elizabeth; Myers, Andrew; Eshchanov, Bahodir] Michigan State Univ, Dept Entomol, E Lansing, MI 48824 USA. [Hermann, Sara L.; Davidson-Lowe, Elizabeth] Michigan State Univ, Ecol Evolutionary Biol & Behav Program, E Lansing, MI 48824 USA. [Xue, Saisi] Michigan State Univ, Dept Chem Engn, Biomass Convers Res Lab, E Lansing, MI 48824 USA. [Bahlai, Christie A.] Michigan State Univ, Dept Integrat Biol, E Lansing, MI 48824 USA. [Hermann, Sara L.; Myers, Andrew] Penn State Univ, Dept Entomol, State Coll, PA 16803 USA. [Xue, Saisi] DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Bahlai, Christie A.] Mozilla Sci Lab, Mountain View, CA 94041 USA. RP Bahlai, CA (reprint author), Michigan State Univ, Dept Integrat Biol, E Lansing, MI 48824 USA.; Bahlai, CA (reprint author), Mozilla Sci Lab, Mountain View, CA 94041 USA. EM cbahlai@msu.edu OI Bahlai, Christie/0000-0002-8937-8709 FU National Science Foundation Long Term Ecological Research program [1027253]; Mozilla Foundation; Leona M. and Harry B. Helmsley Charitable Trust FX Data used in this study were produced with funding from the National Science Foundation Long Term Ecological Research program grant no. 1027253. C.A.B. was funded by a fellowship from the Mozilla Foundation and the Leona M. and Harry B. Helmsley Charitable Trust. NR 55 TC 0 Z9 0 U1 10 U2 10 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 2054-5703 J9 ROY SOC OPEN SCI JI R. Soc. Open Sci. PD DEC PY 2016 VL 3 IS 12 AR UNSP 160712 DI 10.1098/rsos.160712 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH4HH UT WOS:000391731800022 PM 28083109 ER PT J AU Mallajosyula, AT Nie, WY Gupta, G Blackburn, JL Doorn, SK Mohite, AD AF Mallajosyula, Arun T. Nie, Wanyi Gupta, Gautam Blackburn, Jeffrey L. Doorn, Stephen K. Mohite, Aditya D. TI Critical Role of the Sorting Polymer in Carbon Nanotube-Based Minority Carrier Devices SO ACS NANO LA English DT Article DE carbon nanotube layer; single chirality; polymer wrapping; polyfluorenes; solar cell ID ORGANIC SOLAR-CELLS; THIN-FILM PHOTOVOLTAICS; OPEN-CIRCUIT VOLTAGE; POLYFLUORENE DERIVATIVES; CHARGE-TRANSFER; HOLE-TRANSPORT; POLY(9,9-DIOCTYLFLUORENE); DISPERSION; LAYER AB A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device. By comparing two commonly used polyfluorenes (PFO and PFO-BPy) for wrapping (7,5) and (6,5) chirality SWCNTs, we demonstrate that they have contrasting effects on the device efficiency. We attribute this to the differences in their ability to efficiently transfer charge. Although PFO may act as an efficient interfacial layer at the anode, PFO-BPy, having the additional pyridine side groups, forms a high resistance layer degrading the device efficiency. By comparing PFOIC60 and C-60-only devices, we found that presence of a PFO layer at low optical densities resulted in the increase of all three solar cell parameters, giving nearly an order of magnitude higher efficiency over that of C-60-only addition, with a relatively higher contribution to photocurrent from the PFO-C-60 interface, an open circuit voltage of 0.55 V was obtained for PFO-(7,5)-C-60 devices. On the other hand, PFO-BPy does not affect the open circuit voltage but drastically reduces the short circuit current density. These results indicate that the charge transport properties and energy levels of the sorting polymers have to be taken into account to fully understand their effect on carbon nanotube-based solar cells. C1 [Mallajosyula, Arun T.; Nie, Wanyi; Gupta, Gautam; Doorn, Stephen K.; Mohite, Aditya D.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Blackburn, Jeffrey L.] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. [Mallajosyula, Arun T.] Indian Inst Technol, Dept Elect & Elect Engn, Gauhati 781039, Assam, India. RP Mohite, AD (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM amohite@lanl.gov OI MOHITE, ADITYA/0000-0001-8865-409X FU LANL LDRD program; Solar Photochemistry Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308] FX This work was supported in part by the LANL LDRD program and performed in part at the Center for Integrated Nano technologies, a DOE Office of Science user facility. Jeff Blackburn was supported by the Solar Photochemistry Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contract No. DE-AC36-08GO28308 to NREL. NR 45 TC 0 Z9 0 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2016 VL 10 IS 12 BP 10808 EP 10815 DI 10.1021/acsnano.6b04885 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EG5JI UT WOS:000391079700023 PM 27966903 ER PT J AU Makarov, NS Lin, QL Pietryga, JM Robel, I Klimov, VI AF Makarov, Nikolay S. Lin, Qianglu Pietryga, Jeffrey M. Robel, Istvan Klimov, Victor I. TI Auger Up-Conversion of Low-Intensity Infrared Light in Engineered Quantum Dots SO ACS NANO LA English DT Article DE core/shell PbSe/CdSe quantum dot; up-conversion; two photon absorption; Auger up-conversion; Auger recombination; single exciton; biexciton; trion ID IN-BULK NANOCRYSTALS; CARRIER MULTIPLICATION YIELDS; SILICON SOLAR-CELLS; SEMICONDUCTOR NANOCRYSTALS; DUAL EMISSION; MULTIEXCITON GENERATION; CDSE/CDS TETRAPODS; ELECTRON-TRANSFER; EFFICIENCY; RELAXATION AB One source of efficiency losses in photovoltaic cells is their transparency toward solar photons with energies below the band gap of the absorbing layer. This loss can be reduced using a process of up-conversion whereby two or more sub-band gap photons generate a single above-gap exciton. Traditional approaches to up-conversion, such as nonlinear two-photon absorption (2PA) or triplet fusion, suffer from low efficiency at solar light intensities, a narrow absorption bandwidth, non optimal absorption energies, and difficulties for implementing in practical devices. Here we show that these deficiencies can be alleviated using the effect of Auger up-conversion in thick-shell PbSe/CdSe quantum dots. This process relies on Auger recombination whereby two low-energy, core-based excitons are converted into a single higher-energy, shell-based exciton. Compared to their monocomponent counterparts, the tailored PbSe/CdSe heterostructures feature enhanced absorption cross-sections, a higher efficiency of the "productive" Auger pathway involving re-excitation of a hole, and longer lifetimes of both core- and shell-localised excitons. These features lead to effective up-conversion cross-sections that are more than 6 orders of magnitude higher than for standard nonlinear 2PA, which allows for efficient up-conversion of continuous wave infrared light at intensities as low as a few watts per square centimeter. C1 [Makarov, Nikolay S.; Lin, Qianglu; Pietryga, Jeffrey M.; Robel, Istvan; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. EM klimov@lanl.gov FU Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences FX This work was supported by the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. NR 72 TC 0 Z9 0 U1 17 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2016 VL 10 IS 12 BP 10829 EP 10841 DI 10.1021/acsnano.6b04928 PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EG5JI UT WOS:000391079700025 PM 27936587 ER PT J AU Kumar, S Wang, ZW Huang, XP Kumari, N Davila, N Strachan, JP Vine, D Kilcoyne, ALD Nishi, Y Williams, RS AF Kumar, Suhas Wang, Ziwen Huang, Xiaopeng Kumari, Niru Davila, Noraica Strachan, John Paul Vine, David Kilcoyne, A. L. David Nishi, Yoshio Williams, R. Stanley TI Conduction Channel Formation and Dissolution Due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors SO ACS NANO LA English DT Article DE memristors; thermophoresis; operating mechanism; oxygen migration; filament ID RRAM; OPERATION; DEVICES; ARRAY; HFOX AB Transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory because of their favorable operating power, endurance, speed, and density. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physicochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resetting the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices. C1 [Kumar, Suhas; Huang, Xiaopeng; Kumari, Niru; Davila, Noraica; Strachan, John Paul; Williams, R. Stanley] Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304 USA. [Wang, Ziwen; Nishi, Yoshio] Stanford Univ, Stanford, CA 94305 USA. [Vine, David; Kilcoyne, A. L. David] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Kumar, S; Williams, RS (reprint author), Hewlett Packard Labs, 1501 Page Mill Rd, Palo Alto, CA 94304 USA. EM Suhas.Kumar@hpe.com; Stan.Williams@hpe.com RI Kilcoyne, David/I-1465-2013 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation through the NNIN [ECS-9731293] FX We gratefully acknowledge Prof. Rainer Waser and Prof. Regina Dittmann for providing a detailed critique and useful suggestions to help us improve the manuscript. All synchrotron measurements were performed at the Advanced Light Source, beamlines 5.3.2.2 and 11.0.2, at Lawrence Berkeley National Laboratory, Berkeley, CA, USA. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work was performed in part at the Stanford Nanofabrication Facility, which is supported by the National Science Foundation through the NNIN under Grant ECS-9731293. NR 32 TC 2 Z9 2 U1 22 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2016 VL 10 IS 12 BP 11205 EP 11210 DI 10.1021/acsnano.6b06275 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EG5JI UT WOS:000391079700065 PM 27957851 ER PT J AU Hartmann, NF Pramanik, R Dowgiallo, AM Ihly, R Blackburn, JL Doorn, SK AF Hartmann, Nicolai F. Pramanik, Rajib Dowgiallo, Anne-Marie Ihly, Rachelle Blackburn, Jeffrey L. Doorn, Stephen K. TI Photoluminescence Imaging of Polyfluorene Surface Structures on Semiconducting Carbon Nanotubes: Implications for Thin Film Exciton Transport SO ACS NANO LA English DT Article DE carbon nanotubes; energy harvesting photovoltaics; exciton transport; surface structure ID HETEROJUNCTION SOLAR-CELLS; CHARGE-TRANSFER; DIFFUSION; DYNAMICS; TRANSISTORS; PHOTOVOLTAICS; SPECTRA AB Single-walled carbon nanotubes (SWCNTs) have potential to act as light-harvesting elements in thin film photovoltaic devices, but performance is in part limited by the efficiency of exciton diffusion processes within the films. Factors contributing to exciton transport can include film morphology encompassing nanotube orientation, connectivity, and interaction geometry. Such factors are often defined by nanotube surface structures that are not yet well understood. Here, we present the results of a combined pump probe and photoluminescence imaging study of polyfluorene (PFO)-wrapped (6,5) and (7,5) SWCNTs that provide additional insight into the role played by polymer structures in defining exciton transport. Pump probe measurements suggest exciton transport occurs over larger length scales in films composed of PFO-wrapped (7,5) SWCNTs, compared to those prepared from PFO-bpy-wrapped (6,5) SWCNTs. To explore the role the difference in polymer structure may play as a possible origin of differing transport behaviors, we performed a photoluminescence imaging study of individual polymer-wrapped (6,5) and (7,5) SWCNTs. The PFO-bpy-wrapped (6,5) SWCNTs showed more uniform intensity distributions along their lengths, in contrast to the PFO-wrapped (7,5) SWCNTs, which showed irregular, discontinuous intensity distributions. These differences likely originate from differences in surface coverage and suggest the PFO wrapping on (7,5) nanotubes produces a more open surface structure than is available with the PFO-bpy wrapping of (6,5) nanotubes. The open structure likely leads to improved intertube coupling that enhances exciton transport within the (7,5) films, consistent with the results of our pump-probe measurements. C1 [Hartmann, Nicolai F.; Pramanik, Rajib; Doorn, Stephen K.] Los Alamos Natl Lab, MPA CINT, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Dowgiallo, Anne-Marie; Ihly, Rachelle; Blackburn, Jeffrey L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Doorn, SK (reprint author), Los Alamos Natl Lab, MPA CINT, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.; Blackburn, JL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jeffrey.blackburn@nrel.gov; skdoom@lanl.gov OI Hartmann, Nicolai/0000-0002-4174-532X FU Los Alamos National Laboratory LDRD program; Solar Photochemistry Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC3-08GO28308] FX We thank G. Rumbles and S. Tretiak for helpful discussions. This work was supported in part by the Los Alamos National Laboratory LDRD program. Portions of this work were performed at the Center for Integrated Nanotechnology, a U.S. Department of Energy, Office of Science User Facility. NREL authors were supported by the Solar Photochemistry Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC3-08GO28308 to NREL. NR 49 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2016 VL 10 IS 12 BP 11449 EP 11458 DI 10.1021/acsnano.6b07168 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EG5JI UT WOS:000391079700092 PM 27936574 ER PT J AU Balakrishnan, V Bedewy, M Meshot, ER Pattinson, SW Polsen, ES Laye, F Zakharov, DN Stach, EA Hart, AJ AF Balakrishnan, Viswanath Bedewy, Mostafa Meshot, Eric R. Pattinson, Sebastian W. Polsen, Erik S. Laye, Fabrice Zakharov, Dmitri N. Stach, Eric A. Hart, A. John TI Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth SO ACS NANO LA English DT Article DE carbon nanotubes; self-organization; electron microscopy; chemical vapor deposition; forces ID IN-SITU OBSERVATION; POPULATION-GROWTH; CATALYST; NUCLEATION; NANOPARTICLES; DYNAMICS; INSIGHTS; DENSITY AB The properties of carbon nanotube (CNT) networks and analogous materials comprising filamentary nanostructures are governed by the intrinsic filament properties and their hierarchical organization and interconnection. As a result, direct knowledge of the collective dynamics of CNT synthesis and self-organization is essential to engineering improved CNT materials for applications such as membranes and thermal interfaces. Here, we use real-time environmental transmission electron microscopy (E-TEM) to observe nucleation and self-organization of CNTs into vertically aligned forests. Upon introduction of the carbon source, we observe a large scatter in the onset of nucleation of individual CNTs and the ensuing growth rates. Experiments performed at different temperatures and catalyst particle densities show the critical role of CNT density on the dynamics of self-organization; low-density CNT nucleation results in the CNTs becoming pinned to the substrate and forming random networks, whereas higher density CNT nucleation results in self-organization of the CNTs into bundles that are oriented perpendicular to the substrate. We also find that mechanical coupling between growing CNTs alters their growth trajectory and shape, causing significant deformations, buckling, and defects in the CNT walls. Therefore, it appears that CNT CNT coupling not only is critical for self-organization but also directly influences CNT quality and likely the resulting properties of the forest. Our findings show that control of the time-distributed kinetics of CNT nucleation and bundle formation are critical to manufacturing well-organized CNT assemblies and that E-TEM can be a powerful tool to investigate the mesoscale dynamics of CNT networks. C1 [Balakrishnan, Viswanath; Bedewy, Mostafa; Pattinson, Sebastian W.; Hart, A. John] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Balakrishnan, Viswanath; Bedewy, Mostafa; Pattinson, Sebastian W.; Hart, A. John] MIT, Lab Mfg & Prod, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Bedewy, Mostafa; Polsen, Erik S.; Laye, Fabrice] Univ Michigan, Dept Mech Engn, 2350 Hayward St, Ann Arbor, MI 48109 USA. [Polsen, Erik S.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Zakharov, Dmitri N.; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Balakrishnan, Viswanath] Indian Inst Technol Mandi, Sch Engn, Mandi 175001, Himachal Prades, India. [Bedewy, Mostafa] Univ Pittsburgh, Dept Ind Engn, 3700 OHara St, Pittsburgh, PA 15261 USA. RP Hart, AJ (reprint author), MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Hart, AJ (reprint author), MIT, Lab Mfg & Prod, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM ajhart@mit.edu RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 FU Department of Energy Office of Basic Energy Sciences [DE-SC0004927]; U.S. Department of Energy Office of Basic Energy Sciences [DE-SC0012704]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Financial support to B.V., M.B., and A.J.H. was provided by the Department of Energy Office of Basic Energy Sciences (DE-SC0004927). In situ and ex situ TEM experiments were performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy Office of Basic Energy Sciences (DE-SC0012704). Catalyst deposition and ex situ electron microscopy were performed at the Center for Nanoscale Systems (CNS) at Harvard University. Catalyst deposition of additional samples was carried out at the Lurie Nanofabrication Facility (LNF) at the University of Michigan. E.M. was supported under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 36 TC 0 Z9 0 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD DEC PY 2016 VL 10 IS 12 BP 11496 EP 11504 DI 10.1021/acsnano.6b07251 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EG5JI UT WOS:000391079700097 PM 27959511 ER PT J AU Adam, R Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Battye, R Benabed, K Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Calabrese, E Cardoso, JF Carron, J Chiang, HC Colombo, LPL Combet, C Comis, B Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Di Valentino, E Dickinson, C Diego, JM Dore, O Douspis, M Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fantaye, Y Finelli, F Forastieri, F Frailis, M Fraisse, AA Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Gerbino, M Ghosh, T Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Gudmundsson, JE Hansen, FK Helou, G Henrot-Versille, S Herranz, D Hivon, E Huang, Z Ilic, S Jaffe, AH Jones, WC Keihanen, E Keskitalo, R Kisner, TS Knox, L Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Langer, M Lasenby, A Lattanzi, M Lawrence, CR Le Jeune, M Levrier, F Lewis, A Liguori, M Lilje, PB Lopez-Caniego, M Ma, YZ Macias-Perez, JF Maggio, G Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Matarrese, S Mauri, N McEwen, JD Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Moss, A Naselsky, P Natoli, P Oxborrow, CA Pagano, L Paoletti, D Partridge, B Patanchon, G Patrizii, L Perdereau, O Perotto, L Pettorino, V Piacentini, F Plaszczynski, S Polastri, L Polenta, G Puget, JL Rachen, JP Racine, B Reinecke, M Remazeilles, M Renzi, A Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Ruiz-Granados, B Salvati, L Sandri, M Savelainen, M Scott, D Sirri, G Sunyaev, R Suur-Uski, AS Tauber, JA Tenti, M Toffolatti, L Tomasi, M Tristram, M Trombetti, T Valiviita, J Van Tent, F Vielva, P Villa, F Vittorio, N Wandelt, BD Wehus, IK White, M Zacchei, A Zonca, A AF Adam, R. Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battye, R. Benabed, K. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Calabrese, E. Cardoso, J. -F. Carron, J. Chiang, H. C. Colombo, L. P. L. Combet, C. Comis, B. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Di Valentino, E. Dickinson, C. Diego, J. M. Dore, O. Douspis, M. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fantaye, Y. Finelli, F. Forastieri, F. Frailis, M. Fraisse, A. A. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Gerbino, M. Ghosh, T. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Helou, G. Henrot-Versille, S. Herranz, D. Hivon, E. Huang, Z. Ilic, S. Jaffe, A. H. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Knox, L. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Levrier, F. Lewis, A. Liguori, M. Lilje, P. B. Lopez-Caniego, M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Matarrese, S. Mauri, N. McEwen, J. D. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Moss, A. Naselsky, P. Natoli, P. Oxborrow, C. A. Pagano, L. Paoletti, D. Partridge, B. Patanchon, G. Patrizii, L. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Plaszczynski, S. Polastri, L. Polenta, G. Puget, J. -L Rachen, J. P. Racine, B. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Ruiz-Granados, B. Salvati, L. Sandri, M. Savelainen, M. Scott, D. Sirri, G. Sunyaev, R. Suur-Uski, A. -S. Tauber, J. A. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Wehus, I. K. White, M. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLVII. Planck constraints on reionization history SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmic background radiation; dark ages, reionization, first stars; polarization ID MICROWAVE BACKGROUND ANISOTROPIES; PROBE WMAP OBSERVATIONS; STAR-FORMING GALAXIES; ANGULAR POWER SPECTRUM; HIGH-REDSHIFT GALAXIES; SOUTH-POLE TELESCOPE; DEEP FIELD CAMPAIGN; LY-ALPHA-EMITTERS; SIMILAR-TO 6; COSMIC REIONIZATION AB We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit Lambda CDM models with various parameterizations of the reionization history. We obtain a Thomson optical depth tau = 0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with data solely from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets, and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high-resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z = 7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Delta z < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z similar or equal to 10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources. C1 [Ganga, K.; Le Jeune, M.; Patanchon, G.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite,CEA lrfu, Observ Paris,CNRS IN2P3, APC AstroParticule & Cosmol, F-75205 Paris 13, France. [Calabrese, E.; Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, Aalto 00076, Finland. [Calabrese, E.; Lahteenmaki, A.] Dept Radio Sci & Engn, Aalto 00076, Finland. [Fantaye, Y.; Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ilic, S.] Aix Marseille Univ, Ctr Phys Theor, F-13288 Marseille, France. [Ashdown, M.; Curto, A.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ilic, S.; Montier, L.] CNRS, IRAP, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Oxborrow, C. A.] Tech Univ Denmark, Space Natl Space Inst, DTU, Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ la Laguna, Dept Astrofis, San Cristobal de la Laguna 38206, Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Carron, J.; Lewis, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95064 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Dipartimento Fis & Astron, I-40127 Bologna, Italy. [Burigana, C.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ La Sapienza, Dipartimento Fis, I-00133 Rome, Italy. [Bersanelli, M.; Ducout, A.; Krachmalnicoff, N.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Fantaye, Y.; Forastieri, F.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Gran Sasso Sci Inst, INFN, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki 00560, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Zacchei, A.] INAF Osservatorio Astron Trieste, I-34127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] INAF IASF Bologna, I-40127 Bologna, Italy. [Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, I-20133 Milan, Italy. [Tenti, M.] INFN CNAF, I-40127 Bologna, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Patrizii, L.; Sirri, G.] INFN, Sez Bologna, I-40127 Bologna, Italy. [Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Rome Sapienza, INFN, Sez Roma 1, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, I-00185 Rome, Italy. [Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Ghosh, T.; Kunz, M.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Puget, J. -L; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, Inst Astrophys Spatiale, CNRS, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Migliaccio, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Racine, B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Basak, S.; Battye, R.; Bonaldi, A.; Davis, R. J.; Dickinson, C.; Ma, Y. -Z.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Cambridge CB3 OHA, England. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91405 Orsay, France. [Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, F-75000 Paris, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Adam, R.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France. [Van Tent, F.] Univ ParisSud 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, F.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Ensslin, T. A.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, DK-1165 Copenhagen, Denmark. [Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, I-34136 Trieste, Italy. [Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, ZA-4000 Durban, South Africa. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Bouchet, F. R.; Di Valentino, E.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR 7095, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Ilic, S.; Montier, L.] Univ Toulouse, UPS OMP IRAP, F-31028 Toulouse 4, France. [Ruiz-Granados, B.] Univ Granada, Dept Fis Tedr & Cosmos, Fac Ciencias, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Tristram, M (reprint author), Univ Paris 11, CNRS IN2P3, LAL, F-91405 Orsay, France. EM marian.douspis@ias.u-psud.fr; tristram@lal.in2p3.fr RI Barreiro, Rita Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; White, Martin/I-3880-2015; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017 OI Huang, Zhiqi/0000-0002-1506-1063; Lilje, Per/0000-0003-4324-7794; Ballardini, Mario/0000-0003-4481-3559; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; White, Martin/0000-0001-9912-5070; Gerbino, Martina/0000-0002-3538-1283 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); MPG (Germany); DLR (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); J.A. (Spain) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration NR 110 TC 3 Z9 3 U1 5 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A108 DI 10.1051/0004-6361/201628897 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900066 ER PT J AU Adam, R Ade, PAR Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bersanelli, M Bielewicz, P Bikmaev, I Bonaldi, A Bond, JR Borrill, J Bouchet, FR Burenin, R Burigana, C Calabrese, E Cardoso, JF Catalano, A Chiang, HC Christensen, PR Churazov, E Colombo, LPL Combet, C Comis, B Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Diego, JM Dole, H Dore, O Douspis, M Ducout, A Dupac, X Elsner, F Ensslin, TA Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Hornstrup, A Hovest, W Hurier, G Jaffe, HA Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Khamitov, I Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Macias-Perez, JF Maffei, B Maggio, G Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Santos, D Savelainen, M Savini, G Scott, D Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wehus, IK Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bersanelli, M. Bielewicz, P. Bikmaev, I. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Burenin, R. Burigana, C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chiang, H. C. Christensen, P. R. Churazov, E. Colombo, L. P. L. Combet, C. Comis, B. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Diego, J. M. Dole, H. Dore, O. Douspis, M. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Hornstrup, A. Hovest, W. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Macias-Perez, J. F. Maffei, B. Maggio, G. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Santos, D. Savelainen, M. Savini, G. Scott, D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLIII. Spectral energy distribution of dust in clusters of galaxies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: intracluster medium; galaxies: clusters: general; diffuse radiation; infrared: general ID INFRARED-EMISSION; SCALING RELATIONS; INTRACLUSTER DUST; INTERSTELLAR DUST; COMA CLUSTER; LUMINOSITY; HERSCHEL; EVOLUTION; CONSTRAINTS; CALIBRATION AB Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emission over its peak, and thus to break the degeneracy between dust temperature and mass. By complementing the IRAS spectral coverage with Planck satellite data from 100 to 857 GHz, we provide new constraints on the IR spectrum of thermal dust emission in clusters of galaxies. We achieve this by using a stacking approach for a sample of several hundred objects from the Planck cluster sample. This procedure averages out fluctuations from the IR sky, allowing us to reach a significant detection of the faint cluster contribution. We also use the large frequency range probed by Planck, together with component-separation techniques, to remove the contamination from both cosmic microwave background anisotropies and the thermal Sunyaev-Zeldovich effect (tSZ) signal, which dominate at v <= 353 GHz. By excluding dominant spurious signals or systematic effects, averaged detections are reported at frequencies 353 GHz <= v <= 5000 GHz. We confirm the presence of dust in clusters of galaxies at low and intermediate redshifts, yielding an SED with a shape similar to that of the Milky Way. Planck's resolution does not allow us to investigate the detailed spatial distribution of this emission (e.g. whether it comes from intergalactic dust or simply the dust content of the cluster galaxies), but the radial distribution of the emission appears to follow that of the stacked SZ signal, and thus the extent of the clusters. The recovered SED allows us to constrain the dust mass responsible for the signal and its temperature. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, Sorbonne Paris Cite,Observ Paris, APC AstroParticule & Cosmol, CNRS IN2P3 CEA Irfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Aalto Univ, Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Bauman Str 20, Kazan 420111, Republic Of Tat, Russia. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, West Ville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107,Casilla 763, Santiago 0355, Chile. [Leonardi, R.] CGEE, SCS Qd 9,Torre C,4 Andar,Ed Parque Cidade Corp, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, E-28049 Madrid, Spain. [Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33077, Spain. [Bikmaev, I.; Khamitov, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kremlevskaya Str 18, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Franceschi, E.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, SF-00100 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Kneissl, R.] ESO Vitacura, European So Observ, Alonso Cordova 3107, Santiago 19001, Chile. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain. [Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 35131, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, Via Valerio 2, I-34127 Trieste, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble Alpes, IPAG, CNRS, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.] CNRS, Inst Astrophys Paris, UMR7095, 98Bis Blvd Arago, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-38106 Oslo, Norway. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Bonaldi, A.; Davis, R. J.; Maffei, B.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75000 Paris, France. [Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,IRFU,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris, France. [Adam, R.; Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.; Valiviita, J.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Astro Space Ctr, 84-32 Profsoyuznaya St,GSP-7, Moscow, Russia. [Churazov, E.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Burenin, R.] Moscow Inst Phys & Technol, Inst Sky Per 9, Moscow 141700, Russia. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Opt Sci Lab, Gower St, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ E Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate, CO, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] UPMC, Sorbonne Univ, Inst Astrophys Paris, UMR7095, 98Bis Blvd Arago, F-75014 Paris, France. [Burenin, R.; Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Prof Soyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Khamitov, I.] TUBITAK Natl Observ, Akdeniz Univ Campus, TR-07058 Antalya, Turkey. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.] Univ Paris 06, UPMC, UMR7095, 98Bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, IRAP, UPS, OMP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, E-18071 Granada, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac 1, E-18071 Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. EM comis@lpsc.in2p3.fr RI Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; Churazov, Eugene/A-7783-2013; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014 OI Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Hivon, Eric/0000-0003-1880-2733; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MINECO; JA; RES (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC; PRACE (EU); [ANR-11-BS56-015] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. This paper makes use of the HEALPix software package. We acknowledge the support of grant ANR-11-BS56-015. We are thankful to the anonymous referee for useful comments that helped improve the quality of the paper. NR 69 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A104 DI 10.1051/0004-6361/201628522 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900045 ER PT J AU Adam, R Ade, PAR Alves, MIR Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chiang, HC Christensen, PR Colombo, LPL Combet, C Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dolag, K Dore, O Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Ferriere, K Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Ganga, K Ghosh, T Giard, M Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hobson, M Hornstrup, A Hurier, G Jaffe, AH Jaffe, TR Jones, WC Juvela, M Keihanen, E Keskitalo, R Kisner, TS Knoche, J Kunz, M Kurki-Suonio, H Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leahy, JP Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Oppermann, N Orlando, E Pagano, L Pajot, F Paladini, R Paoletti, D Pasian, F Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Scott, D Spencer, LD Stolyarov, V Stompor, R Strong, AW Sudiwala, R Sunyaev, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Adam, R. Ade, P. A. R. Alves, M. I. R. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chiang, H. C. Christensen, P. R. Colombo, L. P. L. Combet, C. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dolag, K. Dore, O. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Ferriere, K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Ganga, K. Ghosh, T. Giard, M. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hobson, M. Hornstrup, A. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Juvela, M. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Kunz, M. Kurki-Suonio, H. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leahy, J. P. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Oppermann, N. Orlando, E. Pagano, L. Pajot, F. Paladini, R. Paoletti, D. Pasian, F. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Strong, A. W. Sudiwala, R. Sunyaev, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLII. Large-scale Galactic magnetic fields SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; ISM: magnetic fields; polarization ID PROBE WMAP OBSERVATIONS; COSMIC-RAY PROPAGATION; SYNCHROTRON EMISSION; MILKY-WAY; POLARIZATION MEASUREMENTS; SPECTRAL INDEX; OUTER GALAXY; MODELS; DUST; MAPS AB Recent models for the large-scale Galactic magnetic fields in the literature have been largely constrained by synchrotron emission and Faraday rotation measures. We use three different but representative models to compare their predicted polarized synchrotron and dust emission with that measured by the Planck satellite. We first update these models to match the Planck synchrotron products using a common model for the cosmic-ray leptons. We discuss the impact on this analysis of the ongoing problems of component separation in the Planck microwave bands and of the uncertain cosmic-ray spectrum. In particular, the inferred degree of ordering in the magnetic fields is sensitive to these systematic uncertainties, and we further show the importance of considering the expected variations in the observables in addition to their mean morphology. We then compare the resulting simulated emission to the observed dust polarization and find that the dust predictions do not match the morphology in the Planck data but underpredict the dust polarization away from the plane. We modify one of the models to roughly match both observables at high latitudes by increasing the field ordering in the thin disc near the observer. Though this specific analysis is dependent on the component separation issues, we present the improved model as a proof of concept for how these studies can be advanced in future using complementary information from ongoing and planned observational projects. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Piat, M.; Remazeilles, M.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA lrfu,Obser Paris,Sorbonne Paris Cite, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Cardoso, J. -F.; Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Leonardi, R.] Parque Cidade Corp, CGEE, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Spain. Univ Oviedo, Dept Fis, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys Astron, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Madrid 28692, Spain. [Tauber, J. A.] European Space Agcy, ESTEC, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Gran Sasso Sci Inst, INFN, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF, Osservatorio Astron Padova, I-35122 Padua, Italy. [Polenta, G.] INAF, Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF, Osservatorio Astron Trieste, I-40127 Trieste, Italy. [Benoit-Levy, A.; Burigana, C.; Butler, R. C.; Catalano, A.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF, IASF Bologna, I-40129 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, I-00185 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Alves, M. I. R.; Aumont, J.; Benoit-Levy, A.; Boulanger, F.; Catalano, A.; Ghosh, T.; Hurier, G.; Kunz, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst dAstrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Ducout, A.; Elsner, F.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst dAstrophys Paris, CNRS UMR 7095, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucleare, Sez57adova, I-35131 Padua, Italy. [Benoit-Levy, A.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Davis, R. J.; Dickinson, C.; Leahy, J. P.; Remazeilles, M.] Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observatoire Paris, F-75014 Paris, France. [Pratt, G. W.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA Saclay,CEA DSM CNRS, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS UMR 5141, Labe Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Adam, R.; Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, F.] CNRS, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Strong, A. W.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Christensen, P. R.] Niels Bohr Inst, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, I-34136 Trieste, Italy. [Terenzi, L.] Univ eCampus, SMARTEST Res Ctr, I-22060 Novedrate CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Parade, Cardiff CF24 3AA, Wales. [Bouchet, F. R.] Inst dAstrophys Paris, Sorbonne Univ UPMC, UMR 7095, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai 369167, Russia. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Prunet, S.; Wandelt, B. D.] UPMC, UMR 7095, Univ Paris 06, F-75014 Paris, France. [Alves, M. I. R.; Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Catalano, A.; Ferriere, K.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.] Ludwig Maximilian Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain. [Orlando, E.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, W W Hansen Expt Phys Lab, Dept Phys, Stanford, CA 94305 USA. [Orlando, E.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Jaffe, TR (reprint author), CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. EM tjaffe@irap.omp.eu RI Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Lilje, Per/0000-0003-4324-7794; Pierpaoli, Elena/0000-0002-7957-8993; Juvela, Mika/0000-0002-5809-4834; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Toffolatti, Luigi/0000-0003-2645-7386; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC; PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA), part of the High Energy Astrophysics Science Archive Center (HEASARC). HEASARC/LAMBDA is a service of the Astrophysics Science Division at the NASA Goddard Space Flight Center. NR 56 TC 0 Z9 0 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A103 DI 10.1051/0004-6361/201528033 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900022 ER PT J AU Ade, PAR Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Basak, S Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chiang, HC Christensen, PR Clements, DL Colombi, S Colombo, LPL Combet, C Crill, BP Curto, A Cuttaia, F Danese, L Davis, RJ de Bernardis, P de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dore, O Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Galli, S Ganga, K Ghosh, T Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Gudmundsson, JE Harrison, DL Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hornstrup, A Hovest, W Hurier, G Jaffe, AH Jones, WC Keihanen, E Keskitalo, R Kisner, TS Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Leonardi, R Levrier, F Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maggie, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Moss, A Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Netterfield, CB Norgaard-Nielsen, HU Novikov, D Novikov, I Pagano, L Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Pointecouteau, E Polenta, G Pratt, GW Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Tuovinen, J Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombi, S. Colombo, L. P. L. Combet, C. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davis, R. J. de Bernardis, P. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dore, O. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Galli, S. Ganga, K. Ghosh, T. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Gudmundsson, J. E. Harrison, D. L. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hornstrup, A. Hovest, W. Hurier, G. Jaffe, A. H. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Leonardi, R. Levrier, F. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maggie, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Moss, A. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Netterfield, C. B. Norgaard-Nielsen, H. U. Novikov, D. Novikov, I. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Pointecouteau, E. Polenta, G. Pratt, G. W. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuovinen, J. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. TI Planck intermediate results XLI. A map of lensing-induced B-modes SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmic background radiation; polarization; gravitational lensing: weak ID MICROWAVE BACKGROUND POLARIZATION; INFLATIONARY UNIVERSE SCENARIO; GRAVITY-WAVES; CMB; RECONSTRUCTION; COSMOLOGY; PROSPECTS; FLATNESS; HORIZON; SPHERE AB The secondary cosmic microwave background (CMB) B-modes stem from the post-decoupling distortion of the polarization E-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced B-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB B-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization E-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced B-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) B-mode map can be used to measure the lensing B-mode power spectrum at multipoles up to 2000. In particular, when cross-correlating with the B-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced B-mode power spectrum measurement at a significance level of 12 sigma, which agrees with the theoretical expectation derived from the Planck best-fit Lambda cold dark matter model. This unique nearly all-sky secondary B-mode template, which includes the lensing-induced information from intermediate to small (10 less than or similar to l less than or similar to 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial B-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB B-modes. C1 [Benoit-Levy, A.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEAlrfu,Observ Paris,Sorbonne Paris Cite, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ Metsahovi Radio Observ, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, ZA-00040 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, Cambridge CB3 OHE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Leonardi, R.] CGEE, SCS Qd 9, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Tuovinen, J.] Trinity Coll Dublin, CRANN, Dublin, Ireland. [Bock, J. J.; Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91109 USA. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Oviedo 33007, Spain. [Netterfield, C. B.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter, Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 93106 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Bartolo, N.; Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Benoit-Levy, A.; de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00133 Rome, Italy. [Benoit-Levy, A.; Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Discovery Ctr, Niels Bohr Inst, DK-1165 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] Planck Sci Off, ESAC, European Space Agcy, Madrid 28691, Spain. [Tauber, J. A.] Estec, European Space Agcy, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ e Campus, Fac Ingn, I-22060 Novedrate, CO, Italy. [Matarrese, S.] INFN, Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, D-69120 Heidelberg, Germany. [Benoit-Levy, A.; Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF, Osserv Astron Padova, I-35131 Padua, Italy. [Polenta, G.] INAF, Osserv Astron Roma, I-00040 Monte Porzio Catone, Italy. [Benoit-Levy, A.; Frailis, M.; Galeotta, S.; Maggie, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF, Osserv Astron Trieste, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, I-40126 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma La Sapienza, Sez Roma 1, INFN, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, INFN, I-00133 Rome, Italy. [Mitra, S.] Pune Univ Campus, IUCAA, Pune 411007, Maharashtra, India. [Benoit-Levy, A.; Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Aghanim, N.; Aumont, J.; Benoit-Levy, A.; Bonaldi, A.; Boulanger, F.; Catalano, A.; Ghosh, T.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Remazeilles, M.] Univ Paris 11, CNRS UMR8617, Inst Astrophys Spatiale, F-91898 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Bouchet, F. R.; Cardoso, J. -F.; Catalano, A.; Colombi, S.; Ducout, A.; Elsner, F.; Moneti, A.; Sygnet, J. -F.; Wandelt, B. D.] CNRS UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 OHA, England. [Eriksen, H. K.; Gjerlow, E.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife 38205, Spain. [Barreiro, R. B.; Benoit-Levy, A.; Bonaldi, A.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Santander 39005, Spain. [Bartolo, N.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Benoit-Levy, A.; Bock, J. J.; Bonaldi, A.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Mitra, S.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Benoit-Levy, A.; Bonaldi, A.; Davis, R. J.; Dickinson, C.; Maffei, B.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Benoit-Levy, A.; Bonaldi, A.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 OHA, England. [Stolyarov, V.] Kazan Fed Univ, Kazan 420008, Russia. [Benoit-Levy, A.; Mangilli, A.; Perdereau, O.; Tristram, M.] Univ Paris 11, LAL, CNRS IN2P3, F-91898 Orsay, France. [Benoit-Levy, A.; Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, Observ Paris, LERMA, F-75000 Paris, France. [Pratt, G. W.] Univ Paris Diderot, CEA Saclay, CNRS, Lab AIM,IRFU Serv Astrophys,CEA DSM, Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, CNRS, Lab Phys Theor, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Ctr Astro Space, Lebedev Phys Inst, Moscow 117997, Russia. [Benoit-Levy, A.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, DK-1165 Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, DK-1165 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Optic Sci Lab, London, England. [Baccigalupi, C.; Basak, S.; Benoit-Levy, A.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sector, I-34136 Trieste, Italy. [Ade, P. A. R.; Benoit-Levy, A.; Bonaldi, A.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Bouchet, F. R.] Univ Paris 06, Sorbonne Univ, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian 369167, Russia. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmopart Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Colombi, S.; Elsner, F.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Perotto, L (reprint author), Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, F-38026 Grenoble, France. EM laurence.perotto@lpsc.in2p3.fr RI Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; Stolyarov, Vladislav/C-5656-2017 OI Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck. This paper made use of the HEALPix software package. We thank the anonymous referee for their helpful comments and thoughtful suggestions that contributed to improve this paper. NR 72 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A102 DI 10.1051/0004-6361/201527932 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900017 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Butler, RC Calabrese, E Cardoso, JF Catalano, A Chamballu, A Chiang, HC Christensen, PR Churazov, E Clements, DL Colombo, LPL Combet, C Comis, B Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Galli, S Gangal, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maggio, G Maino, D Mandolesi, N Mangilli, A Marcos-Caballero, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Mazzotta, P Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Noviello, F Novikov, D Novikov, I Oppermann, N Oxborrow, CA Pagano, L Pajot, F Paoletti, D Pasian, F Pearson, TJ Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Schaefer, BM Scott, D Soler, JD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Umana, G Valenziano, L Valiviita, J Van Tent, B Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Weller, J Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Catalano, A. Chamballu, A. Chiang, H. C. Christensen, P. R. Churazov, E. Clements, D. L. Colombo, L. P. L. Combet, C. Comis, B. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Galli, S. Gangal, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Marcos-Caballero, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Noviello, F. Novikov, D. Novikov, I. Oppermann, N. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Pasian, F. Pearson, T. J. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Schaefer, B. M. Scott, D. Soler, J. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, B. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Weller, J. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XL. The Sunyaev-Zeldovich signal from the Virgo cluster SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE ISM: general; galaxies: clusters: individual: Virgo; galaxies: clusters: intracluster medium; cosmic background radiation; large-scale structure of Universe ID HUBBLE-SPACE-TELESCOPE; HOT INTERGALACTIC MEDIUM; CENTIMETER LINE WIDTHS; X-RAY; GALAXY CLUSTERS; VIRIAL RADIUS; 3-DIMENSIONAL STRUCTURE; GAS; DISTANCE; TEMPERATURE AB The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Planck's wide angular scale and frequency coverage, together with its high sensitivity, enable a detailed study of this big object through the SZ effect. Virgo is well resolved by Planck, showing an elongated structure that correlates well with the morphology observed from X-rays, but extends beyond the observed X-ray signal. We find good agreement between the SZ signal (or Compton parameter, y(c)) observed by Planck and the expected signal inferred from X-ray observations and simple analytical models. Owing to its proximity to us, the gas beyond the virial radius in Virgo can be studied with unprecedented sensitivity by integrating the SZ signal over tens of square degrees. We study the signal in the outskirts of Virgo and compare it with analytical models and a constrained simulation of the environment of Virgo. Planck data suggest that significant amounts of low-density plasma surround Virgo, out to twice the virial radius. We find the SZ signal in the outskirts of Virgo to be consistent with a simple model that extrapolates the inferred pressure at lower radii, while assuming that the temperature stays in the keV range beyond the virial radius. The observed signal is also consistent with simulations and points to a shallow pressure profile in the outskirts of the cluster. This reservoir of gas at large radii can be linked with the hottest phase of the elusive warm/hot intergalactic medium. Taking the lack of symmetry of Virgo into account, we find that a prolate model is favoured by the combination of SZ and X-ray data, in agreement with predictions. Finally, based on the combination of the same SZ and X-ray data, we constrain the total amount of gas in Virgo. Under the hypothesis that the abundance of baryons in Virgo is representative of the cosmic average, we also infer a distance for Virgo of approximately 18 Mpc, in good agreement with previous estimates. C1 [Cardoso, J. -F.; Delabrouille, J.; Gangal, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS IN2P3, CEA lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ashdown, M.; Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Astrophys Grp, Cavendish Lab, J J Thomson Ave, Cambridge CB3 OHE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Offices, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107, Santiago 7630355, Chile. [Leonardi, R.] Parque Cidade Corp, CGEE, SCS Qd 9,Lote C,Torre C, 4, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Chamballu, A.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Studi Padova, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, P le A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Via Valerio 2, I-34127 Trieste, Italy. [Mazzotta, P.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Scientifica 1, I-00133 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientifica, I-00133 Rome, Italy. Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Kneissl, R.] European Southern Observ, ESO Vitacura, Alonso Cordova 3107, Santiago 19001, Chile. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, ESTEC, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ Studi Campus, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate CO, Italy. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00014, Finland. [Umana, G.] INAF Osservatorio Astrofisico Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo dell Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] INAF Osservatorio Astronomico Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astronomico Trieste, Via G B Tiepolo 11, I-40127 Trieste, Italy. [Benoit-Levy, A.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF, IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, Via Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Scientifica 1, I-00185 Rome, Italy. [Ponthieu, N.] INFN, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Ponthieu, N.] Univ Grenoble Alpes, IPAG, Inst Planetol & dAstrophys Grenoble, CNRS,IPAG, F-38000 Grenoble, France. [Mitra, S.] Pune Univ Campus, IUCAA, Post Bag 4, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 Bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Chamballu, A.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.] Univ Paris Sud 11, Inst dAstrophys Spatiale, CNRS UMR 8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Bouchet, F. R.; Cardoso, J. -F.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst dAstrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 OHA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna 38205, Spain. [Barreiro, R. B.; Benoit-Levy, A.; Bonaldi, A.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Marcos-Caballero, A.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda los Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Benoit-Levy, A.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Benoit-Levy, A.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observatoire Paris, 61 Ave IObser, Paris, France. [Arnaud, M.; Chamballu, A.; Pratt, G. W.] Univ Paris Diderot, Lab AIM, IRFU Serv dAstrophys, CEA DSM CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS UMR 5141, Lab Traitement & Commun IInformat, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Catalano, A.; Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St, Moscow 117997, Russia. [Churazov, E.; Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Savini, G.] UCL, Optic Sci Lab, Gower St, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales. [Bouchet, F. R.] UPMC, Inst dAstrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai-Cherkessian 369167, Russia. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, Philosophenweg 12, D-69120 Heidelberg, Germany. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.; Weller, J.] Ludwig Maximilian Univ Munich, Univ Observ, Scheinerstr 1, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Diego, JM (reprint author), Univ Cantabria, CSIC, Inst Fis Cantabria, Avda los Castros S-N, Santander 39005, Spain. EM jdiego@ifca.unican.es RI Churazov, Eugene/A-7783-2013; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; Mazzotta, Pasquale/B-1225-2016; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; OI Villa, Fabrizio/0000-0003-1798-861X; Hivon, Eric/0000-0003-1880-2733; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; Mazzotta, Pasquale/0000-0002-5411-1748; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results presented in this work are based on observations obtained with XMM-Newton an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA5. NR 73 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A101 DI 10.1051/0004-6361/201527743 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900009 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Butler, RC Calabrese, E Catalano, A Chiang, HC Christensen, PR Clements, DL Colombo, LPL Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Dore, O Douspis, M Ducout, A Dupac, X Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Finelli, F Flores-Cacho, I Frailis, M Fraisse, AA Franceschi, E Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Gudmundsson, JE Hansen, FK Harrison, DL Helou, G Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Hornstrup, A Hovest, W Enberger, KMHF Hurier, G Jaffe, AH Jaffe, TR Keihanen, E Keskitalo, R Kisner, TS Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Masi, S Matarrese, S Melchiorri, A Mennella, A Migliaccio, M Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Nati, F Natoli, P Nesvadba, NPH Noviello, F Novikov, D Novikov, I Oxborrow, CA Pagano, L Pajot, F Paoletti, D Partridge, B Pasian, F Pearson, TJ Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Prunet, S Puget, JL Rachen, JP Reinecke, M Remazeilles, M Renault, C Renzi, A Ristorcelli, I Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Santos, D Savelainen, M Savini, G Scott, D Spencer, LD Stolyarov, V Stompor, R Sudiwala, R Sunyaev, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Turler, M Umana, G Valenziano, L Valiviita, J Van Tent, F Vielva, P Villa, F Wade, LA Wandelt, BD Wehus, IK Welikala, N Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. - Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Butler, R. C. Calabrese, E. Catalano, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colombo, L. P. L. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Dore, O. Douspis, M. Ducout, A. Dupac, X. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Finelli, F. Flores-Cacho, I. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Harrison, D. L. Helou, G. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Melchiorri, A. Mennella, A. Migliaccio, M. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Nati, F. Natoli, P. Nesvadba, N. P. H. Noviello, F. Novikov, D. Novikov, I. Oxborrow, C. A. Pagano, L. Pajot, F. Paoletti, D. Partridge, B. Pasian, F. Pearson, T. J. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Santos, D. Savelainen, M. Savini, G. Scott, D. Spencer, L. D. Stolyarov, V. Stompor, R. Sudiwala, R. Sunyaev, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuerler, M. Umana, G. Valenziano, L. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Wade, L. A. Wandelt, B. D. Wehus, I. K. Welikala, N. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XXXIX. The Planck list of high-redshift source candidates SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE catalogs; submillimeter: galaxies; galaxies: high-redshift; galaxies: clusters: general; large-scale structure of Universe ID SOUTH-POLE TELESCOPE; STAR-FORMING GALAXIES; FAR-INFRARED PROPERTIES; SIMILAR-TO 2; GRAVITATIONALLY LENSED GALAXIES; LY-ALPHA EMITTERS; MU-M OBSERVATIONS; DEEP FIELD-SOUTH; GREATER-THAN 1; RADIO GALAXY AB The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been validated and characterized on numerous simulations, and applied to select the most luminous cold submillimetre sources with spectral energy distributions peaking between 353 and 857 GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545 GHz above 500 mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z > 2, assuming a dust temperature of T-xgal = 35K and a spectral index of beta(xgal) = 1.5. Exhibiting extremely high luminosities, larger than 10(14) L-circle dot, the PHZ objects may be made of multiple galaxies or clumps at high redshift, as suggested by a first statistical analysis based on a comparison with number count models. Furthermore, first follow-up observations obtained from optical to submillimetre wavelengths, which can be found in companion papers, have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies at redshift 2 to 4, while the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with being at z > 2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, which is complementary to the Planck Sunyaev-Zeldovich Catalogue (PSZ2); by extending the population of virialized massive galaxy clusters detected below z < 1.5 through their SZ signal to a population of sources at z > 1.5, the PHZ may contain the progenitors of today's clusters. Hence the Planck list of high-redshift source candidates opens a new window on the study of the early stages of structure formation, particularly understanding the intensively star-forming phase at high-z. C1 [Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Rosset, C.; Roudier, G.; Stompor, R.] Univ Paris Diderot, APC, CNRS,Obser Paris, IN2P3,CEA,Irfu,Sorbonne Paris Cite, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, I-00133 Rome, Italy. [Lagache, G.] Univ Aix Marseille, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4000 Durban, South Africa. [Kneissl, R.] ALMA Santiago Cent Off, Santiago 7630355, Chile. [Leonardi, R.] CGEE, BR-70308200 Brasilia, DF, Brazil. [Bond, J. R.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Flores-Cacho, I.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Helou, G.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan,1,Planta 2, Teruel 44001, Brazil. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Yvon, D.] CEA, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327,2800 Kgs, Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E. Ansermet, CH-1211 Geneva, Switzerland. [Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33003, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC V6T 1Z4, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, Mortimer St, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL 32306 USA. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FI-00100 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ USA. [Lubin, P. M.; Zonca, A.] Univ Calif, Dept Phys, Santa Barbara, CA USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, P Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20122 Milan, Italy. Univ Trieste, Dipartimento Fis, Via Valerio 2, I-34128 Trieste, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Mate, Via Ric Scientifica, I-00173 Rome, Italy. [Christensen, P. R.] Discovery Ctr, Niels Bohr Inst, Blegdamsvej 17, Copenhagen 2100, Denmark. [Gregorio, A.; Kneissl, R.] ESO Vitacura, 3107 Alonso Cordova, Santiago 19001, Chile. [Tauber, J. A.] ESTEC, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00100, Finland. [Umana, G.] INAF, Osservatorio Astrofis Catania, Via S Sofia 78, Catania, Italy. [de Zotti, G.] INAF, Osservatorio Astronom Padova, Vicolo Osservatorio 5, Padua, Italy. [Polenta, G.] INAF, Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Pasian, F.; Zacchei, A.] Osserv Astron Trieste, INAF, Via G B Tiepolo 11, I-34131 Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Villa, F.] INAF, IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E. Bassini 15, I-20133 Milan, Italy. [Burigana, C.; Finelli, F.; Gruppuso, A.; Paoletti, D.] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Natoli, P.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, P Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Sez Roma 2, INFN, Via Ric Scientifica 1, I-00173 Rome, Italy. [Gregorio, A.] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy. [Tuerler, M.] Univ Geneva, Dept Astron, ISDC, Ch dEcogia 16, CH-1290 Versoix, Switzerland. [Mitra, S.] Univ Poona, Pune 411007, Maharashtra, India. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Boulanger, F.; Dole, H.; Douspis, M.; Hurier, G.; Kunz, M.; Lagache, G.; Mangilli, A.; Miville-Deschenes, M. -A.; Nesvadba, N. P. H.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst dAstrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bonaldi, A.; Bouchet, F. R.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS UMR 7095, Inst dAstrophys Paris, 98bis boule vard Arago, F-75014 Paris, France. [Harrison, D. L.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Crill, B. P.; Rubino-Martin, J. A.] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Spain. [Barreiro, R. B. -; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Sez Padova, Ist Nazl Fis Nucl, Via Marzolo 8, I-35131 Padua, Italy. [Benoit-Levy, A.; Colombo, L. P. L.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Benoit-Levy, A.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, LAL, F-91400 Orsay, France. [Benoit-Levy, A.; Catalano, A.; Coulais, A.; Dupac, X.; Giraud-Heraud, Y.; Hornstrup, A.; Hovest, W.; Kisner, T. S.; Pettorino, V.; Stolyarov, V.] CNRS, LERMA, Observatoire Paris, 61 Ave IObservatoire, F-75014 Paris, France. [Arnaud, M.; Pratt, G. W.] Univ Paris Diderot, CNRS, CEA DSM, IRFU, F-91191 Gif Sur Yvette, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.; Santos, D.] Univ Grenoble Alpes, CNRS, Lab Phys Subatom & Cosmol, IN2P3, 53 rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Ctr Astro Space, 84-32 Profsoyuznaya St, Moscow 117997, Russia. [Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Savini, G.] UCL, Optic Sci Lab, London WC1E 6BT, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Terenzi, L.] Univ Studi Campus, SMARTEST Res Ctr, Via Isimbardi 10, I-22060 Novedrate CO, Italy. [Ade, P. A. R.; Munshi, D.; Spencer, L. D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] Inst dAstrophys Paris, Sorbonne Univ UPMC, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str, Moscow 117997, Russia. [Borrill, J.] Univ Calif, Space Sci Lab, Berkeley, CA 92521 USA. [Calabrese, E.; Welikala, N.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Benoit-Levy, A.; Elsner, F.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor Cosmos, Granada 18010, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor Computac, Granada 18010, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RI Colombo, Loris/J-2415-2016; Stolyarov, Vladislav/C-5656-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; OI Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Hivon, Eric/0000-0003-1880-2733; TERENZI, LUCA/0000-0001-9915-6379; Stolyarov, Vladislav/0000-0001-8151-828X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO, J.A. (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 137 TC 0 Z9 0 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A100 DI 10.1051/0004-6361/201527206 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900007 ER PT J AU Ade, PAR Aghanim, N Aller, HD Aller, MF Arnaud, M Aumont, J Baccigalupi, C Banday, AJ Barreiro, RB Bartolo, N Battaner, E Benabed, K Benoit-Levy, A Bernard, JP Bersanelli, M Bielewicz, P Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Calabrese, E Catalano, A Chiang, HC Christensen, PR Clements, DL Colomb, LPL Couchot, F Crill, BP Curto, A Cuttaia, F Danese, L Davies, RD Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Ducout, A Dupac, X Efstathiou, G Elsner, F Eriksen, HK Finelli, F Forni, O Frailis, M Fraisse, AA Franceschi, E Galeotta, S Galli, S Ganga, K Giard, M Giraud-Heraud, Y Gjerlow, E Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Gurwel, MA Hansen, FK Harrison, DL Henrot-Versille, S Hernandez-Monteagudo, C Hildebrandt, SR Hobson, M Hornstrup, A Hovatta, T Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jaffe, TR Jarvela, E Keihanen, E Keskitalo, R Kisner, TS Kneiss, R Knoche, J Kunz, M Kurki-Suonio, H Lahteenmaki, A Lamarre, JM Lasenby, A Lattanzi, M Lawrence, CR Leonardi, R Levrier, F Liguori, M Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Martini, PG Martinez-Gonzalez, E Masi, S Matarrese, S Max-Moerbeck, W Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Millgaliev, M Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Nati, F Natoli, P Nieppola, E Noviello, F Novikov, D Novikov, I Pagano, L Pajot, F Paoletti, D Partridge, B Pasian, F Pearson, TJ Perdereau, O Perotto, L Pettorino, V Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Pratt, GW Ramakrishnan, V Rastorgueva-Foi, EA Readhead, ACS Reinecke, M Remazeilles, M Renault, C Renzi, A Richards, JL Ristorcelli, I Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Rusholme, B Sandri, M Savelainen, M Savini, G Scott, D Sotnikova, Y Stolyarov, V Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tammi, J Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tornikoski, M Tristram, M Tucci, M Turler, M Valenziano, L Valiviita, J Valtaoja, E Van Tent, B Vielva, P Ville, F Wade, LA Wehrle, AE Wehus, IK Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Aller, H. D. Aller, M. F. Arnaud, M. Aumont, J. Baccigalupi, C. Banday, A. J. Barreiro, R. B. Bartolo, N. Battaner, E. Benabed, K. Benoit-Levy, A. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Calabrese, E. Catalano, A. Chiang, H. C. Christensen, P. R. Clements, D. L. Colomb, L. P. L. Couchot, F. Crill, B. P. Curto, A. Cuttaia, F. Danese, L. Davies, R. D. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Eriksen, H. K. Finelli, F. Forni, O. Frailis, M. Fraisse, A. A. Franceschi, E. Galeotta, S. Galli, S. Ganga, K. Giard, M. Giraud-Heraud, Y. Gjerlow, E. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Gurwel, M. A. Hansen, F. K. Harrison, D. L. Henrot-Versille, S. Hernandez-Monteagudo, C. Hildebrandt, S. R. Hobson, M. Hornstrup, A. Hovatta, T. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jaffe, T. R. Jarvela, E. Keihanen, E. Keskitalo, R. Kisner, T. S. Kneiss, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Leonardi, R. Levrier, F. Liguori, M. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Martini, P. G. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Max-Moerbeck, W. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Millgaliev, M. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Nati, F. Natoli, P. Nieppola, E. Noviello, F. Novikov, D. Novikov, I. Pagano, L. Pajot, F. Paoletti, D. Partridge, B. Pasian, F. Pearson, T. J. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Pratt, G. W. Ramakrishnan, V. Rastorgueva-Foi, E. A. Readhead, A. C. S. Reinecke, M. Remazeilles, M. Renault, C. Renzi, A. Richards, J. L. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savelainen, M. Savini, G. Scott, D. Sotnikova, Y. Stolyarov, V. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tammi, J. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tornikoski, M. Tristram, M. Tucci, M. Turler, M. Valenziano, L. Valiviita, J. Valtaoja, E. Van Tent, B. Vielva, P. Ville, F. Wade, L. A. Wehrle, A. E. Wehus, I. K. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLV. Radio spectra of northern extragalactic radio sources SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: active; galaxies: general; radio continuum: galaxies ID LONG-TERM VARIABILITY; BL LACERTAE OBJECTS; GAMMA-RAY OUTBURST; FLUX-DENSITY SCALE; QUASAR 3C 454.3; MULTIWAVELENGTH OBSERVATIONS; 2010 NOVEMBER; GASP-WEBT; BLAZAR; JET AB Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts. C1 [Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Piat, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, APC, CNRS IN2P3, CEA lrfu,Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Jarvela, E.; Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Jarvela, E.; Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Hovatta, T.; Nieppola, E.; Ramakrishnan, V.; Tammi, J.; Tornikoski, M.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, 830 Dennison Bldg,500 Church St, Ann Arbor, MI 48109 USA. [Curto, A.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 OHE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, West Ville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Kneiss, R.] ALMA Santiago Cent Offices, Atacama Large Millimeter Submillimeter Array, Alonso Cordova 3107, Santiago 7630355, Chile. [Bond, J. R.; Martini, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, TRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Hovatta, T.; Max-Moerbeck, W.; Readhead, A. C. S.; Richards, J. L.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Crill, B. P.; Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Hernandez-Monteagudo, C.] CEFCA, Plaza San Juan 1,Planta 2, Teruel 44001, Spain. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA USA. [Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.; Tucci, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-12114 Geneva, Switzerland. [Rubino-Martin, J. A.] ULL, Dept Astrofis, San Cristobal la Laguna 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo, Spain. [Scott, D.] Univ British Columbia, Dept Phys Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colomb, L. P. L.; Pierpaoli, E.] Univ Southern California, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Benoit-Levy, A.; Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Huffenberger, K. M.] Florida State Univ, Dept Phys, Keen Phys Bldg,77 Chieftan Way, Tallahassee, FL USA. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Nati, F.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Richards, J. L.] Purdue Univ, Dept Phys, 525 Northwestern Ave, W Lafayette, IN 47907 USA. [Lubin, P. M.; Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, P Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. [Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientifica 1, I-00133 Rome, Italy. [Christensen, P. R.] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, Copenhagen, Denmark. [Kneiss, R.] ESO Vitacura, Alonso Cordova 3107, Santiago, Chile. [Dupac, X.; Leonardi, R.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid 28691, Spain. [Tauber, J. A.] European Space Agcy, ESTEC, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Terenzi, L.] Univ Campus, Facolta Ingn, Fac Ingn, Via Isimbardi 10, I-22060 Novedrate, Italy. [Nieppola, E.] Univ Turku, Finnish Ctr Astron ESO, FINCA, Vaisalantie 20, Piikkio 21500, Finland. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Phys Theor, Philosophenweg 16, D-69120 Heidelberg, Germany. [Gurwel, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [de Zotti, G.] INAF, Osservatorio Astronomico Padova, Vicolo dellOsservatorio 5, Padua, Italy. [Polenta, G.] Ist Nazl Fis Nucl, Osservatorio Astron Roma, Via Frascati 33, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maris, M.; Pasian, F.; Zacchei, A.] INAF, Osservatorio Astron Trieste, Via G B Tiepolo 11, Trieste, Italy. [Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Sandri, M.; Terenzi, L.; Toffolatti, L.; Valenziano, L.; Ville, F.] INAF, IASF Bologna, Via Gobetti 101, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, Via Bassini 15, Milan, Italy. [Burigana, C.; Finelli, F.; Paoletti, D.] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Scientifica 1, I-00185 Rome, Italy. [Turler, M.] Univ Geneva, Dept Astron, ISDC, Ch dEcogia 16, CH-1290 Versoix, Switzerland. [Clements, D. L.; Ducout, A.; Jaffe, A. H.; Mortlock, D.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Pearson, T. J.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, 103 bd St Michel, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Hurier, G.; Kunz, M.; Miville-Deschenes, M. -A.; Pajot, F.; Remazeilles, M.] Univ Paris Sud 11, Inst Astrophys Spatiale, CNRS UMR8617, Batiment 121, F-91405 Orsay, France. [Benabed, K.; Benoit-Levy, A.; Bouchet, F. R.; Ducout, A.; Elsner, F.; Moneti, A.; Sygnet, J. -F.] CNRS, Inst Astrophys Paris, UMR7095, 98bis Blv Arago, F-75014 Paris, France. [Efstathiou, G.; Harrison, D. L.; Migliaccio, M.; Sutton, D.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Gjerlow, E.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, San Cristobal la Laguna, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Los Castros S-N, Santander 39005, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Mar zolo 8, I-35131 Padua, Italy. [Benoit-Levy, A.; Bonaldi, A.; Colomb, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Hildebrandt, S. R.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wade, L. A.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. [Benoit-Levy, A.; Bonaldi, A.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Maffei, B.; Noviello, F.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Curto, A.; Harrison, D. L.; Lasenby, A.; Migliaccio, M.; Sutton, D.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Millgaliev, M.; Stolyarov, V.] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia. [Couchot, F.; Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91898 Orsay, France. [Catalano, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, 61 Ave Observ, F-75000 Paris, France. [Arnaud, M.; Pratt, G. W.] Univ Paris Dide, CEA Saclay, CEA DSM CNRS, IRFU Serv Astrophys,Lab AIM, Bat 709, F-91191 Gif Sur Yvette, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Van Tent, B.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Novikov, D.; Novikov, I.] Russian Acad Sci, Lebedev Phys Inst, Astro Space Ctr, 84-32 Profsoyuznaya St,GSP 7, Moscow 117997, Russia. [Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [Max-Moerbeck, W.] Natl Radio Astron Observ, POB 0, Socorro, NM 87801 USA. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Christensen, P. R.; Novikov, I.] Niels Bohr Inst, Blegdamsvej 17, Copenhagen, Denmark. [Savini, G.] UCL, Optic Sci Lab, Gower St, London, England. [Baccigalupi, C.; Bielewicz, P.; Danese, L.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Rastorgueva-Foi, E. A.] Univ Tasmania, Sch Math & Phys, Private Bag 37, Hobart, Tas, Australia. [Ade, P. A. R.; Munshi, D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Bouchet, F. R.] Sorbonne Univ UPMC, Inst Astrophys Paris, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Wehrle, A. E.] Space Sci Inst, 4750 Walnut St,Suite 205, Suite, CO 205 USA. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Millgaliev, M.; Sotnikova, Y.; Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai 369167, Russia. [Calabrese, E.] Univ Oxford, Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Valtaoja, E.] Turku Univ, Dept Phys & Astron, Tuorla Observ, Vaisalantie 20, Piikkio 21500, Finland. [Benabed, K.; Benoit-Levy, A.; Elsner, F.] UPMC, Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Benoit-Levy, A.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teorica & Cosmos, Granada 18071, Spain. [Battaner, E.] Univ Granada, Inst Carlos Fis Teor & Computac, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Lahteenmaki, A (reprint author), Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland.; Lahteenmaki, A (reprint author), Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. EM anne.lahteenmaki@aalto.fi RI Lahteenmaki, Anne/L-5987-2013; Stolyarov, Vladislav/C-5656-2017; Ramakrishnan, Venkatessh/C-8628-2017; Barreiro, Rita Belen/N-5442-2014; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; OI Stolyarov, Vladislav/0000-0001-8151-828X; Ramakrishnan, Venkatessh/0000-0002-9248-086X; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); Academy of Finland [212656, 210338, 121148]; Smithsonian Institution; Academia Sinica; NASA [NNX08AW31G, NNX11A043G]; NSF [AST-0808050, AST-1109911]; NSF; NASA; University of Michigan; Russian Government Programme of Competitive Growth of Kazan Federal University FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. The Metsahovi team acknowledges the support from the Academy of Finland to our observing projects (Nos. 212656, 210338, 121148, and others). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The OVRO 40-m monitoring programme is supported in part by NASA grants NNX08AW31G and NNX11A043G, and NSF grants AST-0808050 and AST-1109911. UMRAO has been supported by a series of grants from the NSF and NASA, and by the University of Michigan. We also acknowledge support through the Russian Government Programme of Competitive Growth of Kazan Federal University. NR 60 TC 0 Z9 0 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A106 DI 10.1051/0004-6361/201527780 PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900011 ER PT J AU Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Benabed, K Bernard, JP Bersanelli, M Bielewicz, P Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Burigana, C Calabrese, E Cardoso, JF Carron, J Chiang, HC Colombo, LPL Comis, B Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F de Bernardis, P de Zotti, G Delabrouille, J Di Valentino, E Dickinson, C Diego, JM Dore, O Douspis, M Ducout, A Dupac, X Dusini, S Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fantaye, Y Finelli, F Forastieri, F Frailis, M Fraisse, AA Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Gerbino, M Ghosh, T Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Gudmundsson, JE Hansen, FK Helou, G Henrot-Versille, S Herranz, D Hivon, E Huang, Z Jaffe, AH Jones, WC Keihanen, E Keskitalo, R Kiiveri, K Kisner, TS Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lamarre, JM Langer, M Lasenby, A Lattanzi, M Lawrence, CR Le Jeune, M Levrier, F Lilje, PB Lilley, M Lindholm, V Lopez-Caniego, M Ma, YZ Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Matarrese, S Mauri, N McEwen, JD Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Moss, A Natoli, P Oxborrow, CA Pagano, L Paoletti, D Patanchon, G Perdereau, O Perotto, L Pettorino, V Piacentini, F Plaszczynski, S Polastri, L Polenta, G Puget, JL Rachen, JP Racine, B Reinecke, M Remazeilles, M Renzi, A Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Ruiz-Granados, B Salvati, L Sandri, M Savelainen, M Scott, D Sirignano, C Sirri, G Soler, JD Spencer, LD Suur-Uski, AS Tauber, JA Tavagnacco, D Tenti, M Toffolatti, L Tomasi, M Tristram, M Trombetti, T Valiviita, J Van Tent, F Vielva, P Villa, F Vittorio, N Wandelt, BD Wehus, IK Zacchei, A Zonca, A AF Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Benabed, K. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Burigana, C. Calabrese, E. Cardoso, J. -F. Carron, J. Chiang, H. C. Colombo, L. P. L. Comis, B. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. de Bernardis, P. de Zotti, G. Delabrouille, J. Di Valentino, E. Dickinson, C. Diego, J. M. Dore, O. Douspis, M. Ducout, A. Dupac, X. Dusini, S. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fantaye, Y. Finelli, F. Forastieri, F. Frailis, M. Fraisse, A. A. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Gerbino, M. Ghosh, T. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Helou, G. Henrot-Versille, S. Herranz, D. Hivon, E. Huang, Z. Jaffe, A. H. Jones, W. C. Keihanen, E. Keskitalo, R. Kiiveri, K. Kisner, T. S. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Levrier, F. Lilje, P. B. Lilley, M. Lindholm, V. Lopez-Caniego, M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Matarrese, S. Mauri, N. McEwen, J. D. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Moss, A. Natoli, P. Oxborrow, C. A. Pagano, L. Paoletti, D. Patanchon, G. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Plaszczynski, S. Polastri, L. Polenta, G. Puget, J. -L. Rachen, J. P. Racine, B. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Ruiz-Granados, B. Salvati, L. Sandri, M. Savelainen, M. Scott, D. Sirignano, C. Sirri, G. Soler, J. D. Spencer, L. D. Suur-Uski, A. -S. Tauber, J. A. Tavagnacco, D. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Wehus, I. K. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLVIII. Disentangling Galactic dust emission and cosmic infrared background anisotropies SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; methods: data analysis; ISM: general; dust, extinction; infrared: diffuse background; large-scale structure of Universe ID INTERNAL LINEAR COMBINATION; COMPONENT SEPARATION; POWER SPECTRUM; MILKY-WAY; MODEL; CMB; MAPS; GALAXIES; SPHERE AB Using the Planck 2015 data release (PR2) temperature maps, we separate Galactic thermal dust emission from cosmic infrared background (CIB) anisotropies. For this purpose, we implement a specifically tailored component-separation method, the so-called generalized needlet internal linear combination (GNILC) method, which uses spatial information (the angular power spectra) to disentangle the Galactic dust emission and CIB anisotropies. We produce significantly improved all-sky maps of Planck thermal dust emission, with reduced CIB contamination, at 353, 545, and 857 GHz. By reducing the CIB contamination of the thermal dust maps, we provide more accurate estimates of the local dust temperature and dust spectral index over the sky with reduced dispersion, especially at high Galactic latitudes above b = +/- 20 degrees. We find that the dust temperature is T = (19.4 +/- 1.3) K and the dust spectral index is beta = 1.6 +/- 0.1 averaged over the whole sky, while T = (19.4 +/- 1.5) K and beta = 1.6 +/- 0.2 on 21% of the sky at high latitudes. Moreover, subtracting the new CIB-removed thermal dust maps from the CMB-removed Planck maps gives access to the CIB anisotropies over 60% of the sky at Galactic latitudes vertical bar b vertical bar > 20 degrees. Because they are a significant improvement over previous Planck products, the GNILC maps are recommended for thermal dust science. The new CIB maps can be regarded as indirect tracers of the dark matter and they are recommended for exploring cross-correlations with lensing and large-scale structure optical surveys. The reconstructed GNILC thermal dust and CIB maps are delivered as Planck products. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Racine, B.; Remazeilles, M.; Rosset, C.] Univ Paris Diderot, Sorbonne Paris Cite,CEA lrfu, APC,CNRS IN2P3, AstroParticule & Cosmol, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn SNC, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, West Ville Campus,Private Bag X54001, Durban 4000, South Africa. [Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto M5S 3H8, ON, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Montier, L.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S N, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Carron, J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FIN-00014 Helsinki, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Matarrese, S.; Sirignano, C.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Dipartimento Fis & Astron, Alma Mater Studiorum,Via Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Forastieri, F.; Lattanzi, M.; Mandolesi, N.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, P Le A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, Rome, Italy. [Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S N,Urbanizac Villafranca, Madrid 28692, Spain. [Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Via F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, FIN-00014 Helsinki, Finland. [de Zotti, G.] INAF, Osservator Astron Padova, Vicolo Osservator 5, I-35122 Padua, Italy. [Polenta, G.] INAF, Osservator Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Tavagnacco, D.; Zacchei, A.] INAF, Osservator Astron Trieste, Via G B Tiepolo 11, I-40127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] INAF, IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF, IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Tenti, M.] INFN, CNAF, Via Berti Pichat 6-2, I-40127 Bologna, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Sirri, G.] INFN, Sez Bologna, Via Berti Pichat 6-2, I-40127 Bologna, Italy. [Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, INFN, Sez Roma 1, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Ducout, A.; Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Ghosh, T.; Kunz, M.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Puget, J. -L.; Remazeilles, M.; Soler, J. D.] Univ Paris 11, Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Lilley, M.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98 Bis Blvd Arago, F-75014 Paris, France. [Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S N, San Cristobal la Laguna 38205, Tenerife, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S N, E-39005 Santander, Spain. [Bartolo, N.; Dusini, S.; Matarrese, S.; Sirignano, C.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Dickinson, C.; Ma, Y. -Z.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, CNRS 1N2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstulls Backen 23, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. [Bouchet, F. R.; Di Valentino, E.; Lilley, M.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR 7095, 98 bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, S-10691 Stockholm, Sweden. [Benabed, K.; Elsner, F.; Hivon, E.; Wandelt, B. D.] Univ Paris 06, UPMC, UMR 7095, 98 bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Montier, L.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Remazeilles, M (reprint author), Univ Paris Diderot, Sorbonne Paris Cite,CEA lrfu, APC,CNRS IN2P3, AstroParticule & Cosmol, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.; Remazeilles, M (reprint author), Univ Paris 11, Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.; Remazeilles, M (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. EM mathieu.remazeilles@manchester.ac.uk RI Colombo, Loris/J-2415-2016; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; OI Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Huang, Zhiqi/0000-0002-1506-1063; Lilje, Per/0000-0003-4324-7794; Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Ballardini, Mario/0000-0003-4481-3559 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); ERC [307209] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package. The research leading to these results has received funding from the ERC Grant No. 307209. NR 52 TC 0 Z9 0 U1 3 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A109 DI 10.1051/0004-6361/201629022 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900075 ER PT J AU Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Benabed, K Bernard, JP Bersanelli, M Bielewicz, P Bonavera, L Bond, JR Borrill, J Bouchet, FR Burigana, C Calabrese, E Cardoso, JF Carron, J Chiang, HC Colombo, LPL Comis, B Contreras, D Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Desert, FX Di Valentino, E Dickinson, C Diego, JM Dore, O Ducout, A Dupac, X Dusini, S Elsner, F Ensslin, TA Eriksen, HK Fantaye, Y Finelli, F Forastieri, F Frailis, M Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Gerbino, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gruppuso, A Gudmundsson, JE Hansen, FK Henrot-Versille, S Herranz, D Hivon, E Huang, Z Jaffe, AH Jones, WC Keihanen, E Keskitalo, R Kiiveri, K Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lamarre, JM Langer, M Lasenby, A Lattanzi, M Lawrence, CR Le Jeune, M Leahy, JP Levrier, F Liguori, M Lilje, PB Lindholm, V Lopez-Caniego, M Ma, YZ Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Maris, M Martin, PG Martinez-Gonzalez, E Matarrese, S Mauri, N McEwen, JD Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Molinari, D Moneti, A Morgante, G Moss, A Natoli, P Pagano, L Paoletti, D Patanchon, G Patrizii, L Perotto, L Pettorino, V Piacentini, F Polastri, L Polenta, G Rachen, JP Racine, B Reinecke, M Remazeilles, M Renzi, A Rocha, G Rosset, C Rossetti, M Roudier, G Rubino-Martin, JA Ruiz-Granados, B Sandri, M Savelainen, M Scott, D Sirignano, C Sirri, G Spencer, LD Suur-Uski, AS Tauber, JA Tavagnacco, D Tenti, M Toffolatti, L Tomasi, M Tristram, M Trombetti, T Valiviita, J Van Tent, F Vielva, P Villa, F Vittorio, N Wandelt, BD Wehus, IK Zacchei, A Zonca, A AF Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Benabed, K. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Calabrese, E. Cardoso, J. -F. Carron, J. Chiang, H. C. Colombo, L. P. L. Comis, B. Contreras, D. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Desert, F. -X. Di Valentino, E. Dickinson, C. Diego, J. M. Dore, O. Ducout, A. Dupac, X. Dusini, S. Elsner, F. Ensslin, T. A. Eriksen, H. K. Fantaye, Y. Finelli, F. Forastieri, F. Frailis, M. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Gerbino, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Henrot-Versille, S. Herranz, D. Hivon, E. Huang, Z. Jaffe, A. H. Jones, W. C. Keihanen, E. Keskitalo, R. Kiiveri, K. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Leahy, J. P. Levrier, F. Liguori, M. Lilje, P. B. Lindholm, V. Lopez-Caniego, M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Matarrese, S. Mauri, N. McEwen, J. D. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Morgante, G. Moss, A. Natoli, P. Pagano, L. Paoletti, D. Patanchon, G. Patrizii, L. Perotto, L. Pettorino, V. Piacentini, F. Polastri, L. Polenta, G. Rachen, J. P. Racine, B. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rosset, C. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Ruiz-Granados, B. Sandri, M. Savelainen, M. Scott, D. Sirignano, C. Sirri, G. Spencer, L. D. Suur-Uski, A. -S. Tauber, J. A. Tavagnacco, D. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Van Tent, F. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Wehus, I. K. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLIX. Parity-violation constraints from polarization data SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; cosmic background radiation; cosmological parameters; methods: data analysis; methods: statistical ID PROBE WMAP OBSERVATIONS; B-MODE POLARIZATION; DISTANT RADIO GALAXIES; COSMOLOGICAL DISTANCES; POWER SPECTRUM; MICROWAVE; BIREFRINGENCE; TEMPERATURE; STATISTICS; ROTATION AB Parity-violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, has an impact on the cosmic microwave background (CMB) anisotropy angular power spectra, producing non-vanishing T-B and E-B correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle alpha, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for alpha that are in agreement within statistical uncertainties and are very stable against several consistency tests. Considering the T-B and E-B information jointly, we find alpha = 0 degrees: 31 +/- 0 degrees.05 (stat:) +/- 0 degrees:28 (syst:) from the harmonic analysis and alpha = 0 degrees.35 +/- 0 degrees.05 (stat :) 0 degrees.28 (syst :) from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the orientation of Planck's polarization-sensitive bolometers. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Racine, B.; Remazeilles, M.; Rosset, C.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite,Observ Paris, APC AstroParticule & Cosmol, CNRS IN2P3,CEA lrfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Ashdown, M.; Curto, A.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Huang, Z.; Martin, P. G.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Calvo Sotelo S N, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Contreras, D.; Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Carron, J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Keihanen, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki, Finland. [Chiang, H. C.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.; Sirignano, C.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Forastieri, F.; Lattanzi, M.; Mandolesi, N.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, Ple Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Villa, F.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. [Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S N,Urbanizac Villafranca Ca, Madrid 28692, Spain. [Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Via F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00014, Finland. [de Zotti, G.] INAF Osservator Astron Padova, Vicolo Osservator 5, I-35122 Padua, Italy. [Polenta, G.] INAF Osservator Astron Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Tavagnacco, D.; Zacchei, A.] INAF Osservator Astron Trieste, Via G B Tiepolo 11, I-40127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Vielva, P.] INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Tenti, M.] INFN CNAF, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Patrizii, L.; Sirri, G.] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Rome Sapienza, INFN, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, INFN, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Desert, F. -X.] IPAG, F-38000 Grenoble, France. [Desert, F. -X.] Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble, IPAG, F-38000 Grenoble, France. [Desert, F. -X.] CNRS, IPAG, F-38000 Grenoble, France. [Ducout, A.; Jaffe, A. H.] Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England. [Aghanim, N.; Aumont, J.; Kunz, M.; Langer, M.; Miville-Deschenes, M. -A.; Remazeilles, M.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98bis blvd Arago, F-75014 Paris, France. [Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S N, Tenerife 38205, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.] CSIC Univ Cantabria, Inst Fis Cantabria, Avda Los Castros S N, Santander 39005, Spain. [Bartolo, N.; Dusini, S.; Liguori, M.; Matarrese, S.; Sirignano, C.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Lawrence, C. R.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Dickinson, C.; Leahy, J. P.; Ma, Y. -Z.; Remazeilles, M.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Curto, A.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91898 Orsay, France. [Coulais, A.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, 61 Ave Observ, F-75014 Paris, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, CNRS IN2P3, Lab Phys Subatom & Cosmol, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Ensslin, T. A.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Bielewicz, P.] Nicholas Copernicus Astron Ctr, Bartycka 18, Warsaw 00716, Poland. [Gerbino, M.; Gudmundsson, J. E.] NORDITA, Nord Inst Theoret Phys, Roslagstulls Backen 23, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Spencer, L. D.] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. [Bouchet, F. R.; Di Valentino, E.] Sorbonne Univ, UPMC, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Gruppuso, A (reprint author), INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy.; Gruppuso, A (reprint author), INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. EM gruppuso@iasfbo.inaf.it RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017; OI Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Huang, Zhiqi/0000-0002-1506-1063; Toffolatti, Luigi/0000-0003-2645-7386; Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Lilje, Per/0000-0003-4324-7794; Ballardini, Mario/0000-0003-4481-3559 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MINECO; JA; RES (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC; PRACE (EU) FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results of this paper have been derived using the HEALPIX package (Gorski et al. 2005). NR 66 TC 0 Z9 0 U1 4 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A110 DI 10.1051/0004-6361/201629018 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900074 ER PT J AU Aghanim, N Ashdown, M Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Battye, R Benabed, K Bernard, JP Bersanelli, M Bielewicz, P Bock, JJ Bonaldi, A Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bucher, M Burigana, C Butler, RC Calabrese, E Cardoso, JF Carron, J Challinor, A Chiang, HC Colombo, LPL Combet, C Comis, B Coulais, A Crill, BP Curto, A Cuttaia, F Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Di Valentino, E Dickinson, C Diego, JM Dore, O Douspis, M Ducout, A Dupac, X Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fantaye, Y Finelli, F Forastieri, F Frailis, M Fraisse, AA Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Gerbino, M Ghosh, T Gonzalez-Nuevo, J Gorski, KM Gratton, S Gruppuso, A Gudmundsson, JE Hansen, FK Helou, G Henrot-Versille, S Herranz, D Hivon, E Huang, Z Ilic, S Jaffe, H Jones, WC Keihanen, E Keskitalo, R Kisner, TS Knox, L Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Langer, M Lasenby, A Lattanzi, M Lawrence, CR Le Jeune, M Leahy, JP Levrier, F Liguori, M Lilje, PB Lopez-Caniego, M Ma, YZ Macias-Perez, JF Maggio, G Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Matarrese, S Mauri, N McEwen, JD Meinhold, PR Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Moss, A Mottet, S Naselsky, P Natoli, P Oxborrow, CA Pagano, L Paoletti, D Partridge, B Patanchon, G Patrizii, L Perdereau, O Perotto, L Pettorino, V Piacentini, F Plaszczynski, S Polastri, L Polenta, G Puget, JL Rachen, JP Racine, B Reinecke, M Remazeilles, M Renzi, A Rocha, G Rossetti, M Roudier, G Rubino-Martin, JA Ruiz-Granados, B Salvati, L Sandri, M Savelainen, M Scott, D Sirri, G Sunyaev, R Suur-Uski, AS Tauber, JA Tenti, M Toffolatti, L Tomasi, M Tristram, M Trombetti, T Valiviita, J Van Tent, F Vibert, L Vielva, P Villa, F Vittorio, N Wandelt, BD Watson, R Wehus, IK White, M Zacchei, A Zonca, A AF Aghanim, N. Ashdown, M. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Battye, R. Benabed, K. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bock, J. J. Bonaldi, A. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bucher, M. Burigana, C. Butler, R. C. Calabrese, E. Cardoso, J. -F. Carron, J. Challinor, A. Chiang, H. C. Colombo, L. P. L. Combet, C. Comis, B. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Di Valentino, E. Dickinson, C. Diego, J. M. Dore, O. Douspis, M. Ducout, A. Dupac, X. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fantaye, Y. Finelli, F. Forastieri, F. Frailis, M. Fraisse, A. A. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Gerbino, M. Ghosh, T. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gruppuso, A. Gudmundsson, J. E. Hansen, F. K. Helou, G. Henrot-Versille, S. Herranz, D. Hivon, E. Huang, Z. Ilic, S. Jaffe, A. H. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Knox, L. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Lawrence, C. R. Le Jeune, M. Leahy, J. P. Levrier, F. Liguori, M. Lilje, P. B. Lopez-Caniego, M. Ma, Y. -Z. Macias-Perez, J. F. Maggio, G. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Matarrese, S. Mauri, N. McEwen, J. D. Meinhold, P. R. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Moss, A. Mottet, S. Naselsky, P. Natoli, P. Oxborrow, C. A. Pagano, L. Paoletti, D. Partridge, B. Patanchon, G. Patrizii, L. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Plaszczynski, S. Polastri, L. Polenta, G. Puget, J. -L. Rachen, J. P. Racine, B. Reinecke, M. Remazeilles, M. Renzi, A. Rocha, G. Rossetti, M. Roudier, G. Rubino-Martin, J. A. Ruiz-Granados, B. Salvati, L. Sandri, M. Savelainen, M. Scott, D. Sirri, G. Sunyaev, R. Suur-Uski, A. -S. Tauber, J. A. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Van Tent, F. Vibert, L. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Watson, R. Wehus, I. K. White, M. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; dark ages, reionization, first stars; cosmic background radiation; space vehicles: instruments; instrumentation: detectors ID PROBE WMAP OBSERVATIONS; POWER SPECTRA; PHOTOMETRIC CALIBRATION; COSMIC REIONIZATION; MODEL; CONSTRAINTS; TEMPERATURE; INSTRUMENT; LUMINOSITY; EMISSION AB This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth tau using, for the first time, the low-multipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain tau from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based tau posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 +/- 0.009. In a companion paper these results are discussed in the context of the best-fit Planck Lambda CDM cosmological model and recent models of reionization. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Le Jeune, M.; Patanchon, G.; Racine, B.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, APC AstroParticule & Cosmol, CNRS IN2P3 CEA Irfu Observ Paris, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd,Muizenberg, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Ilic, S.] Aix Marseille Univ, Ctr Phys Theor, 163 Ave Luminy, F-13288 Marseille, France. [Ashdown, M.; Curto, A.; Lasenby, A.; Lawrence, C. R.] Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ilic, S.; Montier, L.] CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Bock, J. J.; Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA USA. [Challinor, A.] Univ Cambridge, DAMTP, Ctr Theoret Cosmol, Wilberforce Rd, Cambridge CB3 0WA, England. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327,2800 Kgs, Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Univ La Laguna, Dept Astrofis, San Cristobal la Laguna 38206, Tenerife, Spain. [Bonavera, L.; Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S N, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Carron, J.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00560, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 93106 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Alma Mater Studiorum, Dipartmento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, P A Moro 2, I-00133 Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy. [Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, Planck Sci Off, Camino Bajo Castillo,S-N, Madrid 28691, Spain. [Tauber, J. A.] Estec, European Space Agcy, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] INFN, Gran Sasso Sci Inst, Via F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00560, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35131 Padua, Italy. [Polenta, G.] INAF Osservatorio Astronom Roma, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Maggio, G.; Maris, M.; Zacchei, A.] INAF Osservatorio Astronom Trieste, Via GB Tiepolo 11, I-34127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Molinari, D.; Morgante, G.; Paoletti, D.; Rubino-Martin, J. A.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] INAF IASF Bologna, Via Gobetti 101, I-40127 Bologna, Italy. [Bersanelli, M.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy. [Tenti, M.] INFN CNAF, Via Berti Pichat 6-2, I-40127 Bologna, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Gruppuso, A.; Mauri, N.; Paoletti, D.; Patrizii, L.; Sirri, G.] INFN, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Forastieri, F.; Lattanzi, M.; Molinari, D.; Natoli, P.; Polastri, L.] INFN, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Rome Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, Piazzale Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Ducout, A.; Jaffe, A. H.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Aghanim, N.; Aumont, J.; Boulanger, F.; Douspis, M.; Ghosh, T.; Kunz, M.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Puget, J. -L.; Remazeilles, M.; Vibert, L.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Delouis, J. -M.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Mottet, S.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Challinor, A.; Efstathiou, G.; Gratton, S.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rubino-Martin, J. A.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain. [Bartolo, N.; Liguori, M.; Matarrese, S.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Bock, J. J.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Battye, R.; Bonaldi, A.; Davis, R. J.; Dickinson, C.; Leahy, J. P.; Ma, Y. -Z.; Remazeilles, M.; Watson, R.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Ashdown, M.; Challinor, A.; Curto, A.; Gratton, S.; Lasenby, A.; Migliaccio, M.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS IN2P3, LAL, F-91405 Orsay, France. [Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Roudier, G.] CNRS, LERMA, Observ Paris, 61 Ave Observ, F-75000 Paris, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France. [Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Ensslin, T. A.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-1165 Copenhagen, Denmark. [Gerbino, M.; Gudmundsson, J. E.] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sect, Via Bonomea 265, I-34136 Trieste, Italy. [Ma, Y. -Z.] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. [Bouchet, F. R.; Di Valentino, E.; Mottet, S.] UPMC, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Profsoyuznaya Str 84-32, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Calabrese, E.] Univ Oxford, SubDept Astrophys, Oxford OX1 3RH, England. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC, Univ Paris 06, UMR7095, 98bis Blvd Arago, F-75014 Paris, France. [Banday, A. J.; Bernard, J. -P.; Ilic, S.; Montier, L.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Puget, JL (reprint author), Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. EM jean-loup.puget@ias.u-psud.fr RI Gonzalez-Nuevo, Joaquin/I-3562-2014; Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; White, Martin/I-3880-2015; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017 OI Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Ballardini, Mario/0000-0003-4481-3559; Watson, Robert/0000-0002-5873-0124; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Huang, Zhiqi/0000-0002-1506-1063; White, Martin/0000-0001-9912-5070; Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); RES (Spain); MINECO (Spain); CSC (Finland); AoF (Finland); Tekes (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); J.A. (Spain) FX The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, J.A., and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. NR 58 TC 5 Z9 5 U1 3 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A107 DI 10.1051/0004-6361/201628890 PG 52 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900065 ER PT J AU Aghanim, N Alves, MIR Arzoumanian, D Aumont, J Baccigalupi, C Ballardini, M Banday, AJ Barreiro, RB Bartolo, N Basak, S Benabed, K Bernard, JP Bersanelli, M Bielewicz, P Bonavera, L Bond, JR Borrill, J Bouchet, FR Boulanger, F Bracco, A Bucher, M Burigana, C Calabrese, E Cardoso, JF Chiang, HC Colombo, LPL Combet, C Comis, B Couchot, F Coulais, A Crill, BP Curto, A Cuttaia, F Davis, RJ de Bernardis, P de Rosa, A de Zotti, G Delabrouille, J Delouis, JM Di Valentino, E Dickinson, C Diego, JM Dore, O Douspis, M Ducout, A Dupac, X Dusini, S Efstathiou, G Elsner, F Ensslin, TA Eriksen, HK Falgarone, E Fantaye, Y Ferriere, K Finelli, F Frailis, M Fraisse, AA Franceschi, E Frolov, A Galeotta, S Galli, S Ganga, K Genova-Santos, RT Gerbino, M Ghosh, T Gonzalez-Nuevo, J Gorski, KM Gratton, S Gregorio, A Gruppuso, A Gudmundsson, JE Guillet, V Hansen, FK Helou, G Henrot-Versille, S Herranz, D Hivon, E Huang, Z Jaffe, AH Jaffe, TR Jones, WC Keihanen, E Keskitalo, R Kisner, TS Krachmalnicoff, N Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Langer, M Lasenby, A Lattanzi, M Le Jeune, M Levrier, F Liguori, M Lilje, PB Lopez-Caniego, M Lubin, PM Macias-Perez, JF Maggio, G Maino, D Mandolesi, N Mangilli, A Maris, M Martin, PG Martinez-Gonzalez, E Matarrese, S Mauri, N McEwen, JD Melchiorri, A Mennella, A Migliaccio, M Miville-Deschenes, MA Molinari, D Moneti, A Montier, L Morgante, G Moss, A Naselsky, P Natoli, P Neveu, J Norgaard-Nielsen, HU Oppermann, N Oxborrow, CA Pagano, L Paoletti, D Partridge, B Perdereau, O Perotto, L Pettorino, V Piacentini, F Plaszczynski, S Polenta, G Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renzi, A Ristorcelli, I Rocha, G Rossetti, M Roudier, G Ruiz-Granados, B Salvati, L Sandri, M Savelainen, M Scott, D Sirignano, C Soler, JD Suur-Uski, AS Tauber, JA Tavagnacco, D Tenti, M Toffolatti, L Tomasi, M Tristram, M Trombetti, T Valiviita, J Vansyngel, F Van Tent, F Vielva, P Villa, F Wandelt, BD Wehus, IK Zacchei, A Zonca, A AF Aghanim, N. Alves, M. I. R. Arzoumanian, D. Aumont, J. Baccigalupi, C. Ballardini, M. Banday, A. J. Barreiro, R. B. Bartolo, N. Basak, S. Benabed, K. Bernard, J. -P. Bersanelli, M. Bielewicz, P. Bonavera, L. Bond, J. R. Borrill, J. Bouchet, F. R. Boulanger, F. Bracco, A. Bucher, M. Burigana, C. Calabrese, E. Cardoso, J. -F. Chiang, H. C. Colombo, L. P. L. Combet, C. Comis, B. Couchot, F. Coulais, A. Crill, B. P. Curto, A. Cuttaia, F. Davis, R. J. de Bernardis, P. de Rosa, A. de Zotti, G. Delabrouille, J. Delouis, J. -M. Di Valentino, E. Dickinson, C. Diego, J. M. Dore, O. Douspis, M. Ducout, A. Dupac, X. Dusini, S. Efstathiou, G. Elsner, F. Ensslin, T. A. Eriksen, H. K. Falgarone, E. Fantaye, Y. Ferriere, K. Finelli, F. Frailis, M. Fraisse, A. A. Franceschi, E. Frolov, A. Galeotta, S. Galli, S. Ganga, K. Genova-Santos, R. T. Gerbino, M. Ghosh, T. Gonzalez-Nuevo, J. Gorski, K. M. Gratton, S. Gregorio, A. Gruppuso, A. Gudmundsson, J. E. Guillet, V. Hansen, F. K. Helou, G. Henrot-Versille, S. Herranz, D. Hivon, E. Huang, Z. Jaffe, A. H. Jaffe, T. R. Jones, W. C. Keihanen, E. Keskitalo, R. Kisner, T. S. Krachmalnicoff, N. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Langer, M. Lasenby, A. Lattanzi, M. Le Jeune, M. Levrier, F. Liguori, M. Lilje, P. B. Lopez-Caniego, M. Lubin, P. M. Macias-Perez, J. F. Maggio, G. Maino, D. Mandolesi, N. Mangilli, A. Maris, M. Martin, P. G. Martinez-Gonzalez, E. Matarrese, S. Mauri, N. McEwen, J. D. Melchiorri, A. Mennella, A. Migliaccio, M. Miville-Deschenes, M. -A. Molinari, D. Moneti, A. Montier, L. Morgante, G. Moss, A. Naselsky, P. Natoli, P. Neveu, J. Norgaard-Nielsen, H. U. Oppermann, N. Oxborrow, C. A. Pagano, L. Paoletti, D. Partridge, B. Perdereau, O. Perotto, L. Pettorino, V. Piacentini, F. Plaszczynski, S. Polenta, G. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renzi, A. Ristorcelli, I. Rocha, G. Rossetti, M. Roudier, G. Ruiz-Granados, B. Salvati, L. Sandri, M. Savelainen, M. Scott, D. Sirignano, C. Soler, J. D. Suur-Uski, A. -S. Tauber, J. A. Tavagnacco, D. Tenti, M. Toffolatti, L. Tomasi, M. Tristram, M. Trombetti, T. Valiviita, J. Vansyngel, F. Van Tent, F. Vielva, P. Villa, F. Wandelt, B. D. Wehus, I. K. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE magnetohydrodynamics (MHD); polarization; methods: data analysis; dust, extinction; cosmic background radiation; ISM: magnetic fields ID MILKY-WAY; INTERSTELLAR TURBULENCE; SYNCHROTRON EMISSION; GRAIN ALIGNMENT; H I; GAS; GRADIENTS; LOFAR; SCALE; SKY AB Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60 degrees). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (Psi), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l(0); b(0)) = (70 degrees +/- 5 degrees, 24 degrees +/- 5 degrees). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram Psi of has a standard deviation of 12 degrees about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and Psi to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p(0)) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 +/- 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves. C1 [Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Le Jeune, M.; Remazeilles, M.; Roudier, G.] Univ Paris Diderot, Sorbonne Paris Cite, Observ Paris, APC,AstroParticule & Cosmol,CNRS,IN2P3,CEA,Lrfu, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Lahteenmaki, A.] Aalto Univ, Metsahovi Radio Observ, POB 13000, Aalto 00076, Finland. [Lahteenmaki, A.] Dept Radio Sci & Engn, POB 13000, Aalto 00076, Finland. [Kunz, M.] African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa. [Natoli, P.; Polenta, G.] Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy. [Lagache, G.] Aix Marseille Univ, CNRS, LAM, UMR 7326, F-13388 Marseille, France. [Curto, A.; Lasenby, A.] Univ Cambridge, Astrophys Grp, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Chiang, H. C.] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa. [Bond, J. R.; Huang, Z.; Martin, P. G.; Miville-Deschenes, M. -A.; Oppermann, N.] Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Bielewicz, P.; Ferriere, K.; Jaffe, T. R.; Montier, L.; Ristorcelli, I.] IRAP, CNRS, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France. [Crill, B. P.; Dore, O.; Helou, G.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Borrill, J.; Keskitalo, R.] Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, E-28006 Madrid, Spain. [Norgaard-Nielsen, H. U.; Oxborrow, C. A.] Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Genova-Santos, R. T.; Rebolo, R.] ULL, Dept Astrofis, Tenerife 38206, Spain. [Gonzalez-Nuevo, J.; Toffolatti, L.] Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada. [Colombo, L. P. L.] Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Elsner, F.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Keihanen, E.; Kurki-Suonio, H.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2A, Helsinki 00014, Finland. [Chiang, H. C.; Fraisse, A. A.; Gudmundsson, J. E.; Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL USA. [Bartolo, N.; Liguori, M.; Matarrese, S.; Sirignano, C.] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy. [Ballardini, M.] Univ Bologna, Alma Mater Studiorum, Dipartimento Fis & Astron, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Burigana, C.; Lattanzi, M.; Mandolesi, N.; Molinari, D.; Natoli, P.; Trombetti, T.] Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy. [de Bernardis, P.; Gerbino, M.; Melchiorri, A.; Pagano, L.; Piacentini, F.; Salvati, L.] Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy. [Bersanelli, M.; Krachmalnicoff, N.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy. [Gregorio, A.; Tavagnacco, D.] Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy. [Fantaye, Y.; Renzi, A.] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Dupac, X.; Lopez-Caniego, M.] European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo S-N, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands. [Matarrese, S.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy. [Pettorino, V.] HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany. [Pettorino, V.] Heidelberg Univ, Dept Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Partridge, B.] Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Savelainen, M.; Suur-Uski, A. -S.; Valiviita, J.] Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu, FIN-00014 Helsinki, Finland. [de Zotti, G.] Osserv Astron Padova, INAF, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Polenta, G.] Osserv Astron Roma, INAF, Via Frascati 33, I-00040 Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maggio, G.; Maris, M.; Tavagnacco, D.; Zacchei, A.] Osserv Astron Trieste, INAF, Via GB Tiepolo 11, I-40127 Trieste, Italy. [Ballardini, M.; Burigana, C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Molinari, D.; Morgante, G.; Paoletti, D.; Sandri, M.; Toffolatti, L.; Trombetti, T.; Villa, F.] IASF Bologna, INAF, Via Gobetti 101, I-40129 Bologna, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] IASF Milano, INAF, Via E Bassini 15, I-20133 Milan, Italy. [Tenti, M.] CNAF, Ist Nazl Fis Nucl, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Ballardini, M.; Burigana, C.; Finelli, F.; Mauri, N.; Paoletti, D.] Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. [Lattanzi, M.; Molinari, D.; Natoli, P.] Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Melchiorri, A.; Pagano, L.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Ple Aldo Moro 2, I-00185 Rome, Italy. [Renzi, A.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy. [Gregorio, A.] Natl Inst Nucl Phys, Ist Nazl Fis Nucl, Via Valerio 2, I-34127 Trieste, Italy. [Ducout, A.; Jaffe, A. H.] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Boulanger, F.; Bracco, A.; Douspis, M.; Ghosh, T.; Guillet, V.; Kunz, M.; Lagache, G.; Langer, M.; Mangilli, A.; Miville-Deschenes, M. -A.; Remazeilles, M.; Soler, J. D.; Vansyngel, F.] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Delouis, J. -M.; Di Valentino, E.; Ducout, A.; Elsner, F.; Hivon, E.; Moneti, A.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France. [Efstathiou, G.; Gratton, S.; Migliaccio, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.; Wehus, I. K.] Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway. [Genova-Santos, R. T.; Rebolo, R.] Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain. [Barreiro, R. B.; Bonavera, L.; Curto, A.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, Santander 39005, Spain. [Bartolo, N.; Dusini, S.; Liguori, M.; Matarrese, S.; Sirignano, C.] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Rocha, G.; Roudier, G.; Wehus, I. K.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 31109 USA. [Davis, R. J.; Dickinson, C.; Remazeilles, M.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England. [Galli, S.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Curto, A.; Gratton, S.; Lasenby, A.; Migliaccio, M.; Neveu, J.] Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England. [Couchot, F.; Henrot-Versille, S.; Mangilli, A.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France. [Coulais, A.; Falgarone, E.; Lamarre, J. -M.; Levrier, F.; Neveu, J.; Roudier, G.] Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France. [Arzoumanian, D.; Bracco, A.; Soler, J. D.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris, France. [Cardoso, J. -F.] Telecom ParisTech, 46 Rue Barrault, F-75634 Paris, France. [Combet, C.; Comis, B.; Macias-Perez, J. F.; Perotto, L.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France. [Van Tent, F.] Univ Paris Sud 11, Phys Theor Lab, Batiment 210, F-91405 Orsay, France. [Van Tent, F.] CNRS, Batiment 210, F-91405 Orsay, France. [Kisner, T. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Ensslin, T. A.; Rachen, J. P.; Reinecke, M.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [McEwen, J. D.] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Bielewicz, P.] Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Naselsky, P.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Gerbino, M.; Gudmundsson, J. E.] NORDITA, Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden. [Baccigalupi, C.; Basak, S.; Bielewicz, P.; de Zotti, G.] SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy. [Moss, A.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Frolov, A.] Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada. [Bouchet, F. R.; Di Valentino, E.] Sorbonne Univ UPMC, UMR 7095, Inst Astrophys Paris, 98bis Blvd Arago, F-75014 Paris, France. [Borrill, J.] Univ Calif, Space Sci Lab, Berkeley, CA 94720 USA. [Calabrese, E.] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Gerbino, M.; Gudmundsson, J. E.] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden. [Benabed, K.; Delouis, J. -M.; Elsner, F.; Hivon, E.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France. [Alves, M. I. R.; Banday, A. J.; Bernard, J. -P.; Ferriere, K.; Jaffe, T. R.; Montier, L.; Ristorcelli, I.] Univ Toulouse, UPSOMP, IRAP, F-31028 Toulouse 4, France. [Ruiz-Granados, B.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada 18071, Spain. [Gorski, K. M.] Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland. RP Bracco, A (reprint author), Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France.; Bracco, A (reprint author), Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU,Serv Astrophys,CEA,DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. EM andrea.bracco@cea.fr RI Herranz, Diego/K-9143-2014; Colombo, Loris/J-2415-2016; Lahteenmaki, Anne/L-5987-2013; Ruiz-Granados, Beatriz/K-2798-2014; Gerbino, Martina/E-4029-2017; Barreiro, Rita Belen/N-5442-2014; Mauri, Nicoletta/B-8712-2017; bonavera, laura/E-9368-2017; Gonzalez-Nuevo, Joaquin/I-3562-2014 OI Toffolatti, Luigi/0000-0003-2645-7386; Lilje, Per/0000-0003-4324-7794; Ballardini, Mario/0000-0003-4481-3559; Herranz, Diego/0000-0003-4540-1417; Colombo, Loris/0000-0003-4572-7732; Valiviita, Jussi/0000-0001-6225-3693; Kurki-Suonio, Hannu/0000-0002-4618-3063; Villa, Fabrizio/0000-0003-1798-861X; Hivon, Eric/0000-0003-1880-2733; Gerbino, Martina/0000-0002-3538-1283; Barreiro, Rita Belen/0000-0002-6139-4272; bonavera, laura/0000-0001-8039-3876; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI; CNR; INAF (Italy); NASA; DoE (USA); STFC; UKSA (UK); CSIC; MINECO; JA; RES (Spain); Tekes; AoF; CSC (Finland); DLR; MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC; PRACE (EU); European Research Council under the European Union's Seventh Framework Programme/ERC [267934] FX The Planck Collaboration acknowledges the support of: ESA; CNES, and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planckcollaboration. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 267934. NR 89 TC 0 Z9 0 U1 2 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD DEC PY 2016 VL 596 AR A105 DI 10.1051/0004-6361/201628636 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MX UT WOS:000390797900052 ER PT J AU Yan, ZF Liu, CX Todd-Brown, KE Liu, YY Bond-Lamberty, B Bailey, VL AF Yan, Zhifeng Liu, Chongxuan Todd-Brown, Katherine E. Liu, Yuanyuan Bond-Lamberty, Ben Bailey, Vanessa L. TI Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils SO BIOGEOCHEMISTRY LA English DT Article DE Pore-scale; Process model; Heterotrophic respiration; Moisture; Soil structure; Clay content ID DIFFERENTLY TEXTURED SOILS; DISSOLVED ORGANIC-CARBON; MICROBIAL ACTIVITY; DIFFUSION-COEFFICIENTS; POROUS-MEDIA; WATER; MATTER; MODELS; TEMPERATURE; GAS AB The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils. The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75, which is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geophysical, and biochemical factors. C1 [Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.; Liu, Yuanyuan; Bailey, Vanessa L.] Pacific Northwest Natl Lab, 3335 Innovat Blvd, Richland, WA 99354 USA. [Liu, Chongxuan] South Univ Sci & Technol China, Sch Environm Sci & Engn, Shenzhen, Peoples R China. [Bond-Lamberty, Ben] Univ Maryland, Joint Global Climate Change Res Inst, Pacific Northwest Natl Lab, College Pk, MD 20740 USA. RP Liu, CX (reprint author), Pacific Northwest Natl Lab, 3335 Innovat Blvd, Richland, WA 99354 USA. EM Chongxuan.liu@pnnl.gov RI Bond-Lamberty, Ben/C-6058-2008; Liu, Chongxuan/C-5580-2009 OI Bond-Lamberty, Ben/0000-0001-9525-4633; FU US Department of Energy (DOE) Biological and Environmental Research (BER) Division through the Terrestrial Ecosystem Science (TES) program [61512]; Linus Pauling Distinguished Postdoctoral Fellowship, a Laboratory Directed Research program at PNNL; [DE-AC06-76RLO 1830] FX This research was supported by the US Department of Energy (DOE) Biological and Environmental Research (BER) Division through the Terrestrial Ecosystem Science (TES) program (Grant Number 61512). Part of the research was performed at Environmental Molecular Science Laboratory (EMSL), a DOE National user facility located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute under subcontract DE-AC06-76RLO 1830. Dr. Todd-Brown is grateful for support given by the Linus Pauling Distinguished Postdoctoral Fellowship, a Laboratory Directed Research program at PNNL. We thank the associate editor and two anonymous reviewers whose insightful comments improved the manuscript substantially. NR 61 TC 0 Z9 0 U1 13 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 EI 1573-515X J9 BIOGEOCHEMISTRY JI Biogeochemistry PD DEC PY 2016 VL 131 IS 1-2 BP 121 EP 134 DI 10.1007/s10533-016-0270-0 PG 14 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA EH0AC UT WOS:000391423500008 ER PT J AU Xu, TF Hou, ZY Jia, XF Spycher, N Jiang, ZJ Feng, B Na, J Yuan, YL AF Xu, Tianfu Hou, Zhaoyun Jia, Xiaofeng Spycher, Nicolas Jiang, Zhenjiao Feng, Bo Na, Jin Yuan, Yilong TI Classical and integrated multicomponent geothermometry at the Tengchong geothermal field, Southwestern China SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Reservoir temperature; Quartz geothermometer; Integrated multicomponent geothermometry; Numerical optimization; Tengchong geothermal field ID EQUILIBRIA; WATERS AB To reconstruct deep fluid chemical composition and increase the confidence in estimated reservoir temperatures, a more integral geothermometry method was compared to other classical geothermometers. Here, we apply the integrated multicomponent geothermometry (IMG) method using the GeoT code to estimate reservoir temperatures at the Tengchong geothermal field in Southwestern China. Results show reservoir temperatures calculated using the quartz geothermometer are closest to those estimated with the IMG method. The concentrations of Al and Mg, as well as selected minerals for geothermometry computations, are key factors for successfully using the IMG. Using the IMG method together with classical geothermometers can significantly increase confidence in reservoir temperature estimations. The methods presented and simulation program used here may be useful for analysis of other geothermal fields under similar conditions. C1 [Xu, Tianfu; Hou, Zhaoyun; Jiang, Zhenjiao; Feng, Bo; Na, Jin; Yuan, Yilong] Jilin Univ, Minist Educ, Key Lab Groundwater Resources & Environm, Changchun 130021, Peoples R China. [Jia, Xiaofeng] China Geol Survey, Ctr Hydrogeol & Environm Geol Survey, Baoding 071051, Peoples R China. [Spycher, Nicolas] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Feng, B (reprint author), Jilin Univ, Minist Educ, Key Lab Groundwater Resources & Environm, Changchun 130021, Peoples R China. EM fengbo234@126.com RI Spycher, Nicolas/E-6899-2010 FU National Natural Science Foundation of China [41572215, 41402205]; China Geological Survey, Geothermal Resources Investigation in Xining-Guinan of Qinghai Province [12120115046201, 121201012000150011] FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 41572215 and 41402205) and the China Geological Survey, Geothermal Resources Investigation in Xining-Guinan of Qinghai Province (Grant Nos. 12120115046201 and 121201012000150011). NR 24 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 EI 1866-6299 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD DEC PY 2016 VL 75 IS 24 AR 1502 DI 10.1007/s12665-016-6298-6 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA EG9LB UT WOS:000391379100011 ER PT J AU Xue, Y Chang, FL Zhang, D Chen, YK AF Xue, Yaru Chang, Fanglan Zhang, Dong Chen, Yangkang TI Simultaneous Sources Separation via an Iterative Rank-Increasing Method SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Deblending; rank increasing (RI); rank reduction (RR); simultaneous sources separation; singular value decomposition (SVD) ID RANDOM NOISE ATTENUATION; SHAPING REGULARIZATION; DOMAIN; TFPF AB Simultaneous sources acquisition attracts intensive attention from both academia and industry due to its greatly improved efficiency in acquiring high-density seismic data. Unfortunately, its merits are compromised by the strong interference noise between adjacent shots. In this letter, we propose a stepwise rank-increasing (RI) method to estimate the crosstalk noise in simultaneous sources acquisition. The proposed algorithm assumes that an ideal common offset gather (COG) can be represented via a low-rank matrix in the time-space domain. The coherent signals are estimated from low-rank decomposition and transformed to the crosstalk noise by employing a priori information about random dithering code, and then the blending noise is subtracted from the blended data. By increasing the rank of coherent signals step-by-step, the crosstalk noise can be gradually estimated with high accuracy. In this letter, singular value decomposition is utilized to increase the rank of COG data. Applications on synthetic and field data sets demonstrate the better performance of the proposed RI method not only by more effectively suppressing noise but also by accelerating the convergence rate. C1 [Xue, Yaru; Chang, Fanglan; Zhang, Dong] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102200, Peoples R China. [Chen, Yangkang] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78713 USA. [Chen, Yangkang] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Xue, Y (reprint author), China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102200, Peoples R China. EM xueyaru@cup.edu.cn; chenyk2016@gmail.com FU National Natural Science Foundation of China [41204095]; Science Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry FX This work was supported in part by the National Natural Science Foundation of China under Grant 41204095 and in part by the Science Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry. NR 17 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD DEC PY 2016 VL 13 IS 12 BP 1915 EP 1919 DI 10.1109/LGRS.2016.2617338 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA EG8HZ UT WOS:000391298500033 ER PT J AU Venkatakrishnan, SV Donatelli, J Kumar, D Sarje, A Sinha, SK Li, XS Hexemer, A AF Venkatakrishnan, S. V. Donatelli, Jeffrey Kumar, Dinesh Sarje, Abhinav Sinha, Sunil K. Li, Xiaoye S. Hexemer, Alexander TI A multi-slice simulation algorithm for grazing-incidence small-angle X-ray scattering SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE grazing-incidence small-angle X-ray scattering; GISAXS; distorted-wave Born approximation; multi-slice algorithm ID NEUTRON-SCATTERING; SURFACE; FILMS AB Grazing-incidence small-angle X-ray scattering (GISAXS) is an important technique in the characterization of samples at the nanometre scale. A key aspect of GISAXS data analysis is the accurate simulation of samples to match the measurement. The distorted-wave Born approximation (DWBA) is a widely used model for the simulation of GISAXS patterns. For certain classes of sample such as nanostructures embedded in thin films, where the electric field intensity variation is significant relative to the size of the structures, a multi-slice DWBA theory is more accurate than the conventional DWBA method. However, simulating complex structures in the multi-slice setting is challenging and the algorithms typically used are designed on a case-by-case basis depending on the structure to be simulated. In this paper, an accurate algorithm for GISAXS simulations based on the multi-slice DWBA theory is presented. In particular, fundamental properties of the Fourier transform have been utilized to develop an algorithm that accurately computes the average refractive index profile as a function of depth and the Fourier transform of the portion of the sample within a given slice, which are key quantities required for the multi-slice DWBA simulation. The results from this method are compared with the traditionally used approximations, demonstrating that the proposed algorithm can produce more accurate results. Furthermore, this algorithm is general with respect to the sample structure, and does not require any sample-specific approximations to perform the simulations. C1 [Venkatakrishnan, S. V.; Kumar, Dinesh; Hexemer, Alexander] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Donatelli, Jeffrey; Sarje, Abhinav; Li, Xiaoye S.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA USA. [Sinha, Sunil K.] Univ Calif San Diego, Dept Phys, San Diego, CA 92103 USA. RP Hexemer, A (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM ahexemer@lbl.gov FU AH's Early Career Award from the US Department of Energy (DoE); Office of Science, Office of Basic Energy Sciences, US DoE [DE-AC02-05CH11231]; Center for Advanced Mathematics for Energy Research Applications (CAMERA); Office of Basic Energy Sciences, US DoE [DE-SC0003678] FX SVV and AH were supported by AH's Early Career Award from the US Department of Energy (DoE). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, US DoE, under contract No. DE-AC02-05CH11231. This work was partially supported by the Center for Advanced Mathematics for Energy Research Applications (CAMERA). SKS's work at UCSD was supported by the Office of Basic Energy Sciences, US DoE, under grant No. DE-SC0003678. We thank Yi Yang and Jingjin Song, Department of Physics, University of California San Diego, for helpful discussions. NR 17 TC 1 Z9 1 U1 3 U2 3 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2016 VL 49 BP 1876 EP 1884 DI 10.1107/S1600576716013273 PN 6 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EG6ZW UT WOS:000391195900003 ER PT J AU Bahadur, J Medina, CR He, LL Melnichenko, YB Rupp, JA Blach, TP Mildner, DFR AF Bahadur, Jitendra Medina, Cristian R. He, Lilin Melnichenko, Yuri B. Rupp, John A. Blach, Tomasz P. Mildner, David F. R. TI Determination of closed porosity in rocks by small-angle neutron scattering SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE small-angle X-ray scattering; SANS; ultra-small-angle X-ray scattering; USANS; rock; CO2 sequestration; porosity ID X-RAY-SCATTERING; CARBON-DIOXIDE; PORE STRUCTURE; SEDIMENTARY BASINS; GAS-ADSORPTION; SURFACE-AREA; COAL; WATER; STORAGE; SHALE AB Small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) have been used to study a carbonate rock from a deep saline aquifer that is a potential candidate as a storage reservoir for CO2 sequestration. A new methodology is developed for estimating the fraction of accessible and inaccessible pore volume using SANS/USANS measurements. This method does not require the achievement of zero average contrast for the calculation of accessible and inaccessible pore volume fraction. The scattering intensity at high Q increases with increasing CO2 pressure, in contrast with the low-Q behaviour where the intensity decreases with increasing pressure. Data treatment for high-Q scattering at different pressures of CO2 is also introduced to explain this anomalous behaviour. The analysis shows that a significant proportion of the pore system consists of micropores (< 20 angstrom) and that the majority (80%) of these micropores remain inaccessible to CO2 at reservoir pressures. C1 [Bahadur, Jitendra] Bhabha Atom Res Ctr, Solid State Phys Div, Bombay 400085, Maharashtra, India. [Medina, Cristian R.; Rupp, John A.] Indiana Univ, Indiana Geol Survey, Bloomington, IN 47405 USA. [He, Lilin; Melnichenko, Yuri B.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Blach, Tomasz P.] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld 4000, Australia. [Mildner, David F. R.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Bahadur, J (reprint author), Bhabha Atom Res Ctr, Solid State Phys Div, Bombay 400085, Maharashtra, India. EM jbahadur@barc.gov.in OI He, Lilin/0000-0002-9560-8101 FU Laboratory Directed Research and Development Program; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (DOE); National Science Foundation [DMR-0944772]; Indiana Geological Survey from Battelle Memorial Institute under a DOE contract for the Midwest Regional Carbon Sequestration Partnership (MRCSP); Central Analytical Research Facility; Science and Engineering Faculty of the Queensland University of Technology FX The research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Laboratory Directed Research and Development Program and the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy (DOE). The USANS measurements at the National Institute of Standards and Technology were supported in part by the National Science Foundation under agreement No. DMR-0944772. This work was partially supported by a subcontract to the Indiana Geological Survey from Battelle Memorial Institute under a DOE contract for the Midwest Regional Carbon Sequestration Partnership (MRCSP). TPB thanks the Central Analytical Research Facility and the Science and Engineering Faculty of the Queensland University of Technology for funding travel to ORNL and NIST. We dedicate this paper to the memory of Yuri Melnichenko, recognizing his achievements in the development of SANS techniques for investigating the petrophysical characteristics of earth materials. NR 45 TC 0 Z9 0 U1 7 U2 7 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2016 VL 49 BP 2021 EP 2030 DI 10.1107/S1600576716014904 PN 6 PG 10 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EG6ZW UT WOS:000391195900017 ER PT J AU Bruno, AE Soares, AS Owen, RL Snell, EH AF Bruno, Andrew E. Soares, Alexei S. Owen, Robin L. Snell, Edward H. TI The use of haptic interfaces and web services in crystallography: an application for a 'screen to beam' interface SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE haptic interfaces; crystallization; X-ray data collection; automation; crystal screening; in situ diffraction ID MACROMOLECULAR CRYSTALLOGRAPHY; CRYSTALLIZATION; ICE AB Haptic interfaces have become common in consumer electronics. They enable easy interaction and information entry without the use of a mouse or keyboard. The work presented here illustrates the application of a haptic interface to crystallization screening in order to provide a natural means for visualizing and selecting results. By linking this to a cloud-based database and web-based application program interface, the same application shifts the approach from 'point and click' to 'touch and share', where results can be selected, annotated and discussed collaboratively. In the crystallographic application, given a suitable crystallization plate, beamline and robotic end effector, the resulting information can be used to close the loop between screening and X-ray analysis, allowing a direct and efficient 'screen to beam' approach. The application is not limited to the area of crystallization screening; 'touch and share' can be used by any information-rich scientific analysis and geographically distributed collaboration. C1 [Bruno, Andrew E.] SUNY Buffalo, Ctr Computat Res, Buffalo, NY 14203 USA. [Soares, Alexei S.] Brookhaven Natl Lab, Photon Sci Directorate, POB 5000, Upton, NY 11973 USA. [Owen, Robin L.] Diamond Light Source, Harwell Sci & Innovat Campus, Didcot OX11 ODE, Oxon, England. [Snell, Edward H.] Hauptman Woodward Med Res Inst, 700 Ellicott St, Buffalo, NY 14203 USA. [Snell, Edward H.] SUNY Buffalo, Dept Struct Biol, 700 Ellicott St, Buffalo, NY 14203 USA. RP Snell, EH (reprint author), Hauptman Woodward Med Res Inst, 700 Ellicott St, Buffalo, NY 14203 USA.; Snell, EH (reprint author), SUNY Buffalo, Dept Struct Biol, 700 Ellicott St, Buffalo, NY 14203 USA. EM esnell@hwi.buffalo.edu FU NIH [1R01GM088396] FX This work was partially supported by NIH grant No. 1R01GM088396. In addition to the work carried out at the NSLS, the authors would like to thank Diamond Light Source for beamtime and the staff of beamline I24 for assistance. Joseph Luft and the staff of the High-Throughput Crystallization Screening Center are thanked for the use of one of their lysozyme control plates. Rick Roberts is thanked for his input to the work. NR 17 TC 0 Z9 0 U1 1 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2016 VL 49 BP 2082 EP 2090 DI 10.1107/S160057671601431X PN 6 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EG6ZW UT WOS:000391195900024 PM 27980513 ER PT J AU Adlmann, FA Palsson, GK Bilheux, JC Ankner, JF Gutfreund, P Kawecki, M Wolff, M AF Adlmann, F. A. Palsson, G. K. Bilheux, J. C. Ankner, J. F. Gutfreund, P. Kawecki, M. Wolff, M. TI Overlataren: a fast way to transfer and orthogonalize two-dimensional off-specular reflectivity data SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE off-specular scattering; neutron reflectometry; interfaces; surfaces ID X-RAY-SCATTERING; MAGNETIC MULTILAYERS; NEUTRON REFLECTIVITY; THIN-FILMS; COPOLYMER FILMS; SURFACE; TEMPERATURE; DIFFRACTION; MEMBRANES; PHASE AB Reflectivity measurements offer unique opportunities for the study of surfaces and interfaces, and specular reflectometry has become a standard tool in materials science to resolve structures normal to the surface of a thin film. Off-specular scattering, which probes lateral structures, is more difficult to analyse, because the Fourier space being probed is highly anisotropic and the scattering pattern is truncated by the interface. As a result, scattering patterns collected with (especially time-of-flight) neutron reflectometers are difficult to transform into reciprocal space for comparison with model calculations. A program package is presented for a generic two-dimensional transformation of reflectometry data into q space and back. The data are represented on an orthogonal grid, allowing cuts along directions relevant for theoretical modelling. This treatment includes background subtraction as well as a full characterization of the resolution function. The method is optimized for computational performance using repeatable operations and standardized instrument settings. C1 [Adlmann, F. A.; Palsson, G. K.; Kawecki, M.; Wolff, M.] Uppsala Univ, Dept Phys & Astron, Div Mat Phys, Box 516, S-75120 Uppsala, Sweden. [Palsson, G. K.; Gutfreund, P.] Inst Laue Langevin, BP 156, F-38042 Grenoble, France. [Bilheux, J. C.; Ankner, J. F.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN USA. RP Adlmann, FA (reprint author), Uppsala Univ, Dept Phys & Astron, Div Mat Phys, Box 516, S-75120 Uppsala, Sweden. EM franz.adlmann@physics.uu.se FU Swedish Research Council [C0511501]; STINT [IG-2011-2067]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The authors acknowledge the Swedish Research Council (project grant C0511501) and STINT (contract No. IG-2011-2067) for financial support. This research at the Spallation Neutron Source of the ORNL was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors express their gratitude to the Large Scale Structures group at ILL for the good ongoing partnership. Our deep gratitude is expressed towards A. Schebetov from the Petersburg Nuclear Physics Institute and A. Vorobiev from Uppsala University who provided the sample data for the SuperADAM section. NR 43 TC 0 Z9 0 U1 3 U2 3 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2016 VL 49 BP 2091 EP 2099 DI 10.1107/S1600576716014382 PN 6 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EG6ZW UT WOS:000391195900025 ER PT J AU Xie, R Ilavsky, J Huang, HF Zhou, XL Yang, C Wang, YZ Xu, HJ AF Xie, R. Ilavsky, J. Huang, H. F. Zhou, X. L. Yang, C. Wang, Y. Z. Xu, H. J. TI Dispersed SiC nanoparticles in Ni observed by ultra-small-angle X-ray scattering SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE ultra-small-angle X-ray scattering (USAXS); nanoparticle-reinforced metals; nuclear materials; Ni-SiC ID ADVANCED PHOTON SOURCE; BEHAVIOR; COMPOSITE; ALLOYS; PHASE AB A metal-ceramic composite, nickel reinforced with SiC nanoparticles, was synthesized and characterized for its potential application in next-generation molten salt nuclear reactors. Synchrotron ultra-small-angle X-ray scattering (USAXS) measurements were conducted on the composite. The size distribution and number density of the SiC nanoparticles in the material were obtained through data modelling. Scanning and transmission electron microscopy characterization were performed to substantiate the results of the USAXS measurements. Tensile tests were performed on the samples to measure the change in their yield strength after doping with the nanoparticles. The average interparticle distance was calculated from the USAXS results and is related to the increased yield strength of the composite. C1 [Xie, R.; Huang, H. F.; Zhou, X. L.; Yang, C.; Xu, H. J.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Ilavsky, J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Zhou, X. L.] ShanghaiTech Univ, Shanghai 201210, Peoples R China. [Wang, Y. Z.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China. RP Xie, R (reprint author), Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. EM xieruobing@sinap.ac.cn OI Xie, Ruobing/0000-0003-0266-9122 FU National Natural Science Foundation of China [11505273]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDA02000000]; Knowledge Innovation Program of the Chinese Academy of Sciences [Y45501A031]; DOE Office of Science [DE-AC02-06CH11357] FX This work was supported by the National Natural Science Foundation of China (grant No. 11505273), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant No. XDA02000000) and the Knowledge Innovation Program of the Chinese Academy of Sciences (grant No. Y45501A031). This research used the resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract No. DE-AC02-06CH11357. The authors also appreciate the beam time provided by beamline 16B of the Shanghai Synchrotron Radiation Facility for the preliminary measurements. NR 23 TC 0 Z9 0 U1 1 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2016 VL 49 BP 2155 EP 2160 DI 10.1107/S1600576716015090 PN 6 PG 6 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EG6ZW UT WOS:000391195900032 ER PT J AU von Gundlach, AR Garamus, VM Willey, TM Ilavsky, J Hilpert, K Rosenhahn, A AF von Gundlach, A. R. Garamus, V. M. Willey, T. M. Ilavsky, J. Hilpert, K. Rosenhahn, A. TI Use of small-angle X-ray scattering to resolve intracellular structure changes of Escherichia coli cells induced by antibiotic treatment SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE Escherichia coli ultrastructure; antibiotics; small-angle X-ray scattering; SAXS; ultra-small-angle X-ray scattering; USAXS; transmission electron microscopy; TEM ID ADVANCED PHOTON SOURCE; RNA-POLYMERASE; ELECTRON-MICROSCOPY; TRANSCRIPTION; ORGANIZATION; RIBOSOMES; SAXS; TRANSLATION; TRANSERTION; BACTERIA AB The application of small-angle X-ray scattering (SAXS) to whole Escherichia coli cells is challenging owing to the variety of internal constituents. To resolve their contributions, the outer shape was captured by ultra-small-angle X-ray scattering and combined with the internal structure resolved by SAXS. Building on these data, a model for the major structural components of E. coli was developed. It was possible to deduce information on the occupied volume, occurrence and average size of the most important intracellular constituents: ribosomes, DNA and proteins. E. coli was studied after treatment with three different antibiotic agents (chloramphenicol, tetracycline and rifampicin) and the impact on the intracellular constituents was monitored. C1 [von Gundlach, A. R.; Rosenhahn, A.] Ruhr Univ Bochum, Analyt Chem Biointerfaces, Univ Str 150, D-44780 Bochum, Germany. [Garamus, V. M.] Zentrum Mat & Kustenforsch GmbH, Helmholtz Zentrum Geesthacht, Max Planck Str 1, D-21502 Geesthacht, Germany. [Willey, T. M.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Ilavsky, J.] Argonne Natl Lab, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA. [Hilpert, K.] St Georges Univ London, Inst Infect & Immun, Cranmer Terrace, London SW17 0RE, England. RP von Gundlach, AR (reprint author), Ruhr Univ Bochum, Analyt Chem Biointerfaces, Univ Str 150, D-44780 Bochum, Germany. EM andreas.vongundlach@rub.de RI Willey, Trevor/A-8778-2011 OI Willey, Trevor/0000-0002-9667-8830 NR 42 TC 1 Z9 1 U1 4 U2 4 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2016 VL 49 BP 2210 EP 2216 DI 10.1107/S1600576716018562 PN 6 PG 7 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EG6ZW UT WOS:000391195900037 PM 27980516 ER PT J AU Stiers, KM Lee, CB Nix, JC Tanner, JJ Beamer, LJ AF Stiers, Kyle M. Lee, Christopher B. Nix, Jay C. Tanner, John J. Beamer, Lesa J. TI Synchrotron-based macromolecular crystallography module for an undergraduate biochemistry laboratory course SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE undergraduate education; macromolecular crystallography; synchrotron sources; remote data collection ID HISTIDINE ACID-PHOSPHATASE; FRANCISELLA-TULARENSIS; CRYSTAL-STRUCTURES; BEAMLINES; EDUCATION; TUTORIAL; STUDENTS; SCIENCE; SYSTEM; TOOLS AB This paper describes the introduction of synchrotron-based macromolecular crystallography (MX) into an undergraduate laboratory class. An introductory 2 week experimental module on MX, consisting of four laboratory sessions and two classroom lectures, was incorporated into a senior-level biochemistry class focused on a survey of biochemical techniques, including the experimental characterization of proteins. Students purified recombinant protein samples, set up crystallization plates and flash-cooled crystals for shipping to a synchrotron. Students then collected X-ray diffraction data sets from their crystals via the remote interface of the Molecular Biology Consortium beamline (4.2.2) at the Advanced Light Source in Berkeley, CA, USA. Processed diffraction data sets were transferred back to the laboratory and used in conjunction with partial protein models provided to the students for refinement and model building. The laboratory component was supplemented by up to 2 h of lectures by faculty with expertise in MX. This module can be easily adapted for implementation into other similar undergraduate classes, assuming the availability of local crystallographic expertise and access to remote data collection at a synchrotron source. C1 [Stiers, Kyle M.; Lee, Christopher B.; Tanner, John J.; Beamer, Lesa J.] Univ Missouri, Biochem Dept, 117 Schweitzer Hall, Columbia, MO 65211 USA. [Nix, Jay C.] Lawrence Berkeley Natl Lab, Mol Biol Consortium, Berkeley, CA 94720 USA. RP Tanner, JJ; Beamer, LJ (reprint author), Univ Missouri, Biochem Dept, 117 Schweitzer Hall, Columbia, MO 65211 USA. EM tannerjj@missouri.edu; beamerl@missouri.edu FU NIH from NIGMS [T32 GM008396-26]; National Science Foundation [CHE 1506206]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; [MCB-0918389] FX We thank the University of Missouri, including the Department of Biochemistry and MU Structural Biology Core, for ongoing support of institutional membership in the Molecular Biology Consortium of beamline 4.2.2 at the ALS. We also thank Abigail Graham for assistance with pre-testing crystallization conditions for the MX module. KMS was supported by NIH training grant T32 GM008396-26 from NIGMS. LJB is supported by grant No. MCB-0918389 and JJT is supported by grant CHE 1506206 from the National Science Foundation. Part of this work was performed at the Advanced Light Source. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract DE-AC02-05CH11231. NR 26 TC 1 Z9 1 U1 0 U2 0 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2016 VL 49 BP 2235 EP 2243 DI 10.1107/S1600576716016800 PN 6 PG 9 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EG6ZW UT WOS:000391195900040 PM 27980518 ER PT J AU Zhang, Y Inouye, H Crowley, M Yu, LM Kaeli, D Makowski, L AF Zhang, Yan Inouye, Hideyo Crowley, Michael Yu, Leiming Kaeli, David Makowski, Lee TI Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE diffraction pattern simulation; cellulose fibrils; pair-distance quantization; biomass fuels; algorithms ID X-RAY-DIFFRACTION; NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM; BIOMASS RECALCITRANCE; CRYSTAL-STRUCTURE; I-BETA; NANOSTRUCTURE; MICROFIBRILS; ORIGINS AB Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debye formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement. C1 [Zhang, Yan; Inouye, Hideyo; Yu, Leiming; Kaeli, David] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02148 USA. [Crowley, Michael] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA. [Makowski, Lee] Northeastern Univ, Dept Bioengn, Boston, MA 02148 USA. [Makowski, Lee] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02148 USA. RP Makowski, L (reprint author), Northeastern Univ, Dept Bioengn, Boston, MA 02148 USA.; Makowski, L (reprint author), Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02148 USA. EM l.makowski@neu.edu FU Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center - US Department of Energy, Office of Science, Basic Energy Science [DE-SC0000997] FX This work was supported as part of the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Science, under award No. DE-SC0000997. NR 21 TC 0 Z9 0 U1 5 U2 5 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD DEC PY 2016 VL 49 BP 2244 EP 2248 DI 10.1107/S1600576716013297 PN 6 PG 5 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA EG6ZW UT WOS:000391195900041 ER PT J AU Nalli, NR Barnet, CD Reale, T Liu, QH Morris, VR Spackman, JR Joseph, E Tan, CY Sun, BM Tilley, F Leung, LR Wolfe, D AF Nalli, Nicholas R. Barnet, Christopher D. Reale, Tony Liu, Quanhua Morris, Vernon R. Spackman, J. Ryan Joseph, Everette Tan, Changyi Sun, Bomin Tilley, Frank Leung, L. Ruby Wolfe, Daniel TI Satellite Sounder Observations of Contrasting Tropospheric Moisture Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric Rivers SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID US WEST-COAST; CHANGING CLIMATE; ATLANTIC; AEROSOLS; SCIENCE; SYSTEM AB This paper examines the performance of satellite sounder atmospheric vertical moisture profiles under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs), tropical Hadley cells, and Pacific Ocean atmospheric rivers (ARs). Operational satellite sounder moisture profile retrievals from the Suomi National Polar-Orbiting Partnership (SNPP) NOAA Unique Combined Atmospheric Processing System (NUCAPS) are empirically assessed using collocated dedicated radiosonde observations (raobs) obtained from ocean-based intensive field campaigns. The raobs from these campaigns provide uniquely independent correlative truth data not assimilated into numerical weather prediction (NWP) models for satellite sounder validation over oceans. Although ocean cases are often considered "easy" by the satellite remote sensing community, these hydro meteorological phenomena present challenges to passive sounders, including vertical gradient discontinuities (e.g., strong inversions), as well as persistent uniform clouds, aerosols, and precipitation. It is found that the operational satellite sounder 100-layer moisture profile NUCAPS product performs close to global uncertainty requirements in the SAL/Hadley cell environment, with biases relative to raob within 10% up to 350 hPa. In the more difficult AR environment, bias relative to raob is found to be within 20% up to 400 hPa. In both environments, the sounder moisture retrievals are comparable to NWP model outputs, and cross-sectional analyses show the capability of the satellite sounder for detecting and resolving these tropospheric moisture features, thereby demonstrating a near-real-time forecast utility over these otherwise raob-sparse regions. C1 [Nalli, Nicholas R.; Tan, Changyi; Sun, Bomin; Tilley, Frank] IM Syst Grp Inc, Rockville, MD 20852 USA. [Barnet, Christopher D.] Sci & Technol Corp, Columbia, MD USA. [Reale, Tony; Liu, Quanhua] NOAA NESDIS, Ctr Satellite Applicat & Res, College Pk, MD USA. [Morris, Vernon R.] Howard Univ, Washington, DC 20059 USA. [Spackman, J. Ryan] NOAA, Earth Syst Res Lab, Sci & Technol Corp, Boulder, CO USA. [Joseph, Everette] SUNY Albany, Albany, NY 12222 USA. [Leung, L. Ruby] Pacific Northwest Natl Lab, Richland, WA USA. [Wolfe, Daniel] Cooperat Inst Res Environm Sci, Boulder, CO USA. RP Nalli, NR (reprint author), IM Syst Grp Inc, Rockville, MD 20852 USA. EM nick.nalli@noaa.gov FU NOAA/NESDIS Joint Polar Satellite System (JPSS) Office; Center for Satellite Applications and Research (STAR) Satellite Meteorology and Climatology Division; NOAA/EPP/MSI [NA11SEC4810003]; NOAA [NA17AE1625, NA17AE1623]; Physical Sciences Division at the NOAA Earth System Research Laboratory; U.S. DOE ARM program; U.S. DOE Office of Science Biological and Environmental Research Regional and Global Climate Modeling program [KP17030010]; U.S. DOE [DE-AC05-76RLO1830] FX This research (N. R. Nalli, C. D. Barnet, T. Reale, Q. Liu, C. Tan, B. Sun, and F. Tilley) was supported by the NOAA/NESDIS Joint Polar Satellite System (JPSS) Office and the Center for Satellite Applications and Research (STAR) Satellite Meteorology and Climatology Division. NCAS (V. Morris and E. Joseph) is funded by NOAA/EPP/MSI Cooperative Agreement NA11SEC4810003. AEROSE works in collaboration with the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) Northeast Extension (PNE) and is supported by NOAA Grants NA17AE1625 (Educational Partnership Program) and NA17AE1623. CalWater 2015/ACAPEX investigators (J. R. Spackman and D. Wolfe) were supported by research funds from the Physical Sciences Division at the NOAA Earth System Research Laboratory. ACAPEX was supported by the U.S. DOE ARM program. GCOS Reference Upper-Air Network (GRUAN) reprocessing was performed courtesy of R. Dirksen (GRUAN Lead Center). L. R. Leung was supported by the U.S. DOE Office of Science Biological and Environmental Research Regional and Global Climate Modeling program (Grant KP17030010). The Pacific Northwest National Laboratory is managed by Battelle for the U.S. DOE under contract DE-AC05-76RLO1830. We acknowledge NUCAPS collaborators for their support of NUCAPS development and validation: A. Gambacorta [Science and Technology Corporation (STC)], F. Iturbide-Sanchez, M. Wilson, K. Zhang, and A. K. Sharma. We are grateful to AEROSE and CalWater/ACAPEX collaborators: C. Fairall and J. Intrieri (chief scientists onboard the Ronald H. Brown); N. Hickmon and M. Ritsche (AMF2 facility managers); M. Oyola and E. Roper [Howard University (HU) NOAA Center for Atmospheric Sciences (NCAS)]; J. W. Smith [National Research Council (NRC)]; M. Szczodrak and M. Izaguirre [University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science (RSMAS)]; and countless students and crews of the NOAA Ronald H. Brown. The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration or U.S. Government position, policy, or decision. NR 30 TC 0 Z9 0 U1 8 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD DEC PY 2016 VL 17 IS 12 BP 2997 EP 3006 DI 10.1175/JHM-D-16-0163.1 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EG6MA UT WOS:000391159400002 ER PT J AU Ghate, VP Kollias, P AF Ghate, Virendra P. Kollias, Pavlos TI On the Controls of Daytime Precipitation in the Amazonian Dry Season SO JOURNAL OF HYDROMETEOROLOGY LA English DT Article ID SOUTH-AMERICAN MONSOON; BOUNDARY-LAYER; RAIN-FOREST; ATMOSPHERIC CONTROLS; DIURNAL-VARIATION; DEEP CONVECTION; WATER-VAPOR; LIFE-CYCLE; LAND; CLIMATE AB The Amazon plays an important role in the global energy and hydrological budgets. The precipitation during the dry season (June September) plays a critical role in maintaining the extent of the rain forest. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF-1) in the context of the Green Ocean Amazon (GOAmazon) field campaign at Manacapuru, Brazil, provided comprehensive measurements of surface, cloud, precipitation, radiation, and thermodynamic properties for two complete dry seasons (2014 and 2015). The precipitation events occurring during the nighttime were associated with propagating storm systems (nonlocal effects), while the daytime precipitation events were primarily a result of local land-atmosphere interactions. During the two dry seasons, precipitation was recorded at the surface on 106 days (43%) from 158 rain events with 82 daytime precipitation events occurring on 64 days (60.37%). Detailed comparisons between the diurnal cycles of surface and profile properties between days with and without daytime precipitation suggested the increased moisture at low and midlevels to be responsible for lowering the lifting condensation level, reducing convective inhibition and entrainment, and thus triggering the transition from shallow to deep convection. Although the monthly accumulated rainfall decreased during the progression of the dry season, the contribution of daytime precipitation to it increased, suggesting the decrease to be mainly due to reduction in propagating squall lines. The control of daytime precipitation during the dry season on large-scale moisture advection above the boundary layer and the total rainfall on propagating squall lines suggests that coarse-resolution models should be able to accurately simulate the dry season precipitation over the Amazon basin. C1 [Ghate, Virendra P.] Argonne Natl Lab, Lemont, IL USA. [Kollias, Pavlos] Brookhaven Natl Lab, Upton, NY 11973 USA. [Kollias, Pavlos] SUNY Stony Brook, Stony Brook, NY 11794 USA. RP Ghate, VP (reprint author), Argonne Natl Lab, Environm Sci, 9700 S Cass Ave, Lemont, IL 60439 USA. EM vghate@anl.gov FU U.S. Department of Energy's (DOE) Atmospheric System Research (ASR), an Office of Science, Office of Biological and Environmental Research (BER) program [DE-AC02-06CH11357, DE-SC00112704]; National Science Foundation (NSF) [AGS-1445831]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division (CESD) FX We thank Dr. Anthony D. Del Genio and Dr. Stephen W. Nesbitt for helpful discussions that led to significant improvement in the manuscript. This work was primarily supported by the U.S. Department of Energy's (DOE) Atmospheric System Research (ASR), an Office of Science, Office of Biological and Environmental Research (BER) program, under Contract DE-AC02-06CH11357 awarded to Argonne National Laboratory and Contract DE-SC00112704 awarded to Brookhaven National Laboratory. This research was also supported by the National Science Foundation (NSF) Grant AGS-1445831 awarded to the University of Chicago. All the data used in this study were obtained from the Atmospheric Radiation Measurement (ARM) program sponsored by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate and Environmental Sciences Division (CESD). We gratefully acknowledge the computing resources provided on Blues, a high-performance computing cluster operated by the Laboratory Computing Resource Center (LCRC) at the Argonne National Laboratory. NR 52 TC 0 Z9 0 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1525-755X EI 1525-7541 J9 J HYDROMETEOROL JI J. Hydrometeorol. PD DEC PY 2016 VL 17 IS 12 BP 3079 EP 3097 DI 10.1175/JHM-D-16-0101.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EG6MA UT WOS:000391159400007 ER PT J AU Rhee, YJ Nam, SM Peebles, J Sawada, H Wei, M Vaisseau, X Sasaki, T Giuffrida, L Hulin, S Vauzour, B Santos, JJ Batani, D McLean, HS Patel, PK Li, YT Yuan, DW Zhang, K Zhong, JY Fu, CB Hua, N Li, K Zhang, Y Zhu, JQ Kim, IJ Jeon, JH Jeong, TM Choi, IW Lee, HW Sung, JH Lee, SK Nam, CH AF Rhee, Y. J. Nam, S. M. Peebles, J. Sawada, H. Wei, M. Vaisseau, X. Sasaki, T. Giuffrida, L. Hulin, S. Vauzour, B. Santos, J. J. Batani, D. McLean, H. S. Patel, P. K. Li, Y. T. Yuan, D. W. Zhang, K. Zhong, J. Y. Fu, C. B. Hua, N. Li, K. Zhang, Y. Zhu, J. Q. Kim, I. J. Jeon, J. H. Jeong, T. M. Choi, I. W. Lee, H. W. Sung, J. H. Lee, S. K. Nam, C. H. TI Spectral tomographic analysis of Bremsstrahlung X-rays generated in a laser-produced plasma SO LASER AND PARTICLE BEAMS LA English DT Article DE Bremsstrahlung X-ray; Filter stack spectrometer; Laser-produced plasma; Spectral reconstruction; X-ray spectrometer ID FAST IGNITION; TARGETS; DRIVEN; SOLIDS AB A new approach is proposed to analyze Bremsstrahlung X-rays that are emitted from laser-produced plasmas (LPP) and are measured by a stack type spectrometer. This new method is based on a spectral tomographic reconstruction concept with the variational principle for optimization, without referring to the electron energy distribution of a plasma. This approach is applied to the analysis of some experimental data obtained at a few major laser facilities to demonstrate the applicability of the method. Slope temperatures of X-rays from LPP are determined with a two-temperature model, showing different spectral characteristics of X-rays depending on laser properties used in the experiments. C1 [Rhee, Y. J.; Nam, S. M.] Korea Atom Energy Res Inst, Daejeon 34057, South Korea. [Rhee, Y. J.; Kim, I. J.; Jeon, J. H.; Jeong, T. M.; Choi, I. W.; Lee, H. W.; Sung, J. H.; Lee, S. K.; Nam, C. H.] Inst Basic Sci, Ctr Relativist Laser Sci, Gwangju 61005, South Korea. [Peebles, J.; Sawada, H.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Wei, M.] Gen Atom Co, San Diego, CA 92121 USA. [Vaisseau, X.; Sasaki, T.; Giuffrida, L.; Hulin, S.; Vauzour, B.; Santos, J. J.; Batani, D.] Univ Bordeaux, CNRS, CEA, CELIA Ctr Lasers Intenses & Applicat,UMR 5107, F-33405 Talence, France. [Giuffrida, L.] ASCR, Vvi FZU, Inst Phys, ELI Beamlines Project, Prague, Czech Republic. [McLean, H. S.; Patel, P. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Li, Y. T.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Yuan, D. W.; Zhang, K.; Zhong, J. Y.] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. [Fu, C. B.] Shanghai Jiao Tong Univ, Shanghai 200240, Peoples R China. [Hua, N.; Li, K.; Zhang, Y.; Zhu, J. Q.] SIOM, Natl Lab High Power Laser & Phys, Shanghai 201800, Peoples R China. [Kim, I. J.; Jeong, T. M.; Choi, I. W.; Sung, J. H.; Lee, S. K.] GIST, Adv Photon Res Inst, Gwangju 61005, South Korea. [Kim, I. J.] KBSI, Opt Instrumentat Dev Team, Daejeon 34133, South Korea. [Nam, C. H.] GIST, Dept Phys & Photon Sci, Gwangju 61005, South Korea. RP Rhee, YJ (reprint author), Korea Atom Energy Res Inst, Daejeon 34057, South Korea.; Rhee, YJ (reprint author), Inst Basic Sci, Ctr Relativist Laser Sci, Gwangju 61005, South Korea. EM yjrhee@ibs.re.kr RI Fu, Changbo/O-1550-2015; OI Sawada, Hiroshi/0000-0002-7972-9894 FU Global R&D Networking Program - Republic of Korea's Ministry of Science, ICT and Future Planning [NRF-2012-0004839] FX The authors would like to thank all the staffs and technical persons who had taken care of the laser systems in TITAN facility of LLNL, SG II facility of SIOM, and Petawatt Laser Facility of CoReLS/IBS. This work was partly supported by the Global R&D Networking Program (NRF-2012-0004839) funded by the Republic of Korea's Ministry of Science, ICT and Future Planning. NR 30 TC 0 Z9 0 U1 5 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 EI 1469-803X J9 LASER PART BEAMS JI Laser Part. Beams PD DEC PY 2016 VL 34 IS 4 BP 645 EP 654 DI 10.1017/S0263034616000604 PG 10 WC Physics, Applied SC Physics GA EH0HC UT WOS:000391443700009 ER PT J AU Abere, MJ Zhong, ML Kruger, J Bonse, J AF Abere, Michael J. Zhong, Minlin Krueger, Joerg Bonse, Joern TI Ultrafast laser-induced morphological transformations SO MRS BULLETIN LA English DT Article ID PERIODIC SURFACE-STRUCTURE; FEMTOSECOND; ABLATION; SOLIDS; PULSES; SILICON; GAAS; TRANSITIONS; BOTTOM; OPTICS AB Ultrafast laser processing can be used to realize various morphological surface transformations, ranging from direct contour shaping to large-area-surface functionalization via the generation of "self-ordered" micro- and nanostructures as well as their hierarchical hybrids. Irradiation with high-intensity laser pulses excites materials into extreme conditions, which then return to equilibrium through these unique surface transformations. In combination with suitable top-down or bottom-up manufacturing strategies, such laser-tailored surface morphologies open up new avenues toward the control of optical, chemical, and mechanical surface properties, featuring various technical applications especially in the fields of photovoltaics, tribology, and medicine. This article reviews recent efforts in the fundamental understanding of the formation of laser-induced surface micro- and nanostructures and discusses some of their emerging capabilities. C1 [Abere, Michael J.] Sandia Natl Labs, Livermore, CA 94550 USA. [Zhong, Minlin] Tsinghua Univ, Sch Mat Sci & Engn, Laser Mat Proc Res Ctr, Beijing, Peoples R China. [Krueger, Joerg; Bonse, Joern] Bundesanstalt Mat Forsch & Prufung BAM, Nanomat Technol Div 6 4, Berlin, Germany. RP Abere, MJ (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM mjabere@sandia.gov; zhml@tsinghua.edu.cn; joerg.krueger@bam.de; joern.bonse@bam.de RI Bonse, Jorn/B-9361-2008; Kruger, Jorg/C-2833-2009 OI Bonse, Jorn/0000-0003-4984-3896; FU Air Force Office of Scientific Research at the University of Michigan [FA9550-12-1-0465]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX M.J.A.'s contributions to this work were supported by the Air Force Office of Scientific Research Contract No. FA9550-12-1-0465 at the University of Michigan. M.J.A. is currently affiliated with Sandia National Laboratories, which is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 41 TC 0 Z9 0 U1 4 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD DEC PY 2016 VL 41 IS 12 BP 969 EP 974 DI 10.1557/mrs.2016.271 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA EH0EZ UT WOS:000391437100013 ER PT J AU Yoo, JH Kim, E Hwang, DJ AF Yoo, Jae-Hyuck Kim, Eunpa Hwang, David J. TI Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials SO MRS BULLETIN LA English DT Article ID NEAR-FIELD; MOS2 TRANSISTORS; GRAPHENE AB This article summarizes recent research on laser-based processing of two-dimensional (2D) atomic layered materials, including graphene and transition-metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated and ultrafast laser radiation under ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook on developing further advanced laser processing with scalability, in situ monitoring strategies, and potential applications. C1 [Yoo, Jae-Hyuck] Lawrence Livermore Natl Lab, Lawrence, KS 94550 USA. [Kim, Eunpa] Samsung Elect, Suwon, South Korea. [Hwang, David J.] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA. RP Yoo, JH (reprint author), Lawrence Livermore Natl Lab, Lawrence, KS 94550 USA. EM yoo5@llnl.gov; eunpa.kim@samsung.com; david.hwang@stonybrook.edu FU US Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; National Science Foundation (NSF) [EEC-1449305]; Technology Advancement Research Program - Ministry of Land, Infrastructure, and Transport of the Korean government [14CTAP-C086566-01-000000]; industry technology R&D program of MOTIE/KEIT [10050501]; NSF [CMMI 1265122]; Nebraska Center for Energy Sciences Research; US Office of Naval Research [N0014-019-1-0943] FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. E.K. acknowledges support to the Laser Thermal Laboratory at UC Berkeley by the National Science Foundation (NSF) under Grant No. EEC-1449305. The laser doping experiments were carried out at the Laser-Assisted Chemical Vapor Deposition setup in the University of California, Berkeley Marvell Nanolab. Analysis of the doped structures was conducted in collaboration with J. Wu's team at University of California, Berkeley Materials Science & Engineering. D.H. acknowledges the support of Grant No. 14CTAP-C086566-01-000000 from Technology Advancement Research Program funded by the Ministry of Land, Infrastructure, and Transport of the Korean government, and also to the industry technology R&D program of MOTIE/KEIT No. 10050501. The authors thank Y.F. Lu at the University of Nebraska-Lincoln for contributing results on ultrafast laser direct writing of graphene patterns, supported by the NSF (CMMI 1265122), Nebraska Center for Energy Sciences Research, and the US Office of Naval Research (N0014-019-1-0943). NR 43 TC 1 Z9 1 U1 15 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD DEC PY 2016 VL 41 IS 12 BP 1002 EP 1007 DI 10.1557/mrs.2016.248 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA EH0EZ UT WOS:000391437100017 ER PT J AU Vasudevan, RK Ziatdinov, M Chen, C Kalinin, SV AF Vasudevan, R. K. Ziatdinov, M. Chen, C. Kalinin, S. V. TI Analysis of citation networks as a new tool for scientific research SO MRS BULLETIN LA English DT Article ID EMERGING TRENDS; BIFEO3; FILMS; FLEXOELECTRICITY; MANGANITES; CITESPACE; CRYSTALS; OXYGEN AB The rapid growth of scientific publications necessitates new methods to understand the direction of scientific research within fields of study, ascertain the importance of particular groups, authors, or institutions, compute metrics that can determine the importance (centrality) of particular seminal papers, and provide insight into the social (collaboration) networks that are present. We present one such method based on analysis of citation networks, using the freely available CiteSpace Program. We use citation network analysis on three examples, including a single material that has been widely explored in the last decade (BiFeO3), two small subfields with a minimal number of authors (flexoelectricity and Kitaev physics), and a much wider field with thousands of publications pertaining to a single technique (scanning tunneling microscopy). Interpretation of the analysis and key insights into the fields, such as whether the fields are experiencing resurgence or stagnation, are discussed, and author or collaboration networks that are prominent are determined. Such methods represent a paradigm shift in our way of dealing with the large volume of scientific publications and could change the way literature searches and reviews are conducted, as well as how the impact of specific work is assessed. C1 [Vasudevan, R. K.; Ziatdinov, M.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Vasudevan, R. K.; Ziatdinov, M.; Kalinin, S. V.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37830 USA. [Chen, C.] Drexel Univ, Dept Informat Sci, Coll Comp Informat, Philadelphia, PA 19104 USA. RP Vasudevan, RK (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA.; Vasudevan, RK (reprint author), Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37830 USA. EM rvv@ornl.gov; ziatdinovma@ornl.gov; chaomei.chen@drexel.edu; sergei2@ornl.gov FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; Division of Materials Sciences and Engineering, BES, US DOE FX Research for R.K.V. and S.V.K. was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy (DOE). M.Z. acknowledges support from the Division of Materials Sciences and Engineering, BES, US DOE. Research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 29 TC 0 Z9 0 U1 22 U2 22 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD DEC PY 2016 VL 41 IS 12 BP 1009 EP 1015 DI 10.1557/mrs.2016.270 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA EH0EZ UT WOS:000391437100018 ER PT J AU Nygren, RE Tabares, FL AF Nygren, R. E. Tabares, F. L. TI Liquid surfaces for fusion plasma facing components-A critical review. Part I: Physics and PSI SO NUCLEAR MATERIALS AND ENERGY LA English DT Review DE Liquid surface; Plasma facing components; Plasma facing materials; Divertor; First wall; Fusion technology ID CAPILLARY-PORE SYSTEMS; HIGH-HEAT-FLUX; LITHIUM DIVERTOR; 1ST EXPERIMENTS; TOKAMAK; NSTX; PERFORMANCE; EAST; LIMITER; DEVICES AB This review of the potential of robust plasma facing components (PFCs) with liquid surfaces for applications in future D/T fusion device summarizes the critical issues for liquid surfaces and research being done worldwide in confinement facilities, and supporting R&D in plasma surface interactions. In the paper are a set of questions and related criteria by which we will judge the progress and readiness of liquid surface PFCs. Part-II (separate paper) will cover R&D on the technology-oriented aspects of liquid surfaces including the liquid surfaces as integrated first walls in tritium breeding blankets, tritium retention and recovery, and safety. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Nygren, R. E.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Tabares, F. L.] Assoc CIEMAT, Madrid, Spain. RP Nygren, RE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM renygre@sandia.gov OI Tabares, Francisco/0000-0001-7045-8672 FU US Dept. of Energy [LAB12-03]; NSTX-Lab Grant; Spanish Ministry of Economy and Competivity [FIS2010-20911]; Tabares at CIEMAT [ENE2014-58918-R] FX US Dept. of Energy Grant LAB12-03, an NSTX-Lab Grant administered by the Office of Fusion Energy Sciences supports Nygren's work on liquid surfaces. The Spanish Ministry of Economy and Competivity under Grants FIS2010-20911 and ENE2014-58918-R supports work on Li by Tabares at CIEMAT. NR 127 TC 1 Z9 1 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2352-1791 J9 NUCL MATER ENERGY JI Nucl. Mater. Energy PD DEC PY 2016 VL 9 BP 6 EP 21 DI 10.1016/j.nme.2016.08.008 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EG6YF UT WOS:000391191500002 ER PT J AU Sakurada, S Yuyama, K Uemura, Y Fujita, H Hu, C Toyama, T Yoshida, N Hinoki, T Kondo, S Shimada, M Buchenauer, D Chikada, T Oya, Y AF Sakurada, S. Yuyama, K. Uemura, Y. Fujita, H. Hu, C. Toyama, T. Yoshida, N. Hinoki, T. Kondo, S. Shimada, M. Buchenauer, D. Chikada, T. Oya, Y. TI Annealing effects on deuterium retention behavior in damaged tungsten SO NUCLEAR MATERIALS AND ENERGY LA English DT Article DE Hydrogen isotopes retention; Heavy-ion irradiation; Annealing; TDS; TEM; PAS ID IRRADIATION; HYDROGEN; DEFECTS; IONS AB Effects of annealing after/under iron (Fe) ion irradiation on deuterium (D) retention behavior in tungsten (W) were studied. The D-2 TDS spectra as a function of heating temperature for 0.1 dpa damaged W showed that the D retention was clearly decreased as the annealing temperature was increased. In particular, the desorption of D trapped by voids was largely reduced by annealing at 1173 K. The TEM observation indicated that the size of dislocation loops was clearly grown, and its density was decreased by the annealing above 573 K. After annealing at 1173 K, almost all the dislocation loops were recovered. The results of positron annihilation spectroscopy suggested that the density of vacancy-type defects such as voids, was decreased as the annealing temperature was increased, while its size was increased, indicating that the D retention was reduced by the recovery of the voids. Furthermore, it was found that the desorption temperature of D trapped by the voids for damaged W above 0.3 dpa was shifted toward higher temperature side. These results lead to a conclusion that the D retention behavior is controlled by defect density. The D retention in the samples annealed during irradiation was less than that annealed after irradiation. This result shows that defects would be quickly annihilated before stabilization by annealing during irradiation. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Sakurada, S.; Yuyama, K.; Uemura, Y.; Fujita, H.; Hu, C.; Chikada, T.; Oya, Y.] Shizuoka Univ, Grad Sch Sci & Technol, Shizuoka, Japan. [Toyama, T.] Tohoku Univ, Inst Mat Res, Ibaraki, Japan. [Yoshida, N.] Kyushu Univ, Inst Appl Mech, Fukuoka, Japan. [Hinoki, T.; Kondo, S.] Kyoto Univ, Inst Adv Energy, Kyoto, Japan. [Shimada, M.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID USA. [Buchenauer, D.] Sandia Natl Labs, Hydrogen & Combust Technol Dept, Livermore, CA USA. RP Sakurada, S (reprint author), Shizuoka Univ, Grad Sch Sci & Technol, Shizuoka, Japan. EM sakurada.shodai.15@shizuoka.ac.jp RI Kyushu, RIAM/F-4018-2015 FU Joint Usage/Research Program on Zero-Emission Energy Research, Institute of Advanced Energy, Kyoto University; Collaborative Research Program of Research Institute for Applied Mechanics, Kyushu University FX This study was supported by the Joint Usage/Research Program on Zero-Emission Energy Research, Institute of Advanced Energy, Kyoto University, by the Collaborative Research Program of Research Institute for Applied Mechanics, Kyushu University. The Fe ion irradiation was done in the framework of the collaborative research program at JAEA and KAIHOKEN at The University of Tokyo. NR 9 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2352-1791 J9 NUCL MATER ENERGY JI Nucl. Mater. Energy PD DEC PY 2016 VL 9 BP 141 EP 144 DI 10.1016/j.nme.2016.06.012 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EG6YF UT WOS:000391191500024 ER PT J AU Leonard, KJ List, FA Aytug, T Gapud, AA Geringer, JW AF Leonard, K. J. List, F. A., III Aytug, T. Gapud, A. A. Geringer, J. W. TI Irradiation performance of rare earth and nanoparticle enhanced high temperature superconducting films based on YBCO SO NUCLEAR MATERIALS AND ENERGY LA English DT Article DE Superconductors; Neutron irradiation; Electrical properties; Fusion ID YBA2CU3O7-DELTA THIN-FILMS; CRITICAL-CURRENT-DENSITY; NEUTRON-IRRADIATION; COLUMNAR DEFECTS; ELECTRON-IRRADIATION; PINNING IMPROVEMENT; RADIATION-DAMAGE; MICROSTRUCTURE; FIELD AB The new series of commercially produced high temperature superconducting (HTS) tapes based on the YBa2Cu3O7 (YBCO) structure have attracted renewed attention for their performance under applied magnetic fields without significant loss in supercurrent compared to the earlier generation of conductors. This adaptability is achieved through rare earth substitution and dopants resulting in the formation of nanoparticles and extended defects within the superconducting film matrix. The electrical performance of Zr-(Gd-x,Y1-x)Ba2Cu3O7 and (Y1-x,Dy-x)Ba2Cu3O7 coated conductor tapes were tested prior to and after neutron exposures between 6.54 x 10(17) and 7.00 x 10(18) n/cm(2) (E > 0.1 MeV). Results showed a decrease in superconducting current with neutron irradiation for the range of fluences tested, with losses in the Zr-(Gd-x,Y1-x)Ba2Cu3O7 conductor being more rapid. Post-irradiation testing was limited to evaluation at 77 K and applied fields of up to 0.5 Tesla, and therefore testing at lower temperatures and higher applied fields may result in improved superconducting properties as shown in previous ion irradiation work. Under the conditions tested, the doped conductors showed a loss in critical current at fluences lower than that of undoped YBa2Cu3O7 tapes reported on in literature. (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Leonard, K. J.; List, F. A., III; Aytug, T.; Geringer, J. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Gapud, A. A.] Univ S Alabama, Dept Phys, Mobile, AL USA. RP Leonard, KJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM leonardk@ornl.gov OI Aytug, Tolga/0000-0001-7971-5508 FU U.S. Department of Energy, Office of Science, Fusion Energy Sciences; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy FX The authors would like to thank Frank Riley and Joel McDuffee who helped with capsule preparation and A. Marie Williams for her assistance in testing the irradiated samples. This research supported by the U.S. Department of Energy, Office of Science, Fusion Energy Sciences. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 34 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2352-1791 J9 NUCL MATER ENERGY JI Nucl. Mater. Energy PD DEC PY 2016 VL 9 BP 251 EP 255 DI 10.1016/j.nme.2016.03.004 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EG6YF UT WOS:000391191500043 ER PT J AU Safi, E Polvi, J Lasa, A Nordlund, K AF Safi, E. Polvi, J. Lasa, A. Nordlund, K. TI Atomistic simulations of deuterium irradiation on iron-based alloys in future fusion reactors SO NUCLEAR MATERIALS AND ENERGY LA English DT Article ID ENERGY AB Iron-based alloys are now being considered as plasma-facing materials for the first wall of future fusion reactors. Therefore, the iron (Fe) and carbon (C) erosion will play a key role in predicting the life-time and viability of reactors with steel walls. In this work, the surface erosion and morphology changes due to deuterium (D) irradiation in pure Fe, Fe with 1% C impurity and the cementite, are studied using molecular dynamics (MD) simulations, varying surface temperature and impact energy. The sputtering yields for both Fe and C were found to increase with incoming energy. In iron carbide, C sputtering was preferential to Fe and the deuterium was mainly trapped as D 2 in bubbles, while mostly atomic D was present in Fe and Fe-1%C. The sputtering yields obtained from MD were compared to SDTrimSP yields. At lower impact energies, the sputtering mechanism was of both physical and chemical origin, while at higher energies (>100 eV) the physical sputtering dominated. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Safi, E.; Polvi, J.; Nordlund, K.] Univ Helsinki, Assoc EURATOM Tekes, POB 43, FIN-00014 Helsinki, Finland. [Lasa, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Safi, E (reprint author), Univ Helsinki, Assoc EURATOM Tekes, POB 43, FIN-00014 Helsinki, Finland. EM elnaz.safi@helsinki.fi OI Lasa, Ane/0000-0002-6435-1884; Nordlund, Kai/0000-0001-6244-1942 FU Euratom research and training program [633053] FX This work has been carried out within the framework of the EUROfusion consortium and has received funding from the Euratom research and training program 2014-2018 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European commission. Grants for computer time from CSC, the IT center science in Espoo, Finland, are gratefully acknowledged. NR 19 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2352-1791 J9 NUCL MATER ENERGY JI Nucl. Mater. Energy PD DEC PY 2016 VL 9 BP 571 EP 575 DI 10.1016/j.nme.2016.08.021 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EG6YF UT WOS:000391191500099 ER PT J AU Borodin, D Brezinsek, S Borodkina, I Romazanov, J Matveev, D Kirschner, A Lasa, A Nordlund, K Bjorkas, C Airila, M Miettunen, J Groth, M Firdaouss, M AF Borodin, D. Brezinsek, S. Borodkina, I. Romazanov, J. Matveev, D. Kirschner, A. Lasa, A. Nordlund, K. Bjorkas, C. Airila, M. Miettunen, J. Groth, M. Firdaouss, M. CA JET Contributors TI Improved ERO modelling for spectroscopy of physically and chemically assisted eroded beryllium from the JET-ILW SO NUCLEAR MATERIALS AND ENERGY LA English DT Article DE Beryllium; Erosion; JET ITER-like wall; Spectroscopy ID ITER-LIKE WALL; EROSION AB Physical and chemical assisted physical sputtering were characterised by the Be I and Be II line and BeD band emission in the observation chord measuring the sightline integrated emission in front of the inner beryllium limiter at the torus midplane. The 3D local transport and plasma-surface interaction Monte-Carlo modelling (ERO code [18]) is a key for the interpretation of the observations in the vicinity of the shaped solid Be limiter. The plasma parameter variation (density scan) in limiter regime has provided a useful material for the simulation benchmark. The improved background plasma parameters input, the new analytical expression for particle tracking in the sheath region and implementation of the BeD release into ERO has helped to clarify some deviations between modelling and experiments encountered in the previous studies [4,5]. Reproducing the observations provides additional confidence in our 'ERO-min' fit for the physical sputtering yields for the plasma-wetted areas based on simulated data. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Borodin, D.; Brezinsek, S.; Borodkina, I.; Romazanov, J.; Matveev, D.; Kirschner, A.] Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany. [Borodkina, I.] Natl Res Nucl Univ MEPhI, 31 Kashirskoe Sh, Moscow 115409, Russia. [Lasa, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Nordlund, K.; Bjorkas, C.; Airila, M.] VIT Tech Res Ctr Finland, POB 1000, FIN-02044 Espoo, Finland. [Miettunen, J.; Groth, M.] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland. [Firdaouss, M.] IRFM, CEA, F-13108 St Paul Les Durance, France. RP Borodin, D (reprint author), Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany. EM d.borodin@fz-juelich.de RI Groth, Mathias/G-2227-2013; Brezinsek, Sebastijan/B-2796-2017 OI Brezinsek, Sebastijan/0000-0002-7213-3326 FU Euratom research and training programme [633053] FX This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Computer time on JURECA was provided by the Julich Supercomputing Centre. NR 18 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2352-1791 J9 NUCL MATER ENERGY JI Nucl. Mater. Energy PD DEC PY 2016 VL 9 BP 604 EP 609 DI 10.1016/j.nme.2016.08.013 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EG6YF UT WOS:000391191500105 ER PT J AU Enders, B Thibault, P AF Enders, B. Thibault, P. TI A computational framework for ptychographic reconstructions SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE X-ray; microscopy; ptychography; diffraction; Python; phase retrieval ID RAY-DIFFRACTION MICROSCOPY; NEAR-FIELD PTYCHOGRAPHY; PHASE RETRIEVAL; COMPUTED-TOMOGRAPHY; RESOLUTION; HOLOGRAPHY; ALGORITHM; PYTHON AB Ptychography is now a well-established X-ray microscopy tool for synchrotron end-stations equipped with a scanning stage and a pixelated detector. Ptychographic phasing algorithms use information from coherent diffraction to deliver quantitative images of the specimen at a resolution higher than the scanning resolution. These algorithms have traditionally been implemented in software on a per-instrument basis in various degrees of user-friendliness and sophistication. Here, we present Ptypy, a ptychography software written with the intention to serve as a framework across the diverse sets of available instruments and usage cases. A distinctive feature of the software is its formalism, which provides a convenient abstraction of the physical model, thus allowing for concise algorithmic implementations and portability across set-up geometries. We give an overview of the supported usage cases, explain the abstraction layer and design principles, and provide a step-by-step guide describing how an algorithm may be realized in a concise and readable manner. The software capabilities are illustrated with reconstructions from visible light and X-ray data. C1 [Enders, B.] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany. [Enders, B.] Tech Univ Munich, Inst Med Engn, D-85747 Garching, Germany. [Enders, B.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Thibault, P.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. RP Enders, B (reprint author), Tech Univ Munich, Dept Phys, D-85747 Garching, Germany.; Enders, B (reprint author), Tech Univ Munich, Inst Med Engn, D-85747 Garching, Germany.; Enders, B (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM benders@tum.de FU DFG Cluster of Excellence Munich-Centre for Advanced Photonics [EXC 158]; TUM Graduate School; European Research Council under project 'OptImaX' [279753] FX B.E. acknowledges financial support through the DFG Cluster of Excellence Munich-Centre for Advanced Photonics (EXC 158) and the TUM Graduate School. P.T. acknowledges funding through the European Research Council under the project 'OptImaX' (starting grant no. 279753). NR 54 TC 0 Z9 0 U1 2 U2 2 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 EI 1471-2946 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD DEC 1 PY 2016 VL 472 IS 2196 AR 20160640 DI 10.1098/rspa.2016.0640 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG5RN UT WOS:000391102100012 PM 28119552 ER PT J AU Zweibel, EG Yamada, M AF Zweibel, Ellen G. Yamada, Masaaki TI Perspectives on magnetic reconnection SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE magnetic fields; magnetic reconnection; particle heating; particle acceleration; plasma physics ID CURRENT SHEET FORMATION; GAMMA-RAY FLARES; SOLAR-FLARES; MAGNETOHYDRODYNAMIC RECONNECTION; 3-DIMENSIONAL RECONNECTION; SWEET-PARKER; CRAB-NEBULA; FIELDS; PLASMA; ACCELERATION AB Magnetic reconnection is a topological rearrangement of magnetic field that occurs on time scales much faster than the global magnetic diffusion time. Since the field lines break on microscopic scales but energy is stored and the field is driven on macroscopic scales, reconnection is an inherently multi-scale process that often involves both magnetohydrodynamic (MHD) and kinetic phenomena. In this article, we begin with the MHD point of view and then describe the dynamics and energetics of reconnection using a two-fluid formulation. We also focus on the respective roles of global and local processes and how they are coupled. We conclude that the triggers for reconnection are mostly global, that the key energy conversion and dissipation processes are either local or global, and that the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection. C1 [Zweibel, Ellen G.; Yamada, Masaaki] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Zweibel, Ellen G.; Yamada, Masaaki] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Zweibel, Ellen G.; Yamada, Masaaki] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Zweibel, EG; Yamada, M (reprint author), Univ Wisconsin, Dept Astron, Madison, WI 53706 USA.; Zweibel, EG; Yamada, M (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA.; Zweibel, EG; Yamada, M (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM zweibel@astro.wisc.edu; myamada@pppl.gov FU Vilas Trust; University of Wisconsin-Madison; US Department of Energy FX E.G.Z. is funded for magnetic reconnection research by the Vilas Trust and the University of Wisconsin-Madison. M.Y. is funded by the US Department of Energy. NR 120 TC 0 Z9 0 U1 6 U2 6 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 EI 1471-2946 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD DEC 1 PY 2016 VL 472 IS 2196 AR 20160479 DI 10.1098/rspa.2016.0479 PG 30 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG5RN UT WOS:000391102100004 PM 28119547 ER PT J AU Gati, E Garst, M Manna, RS Tutsch, U Wolf, B Bartosch, L Schubert, H Sasaki, T Schlueter, JA Lang, M AF Gati, Elena Garst, Markus Manna, Rudra S. Tutsch, Ulrich Wolf, Bernd Bartosch, Lorenz Schubert, Harald Sasaki, Takahiko Schlueter, John A. Lang, Michael TI Breakdown of Hooke's law of elasticity at the Mott critical endpoint in an organic conductor SO SCIENCE ADVANCES LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; CRITICAL-BEHAVIOR; FINITE-TEMPERATURE; TRANSITION; INSULATOR; INSTABILITIES; V2O3; SALT; NMR AB The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes Delta L/L as a function of continuously controlled helium-gas pressure P for the organic conductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)] Cl across the pressure-induced Mott transition. We observe strongly nonlinear variations of Delta L/L with pressure around the Mott critical endpoint, highlighting a breakdown of Hooke's law of elasticity. We assign these nonlinear strain-stress relations to an intimate, nonperturbative coupling of the critical electronic system to the lattice degrees of freedom. Our results are fully consistent with mean-field criticality, predicted for electrons in a compressible lattice with finite shear moduli. We argue that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition. C1 [Gati, Elena; Manna, Rudra S.; Tutsch, Ulrich; Wolf, Bernd; Schubert, Harald; Lang, Michael] Goethe Univ Frankfurt, Phys Inst, Max von Laue Str 1, D-60438 Frankfurt, Germany. [Garst, Markus] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany. [Garst, Markus] Tech Univ Dresden, Inst Theoret Phys, Zellescher Weg 17, D-01062 Dresden, Germany. [Bartosch, Lorenz] Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany. [Sasaki, Takahiko] Tohoku Univ, Inst Mat Res, Katahira 2-1-1, Sendai, Miyagi 9808577, Japan. [Schlueter, John A.] Natl Sci Fdn, Div Mat Res, Arlington, VA 22230 USA. [Schlueter, John A.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. [Manna, Rudra S.] Univ Augsburg, Expt Phys Elektron Korrelationen & Magnetismus 6, D-86159 Augsburg, Germany. RP Gati, E (reprint author), Goethe Univ Frankfurt, Phys Inst, Max von Laue Str 1, D-60438 Frankfurt, Germany. EM gati@physik.uni-frankfurt.de; michael.lang@physik.uni-frankfurt.de RI Manna, Rudra Sekhar/I-2035-2012; Garst, Markus/B-6740-2012 OI Manna, Rudra Sekhar/0000-0003-3285-445X; Garst, Markus/0000-0001-5390-3316 FU German Science Foundation via the Transregional Collaborative Research Center [SFB/TR49]; German Science Foundation via the Collaborative Research Center [SFB 1143]; Japan Society for the Promotion of Science KAKENHI [JP25287080]; Independent Research and Development program; [DE-AC02-06CH11357] FX The research was supported by the German Science Foundation via the Transregional Collaborative Research Center SFB/TR49 "Condensed Matter Systems with Variable Many-Body Interactions" and the Collaborative Research Center SFB 1143 "Correlated Magnetism: From Frustration to Topology." Work in Sendai was partly supported by the Japan Society for the Promotion of Science KAKENHI grant #JP25287080. Work at Argonne, in a U.S. Department of Energy Office of Science laboratory, is operated under contract #DE-AC02-06CH11357. J.A.S. acknowledges support from the Independent Research and Development program while serving at the NSF. NR 57 TC 0 Z9 0 U1 2 U2 2 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD DEC PY 2016 VL 2 IS 12 AR e1601646 DI 10.1126/sciadv.1601646 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG7XC UT WOS:000391268800019 PM 27957540 ER PT J AU Lai, YT Hura, GL Dyer, KN Tang, HYH Tainer, JA Yeates, TO AF Lai, Yen-Ting Hura, Greg L. Dyer, Kevin N. Tang, Henry Y. H. Tainer, John A. Yeates, Todd O. TI Designing and defining dynamic protein cage nanoassemblies in solution SO SCIENCE ADVANCES LA English DT Article ID X-RAY-SCATTERING; BIOLOGICAL MACROMOLECULES; SAXS; ASSEMBLIES; CONFORMATIONS; SYSTEM; FLEXIBILITY; ACQUISITION; COMPUTATION; SOFTWARE AB Central challenges in the design of large and dynamic macromolecular assemblies for synthetic biology lie in developing effective methods for testing design strategies and their outcomes, including comprehensive assessments of solution behavior. We created and validated an advanced design of a 600-kDa protein homododecamer that self-assembles into a symmetric tetrahedral cage. The monomeric unit is composed of a trimerizing apex-forming domain genetically linked to an edge-forming dimerizing domain. Enhancing the crystallographic results, high-throughput small-angle x-ray scattering (SAXS) comprehensively contrasted our modifications under diverse solution conditions. To generate a phase diagram associating structure and assembly, we developed force plots that measure dissimilarity among multiple SAXS data sets. These new tools, which provided effective feedback on experimental constructs relative to design, have general applicability in analyzing the solution behavior of heterogeneous nanosystems and have been made available as a web-based application. Specifically, our results probed the influence of solution conditions and symmetry on stability and structural adaptability, identifying the dimeric interface as the weak point in the assembly. Force plots comparing SAXS data sets further reveal more complex and controllable behavior in solution than captured by our crystal structures. These methods for objectively and comprehensively comparing SAXS profiles for systems critically affected by solvent conditions and structural heterogeneity provide an enabling technology for advancing the design and bioengineering of nanoscale biological materials. C1 [Lai, Yen-Ting; Yeates, Todd O.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Hura, Greg L.; Dyer, Kevin N.; Tang, Henry Y. H.; Tainer, John A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hura, Greg L.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Tainer, John A.] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA. [Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Yeates, Todd O.] Univ Calif Los Angeles, California NanoSyst Inst, Los Angeles, CA 90095 USA. [Lai, Yen-Ting] NIH, Vaccine Res Ctr, Bethesda, MD 20892 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA.; Tainer, JA (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Tainer, JA (reprint author), Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA.; Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA.; Yeates, TO (reprint author), Univ Calif Los Angeles, California NanoSyst Inst, Los Angeles, CA 90095 USA. EM jatainer@lbl.gov; yeates@mbi.ucla.edu FU NSF [CHE-1332907]; BER program of the DOE Office of Science [DE-FC02-02ER63421]; Robert A. Welch Distinguished Chair in Chemistry; Cancer Prevention and Research Institute of Texas; University of Texas FX This work was supported by NSF grant CHE-1332907 (T.O.Y.) and by the BER program of the DOE Office of Science (DE-FC02-02ER63421). J.A.T. is supported by the Robert A. Welch Distinguished Chair in Chemistry. J.A.T. acknowledges startup funds from the Cancer Prevention and Research Institute of Texas, and the University of Texas STARs program. NR 48 TC 0 Z9 0 U1 6 U2 6 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD DEC PY 2016 VL 2 IS 12 AR e1501855 DI 10.1126/sciadv.1501855 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG7XC UT WOS:000391268800001 PM 27990489 ER PT J AU Rowley, DB Forte, AM Rowan, CJ Glisovic, P Moucha, R Grand, SP Simmons, NA AF Rowley, David B. Forte, Alessandro M. Rowan, Christopher J. Glisovic, Petar Moucha, Robert Grand, Stephen P. Simmons, Nathan A. TI Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling SO SCIENCE ADVANCES LA English DT Article ID SOUTHWEST INDIAN RIDGE; CURRENT PLATE MOTIONS; INTRAPLATE VOLCANISM; RELATIVE IMPORTANCE; SUBDUCTION ZONES; BENEATH AFRICA; EARTHS CORE; SEA; MA; CONVECTION AB Earth's tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth's dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region. C1 [Rowley, David B.; Rowan, Christopher J.] Univ Chicago, Dept Geophys Sci, 5734 South Ellis Ave, Chicago, IL 60637 USA. [Forte, Alessandro M.; Glisovic, Petar] Univ Quebec, GEOTOP, Montreal, PQ H3C 3P8, Canada. [Forte, Alessandro M.] Univ Florida, Dept Geol Sci, Gainesville, FL 32611 USA. [Rowan, Christopher J.] Kent State Univ, Dept Geol, 221 McGilvrey Hall, Kent, OH 44242 USA. [Moucha, Robert] Syracuse Univ, Dept Earth Sci, Syracuse, NY 13244 USA. [Grand, Stephen P.] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [Simmons, Nathan A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. RP Rowley, DB (reprint author), Univ Chicago, Dept Geophys Sci, 5734 South Ellis Ave, Chicago, IL 60637 USA. EM drowley@uchicago.edu RI Simmons, Nathan/J-9022-2014; OI Rowley, David/0000-0001-9767-9029; Glisovic, Petar/0000-0001-5636-7731 FU Canadian Institute for Advanced Research-Earth System Evolution Program; Canadian Institute for Advanced Research; Natural Sciences and Engineering Research Council of Canada; John Simon Guggenheim Memorial Foundation; University of Florida; U.S. Department of Energy [DE-AC52-07NA27344]; NSF [EAR0309189] FX D.B.R. and A.M.F. thank the Canadian Institute for Advanced Research-Earth System Evolution Program for postdoctoral fellowship support to C.J.R. and members of Engaging Scientists and Engineers in Policy for discussions and encouragement. A.M.F. acknowledges funding from the Canadian Institute for Advanced Research, the Natural Sciences and Engineering Research Council of Canada, the John Simon Guggenheim Memorial Foundation, and the University of Florida. Work performed by N.A.S. is under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344. S.P.G. acknowledges NSF grant EAR0309189. NR 91 TC 1 Z9 1 U1 5 U2 5 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD DEC PY 2016 VL 2 IS 12 AR e1601107 DI 10.1126/sciadv.1601107 PG 18 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG7XC UT WOS:000391268800010 PM 28028535 ER PT J AU Campisi, J AF Campisi, Judith TI Cellular Senescence and Lung Function during Aging SO ANNALS OF THE AMERICAN THORACIC SOCIETY LA English DT Article AB Cellular senescence is a cell fate decision and stress response that entails a permanent arrest of cell proliferation coupled to a complex secretory phenotype. Senescent cells increase in number with age in most, if not all, mammalian tissues, including the airways and lungs. They also increase at greater than expected numbers, compared with age-matched controls, at sites of age-related pathologies such as chronic obstructive pulmonary disorder and emphysema. The senescence response is a double-edged sword. The proliferative arrest suppresses the development of cancer by preventing the propagation of stressed or damaged cells that are at risk for neoplastic transformation. However, this arrest can also curtail the proliferation of stem or progenitor cells and thus hamper tissue repair and regeneration. Similarly, the secretory phenotype can promote wound healing by transiently providing growth factors and the initial inflammatory stimulus that is required for tissue repair. However, when chronically present, the secretory phenotype of senescent cells can drive pathological inflammation, which contributes to a host of age-related pathologies, including cancer. There are now transgenes and prototype small molecules that can clear senescent cells, at least in mouse models, and thus improve health span and median life span. The next challenge will be to develop interventions and supplements that can abrogate the deleterious effects of senescent cells while preserving their beneficial effects. C1 [Campisi, Judith] Buck Inst Res Aging, 8001 Redwood Blvd, Novato, CA 94945 USA. [Campisi, Judith] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Campisi, J (reprint author), Buck Inst Res Aging, 8001 Redwood Blvd, Novato, CA 94945 USA.; Campisi, J (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jcampisi@buckinstitute.org FU National Institutes of Health [AG009909, AG017242, AG041122] FX Supported by National Institutes of Health grants AG009909, AG017242, and AG041122. NR 0 TC 1 Z9 1 U1 1 U2 1 PU AMER THORACIC SOC PI NEW YORK PA 25 BROADWAY, 18 FL, NEW YORK, NY 10004 USA SN 1546-3222 EI 2325-6621 J9 ANN AM THORAC SOC JI Ann. Am. Thoracic Society PD DEC PY 2016 VL 13 SU 5 BP S402 EP S406 DI 10.1513/AnnalsATS.201609-703AW PG 5 WC Respiratory System SC Respiratory System GA EG2OZ UT WOS:000390884500004 PM 28005423 ER PT J AU Phaneuf, CR Mangadu, B Piccini, ME Singh, AK Koh, CY AF Phaneuf, Christopher R. Mangadu, Betty Piccini, Matthew E. Singh, Anup K. Koh, Chung-Yan TI Rapid, Portable, Multiplexed Detection of Bacterial Pathogens Directly from Clinical Sample Matrices SO BIOSENSORS-BASEL LA English DT Article DE microfluidics; diagnostics; pathogen detection; point-of-care; immunoassay; centrifugal; enteric diseases ID CENTRIFUGAL MICROFLUIDIC PLATFORM; MEDIATED ISOTHERMAL AMPLIFICATION; EXTREME POINT; PCR; SEDIMENTATION; CHALLENGES; BIOSENSOR; HEALTH; TOXIN; CARE AB Enteric and diarrheal diseases are a major cause of childhood illness and death in countries with developing economies. Each year, more than half of a million children under the age of five die from these diseases. We have developed a portable, microfluidic platform capable of simultaneous, multiplexed detection of several of the bacterial pathogens that cause these diseases. This platform can perform fast, sensitive immunoassays directly from relevant, complex clinical matrices such as stool without extensive sample cleanup or preparation. Using only 1 mu L of sample per assay, we demonstrate simultaneous multiplexed detection of four bacterial pathogens implicated in diarrheal and enteric diseases in less than 20 min. C1 [Phaneuf, Christopher R.; Mangadu, Betty; Piccini, Matthew E.; Singh, Anup K.; Koh, Chung-Yan] Sandia Natl Labs, Biotechnol & Bioengn, Livermore, CA 94551 USA. [Piccini, Matthew E.] Cepheid, Sunnyvale, CA 94089 USA. RP Koh, CY (reprint author), Sandia Natl Labs, Biotechnol & Bioengn, Livermore, CA 94551 USA. EM crphane@sandia.gov; bmangad@sandia.gov; mpcostabile@msn.com; aksingh@sandia.gov; ckoh@sandia.gov FU National Institute of Allergy and Infectious Diseases of the National Institutes of Health [R01AI098853]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000. SAND2016-8183J] FX This work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Number R01AI098853. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank M. Aragon for assistance with figures. Sandia National Laboratories is a multi-mission laboratory managed and operated by the Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-8183J. NR 35 TC 1 Z9 1 U1 6 U2 6 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2079-6374 J9 BIOSENSORS-BASEL JI Biosensors-Basel PD DEC PY 2016 VL 6 IS 4 AR 49 DI 10.3390/bios6040049 PG 10 WC Chemistry, Analytical SC Chemistry GA EG4CD UT WOS:000390990100001 ER PT J AU Hurley, JH Nogales, E AF Hurley, James H. Nogales, Eva TI Next-generation electron microscopy in autophagy research SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Article ID ENDOPLASMIC-RETICULUM; SELECTIVE AUTOPHAGY; COMPLEX I; ARCHITECTURE; PHAGOPHORE; MECHANISMS; SCAFFOLD; MACROAUTOPHAGY; BIOGENESIS; YEAST AB Autophagy is the process whereby cytosol, organelles, and inclusions are taken up in a double-membrane vesicle known as the autophagosome, and transported to the lysosome for destruction and recycling. Electron microscopy (EM) led to the discovery of autophagy in the 1950s and has been a central part of its characterization ever since. New capabilities in single particle EM studies of the autophagy machinery are beginning to provide exciting insights into the mechanisms of autophagosome initiation, growth, and substrate targeting. These include EM structures at various resolutions of part of the Atg1 protein kinase complex and all of the class III phosphatidylinositol 3-phosphate complex I that initiate autophagy; the mTORC1 complex that regulates autophagy initiation; the Apel particle, a major substrate for selective autophagy in yeast; and p62, a mammalian selective autophagy adaptor. Equally exciting are the prospects for increased resolution and insight into autophagosome formation in cells from advances in cryo-EM tomography and focused ion beam-scanning electron microscopy (FIB-SEM). This review considers recent accomplishments, prospects for progress, and remaining obstacles that still need to be overcome. C1 [Hurley, James H.; Nogales, Eva] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [Hurley, James H.; Nogales, Eva] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Hurley, James H.; Nogales, Eva] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Hurley, JH; Nogales, E (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.; Hurley, JH; Nogales, E (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.; Hurley, JH; Nogales, E (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA.; Nogales, E (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM jimhurley@berkeley.edu; enogales@lbl.gov FU [P01 GM051487]; [R01 GM111730] FX We thank Arthur Yeremenko and Lindsey Young for generating figures. The application of EM to autophagy in our labs is supported by grants P01 GM051487 (EN and JHH); Electron Microscopy of Biological Macromolecules and R01 GM111730 (JHH); Autophagy Initiation by the Atg1 Complex. NR 32 TC 0 Z9 0 U1 6 U2 6 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X EI 1879-033X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD DEC PY 2016 VL 41 BP 211 EP 216 DI 10.1016/j.sbi.2016.08.006 PG 6 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA EG3TJ UT WOS:000390967300027 PM 27614295 ER PT J AU Walker, RC Hardee, PE Davies, F Ly, C Junor, W Mertens, F Lobanov, A AF Walker, R. Craig Hardee, Philip E. Davies, Fred Ly, Chun Junor, William Mertens, Florent Lobanov, Andrei TI Observations of the Structure and Dynamics of the Inner M87 Jet SO GALAXIES LA English DT Article DE galaxies: individual (M87); galaxies: jets; galaxies: active; radio continuum: galaxies ID GAMMA-RAY EMISSION; CENTRAL BLACK-HOLE; RADIO JET; SCHWARZSCHILD RADII; BASE; EFFICIENT; GALAXY AB M87 is the best source in which to study a jet at high resolution in gravitational units because it has a very high mass black hole and is nearby. The angular size of the black hole is second only to Sgr A*, which does not have a strong jet. The jet structure is edge brightened with a wide opening angle base and a weak counterjet. We have roughly annual observations for 17 years plus intensive monitoring at three week intervals for a year and five day intervals for 2.5 months made with the Very Long Baseline Array (VLBA) at 43 GHz. The inner jet shows very complex dynamics, with apparent motions both along and across the jet. Speeds from zero to over 2c are seen, with acceleration observed over the first 3 milli-arcseconds. The counterjet decreases in brightness much more rapidly than the main jet, as is expected from relativistic beaming in an accelerating jet oriented near the line-of-sight. Details of the structure and dynamics are discussed. The roughly annual observations show side-to-side motion of the whole jet with a characteristic time scale of about 9 years. C1 [Walker, R. Craig] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Hardee, Philip E.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Davies, Fred] MPIA, D-69117 Heidelberg, Germany. [Ly, Chun] Goddard Space Flight Ctr, Astrophys Sci Div, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA. [Junor, William] Los Alamos Natl Lab, ISR 2,MS-D436,POB 1663, Los Alamos, NM 87545 USA. [Mertens, Florent; Lobanov, Andrei] Max Planck Inst Radioastron, Huegel 69, D-53121 Bonn, Germany. [Mertens, Florent] Kapteyn Astron Inst, POB 800, NL-9700 AV Groningen, Netherlands. [Lobanov, Andrei] Univ Hamburg, Inst Expt Phys, Luruper Chaussee 149, D-22761 Hamburg, Germany. RP Walker, RC (reprint author), Natl Radio Astron Observ, Socorro, NM 87801 USA. EM cwalker@nrao.edu; pehardee@gmail.com; fdavies@ucla.edu; astro.chun@gmail.com; bjunor@lanl.gov; florent.mertens@gmail.com; alobanov@mpifr-bonn.mpg.de FU International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the University of Bonn; International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the University of Cologne; NASA FX The Very Long Baseline Array is an instrument of the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work made use of the Swinburne University of Technology software correlator [24], developed as part of the Australian Major National Research Facilities Programme and operated under licence. Florent Mertens was supported for this research through a stipend from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne. Chun Ly is supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities and Universities Space Research Association through contracts with NASA. NR 24 TC 0 Z9 0 U1 0 U2 0 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2075-4434 J9 GALAXIES JI Galaxies PD DEC PY 2016 VL 4 IS 4 AR 46 DI 10.3390/galaxies4040046 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG4HH UT WOS:000391004000014 ER PT J AU Kurt, EG Varma, AH Sohn, YM AF Kurt, Efe G. Varma, Amit H. Sohn, Young M. TI Direct Shear Strength of Rebar-coupler Anchor Systems for Steel-plate Composite (SC) Walls SO INTERNATIONAL JOURNAL OF STEEL STRUCTURES LA English DT Article; Proceedings Paper CT 8th International Symposium on Steel Structures (ISSS) CY NOV 05-07, 2015 CL Jeju, SOUTH KOREA SP Korean Soc Steel Construct DE Composite; steel-plate composite; steel-concrete; direct shear strength; rebar-coupler anchor ID INPLANE SHEAR; DESIGN; BEHAVIOR; DATABASE AB This paper focuses on the direct shear behavior of rebar-coupler anchor systems, and their use for anchorage of steel-plate composite (SC) walls to the concrete basemat of safety-related nuclear facilities. Large-scale rebar-coupler anchor specimens were tested under direct shear loading until failure. The results included the applied load-slip displacement responses of the specimens, the direct shear strength, and the observed failure mode. The American Concrete Institute (ACI) 349 code equation for calculating the direct shear strength of embedded anchors was compared with the direct shear strengths from the tests. The code equation underestimated the direct shear strength of the anchor system, because shear failure was assumed to occur in the rebars, whereas experimental observations indicated that shear fracture failure occurred in the couplers rather than the rebars. The design equation was updated to utilize the net shear area of the couplers instead of the rebars, after which the direct shear strengths from the tests could be calculated with reasonable accuracy. The experimental results were also used to propose an empirical model for the shear force vs. slip displacement response of rebar-coupler anchor systems. C1 [Kurt, Efe G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Varma, Amit H.] Purdue Univ, Lyles Sch Civil Engn, W Lafayette, IN 47907 USA. [Sohn, Young M.] Cent Connecticut Univ, New Britain, CT USA. RP Kurt, EG (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM efegkurt@gmail.com NR 36 TC 0 Z9 0 U1 4 U2 4 PU KOREAN SOC STEEL CONSTRUCTION-KSSC PI SEOUL PA 106-18 MUNJUNG-DONG, SONGPA-KU, SEOUL, 138-200, SOUTH KOREA SN 1598-2351 EI 2093-6311 J9 INT J STEEL STRUCT JI Int. J. Steel Struct. PD DEC PY 2016 VL 16 IS 4 BP 1397 EP 1409 DI 10.1007/s13296-016-0096-6 PG 13 WC Construction & Building Technology; Engineering, Civil SC Construction & Building Technology; Engineering GA EG1XY UT WOS:000390828900035 ER PT J AU Kwong, KS Bennett, JP AF Kwong, Kyei-Sing Bennett, James P. TI A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures SO JOURNAL FOR MANUFACTURING SCIENCE AND PRODUCTION LA English DT Article DE coal slag; similarity; slag viscosity; modeling ID VISCOSITY AB Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag's viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slag management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock. C1 [Kwong, Kyei-Sing; Bennett, James P.] US DOE, Natl Energy Technol Lab, 1450 SW Queen Ave, Albany, OR 97321 USA. RP Kwong, KS (reprint author), US DOE, Natl Energy Technol Lab, 1450 SW Queen Ave, Albany, OR 97321 USA. EM kyeising.kwong@netl.doe.gov; James.Bennett@netl.doe.gov FU agency of the United States Government FX This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 22 TC 0 Z9 0 U1 0 U2 0 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 2191-4184 EI 2191-0375 J9 J MANUF SCI PROD JI J. Manuf. Sci. Prod. PD DEC PY 2016 VL 16 IS 4 BP 233 EP 241 DI 10.1515/jmsp-2016-0022 PG 9 WC Engineering, Manufacturing SC Engineering GA EG4ZF UT WOS:000391052000004 ER PT J AU Hecker, SS Braun, C Lawrence, C AF Hecker, Siegfried S. Braun, Chaim Lawrence, Chris TI North Korea's Stockpiles of Fissile Material SO KOREA OBSERVER LA English DT Article DE North Korea; fissile material; nuclear weapons; plutonium; highly enriched uranium (HEU); tritium; fuel cycle AB North Korea has conducted five nuclear tests and is believed to be rapidly increasing the size and sophistication of its nuclear arsenal. Increased sophistication, particularly the ability to miniaturize nuclear devices, requires more nuclear tests. The size of the arsenal is limited primarily by the stockpile of fissile material - plutonium and highly enriched uranium (HEU). Current plutonium inventories are estimated with moderate confidence to be in the range of 20 to 40 kg, sufficient for the manufacture of 4 to 8 plutonium bombs. HEU inventories are estimated with much greater uncertainty to be in the range of 200 to 450 kg, sufficient for 10 to 25 HEU bombs. Annual production rates are estimated to be less than 6 kg of plutonium and similar to 150 kg HEU. C1 [Hecker, Siegfried S.; Braun, Chaim] Stanford Univ, Ctr Int Secur & Cooperat, Stanford, CA 94305 USA. [Hecker, Siegfried S.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Lawrence, Chris] Harvards Kennedy Sch Govt, Program Sci Technol & Soc, Cambridge, MA USA. RP Hecker, SS (reprint author), Stanford Univ, Ctr Int Secur & Cooperat, Stanford, CA 94305 USA.; Hecker, SS (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM shecker@stanford.edu NR 21 TC 0 Z9 0 U1 2 U2 2 PU INST KOREAN STUDIES PI SEOUL PA CPO BOX 3410, SEOUL, 100-364, SOUTH KOREA SN 0023-3919 J9 KOREA OBS JI Korea Obs. PD WIN PY 2016 VL 47 IS 4 SI SI BP 721 EP 749 PG 29 WC Area Studies; International Relations SC Area Studies; International Relations GA EG3VJ UT WOS:000390972500003 ER PT J AU Bae, S Kanematsu, M Hernandez-Cruz, D Moon, J Kilcoyne, D Monteiro, PJM AF Bae, Sungchul Kanematsu, Manabu Hernandez-Cruz, Daniel Moon, Juhyuk Kilcoyne, David Monteiro, Paulo J. M. TI In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration SO MATERIALS LA English DT Article DE hydration; tricalcium silicate; C-S-H; kinetics; spectromicroscopy ID C-S-H; MICROSCOPY STXM; PORTLAND-CEMENT; C3S HYDRATION; ABSORPTION; KINETICS; SPECTRA; XANES; EDGES; ALITE AB The understanding and control of early hydration of tricalcium silicate (C3S) is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (similar to 1 h) and acceleration (similar to 4 h) periods of up to similar to 8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C-S-H). The formation of C-S-H nanoseeds in the C3S solution and the development of a fibrillar C-S-H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C-S-H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C-S-H. C1 [Bae, Sungchul] Hanyang Univ, Dept Architectural Engn, Seoul 04763, South Korea. [Kanematsu, Manabu] Tokyo Univ Sci, Fac Sci & Technol, 2641 Yamazaki, Noda, Chiba 2788510, Japan. [Hernandez-Cruz, Daniel] Univ Autonoma Chiapas, Fac Engn, Tuxtla Gutierrez 29050, Chiapas, Mexico. [Moon, Juhyuk] Natl Univ Singapore, Dept Civil & Environm Engn, 1 Engn Dr 2, Singapore 117576, Singapore. [Kilcoyne, David] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Monteiro, Paulo J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Moon, J (reprint author), Natl Univ Singapore, Dept Civil & Environm Engn, 1 Engn Dr 2, Singapore 117576, Singapore. EM sbae@hanyang.ac.kr; manabu@rs.noda.tus.ac.jp; dhernandezcruz@gmail.com; ceemjh@nus.edu.sg; ALKilcoyne@lbl.gov; monteiro@berkeley.edu RI Kilcoyne, David/I-1465-2013; OI Bae, Sungchul/0000-0002-8511-6939; Hernandez Cruz, Daniel/0000-0003-4950-7155 FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT, and Future Planning [NRF-2016R1C1B1014179]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Republic of Singapore's National Research Foundation; Technology Business Innovation Program - Ministry of Land, Infrastructure and Transport of the Korean government [16TBIP-C111710-01] FX This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2016R1C1B1014179). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research is funded by the Republic of Singapore's National Research Foundation through a grant to the Berkeley Education Alliance for Research in Singapore (BEARS) for the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics (SinBerBEST) Program. The research was also funded by a grant (16TBIP-C111710-01) from the Technology Business Innovation Program funded by the Ministry of Land, Infrastructure and Transport of the Korean government. NR 36 TC 1 Z9 1 U1 14 U2 14 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD DEC PY 2016 VL 9 IS 12 AR 976 DI 10.3390/ma9120976 PG 16 WC Materials Science, Multidisciplinary SC Materials Science GA EG3OB UT WOS:000390953400022 ER PT J AU Ma, E Ding, J AF Ma, E. Ding, J. TI Tailoring structural inhomogeneities in metallic glasses to enable tensile ductility at room temperature SO MATERIALS TODAY LA English DT Article ID FRACTURE-TOUGHNESS; SHEAR BANDS; MECHANICAL-BEHAVIOR; AMORPHOUS-ALLOYS; SIZE-REDUCTION; LOCAL ORDER; DEFORMATION; STRAIN; TRANSFORMATION; DAMAGE AB Metallic glasses boast high strength, but their low ductility has been a major concern. Here, taking a structural perspective and citing selected examples, we advocate purposely enhanced structural inhomogeneities, in an otherwise compositionally uniform and single-phase amorphous alloy, to promote distributed plastic flow. Four current tactics (the four R's) to improve deformability are highlighted, from the standpoint of structural, and consequentially mechanical, heterogeneities that can be tailored in the monolithic glassy state. Highly rejuvenated glass structures, coupled with restrained shear banding instability, lead to tensile ductility and necking, which is unusual for glasses at room temperature. Possibilities of strain hardening and strain rate hardening that are needed to stabilize uniform elongation are discussed. Innovative design and processing of amorphous metals, with internal structures tuned to facilitate flow, offer new possibilities in pushing the envelope of ductility accessible to these high-strength materials. C1 [Ma, E.; Ding, J.] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. [Ding, J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ma, E (reprint author), Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA. EM ema@jhu.edu RI Ding, Jun/K-1989-2012 OI Ding, Jun/0000-0002-4091-8663 FU National Science Foundation [NSF-DMR-1505621]; Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering [DE-FG02-13ER46056] FX The authors acknowledge Dr. Lin Tian for her contributions and Prof. Howard Sheng for developing the EAM potentials used in our MD simulations, as well as the support by the National Science Foundation under grant NSF-DMR-1505621 and by Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering under DE-FG02-13ER46056. NR 91 TC 1 Z9 1 U1 10 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 EI 1873-4103 J9 MATER TODAY JI Mater. Today PD DEC PY 2016 VL 19 IS 10 BP 568 EP 579 DI 10.1016/j.mattod.2016.04.001 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA EG6YK UT WOS:000391192000018 ER PT J AU Ameen, MM Kundu, P Som, S AF Ameen, Muhsin M. Kundu, Prithwish Som, Sibendu TI Novel Tabulated Combustion Model Approach for Lifted Spray Flames with Large Eddy Simulations SO SAE INTERNATIONAL JOURNAL OF ENGINES LA English DT Article ID ENGINE CONDITIONS AB In this work, a turbulent combustion model is developed for large eddy simulation (LES) using a novel flamelet tabulation technique based on the framework of the multi-flamelet representative interactive flamelet (RIF) model. The overall aim is to develop a detailed model with elaborate chemistry mechanisms, LES turbulence models and highly resolved grids leveraging the computational cost advantage of a tabulated model. A novel technique of implementing unsteady flamelet libraries by using the residence time instead of the progress variables is proposed. In this study, LES of n-dodecane spray flame is performed using the tabulated turbulent combustion model along with a dynamic structure subgrid model. A high-resolution mesh is employed with a cell size of 62.5 microns in the entire spray and combustion regions. This model is then validated against igniting n-dodecane sprays under diesel engine conditions. For these constant volume combustion cases, 4-dimensional flamelet libraries based on scalar dissipation rate, residence time, mixture fraction variance and filtered mixture fraction are generated using a highly scalable parallel code. The flamelet libraries are generated using a 106-species and 420-reactions chemistry mechanism for n-dodecane. The transient flame development and the grid dependency shown by the tabulated model are analyzed. The results from the model show excellent agreement with the experimental measurements for ignition delay and flame liftoff across a wide range of ambient temperature conditions. The tabulated combustion modeling approach is also shown to have better agreements with the experiments than the homogenous reactor approach (typically used in the engine modeling community), while the computational expenses were significantly lower. C1 [Ameen, Muhsin M.; Kundu, Prithwish; Som, Sibendu] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Ameen, MM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mameen@anl.gov FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. DOE Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This research was funded by U.S. DOE Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy under Contract No. DE-AC02-06CH11357. The authors wish to thank Gurpreet Singh and Leo Breton, program managers at DOE, for their support. We gratefully acknowledge the computing resources provided on Fusion, a computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 22 TC 1 Z9 1 U1 0 U2 0 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3936 EI 1946-3944 J9 SAE INT J ENGINES JI SAE Int. J. Engines PD DEC PY 2016 VL 9 IS 4 BP 2056 EP 2065 DI 10.4271/2016-01-2194 PG 10 WC Transportation Science & Technology SC Transportation GA EF8RO UT WOS:000390597200007 ER PT J AU Pamminger, M Sevik, J Scarcelli, R Wallner, T Wooldridge, S Boyer, B Hall, CM AF Pamminger, Michael Sevik, James Scarcelli, Riccardo Wallner, Thomas Wooldridge, Steven Boyer, Brad Hall, Carrie M. TI Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a Light Duty Spark Ignited Engine SO SAE INTERNATIONAL JOURNAL OF ENGINES LA English DT Article AB The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas - gasoline blends show higher discrepancies comparing chemical and experimental knock onset. C1 [Pamminger, Michael; Sevik, James; Scarcelli, Riccardo; Wallner, Thomas] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Wooldridge, Steven; Boyer, Brad] Ford Motor Co, Dearborn, MI 48121 USA. [Hall, Carrie M.] IIT, Chicago, IL 60616 USA. RP Wallner, T (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. EM twallner@anl.gov FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; DOE's Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy [DE-FOA-0000991 (0991-1822)] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; This research is funded by DOE's Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy through an award based on the FY 2014 Vehicle Technologies Program Wide Funding Opportunity Announcement DE-FOA-0000991 (0991-1822). The authors would like to express their gratitude to Kevin Stork, program manager at DOE, for his support. NR 14 TC 0 Z9 0 U1 1 U2 1 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3936 EI 1946-3944 J9 SAE INT J ENGINES JI SAE Int. J. Engines PD DEC PY 2016 VL 9 IS 4 BP 2153 EP 2165 DI 10.4271/2016-01-2293 PG 13 WC Transportation Science & Technology SC Transportation GA EF8RO UT WOS:000390597200015 ER PT J AU Ji, CS Dec, J Dernotte, J Cannella, W AF Ji, Chunsheng Dec, John Dernotte, Jeremie Cannella, William TI Boosted Premixed-LTGC / HCCI Combustion of EHN-doped Gasoline for Engine Speeds Up to 2400 rpm SO SAE INTERNATIONAL JOURNAL OF ENGINES LA English DT Article DE HCCI; LTGC; Autoignition Reactivity; Combustion Stability; Ignition Improvers; 2-Ethylhexyl Nitrate AB Previous work has shown that conventional diesel ignition improvers, 2-ethylhexyl nitrate (EHN) and di-tert-butyl peroxide (DTBP), can be used to enhance the autoignition of a regular-grade E10 gasoline in a well premixed low-temperature gasoline combustion (LTGC) engine, hereafter termed an HCCI engine, at naturally aspirated and moderately boosted conditions (up to 180 kPa absolute) with a constant engine speed of 1200 rpm and a 14: 1 compression ratio. In the current work the effect of EHN on boosted HCCI combustion is further investigated with a higher compression ratio (16: 1) piston and over a range of engine speeds (up to 2400 rpm). The results show that the higher compression ratio and engine speeds can make the combustion of a regular-grade E10 gasoline somewhat less stable. The addition of EHN improves the combustion stability by allowing combustion phasing to be more advanced for the same ringing intensity. The high-load limits of both the straight (unadditized) and additized fuels are determined, and the additized fuel is found to achieve a higher maximum load at all engine speeds and intake pressures tested, if it is not limited by lack of oxygen. The results reveal that the higher loads with EHN are the result of either reduced intake temperature requirements at naturally aspirated conditions or a reduction in heat release rate at higher intake pressures. Such effects are also found to increase the thermal efficiency, and a maximum indicated thermal efficiency of 50.1% is found for 0.15% EHN additized fuel at 1800 rpm and 180 kPa intake pressure. Similar to previous studies, the nitrogen in EHN increases NOx emissions, but they remain well below US-2010 standards. Higher engine speeds are found to have slightly lower NOx emissions for additized fuel at intake boosted conditions. C1 [Ji, Chunsheng; Dec, John; Dernotte, Jeremie] Sandia Natl Labs, Livermore, CA 94550 USA. [Cannella, William] Chevron Energy Technol Co, Houston, TX USA. RP Ji, CS (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. FU Chevron under WFO [FI083070907-Z]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Primary support for this investigation was provided by Chevron under WFO contract FI083070907-Z, managed by William Cannella. The work was performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, CA. Support for establishing the HCCI lab facility was provided by the US Department of Energy, Office of Vehicle Technologies, managed by Gurpreet Singh and Leo Breton. Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 32 TC 0 Z9 0 U1 1 U2 1 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3936 EI 1946-3944 J9 SAE INT J ENGINES JI SAE Int. J. Engines PD DEC PY 2016 VL 9 IS 4 BP 2166 EP 2184 DI 10.4271/2016-01-2295 PG 19 WC Transportation Science & Technology SC Transportation GA EF8RO UT WOS:000390597200016 ER PT J AU Sevik, J Pamminger, M Wallner, T Scarcelli, R Boyer, B Wooldridge, S Hall, C Miers, S AF Sevik, James Pamminger, Michael Wallner, Thomas Scarcelli, Riccardo Boyer, Brad Wooldridge, Steven Hall, Carrie Miers, Scott TI Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine SO SAE INTERNATIONAL JOURNAL OF ENGINES LA English DT Article AB Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions. Steady-state tests were performed on a single-cylinder research engine representative of current gasoline direct-injection engines. Tests were performed with direct-injection in the central and side location. The start of injection was varied under stoichiometric conditions in order to study the effects on the mixture formation process. In addition, exhaust gas recirculation was introduced at select conditions in order to investigate the dilution tolerance. Relevant combustion metrics were then analyzed for each scenario. Experimental results suggest that regardless of the injector location, varying the start of injection has a strong impact on the mixture formation process. Delaying the start of injection from 300 to 120 degrees CA BTDC can reduce the early flame development process by nearly 15 degrees CA. While injecting into the cylinder after the intake valves have closed has shown to produce the fastest combustion process, this does not necessarily lead to the highest efficiency, due to increases in pumping and wall heat losses. When comparing the two injection configurations, the side location shows the best performance in terms of combustion metrics and efficiencies. For both systems, part-load dilution tolerance is affected by the injection timing, due to the induced turbulence from the gaseous injection event. CFD simulation results have shown that there is a fundamental difference in how the two injection locations affect the mixture formation process. Delayed injection timing increases the turbulence level in the cylinder at the time of the spark, but reduces the available time for proper mixing. Side injection delivers a gaseous jet that interacts more effectively with the intake induced flow field, and this improves the engine performance in terms of efficiency. C1 [Sevik, James; Pamminger, Michael; Wallner, Thomas; Scarcelli, Riccardo] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Boyer, Brad; Wooldridge, Steven] Ford Motor Co, Dearborn, MI 48121 USA. [Hall, Carrie] IIT, Chicago, IL 60616 USA. [Miers, Scott] Michigan Technol Univ, Houghton, MI 49931 USA. RP Wallner, T (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. EM twallner@anl.gov FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; DOE's Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy [DE-FOA-0000991 (0991-1822)] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; This research is funded by DOE's Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy through an award based on the FY 2014 Vehicle Technologies Program Wide Funding Opportunity Announcement DE-FOA-0000991 (0991-1822). The authors would like to express their gratitude to Kevin Stork, program manager at DOE, for his support. NR 15 TC 0 Z9 0 U1 0 U2 0 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3936 EI 1946-3944 J9 SAE INT J ENGINES JI SAE Int. J. Engines PD DEC PY 2016 VL 9 IS 4 BP 2262 EP 2271 DI 10.4271/2016-01-2364 PG 10 WC Transportation Science & Technology SC Transportation GA EF8RO UT WOS:000390597200024 ER PT J AU Lin, Z McCreary, A Briggs, N Subramanian, S Zhang, KH Sun, YF Li, XF Borys, NJ Yuan, HT Fullerton-Shirey, SK Chernikov, A Zhao, H McDonnell, S Lindenberg, AM Xiao, K LeRoy, BJ Drndic, M Hwang, JCM Park, J Chhowalla, M Schaak, RE Javey, A Hersam, MC Robinson, J Terrones, M AF Lin, Zhong McCreary, Amber Briggs, Natalie Subramanian, Shruti Zhang, Kehao Sun, Yifan Li, Xufan Borys, Nicholas J. Yuan, Hongtao Fullerton-Shirey, Susan K. Chernikov, Alexey Zhao, Hui McDonnell, Stephen Lindenberg, Aaron M. Xiao, Kai LeRoy, Brian J. Drndic, Marija Hwang, James C. M. Park, Jiwoong Chhowalla, Manish Schaak, Raymond E. Javey, Ali Hersam, Mark C. Robinson, Joshua Terrones, Mauricio TI 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications SO 2D MATERIALS LA English DT Review DE 2D materials; transition metal dichalcogenides; review ID TRANSITION-METAL DICHALCOGENIDES; FIELD-EFFECT TRANSISTORS; DER-WAALS HETEROSTRUCTURES; MONOLAYER MOLYBDENUM-DISULFIDE; SINGLE-LAYER MOS2; CHEMICAL-VAPOR-DEPOSITION; THIN-FILM TRANSISTORS; GIANT BANDGAP RENORMALIZATION; FLEXIBLE PRINTED ELECTRONICS; HYDROGEN EVOLUTION REACTION AB The rise of two-dimensional (2D) materials research took place following the isolation of graphene in 2004. These new 2D materials include transition metal dichalcogenides, mono-elemental 2D sheets, and several carbide-and nitride-based materials. The number of publications related to these emerging materials has been drastically increasing over the last five years. Thus, through this comprehensive review, we aim to discuss the most recent groundbreaking discoveries as well as emerging opportunities and remaining challenges. This review starts out by delving into the improved methods of producing these new 2D materials via controlled exfoliation, metal organic chemical vapor deposition, and wet chemical means. We look into recent studies of doping as well as the optical properties of 2D materials and their heterostructures. Recent advances towards applications of these materials in 2D electronics are also reviewed, and include the tunnel MOSFET and ways to reduce the contact resistance for fabricating high-quality devices. Finally, several unique and innovative applications recently explored are discussed as well as perspectives of this exciting and fast moving field. C1 [Lin, Zhong; McCreary, Amber; Terrones, Mauricio] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Lin, Zhong; McCreary, Amber; Briggs, Natalie; Subramanian, Shruti; Zhang, Kehao; Sun, Yifan; Schaak, Raymond E.; Robinson, Joshua; Terrones, Mauricio] Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA. [Briggs, Natalie; Subramanian, Shruti; Zhang, Kehao; Robinson, Joshua; Terrones, Mauricio] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Sun, Yifan; Schaak, Raymond E.; Terrones, Mauricio] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Li, Xufan; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Borys, Nicholas J.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Yuan, Hongtao] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Yuan, Hongtao] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Fullerton-Shirey, Susan K.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15213 USA. [Chernikov, Alexey] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany. [Chernikov, Alexey] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Chernikov, Alexey] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Zhao, Hui] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [McDonnell, Stephen] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Lindenberg, Aaron M.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Lindenberg, Aaron M.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [LeRoy, Brian J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Drndic, Marija] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Hwang, James C. M.] Lehigh Univ, Dept Elect & Comp Engn, Bethlehem, PA 18015 USA. [Park, Jiwoong] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. [Park, Jiwoong] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Chhowalla, Manish] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA. [Chhowalla, Manish] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA. [Javey, Ali] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Javey, Ali] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Hersam, Mark C.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Robinson, Joshua; Terrones, Mauricio] Penn State Univ, Ctr Atomically Thin Multifunct Coatings ATOMIC, University Pk, PA 16802 USA. RP Terrones, M (reprint author), Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA.; Terrones, M (reprint author), Penn State Univ, Ctr Dimens & Layered Mat 2, University Pk, PA 16802 USA.; Terrones, M (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA.; Terrones, M (reprint author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA.; Terrones, M (reprint author), Penn State Univ, Ctr Atomically Thin Multifunct Coatings ATOMIC, University Pk, PA 16802 USA. EM mut11@psu.edu RI Fullerton-Shirey, Susan/A-7188-2010; Li, Xufan/A-8292-2013 OI Fullerton-Shirey, Susan/0000-0003-2720-0400; Li, Xufan/0000-0001-9814-0383 FU FEI; HORIBA scientific; Kurt J Lesker Company; Penn State Materials Research Institute; Center for Nanoscale Science; AFOSR; DARPA; NSF; ONR; DOE; DTRA; STARnet; ARO; Emmy Noether Programme FX This review article was constructed based on the workshop 'Graphene and Beyond: From Atoms to Applications', hosted by the Center for 2-Dimensional and Layered Materials on 9-10 May 2016 at Penn State with sponsorship from FEI, HORIBA scientific, and Kurt J Lesker Company. Support was also provided by the Penn State Materials Research Institute and Center for Nanoscale Science. JAR and MT also acknowledge Rosemary Bittel for logistical support. The authors acknowledge the following funding agencies: AFOSR, DARPA, NSF, ONR, DOE, DTRA, STARnet, ARO, and Emmy Noether Programme. NR 328 TC 0 Z9 0 U1 160 U2 160 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2053-1583 J9 2D MATER JI 2D Mater. PD DEC PY 2016 VL 3 IS 4 AR 042001 DI 10.1088/2053-1583/3/4/042001 PG 38 WC Materials Science, Multidisciplinary SC Materials Science GA EG1BW UT WOS:000390767600001 ER PT J AU Cai, SL Zhang, K Tan, JB Wang, S Zheng, SR Fan, J Yu, Y Zhang, WG Liu, Y AF Cai, Song-Liang Zhang, Kai Tan, Jing-Bo Wang, Sha Zheng, Sheng-Run Fan, Jun Yu, Ying Zhang, Wei-Guang Liu, Yi TI Rationally Designed 2D Covalent Organic Framework with a Brick-Wall Topology SO ACS MACRO LETTERS LA English DT Article ID TRIAZINE-BASED FRAMEWORKS; 2-DIMENSIONAL POLYMERS; DIFFERENT KINDS; CO2 CAPTURE; THIN-FILMS; CRYSTALLINE; CONSTRUCTION; STORAGE; HYDROGEN; PORES AB We report the design and synthesis of an imine-based two-dimensional covalent organic framework (2D COF) with a novel brick wall topology by judiciously choosing a tritopic T-shaped building block and a ditopic linear linker. Unlike the main body of COF frameworks reported to-date, which consists of higher-symmetry 2D topologies, the unconventional layered brick-wall topology have only been proposed but never been realized experimentally. The brick-wall structure was characterized by powder X-ray diffraction analysis, FT-IR, solid state C-13 NMR spectroscopy, nitrogen, and carbon oxide adsorption-desorption measurements as well as theoretical simulations. Our present work opens the door to the design of novel 2D COFs and will broaden the scope of emerging COF materials. C1 [Cai, Song-Liang; Zhang, Kai; Wang, Sha; Zheng, Sheng-Run; Fan, Jun; Yu, Ying; Zhang, Wei-Guang] South China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China. [Liu, Yi] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Tan, Jing-Bo] Sun Yat Sen Univ, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China. RP Zheng, SR; Zhang, WG (reprint author), South China Normal Univ, Sch Chem & Environm, Guangzhou 510006, Guangdong, Peoples R China.; Liu, Y (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM zhengsr@scnu.edu.cn; wgzhang@scnu.edu.cn; yliu@lbl.gov FU NSFC [21603076, 21473062, 21575043, 21571070]; Natural Science Foundation of Guangdong Province [2016A030310437]; SCNU Foundation for Fostering Young Teachers [15KJ02]; Undergraduates' Innovating Experimentation Project of SCNU [hx201602]; Guangdong Provincial Science and Technology Project [2014A010101145, 2016B090921005]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX S.L.C. is grateful to the NSFC (Grant No. 21603076), the Natural Science Foundation of Guangdong Province (Grant No. 2016A030310437), and the SCNU Foundation for Fostering Young Teachers (Grant No. 15KJ02). S.W. thanks the Undergraduates' Innovating Experimentation Project of SCNU (Grant No. hx201602). J.F. is supported by the Guangdong Provincial Science and Technology Project (Grant Nos. 2014A010101145 and 2016B090921005). S.R.Z., Y.Y., and W.G.Z. acknowledge the support from the NSFC (Grant Nos. 21473062, 21575043, and 21571070, respectively). Part of the work is carried out as a user project at the Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 57 TC 0 Z9 0 U1 34 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD DEC PY 2016 VL 5 IS 12 BP 1348 EP 1352 DI 10.1021/acsmacrolett.6b00805 PG 5 WC Polymer Science SC Polymer Science GA EF8ZS UT WOS:000390621100010 ER PT J AU Xu, WS Douglas, JF Freed, KF AF Xu, Wen-Sheng Douglas, Jack F. Freed, Karl F. TI Stringlike Cooperative Motion Explains the Influence of Pressure on Relaxation in a Model Glass-Forming Polymer Melt SO ACS MACRO LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; GENERALIZED ENTROPY THEORY; COHESIVE ENERGY; LIQUIDS; VISCOSITY; TEMPERATURE; NUCLEATION; DIFFUSION AB Numerous experiments reveal that the dynamics of glass forming polymer melts are profoundly influenced by the application of pressure, but a fundamental microscopic understanding of these observations remains incomplete. We explore the structural relaxation of a model glass forming polymer melt over a wide range of pressures (P) by molecular dynamics simulation. In accord with experiments for nonassociating polymer melts and the generalized entropy theory, we find that the P dependence of the structural relaxation time (tau(alpha)) can be described by a pressure analog of the Vogel-Fulcher-Tammann equation and that the characteristic temperatures of glass formation increase with P, while the fragility decreases with P. Further, we demonstrate that tau(alpha), for various P can quantitatively be described by the string model of glass formation, where the enthalpy and entropy of activation are found to be proportional, an effect that is expected to apply to polymeric materials under various applied fields. C1 [Xu, Wen-Sheng; Freed, Karl F.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Freed, Karl F.] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. [Freed, Karl F.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Douglas, Jack F.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Xu, Wen-Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Xu, WS; Freed, KF (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Freed, KF (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA.; Freed, KF (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA.; Douglas, JF (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.; Xu, WS (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM wsxu0312@gmail.com; jack.douglas@nist.gov; freed@uchicago.edu OI Xu, Wensheng/0000-0002-5442-8569 FU National Science Foundation (NSF) [CHE-1363012] FX We thank an anonymous reviewer for bringing ref 16 to our attention, which motivates our more thorough analysis for the pressure dependence of the structural relaxation time at fixed temperatures, as shown in Figure 2. We are grateful for the support of the University of Chicago Research Computing Center for assistance with the simulations carried out in this work. This work is supported, in part, by the National Science Foundation (NSF) Grant No. CHE-1363012. NR 42 TC 1 Z9 1 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD DEC PY 2016 VL 5 IS 12 BP 1375 EP 1380 DI 10.1021/acsmacrolett.6b00795 PG 6 WC Polymer Science SC Polymer Science GA EF8ZS UT WOS:000390621100015 ER PT J AU Boubanga-Tombet, S Wright, JB Lu, P Williams, MRC Li, CY Wang, GT Prasankumar, RP AF Boubanga-Tombet, Stephane Wright, Jeremy B. Lu, Ping Williams, Michael R. C. Li, Changyi Wang, George T. Prasankumar, Rohit P. TI Ultrafast Carrier Capture and Auger Recombination in Single GaN/InGaN Multiple Quantum Well Nanowires SO ACS PHOTONICS LA English DT Article DE GaN/InGaN nanowires; ultrafast optical microscopy; Auger recombination; carrier capture ID LIGHT-EMITTING-DIODES; PUMP-PROBE MICROSCOPY; SEMICONDUCTOR NANOCRYSTALS; RADIATIVE RECOMBINATION; OPTICAL MICROSCOPY; DYNAMICS; LIFETIME; EXCITON; ARRAYS; SPECTROSCOPY AB Ultrafast optical microscopy is an important tool for examining fundamental phenomena in semiconductor nanowires with high temporal and spatial resolution. Here, we used this technique to study carrier dynamics in single GaN/InGaN core-shell nonpolar multiple quantum well nanowires. We find that intraband carrier-carrier scattering is the main channel governing carrier capture, while subsequent carrier relaxation is dominated by three-carrier Auger recombination at higher densities and bimolecular recombination at lower densities. The Auger constants in these nanowires are approximately 2 orders of magnitude lower than in planar InGaN multiple quantum wells, highlighting their potential for future light-emitting devices. C1 [Boubanga-Tombet, Stephane; Williams, Michael R. C.; Prasankumar, Rohit P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Wright, Jeremy B.; Lu, Ping; Li, Changyi; Wang, George T.] Sandia Natl Labs, POB 5800,MS-1086, Albuquerque, NM 87185 USA. RP Boubanga-Tombet, S; Prasankumar, RP (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM stephanealbon@hotmail.com; rpprasan@lanl.gov RI Boubanga Tombet, Stephane/E-9985-2015 FU Department of Energy, Office of Basic Energy Sciences, Division of Materials Science; U.S. Department of Energy [DE-AC52-06NA25396]; U.S. Department of Energy National Nuclear Security Administration [DE-AC04-94Al85000] FX We thank Igal Brener and Sheng Liu for help with PL measurements and Dmitry Turchinovich for helpful discussions. This work was supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science, and performed in part at the Center for Integrated Nano technologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility, under user proposal U2014B0089. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security administration of the U.S. Department of Energy under contract no. DE-AC52-06NA25396. Sandia is a multi-mission laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy National Nuclear Security Administration under contract no. DE-AC04-94Al85000. NR 64 TC 1 Z9 1 U1 13 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD DEC PY 2016 VL 3 IS 12 BP 2237 EP 2242 DI 10.1021/acsphotonics.6b00622 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA EG0OI UT WOS:000390731700005 ER PT J AU Campione, S Liu, S Basilio, LI Warne, LK Langston, WL Luk, TS Wendt, JR Reno, JL Keeler, GA Brener, I Sinclair, MB AF Campione, Salvatore Liu, Sheng Basilio, Lorena I. Warne, Larry K. Langston, William L. Luk, Ting S. Wendt, Joel R. Reno, John L. Keeler, Gordon A. Brener, Igal Sinclair, Michael B. TI Broken Symmetry Dielectric Resonators for High Quality Factor Fano Metasurfaces SO ACS PHOTONICS LA English DT Article DE all-dielectric metasurfaces; Fano resonances; symmetry breaking; high quality factor ID DIRECTIONAL SCATTERING; TRANSMISSION; POLARIZATION; RESONANCES AB We present a new approach to dielectric metasurface design that relies on a single resonator per unit cell and produces robust, high quality factor Fano resonances. Our approach utilizes symmetry breaking of highly symmetric resonator geometries, such as cubes, to induce couplings between the otherwise orthogonal resonator modes. In particular, we design perturbations that couple "bright" dipole modes to "dark" dipole modes whose radiative decay is suppressed by local field effects in the array. Our approach is widely scalable from the near-infrared to radio frequencies. We first unravel the Fano resonance behavior through numerical simulations of a germanium resonator-based metasurface that achieves a quality factor of similar to 1300 at similar to 10.8 pm. Then, we present two experimental demonstrations operating in the infrared (similar to 1 mu m): a silicon-based implementation that achieves a quality factor of similar to 350; and a gallium arsenide-based structure that achieves a quality factor of similar to 600, the highest near-infrared quality factor experimentally demonstrated to date with this kind of metasurface. Importantly, large electromagnetic field enhancements appear within the resonators at the Fano resonant frequencies. We envision that combining high quality factor, high field enhancement resonances with nonlinear and active/gain materials such as gallium arsenide will lead to new classes of active optical devices. near- C1 [Campione, Salvatore; Liu, Sheng; Basilio, Lorena I.; Warne, Larry K.; Langston, William L.; Luk, Ting S.; Wendt, Joel R.; Reno, John L.; Keeler, Gordon A.; Brener, Igal; Sinclair, Michael B.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Campione, Salvatore; Liu, Sheng; Luk, Ting S.; Reno, John L.; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. RP Campione, S; Sinclair, MB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Campione, S (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM sncampi@sandia.gov; mbsincl@sandia.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge fruitful discussions with Prof. Edward Kuester, University of Colorado-Boulder. Parts of this work were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE), Office of Science. Portions of this work were supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 27 TC 0 Z9 0 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD DEC PY 2016 VL 3 IS 12 BP 2362 EP 2367 DI 10.1021/acsphotonics.6b00556 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA EG0OI UT WOS:000390731700024 ER PT J AU Boulesbaa, A Babicheva, VE Wang, K Kravchenko, II Lin, MW Mahjouri-Samani, M Jacobs, CB Puretzky, AA Xiao, K Ivanov, I Rouleau, CM Geohegan, DB AF Boulesbaa, Abdelaziz Babicheva, Viktoriia E. Wang, Kai Kravchenko, Ivan I. Lin, Ming-Wei Mahjouri-Samani, Masoud Jacobs, Christopher B. Puretzky, Alexander A. Xiao, Kai Ivanov, Ilia Rouleau, Christopher M. Geohegan, David B. TI Ultrafast Dynamics of Metal Plasmons Induced by 2D Semiconductor Excitons in Hybrid Nanostructure Arrays SO ACS PHOTONICS LA English DT Article DE plasmons; excitons; 2D materials; ultrafast; energy transfer; hot electrons ID MONO LAYER; MONOLAYER; MOS2; ENHANCEMENT; PHOTOLUMINESCENCE; DICHALCOGENIDES; RECOMBINATION; SPECTROSCOPY; ELECTRONS; RESONANCE AB With the advanced progress achieved in the field of nanotechnology, localized surface plasmon resonances are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump-probe spectroscopy results indicate that within similar to 830 fs after photoexcitation of the 2D-WS2 semiconductor energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfer back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2Dexciton transition energies at later time delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime of the 2D-excitons from similar to 15 ps to similar to 58 ps in the absence and presence of the Al array, respectively. Furthermore, the indirectly excited plasmons were found to live as long as the 2D-WS2 excitons exist. The demonstrated ability to generate exciton-plasmon coupling in a hybrid nanostructure may open new opportunities for optoelectronic applications such as plasmonic-based photodetection and photocatalysis. C1 [Boulesbaa, Abdelaziz; Wang, Kai; Kravchenko, Ivan I.; Lin, Ming-Wei; Mahjouri-Samani, Masoud; Jacobs, Christopher B.; Puretzky, Alexander A.; Xiao, Kai; Ivanov, Ilia; Rouleau, Christopher M.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Babicheva, Viktoriia E.] Georgia State Univ, Ctr Nanoopt, POB 3965, Atlanta, GA 30302 USA. RP Boulesbaa, A (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM boulesbaaa@ornl.gov RI Kravchenko, Ivan/K-3022-2015; Babicheva, Viktoriia/C-7234-2013 OI Jacobs, Christopher/0000-0001-7906-6368; Xiao, Kai /0000-0002-0402-8276; Kravchenko, Ivan/0000-0003-4999-5822; Babicheva, Viktoriia/0000-0002-0789-5738 FU Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Synthesis of the two-dimensional materials was supported by the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors thank Dr. Benjamin Lawrie from the Computational Sciences and Engineering Division at ORNL for the fruitful discussions. NR 33 TC 0 Z9 0 U1 36 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD DEC PY 2016 VL 3 IS 12 BP 2389 EP 2395 DI 10.1021/acsphotonics.6b00618 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA EG0OI UT WOS:000390731700028 ER PT J AU Gong, Y Joly, AG El-Khoury, PZ Hess, WP AF Gong, Y. Joly, Alan G. El-Khoury, Patrick Z. Hess, Wayne P. TI Enhanced Propagating Surface Plasmon Signal Detection SO ACS PHOTONICS LA English DT Article DE propagating surface plasmon; plasmon coupling; plasmon imaging; homodyne detection; inteferometric transient photoemission electron microscopy ID SCATTERING; REFRACTION; LIGHT; GOLD AB Overcoming the dissipative nature of propagating surface plasmons (PSPs) is a prerequisite to realizing functional plasmonic circuitry, in which large-bandwidth signals can be manipulated over length scales far below the diffraction limit of light. To this end, we report on a novel PSP-enhanced signal detection technique achieved in an all-metallic substrate. We take advantage of two strategically spatiotemporally separated phase-locked femtosecond laser pulses, incident onto lithographically patterned PSP coupling structures. We follow PSP propagation with joint femtosecond temporal and nanometer spatial resolution in a time-resolved nonlinear photoemission electron microscopy scheme. Initially, a PSP signal wave packet is launched from a hole etched into the silver surface from where it propagates through an open trench structure and is decoded through the use of a timed probe pulse. FDTD calculations demonstrate that PSP signal waves may traverse open trenches in excess of 10 pm in diameter, thereby allowing remote detection even through vacuum regions. This arrangement results in a 10x enhancement in photoemission relative to readout from the bare metal surface. The enhancement is attributed to an all-optical homodyne detection technique that mixes signal and reference PSP waves in a nonlinear scheme. Larger readout trenches achieve higher readout levels; however reduced transmission through the trench limits the trench size to 6 pm for maximum readout levels. In addition, the use of an array of trenches increases the maximum enhancement to near 30x. The attainable enhancement factor may be harnessed to achieve extended coherent PSP propagation in ultrafast plasmonic circuitry. C1 [Gong, Y.; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.] Pacific Northwest Natl Lab, Div Phys Sci, POB 999, Richland, WA 99352 USA. RP Hess, WP (reprint author), Pacific Northwest Natl Lab, Div Phys Sci, POB 999, Richland, WA 99352 USA. EM wayne.hess@pnnl.gov FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; DOE's Office of Biological and Environmental Research FX The authors acknowledge support from the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. This work was performed in EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle Memorial Institute for the United States Department of Energy. NR 23 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD DEC PY 2016 VL 3 IS 12 BP 2413 EP 2419 DI 10.1021/acsphotonics.6b00636 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA EG0OI UT WOS:000390731700031 ER PT J AU Dickie, DA Kemp, RA AF Dickie, Diane A. Kemp, Richard A. TI Crystal structure of catena-poly[diammonium [di-mu-oxalato-cuprate(II)]] SO ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS LA English DT Article DE crystal structure; copper; oxalate; hydrogen bonding; ammonium ID METAL OXALATES; COMPLEXES; LAYER; CHAIN AB The structure of the title compound, {(NH4)(2)[Cu(C2O4)(2)]}(n), at 100 K has monoclinic (P2(1)/c) symmetry with the Cu II atom on an inversion center. The compound has a polymeric structure due to long Cu center dot center dot center dot O interactions which create [Cu(C2O4)(2)] chains along the a axis. The structure also displays intermolecular N-H center dot center dot center dot O hydrogen bonding, which links these chains into a three-dimensional network. C1 [Dickie, Diane A.; Kemp, Richard A.] 1 Univ New Mexico, Dept Chem & Chem Biol, MSC03 2060, Albuquerque, NM 87131 USA. [Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. RP Kemp, RA (reprint author), 1 Univ New Mexico, Dept Chem & Chem Biol, MSC03 2060, Albuquerque, NM 87131 USA.; Kemp, RA (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM rakemp@unm.edu OI Dickie, Diane/0000-0003-0939-3309 FU National Science Foundation [CHE12-13529]; National Science Foundation CRIF:MU award [CHE04-43580]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX This work was supported financially by the National Science Foundation (grant CHE12-13529). The Bruker X-ray diffractometer was purchased by a National Science Foundation CRIF:MU award to the University of New Mexico (CHE04-43580). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. NR 25 TC 0 Z9 0 U1 1 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2056-9890 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Crystallogr. Commun. PD DEC PY 2016 VL 72 BP 1780 EP + DI 10.1107/S2056989016017631 PN 12 PG 6 WC Crystallography SC Crystallography GA EF4PV UT WOS:000390315400022 PM 27980829 ER PT J AU Holland, SC Artier, J Miller, NT Cano, M Yu, JP Ghirardi, ML Burnapa, RL AF Holland, Steven C. Artier, Juliana Miller, Neil T. Cano, Melissa Yu, Jianping Ghirardi, Maria L. Burnapa, Robert L. TI Impacts of genetically engineered alterations in carbon sink pathways on photosynthetic performance SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Chlorophyll fluorescence; Cyclic electron flow; Ethylene; Glycogen; Cyclic electron flow; Homeostasis; Metabolic sink; NADPH; Photosystem; Plastoquinone ID CYANOBACTERIUM SYNECHOCYSTIS SP; SP PCC 6803; INORGANIC CARBON; CHLOROPHYLL FLUORESCENCE; PHOTORESPIRATORY MUTANTS; NADPH FLUORESCENCE; CO2; LIMITATION; DEHYDROGENASE; PRODUCTIVITY AB Genetic engineering of photosynthetic organisms typically redirects native metabolism towards desirable products, which thereby represent new metabolic sinks. There is limited information on how these modifications impact the evolved mechanisms of photosynthetic energy metabolism and cellular growth. Two engineered strains of Synechocystis sp. PCC 6803 with altered carbon sink capacity were assayed for their photosynthetic and CO2 concentrating mechanism properties in conditions of high and low inorganic carbon (Ci) availability. In the Delta glgC mutant, glycogen cannot be synthesized and a carbon sink pathway has been effectively removed. The JU547 strain has been engineered by integration of the Pseudomonas syringae ethylene forming enzyme and provides a new sink. When cultured under high carbon conditions, Delta glgC displayed diminished photochemical efficiency, a more reduced NADPH pool, delayed initiation of the Calvin-Benson-Bassham cycle, and impairment of linear and cyclic electron flows. It also exhibited a large decrease in photochemical quenching indicative of the accumulation of Q(A)-, normally associated with a reduced PQ pool, but appears instead to be the result of an undefined dissipative mechanism to spill excess energy. In the case of carbon sink integration, JU547 displayed slightly more oxidized PQ and NADPH pools and increased rates of cyclic electron flow and an enhanced demand for inorganic carbon as suggested by increase in the expression of the bicarbonate transporter, SbtA. Overall, the results highlight the importance of the native regulatory network of autotrophic metabolism in governing photosynthetic performance and provide cogent examples of both predicable and difficult to predict phenotypic consequences upon installation of new pathways in autotrophs. (C) 2016 Published by Elsevier B.V. C1 [Holland, Steven C.; Artier, Juliana; Miller, Neil T.; Burnapa, Robert L.] Oklahoma State Univ, Dept Microbiol & Mol Genet, Stillwater, OK 74078 USA. [Cano, Melissa; Yu, Jianping; Ghirardi, Maria L.] Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Burnapa, RL (reprint author), Oklahoma State Univ, 307 Life Sci East, Stillwater, OK 74078 USA. EM robert.burnap@okstate.edu FU U.S. Department of Energy, Office of Science, Basic Energy Sciences at OSU [DE-FG02-08ER15968]; U.S. Department of Energy, Office of Science, Basic Energy Sciences; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office FX This work was supported by the grant no. DE-FG02-08ER15968 funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences at OSU (SCH, JA, NTM and RLB, physiological and spectroscopic measurements). Work at NREL was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (MC, JY and MLG, glycogen mutant studies), and by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office (JY, ethylene-producing mutants studies). NR 54 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD DEC PY 2016 VL 20 BP 87 EP 99 DI 10.1016/j.algal.2016.09.021 PG 13 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EF8DX UT WOS:000390560000012 ER PT J AU Xu, YW Kim, SW Kim, D Alexoff, D Schueller, MJ Fowler, JS AF Xu, Youwen Kim, Sung Won Kim, Dohyun Alexoff, David Schueller, Michael J. Fowler, Joanna S. TI A mild, rapid synthesis of freebase [C-11]nicotine from [C-11]methyl triflate SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Freebase [C-11]nicotine; [C-11]methyl triflate ID POSITRON-EMISSION-TOMOGRAPHY; C-11 METHYL TRIFLATE; HUMAN BRAIN; PET; NICOTINE; CIGARETTES; KINETICS; BINDING; INVIVO AB A rapid, mild radiosynthesis of freebase [C-11]nicotine was developed by the methylation of freebase nornicotine with [C-11]methyl triflate in acetone (5 min, 45 degrees C). A basic (pH 10.5-11.0) HPLC system reproducibly yielded freebase [C-11]nicotine as a well-defined single peak. The freebase [C-11]nicotine was concentrated by solid phase extraction and formulated in 50 mu L ethanol (370 MBq/50 mu L) without evaporative loss suitable for a cigarette spiking study. A radiochemical yield of 60.4 +/- 4.7% (n=3), radiochemical purity >= 99.9% and specific activity of 648 GBq/mu mol at EOB for 5 min beams were achieved. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Xu, Youwen; Kim, Sung Won; Kim, Dohyun; Alexoff, David; Schueller, Michael J.; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Fowler, JS (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM fowler@bnl.gov FU Brookhaven National Laboratory [DE-AC02-98CH10886]; Department of Health and Human Services [AAA12001002]; Centers for Disease Control and Prevention [CDC-12FED1204064]; National of Alcohol Abuse and Alcoholism Intramural Program FX This study was carried out in part at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the U.S. Department of Energy and with infrastructure support from its Office of Biological and Environmental Research. We also thank the Department of Health and Human Services (AAA12001002) and Centers for Disease Control and Prevention (CDC-12FED1204064) for partial support of this work and National of Alcohol Abuse and Alcoholism Intramural Program for salary support for Sung Won Kim. We also thank Marielle Brinkman, Herbert Bresler, Clifford Watson and Wenchao Qu for helpful discussions. NR 17 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD DEC PY 2016 VL 118 BP 62 EP 66 DI 10.1016/j.apradiso.2016.08.020 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA EG0QA UT WOS:000390736100010 PM 27611082 ER PT J AU Griswold, JR Medvedev, DG Engle, JW Copping, R Fitzsimmons, JM Radchenko, V Cooley, JC Fassbender, ME Denton, DL Murphy, KE Owens, AC Birnbaum, ER John, KD Nortier, FM Stracener, DW Heilbronn, LH Mausner, LF Mirzadeh, S AF Griswold, J. R. Medvedev, D. G. Engle, J. W. Copping, R. Fitzsimmons, J. M. Radchenko, V. Cooley, J. C. Fassbender, M. E. Denton, D. L. Murphy, K. E. Owens, A. C. Birnbaum, E. R. John, K. D. Nortier, F. M. Stracener, D. W. Heilbronn, L. H. Mausner, L. F. Mirzadeh, S. TI Large scale accelerator production of (225)AC: Effective cross sections for 78-192 MeV protons incident on Th-232 targets SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE (225)AC; (226)Ae; (227)AC; Th-227; Th-228; (MO)-M-99; Ba-140; Ce-139; Ce-141; Ce-145; (144)ce; Actinium; Alpha-emitting; Radiotherapy; Proton irradiation; Thorium ID NUCLEAR-DATA SHEETS; ALPHA-THERAPY; THORIUM; FISSION; AC-225; ENERGY; ACTINIUM; RA-223 AB Actinium-225 and Bi-213 have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability of (225)AC. The highenergy proton spallation reaction on natural thorium metal targets has been utilized to produce millicurie quantities of Ac-225. The results of sixteen irradiation experiments of thorium metal at beam energies between 78 and 192 MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes, as well as for some of the fission products, are presented. The cross sections for production of (225)AC range from 3.6 to 16.7 mb in the incident proton energy range of 78-192 MeV. Based on these data, production of curie quantities of Ac-223 is possible by irradiating a 5.0 g cm(-2) Th-232 target for 10 days in either BNL or LANL proton irradiation facilities. C1 [Griswold, J. R.; Copping, R.; Denton, D. L.; Murphy, K. E.; Owens, A. C.; Mirzadeh, S.] Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, Oak Ridge, TN 37831 USA. [Griswold, J. R.; Heilbronn, L. H.] Univ Tennessee, Dept Nucl Engn, Knoxville, IN 37996 USA. [Medvedev, D. G.; Fitzsimmons, J. M.; Mausner, L. F.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Engle, J. W.; Radchenko, V.; Cooley, J. C.; Fassbender, M. E.; Birnbaum, E. R.; John, K. D.; Nortier, F. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Stracener, D. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Griswold, JR (reprint author), Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, Oak Ridge, TN 37831 USA. OI John, Kevin/0000-0002-6181-9330 FU U.S. Department of Energy [DE-AC05-00OR22725]; Isotope Program, Office of Nuclear Physics of the U.S. Department of Energy FX The authors acknowledge Drs. Tim S. Bigelow and Paul E. Mueller for their critical review of the manuscript. The authors thank the LANL Metallurgy group and the BNL machine shop teams for their efforts related to the fabrication of the targets used in this study. This research is supported by the Isotope Program, Office of Nuclear Physics of the U.S. Department of Energy. ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 46 TC 0 Z9 0 U1 5 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD DEC PY 2016 VL 118 BP 366 EP 374 DI 10.1016/j.apradiso.2016.09.026 PG 9 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA EG0QA UT WOS:000390736100056 PM 27776333 ER PT J AU Akiyama, E Hashimoto, J Liu, HB Li, JIH Bonnefoy, M Dong, RB Hasegawa, Y Henning, T Sitko, ML Janson, M Feldt, M Wisniewski, J Kudo, T Kusakabe, N Tsukagoshi, T Momose, M Muto, T Taki, T Kuzuhara, M Satoshi, M Takami, M Ohashi, N Grady, CA Kwon, J Thalmann, C Abe, L Brandner, W Brandt, TD Carson, JC Egner, S Goto, M Guyon, O Hayano, Y Hayashi, M Hayashi, SS Hodapp, KW Ishii, M Iye, M Knapp, GR Kandori, R Matsuo, T Mcelwain, MW Miyama, S Morino, JI Moro-Martin, A Nishimura, T Pyo, TS Serabyn, E Suenaga, T Suto, H Suzuki, R Takahashi, YH Takato, N Terada, H Tomono, D Turner, EL Watanabe, M Yamada, T Takami, H Usuda, T Tamura, M AF Akiyama, Eiji Hashimoto, Jun Liu, Hauyu Baobabu Li, Jennifer I-Hsiu Bonnefoy, Michael Dong, Ruobing Hasegawa, Yasuhiro Henning, Thomas Sitko, Michael L. Janson, Markus Feldt, Markus Wisniewski, John Kudo, Tomoyuki Kusakabe, Nobuhiko Tsukagoshi, Takashi Momose, Munetake Muto, Takayuki Taki, Tetsuo Kuzuhara, Masayuki Satoshi, Mayama Takami, Michihiro Ohashi, Nagayoshi Grady, Carol A. Kwon, Jungmi Thalmann, Christian Abe, Lyu Brandner, Wolfgang Brandt, Timothy D. Carson, Joseph C. Egner, Sebastian Goto, Miwa Guyon, Olivier Hayano, Yutaka Hayashi, Masahiko Hayashi, Saeko S. Hodapp, Klaus W. Ishii, Miki Iye, Masanori Knapp, Gillian R. Kandori, Ryo Matsuo, Taro Mcelwain, Michael W. Miyama, Shoken Morino, Jun-Ichi Moro-Martin, Amaya Nishimura, Tetsuo Pyo, Tae-Soo Serabyn, Eugene Suenaga, Takuya Suto, Hiroshi Suzuki, Ryuji Takahashi, Yasuhiro H. Takato, Naruhisa Terada, Hiroshi Tomono, Daigo Turner, Edwin L. Watanabe, Makoto Yamada, Toru Takami, Hideki Usuda, Tomonori Tamura, Motohide TI SPIRAL STRUCTURE AND DIFFERENTIAL DUST SIZE DISTRIBUTION IN THE LkH alpha 330 DISK SO ASTRONOMICAL JOURNAL LA English DT Article DE planetary systems; stars: pre-main sequence; stars: individual (LkH alpha 330); techniques: interferometric ID PROTOPLANETARY DISKS; TRANSITIONAL DISKS; GRAIN-GROWTH; CIRCUMSTELLAR DISKS; TAURUS-AURIGA; HD 142527; MWC 758; PLANETS; STARS; SPECTROSCOPY AB Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 mu m) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH alpha 330. As a. result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure. and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and 1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7(-0.4)(+0.5), indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk. C1 [Akiyama, Eiji; Hashimoto, Jun; Hasegawa, Yasuhiro; Ishii, Miki; Iye, Masanori; Kandori, Ryo; Morino, Jun-Ichi; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Liu, Hauyu Baobabu] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany. [Liu, Hauyu Baobabu; Li, Jennifer I-Hsiu; Takami, Michihiro] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10167, Taiwan. [Li, Jennifer I-Hsiu] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Bonnefoy, Michael] Univ Grenoble Alpes, IPAG, F-38000 Grenoble, France. [Bonnefoy, Michael] CNRS, F-38000 Grenoble, France. [Bonnefoy, Michael; Henning, Thomas; Feldt, Markus; Brandner, Wolfgang] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Dong, Ruobing] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hasegawa, Yasuhiro; Serabyn, Eugene] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Sitko, Michael L.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Sitko, Michael L.] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Janson, Markus] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden. [Wisniewski, John] Univ Oklahoma, Dept Phys & Astron, 440 W Brooks St, Norman, OK 73019 USA. [Kudo, Tomoyuki; Egner, Sebastian; Guyon, Olivier; Hayano, Yutaka; Hayashi, Saeko S.; Nishimura, Tetsuo; Pyo, Tae-Soo; Takato, Naruhisa; Terada, Hiroshi; Tomono, Daigo] Natl Astron Observ Japan, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Tamura, Motohide] NINS, Astrobiol Ctr, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Tsukagoshi, Takashi; Momose, Munetake] Ibaraki Univ, Coll Sci, 2-1-1 Bunkyo, Mito, Ibaraki 3108512, Japan. [Muto, Takayuki] Kogakuin Univ, Div Liberal Arts, Shinjuku Ku, 1-24-2 Nishi Shinjuku, Tokyo 1638677, Japan. [Taki, Tetsuo] Tokyo Inst Technol, Dept Earth & Planetary Sci, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan. [Satoshi, Mayama; Hayashi, Masahiko] Grad Univ Adv Studies, Ctr Promot Integrated Sci, Hayama Cho, Miura, Kanagawa 2400115, Japan. [Grady, Carol A.; Mcelwain, Michael W.] Goddard Space Flight Ctr, Exoplanets & Stellar Astrophys Lab, Code 667, Greenbelt, MD 20771 USA. [Grady, Carol A.] Eureka Sci, 2452 Delmer,Suite 100, Oakland, CA 96002 USA. [Kwon, Jungmi] Univ Tokyo, Dept Astron, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Thalmann, Christian] Swiss Fed Inst Technol, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Abe, Lyu] Univ Nice Sophia Antipolis, Lab Hippolyte Fizeau, UMR6525, 28 Ave Valrose, F-06108 Nice 02, France. [Brandt, Timothy D.; Knapp, Gillian R.; Turner, Edwin L.] Princeton Univ, Dept Astrophys Sci, Peyton Hall,Ivy Lane, Princeton, NJ 08544 USA. [Carson, Joseph C.] Coll Charleston, Dept Phys & Astron, 66 George St, Charleston, SC 29424 USA. [Goto, Miwa] Univ Munich, 12 Univ Sternwarte Munchen, Scheinerstr 1, D-81679 Munich, Germany. [Hodapp, Klaus W.] Univ Hawaii, Inst Astron, 640 North Aohoku Pl, Hilo, HI 96720 USA. [Matsuo, Taro] Kyoto Univ, Dept Astron, Sakyo Ku, Kita Shirakawa Oiwake Cho, Kyoto 6068502, Japan. [Miyama, Shoken] Hiroshima Univ, 1-3-2 Kagamiyama, Higashihiroshima, Hiroshima 7398511, Japan. [Moro-Martin, Amaya] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Moro-Martin, Amaya] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Suenaga, Takuya] Grad Univ Adv Studies SOKENDAI, Sch Phys Sci, Dept Astron Sci, Mitaka, Tokyo 1818588, Japan. [Turner, Edwin L.] Univ Tokyo, Kavli Inst Phys & Math Univ, 5-1-1 Kashiwanoha, Kashiwa, Chiba 2278568, Japan. [Watanabe, Makoto] Hokkaido Univ, Dept Cosmosci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. [Yamada, Toru] Tohoku Univ, Astron Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan. RP Akiyama, E (reprint author), Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. EM eiji.akiyama@nao.ac.jp RI MIYAMA, Shoken/A-3598-2015 FU Ministry of Science and Technology (MoST) of Taiwan [103-2112-M-001-029]; JPL/Caltech under NASA; MEXT KAKENHI [23103004] FX M.T. is supported by the Ministry of Science and Technology (MoST) of Taiwan (grant No. 103-2112-M-001-029). Y.H. is currently supported by JPL/Caltech under a contract from NASA. This work is supported by MEXT KAKENHI No. 23103004. NR 50 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 222 DI 10.3847/1538-3881/152/6/222 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1ED UT WOS:000390773800002 ER PT J AU Crawford, TM Chown, R Holder, GP Aird, KA Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Crites, AT de Haan, T Dobbs, MA George, EM Halverson, NW Harrington, NL Holzapfel, WL Hou, Z Hrubes, JD Keisler, R Knox, L Lee, AT Leitch, EM Luong-Van, D Marrone, DP McMahon, JJ Meyer, SS Mocanu, LM Mohr, JJ Natoli, T Padin, S Pryke, C Reichardt, CL Ruhl, JE Sayre, JT Schaffer, KK Shirokoff, E Staniszewski, Z Stark, AA Story, KT Vanderlinde, K Vieira, JD Williamson, R AF Crawford, T. M. Chown, R. Holder, G. P. Aird, K. A. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H-M. Crites, A. T. de Haan, T. Dobbs, M. A. George, E. M. Halverson, N. W. Harrington, N. L. Holzapfel, W. L. Hou, Z. Hrubes, J. D. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Luong-Van, D. Marrone, D. P. McMahon, J. J. Meyer, S. S. Mocanu, L. M. Mohr, J. J. Natoli, T. Padin, S. Pryke, C. Reichardt, C. L. Ruhl, J. E. Sayre, J. T. Schaffer, K. K. Shirokoff, E. Staniszewski, Z. Stark, A. A. Story, K. T. Vanderlinde, K. Vieira, J. D. Williamson, R. TI MAPS OF THE MAGELLANIC CLOUDS FROM COMBINED SOUTH POLE TELESCOPE AND PLANCK DATA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE Magellanic Clouds; methods: data analysis ID SOURCE CATALOG; RESULTS. VI.; EMISSION; RADIO; SKY; HFI; SUBMILLIMETER; SPECTRUM; FIELD; DUST AB We present maps of the Large and Small Magellanic Clouds from combined South Pole Telescope (SPT) and Planck data. The Planck satellite observes in nine bands, while the SPT data used in this work were taken with the three-band SPT-SZ camera, The SPT-SZ bands correspond closely to three of the nine Planck bands, namely those centered at 1.4, 2.1, and 3.0 mm. The angular resolution of the Planck data ranges from 5 to 10 arcmin, while the SPT resolution ranges from 1.0 to 1.7 arcmin. The combined maps take advantage of the high resolution of the SPT data and the long-timescale stability of the space-based Planck observations to deliver robust brightness measurements on scales from the size of the maps down to similar to 1 arcmin. In each band, we first calibrate and color-correct the SPT data to match the Planck data, then we use noise estimates from each instrument and knowledge of each instrument's beam to make the inverse-variance-weighted combination of the two instruments' data as a function of angular scale. We create maps assuming a range of underlying emission spectra and at a range of final resolutions. We perform several consistency tests on the combined maps and estimate the expected noise in measurements of features in them. We compare maps from this work to those from the Herschel HERITAGE survey, finding general consistency between the data sets. All data products described in this paper are available for download from the NASA Legacy Archive for Microwave Background Data Analysis server. C1 [Crawford, T. M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Hou, Z.; Keisler, R.; Leitch, E. M.; Meyer, S. S.; Mocanu, L. M.; Natoli, T.; Padin, S.; Schaffer, K. K.; Shirokoff, E.; Story, K. T.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Crawford, T. M.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Hou, Z.; Leitch, E. M.; Meyer, S. S.; Mocanu, L. M.; Padin, S.; Shirokoff, E.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Chown, R.; Holder, G. P.; de Haan, T.; Dobbs, M. A.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Aird, K. A.; Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA. [Benson, B. A.] Fermilab Natl Accelerator Lab, MS209,POB 500, Batavia, IL 60510 USA. [Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K. T.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cho, H-M.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Crites, A. T.] CALTECH, Pasadena, CA 91125 USA. [de Haan, T.; George, E. M.; Harrington, N. L.; Holzapfel, W. L.; Lee, A. T.; Reichardt, C. L.; Shirokoff, E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [George, E. M.; Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Halverson, N. W.; Sayre, J. T.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.; Sayre, J. T.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Keisler, R.; Story, K. T.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Ludwig Maximilians Univ Munchen, Fac Phys, D-81679 Munich, Germany. [Mohr, J. J.] Excellence Cluster Universe, D-85748 Garching, Germany. [Natoli, T.; Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Ruhl, J. E.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Ctr Educ & Res Cosmol & Astrophys, Dept Phys, Cleveland, OH 44106 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Staniszewski, Z.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Stark, A. A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Story, K. T.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Vieira, J. D.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Vieira, J. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RP Crawford, TM (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.; Crawford, TM (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM tcrawfor@kicp.uchicago.edu OI Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [PLR-1248097]; NSF Physics Frontier Center [PHY-1125897]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF 947]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; U.S. Department of Energy [DE-AC02-06CH11357] FX The South Pole Telescope is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation grant GBMF 947. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. Argonne National Laboratory work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. We thank M. Meixner and the HERITAGE team for making their data publicly available and K. Ganga for helpful discussion on Planck map properties. NR 28 TC 1 Z9 1 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD DEC PY 2016 VL 227 IS 2 AR 23 DI 10.3847/1538-4365/227/2/23 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EG1MF UT WOS:000390795900003 ER PT J AU Pavlak, GS Henze, GP Hirsch, AI Florita, AR Dodier, RH AF Pavlak, Gregory S. Henze, Gregor P. Hirsch, Adam I. Florita, Anthony R. Dodier, Robert H. TI Experimental verification of an energy consumption signal tool for operational decision support in an office building SO AUTOMATION IN CONSTRUCTION LA English DT Article DE Decision support; Operational building energy modeling; Bayesian updating ID MODEL AB This paper demonstrates an energy signal tool to assess the system-level and whole-building energy use of an office building in downtown Denver, Colorado. The energy signal tool uses a traffic light visualization to alert a building operator to energy use which is substantially different from expected. The tool selects which light to display for a given energy end-use by comparing measured energy use to expected energy use, accounting for uncertainty. A red light is only displayed when a fault is likely enough, and abnormal operation costly enough, that taking action will yield the lowest cost result. While the theoretical advances and tool development were reported previously, it has only been tested using a basic building model and has not, until now, been experimentally verified. Expected energy use for the field demonstration is provided by a compact reduced-order representation of the Alliance Center, generated from a detailed DOE-2.2 energy model. Actual building energy consumption data is taken from the summer of 2014 for the office building immediately after a significant renovation project. The purpose of this paper is to demonstrate a first look at the building following its major renovation compared to the design intent. The tool indicated strong under-consumption in lighting and plug loads and strong over-consumption in HVAC energy consumption, which prompted several focused actions for follow-up investigation. In addition, this paper illustrates the application of Bayesian inference to the estimation of posterior parameter probability distributions to measured data. Practical discussion of the application is provided, along with additional findings from further investigating the significant difference between expected and actual energy consumption. (C) 2016 Elsevier B.V. All rights reserved. C1 [Pavlak, Gregory S.; Henze, Gregor P.; Florita, Anthony R.] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA. [Henze, Gregor P.; Hirsch, Adam I.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Dodier, Robert H.] 1325 NE Going St, Portland, OR 97211 USA. RP Henze, GP (reprint author), Univ Colorado Boulder, CEAE Dept, 428 UCB, Boulder, CO 80309 USA. EM gregor.henze@colorado.edu OI Dodier, Robert/0000-0003-0994-2929 FU National Renewable Energy Laboratory [DE-AC36-08GO2830] FX The authors would like to acknowledge the support of the Alliance Center in committing time and resources to this project and the National Renewable Energy Laboratory (Contract No. DE-AC36-08GO2830) for partial funding of this work. NR 15 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-5805 EI 1872-7891 J9 AUTOMAT CONSTR JI Autom. Constr. PD DEC PY 2016 VL 72 BP 75 EP 92 DI 10.1016/j.autcon.2016.08.034 PN 2 PG 18 WC Construction & Building Technology; Engineering, Civil SC Construction & Building Technology; Engineering GA EG0KQ UT WOS:000390722100002 ER PT J AU Chen, Y Treado, SJ Messner, JI AF Chen, Yan Treado, Stephen J. Messner, John I. TI Building HVAC control knowledge data schema - Towards a unified representation of control system knowledge SO AUTOMATION IN CONSTRUCTION LA English DT Article DE Building control; Modularization; Knowledge; Representation; BIM; HVAC AB Building control systems for heating, ventilation, and air conditioning (HVAC) play a key role in realizing the functionality and operation of building systems and components. Building control knowledge (BCK) is the logic and algorithms embedded throughout building control system. There are different methods to represent the BCK. These methods differ in the selection of BCK representing elements and the format of those elements. There is a lack of standard data schema, for storing, retrieving, and reusing structured BCK. In this study, a modular data schema is created for BCK representation. The data schema contains eleven representing elements, i.e., control module name, operation mode, system schematic, control flow diagram, data point, alarm, parameter, control sequence, function, and programming code. Each element is defined with specific attributes. This data schema is evaluated through a case study demonstration. The demonstration shows a new way to represent the BCK with standard formats. (C) 2016 Elsevier B.V. All rights reserved. C1 [Chen, Yan] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Treado, Stephen J.; Messner, John I.] Penn State Univ, Dept Architectural Engn, 104 Engn Unit A, University Pk, PA 16802 USA. RP Chen, Y (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM yan.chen@pnnl.gov; streado@engr.psu.edu; jmessner@engr.psu.edu FU Energy Efficient Buildings Hub - U.S. Department of Energy [DE-EE0004261]; Pennsylvania State University FX This material is based upon work supported by the Energy Efficient Buildings Hub primarily sponsored by the U.S. Department of Energy (Grant No. DE-EE0004261) along with matching funding from The Pennsylvania State University. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors. NR 20 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-5805 EI 1872-7891 J9 AUTOMAT CONSTR JI Autom. Constr. PD DEC PY 2016 VL 72 BP 174 EP 186 DI 10.1016/j.autcon.2016.08.036 PN 2 PG 13 WC Construction & Building Technology; Engineering, Civil SC Construction & Building Technology; Engineering GA EG0KQ UT WOS:000390722100010 ER PT J AU Besmann, TM McMurray, JW Simunovic, S AF Besmann, Theodore M. McMurray, Jacob W. Simunovic, Srdjan TI Application of thermochemical modeling to assessment/evaluation of nuclear fuel behavior SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY LA English DT Article DE Nuclear fuel; Oxygen potential; Fission product; Thermodynamic modeling ID COMPOUND ENERGY FORMALISM; INDUCED STRESS-CORROSION; FISSION-PRODUCTS; OXIDE FUELS; HIGH-BURNUP; O SYSTEM; UO2 FUEL; THERMODYNAMIC ASSESSMENT; CHEMICAL-STATE; OXYGEN DIFFUSION AB The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Besmann, Theodore M.] Univ South Carolina, Nucl Engn Program, Columbia, SC 29208 USA. [McMurray, Jacob W.; Simunovic, Srdjan] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Besmann, TM (reprint author), Univ South Carolina, Nucl Engn Program, Columbia, SC 29208 USA. OI McMurray, Jacob/0000-0001-5111-3054 FU U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation Program; U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle RD Program FX The authors wish to acknowledge the U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation Program and Fuel Cycle R&D Program for their support of this research. NR 50 TC 0 Z9 0 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0364-5916 EI 1873-2984 J9 CALPHAD JI Calphad-Comput. Coupling Ph. Diagrams Thermochem. PD DEC PY 2016 VL 55 BP 47 EP 51 DI 10.1016/j.calphad.2016.04.004 PN 1 PG 5 WC Thermodynamics; Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Thermodynamics; Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA EG1WS UT WOS:000390825300007 ER PT J AU Duong, TC Hackenberg, RE Landa, A Honarmandi, P Talapatra, A Volz, HM Llobet, A Smith, AI King, G Bajaj, S Ruban, A Vitos, L Turchi, PEA Arroyave, R AF Duong, Thien C. Hackenberg, Robert E. Landa, Alex Honarmandi, Pejman Talapatra, Anjana Volz, Heather M. Llobet, Anna Smith, Alice I. King, Graham Bajaj, Saurabh Ruban, Andrei Vitos, Levente Turchi, Patrice E. A. Arroyave, Raymundo TI Revisiting thermodynamics and kinetic diffusivities of uranium-niobium with Bayesian uncertainty analysis SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY LA English DT Article DE DFT; CALPHAD; Bayesian; Uncertainty analysis; Metallic fuels; U-Nb; Thermodynamics; Kinetic diffusivity ID INITIO MOLECULAR-DYNAMICS; QUASI-RANDOM STRUCTURES; U-NB ALLOYS; PHASE-TRANSFORMATIONS; SYSTEM; MICROSTRUCTURE; DECOMPOSITION; ENVIRONMENT; SIMULATION; GENERATION AB In this work, thermodynamic and kinetic diffusivities of uranium-niobium (U-Nb) are re-assessed by means of the CALPHAD (CALculation of PHAse Diagram) methodology. In order to improve the consistency and reliability of the assessments, first-principles calculations are coupled with CALPHAD. In particular, heats of formation of gamma-U-Nb are estimated and verified using various density-functional theory (DFT) approaches. These thermochemistry data are then used as constraints to guide the thermodynamic optimization process in such a way that the mutual-consistency between first-principles calculations and CALPHAD assessment is satisfactory. In addition, long-term aging experiments are conducted in order to generate new phase equilibria data at the gamma(2)/alpha + gamma(2) boundary. These data are meant to verify the thermodynamic model. Assessment results are generally in good agreement with experiments and previous calculations, without showing the artifacts that were observed in previous modeling. The mutual-consistent thermodynamic description is then used to evaluate atomic mobility and diffusivity of gamma-U-Nb. Finally, Bayesian analysis is conducted to evaluate the uncertainty of the thermodynamic model and its impact on the system's phase stability. Published by Elsevier Ltd. C1 [Duong, Thien C.; Honarmandi, Pejman; Talapatra, Anjana; Arroyave, Raymundo] Texas A&M Univ, Mat Sci & Engn, College Stn, TX 77843 USA. [Bajaj, Saurabh] Lawrence Berkeley Natl Lab, Environm Energy & Technol Div, Berkeley, CA 94720 USA. [Hackenberg, Robert E.; Volz, Heather M.; Llobet, Anna; Smith, Alice I.; King, Graham] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Landa, Alex; Turchi, Patrice E. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ruban, Andrei; Vitos, Levente] Royal Inst Technol, Valhallavagen 79, Stockholm, Sweden. RP Duong, TC (reprint author), Texas A&M Univ, Mat Sci & Engn, College Stn, TX 77843 USA. EM terryduong84@tamu.edu FU United States Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; United States Department of Energy by the Los Alamos National Laboratory [DE-AC52-06NA25396]; NSF [DMR-1410983, CMMI-1534534] FX This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory and Los Alamos National Laboratory under contract Nos. DE-AC52-07NA27344 and DE-AC52-06NA25396, respectively. TCD acknowledges the partial support of NSF through grant DMR-1410983. RA also acknowledges partial support of NSF through grant CMMI-1534534. TCD specially thanks Prof. I. Steinbach, Dr. O. Shchyglo, Dr. R.D. Kamachali, M. Stratmann, A.A. Giessmann, and E. Borukhovic for helpful discussions regarding phase-field theory and the interface dissipation model. R.E.H., H.M.V., A.L., A.I. S., and G.K. acknowledges experimental assistance from T.J. Tucker and P.A. Papin. First-principles calculations were carried out in the Chemical Engineering Cluster and the Texas A&M Supercomputing Facility at Texas A&M University as well as in the Ranger Cluster at the Texas Advanced Computing Center at University of Texas, Austin. NR 71 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0364-5916 EI 1873-2984 J9 CALPHAD JI Calphad-Comput. Coupling Ph. Diagrams Thermochem. PD DEC PY 2016 VL 55 BP 219 EP 230 DI 10.1016/j.calphad.2016.09.006 PN 2 PG 12 WC Thermodynamics; Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Thermodynamics; Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA EG0MF UT WOS:000390726200012 ER PT J AU Wang, X Luo, M Huang, HW Chi, MF Howe, J Xie, ZX Xia, YA AF Wang, Xue Luo, Ming Huang, Hongwen Chi, Miaofang Howe, Jane Xie, Zhaoxiong Xia, Younan TI Facile Synthesis of Pt-Pd Alloy Nanocages and Pt Nanorings by Templating with Pd Nanoplates SO CHEMNANOMAT LA English DT Article DE nanocage; nanoplate; nanoring; platinum catalyst; template-directed synthesis ID OXYGEN REDUCTION REACTION; BY-LAYER DEPOSITION; ENHANCED ACTIVITY; PLATINUM NANOCRYSTALS; NANOFRAMES; DURABILITY; CATALYSTS; FACETS; SHAPE; ICOSAHEDRA AB We report a facile method for the synthesis of Pt-Pd nanocages and Pt nanorings by conformally coating Pd nanoplates with Pt-based shells using polyol- and water-based protocols, respectively, followed by selective removal of the Pd cores. For the polyol-based system, Pd nanoplates were conformally coated with Pt-Pd alloy shells due to the use of a high reaction temperature of 200 degrees C and a slow injection rate for the Pt precursor. In comparison, Pt shells were formed on Pd nanoplates with a larger thickness on the side face than on the top/bottom face in the water-based system due to the use of a low reaction temperature of 80 degrees C and the presence of twin boundaries on the side face. As such, the Pd@Pt nanoplates prepared using the polyol- and water-based protocols evolved into Pt-Pd nanocages and Pt nanorings, respectively, when the Pd templates in the cores were selectively removed by wet etching. The wall thickness of the nanocages and the ridge thickness of the nanorings could be reduced down to 1.1nm and 1.8nm, respectively, without breaking the hollow structures. C1 [Wang, Xue; Luo, Ming; Huang, Hongwen; Xia, Younan] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. [Wang, Xue; Luo, Ming; Huang, Hongwen; Xia, Younan] Emory Univ, Atlanta, GA 30332 USA. [Wang, Xue; Xie, Zhaoxiong] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Collaborat Innovat Ctr Chem Energy Mat, Xiamen 361005, Peoples R China. [Wang, Xue; Xie, Zhaoxiong] Xiamen Univ, Dept Chem, Xiamen 361005, Peoples R China. [Chi, Miaofang] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Howe, Jane] Hitachi Hightechnol Canada, Toronto, ON M9W6A4, Canada. [Xia, Younan] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Xia, Younan] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. RP Xia, YA (reprint author), Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA.; Xia, YA (reprint author), Emory Univ, Atlanta, GA 30332 USA.; Xia, YA (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA.; Xia, YA (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. EM younan.xia@bme.gatech.edu OI Wang, Xue/0000-0002-6298-1858 FU NSF [CHE 1505441]; Georgia Tech; China Scholarship Council; ORNL's Center for Nanophase Materials Sciences FX This work was supported in part by a grant from the NSF (CHE 1505441) and start-up funds from Georgia Tech. As visiting Ph.D. students, X.W., M.L., and H.H. also received partial support from the China Scholarship Council. Part of the electron microscopy work was performed through a user project supported by the ORNL's Center for Nanophase Materials Sciences, which is a U.S. DOE Office of Science User Facility (M.C.). NR 31 TC 0 Z9 0 U1 23 U2 23 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2199-692X J9 CHEMNANOMAT JI ChemNanoMat PD DEC PY 2016 VL 2 IS 12 BP 1086 EP 1091 DI 10.1002/cnma.201600238 PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EF8RX UT WOS:000390598200004 ER PT J AU Yue, YF Li, YC Bridges, CA Rother, G Zhang, JS Chen, JH Hensley, DK Kidder, MK Richardson, BC Paranthaman, MP Dai, S AF Yue, Yanfeng Li, Yunchao Bridges, Craig A. Rother, Gernot Zhang, Jinshui Chen, Jihua Hensley, Dale K. Kidder, Michelle K. Richardson, Bruce C. Paranthaman, Mariappan Parans Dai, Sheng TI Hierarchically Superstructured Metal Sulfides: Facile Perturbation-Assisted Nanofusion Synthesis and Visible Light Photocatalytic Characterizations SO CHEMNANOMAT LA English DT Article DE hierarchical superstructure; mesopores; metal sulfide; perturbation-assisted nanofusion; photocatalysis ID MESOPOROUS MOLECULAR-SIEVES; HYDROGEN-EVOLUTION ACTIVITY; SENSITIZED SOLAR-CELLS; CARBON NITRIDE; ORGANIC FRAMEWORKS; CDS; FUNCTIONALIZATION; INTERFACE; REDUCTION; RELEASE AB A novel and simple perturbation-assisted nanofusion (PNF) synthetic strategy was developed for the synthesis of stable hierarchically superstructured metal sulfides with controlled morphology. This promising approach is based on a kinetically controlled precipitation to simultaneously condense and re-dissolve polymorphic nanocrystallites, and provides the resultant samples with a unique mesoporous framework. The PNF approach is environmentally friendly, produces gram-scale products in a matter of hours, and is complimentary to the traditional hard or soft templating methods for the construction of mesoporous metal sulfides. PNF-derived hierarchical porous CdS exhibited a vastly improved photocatalytic performance over its commercial bulk counterparts under visible light irradiation, demonstrating the advantage of the porous morphology for photocatalysis resulting from the enlarged surface area and the easy accessibility of the mesopores. C1 [Yue, Yanfeng; Li, Yunchao; Bridges, Craig A.; Rother, Gernot; Zhang, Jinshui; Kidder, Michelle K.; Paranthaman, Mariappan Parans; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Yue, Yanfeng; Richardson, Bruce C.] Sul Ross State Univ, Dept Biol Geol & Phys Sci, Alpine, TX 79832 USA. [Li, Yunchao; Paranthaman, Mariappan Parans] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. [Chen, Jihua; Hensley, Dale K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Yue, YF; Zhang, JS; Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.; Yue, YF (reprint author), Sul Ross State Univ, Dept Biol Geol & Phys Sci, Alpine, TX 79832 USA.; Dai, S (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM yanfeng.yue@sulross.edu; jinshui.zhang@gmail.com; dais@ornl.gov RI zhang, Jinshui/D-9749-2016; Rother, Gernot/B-7281-2008 OI zhang, Jinshui/0000-0003-4649-6526; Rother, Gernot/0000-0003-4921-6294 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DE-AC05-00OR22725]; Oak Ridge National Laboratory; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division FX This research was sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under Contract No. DE-AC05-00OR22725 with Oak Ridge National Laboratory, which is managed and operated by UT-Battelle, LLC. M.K.K conducted solid UV/Vis experiments. EM experiments (J.C. and D.K.H.) experiments were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility, Office of Science, Basic Energy Sciences, Scientific User Facility Division. Photocatalytic properties testing (YL, MPP) and small angle X-ray scattering (CB) were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. NR 58 TC 0 Z9 0 U1 7 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2199-692X J9 CHEMNANOMAT JI ChemNanoMat PD DEC PY 2016 VL 2 IS 12 BP 1104 EP 1110 DI 10.1002/cnma.201600292 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EF8RX UT WOS:000390598200007 ER PT J AU Choi, S Seong, H AF Choi, Seungmok Seong, Heeje TI Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine SO COMBUSTION AND FLAME LA English DT Article DE Gasoline direct-injection (GDI) engine; Gasoline particulate filter (GPF); Soot oxidation reactivity; Lube oil additives; Ash ID METAL-OXIDES; SPECTROSCOPY; XPS; SURFACES; INHIBITION; PHOSPHORUS; MORPHOLOGY; CATALYSTS AB Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation. It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Choi, Seungmok; Seong, Heeje] Argonne Natl Lab, Ctr Transportat Res, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Seong, H (reprint author), Argonne Natl Lab, Ctr Transportat Res, 9700 South Cass Ave, Argonne, IL 60439 USA. EM hseong@anl.gov FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Advanced Combustion Engines Program at the US Department of Energy, Office of Vehicle Technologies; Hyundai Motor Company [C1200101]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract no. DE-AC02-06CH11357. This work was supported by the Advanced Combustion Engines Program at the US Department of Energy, Office of Vehicle Technologies, and Hyundai Motor Company under Contract no. C1200101. Also, Corning Inc. provided GPF substrates to support this project. The use of the facilities at the Center for Nanoscale Materials and the Advanced Photon Source (APS) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors thank Dr. Richard T. Haasch in Materials Research Laboratory, University of Illinois Urbana-Champaign for obtaining XPS spectra. NR 35 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD DEC PY 2016 VL 174 BP 68 EP 76 DI 10.1016/j.combustflame.2016.09.019 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA EF8XF UT WOS:000390614600006 ER PT J AU Maes, N Meijer, M Dam, N Somers, B Toda, HB Bruneaux, G Skeen, SA Pickett, LM Manin, J AF Maes, Noud Meijer, Maarten Dam, Nico Somers, Bart Toda, Hubert Baya Bruneaux, Gilles Skeen, Scott A. Pickett, Lyle M. Manin, Julien TI Characterization of Spray A flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence SO COMBUSTION AND FLAME LA English DT Article DE Engine Combustion Network (ECN); Constant-volume vessel; Laser-induced fluorescence; Chemiluminescence; Flame structures; Spray A ID COMBUSTION NETWORK ECN; DUTY DIESEL-ENGINE; AROMATIC-HYDROCARBONS; N-DODECANE; SOOT; FORMALDEHYDE; TEMPERATURE; PRESSURE; IGNITION; JET AB The transient and quasi-steady flame structure of reacting fuel sprays produced by single-hole injectors has been studied using chemiluminescence imaging and Planar Laser-Induced Fluorescence (PLIF) in various constant-volume facilities at different research institutes participating in the Engine Combustion Network (ECN). The evolution of the high-temperature flame has been followed based on chemiluminescence imaging of the excited-state hydroxyl radical (OH*), and PLIF of ground-state OH. Regions associated with low-temperature chemical reactions are visualized using formaldehyde (CH2O) PLIF with 355-nm excitation. We compare the results obtained by different research institutes under nominally identical experimental conditions and fuel injectors. In spite of design differences among the various experimental facilities, the results are consistent. This lends confidence to studies of transient behavior and parameter variations performed by individual research groups. We present results of the transient flame structures at Spray A reference conditions, and include parametric variations around this baseline, involving ambient temperature, oxygen concentration and injection pressure. Key results are the observed influence of an entrainment wave on the transient flame behavior, model-substantiated explanations for the high intensity OH* lobes at the lift-off length and differences with OH PLIF, and a general analogy of the flame structures with a spray cone along which the flame tends to locate for the applied parametric variations. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Maes, Noud; Meijer, Maarten; Dam, Nico; Somers, Bart] Eindhoven Univ Technol, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands. [Toda, Hubert Baya; Bruneaux, Gilles] IFP Energies Nouvelles, F-92852 Rueil Malmaison, France. [Skeen, Scott A.; Pickett, Lyle M.; Manin, Julien] Sandia Natl Labs, Combust Res Facil, POB 969,MS 9053, Livermore, CA 94551 USA. RP Maes, N (reprint author), Eindhoven Univ Technol, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands. EM n.c.j.maes@tue.nl RI Moteur, Direction TAE/C-1458-2013; IFPEN, Publications/A-8028-2008; OI Somers, Bart/0000-0003-2969-6745 FU U.S. Department of Energy, Office of Vehicle Technologies; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Experiments presented by TU/e were conducted at the Combustion Technology facility of the Eindhoven University of Technology. The loan of optical filters by IFPEn is highly appreciated, and we thank Hans van Griensven and Theo de Groot for their technical support. For the experiments conducted at IFPEn, we thank Laurent Hermant for his technical assistance. The experiments presented by Sandia were conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore, CA. Support was provided by the U.S. Department of Energy, Office of Vehicle Technologies. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 61 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD DEC PY 2016 VL 174 BP 138 EP 151 DI 10.1016/j.combustflame.2016.09.005 PG 14 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA EF8XF UT WOS:000390614600012 ER PT J AU Fulton, JA Edwards, JR Cutler, A McDaniel, J Goyne, C AF Fulton, Jesse A. Edwards, Jack R. Cutler, Andrew McDaniel, Jim Goyne, Christopher TI Turbulence/chemistry interactions in a ramp-stabilized supersonic hydrogen-air diffusion flame SO COMBUSTION AND FLAME LA English DT Article DE Supersonic combustion; Large-eddy simulation ID DUAL-MODE SCRAMJET; LARGE-EDDY SIMULATION; NAVIER-STOKES SIMULATIONS; DIODE-LASER ABSORPTION; TURBULENT COMBUSTION; FLOW; SPECTROSCOPY; DISSIPATION AB Hybrid large-eddy / Reynolds-averaged Navier-Stokes simulations of turbulence / chemistry interactions occurring within a ramp-injected, hydrogen-fueled scramjet combustor are presented in this work. The experimental geometry is one of several studied at the Universty of Virginia as part of the National Center for Hypersonic Combined Cycle Propulsion and consists of an isolator, a combustor, and an extender section. Data collected includes coherent anti-Stokes Raman spectroscopy (CARS) measurements of major species composition and temperature at several streamwise planes, stereoscopic particle image velocimetry (PIV) measurements, hydroxyl planar-induced fluorescence (OH-PLIF) imagery, wall pressure distributions, and line-of-sight profiles of temperature and water concentration obtained using tunable diode laser spectroscopy (TDLAS). This paper focuses on an equivalence ratio of 0.17, which does not produce enough heat release to force a shock train into the isolator. The computational methods utilize a hybrid fourth-order central-difference / upwind strategy to enable accurate resolution of turbulent structures and employ a nine-species hydrogen oxidation mechanism. Generally accurate predictions of temperature, velocity, and nitrogen mole fraction are achieved through a 'laminar chemistry' assumption for the filtered species production rates, though results do improve slightly with the use of a simple turbulence / chemistry subgrid closure model. The predictions are most sensitive to the choice of isolator inflow boundary condition, with the use of a recycling / rescaling technique to sustain turbulent fluctuations resulting in an 'over-mixing' effect immediately downstream of the fuel injector. Turbulence-chemistry interactions in the flameholding region are examined from the standpoint of laminar flamelet theory. A region of high scalar dissipation rate, coincident with the breakdown of the fuel plume and the interaction of a reflected shock wave with the plume, inhibits flame propagation, forming a 'hole' in the flame. Advection of cooler fluid downstream into regions of moderate scalar dissipation enlarges the 'hole', but eventually the flame reconnects. These results point to one potential disadvantage of fuel-air mixing technologies that enhance axial vorticity-even if conditions for combustion are favorable, high strain rates generated by the interaction and breakdown of vortex pairs can lead to flame suppression. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Fulton, Jesse A.] Sandia Natl Labs, Albuquerque, NM 87114 USA. [Edwards, Jack R.] North Carolina State Univ, Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Cutler, Andrew] George Washington Univ, Newport News, VA 23602 USA. [McDaniel, Jim; Goyne, Christopher] Univ Virginia, Mech & Aerosp Engn, Charlottesville, VA 22904 USA. RP Edwards, JR (reprint author), North Carolina State Univ, Mech & Aerosp Engn, Raleigh, NC 27695 USA. EM jredward@eos.ncsu.edu FU National Center for Hypersonic Combined-Cycle Propulsion (NCHCCP) [FA 9550-09-1-0611] FX This work was sponsored by the National Center for Hypersonic Combined-Cycle Propulsion (NCHCCP), grant FA 9550-09-1-0611, with technical monitors Chiping Li (AFOSR) and Rick Gaffney (NASA). Computing time was obtained from NASA's NAS supercomputing resource and the DoD's HPC modernization program. NR 42 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD DEC PY 2016 VL 174 BP 152 EP 165 DI 10.1016/j.combustflame.2016.09.017 PG 14 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA EF8XF UT WOS:000390614600013 ER PT J AU Ravaioli, E Auchmann, B Maciejewski, M ten Kate, HHJ Verweij, AP AF Ravaioli, E. Auchmann, B. Maciejewski, M. ten Kate, H. H. J. Verweij, A. P. TI Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet SO CRYOGENICS LA English DT Article; Proceedings Paper CT CHATS on Applied Superconductivity Workshop (CHAT-AS) CY SEP 14-16, 2015 CL Dept Elect, Elect & Informat Engn, Bologna, ITALY SP Univ Bologna HO Dept Elect, Elect & Informat Engn DE Circuit modeling; Coupling losses; Quench protection; Simulation; Superconducting coil ID RESISTANCE AB Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence ofinter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well. Published by Elsevier Ltd. C1 [Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.] CERN, European Ctr Nucl Res, CH-1211 Geneva 23, Switzerland. [Ravaioli, E.; ten Kate, H. H. J.] Univ Twente, Enschede, Netherlands. [Maciejewski, M.] Tech Univ Lodz, Inst Automat Control, 18-22 Stefanowskiego St, Lodz, Poland. [Ravaioli, E.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ravaioli, E (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 31 TC 4 Z9 4 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD DEC PY 2016 VL 80 BP 346 EP 356 DI 10.1016/j.cryogenics.2016.04.004 PN 3 PG 11 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA EG0LZ UT WOS:000390725600011 ER PT J AU Beckham, GT Johnson, CW Karp, EM Salvachua, D Vardon, DR AF Beckham, Gregg T. Johnson, Christopher W. Karp, Eric M. Salvachua, Davinia Vardon, Derek R. TI Opportunities and challenges in biological lignin valorization SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID RHODOCOCCUS-JOSTII RHA1; 2-PYRONE-4,6-DICARBOXYLIC ACID PDC; SPHINGOMONAS-PAUCIMOBILIS SYK-6; COMPLETE GENOME SEQUENCE; SP STRAIN SYK-6; PSEUDOMONAS-PUTIDA; AROMATIC-COMPOUNDS; BIOFUEL PRODUCTION; ADIPIC ACID; BIOTECHNOLOGICAL PRODUCTION AB Lignin is a primary component of lignocellulosic biomass that is an underutilized feedstock in the growing biofuels industry. Despite the fact that lignin depolymerization has long been studied, the intrinsic heterogeneity of lignin typically leads to heterogeneous streams of aromatic compounds, which in turn present significant technical challenges when attempting to produce lignin-derived chemicals where purity is often a concern. In Nature, microorganisms often encounter this same problem during biomass turnover wherein powerful oxidative enzymes produce heterogeneous slates of aromatics compounds. Some microbes have evolved metabolic pathways to convert these aromatic species via 'upper pathways' into central intermediates, which can then be funneled through 'lower pathways' into central carbon metabolism in a process we dubbed 'biological funneling'. This funneling approach offers a direct, biological solution to overcome heterogeneity problems in lignin valorization for the modern biorefinery. Coupled to targeted separations and downstream chemical catalysis, this concept offers the ability to produce a wide range of molecules from lignin. This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks. In particular, we discuss tailoring the lignin substrate for microbial utilization, host selection for biological funneling, ligninolytic enzyme-microbe synergy, metabolic engineering, expanding substrate specificity for biological funneling, and process integration, each of which presents key challenges. Ultimately, for biological solutions to lignin valorization to be viable, multiple questions in each of these areas will need to be addressed, making biological lignin valorization a multidisciplinary, co-design problem. C1 [Beckham, Gregg T.; Johnson, Christopher W.; Karp, Eric M.; Salvachua, Davinia; Vardon, Derek R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80403 USA. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80403 USA. EM gregg.beckham@nrel.gov RI Vardon, Derek/B-8249-2017 OI Vardon, Derek/0000-0002-0199-4524 FU US Department of Energy Bioenergy Technologies Office; Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997]; BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science FX We acknowledge funding from the US Department of Energy Bioenergy Technologies Office. GTB and DRV also acknowledge funding from the Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Award Number DE-SC0000997. GTB also acknowledges funding from the BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. We thank our many colleagues and collaborators for helpful discussions around the topic of microbial lignin valorization. NR 124 TC 23 Z9 23 U1 44 U2 44 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD DEC PY 2016 VL 42 BP 40 EP 53 DI 10.1016/j.copbio.2016.02.030 PG 14 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA EG0JO UT WOS:000390718900008 PM 26974563 ER PT J AU Zhu, XQ Gao, WJ Zhou, N Kammen, DM Wu, YQ Zhang, Y Chen, W AF Zhu, Xiaoqing Gao, Weijun Zhou, Nan Kammen, Daniel M. Wu, Yiqun Zhang, Yao Chen, Wei TI The inhabited environment, infrastructure development and advanced urbanization in China's Yangtze River Delta Region SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE energy consumption; advanced urbanization; Yangtze River Delta region; inhabited environment; infrastructure development ID ENERGY-CONSUMPTION; CO2 EMISSIONS; URBAN FORM; IMPACT; DEMAND; INDUSTRIALIZATION; CITIES AB This paper analyzes the relationship among the inhabited environment, infrastructure development and environmental impacts in China's heavily urbanized Yangtze River Delta region. Using primary human environment data for the period 2006-2014, we examine factors affecting the inhabited environment and infrastructure development: urban population, GDP, built-up area, energy consumption, waste emission, transportation, real estate and urban greenery. Then we empirically investigate the impact of advanced urbanization with consideration of cities' differences. Results from this study show that the growth rate of the inhabited environment and infrastructure development is strongly influenced by regional development structure, functional orientations, traffic network and urban size and form. The effect of advanced urbanization is more significant in large and mid-size cities than huge and mega cities. Energy consumption, waste emission and real estate in large and midsize cities developed at an unprecedented rate with the rapid increase of economy. However, urban development of huge and mega cities gradually tended to be saturated. The transition development in these cities improved the inhabited environment and ecological protection instead of the urban construction simply. To maintain a sustainable advanced urbanization process, policy implications included urban sprawl control polices, ecological development mechanisms and reforming the economic structure for huge and mega cities, and construct major cross-regional infrastructure, enhance the carrying capacity and improvement of energy efficiency and structure for large and midsize cities. C1 [Zhu, Xiaoqing] Zhejiang Univ Technol, Urban Rural Dev & Habitat Environm Res Ctr, Hangzhou, Zhejiang, Peoples R China. [Zhu, Xiaoqing; Gao, Weijun; Zhang, Yao; Chen, Wei] Univ Kitakyushu, Fac Environm Engn, Kitakyushu, Fukuoka, Japan. [Zhou, Nan] Lawrence Berkeley Natl Lab, China Energy Grp, Berkeley, CA USA. [Kammen, Daniel M.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Kammen, Daniel M.] Univ Calif Berkeley, Goldman Sch Publ Policy, Berkeley, CA 94720 USA. [Kammen, Daniel M.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Wu, Yiqun] Zhejiang Univ, Dept Architecture, Hangzhou, Zhejiang, Peoples R China. RP Zhu, XQ (reprint author), Zhejiang Univ Technol, Urban Rural Dev & Habitat Environm Res Ctr, Hangzhou, Zhejiang, Peoples R China.; Zhu, XQ (reprint author), Univ Kitakyushu, Fac Environm Engn, Kitakyushu, Fukuoka, Japan. EM arc_zxq@163.com FU National Natural Science Fund of China [51208466, 51238011]; Science and Technology Research Program of Chinese Ministry of Housing and Urban-rural Development [2014-R2-036]; Natural Science Fund of Zhejiang Province [LY16E08011]; Social Sciences Planning Project of Zhejiang Province [12JCSH02YB] FX This paper is the result of the research supported by the National Natural Science Fund of China (No. 51208466, No. 51238011), Science and Technology Research Program of Chinese Ministry of Housing and Urban-rural Development (No. 2014-R2-036), the Natural Science Fund of Zhejiang Province (No. LY16E08011), Social Sciences Planning Project of Zhejiang Province (No. 12JCSH02YB). NR 40 TC 0 Z9 0 U1 16 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD DEC PY 2016 VL 11 IS 12 AR 124020 DI 10.1088/1748-9326/11/12/124020 PG 16 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA EG1AL UT WOS:000390763700001 ER PT J AU Bodenheimer, AM Meilleur, F AF Bodenheimer, Annette M. Meilleur, Flora TI Crystal structures of wild-type Trichoderma reesei Cel7A catalytic domain in open and closed states SO FEBS LETTERS LA English DT Article DE Cel7A; cellulase; closed state; processivity; product-binding site; Trichoderma reesei ID FAMILY 7 CELLOBIOHYDROLASE; MOLECULAR-DYNAMICS; GLYCOSIDE HYDROLASES; LIMITED PROTEOLYSIS; PRODUCT INHIBITION; C-TERMINUS; PROTEIN; BINDING; PROCESSIVITY; FLEXIBILITY AB Trichoderma reesei Cel7A efficiently hydrolyses cellulose. We report here the crystallographic structures of the wild-type TrCel7A catalytic domain (CD) in an open state and, for the first time, in a closed state. Molecular dynamics (MD) simulations indicate that the loops along the CD tunnel move in concerted motions. Together, the crystallographic and MD data suggest that the CD cycles between the tense and relaxed forms that are characteristic of work producing enzymes. Analysis of the interactions formed by R251 provides a structural rationale for the concurrent decrease in product inhibition and catalytic efficiency measured for product-binding site mutants. C1 [Bodenheimer, Annette M.; Meilleur, Flora] North Carolina State Univ, Mol & Struct Biochem Dept, Raleigh, NC USA. [Bodenheimer, Annette M.; Meilleur, Flora] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN USA. RP Meilleur, F (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37932 USA. EM flora_meilleur@ncsu.edu FU USDA National Institute of Food and Agriculture; Hatch project [211001]; National Science Foundation IGERT award [1069091]; Graduate Opportunity (GO!) Program at Oak Ridge National Laboratory; Office of Biological and Environmental Research Project [ERKP291]; U.S. Department of Energy [DE-AC05-00OR22725]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX This work was supported by the USDA National Institute of Food and Agriculture, Hatch project 211001, the National Science Foundation IGERT award #1069091 and the Graduate Opportunity (GO!) Program at Oak Ridge National Laboratory. Part of this work was conducted in the Center for Structural Molecular Biology supported by the Office of Biological and Environmental Research Project ERKP291, using facilities supported by the U.S. Department of Energy, managed by UT-Battelle, LLC under contract No. DE-AC05-00OR22725. Data were collected at Southeast Regional Collaborative Access Team (SER-CAT) beamlines at the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. AMB purified and crystallized protein, collected X-ray data, refined and analyzed the X-ray structures, and wrote the paper. FM conceived the project, analyzed the X-ray structures, and wrote the paper. Both authors approved the final version of the manuscript. NR 52 TC 0 Z9 0 U1 8 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0014-5793 EI 1873-3468 J9 FEBS LETT JI FEBS Lett. PD DEC PY 2016 VL 590 IS 23 BP 4429 EP 4438 DI 10.1002/1873-3468.12464 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA EF5ST UT WOS:000390390600027 PM 27943301 ER PT J AU Oya, Y Hatano, Y Shimada, M Buchenauer, D Kolasinski, R Merrill, B Kondo, S Hinoki, T Alimov, VK AF Oya, Yasuhisa Hatano, Yuji Shimada, Masashi Buchenauer, Dean Kolasinski, Robert Merrill, Brad Kondo, Sosuke Hinoki, Tatsuya Alimov, Vladimir Kh. TI Recent progress of hydrogen isotope behavior studies for neutron or heavy ion damaged W SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 1st Asia-Pacific Symposium on Tritium Science (APSOT) CY NOV 01-05, 2015 CL Mianyang, PEOPLES R CHINA SP China Acad Engn Phys, Inst Nucl Phys & Chem DE Hydrogen isotope behavior in damaged W; Neutron irradiation; Heavy ion irradiation; Plasma wall interactions ID THERMAL-DESORPTION; TUNGSTEN; DEUTERIUM; IRRADIATION; RETENTION AB This paper reviews recent results pertaining to hydrogen isotope behavior in neutron and heavy ion damaged W. Accumulation of damage in W creates stable trapping sites for hydrogen isotopes, thereby changing the observed desorption behavior. In particular, the desorption temperature shifts higher as the defect concentration increases. In addition, the distribution of defects throughout the sample also changes the shape of TDS spectrum. Even if low energy traps were distributed in the bulk region, the D diffusion toward the surface requires additional time for trapping/detrapping during surface-to-bulk transport, contributing to a shift of desorption peaks toward higher temperatures. It can be said that both of distribution of damage (e.g. hydrogen isotope trapping sites) and their stabilities would have a large impact on desorption. In addition, transmutation effects should be also considered for an actual fusion environment. Experimental results show that production of Re by nuclear reaction of W with neutrons reduces the density of trapping sites, though no remarkable retention enhancement is observed. (C) 2016 Elsevier B.V. All rights reserved. C1 [Oya, Yasuhisa] Shizuoka Univ, Suruga Ku, 836 Ohya, Shizuoka 4228529, Japan. [Hatano, Yuji; Alimov, Vladimir Kh.] Toyama Univ, 3190 Gofuku, Toyama 9398555, Japan. [Shimada, Masashi; Merrill, Brad] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Buchenauer, Dean; Kolasinski, Robert] Sandia Natl Labs, Livermore, CA 94551 USA. [Kondo, Sosuke; Hinoki, Tatsuya] Kyoto Univ, Uji, Kyoto 6110011, Japan. RP Oya, Y (reprint author), Shizuoka Univ, Suruga Ku, 836 Ohya, Shizuoka 4228529, Japan. EM syoya@ipc.shizuoka.ac.jp OI Oya, Yasuhisa/0000-0002-1765-5623 NR 23 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD DEC PY 2016 VL 113 BP 211 EP 215 DI 10.1016/j.fusengdes.2016.08.004 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EG0OX UT WOS:000390733200032 ER PT J AU Shen, XX Zhou, XF Kominek, J Kurtzman, CP Hittinger, CT Rokas, A AF Shen, Xing-Xing Zhou, Xiaofan Kominek, Jacek Kurtzman, Cletus P. Hittinger, Chris Todd Rokas, Antonis TI Reconstructing the Backbone of the Saccharomycotina Yeast Phylogeny Using Genome-Scale Data SO G3-GENES GENOMES GENETICS LA English DT Article DE phylogenomics; maximum likelihood; incongruence; genome completeness; nuclear markers ID SPECIES TREE ESTIMATION; MISSING DATA; DNA-SEQUENCES; FUNGAL TREE; GEN. NOV; EVOLUTIONARY; COALESCENT; MODEL; TOOL; INCONGRUENCE AB Understanding the phylogenetic relationships among the yeasts of the subphylum Saccharomycotina is a prerequisite for understanding the evolution of their metabolisms and ecological lifestyles. In the last two decades, the use of rDNA and multilocus data sets has greatly advanced our understanding of the yeast phylogeny, but many deep relationships remain unsupported. In contrast, phylogenomic analyses have involved relatively few taxa and lineages that were often selected with limited considerations for covering the breadth of yeast biodiversity. Here we used genome sequence data from 86 publicly available yeast genomes representing nine of the 11 known major lineages and 10 nonyeast fungal outgroups to generate a 1233-gene, 96-taxon data matrix. Species phylogenies reconstructed using two different methods (concatenation and coalescence) and two data matrices (amino acids or the first two codon positions) yielded identical and highly supported relationships between the nine major lineages. Aside from the lineage comprised by the family Pichiaceae, all other lineages were monophyletic. Most interrelationships among yeast species were robust across the two methods and data matrices. However, eight of the 93 internodes conflicted between analyses or data sets, including the placements of: the clade defined by species that have reassigned the CUG codon to encode serine, instead of leucine; the clade defined by a whole genome duplication; and the species Ascoidea rubescens. These phylogenomic analyses provide a robust roadmap for future comparative work across the yeast subphylum in the disciplines of taxonomy, molecular genetics, evolutionary biology, ecology, and biotechnology. To further this end, we have also provided a BLAST server to query the 86 Saccharomycotina genomes, which can be found at http://y1000plus.org/blast. C1 [Shen, Xing-Xing; Zhou, Xiaofan; Rokas, Antonis] Vanderbilt Univ, Dept Biol Sci, VU Stn B 351634, Nashville, TN 37235 USA. [Kominek, Jacek; Hittinger, Chris Todd] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, JF Crow Inst Study Evolut, Lab Genet,Genome Ctr Wisconsin,Wisconsin Energy I, Madison, WI 53706 USA. [Kurtzman, Cletus P.] ARS, Mycotoxin Prevent & Appl Microbiol Res Unit, Natl Ctr Agr Utilizat Res, USDA, Peoria, IL 61604 USA. RP Rokas, A (reprint author), Vanderbilt Univ, Dept Biol Sci, VU Stn B 351634, Nashville, TN 37235 USA.; Hittinger, CT (reprint author), Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, JF Crow Inst Study Evolut, Lab Genet,Genome Ctr Wisconsin,Wisconsin Energy I, Madison, WI 53706 USA.; Kurtzman, CP (reprint author), ARS, Mycotoxin Prevent & Appl Microbiol Res Unit, Natl Ctr Agr Utilizat Res, USDA, Peoria, IL 61604 USA. EM cletus.kurtzman@ars.usda.gov; cthittinger@wisc.edu; antonis.rokas@vanderbilt.edu FU National Science Foundation [DEB-1442113, DEB-1442148]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02- 07ER64494]; USDA National Institute of Food and Agriculture (Hatch project) [1003258]; National Institutes of Health (NIAID) [AI105619]; Alexander von Humboldt Foundation; Pew Charitable Trusts FX We thank Thomas W. Jeffries, Meredith Blackwell, and the Department of Energy (DOE) Joint Genome Institute for releasing several genome sequences through MycoCosm prior to their formal publication (Riley et al. 2016) and Abigail Lind for help with the GO term enrichment analysis. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture (USDA). USDA is an equal opportunity provider and employer. This work was conducted in part using the resources of the Advanced Computing Center for Research and Education (ACCRE) at Vanderbilt University and of the UW-Madison Center for High Throughput Computing. This work was supported by the National Science Foundation (DEB-1442113 to A.R.; DEB-1442148 to C.T.H.), in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02- 07ER64494), the USDA National Institute of Food and Agriculture (Hatch project 1003258 to C.T.H.), and the National Institutes of Health (NIAID AI105619 to A.R.). C.T.H. is an Alfred Toepfer Faculty Fellow, supported by the Alexander von Humboldt Foundation. C.T.H. is a Pew Scholar in the Biomedical Sciences, supported by the Pew Charitable Trusts. NR 90 TC 0 Z9 0 U1 3 U2 3 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 2160-1836 J9 G3-GENES GENOM GENET JI G3-Genes Genomes Genet. PD DEC PY 2016 VL 6 IS 12 BP 3927 EP 3939 DI 10.1534/g3.116.034744 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA EF8PN UT WOS:000390591400014 PM 27672114 ER PT J AU Cadwallader, L AF Cadwallader, Lee TI Reliability and Maintainability Data for Lead Lithium Cooling Systems SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Reliability ID CORROSION; PB-17LI; STEELS; DEMO AB This paper presents component failure rate data for use in assessment of lead lithium cooling systems. Best estimate data applicable to this liquid metal coolant are presented. Repair times for similar components are also referenced in this paper. These data support probabilistic safety assessment and reliability, availability, maintainability, and inspectability analyses. C1 [Cadwallader, Lee] Idaho Natl Lab, Idaho Falls, ID 83402 USA. RP Cadwallader, L (reprint author), Idaho Natl Lab, Idaho Falls, ID 83402 USA. EM lee.cadwallader@inl.gov OI Cadwallader, Lee/0000-0003-0399-7400 NR 27 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD DEC PY 2016 VL 44 IS 12 BP 3439 EP 3444 DI 10.1109/TPS.2016.2624631 PN 3 PG 6 WC Physics, Fluids & Plasmas SC Physics GA EF9TA UT WOS:000390672000028 ER PT J AU Soukhanovskii, VA Allen, SL Fenstermacher, ME Lasnier, CJ Makowski, MA McLean, AG Meier, ET Meyer, WH Rognlien, TD Ryutov, DD Scotti, F Kolemen, E Bell, RE Diallo, A Gerhardt, S Kaita, R Kaye, S LeBlanc, BP Maingi, R Menard, JE Podesta, M Roquemore, AL Groebner, RJ Hyatt, AW Leonard, AW Osborne, TH Petrie, TW Ahn, JW Raman, R Watkins, JG AF Soukhanovskii, V. A. Allen, S. L. Fenstermacher, M. E. Lasnier, C. J. Makowski, M. A. McLean, A. G. Meier, E. T. Meyer, W. H. Rognlien, T. D. Ryutov, D. D. Scotti, F. Kolemen, E. Bell, R. E. Diallo, A. Gerhardt, S. Kaita, R. Kaye, S. LeBlanc, B. P. Maingi, R. Menard, J. E. Podesta, M. Roquemore, A. L. Groebner, R. J. Hyatt, A. W. Leonard, A. W. Osborne, T. H. Petrie, T. W. Ahn, J. -W. Raman, R. Watkins, J. G. TI Snowflake Divertor Experiments in the DIII-D, NSTX, and NSTX-U Tokamaks Aimed at the Development of the Divertor Power Exhaust Solution SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Divertors; plasma materials interactions; tokamaks ID SCRAPE-OFF LAYER; PLASMAS; PHYSICS AB Experimental results from the National Spherical Torus Experiment (NSTX), a medium-size spherical tokamak with a compact divertor, and DIII-D, a large conventional aspect ratio tokamak, demonstrate that the snowflake (SF) divertor configuration may provide a promising solution for mitigating divertor heat loads and target plate erosion compatible with core H-mode confinement in the future fusion devices, where the standard radiative divertor solution may be inadequate. In NSTX, where the initial high-power SF experiment was performed, the SF divertor was compatible with H-mode confinement, and led to the destabilization of large Edge Localized Modes (ELMs). However, a stable partial detachment of the outer strike point was also achieved where inter-ELM peak heat flux was reduced by factors 3-5, and peak ELM heat flux was reduced by up to 80% (see standard divertor). The DIII-D studies show the SF divertor enables significant power spreading in attached and radiative divertor conditions. Results include: compatibility with the core and pedestal, peak inter-ELM divertor heat flux reduction due to geometry at lower n(e), and ELM energy and divertor peak heat flux reduction, especially prominent in radiative D-2-seeded SF divertor, and nearly complete power detachment and broader radiated power distribution in the radiative D-2-seeded SF divertor at P-SOL = 3 - 4 MW. A variety of SF configurations can be supported by the divertor coil set in NSTX Upgrade. Edge transport modeling with the multifluid edge transport code UEDGE shows that the radiative SF divertor can successfully reduce peak divertor heat flux for the projected P-SOL similar or equal to 9 MW case. The radiative SF divertor with carbon impurity provides a wider n(e) operating window, 50% less argon is needed in the impurity-seeded SF configuration to achieve similar qpeak reduction factors (see standard divertor). C1 [Soukhanovskii, V. A.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Makowski, M. A.; McLean, A. G.; Meier, E. T.; Meyer, W. H.; Rognlien, T. D.; Ryutov, D. D.; Scotti, F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kolemen, E.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaita, R.; Kaye, S.; LeBlanc, B. P.; Maingi, R.; Menard, J. E.; Podesta, M.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Groebner, R. J.; Hyatt, A. W.; Leonard, A. W.; Osborne, T. H.; Petrie, T. W.] Gen Atom, San Diego, CA 92186 USA. [Ahn, J. -W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Raman, R.] Univ Washington, Seattle, WA 98195 USA. [Watkins, J. G.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Soukhanovskii, VA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 42 TC 0 Z9 0 U1 10 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD DEC PY 2016 VL 44 IS 12 BP 3445 EP 3455 DI 10.1109/TPS.2016.2625325 PN 3 PG 11 WC Physics, Fluids & Plasmas SC Physics GA EF9TA UT WOS:000390672000029 ER PT J AU Rapp, J Biewer, TM Bigelow, TS Caughman, JBO Duckworth, RC Ellis, RJ Giuliano, DR Goulding, RH Hillis, DL Howard, RH Lessard, TL Lore, JD Lumsdaine, A Martin, EJ McGinnis, WD Meitner, SJ Owen, LW Ray, HB Shaw, GC Varma, VK AF Rapp, Juergen Biewer, T. M. Bigelow, T. S. Caughman, J. B. O. Duckworth, R. C. Ellis, R. J. Giuliano, D. R. Goulding, R. H. Hillis, D. L. Howard, R. H. Lessard, T. L. Lore, J. D. Lumsdaine, A. Martin, E. J. McGinnis, W. D. Meitner, S. J. Owen, L. W. Ray, H. B. Shaw, G. C. Varma, V. K. TI The Development of the Material Plasma Exposure Experiment SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Component; plasma-facing components (PFCs); plasma-material interactions; power plants; research and development facilities ID HYDROGEN HELICON PLASMA; ION-CYCLOTRON FREQUENCY; EROSION; PHYSICS; FUTURE; DESIGN; WAVES AB The availability of future fusion devices, such as a fusion nuclear science facility or demonstration fusion power station, greatly depends on long operating lifetimes of plasma facing components in their divertors. ORNL is designing the Material Plasma Exposure eXperiment (MPEX), a superconducting magnet, steady-state device to address the plasma material interactions of fusion reactors. MPEX will utilize a new high-intensity plasma source concept based on RF technology. This source concept will allow the experiment to cover the entire expected plasma conditions in the divertor of a future fusion reactor. It will be able to study erosion and redeposition for relevant geometries with relevant electric and magnetic fields in-front of the target. MPEX is being designed to allow for the exposure of a priori neutron-irradiated samples. The target exchange chamber has been designed to undock from the linear plasma generator such that it can be transferred to diagnostics stations for more detailed surface analysis. MPEX is being developed in a staged approach with successively increased capabilities. After the initial development step of the helicon source and electron cyclotron heating system, the source concept is being tested in the Proto-MPEX device. Proto-MPEX has achieved electron densities of more than 4x10(19) m(-3) with a large diameter (13 cm) helicon antenna at 100 kW power. First heating with microwaves resulted in a higher ionization represented by higher electron densities on axis, when compared with the helicon plasma only without microwave heating. C1 [Rapp, Juergen; Biewer, T. M.; Bigelow, T. S.; Caughman, J. B. O.; Duckworth, R. C.; Ellis, R. J.; Giuliano, D. R.; Goulding, R. H.; Hillis, D. L.; Howard, R. H.; Lessard, T. L.; Lore, J. D.; Lumsdaine, A.; Martin, E. J.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Ray, H. B.; Shaw, G. C.; Varma, V. K.] Oak Ridge Natl Lab, Fus & Mat Nucl Syst Div, Oak Ridge, TN 37830 USA. RP Rapp, J (reprint author), Oak Ridge Natl Lab, Fus & Mat Nucl Syst Div, Oak Ridge, TN 37830 USA. EM rappj@ornl.gov OI Rapp, Juergen/0000-0003-2785-9280 NR 20 TC 0 Z9 0 U1 10 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD DEC PY 2016 VL 44 IS 12 BP 3456 EP 3464 DI 10.1109/TPS.2016.2628326 PN 3 PG 9 WC Physics, Fluids & Plasmas SC Physics GA EF9TA UT WOS:000390672000030 ER PT J AU Foley, BT Leitner, T Paraskevis, D Peeters, M AF Foley, Brian T. Leitner, Thomas Paraskevis, Dimitrios Peeters, Martine TI Primate immunodeficiency virus classification and nomenclature: Review SO INFECTION GENETICS AND EVOLUTION LA English DT Review DE Immunodeficiency; HIV; Lentivirus; Nomenclature; Classification ID CIRCULATING RECOMBINANT FORM; CROSS-SPECIES TRANSMISSION; AFRICAN-GREEN MONKEYS; DESIGNATED SUBTYPE-I; INJECTING DRUG-USERS; FULL-LENGTH GENOME; MOLECULAR CHARACTERIZATION; EVOLUTIONARY HISTORY; NUCLEOTIDE-SEQUENCE; GENETIC DIVERSITY AB The International Committee for the Taxonomy and Nomenclature of Viruses does not rule on virus classifications below the species level. The definition of species for viruses cannot be clearly defined for all types of viruses. The complex and interesting epidemiology of Human Immunodeficiency Viruses demands a detailed and informative nomenclature system, while at the same time it presents challenges such that many of the rules need to be flexibly applied or modified over time. This review outlines the nomenclature system for primate lentiviruses and provides an update on new findings since the last review was written in 2000. Published by Elsevier B.V. C1 [Foley, Brian T.; Leitner, Thomas] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, T-6 Mail Stop K710, Los Alamos, NM 87545 USA. [Paraskevis, Dimitrios] Univ Athens, Dept Hyg Epidemiol & Med Stat, Sch Med, Athens, Greece. [Peeters, Martine] Univ Montpellier, INSERM U1175, IRD, TransVIHMI UMI233, Montpellier, France. [Peeters, Martine] IBC, Computat Biol Inst, F-34095 Montpellier, France. RP Foley, BT (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, T-6 Mail Stop K710, Los Alamos, NM 87545 USA. EM btf@lanl.gov FU National Institutes of Health, NIH [AAI12007 -001 -01001] FX This work was supported by the National Institutes of Health, NIH Contract AAI12007 -001 -01001. NR 84 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1348 EI 1567-7257 J9 INFECT GENET EVOL JI Infect. Genet. Evol. PD DEC PY 2016 VL 46 BP 150 EP 158 DI 10.1016/j.meegid.2016.10.018 PG 9 WC Infectious Diseases SC Infectious Diseases GA EF6QP UT WOS:000390456000023 PM 27789390 ER PT J AU Pineda-Pena, AC Varanda, J Sousa, JD Theys, K Brtolo, I Leitner, T Taveira, N Vandamme, AM Abecasis, AB AF Pineda-Pena, Andrea-Clemencia Varanda, Jorge Sousa, Joao Dinis Theys, Kristof Brtolo, Ines Leitner, Thomas Taveira, Nuno Vandamme, Anne-Mieke Abecasis, Ana B. TI On the contribution of Angola to the initial spread of HIV-1 SO INFECTION GENETICS AND EVOLUTION LA English DT Article DE Angola; HIV-1; Origin; Group M; Phylogeography ID HUMAN-IMMUNODEFICIENCY-VIRUS; DRUG-RESISTANCE MUTATIONS; POPULATION-DYNAMICS; SEQUENCE ALIGNMENT; GENETIC DIVERSITY; TYPE-1; ORIGIN; INFERENCE; EPIDEMIC; KINSHASA AB Angola borders and has long-term links with Democratic Republic of Congo (DRC) as well as high levels of Human Immunodeficiency Virus (HIV) genetic diversity, indicating a potential role in the initial spread of the HIV-1 pandemic. Herein, we analyze 564 C2V3 and 354 pol publicly available sequences from DRC, Republic of Congo (RC) and Angola to better understand the initial spread of the virus in this region. Phylogeographic analyses were performed with the BEAST software. While our results pinpoint the origin of the pandemic to Kinshasa (DRC) around 1906, the introduction of HIV-1 to Angola could have occurred early between the 1910s and 1940s. Furthermore, most of the HIV-1 migrations out of Kinshasa were directed not only to Lubumbashi and Mbuji-Mayi (DRC), but also to Luanda and Brazzaville. Kinshasa census records corroborate these findings, indicating that the early exportation of the virus to Angola might be related to the high number of Angolans in Kinshasa at that time, originated mostly from the North of Angola. In summary, our results place Angola at the epicenter of the early HIV dissemination, together with DRC and RC. (C) 2016 Elsevier B. V. All rights reserved. C1 [Pineda-Pena, Andrea-Clemencia; Varanda, Jorge; Sousa, Joao Dinis; Vandamme, Anne-Mieke; Abecasis, Ana B.] Univ Nova Lisboa, IHMT, GHTM, Lisbon, Portugal. [Pineda-Pena, Andrea-Clemencia] Univ Rosario, Dept Basic Sci, Fdn Inst Inmunol Colombia FIDIC, Mol Biol & Immunol Dept, Bogota, Colombia. [Varanda, Jorge] Univ Coimbra, Dept Life Sci, Coimbra, Portugal. [Varanda, Jorge] Univ Coimbra, Ctr Res Anthropol, Coimbra, Portugal. [Sousa, Joao Dinis; Theys, Kristof; Vandamme, Anne-Mieke; Abecasis, Ana B.] KU Leuven Univ Leuven, Dept Microbiol & Immunol, Rega Inst Med Res Clin & Epidemiol Virol, B-3000 Leuven, Belgium. [Leitner, Thomas] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Taveira, Nuno] Inst Super Ciencias Saude Egas Moniz, Ctr Invest Interdisciplinar Egas Moniz, Monte De Caparica, Portugal. RP Abecasis, AB (reprint author), Rua Junqueira 100, P-1349008 Lisbon, Portugal. EM ana.abecasis@ihmt.unl.pt RI iMed.ULisboa, EEPHIV /B-4222-2014; OI Bartolo, Ines/0000-0002-2022-8921; Pineda-Pena, Andrea-Clemencia/0000-0003-1937-0506; Vandamme, Anne-Mieke/0000-0002-6594-2766 FU European Funds through HIVERA: Harmonizing Integrating Vitalizing European Research on HIV/Aids [249697]; L'Oreal Portugal Medals of Honor for Women in Science through L'Oreal Portugal; L'Oreal Portugal Medals of Honor for Women in Science through Comissao Nacional da Unesco; L'Oreal Portugal Medals of Honor for Women in Science through Fundacao para a Ciencia e Tecnologia (FCT); FCT [GHTM-UID/Multi/04413/2013, PTDC/SAU-EPI/122400/2010, VIH/SAU/0029/2011, PTDC/AFR/100646/2008, SFRH/BPD/76225/2011]; Fonds voor Wetenschappelijk Onderzoek - Flanders (FWO) [G.0692.14, G.0611.09N]; National Institutes of Health (NIH) [AI087520]; National Endowment for the Humanities Collaborative Research Grant [RZ5152313]; FWO; [CRIA/ANT/04038/2013] FX This study was supported by European Funds through grant 'Bio-Molecular and Epidemiological Surveillance of HIV Transmitted Drug Resistance, Hepatitis Co-Infections and Ongoing Transmission Patterns in Europe - BEST HOPE - (project funded through HIVERA: Harmonizing Integrating Vitalizing European Research on HIV/Aids, grant 249697)'; by L'Oreal Portugal Medals of Honor for Women in Science 2012 (financed through L'Oreal Portugal, Comissao Nacional da Unesco and Fundacao para a Ciencia e Tecnologia (FCT - http://www.fct.pt)); by FCT for funds to GHTM-UID/Multi/04413/2013; by the Fonds voor Wetenschappelijk Onderzoek - Flanders (FWO) grant G.0692.14 and G.0611.09N; by a National Institutes of Health (NIH) grant AI087520; by FCT (grants PTDC/SAU-EPI/122400/2010, VIH/SAU/0029/2011 and PTDC/AFR/100646/2008); and by CRIA/ANT/04038/2013; and by National Endowment for the Humanities Collaborative Research Grant No. RZ5152313, "An International Collaboration on the Political, Social, and Cultural History of the Emergence of HIV/AIDS." The computational resources and services used in this work were provided by the Hercules Foundation and the Flemish Government - department EWI-FWO Krediet aan Navorsers (Theys, KAN2012 1.5.249.12.). I. B. is supported by a post-doc fellowship (SFRH/BPD/76225/2011) from FCT. K.T. is supported by a postdoctoral grant from FWO. NR 29 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1348 EI 1567-7257 J9 INFECT GENET EVOL JI Infect. Genet. Evol. PD DEC PY 2016 VL 46 BP 219 EP 222 DI 10.1016/j.meegid.2016.08.009 PG 4 WC Infectious Diseases SC Infectious Diseases GA EF6QP UT WOS:000390456000030 PM 27521160 ER PT J AU Bull, D Jenne, DS Smith, CS Copping, AE Copeland, G AF Bull, Diana Jenne, D. Scott Smith, Christopher S. Copping, Andrea E. Copeland, Guild TI Levelized cost of energy for a Backward Bent Duct Buoy SO INTERNATIONAL JOURNAL OF MARINE ENERGY LA English DT Article DE Wave energy converter; Oscillating water column; Levelized cost of energy; Backward Bent Duct Buoy; Reference Model Project; Marine Hydro-Kinetic ID WELLS TURBINE; PERFORMANCE AB The Reference Model Project, supported by the U.S. Department of Energy, was developed to provide publically available technical and economic benchmarks for a variety of marine energy converters. The methodology to achieve these benchmarks is to develop public domain designs that incorporate power performance estimates, structural models, anchor and mooring designs, power conversion chain designs, and estimates of the operations and maintenance, installation, and environmental permitting required. The reference model designs are intended to be conservative, robust, and experimentally verified. The Backward Bent Duct Buoy (BBDB) presented in this paper is one of three wave energy conversion devices studied within the Reference Model Project. Comprehensive modeling of the BBDB in a Northern California climate has enabled a full levelized cost of energy (LCOE) analysis to be completed on this device. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Bull, Diana; Copeland, Guild] Sandia Natl Labs, Water Power Technol, POB 5800, Albuquerque, NM 87185 USA. [Jenne, D. Scott] Natl Renewable Energy Lab, Wind & Water Power Program, Boulder, CO 80303 USA. [Smith, Christopher S.] Penn State Univ, Appl Res Lab, State Coll, PA 16804 USA. [Copping, Andrea E.] Pacific Northwest Natl Labs, Seattle, WA 98109 USA. RP Bull, D (reprint author), Sandia Natl Labs, Water Power Technol, POB 5800, Albuquerque, NM 87185 USA. EM dlbull@sandia.gov; Dale.Jenne@nrel.gov; css27@arl.psu.edu; Andrea.Copping@pnnl.gov; gcopel@sandia.gov FU U.S. Department of Energy's Wind and Water Power Technologies Office; Reference Model Project; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by the U.S. Department of Energy's Wind and Water Power Technologies Office. The research was in support of the Reference Model Project. The staff at HMRC were instrumental in obtaining the experimental data presented here. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 29 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-1669 J9 INT J MAR ENERGY JI INT. J. MAR. ENERGY PD DEC PY 2016 VL 16 BP 220 EP 234 DI 10.1016/j.ijome.2016.07.002 PG 15 WC Energy & Fuels SC Energy & Fuels GA EG1SN UT WOS:000390812600017 ER PT J AU Uriostegui, SH Bibby, RK Esser, BK Clark, JF AF Uriostegui, Stephanie H. Bibby, Richard K. Esser, Bradley K. Clark, Jordan F. TI Quantifying groundwater travel time near managed recharge operations using S-35 as an intrinsic tracer SO JOURNAL OF HYDROLOGY LA English DT Article DE Hydrologic tracers; Travel time; Retention time; Sulfur-35; Montebello Forebay; Orange County Recharge Operation ID COSMOGENIC S-35; SULFUR-HEXAFLUORIDE; AQUIFER TREATMENT; WATER; SNOWMELT; COLORADO; SULFATE; RATES; PONDS; FLOW AB Identifying groundwater retention, times near managed aquifer recharge (MAR) facilities is a high priority for managing water quality, especially for operations that incorporate recycled wastewater. To protect public health, California guidelines for Groundwater Replenishment Reuse Projects require a minimum 2-6 month subsurface retention time for recycled water depending on the level of disinfection, which highlights the importance of quantifying groundwater travel times on short time scales. This study developed and evaluated a new intrinsic tracer method using the naturally occurring radioisotope sulfur-35 (S-35). The 87.5 day half-life of S-35 is ideal for investigating groundwater travel times on the <1 year timescale of interest to MAR managers. Natural concentrations of S-35 found in water as dissolved sulfate ((SO4)-S-35) were measured in source waters and groundwater at the Rio Hondo Spreading Grounds in Los Angeles County, CA, and Orange County Groundwater Recharge Facilities in Orange County, CA. (SO4)-S-35 travel times are comparable to travel times determined by well-established deliberate tracer studies. The study also revealed that (SO4)-S-35 in MAR source water can vary seasonally and therefore careful characterization of (SO4)-S-35 is needed to accurately quantify groundwater travel time. More data is needed to fully assess whether or not this tracer could become a valuable tool for managers. (C) 2016 Elsevier B.V. All rights reserved. C1 [Uriostegui, Stephanie H.; Clark, Jordan F.] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA. [Bibby, Richard K.; Esser, Bradley K.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. RP Uriostegui, SH (reprint author), Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA. EM stephanieuriostegui@umail.ucsb.edu FU WateReuse Research Foundation [WRRF-09-11]; Water Replenishment District of Southern California; Orange County Water District; State of California Groundwater Ambient Monitoring & Assessment (GAMA) Special Studies Program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Graduate Scholarship Program at the Lawrence Livermore National Laboratory FX This work was supported by the WateReuse Research Foundation (WRRF-09-11) in cooperation with the Water Replenishment District of Southern California, the Orange County Water District, the State of California Groundwater Ambient Monitoring & Assessment (GAMA) Special Studies Program, and the Lawrence Graduate Scholarship Program at the Lawrence Livermore National Laboratory.; We thank Theodore Johnson, Peter Piestrzeniewicz, and Benny Chong from WRD for their assistance at the Montebello Forebay Spreading Grounds. We would also like to thank Jason Dadakis, Roy Herndon, Nira Yamchika, Adam Hutchinson, Greg Woodside, Patrick Versluis, and Mike Wehner from OCWD for their encouragement and project support. Alex Cruz and Bronson Cabalitasan from UCSB assisted in 35S analyses. The original idea for using 35S as an intrinsic tracer near MAR came from a conservation between JFC and Dr. Andrew L. Herczeg (CSIRO, Land and Water, Adelaide, South Australia) while both were visiting the Water Resources Programme, International Atomic Energy Agency. Contributions by Stephanie Uriostegui, Richard Bibby, and Brad Esser were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 33 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD DEC PY 2016 VL 543 SI SI BP 145 EP 154 DI 10.1016/j.jhydrol.2016.04.036 PN A PG 10 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA EF9CO UT WOS:000390628500012 ER PT J AU Green, CT Jurgens, BC Zhang, Y Starn, JJ Singleton, MJ Esser, BK AF Green, Christopher T. Jurgens, Bryant C. Zhang, Yong Starn, J. Jeffrey Singleton, Michael J. Esser, Bradley K. TI Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA SO JOURNAL OF HYDROLOGY LA English DT Article DE Oxygen reduction; Denitrification; Groundwater Residence time; Multi-model analysis; Regional water quality ID NON-FICKIAN TRANSPORT; WATER-QUALITY TRENDS; PUBLIC-SUPPLY WELLS; UNITED-STATES; NITRATE CONTAMINATION; BREAKTHROUGH CURVES; SHALLOW GROUNDWATER; UNSATURATED ZONES; ALLUVIAL SETTINGS; CONCEPTUAL-MODEL AB Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of ground-water. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O-2 reduction and denitrification (NO3- reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, H-3, He from H-3 (tritiogenic He), C-14, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi model RTDs was used in combination with NO3- and dissolved gas data to estimate zero order and first order rates of O-2 reduction and denitrification. Results indicated that O-2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O-2 and NO3- reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O-2 reduction rates. Estimated historical NO3- trends were similar to historical measurements. Results show that the multi model approach can improve estimation of age distributions, and that relatively easily measured O-2 rates can provide information about trends in denitrification rates, which are more difficult to estimate. Published by Elsevier B.V. C1 [Green, Christopher T.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. [Jurgens, Bryant C.] US Geol Survey, Sacramento, CA USA. [Zhang, Yong] Univ Alabama, Tuscaloosa, AL USA. [Starn, J. Jeffrey] US Geol Survey, E Hartford, CT USA. [Singleton, Michael J.; Esser, Bradley K.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA USA. RP Green, CT (reprint author), US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. EM ctgreen@usgs.gov FU National Water-Quality Assessment (NAWQA) program; National Research Program (NRP); USGS Toxic Substances Hydrology Program; National Science Foundation [DMS-1460319] FX Funding was provided by the National Water-Quality Assessment (NAWQA) program, National Research Program (NRP), USGS Toxic Substances Hydrology Program, and the National Science Foundation under Grant DMS-1460319, Thanks to Karen Burow for assistance with well information and observed decadal trends and to Matthew Landon for help with datasets and geochemical information. Discussions with Ate Visser contributed to the improvement of this study. NR 96 TC 2 Z9 2 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD DEC PY 2016 VL 543 SI SI BP 155 EP 166 DI 10.1016/j.jhydrol.2016.05.018 PN A PG 12 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA EF9CO UT WOS:000390628500013 ER PT J AU Alikhani, J Deinhart, AL Visser, A Bibby, RK Purtschert, R Moran, JE Massoudieh, A Esser, BK AF Alikhani, Jamal Deinhart, Amanda L. Visser, Ate Bibby, Richard K. Purtschert, Roland Moran, Jean E. Massoudieh, Arash Esser, Bradley K. TI Nitrate vulnerability projections from Bayesian inference of multiple groundwater age tracers SO JOURNAL OF HYDROLOGY LA English DT Article DE Nitrate vulnerability; Age tracers; Bayesian inference; Uncertainty analysis; Lumped parameter models; Residence time distribution ID ATLANTIC COASTAL-PLAIN; RESIDENCE TIME; WATER-QUALITY; SHALLOW GROUNDWATER; MASS-SPECTROMETRY; ISOTOPE RATIOS; CHALK AQUIFER; UNITED-STATES; TRENDS; MODELS AB Nitrate is a major source of contamination of groundwater in the United States and around the world. We tested the applicability of multiple groundwater age tracers (H-3, He-3, He-4, C-14, C-13, and Kr-85) in projecting future trends of nitrate concentration in 9 long-screened, public drinking water wells in Turlock, California, where nitrate concentrations are increasing toward the regulatory limit. Very low Kr-85 concentrations and apparent H-3/He-3 ages point to a relatively old modern fraction (40-50 years), diluted with pre-modern groundwater, corroborated by the onset and slope of increasing nitrate concentrations. An inverse Gaussian-Dirac model was chosen to represent the age distribution of the sampled groundwater at each well. Model parameters were estimated using a Bayesian inference, resulting in the posterior probability distribution - including the associated uncertainty - of the parameters and projected nitrate concentrations. Three scenarios were considered, including combined historic nitrate and age tracer data, the sole use of nitrate and the sole use of age tracer data. Each scenario was evaluated based on the ability of the model to reproduce the data and the level of reliability of the nitrate projections. The tracer-only scenario closely reproduced tracer concentrations, but not observed trends in the nitrate concentration. Both cases that included nitrate data resulted in good agreement with historical nitrate trends. Use of combined tracers and nitrate data resulted in a narrower range of projections of future nitrate levels. However, use of combined tracer and nitrate resulted in a larger discrepancy between modeled and measured tracers for some of the tracers. Despite nitrate trend slopes between 0.56 and 1.73 mg/L/year in 7 of the 9 wells, the probability that concentrations will increase to levels above the MCL by 2040 are over 95% for only two of the wells, and below 15% in the other wells, due to a leveling off of reconstructed historical nitrate loadings to groundwater since about 1990. (C) 2016 Elsevier B.V. All rights reserved. C1 [Alikhani, Jamal; Massoudieh, Arash] Catholic Univ Amer, Dept Civil Engn, Washington, DC 20064 USA. [Deinhart, Amanda L.; Visser, Ate; Bibby, Richard K.; Esser, Bradley K.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Deinhart, Amanda L.; Moran, Jean E.] Calif State Univ Hayward, Dept Earth & Environm Sci, Hayward, CA 94542 USA. [Purtschert, Roland] Univ Bern, Climate & Environm Phys, Inst Phys, Bern, Switzerland. [Purtschert, Roland] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland. RP Massoudieh, A (reprint author), Catholic Univ Amer, Dept Civil Engn, Washington, DC 20064 USA. RI Alikhani, Jamal/C-9322-2017; OI Alikhani, Jamal/0000-0003-2955-5870; Massoudieh, Arash/0000-0003-0200-2141 FU California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Special Studies program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Groundwater Ambient Monitoring and assessment Program [LLNL-JRNL-677921] FX Funding for the project came from the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Special Studies program. The researchers are also grateful for the enthusiastic participation of the City of Turlock. Laboratory support from Michael Singleton, Sarah Roberts, and Stephanie Uriostegui is gratefully acknowledged. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This data was collected in collaboration with the U.S. Geological Survey, and funded by the Groundwater Ambient Monitoring and assessment Program. LLNL-JRNL-677921. NR 91 TC 4 Z9 4 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD DEC PY 2016 VL 543 SI SI BP 167 EP 181 DI 10.1016/j.jhydrol.2016.04.028 PN A PG 15 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA EF9CO UT WOS:000390628500014 ER PT J AU Li, JX Wang, YX Xie, XJ DePaolo, DJ AF Li, Junxia Wang, Yanxin Xie, Xianjun DePaolo, Donald J. TI Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater SO JOURNAL OF HYDROLOGY LA English DT Article DE Vertical mixing; Water-sediment interaction; Groundwater; Iodine; Datong basin ID STRONTIUM ISOTOPE COMPOSITION; DATONG BASIN; NORTHERN CHINA; STABLE-ISOTOPES; HYDROGEOCHEMICAL PROCESSES; MARINE-SEDIMENTS; ORGANIC-MATTER; DRINKING-WATER; HANFORD SITE; RIVER AB High iodine concentrations in groundwater have caused serious health problems to the local residents in the Datong basin, northern China. To determine the impact of water-sediment interaction and irrigation practices on iodine mobilization in aquifers, isotope (H-2, O-18 and Sr-87/Sr-86) and hydrogeochemical studies were conducted. The results show that groundwater iodine concentrations vary from 14.4 to 2180 mu g/L, and high iodine groundwater (>150 mu g/L) mainly occurs in the central area of the Datong basin. Sediment iodine content is between <0.01 and 1.81 mg/kg, and the co-occurrence of high iodine and high DOC/TOC concentrations of groundwater and sediment samples in the deeper aquifer indicates that the sediment enriched in iodine and organic matter acts as the main source of groundwater iodine. The Sr-87/Sr-86 values and groundwater chemistry suggest that aluminosilicate hydrolysis is the dominant process controlling hydrochemical evolution along groundwater flowpath, and the degradation of TOC/iodine-rich sediment mediated by microbes potentially triggers the iodine release from the sediment into groundwater in the discharge area. The vertical stratification of groundwater O-18 and H-2 isotope reflects the occurrence of a vertical mixing process driven by periodic surface irrigation. The vertical mixing could change the redox potential of shallow groundwater from sub-reducing to oxidizing condition, thereby affecting the iodine mobilization in shallow groundwater. It is postulated that the extra introduction of organic matter and O-2/NO3/SO4 could accelerate the microbial activity due to the supplement of high ranking electron acceptors and promote the iodine release from the sediment into shallow groundwater. (C) 2016 Published by Elsevier B.V. C1 [Li, Junxia; Wang, Yanxin; Xie, Xianjun] China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China. [Li, Junxia; Wang, Yanxin; Xie, Xianjun] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China. [DePaolo, Donald J.] Univ Calif Berkeley, Earth & Planetary Sci, Berkeley, CA 94720 USA. [DePaolo, Donald J.] Lawrence Berkeley Natl Lab, Energy Geosci Div, Berkeley, CA 94720 USA. RP Wang, YX (reprint author), China Univ Geosci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China.; Wang, YX (reprint author), China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China. EM yx.wang@cug.edu.cn FU National Natural Science Foundation of China [41120124003, 41502230, 41521001]; Ministry of Science and Technology of China [2012AA062602]; Ministry of Education of China (111 project and Priority Development Projects of SRFDP) [20120145130001]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-05CH11231] FX We would like to thank Thomas L. Owens (University of California, Berkeley) and Lanping Feng (State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan) for their assistance in Sr isotope analysis in laboratory. The research work was financially supported by National Natural Science Foundation of China (Nos. 41120124003, 41502230 and 41521001), the Ministry of Science and Technology of China (2012AA062602), and the Ministry of Education of China (111 project and Priority Development Projects of SRFDP (20120145130001)). The Berkeley laboratory facilities are supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under Award Number DE-AC02-05CH11231. We thank the anonymous reviewers and the editor for their great help in improving the quality of the manuscript. NR 56 TC 0 Z9 0 U1 19 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD DEC PY 2016 VL 543 BP 293 EP 304 DI 10.1016/j.jhydrol.2016.10.002 PN B PG 12 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA EG0PY UT WOS:000390735900009 ER PT J AU Shang, HM Wang, WK Dai, ZX Duan, L Zhao, YQ Zhang, J AF Shang, Haimin Wang, Wenke Dai, Zhenxue Duan, Lei Zhao, Yaqian Zhang, Jing TI An ecology-oriented exploitation mode of groundwater resources in the northern Tianshan Mountains, China SO JOURNAL OF HYDROLOGY LA English DT Article DE Arid and semiarid regions; Groundwater resources; Ecological evaluation; Exploitation mode; Supergene ecological type; Tianshan Mountains ID LOWER TARIM RIVER; WATER-TABLE; VEGETATION INTERACTIONS; RIPARIAN VEGETATION; NORTHWEST CHINA; AQUIFER SYSTEMS; ARID REGION; BASIN; AREAS; MANAGEMENT AB In recent years, ecological degradation caused by irrational groundwater exploitation has been of growing concern in arid and semiarid regions. To address the groundwater-ecological issues, this paper proposes a groundwater-resource exploitation mode to evaluate the tradeoff between groundwater development and ecological environment in the northern Tianshan Mountains, northwest China's Xinjiang Uygur Autonomous Region. Field surveys and remote sensing studies were conducted to analyze the relation between the distribution of hydrological conditions and the occurrence of ecological types. The results show that there is a good correlation between groundwater depth and the supergene ecological type. Numerical simulations and ecological assessment models were applied to develop an ecology oriented exploitation mode of groundwater resources. The mode allows the groundwater levels in different zones to be regulated by optimizing groundwater exploitation modes. The prediction results show that the supergene ecological quality will be better in 2020 and even more groundwater can be exploited in this mode. This study provides guidance for regional groundwater management, especially in regions with an obvious water scarcity. (C) 2016 Published by Elsevier B.V. C1 [Shang, Haimin; Wang, Wenke; Duan, Lei; Zhang, Jing] Changan Univ, Key Lab Subsurface Hydrol & Ecol Arid Areas, Minist Educ, Xian 710054, Shaanxi, Peoples R China. [Dai, Zhenxue] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Zhao, Yaqian] Univ Coll Dublin, Sch Civil Struct & Environm Engn, UCD Dooge Ctr Water Resources Res, Dublin 4, Ireland. RP Wang, WK (reprint author), Changan Univ, Key Lab Subsurface Hydrol & Ecol Arid Areas, Minist Educ, Xian 710054, Shaanxi, Peoples R China.; Dai, ZX (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM wenkew@chd.edu.cn; daiz@lanl.gov OI Zhao, Yaqian/0000-0002-2449-4370 FU National Natural Science Foundation of China [41230314] FX The authors acknowledge the financial support of the study by the projects of National Natural Science Foundation of China (No. 41230314). NR 67 TC 1 Z9 1 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD DEC PY 2016 VL 543 BP 386 EP 394 DI 10.1016/j.jhydrol.2016.10.012 PN B PG 9 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA EG0PY UT WOS:000390735900017 ER PT J AU Boudon, V Sears, T Coheur, PF AF Boudon, Vincent Sears, Trevor Coheur, Pierre-Francois TI Call for papers for special issue of Journal of Molecular Spectroscopy focusing on "Molecular Spectroscopy, Atmospheric Composition and Climate Change" SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Editorial Material C1 [Boudon, Vincent] Univ Bourgogne Franche Comte, CNRS, Lab Interdisciplinaire Carnot Bourgogne, UMR 6303, 9 Av A Savary,BP 47870, F-21078 Dijon, France. [Sears, Trevor] Brookhaven Natl Lab, Dept Energy & Photon Sci, Div Chem, Upton, NY 11973 USA. [Coheur, Pierre-Francois] Univ Libre Bruxelles, Quantum Chem & Photophys, CP160-09,Ave FD Roosevelt 50, B-1050 Brussels, Belgium. RP Boudon, V (reprint author), Univ Bourgogne Franche Comte, CNRS, Lab Interdisciplinaire Carnot Bourgogne, UMR 6303, 9 Av A Savary,BP 47870, F-21078 Dijon, France. EM Vincent.Boudon@u-bourgogne.fr; trevor.sears@stonybrook.edu; pfcoheur@ulb.ac.be NR 0 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD DEC PY 2016 VL 330 SI SI BP 250 EP 250 DI 10.1016/j.jms.2016.11.012 PG 1 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA EF9EX UT WOS:000390634600033 ER PT J AU Gandhi, U Sebastian, D Kunc, V Song, YY AF Gandhi, Umesh Sebastian, De Boodt Kunc, Vlastimil Song, YuYang TI Method to measure orientation of discontinuous fiber embedded in the polymer matrix from computerized tomography scan data SO JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS LA English DT Article DE Fiber; anisotropy; microstructures; optical properties; techniques ID SIMPLE INJECTION MOLDINGS; REINFORCED POLYPROPYLENE; ELASTIC PROPERTIES; COMPOSITES; MICROSTRUCTURE; THERMOPLASTICS; MODULUS; LENGTH AB Usage of discontinuous glass fibers in injection- and compression-molded resin components is rapidly increasing to improve their mechanical properties. Since added fiber contributes to more strength along the fiber direction compared with transverse direction, the mechanical properties of such components strongly depend on the fiber orientation. Therefore, it is important to estimate the fiber orientation distribution in such materials. In this article, we are presenting a recently developed method to estimate fiber orientation using micro computerized tomography (CT) scan-generated three-dimensional (3-D) image of fibers. However, the large size of the CT scan-generated 3-D image often makes it difficult to separate each fiber and extract end point information. In this article, a novel method to address this challenge is presented. The micro-CT images were broken into finite volume, reducing data size, and then each fiber was reduced to its own centerline, using Mimics((R)) Innovation Suite (Materialise NV), further reducing the data size. These 3-D centerlines were then used to quantify the second-order orientation tensor. The results from the proposed method are compared with the measurements using well-established industry standard approach called the method of ellipses for validation. The key challenges in estimating the fiber orientation are identified and future improvements are proposed. C1 [Gandhi, Umesh; Song, YuYang] Toyota Res Inst North Amer, 1555 Woodridge, Ann Arbor, MI 48331 USA. [Sebastian, De Boodt] Materialice NV, Technol Laan, Leuven, Belgium. [Kunc, Vlastimil] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Gandhi, U (reprint author), Toyota Res Inst North Amer, 1555 Woodridge, Ann Arbor, MI 48331 USA. EM umesh.gandhi@tema.toyota.com RI Kunc, Vlastimil/E-8270-2017 OI Kunc, Vlastimil/0000-0003-4405-7917 FU Oak Ridge National Laboratory's High Temperature Materials Laboratory; US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was partially funded by Oak Ridge National Laboratory's High Temperature Materials Laboratory; User Program was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. The fiber-reinforced plaques used in this study were built by Magana Corporation. NR 21 TC 0 Z9 0 U1 2 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0892-7057 EI 1530-7980 J9 J THERMOPLAST COMPOS JI J. Thermoplast. Compos. Mater. PD DEC PY 2016 VL 29 IS 12 BP 1696 EP 1709 DI 10.1177/0892705715584411 PG 14 WC Materials Science, Composites SC Materials Science GA EF8DO UT WOS:000390559000008 ER PT J AU Xing, CH Jensen, C Folsom, C Ban, H Kennedy, JR AF Xing, Changhu Jensen, Colby Folsom, Charles Ban, Heng Kennedy, J. Rory TI A thermal conductivity and electromotive force measurement system for nuclear fuels and materials SO MEASUREMENT LA English DT Article DE Electromotive force; Material structure; Phase transition; Thermopower ID THERMOELECTRIC-POWER; PRESSURE; PHASE AB The development of advanced nuclear fuels requires detailed understanding of their transmutation and Micro-structural evolution. Alloy fuels have the advantage of high thermal conductivity and improved characteristics in fuel-cladding chemical reaction. However, information on thermodynamic and thermophysical properties is limited. The objective of this work was to develop an experimental system, integrated with thermal conductivity measurement capability to measure the thermodynamic properties of solid materials, from which an understanding of their phase change(s) can be determined. With the coupled system, both thermal conductivity and electromotive force (EMF) may be measured. In order to validate the system, the apparatus was employed to measure the EMF of several materials. As an initial calibration test, the EMF of Chromel was measured from 100 degrees C to 800 degrees C and compared with theoretical values. Subsequent EMF measurements were made for pure iron, iron-nickel alloy, and ANSI 1018 carbon steel rods. The measured phase transition temperatures were compared with the corresponding alloy equilibrium phase diagrams. The results indicate that the system is able to determine material phase change based on EMF measurement. In the future, this prototype system is to be adapted for hot-cell use on irradiated samples. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Xing, Changhu; Folsom, Charles; Ban, Heng] Utah State Univ, Mech & Aerosp Engn Dept, Logan, UT 84322 USA. [Jensen, Colby; Kennedy, J. Rory] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Xing, CH; Ban, H (reprint author), Utah State Univ, Mech & Aerosp Engn Dept, Logan, UT 84322 USA. EM changhu.xing@aggiemail.usu.edu; heng.ban@usu.edu OI Jensen, Colby/0000-0001-8925-7758 FU U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office [DEA-C0705ID14517]; Department of Energy Nuclear Energy University Programs Graduate Fellowship FX The work is supported by U.S. Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office, contract DEA-C0705ID14517. Work performed by Colby Jensen is supported under a Department of Energy Nuclear Energy University Programs Graduate Fellowship. NR 24 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-2241 EI 1873-412X J9 MEASUREMENT JI Measurement PD DEC PY 2016 VL 94 BP 333 EP 337 DI 10.1016/j.measurement.2016.08.011 PG 5 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA EF7LW UT WOS:000390512100036 ER PT J AU Ferguson, JO Jablonowski, C Johansen, H McCorquodale, P Colella, P Ullrich, PA AF Ferguson, Jared O. Jablonowski, Christiane Johansen, Hans McCorquodale, Peter Colella, Phillip Ullrich, Paul A. TI Analyzing the Adaptive Mesh Refinement (AMR) Characteristics of a High-Order 2D Cubed-Sphere Shallow-Water Model SO MONTHLY WEATHER REVIEW LA English DT Article ID DISCONTINUOUS GALERKIN METHOD; VARIABLE-RESOLUTION MESHES; CYCLONE-SCALE VORTICES; FINITE-VOLUME METHOD; ATMOSPHERIC FLOWS; GRID REFINEMENT; VORTEX MERGER; EQUATIONS; SIMULATION; ADAPTATION AB Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This paper aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interaction of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse-fine interfaces. Furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum. C1 [Ferguson, Jared O.; Jablonowski, Christiane] Univ Michigan, Dept Climate & Space Sci & Engn, 2455 Hayward, Ann Arbor, MI 48109 USA. [Johansen, Hans; McCorquodale, Peter; Colella, Phillip] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Ullrich, Paul A.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. RP Ferguson, JO (reprint author), Univ Michigan, Dept Climate & Space Sci & Engn, 2455 Hayward, Ann Arbor, MI 48109 USA. EM joferg@umich.edu RI Jablonowski, Christiane/I-9068-2012 OI Jablonowski, Christiane/0000-0003-0407-0092 FU Office of Science, U.S. Department of Energy [DE-SC0003990]; Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy as part of their Mathematical, Computational, and Computer Sciences Research/Computational Partnerships Program [DE-AC02-05CH11231]; National Science Foundation FX Support for this work has been provided by the Office of Science, U.S. Department of Energy, Award DE-SC0003990 and by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract DE-AC02-05CH11231 as part of their Mathematical, Computational, and Computer Sciences Research/Computational Partnerships Program. We would like to acknowledge high-performance computing support from Yellowstone provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. We thank the reviewers for their helpful comments and suggestions. NR 59 TC 0 Z9 0 U1 1 U2 1 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD DEC PY 2016 VL 144 IS 12 BP 4641 EP 4666 DI 10.1175/MWR-D-16-0197.1 PG 26 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EF9YK UT WOS:000390687200008 ER PT J AU Kalesse, H de Boer, G Solomon, A Oue, M Ahlgrimm, M Zhang, DM Shupe, MD Luke, E Protat, A AF Kalesse, Heike de Boer, Gijs Solomon, Amy Oue, Mariko Ahlgrimm, Maike Zhang, Damao Shupe, Matthew D. Luke, Edward Protat, Alain TI Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study SO MONTHLY WEATHER REVIEW LA English DT Article ID RADAR DOPPLER SPECTRA; IN-SITU DATA; CLIMATE MODELS; SEA-ICE; REFLECTIVITY MEASUREMENTS; THERMODYNAMIC STRUCTURE; AIR-TEMPERATURE; BOUNDARY-LAYER; PART I; SURFACE AB Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. In high latitudes, these cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to be caused by several main factors. Major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11-12 March 2013). For an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable. C1 [Kalesse, Heike] Leibniz Inst Tropospher Res, Permoserstr 15, D-04318 Leipzig, Germany. [de Boer, Gijs; Solomon, Amy; Shupe, Matthew D.] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, Boulder, CO USA. [de Boer, Gijs; Solomon, Amy; Shupe, Matthew D.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Oue, Mariko] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Ahlgrimm, Maike] European Ctr Medium Range Weather Forecasts, Reading, Berks, England. [Zhang, Damao] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Luke, Edward] Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA. [Protat, Alain] Bur Meteorol, Melbourne, Vic, Australia. RP Kalesse, H (reprint author), Leibniz Inst Tropospher Res, Permoserstr 15, D-04318 Leipzig, Germany. EM kalesse@tropos.de RI Shupe, Matthew/F-8754-2011 OI Shupe, Matthew/0000-0002-0973-9982 FU DFG project COMPoSE [GZ: KA 4162/1-1]; U.S. Department of Energy's (DOE's) Atmospheric System Research (ASR) program [DE-SC0008794, DE-SC0013306]; U.S. National Science Foundation [ARC 1203902]; DOE-ASR [DE-SC0011918, DE-SC0005259, DE-SC00112704, DE-SC0013953, DE-SC0006974, DE-SC0014239] FX Thanks to Janek Zimmer for help in analyzing the synoptic situation and to Kara Sulia as well as Stefan Kneifel for fruitful discussions in the early phase of this case study analysis. All remote-sensing data is from the ARM data archive. Soundings at 0000 and 1200 UTC are from the National Weather Service in Barrow, the remaining ones are from the ARM data archive. Aerosol measurements are provided and supported by the NOAA/Global Monitoring Division (GMD). The authors gratefully acknowledge the NOAA/Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and the READY website (http://www.ready.noaa.gov) used in this publication. The High Spectral Resolution Lidar data in Fig. 1 were obtained from the University of Wisconsin Lidar Group homepage (http://lidar.ssec.wisc.edu/index.htm). H. Kalesse conducted this study within the framework of the DFG project COMPoSE, GZ: KA 4162/1-1. G. de Boer contributed to this research under funding from the U.S. Department of Energy's (DOE's) Atmospheric System Research (ASR) program (Projects: DE-SC0008794 and DE-SC0013306) as well as the U.S. National Science Foundation (ARC 1203902). M. Shupe was supported by DOE-ASR Grant DE-SC0011918. M. Ahlgrimm's contribution to this work was supported by DOE-ASR Grant DE-SC0005259. Furthermore, this research was also supported in part under DOE ASR Grant DE-SC00112704 (E. Luke), DE-SC0013953 (M. Oue), DE-SC0006974 (D Zhang), and DE-SC0014239 (D. Zhang). NR 92 TC 0 Z9 0 U1 10 U2 10 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD DEC PY 2016 VL 144 IS 12 BP 4805 EP 4826 DI 10.1175/MWR-D-16-0155.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EF9YK UT WOS:000390687200016 ER PT J AU Gao, K Deng, WY Xiao, LG Hu, Q Kan, YY Chen, XB Wang, C Huang, F Peng, JB Wu, HB Peng, XB Cao, Y Russelle, TP Liu, F AF Gao, Ke Deng, Wanyuan Xiao, Liangang Hu, Qin Kan, Yuanyuan Chen, Xuebin Wang, Cheng Huang, Fei Peng, Junbiao Wu, Hongbin Peng, Xiaobin Cao, Yong Russelle, Thomas P. Liu, Feng TI New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing SO NANO ENERGY LA English DT Article DE Organic solar cells; Solvent vapor annealing; Non-equilibrium morphology; Physical processes ID PROCESSED SMALL-MOLECULE; IMPEDANCE SPECTROSCOPY; ORGANIC PHOTOVOLTAICS; BENZODITHIOPHENE UNIT; LENGTH-SCALE; FILL FACTOR; BULK; EFFICIENCY; PHOTOCURRENT; MORPHOLOGIES AB Solvent vapor annealing (SVA) studies on the morphology and performance of a porphyrin-based deep absorption organic solar cells consisting of a strongly segregated bulk heterojunction (BHJ) blend, are presented. It is seen that the solvent vapor annealing of a well-mixed BHJ blends induces molecular motion, leading to a phase separated morphology governed by a spinodal decomposition mechanism. The earlier stage of solvent vapor swelling (< 10 s) led to an obvious phase separation but not device performance. The device performance showed a dramatic increase in short circuit current and fill factor between 15 and 20 s of SVA. Thus, phase purity is a critical parameter in determining the performance of this binary blend. SVA on a thermally annealed BHJ thin film showed two distinctive processes, a crystal dissolution and a recrystallization, accompanied by phase mixing and then phase separation. The final morphology of SVA films that were initially thermally annealed showed a reduced length scale of phase separation, in comparison to SVA on as-cast films. Thus preformed donor crystallites appear to lock-in the morphology, even in a small molecule blend setting. The best performing device was obtained by a slight SVA (10 s) of films that were initially thermally annealed, reaching a power conversion efficiency of 8.48%. This suggests that the localized morphological optimization and domain size reduction are most important factors in dictating organic photovoltaic device efficiencies. C1 [Gao, Ke; Liu, Feng] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Gao, Ke; Deng, Wanyuan; Xiao, Liangang; Kan, Yuanyuan; Chen, Xuebin; Huang, Fei; Peng, Junbiao; Wu, Hongbin; Peng, Xiaobin; Cao, Yong] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China. [Russelle, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Russelle, Thomas P.; Liu, Feng] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wang, Cheng] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Liu, F (reprint author), Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China.; Wu, HB; Peng, XB (reprint author), South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China.; Russelle, TP (reprint author), Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. EM hbwu@scut.edu.cn; chxbpeng@scut.edu.cn; russell@mail.pse.umass.edu; fengliu82@sjtu.edu.cn RI Gao, Ke/B-3412-2017; Wang, Cheng/A-9815-2014; Hu, Qin/N-3493-2014; Liu, Feng/J-4361-2014 OI Hu, Qin/0000-0003-3089-1070; Liu, Feng/0000-0002-5572-8512 FU International Science & Technology Cooperation Program of China [2013DFG52740, 2010DFA52150]; Ministry of Science and Technology [2014CB643500]; National Natural Science Foundation of China [51473053, 51073060, 51225301, 91333206]; U.S. Office of Naval Research [N00014-15-1-2244]; DOE, Office of Science; DOE, Office of Basic Energy Sciences FX K. Gao, W. Deng and L. Xiao contributed equally to this work. XBP and HBW was financially supported by the grants from International Science & Technology Cooperation Program of China (2013DFG52740, 2010DFA52150), the Ministry of Science and Technology (2014CB643500), and the National Natural Science Foundation of China (51473053, 51073060, 51225301, 91333206). FL and TPR were supported by the U.S. Office of Naval Research under contract N00014-15-1-2244. Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, Molecular Foundry, and National Center for Electron Micoscopy, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences. NR 43 TC 0 Z9 0 U1 22 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD DEC PY 2016 VL 30 BP 639 EP 648 DI 10.1016/j.nanoen.2016.10.031 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EF9FM UT WOS:000390636100074 ER PT J AU Liu, TF Wang, B Gu, XX Wang, L Ling, M Liu, G Wang, DL Zhang, SQ AF Liu, Tiefeng Wang, Bo Gu, Xingxing Wang, Lei Ling, Min Liu, Gao Wang, Dianlong Zhang, Shanqing TI All-climate sodium ion batteries based on the NASICON electrode materials SO NANO ENERGY LA English DT Article DE Cathode; Sodium ion battery; High-rate performance; Low-temperature application ID LOW-TEMPERATURE PERFORMANCE; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; FLUOROETHYLENE CARBONATE; COATED NA3V2(PO4)(3); LIFEPO4/C CATHODE; ENERGY-STORAGE; PARTICLE-SIZE; LI; NA AB In this work, we have achieved all-climate high-rate performance of sodium ion batteries by utilizing electrode materials with Na Super Ionic Conductor (NASICON) crystalline structure. A designed NASI-CON-structured carbon-coated Na3V2(PO4)(3) (NVP@C) nanocomposite exhibits an excellent performance at high rates in a wide temperature range (Le., from -20 to 55 degrees C). Even at a low temperature of -20 degrees C, the NVP@C cathode can still maintain a discharge capacity of 91.3 mA h g(-1) or 85.2% of the room performance at 10C, and secure an average output voltage of 2.86 V (vs. Na+/Na). These excellent wide temperature accomplishments can be ascribed to fast three-dimensional Na hopping transportation mechanism in the NASICON structure. The finding in this work offers a promising strategy to address the long-standing inherent wide-temperature issues of rechargeable batteries and extends the potential application of sodium ion batteries. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Liu, Tiefeng; Wang, Bo; Wang, Lei; Wang, Dianlong] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Heilongjiang, Peoples R China. [Liu, Tiefeng; Gu, Xingxing; Zhang, Shanqing] Griffith Univ, Environm Futures Res Inst, Dept Ctr Clean Environm & Energy, Gold Coast Campus, Southport, Qld 4222, Australia. [Liu, Tiefeng; Gu, Xingxing; Zhang, Shanqing] Griffith Univ, Griffith Sch Environm, Gold Coast Campus, Southport, Qld 4222, Australia. [Ling, Min; Liu, Gao] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Wang, DL (reprint author), Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Heilongjiang, Peoples R China.; Zhang, SQ (reprint author), Griffith Univ, Environm Futures Res Inst, Dept Ctr Clean Environm & Energy, Gold Coast Campus, Southport, Qld 4222, Australia.; Zhang, SQ (reprint author), Griffith Univ, Griffith Sch Environm, Gold Coast Campus, Southport, Qld 4222, Australia.; Liu, G (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. FU National Natural Science Foundation of China [50974045]; Fundamental Research Funds for the Central Universities [HIT. NSRIF. 2017024] FX This work was supported financially by the National Natural Science Foundation of China (No. 50974045) and the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 2017024). NR 41 TC 1 Z9 1 U1 46 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD DEC PY 2016 VL 30 BP 756 EP 761 DI 10.1016/j.nanoen.2016.09.024 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EF9FM UT WOS:000390636100086 ER PT J AU Xu, F Li, ZR Wu, LJ Meng, QP Xin, HLL Sun, J Ge, BH Sun, LT Zhu, YM AF Xu, Feng Li, Zhengrui Wu, Lijun Meng, Qingping Xin, Huolin L. Sun, Jun Ge, Binghui Sun, Litao Zhu, Yimei TI In situ TEM probing of crystallization form-dependent sodiation behavior in ZnO nanowires for sodium-ion batteries SO NANO ENERGY LA English DT Article DE Sodium-ion batteries; In situ transmission electron microscopy; ZnO nanowires; Electrochemical sodiation; Microstructure control ID TRANSMISSION ELECTRON-MICROSCOPY; ELECTROCHEMICAL LITHIATION; ANODE MATERIALS; LITHIUM; PERFORMANCE; NANOCOMPOSITES; NANOBELTS; TRANSPORT AB Development of sodium-ion battery (SIB) electrode materials currently lags behind electrodes in commercial lithium-ion batteries (LIBs). However, in the long term, development of SIB components is a valuable goal. Their similar, but not identical, chemistries require careful identification of the underlying sodiation mechanism in SIBs. Here, we utilize in situ transmission electron microscopy to explore quite different sodiation behaviors even in similar electrode materials through real-time visualization of microstructure and phase evolution. Upon electrochemical sodiation, single-crystalline ZnO nanowires (scZNWs) are found to undergo a step-by-step electrochemical displacement reaction, forming crystalline NaZn13 nanograins dispersed in a Na2O matrix. This process is characterized by a slowly propagating reaction front and the formation of heterogeneous interfaces inside the ZNWs due to non-uniform sodiation amorphization. In contrast, poly-crystalline ZNWs (pc-ZNWs) exhibited an ultrafast sodiation process, which can partly be ascribed to the availability of unobstructed ionic transport pathways among ZnO nanograins. Thus the reaction front and heterogeneous interfaces disappear. The in situ TEM results, supported by calculation of the ion diffusion coefficient, provide breakthrough insights into the dependence of ion diffusion kinetics on crystallization form. This points toward a goal of optimizing the microstructure of electrode materials in order to develop high performance SIBs. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Xu, Feng; Li, Zhengrui; Sun, Jun; Sun, Litao] Southeast Univ, Minist Educ, Key Lab MEMS, SEU FEI Nanopico Ctr, Nanjing 210096, Jiangsu, Peoples R China. [Xu, Feng; Wu, Lijun; Meng, Qingping; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Xin, Huolin L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Ge, Binghui] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Xu, F; Sun, LT (reprint author), Southeast Univ, Minist Educ, Key Lab MEMS, SEU FEI Nanopico Ctr, Nanjing 210096, Jiangsu, Peoples R China.; Zhu, YM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM fzu@seu.edu.cn; slt@seu.edu.cn; zhu@bnl.gov FU National Basic Research Program of China (973 Program) [2015CB352106]; National Natural Science Foundation of China (NSFC) [61574034, 51372039]; Jiangsu Province Science and Technology Support Program [BK20141118]; U.S. DOE-BES [DE-AC02-98CH10886]; Center for Functional Nanomaterials, U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC00127041] FX This work was supported by National Basic Research Program of China (973 Program, Grant No. 2015CB352106), National Natural Science Foundation of China (NSFC, Grant Nos. 61574034, 51372039), Jiangsu Province Science and Technology Support Program (Grant No. BK20141118). The work at Brookhaven National Laboratory is supported by U.S. DOE-BES under Contract number DE-AC02-98CH10886. Huolin Xin is supported by the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC00127041. F. Xu also thanks Feng Wang and Wei Zhang from Brookhaven National Laboratory for their useful discussion and facility. NR 37 TC 0 Z9 0 U1 33 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD DEC PY 2016 VL 30 BP 771 EP 779 DI 10.1016/j.nanoen.2016.09.020 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EF9FM UT WOS:000390636100088 ER PT J AU Cao, RG Mishra, K Li, XL Qian, JF Engelhard, MH Bowden, ME Han, KS Mueller, KT Henderson, WA Zhang, JG AF Cao, Ruiguo Mishra, Kuber Li, Xiaolin Qian, Jiangfeng Engelhard, Mark H. Bowden, Mark E. Han, Kee Sung Mueller, Karl T. Henderson, Wesley A. Zhang, Ji-Guang TI Enabling room temperature sodium metal batteries SO NANO ENERGY LA English DT Article DE Concentrated electrolytes; Solid-electrolyte interface; Sodium metal batteries ID IONIC LIQUID ELECTROLYTES; HIGH-CAPACITY ANODE; SECONDARY BATTERIES; PHYSICOCHEMICAL PROPERTIES; ENERGY-STORAGE; LITHIUM; COMPLEXES AB Rechargeable batteries based upon sodium (Na+) cations are at the core of many new battery chemistries beyond Li-ion batteries. Rather than using carbon or alloy-based anodes, the direct utilization of solid sodium metal as an anode would be highly advantageous, but its use has been highly problematic due to its high reactivity. In this work, it is demonstrated that, by tailoring the electrolyte formulation, solid Na metal can be electrochemically plated/stripped at ambient temperature with high efficiency (> 99%) on both copper and inexpensive aluminum current collectors thereby enabling a shift in focus to new battery chemical couples based upon Na metal operating at ambient temperature. These highly concentrated electrolytes have enabled excellent cycling stability of Na metal batteries using Na metal anode and Na3V2(PO4)(3) cathode at high rates with very high efficiency. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Cao, Ruiguo; Mishra, Kuber; Li, Xiaolin; Qian, Jiangfeng; Henderson, Wesley A.; Zhang, Ji-Guang] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Mishra, Kuber] Univ South Carolina, Dept Chem Engn, Columbia, SC 29208 USA. [Engelhard, Mark H.; Bowden, Mark E.; Han, Kee Sung] PNNL, EMSL, Richland, WA 99352 USA. [Mueller, Karl T.] PNNL, Phys & Computat Sci Directorate, Richland, WA 99352 USA. RP Henderson, WA; Zhang, JG (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM wesley.henderson@pnnl.gov; jiguang.zhang@pnnl.govg FU Laboratory Directed Research and Development Program of PNNL; Joint Center for Energy Storage Research, an Energy Innovation Hub - U. S. Department of Energy (DOE), Office of Science, Basic Energy Sciences; DOE's Office of Biological and Environmental Research (BER); U.S. Department of Energy's (DOE's) Office of Electricity Delivery & Energy Reliability [57558]; DOE [DE-AC05-76RLO1830] FX This work was supported by the Laboratory Directed Research and Development Program of PNNL and the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U. S. Department of Energy (DOE), Office of Science, Basic Energy Sciences. The SEM, powder XRD, XPS and NMR analyses were conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL)-a national scientific user facility located at PNNL which is sponsored by the DOE's Office of Biological and Environmental Research (BER). The cathode development and full cell work were supported by the U.S. Department of Energy's (DOE's) Office of Electricity Delivery & Energy Reliability (Contract No. 57558). PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. NR 36 TC 3 Z9 3 U1 37 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD DEC PY 2016 VL 30 BP 825 EP 830 DI 10.1016/j.nanoen.2016.09.013 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EF9FM UT WOS:000390636100094 ER PT J AU Zhou, C Zelinka, MD Klein, SA AF Zhou, Chen Zelinka, Mark D. Klein, Stephen A. TI Impact of decadal cloud variations on the Earth's energy budget SO NATURE GEOSCIENCE LA English DT Article ID CLIMATE SENSITIVITY; SUBTROPICAL STRATOCUMULUS; TEMPERATURE; FEEDBACK; MODELS; VARIABILITY; MECHANISMS; SPREAD; COVER; CMIP5 AB Feedbacks of clouds on climate change strongly influence the magnitude of global warming(1-3). Cloud feedbacks, in turn, depend on the spatial patterns of surface warming(4-9), which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback could deviate from the long-term cloud feedback(4). Here we present climate model simulations to show that the global mean cloud feedback in response to decadal temperature fluctuations varies dramatically due to time variations in the spatial pattern of sea surface temperature. We find that cloud anomalies associated with these patterns significantly modify the Earth's energy budget. Specifically, the decadal cloud feedback between the 1980s and 2000s is substantially more negative than the long-term cloud feedback. This is a result of cooling in tropical regions where air descends, relative to warming in tropical ascent regions, which strengthens low-level atmospheric stability. Under these conditions, low-level cloud cover and its reflection of solar radiation increase, despite an increase in global mean surface temperature. These results suggest that sea surface temperature pattern-induced low cloud anomalies could have contributed to the period of reduced warming between 1998 and 2013, and offer a physical explanation of why climate sensitivities estimated from recently observed trends are probably biased low(4). C1 [Zhou, Chen; Zelinka, Mark D.; Klein, Stephen A.] Lawrence Livermore Natl Lab, Cloud Proc Res Grp, Livermore, CA 94550 USA. RP Zhou, C (reprint author), Lawrence Livermore Natl Lab, Cloud Proc Res Grp, Livermore, CA 94550 USA. EM czhou.atmo@gmail.com RI Zelinka, Mark/C-4627-2011 OI Zelinka, Mark/0000-0002-6570-5445 FU Regional and Global Climate Modeling Program of the Office of Science at the US Department of Energy (DOE); DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank J. Norris for providing the corrected ISCCP and PATMOS-x data, and thank J. Gregory, A. Dessler, A. Hall, H. Su, X. Qu, C. Terai and A. DeAngelis for valuable discussions. This work was supported by the Regional and Global Climate Modeling Program of the Office of Science at the US Department of Energy (DOE) under the project Identifying Robust Cloud Feedbacks in Observations and Models and was performed under the auspices of DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. IM Release #LLNL-JRNL-692260. NR 30 TC 3 Z9 3 U1 14 U2 14 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD DEC PY 2016 VL 9 IS 12 BP 871 EP + DI 10.1038/NGEO2828 PG 5 WC Geosciences, Multidisciplinary SC Geology GA EF6ZA UT WOS:000390478700010 ER PT J AU Walker, BD Beaupre, SR Guilderson, TP McCarthy, MD Druffel, ERM AF Walker, Brett D. Beaupre, Steven R. Guilderson, Thomas P. McCarthy, Matthew D. Druffel, Ellen R. M. TI Pacific carbon cycling constrained by organic matter size, age and composition relationships SO NATURE GEOSCIENCE LA English DT Article ID CENTRAL NORTH PACIFIC; BOMB C-14; OCEAN; RADIOCARBON; SYSTEM; DILUTION; FLUX AB Marine organic matter is one of Earth's largest actively cycling reservoirs of organic carbon and nitrogen(1,2). The processes controlling organic matter production and removal are important for carbon and nitrogen biogeochemical cycles, which regulate climate. However, the many possible cycling mechanisms have hindered our ability to quantify marine organic matter transformation, degradation and turnover rates(3,4). Here we analyse existing and new measurements of the carbon: nitrogen ratio and radiocarbon age of organic matter spanning sizes from large particulate organic matter to small dissolved organic molecules. We find that organic matter size is negatively correlated with radiocarbon age and carbon: nitrogen ratios in coastal, surface and deep waters of the Pacific Ocean. Our measurements suggest that organic matter is increasingly chemically degraded as it decreases in size, and that small particles and molecules persist in the ocean longer than their larger counterparts. Based on these correlations, we estimate the production rates of small, biologically recalcitrant dissolved organic matter molecules at 0.11-0.14 Gt of carbon and about 0.005 Gt of nitrogen per year in the deep ocean. Our results suggest that the preferential remineralization of large over small particles and molecules is a key process governing organic matter cycling and deep ocean carbon storage. C1 [Walker, Brett D.; Druffel, Ellen R. M.] Univ Calif Irvine, Dept Earth Syst Sci, 2212 Croul Hall, Irvine, CA 92697 USA. [Beaupre, Steven R.] SUNY Stony Brook, Sch Marine & Atmospher Sci, CH123, Stony Brook, NY 11794 USA. [Guilderson, Thomas P.; McCarthy, Matthew D.] Univ Calif Santa Cruz, Dept Ocean Sci, 1156 High St, Santa Cruz, CA 95064 USA. [Guilderson, Thomas P.] Lawrence Livermore Natl Lab, CAMS, LLNL L397,7000 East Ave, Livermore, CA 94551 USA. RP Walker, BD (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, 2212 Croul Hall, Irvine, CA 92697 USA. EM brett.walker@uci.edu OI Walker, Brett/0000-0003-4904-826X FU Friends of Long Marine Lab Student Research Awards; UC Santa Cruz STEPS Institute for Innovation in Environmental Research; UC Santa Cruz Center for the Dynamics and Evolution of the Land Sea Interface; Earl H. Myers and Ethel M. Myers Oceanographic and Marine Biology Trust; DC Santa Cruz Institute of Geophysics and Planetary Physics; NSF [OCE-1358041, OCR-0623622, ARC-1022716]; US Department of Energy [W-7405-Eng-48, DE-AC52-07NA27344]; Keck Carbon Cycle AMS Laboratory Postdoctoral Scholarship FX We gratefully acknowledge B. Phillips, the staff of the Granite Canyon Marine Pollution Studies Laboratory (GCMPSL) and the Natural Energy Laboratory of Hawaii Authority (NELHA) for providing facilities capable of large volume seawater DOM and suspended POM isolations. K. Okimura, J. Walker, L. Roland, K. Walker, G. V. Reixach, and M. Calleja (DC Santa Cruz) aided with fieldwork and sample collection. S. Griffin (UCI) and P. Zermeno (LLNL) aided with sample analysis. F. Primeau (UCI) aided with error analysis and Matlab scripts. This work was funded by the Friends of Long Marine Lab Student Research Awards (to B.D.W.), the UC Santa Cruz STEPS Institute for Innovation in Environmental Research (to B.D.W.), the UC Santa Cruz Center for the Dynamics and Evolution of the Land Sea Interface (to B.D.W.), the Earl H. Myers and Ethel M. Myers Oceanographic and Marine Biology Trust (to B.D.W.), the DC Santa Cruz Institute of Geophysics and Planetary Physics (to B.D.W. and M.D.M.), NSF OCE-1358041 and NSF OCR-0623622 (M.D.M.) and NSF ARC-1022716 (E.R.M.D.). A portion of this work was performed under the auspices of the US Department of Energy (contract W-7405-Eng-48 and DE-AC52-07NA27344) and a Keck Carbon Cycle AMS Laboratory Postdoctoral Scholarship (B.D.W.). NR 43 TC 3 Z9 3 U1 22 U2 22 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD DEC PY 2016 VL 9 IS 12 BP 888 EP + DI 10.1038/NGEO2830 PG 6 WC Geosciences, Multidisciplinary SC Geology GA EF6ZA UT WOS:000390478700014 ER PT J AU Trumbo, MC Matzen, LE Coffman, BA Hunter, MA Jones, AP Robinson, CSH Clark, VP AF Trumbo, Michael C. Matzen, Laura E. Coffman, Brian A. Hunter, Michael A. Jones, Aaron P. Robinson, Charles S. H. Clark, Vincent P. TI Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer SO NEUROPSYCHOLOGIA LA English DT Article DE Working memory; Transcranial direct current stimulation; Fluid intelligence; Transfer; Brain stimulation ID DORSOLATERAL PREFRONTAL CORTEX; NONINVASIVE BRAIN-STIMULATION; FLUID INTELLIGENCE; OLDER-ADULTS; INDIVIDUAL-DIFFERENCES; MAGNETIC STIMULATION; COGNITIVE-ABILITY; EXECUTIVE-CONTROL; SECONDARY MEMORY; TASK-PERFORMANCE AB Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task (i.e., near transfer). It is possible that pairing repeated performance of a WM task with brain stimulation encourages plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task (n-back). In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In each experiment, participants received either active (2.0 mA) or sham (0.1 mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer task (a matrix reasoning task designed to measure fluid intelligence). In Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task. Results suggest that WM training paired with brain stimulation may result in cognitive enhancement that transfers to performance on other tasks, depending on the combination of training task and tDCS parameters used. C1 [Trumbo, Michael C.; Matzen, Laura E.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Trumbo, Michael C.; Hunter, Michael A.; Jones, Aaron P.; Robinson, Charles S. H.; Clark, Vincent P.] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA. [Trumbo, Michael C.; Hunter, Michael A.; Jones, Aaron P.; Robinson, Charles S. H.; Clark, Vincent P.] Univ New Mexico, Psychol Clin Neurosci Ctr, Albuquerque, NM 87131 USA. [Coffman, Brian A.] Univ Pittsburgh, Sch Med, Dept Psychiat, Pittsburgh, PA USA. RP Trumbo, MC (reprint author), Sandia Natl Labs, Cognit Syst Res & Applicat, POB 5800, Albuquerque, NM 87185 USA. EM mctrumb@sandia.gov RI Clark, Vincent/B-3343-2010 OI Clark, Vincent/0000-0002-9151-2102 FU Laboratory Directed Research and Development (LDRD) Program at Sandia National Laboratories; Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was funded by the Laboratory Directed Research and Development (LDRD) Program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 118 TC 0 Z9 0 U1 8 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0028-3932 EI 1873-3514 J9 NEUROPSYCHOLOGIA JI Neuropsychologia PD DEC PY 2016 VL 93 BP 85 EP 96 DI 10.1016/j.neuropsychologia.2016.10.011 PN A PG 12 WC Behavioral Sciences; Neurosciences; Psychology, Experimental SC Behavioral Sciences; Neurosciences & Neurology; Psychology GA EG0LC UT WOS:000390723300009 PM 27756695 ER PT J AU Pointer, WD Sun, XD AF Pointer, W. David Sun, Xiaodong TI Special issue on the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics SO NUCLEAR TECHNOLOGY LA English DT Editorial Material C1 [Pointer, W. David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sun, Xiaodong] Ohio State Univ, Columbus, OH 43210 USA. RP Pointer, WD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD DEC PY 2016 VL 196 IS 3 SI SI BP V EP VI PG 2 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EF7QK UT WOS:000390524000001 ER PT J AU Farmer, MT Gerardi, C Bremer, N Basu, S AF Farmer, M. T. Gerardi, C. Bremer, N. Basu, S. TI Key Findings and Remaining Questions in the Areas of Core-Concrete Interaction and Debris Coolability SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE Core-concrete interaction; debris coolability AB The reactor accidents at Fukushima Daiichi have rekindled interest in late-phase severe accident behavior involving reactor pressure vessel breach and discharge of molten core melt into the containment. Two technical issues of interest in this area are core-concrete interaction and the extent to which the core debris may be quenched and rendered coolable by top flooding. The Organisation for Economic Co-operation and Development-sponsored Melt Coolability and Concrete Interaction programs at Argonne National Laboratory included the conduct of large-scale reactor material experiments and associated analysis with the objectives of resolving the ex-vessel debris coolability issue and addressing remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. These tests provided a broad database to support accident management planning as well as the development and validation of models and codes that can be used to extrapolate the experimental results to plant conditions. This paper provides a high-level overview of the key experimental results obtained during the program. A discussion is also provided of the technical gaps that remain in this area, several of which have arisen based on the sequence of events and operator actions during Fukushima. C1 [Farmer, M. T.; Gerardi, C.; Bremer, N.] Argonne Natl Lab, NE Bldg 208,9700 S Cass Ave, Argonne, IL 60439 USA. [Basu, S.] US Nucl Regulatory Commiss, Washington, DC 20555 USA. RP Farmer, MT (reprint author), Argonne Natl Lab, NE Bldg 208,9700 S Cass Ave, Argonne, IL 60439 USA. EM farmer@anl.gov NR 30 TC 0 Z9 0 U1 2 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD DEC PY 2016 VL 196 IS 3 SI SI BP 461 EP 474 DI 10.13182/NT16-43 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EF7QK UT WOS:000390524000005 ER PT J AU Robb, KR Farmer, MT Francis, MW AF Robb, K. R. Farmer, M. T. Francis, M. W. TI Fukushima Daiichi Unit 1 Ex-Vessel Prediction: Core-Concrete Interaction SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE Fukushima Daiichi; severe accident; MCCI AB Lower head failure and corium-concrete interaction were predicted to occur at Fukushima Daiichi Unit 1 (1F1) by several different system-level code analyses, including MELCOR v2.1 and MAAP5. Although these codes capture a wide range of accident phenomena, they do not contain detailed models for ex-vessel core melt behavior. However, specialized codes exist for the analysis of ex-vessel melt spreading (e.g., MELTSPREAD) and long-term debris coolability (e.g., CORQUENCH). On this basis, an analysis was carried out to further evaluate ex-vessel behavior for 1F1 using MELTSPREAD and CORQUENCH. Best-estimate melt pour conditions predicted by MELCOR v2.1 and MAAP5 were used as input. MELTSPREAD was then used to predict the spatially dependent melt conditions and extent of spreading during relocation from the vessel. The results of the MELTSPREAD analysis are reported in a companion paper. This information was used as input for the long-term debris coolability analysis with CORQUENCH. For the MELCOR-based melt pour scenario, CORQUENCH predicted the melt would readily cool within 2.5 h after the pour, and the sumps would experience limited ablation (approximately 18 cm) under water-flooded conditions. For the MAAP-based melt pour scenarios, CORQUENCH predicted that the melt would cool in approximately 22.5 h, and the sumps would experience approximately 65 cm of concrete ablation under water-flooded conditions. C1 [Robb, K. R.; Francis, M. W.] Oak Ridge Natl Lab, Bethel Valley Rd,MS-6167, Oak Ridge, TN 37830 USA. [Farmer, M. T.] Argonne Natl Lab, NE Bldg 208,9700 S Cass Ave, Argonne, IL 60439 USA. RP Robb, KR (reprint author), Oak Ridge Natl Lab, Bethel Valley Rd,MS-6167, Oak Ridge, TN 37830 USA. EM robbkr@ornl.gov NR 25 TC 1 Z9 1 U1 2 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD DEC PY 2016 VL 196 IS 3 SI SI BP 475 EP 488 DI 10.13182/NT16-48 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EF7QK UT WOS:000390524000006 ER PT J AU Nagase, F Gauntt, RO Naito, M AF Nagase, F. Gauntt, R. O. Naito, M. TI Overview and Outcomes of the OECD/NEA Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE Severe accident code; benchmarking; Fukushima Daiichi NPS AB The Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF) project, run by the Organisation for Economic Co-operation and Development/Nuclear Energy Agency, was established in November 2012. The primary objectives of this benchmark study are to estimate accident progression and status inside the nuclear reactors, including the distribution of fuel debris, and consequently, to contribute to the decommissioning activity at the Fukushima Daiichi nuclear power plant. Altogether, 17 organizations from eight countries calculated the thermohydraulic behavior inside the three reactors for the time span of about 6 days from the occurrence of the earthquake with their severe accident integral codes. Since many boundary conditions are unknown for the accident, those necessary for the calculation were discussed and determined by the participants. The results submitted were compared on coolant level change, hydrogen generation, initiation and progression of melt in fuel bundle and control blade, failure of reactor pressure vessel, distribution and composition of molten and solidified materials, and progression of the molten core-concrete interaction. Finally, the current estimates of the accident progression and status inside the reactors were summarized together with the still remaining uncertainties and data needs as the output from the project. C1 [Nagase, F.] Japan Atom Energy Agcy, Nucl Sci & Engn Ctr, Tokai, Ibaraki 3191195, Japan. [Gauntt, R. O.] Sandia Natl Labs, Severe Accid Anal Dept, POB 5800, Albuquerque, NM 87185 USA. [Naito, M.] Inst Appl Energy, Nucl Engn Power Ctr, Minato Ku, Tokyo 1050003, Japan. RP Nagase, F (reprint author), Japan Atom Energy Agcy, Nucl Sci & Engn Ctr, Tokai, Ibaraki 3191195, Japan. EM nagase.fumihisa@jaea.go.jp NR 6 TC 0 Z9 0 U1 5 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD DEC PY 2016 VL 196 IS 3 SI SI BP 499 EP 510 DI 10.13182/NT16-10 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EF7QK UT WOS:000390524000008 ER PT J AU Valentin, FI Artoun, N Anderson, R Kawaji, M McEligot, DM AF Valentin, Francisco I. Artoun, Narbeh Anderson, Ryan Kawaji, Masahiro McEligot, Donald M. TI Study of Convection Heat Transfer in a Very High Temperature Reactor Flow Channel: Numerical and Experimental Results SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE Convection heat transfer; very high temperature reactor; high-temperature gas reactor ID INTERNAL GAS-FLOWS; FRICTION COEFFICIENTS; TURBULENT-FLOW; AIR AB Very high temperature reactors (VHTRs) with helium-cooled prismatic cores are one type of Generation IV gas-cooled reactors proposed for implementation in next-generation nuclear power plants. To contribute to the VHTR development, a high-temperature/high-pressure test facility has been constructed and used to investigate the convection heat transfer of gaseous coolants. This test facility consisted of a single flow channel with a diameter of 16.8 mm in a graphite column with a length of 2.7 m (9 ft) equipped with four 2.3-kW heaters. Convection heat transfer experiments were conducted with air, nitrogen, and helium for inlet Reynolds number (Re) values ranging from 500 to 70000. Extensive three-dimensional numerical modeling was also performed using a commercial finite element package, COMSOL Multiphysics. The numerical results agreed with the convection heat transfer data, with maximum error percentages under 15%. Based on this agreement, important information was extracted from the numerical model regarding the axial and radial velocity and temperature profiles as well as the axial variations in gas properties. This work examines deteriorated turbulent heat transfer and flow laminarization for a wide range of Re, including laminar, transition, and turbulent flows. C1 [Valentin, Francisco I.; Artoun, Narbeh; Kawaji, Masahiro] CUNY City Coll, 160 Convent Ave, New York, NY 10031 USA. [Anderson, Ryan] Montana State Univ, Bozeman, MT 59718 USA. [Kawaji, Masahiro] CUNY Energy Inst, 160 Convent Ave, New York, NY 10031 USA. [McEligot, Donald M.] Idaho Natl Lab, 1955 N Fremont Ave, Idaho Falls, ID 83415 USA. RP Kawaji, M (reprint author), CUNY City Coll, 160 Convent Ave, New York, NY 10031 USA.; Kawaji, M (reprint author), CUNY Energy Inst, 160 Convent Ave, New York, NY 10031 USA. EM kawaji@me.ccny.cuny.edu NR 30 TC 0 Z9 0 U1 3 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD DEC PY 2016 VL 196 IS 3 SI SI BP 661 EP 673 DI 10.13182/NT16-46 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EF7QK UT WOS:000390524000018 ER PT J AU Luxat, DL Kalanich, DA Hanophy, JT Gauntt, RO Wachowiak, RM AF Luxat, David L. Kalanich, Donald A. Hanophy, Joshua T. Gauntt, Randall O. Wachowiak, Richard M. TI MAAP-MELCOR Crosswalk Phase 1 Study SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE MAAP; MELCOR; core-melt progression AB The Modular Accident Analysis Program (MAAP), Version 5 (MAAP5) and Methods of Estimation of Leakages and Consequences of Releases (MELCOR) are widely used integral plant response analysis computer codes. Both programs have been developed over the past 30 years for the purpose of simulating a range of beyond-design-basis accidents. The codes are benchmarked against numerous separate-effects experiments that reflect, to varying degrees, conditions expected to arise in light water reactor accidents. Such separate-effects tests, however, do not completely represent the novel physics that can arise through the interaction of multiple phenomena and physical processes at a reactor scale. Furthermore, aside from the Three Mile Island Unit 2 (TMI-2) core damage event, there is limited information available to evaluate reactor-scale behavior. Both MAAP5 and MELCOR have developed models to capture reactor-scale accident progression that, to a certain extent, extrapolate from separate-effects experiments, with assessment against the TMI-2 event only. Because of the limited information available to assess these extrapolated reactor-scale models, differences in MAAP5 and MELCOR code predictions do exist, most notably in the simulation of in-vessel core-melt progression. While these differences are not necessarily influential for the key metrics evaluated in probabilistic risk assessments, they can have a more pronounced impact on studies assessing the efficacy of accident management measures. This paper reports the first phase of a MAAP-MELCOR crosswalk designed to identify the key core-melt progression modeling differences. The results of this study highlight the impact that assumptions about reactor-scale, in-vessel core debris morphology have on (a) the potential for high temperatures to develop above the reactor core and in the main steam lines and (b) the magnitude and extent of the period for in-vessel hydrogen generation. These examples play critical roles in the evolution of challenges to the reactor pressure vessel pressure boundary and containment and are ultimately central to the evaluation of accident management effectiveness. C1 [Luxat, David L.; Hanophy, Joshua T.] ERIN Engn & Res Inc, 158 West Gay St,Suite 400, W Chester, PA 19380 USA. [Kalanich, Donald A.; Gauntt, Randall O.] Sandia Natl Labs, 1515 Eubank SE, Albuquerque, NM 87123 USA. [Wachowiak, Richard M.] Elect Power Res Inst, 3420 Hillview Ave, Palo Alto, CA 94304 USA. RP Luxat, DL (reprint author), ERIN Engn & Res Inc, 158 West Gay St,Suite 400, W Chester, PA 19380 USA. EM dluxat@jensenhughes.com NR 12 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD DEC PY 2016 VL 196 IS 3 SI SI BP 684 EP 697 DI 10.13182/NT16-57 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EF7QK UT WOS:000390524000020 ER PT J AU Beauchamp, RC AF Beauchamp, Robert C. TI Radiation, Fear, and Common Sense Adaptations in Patient Care SO NURSING CLINICS OF NORTH AMERICA LA English DT Article DE Radiation; Ionizing radiation; Contamination; Exposure; Fear; Safety; Adaptations in nursing care AB Lack of understanding about the basic nature of radiation exposure and contamination may lead to unreasonable fear in nursing staff. A brief review of a well-known case shows that in general, both the public and health care providers are radiophobic. Studies have shown that the level of fear correlates inversely with an understanding of radiation. This article explores underlying principles of ionizing radiation and their application in patient management. Reality based, scientifically accurate information along with practical suggestions can free health care providers from unreasonable fear of victims of a radiation accident. C1 [Beauchamp, Robert C.] Oak Ridge Associated Univ, Radiat Emergency Assistance Ctr Training Site, POB 117,MS 39, Oak Ridge, TN 37831 USA. RP Beauchamp, RC (reprint author), Oak Ridge Associated Univ, Radiat Emergency Assistance Ctr Training Site, POB 117,MS 39, Oak Ridge, TN 37831 USA. EM Robert.Beauchamp@orau.org NR 23 TC 0 Z9 0 U1 1 U2 1 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA SN 0029-6465 EI 1558-1357 J9 NURS CLIN N AM JI Nurs. Clin. North Am. PD DEC PY 2016 VL 51 IS 4 BP 675 EP + DI 10.1016/j.cnur.2016.07.003 PG 22 WC Nursing SC Nursing GA EG0NT UT WOS:000390730200012 PM 27863581 ER PT J AU Levy, A Levy, A AF Levy, A. Levy, A. TI Genetic determinants of bacterial adaptation to plants SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Phytopathological-Society (APS) CY JUL 30-AUG 03, 2016 CL Tampa, FL SP Amer Phytopathol Soc C1 [Levy, A.; Levy, A.] US DOE, Joint Genome Inst, Washington, DC 20585 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X EI 1943-7684 J9 PHYTOPATHOLOGY JI Phytopathology PD DEC PY 2016 VL 106 IS 12 SU S BP 15 EP 15 PG 1 WC Plant Sciences SC Plant Sciences GA EF6WM UT WOS:000390471900073 ER PT J AU Stulberg, M Mershon, J Ahmad, A Mollov, D Huang, Q AF Stulberg, M. Mershon, J. Ahmad, A. Mollov, D. Huang, Q. TI Isolation and characterization of FRs551, a bacteriophage associated with the phytobacterium Ralstonia solanacearum strain UW551 SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Phytopathological-Society (APS) CY JUL 30-AUG 03, 2016 CL Tampa, FL SP Amer Phytopathol Soc C1 [Stulberg, M.; Mershon, J.; Ahmad, A.; Huang, Q.] ARS, FNPRU, USDA, Beltsville, MD USA. [Stulberg, M.] ORISE, Beltsville, MD USA. [Ahmad, A.] Menia Univ, Fac Agr, Dept Plant Pathol, El Minia 61519, Egypt. [Mollov, D.] ARS, NGRL, USDA, Beltsville, MD USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X EI 1943-7684 J9 PHYTOPATHOLOGY JI Phytopathology PD DEC PY 2016 VL 106 IS 12 SU S BP 44 EP 44 PG 1 WC Plant Sciences SC Plant Sciences GA EF6WM UT WOS:000390471900227 ER PT J AU Bahri, B Daverdin, G Cheng, J Barry, K Smith, S Devos, K AF Bahri, B. Daverdin, G. Cheng, J. Barry, K. Smith, S. Devos, K. TI SNP variation in switchgrass disease resistance genes SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Phytopathological-Society (APS) CY JUL 30-AUG 03, 2016 CL Tampa, FL SP Amer Phytopathol Soc C1 [Bahri, B.] Univ Georgia, Dept Plant Protect, Natl Agron Inst Tunisia, Dept Crop & Soil Sci, Athens, GA 30602 USA. [Daverdin, G.] Rutgers State Univ, Marucci Ctr Blueberry & Cranberry Res & Extens, Chatsworth, NJ USA. [Cheng, J.; Barry, K.] DOE Joint Genome Inst, Walnut Creek, CA USA. [Smith, S.] Univ Georgia, Dept Plant Pathol, Athens, GA 30602 USA. [Devos, K.] Univ Georgia, Dept Crop & Soil Sci, Inst Plant Breeding Genet & Genom, Athens, GA 30602 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X EI 1943-7684 J9 PHYTOPATHOLOGY JI Phytopathology PD DEC PY 2016 VL 106 IS 12 SU S BP 82 EP 82 PG 1 WC Plant Sciences SC Plant Sciences GA EF6WM UT WOS:000390471900426 ER PT J AU Stulberg, M Huang, Q AF Stulberg, M. Huang, Q. TI A computer program for fast and easy typing of Ralstonia solanacearum species complex strains into genospecies and sequevars 1&2 SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Phytopathological-Society (APS) CY JUL 30-AUG 03, 2016 CL Tampa, FL SP Amer Phytopathol Soc C1 [Stulberg, M.; Huang, Q.] USDA ARS, FNPRU, Washington, DC 20250 USA. [Stulberg, M.] ORISE, Oak Ridge, TN USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X EI 1943-7684 J9 PHYTOPATHOLOGY JI Phytopathology PD DEC PY 2016 VL 106 IS 12 SU S BP 110 EP 110 PG 1 WC Plant Sciences SC Plant Sciences GA EF6WM UT WOS:000390471901038 ER PT J AU Sweeney, K Blancaflor, E Schilling, J Hu, D Orr, G Figueroa, M AF Sweeney, K. Blancaflor, E. Schilling, J. Hu, D. Orr, G. Figueroa, M. TI Spatial analyses of fungal-plant interfaces to understand colonization mechanisms of two basidiomycete fungi SO PHYTOPATHOLOGY LA English DT Meeting Abstract CT Annual Meeting of the American-Phytopathological-Society (APS) CY JUL 30-AUG 03, 2016 CL Tampa, FL SP Amer Phytopathol Soc C1 [Sweeney, K.; Schilling, J.; Figueroa, M.] Univ Minnesota, St Paul, MN 55108 USA. [Blancaflor, E.] Samuel Roberts Nobel Fdn, Ardmore, OK USA. [Hu, D.; Orr, G.] Pacific Northwest Natl Lab, Richland, WA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYTOPATHOLOGICAL SOC PI ST PAUL PA 3340 PILOT KNOB ROAD, ST PAUL, MN 55121 USA SN 0031-949X EI 1943-7684 J9 PHYTOPATHOLOGY JI Phytopathology PD DEC PY 2016 VL 106 IS 12 SU S BP 193 EP 193 PG 1 WC Plant Sciences SC Plant Sciences GA EF6WM UT WOS:000390471901466 ER PT J AU Xu, X Chen, YM Wan, PY Gasem, K Wang, KY He, T Adidharma, H Fan, MH AF Xu, Xin Chen, Yongmei Wan, Pingyu Gasem, Khaled Wang, Kaiying He, Ting Adidharma, Hertanto Fan, Maohong TI Extraction of lithium with functionalized lithium ion-sieves SO PROGRESS IN MATERIALS SCIENCE LA English DT Review DE Water lithium resources; Lithium ion-sieve technology; Lithium adsorbents; Lithium adsorption/desorption mechanisms; LIS batteries; LIS composite materials ID LIMN2O4 CATHODE MATERIAL; MOLTEN-SALT SYNTHESIS; SPRAY-DRYING METHOD; ENHANCED ELECTROCHEMICAL PERFORMANCES; LI+ EXTRACTION/ADSORPTION PROPERTIES; MEMBRANE CAPACITIVE DEIONIZATION; MICROWAVE SYNTHESIS METHOD; LOW-TEMPERATURE SYNTHESIS; JAHN-TELLER DISTORTION; SOL-GEL METHOD AB Due to the technology advancement and the large-scale application of lithium-ion batteries in recent years, the market demand for lithium is growing rapidly and the availability of land lithium resources is decreasing significantly. As such, the focus of lithium extraction technologies has shifted to water lithium resources involving salt-lake brines and sea water. Among various aqueous recovery technologies, the lithium ion-sieve (LIS) technology is considered the most promising one. This is because LISs are excellent adsorbents with high lithium uptake capacity, superior lithium selectivity and good cycle performance. These attributes have enabled LISs to separate lithium effectively from aqueous solutions containing different ions. The present work reviews the latest development in LIS technology, including the chemical structures of ion-sieves, the corresponding lithium adsorption desorption mechanisms, the ion-sieves preparation methods, and the challenges associated with the lithium recovery from aqueous solutions by the LIS batteries. Besides, some common LIS composite materials forming technologies, including granulation, foaming, membrane and fiber formation, and magnetization, which are used to overcome the shortcomings in industrial column operations, are also explored. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Xu, Xin; Chen, Yongmei; Wan, Pingyu; Wang, Kaiying] Beijing Univ Chem Technol, Natl Fundamental Res Lab New Hazardous Chem, Beijing 100029, Peoples R China. [Gasem, Khaled; Wang, Kaiying; Adidharma, Hertanto; Fan, Maohong] Univ Wyoming, Dept Chem & Petr Engn, Laramie, WY 82071 USA. [He, Ting] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Fan, Maohong] Univ Wyoming, Sch Energy Resources, Laramie, WY 82071 USA. [Fan, Maohong] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. RP Fan, MH (reprint author), Univ Wyoming, Dept Chem & Petr Engn, Laramie, WY 82071 USA. EM Xinxubuct@163.com; chemym@mail.buct.edu.cn; pywan@mail.buct.edu.cn; gasem@uwyo.edu; kwang3@uwyo.edu; ting.he@inl.gov; adidharm@uwyo.edu; mfan@uwyo.edu RI He, Ting/B-8120-2017 OI He, Ting/0000-0002-8877-0215 FU National Natural Science Foundation of China [51374016]; Beijing University of Chemical Technology (BUCT) Fund for Disciplines Construction and Development [XK1525]; Fundamental Research Funds for the Central Universities [YS1406]; Wyoming Engineering Initiative in the U.S. FX This project was supported by the National Natural Science Foundation of China (Grant No. 51374016), Beijing University of Chemical Technology (BUCT) Fund for Disciplines Construction and Development (Project No. XK1525); the Fundamental Research Funds for the Central Universities (YS1406) and Wyoming Engineering Initiative in the U.S. NR 265 TC 0 Z9 0 U1 49 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6425 J9 PROG MATER SCI JI Prog. Mater. Sci. PD DEC PY 2016 VL 84 BP 276 EP 313 DI 10.1016/j.pmatsci.2016.09.004 PG 38 WC Materials Science, Multidisciplinary SC Materials Science GA EF7KT UT WOS:000390509200007 ER PT J AU Wang, HF AF Wang, Hong-Fei TI Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues SO PROGRESS IN SURFACE SCIENCE LA English DT Review DE Sum-frequency generation vibrational spectroscopy; Surface selectivity; Surface nonlinear spectroscopy; Surfaces and interfaces; Molecular orientation; Dipole contribution; Phase-resolved SFG-VS; Chiral SFG-VS; Vibrational spectral lineshape; Bloch dynamics model ID NONLINEAR-OPTICAL SPECTROSCOPY; AIR-WATER-INTERFACE; 2ND-HARMONIC GENERATION; LIQUID INTERFACES; AIR/WATER INTERFACE; MULTIPOLAR CONTRIBUTIONS; ISOTROPIC FLUIDS; CHIRAL LIQUIDS; IN-SITU; 2ND-ORDER SUSCEPTIBILITY AB Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there have been many progresses in the development of methodology and instrumentation in the SFG-VS toolbox that have significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Wang, Hong-Fei] Pacific Northwest Natl Lab, Div Phys Sci, Phys & Computat Sci Directorate, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. RP Wang, HF (reprint author), Pacific Northwest Natl Lab, Div Phys Sci, Phys & Computat Sci Directorate, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM hongfei.wang@pnnl.gov RI Wang, Hongfei/B-1263-2010 OI Wang, Hongfei/0000-0001-8238-1641 FU Materials Synthesis and Simulation Across Scales (MS3) Initiative through the LDRD program at Pacific Northwest National Laboratory (PNNL); Department of Energy (DOE) [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research (BER) FX HFW thanks Luis Velarde and Li Fu for taking the HR-BB-SFG-VS spectra in Figs. 4 and 8, respectively, which have not been published elsewhere. HFW also thank Zhou Lu for helping prepare the Fig. 1. A portion of this research was funded by the Materials Synthesis and Simulation Across Scales (MS3) Initiative through the LDRD program at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for Department of Energy (DOE) by Battelle under Contracts No. DE-AC05-76RL01830. Part of the work was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at PNNL and sponsored by the DOE's Office of Biological and Environmental Research (BER). NR 220 TC 1 Z9 1 U1 27 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0079-6816 J9 PROG SURF SCI JI Prog. Surf. Sci. PD DEC PY 2016 VL 91 IS 4 BP 155 EP 182 DI 10.1016/j.progsurf.2016.10.001 PG 28 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA EF7KU UT WOS:000390509300001 ER PT J AU Robinson, JW Zhou, Y Qu, J Bays, JT Cosimbescu, L AF Robinson, Joshua W. Zhou, Yan Qu, Jun Bays, J. Timothy Cosimbescu, Lelia TI Highly branched polyethylenes as lubricant viscosity and friction modifiers SO REACTIVE & FUNCTIONAL POLYMERS LA English DT Article DE Viscosity modifier; Friction modifier; Lubricant additive; Highly-branched polyethylene; Viscosity index improver ID MOLECULAR-WEIGHT POLYETHYLENES; CHAIN-WALKING; INDEX IMPROVERS; ALPHA-OLEFINS; ETHYLENE; POLYMERIZATION; TOPOLOGY; CATALYSTS AB A series of highly branched polyethylene (BPE) were prepared and evaluated in a Group I base oil as potential viscosity and friction modifiers. The performance of these BPEs supports the expected dual functionality. Changes in polarity, topology, and molecular weight of the BPEs showed significant effects on the lubricants' performance with respect to viscosity index and friction reduction. This study provides scientific insights into polymer design for future lubricant development activities. (C) 2016 Elsevier B.V. All rights reserved. C1 [Robinson, Joshua W.; Bays, J. Timothy; Cosimbescu, Lelia] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Zhou, Yan; Qu, Jun] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Robinson, Joshua W.] Agr Int Serv, USDA, 4700 River Rd, Riverdale, MD 20737 USA. RP Cosimbescu, L (reprint author), Pacific Northwest Natl Lab, Richland, WA 99354 USA. EM lelia.cosimbescu@pnnl.gov FU Office of Vehicle Technology (VT) of the U.S. Department of Energy (US DOE) [27573]; U.S. DOE [DE_AC06-76RLO 1830] FX This project was funded by the Office of Vehicle Technology (VT) of the U.S. Department of Energy (US DOE), (under contract No. 27573). PNNL is proudly operated by Battelle for the U.S. DOE (under contract DE_AC06-76RLO 1830). The authors kindly acknowledge contributions from Ewa Bardasz (Energetics) in the form of insightful technical discussions as well as from JoRuetta Ellington (Evonik) for technical assistance and for providing benchmark materials. We thank Afton Chemical for generously donating base oils for screening purposes. NR 17 TC 1 Z9 1 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-5148 EI 1873-166X J9 REACT FUNCT POLYM JI React. Funct. Polym. PD DEC PY 2016 VL 109 BP 52 EP 55 DI 10.1016/j.reactfunctpolym.2016.10.003 PG 4 WC Chemistry, Applied; Engineering, Chemical; Polymer Science SC Chemistry; Engineering; Polymer Science GA EF7LD UT WOS:000390510200007 ER PT J AU Arefin, A Harris, JF Nath, P Huang, J Platts, D Shou, Y Iyer, RS AF Arefin, A. Harris, J. F. Nath, P. Huang, J. Platts, D. Shou, Y. Iyer, R. S. TI Developing Artificial Alveoli for Rapid Drug Screening Application SO TISSUE ENGINEERING PART A LA English DT Meeting Abstract CT TERMIS - Americas Conference and Exhibition CY DEC 11-14, 2016 CL San Diego, CA SP TERMIS C1 [Arefin, A.] Univ New Mexico, Nanosci & Microsyst, Albuquerque, NM 87131 USA. [Arefin, A.; Harris, J. F.; Huang, J.; Shou, Y.] Los Alamos Natl Lab, Biosecur & Publ Hlth, Los Alamos, NM USA. [Nath, P.; Platts, D.] Los Alamos Natl Lab, Appl Modern Phys, Los Alamos, NM USA. [Iyer, R. S.] Los Alamos Natl Lab, Informat Syst & Modeling, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1937-3341 EI 1937-335X J9 TISSUE ENG PT A JI Tissue Eng. Part A PD DEC PY 2016 VL 22 SU 1 MA 240 BP S63 EP S64 PG 2 WC Cell & Tissue Engineering; Biotechnology & Applied Microbiology; Cell Biology SC Cell Biology; Biotechnology & Applied Microbiology GA EF8HF UT WOS:000390569200236 ER PT J AU Moya, ML Booth, R Wheeler, E AF Moya, M. L. Booth, R. Wheeler, E. TI 3D Dynamic Blood Brain Barrier Model SO TISSUE ENGINEERING PART A LA English DT Meeting Abstract CT TERMIS - Americas Conference and Exhibition CY DEC 11-14, 2016 CL San Diego, CA SP TERMIS C1 [Moya, M. L.; Booth, R.; Wheeler, E.] Lawrence Livermore Natl Lab, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1937-3341 EI 1937-335X J9 TISSUE ENG PT A JI Tissue Eng. Part A PD DEC PY 2016 VL 22 SU 1 MA 22 BP S7 EP S7 PG 1 WC Cell & Tissue Engineering; Biotechnology & Applied Microbiology; Cell Biology SC Cell Biology; Biotechnology & Applied Microbiology GA EF8HF UT WOS:000390569200023 ER PT J AU Skupien, GM Andrews, KM Norton, TM AF Skupien, Gregory M. Andrews, Kimberly M. Norton, Terry M. TI Benefits and Biases of VHF and GPS Telemetry: A Case Study of American Alligator Spatial Ecology SO WILDLIFE SOCIETY BULLETIN LA English DT Article DE Alligator mississippiensis; American alligator; home range; spatial ecology; technology; telemetry; urban ID CROCODYLUS-POROSUS; HABITAT SELECTION; ACTIVITY RANGES; HOME RANGES; BLACK BEARS; PATTERNS; PREDATOR; PERFORMANCE; MANAGEMENT; MOVEMENTS AB American alligators (Alligator mississippiensis) historically occupied freshwater habitats such as isolated wetlands, lakes, rivers, bottomland swamps, and floodplains in coastal and inland sites. As a result of loss of aquatic habitats, alligators have adapted to inhabiting human-made lagoons on golf courses and aquatic habitats in close proximity to developed areas. We conducted a telemetry study of adult (> 1.8-m) male alligators between July 2012 and September 2014 on Jekyll Island, Georgia, USA. Our objective was to compare the efficacy of using very-high-frequency (VHF) and Global Positioning System (GPS) telemetry in the framework of understanding the spatial ecology of American alligators in a developed landscape. We present both benefits and biases of using these technologies in studies with large, semiaquatic vertebrates. Global Positioning System telemetry produced larger 100% minimum convex polygon home range sizes (range -67.0-1,094.0 ha) when compared with VHF telemetry (range -27.5-596.0 ha). Data collected using a prototype GPS technology custom developed by Advanced Telemetry Systems (ATS, Isanti, MN, USA) allowed for the construction of larger, more biologically accurate home ranges. However, VHF telemetry allowed alligators to be detected in underground habitats where they could not be detected with GPS telemetry and yielded more information on behavior and microhabitat through direct observation. We recommend the use of traditional VHF telemetry to allow researchers to directly observe animal behaviors such as reproduction and foraging in conjunction with GPS telemetry to capture previously unavailable locational data. These data highlight the importance of choosing the appropriate telemetry technology based on habitat type, species, and research objectives. (C) 2016 The Wildlife Society. C1 [Skupien, Gregory M.] Univ Georgia, Odum Sch Ecol, 140E Green St, Athens, GA 30602 USA. [Andrews, Kimberly M.] Univ Georgia, Savannah River Ecol Lab, SRS Bldg 737A, Aiken, SC 29808 USA. [Norton, Terry M.] Jekyll Isl Author, Georgia Sea Turtle Ctr, 214 Stable Rd, Jekyll Island, GA 31527 USA. [Skupien, Gregory M.] 7501 Drayton Court, Raleigh, NC 27615 USA. RP Skupien, GM (reprint author), Univ Georgia, Odum Sch Ecol, 140E Green St, Athens, GA 30602 USA.; Skupien, GM (reprint author), 7501 Drayton Court, Raleigh, NC 27615 USA. EM gregory.skupien@gmail.com FU Office of Ocean and Coastal Resource Management (OCRM), National Oceanic and Atmospheric Administration (NOAA) [NA12NOS4190171]; Department of Energy [DE-FC09-07SR22506] FX This research was conducted under grant award number NA12NOS4190171 to the Georgia Department of Natural Resources (DNR) from the Office of Ocean and Coastal Resource Management (OCRM), National Oceanic and Atmospheric Administration (NOAA). The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of Georgia DNR, OCRM, or NOAA. Infrastructure support to the Savannah River Ecology Laboratory was provided through award number DE-FC09-07SR22506 from Department of Energy to the University of Georgia Research Foundation. Dr. K. Andrews is jointly affiliated with the University of Georgia Savannah River Ecology Laboratory and Jekyll Island Authority Georgia Sea Turtle Center. We thank both institutions for their contributions to this project. We extend our gratitude to T. Garin at Advanced Telemetry Systems and the engineers that worked tirelessly to design and troubleshoot the development of Global Positioning System units for alligators. We thank R. Horan, D. Zailo, J. Colbert, R. Bauer, and many others for their help with project design and field work. We thank T. Tuberville and L. Larson for comments and contributions to this manuscript. Lastly, we thank the Associate Editor and anonymous reviewers for their constructive feedback. NR 49 TC 0 Z9 0 U1 12 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1938-5463 J9 WILDLIFE SOC B JI Wildl. Soc. Bull. PD DEC PY 2016 VL 40 IS 4 BP 772 EP 780 DI 10.1002/wsb.697 PG 9 WC Biodiversity Conservation SC Biodiversity & Conservation GA EF9XU UT WOS:000390685600021 ER PT J AU LaFemina, NH Chen, Q Mueller, KT Colby, RH AF LaFemina, Nikki H. Chen, Quan Mueller, Karl T. Colby, Ralph H. TI Diffusive Flux as a New Metric for Ion-Conducting Soft Materials SO ACS ENERGY LETTERS LA English DT Article ID LITHIUM/POLYMER CELLS; POLYMER ELECTROLYTES; DENDRITIC GROWTH; SPECTROSCOPY; COPOLYMERS; TRANSPORT; BATTERIES; DYNAMICS; BINDING; IONOMER AB Li-7 NMR diffusion measurements for single-ion conducting ionomers with strong solvation for lithium reveal that diffusion is considerably faster than expected from ionic conductivity measurements, suggesting that neutral ion pairs dominate lithium transport in this class of materials. Ion aggregation is controlled by the overlap parameter for ion pair polarizability volumes; at ion contents higher than the polarizability volume overlap threshold, ion pairs aggregate strongly, making the dielectric constant saturate and the glass transition temperature increase more rapidly with ion content. Neutral ion pairs hop from one aggregate to a neighboring one by polymer segmental motion. Only when the ion pair has an extra lithium (i.e., a positive triple ion) do such hops contribute to ionic conductivity. C1 [LaFemina, Nikki H.; Mueller, Karl T.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Chen, Quan; Colby, Ralph H.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Mueller, Karl T.] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, POB 999, Richland, WA 99352 USA. RP Colby, RH (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM rhc@plmsc.psu.edu RI Chen, Quan/D-2238-2017 OI Chen, Quan/0000-0002-7771-5050 FU Department of Energy, Office of Basic Energy Sciences [DEFG02-07ER46409] FX We gratefully acknowledge the Department of Energy, Office of Basic Energy Sciences, under Grant DEFG02-07ER46409, Conduction Mechanisms and Structure of Ionomeric Single Ion Conductors, which funded a five-faculty multistudent team for seven years. We also acknowledge the other three faculty Janna Maranas, James Runt, and Karen Winey for many years of collaboration and most of all the other Ph.D. students: Shichen Dou (2007), Wenqin Wang (2010 UPenn), Shih-Wa Wang (2011), Alicia Castagna (2012), U Hyeok Choi (2012), Kan-Ju Lin (2012), David Roach (2012), Kokonad Sinha (2012), Greg Tudryn (2012), Siwei Liang (2013), Hanging Masser (2013), Wenjuan Liu (2014), Michael O'Reilly (2014 UPenn), Huai-Suen Shiau (2014), Helen Jing-Han Wang, (2015), and Joshua Bartels (2015). NR 37 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD DEC PY 2016 VL 1 IS 6 BP 1179 EP 1183 DI 10.1021/acsenergylett.6600545 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EF1LN UT WOS:000390086400017 ER PT J AU Norton-Baker, B Ihly, R Gould, IE Avery, AD Owczarczyk, ZR Ferguson, AJ Blackburn, JL AF Norton-Baker, Brenna Ihly, Rachelle Gould, Isaac E. Avery, Azure D. Owczarczyk, Zbyslaw R. Ferguson, Andrew J. Blackburn, Jeffrey L. TI Polymer-Free Carbon Nanotube Thermoelectrics with Improved Charge Carrier Transport and Power Factor SO ACS ENERGY LETTERS LA English DT Article ID FIELD-EFFECT TRANSISTORS; QUANTUM-WELL STRUCTURES; SELECTIVE DISPERSION; SUPRAMOLECULAR POLYMER; CONJUGATED POLYMERS; SOLAR-CELLS; EXTRACTION; NETWORKS; FILMS; PHOTOVOLTAICS AB Semiconducting single-walled carbon nanotubes (s-SWCNTs) have recently attracted attention for their promise as active components in a variety of optical and electronic applications, including thermoelectricity generation. Here we demonstrate that removing the wrapping polymer from the highly enriched s-SWCNT network leads to substantial improvements in charge carrier transport and thermoelectric power factor. These improvements arise primarily from an increase in charge carrier mobility within the s-SWCNT networks because of removal of the insulating polymer and control of the level of nanotube bundling in the network, which enables higher thin-film conductivity for a given carrier density. Ultimately, these studies demonstrate that highly enriched s-SWCNT thin films, in the complete absence of any accompanying semiconducting polymer, can attain thermoelectric power factors in the range of similar to 400 mu W m(-1) K-2, which is on par with that of some of the best single-component organic thermoelectrics demonstrated to date. C1 [Norton-Baker, Brenna; Ihly, Rachelle; Gould, Isaac E.; Owczarczyk, Zbyslaw R.; Ferguson, Andrew J.; Blackburn, Jeffrey L.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Avery, Azure D.] Metropolitan State Univ Denver, Dept Phys, 1201 Fifth St, Denver, CO 80204 USA. RP Ferguson, AJ; Blackburn, JL (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM andrew.ferguson@nrel.gov; jeffrey.blackburn@nrel.gov OI Ferguson, Andrew/0000-0003-2544-1753 FU Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); DOE [DE-AC36-08GO28308]; U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under Science Undergraduate Laboratory Internships (SULI) Program; Laboratory Directed Research and Development (LDRD) Program at National Renewable Energy Laboratory (NREL) FX The investigation of the thermoelectric properties of the SWCNT networks was performed under a grant from the Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory (NREL). The development of the s-SWCNT separations and synthesis of the supramolecular polymer at NREL was funded by the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). NREL is supported by the DOE under Contract No. DE-AC36-08GO28308. B.N.-B. and I.E.G. received support from the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships (SULI) Program. We thank Prof. Barry Zink (University of Denver) for insightful discussion regarding the transport measurements. The U.S. Government retains (and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains) a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 45 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD DEC PY 2016 VL 1 IS 6 BP 1212 EP 1220 DI 10.1021/acsenergylett.6b00417 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EF1LN UT WOS:000390086400023 ER PT J AU Zhan, C Zhang, PF Dai, S Jiang, DE AF Zhan, Cheng Zhang, Pengfei Dai, Sheng Jiang, De-en TI Boron Supercapacitors SO ACS ENERGY LETTERS LA English DT Article ID NITROGEN-DOPED GRAPHENE; FEW-LAYER GRAPHENE; CAPACITIVE ENERGY-STORAGE; CARBIDE-DERIVED CARBON; QUANTUM CAPACITANCE; MICRO-SUPERCAPACITORS; 2-DIMENSIONAL BORON; ELECTRODES; FILMS; PERFORMANCE AB Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets' metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. Our work suggests that 2D boron sheets are promising electrodes for supercapacitor applications. C1 [Zhan, Cheng; Jiang, De-en] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Zhang, Pengfei; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Jiang, DE (reprint author), Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. EM de-en.jiang@ucr.edu FU Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research is sponsored by the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 51 TC 1 Z9 1 U1 31 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD DEC PY 2016 VL 1 IS 6 BP 1241 EP 1246 DI 10.1021/acsenergylett.6b00483 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EF1LN UT WOS:000390086400027 ER PT J AU Brown, ME Mukhopadhyay, A Keasling, JD AF Brown, Margaret E. Mukhopadhyay, Aindrila Keasling, Jay D. TI Engineering Bacteria to Catabolize the Carbonaceous Component of Sarin: Teaching E. coli to Eat Isopropanol SO ACS SYNTHETIC BIOLOGY LA English DT Article DE synthetic biology; bioengineering sarin; biodegradation; acetone carboxylase; carbon catabolism pathway ID SECONDARY ALCOHOL-DEHYDROGENASE; SP STRAIN TY-5; ESCHERICHIA-COLI; THERMOANAEROBACTER-BROCKII; CLOSTRIDIUM-BEIJERINCKII; DESULFOCOCCUS-BIACUTUS; RECOMBINANT PROTEINS; ACETONE CARBOXYLASE; GENES; PHOSPHOTRIESTERASE AB We report an engineered strain of Escherichia coli that catabolizes the carbonaceous component of the extremely toxic chemical warfare agent sarin. Enzymatic decomposition of sarin generates isopropanol waste that, with this engineered strain, is then transformed into acetylCoA by enzymatic conversion with a key reaction performed by the acetone carboxylase complex (ACX). We engineered the heterologous expression of the ACX complex from Xanthobacter autotrophicus PY2 to match the naturally occurring subunit stoichiometry and purified the recombinant complex from E. coli for biochemical analysis. Incorporating this ACX complex and enzymes from diverse organisms, we introduced an isopropanol degradation pathway in E. coli, optimized induction conditions, and decoupled enzyme expression to probe pathway bottlenecks. Our engineered E. coli consumed 65% of isopropanol compared to no-cell controls and was able to grow on isopropanol as a sole carbon source. In the process, reconstitution of this large ACX complex (370 kDa) in a system naive to its structural and mechanistic requirements allowed us to study this otherwise cryptic enzyme in more detail than would have been possible in the less genetically tractable native Xanthobacter system. C1 [Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. [Brown, Margaret E.; Mukhopadhyay, Aindrila; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, DK-2970 Horsholm, Denmark. RP Keasling, JD (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA.; Keasling, JD (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA.; Keasling, JD (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; Keasling, JD (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.; Keasling, JD (reprint author), Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, DK-2970 Horsholm, Denmark. EM jdkeasling@lbl.gov FU Defense Advanced Research Projects Agency (Microbial Chemical Agent Neutralization, Micro Clean: DARPA) [HR001134783]; Defense Advanced Research Projects Agency under DOE [DE-AC02-05CH11231]; Joint BioEnergy Institute; US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; US Department of Energy FX We would like to acknowledge Peter Kelly for help with the construction and expression of the pBbE*C-ACX constructs. We would also like to acknowledge Victor Chubukov for helpful discussions. Finally, this work was conducted under funding from Defense Advanced Research Projects Agency (Microbial Chemical Agent Neutralization, Micro Clean: DARPA agreement # HR001134783 under DOE contract DE-AC02-05CH11231) and the Joint BioEnergy Institute (http://www.jbei.org), which is supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. NR 44 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD DEC PY 2016 VL 5 IS 12 BP 1485 EP 1496 DI 10.1021/acssynbio.6b00115 PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA EF2WE UT WOS:000390185500020 PM 27403844 ER PT J AU Ghosh, IN Landick, R AF Ghosh, Indro Neil Landick, Robert TI OptSSeq: High-Throughput Sequencing Readout of Growth Enrichment Defines Optimal Gene Expression Elements for Homoethanologenesis SO ACS SYNTHETIC BIOLOGY LA English DT Article DE ethanol; combinatorial optimization; metabolic engineering; ribosome binding site; promoter; synthetic biology ID ESCHERICHIA-COLI K-12; GREEN FLUORESCENT PROTEIN; 2 ALCOHOL DEHYDROGENASES; ZYMOMONAS-MOBILIS; ETHANOL-PRODUCTION; TRANSCRIPTION TERMINATION; PYRUVATE DECARBOXYLASE; RNA-POLYMERASE; SACCHAROMYCES-CEREVISIAE; FATTY-ACIDS AB The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosome binding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate to ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe2+-dependent AdhB and Zn2+-dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival. C1 [Ghosh, Indro Neil; Landick, Robert] Univ Wisconsin Madison, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Ghosh, Indro Neil; Landick, Robert] Univ Wisconsin Madison, Cell & Mol Biol Grad Training Program, Madison, WI 53706 USA. [Ghosh, Indro Neil; Landick, Robert] Univ Wisconsin Madison, Dept Biochem, Madison, WI 53706 USA. [Landick, Robert] Univ Wisconsin Madison, Dept Bacteriol, Madison, WI 53706 USA. RP Landick, R (reprint author), Univ Wisconsin Madison, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA.; Landick, R (reprint author), Univ Wisconsin Madison, Cell & Mol Biol Grad Training Program, Madison, WI 53706 USA.; Landick, R (reprint author), Univ Wisconsin Madison, Dept Biochem, Madison, WI 53706 USA.; Landick, R (reprint author), Univ Wisconsin Madison, Dept Bacteriol, Madison, WI 53706 USA. EM landick@biochem.wisc.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX We thank Rembrandt Haft for providing pRHS2; Yaoping Zhang, Jeff Piotrowski, and members of the GLBRC MiSynBio group for help with initial plasmid characterization, fermentation experiments, and high-throughput sequencing; Jennifer Reed for assistance with FBA analyses; Rachel Mooney for help constructing RL3000 and assaying its properties; the GLBRC Enabling Technologies group for help with end-product analyses; the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing HTS services; and members of the Landick group and the reviewers for helpful comments on the manuscript. This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 108 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD DEC PY 2016 VL 5 IS 12 BP 1519 EP 1534 DI 10.1021/acssynbio.6b00121 PG 16 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA EF2WE UT WOS:000390185500023 PM 27404024 ER PT J AU Zhang, J Sonnenschein, N Pihl, TPB Pedersen, KR Jensen, MK Keasling, JD AF Zhang, Jie Sonnenschein, Nikolaus Pihl, Thomas P. B. Pedersen, Kasper R. Jensen, Michael K. Keasling, Jay D. TI Engineering an NADPH/NADP(+) Redox Biosensor in Yeast SO ACS SYNTHETIC BIOLOGY LA English DT Article DE redox; biosensor; dosage-sensitive genes; yeast ID SACCHAROMYCES-CEREVISIAE; OXIDATIVE STRESS; TRANSCRIPTION FACTOR; ESCHERICHIA-COLI; SYNTHETIC BIOLOGY; FATTY-ACIDS; PROTEIN; STATES; YAP1; IDENTIFICATION AB Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biotechnology. Still, there is a need for bioprospecting and engineering of more biosensors to enable real-time monitoring of specific cellular states and controlling downstream actuation. In this study, we report the engineering and application of a transcription factor-based NADPH/NADP(+) redox biosensor in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP(+) ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP(+) ratios from mixed cell populations. We show that the combination of exploitation and rational engineering of native signaling components is applicable for diagnosis, regulation, and selection of cellular redox states. C1 [Zhang, Jie; Sonnenschein, Nikolaus; Pihl, Thomas P. B.; Pedersen, Kasper R.; Jensen, Michael K.; Keasling, Jay D.] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, DK-2800 Lyngby, Denmark. [Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Keasling, Jay D.] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94709 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94709 USA. RP Jensen, MK (reprint author), Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, DK-2800 Lyngby, Denmark. EM mije@biosustain.dtu.dk OI Sonnenschein, Nikolaus/0000-0002-7581-4936 FU Novo Nordisk Foundation FX We thank Dushica Arsovska (NNF CFB, DTU) for technical assistance in flow cytometry analysis and funding from the Novo Nordisk Foundation. NR 57 TC 1 Z9 1 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD DEC PY 2016 VL 5 IS 12 BP 1546 EP 1556 DI 10.1021/acssynbio.6b00135 PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA EF2WE UT WOS:000390185500025 PM 27419466 ER PT J AU Meekins, DA Zhang, X Battaile, KP Lovell, S Michel, K AF Meekins, David A. Zhang, Xin Battaile, Kevin P. Lovell, Scott Michel, Kristin TI 1.45 angstrom resolution structure of SRPN18 from the malaria vector Anopheles gambiae SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article DE serpins; serine proteases; insect immunity; enzyme inhibitors; mosquito; Anopheles gambiae; malaria vector ID REACTIVE CENTER LOOP; PLASMINOGEN-ACTIVATOR INHIBITOR-1; SERPIN-PROTEASE COMPLEX; CRYSTAL-STRUCTURE; CONFORMATIONAL-CHANGE; HINGE REGION; DATA QUALITY; MACROMOLECULAR CRYSTALLOGRAPHY; ALPHA-1-PROTEINASE INHIBITOR; PROTEINASE INHIBITION AB Serine protease inhibitors (serpins) in insects function within development, wound healing and immunity. The genome of the African malaria vector, Anopheles gambiae, encodes 23 distinct serpin proteins, several of which are implicated in disease-relevant physiological responses. A. gambiae serpin 18 (SRPN18) was previously categorized as non-inhibitory based on the sequence of its reactive-center loop (RCL), a region responsible for targeting and initiating protease inhibition. The crystal structure of A. gambiae SRPN18 was determined to a resolution of 1.45 angstrom, including nearly the entire RCL in one of the two molecules in the asymmetric unit. The structure reveals that the SRPN18 RCL is extremely short and constricted, a feature associated with noncanonical inhibitors or non-inhibitory serpin superfamily members. Furthermore, the SRPN18 RCL does not contain a suitable protease target site and contains a large number of prolines. The SRPN18 structure therefore reveals a unique RCL architecture among the highly conserved serpin fold. C1 [Meekins, David A.; Zhang, Xin; Michel, Kristin] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. [Battaile, Kevin P.] Argonne Natl Lab, Hauptman Woodward Med Res Inst, IMCA CAT, Argonne, IL 60439 USA. [Lovell, Scott] Univ Kansas, Del Shankel Struct Biol Ctr, Prot Struct Lab, Lawrence, KS 66045 USA. RP Michel, K (reprint author), Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. EM kmichel@ksu.edu FU Industrial Macromolecular Crystallography Association; Hauptman-Woodward Medical Research Institute; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Institute of Allergy and Infectious Diseases of the National Institutes of Health [R01AI095842]; NIH from the National Institute of General Medical Sciences [P30 GM110761] FX We thank Dr Fei Philip Gao for help with the SRPN18 purification. Use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman-Woodward Medical Research Institute. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. The research reported in this publication was supported by the Institute of Allergy and Infectious Diseases of the National Institutes of Health under award No. R01AI095842 (to KM). The use of the KU COBRE Protein Structure Laboratory was supported by NIH Grant No. P30 GM110761 from the National Institute of General Medical Sciences. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Center of Biomedical Research Excellence in Protein Structure and Function or the National Institutes of Health. This is contribution 17-119-J from the Kansas Agricultural Experiment Station. NR 102 TC 0 Z9 0 U1 2 U2 2 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-230X J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD DEC PY 2016 VL 72 BP 853 EP 862 DI 10.1107/S2053230X16017854 PN 12 PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA EF4QL UT WOS:000390317000001 PM 27917832 ER PT J AU Bajaj, RA Arbing, MA Shin, A Cascio, D Miallau, L AF Bajaj, R. Alexandra Arbing, Mark A. Shin, Annie Cascio, Duilio Miallau, Linda TI Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article DE Mycobacterium smegmatis; Mycobacterium tuberculosis; X-ray crystallography; protein structure; toxin-antitoxin complexes; bacterial latency; macrophage infection; novel folds ID ANTITOXIN SYSTEMS; ATPASE ACTIVITY; BINDING; PROTEIN; ACTIVATION; PROKARYOTES; ALLERGEN; COMPLEX; GROWTH; HSP90 AB The structure of Msmeg_6760, a protein of unknown function, has been determined. Biochemical and bioinformatics analyses determined that Msmeg_6760 interacts with a protein encoded in the same operon, Msmeg_6762, and predicted that the operon is a toxin-antitoxin (TA ) system. Structural comparison of Msmeg_6760 with proteins of known function suggests that Msmeg_6760 binds a hydrophobic ligand in a buried cavity lined by large hydrophobic residues. Access to this cavity could be controlled by a gate-latch mechanism. The function of the Msmeg_6760 toxin is unknown, but structure-based predictions revealed that Msmeg_6760 and Msmeg_6762 are homologous to Rv2034 and Rv2035, a predicted novel TA system involved in Mycobacterium tuberculosis latency during macrophage infection. The Msmeg_6760 toxin fold has not been previously described for bacterial toxins and its unique structural features suggest that toxin activation is likely to be mediated by a novel mechanism. C1 [Miallau, Linda] Univ Calif Los Angeles, UCLA DOE Inst, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Miallau, L (reprint author), Univ Calif Los Angeles, UCLA DOE Inst, Los Angeles, CA 90095 USA.; Miallau, L (reprint author), Uniformed Serv Univ Hlth Sci, Dept Biochem & Mol Biol, 4301 Jones Bridge Dr, Bethesda, MD 20814 USA. EM linda.miallau@gmail.com FU Department of Energy [DE-FC02-02ER63421]; National Institutes of Health [1P01AI095208-01A1, 99-S150606-1] FX We thank the staff of the UCLA-DOE X-ray Crystallography Core Facility (supported by Department of Energy Grant DE-FC02-02ER63421) for assistance with crystallization screening. The assistance of the staff of NE-CAT beamline 24-ID-C at the Advanced Photon Source is greatly appreciated. We also thank David Eisenberg for his constant support. This work was supported by National Institutes of Health Grant TBSGC R01 Grant No. 1P01AI095208-01A1 and TBSGC R01 subaward No. 99-S150606-1 (to LM). NR 40 TC 0 Z9 0 U1 1 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-230X J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD DEC PY 2016 VL 72 BP 863 EP 869 DI 10.1107/S2053230X16017957 PN 12 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA EF4QL UT WOS:000390317000002 PM 27917833 ER PT J AU Harada, A Sato, Y Kamimura, N Venugopalan, N Masai, E Senda, T AF Harada, Ayaka Sato, Yukari Kamimura, Naofumi Venugopalan, Nagarajan Masai, Eiji Senda, Toshiya TI Overcoming a hemihedral twinning problem in tetrahydrofolate-dependent O-demethylase crystals by the microseeding method SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article DE hemihedral twinning; microseeding; cryoprotectant; tetrahydrofolate; Sphingobium sp SYK-6; O-demethylase ID SPHINGOMONAS-PAUCIMOBILIS SYK-6; BETA-ARYL ETHER; LIGNIN-RELATED BIPHENYL; SP STRAIN SYK-6; PROTEIN-CRYSTALLIZATION; GENE; CATABOLISM; COMPOUND; ENZYME; SYRINGATE AB A tetrahydrofolate-dependent O-demethylase, LigM, from Sphingobium sp. SYK-6 was crystallized by the hanging-drop vapour-diffusion method. However, the obtained P3(1)21 or P3(2)21 crystals, which diffracted to 2.5-3.3 angstrom resolution, were hemihedrally twinned. To overcome the twinning problem, microseeding using P3(1)21/P3(2)21 crystals as microseeds was performed with optimization of the reservoir conditions. As a result, another crystal form was obtained. The newly obtained crystal diffracted to 2.5-3.0 angstrom resolution and belonged to space group P2(1)2(1)2, with unit-cell parameters a = 102.0, b = 117.3, c = 128.1 angstrom. The P21212 crystals diffracted to better than 2.0 angstrom resolution after optimizing the cryoconditions. Phasing using the single anomalous diffraction method was successful at 3.0 angstrom resolution with a Pt-derivative crystal. This experience suggested that microseeding is an effective method to overcome the twinning problem, even when twinned crystals are utilized as microseeds. C1 [Harada, Ayaka; Senda, Toshiya] SOKENDAI Grad Univ Adv Studies, Dept Accelerator Sci, Sch High Energy Accelerator Sci, 1-1 Oho, Tsukuba, Ibaraki 3050031, Japan. [Harada, Ayaka; Sato, Yukari; Senda, Toshiya] High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Struct Biol Res Ctr, Photon Factory, 1-1 Oho, Tsukuba, Ibaraki 11, Japan. [Kamimura, Naofumi; Masai, Eiji] Nagaoka Univ Technol, Dept Bioengn, Nagaoka, Niigata 9402188, Japan. [Venugopalan, Nagarajan] Argonne Natl Lab, GM CA APS, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Senda, T (reprint author), SOKENDAI Grad Univ Adv Studies, Dept Accelerator Sci, Sch High Energy Accelerator Sci, 1-1 Oho, Tsukuba, Ibaraki 3050031, Japan.; Senda, T (reprint author), High Energy Accelerator Res Org KEK, Inst Mat Struct Sci, Struct Biol Res Ctr, Photon Factory, 1-1 Oho, Tsukuba, Ibaraki 11, Japan. EM toshiya.senda@kek.jp FU Japan Society for the Promotion of Science (JSPS); 'Course-by-Course Education Program to Develop Student Research Capability and Aptitude' of SOKENDAI; JSPS KAKENHI [16K14908]; National Cancer Institute [ACB-12002]; National Institute of General Medical Sciences [AGM-12006]; DOE Office of Science [DE-AC02-06CH11357] FX This work was supported by Research Fellowships for Young Scientists from the Japan Society for the Promotion of Science (JSPS) and the 'Course-by-Course Education Program to Develop Student Research Capability and Aptitude' of SOKENDAI to AH, and in part by JSPS KAKENHI 16K14908 to YS. GM/CA@APS is funded in whole or in part with federal funds from the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 27 TC 0 Z9 0 U1 1 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-230X J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD DEC PY 2016 VL 72 BP 897 EP 902 DI 10.1107/S2053230X16018665 PN 12 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA EF4QL UT WOS:000390317000007 PM 27917838 ER PT J AU Fan, L Zhuang, HLL Zhang, KH Cooper, VR Li, Q Lu, YY AF Fan, Lei Zhuang, Houlong L. Zhang, Kaihang Cooper, Valentino R. Li, Qi Lu, Yingying TI Chloride-Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium-Sulfur Batteries SO ADVANCED SCIENCE LA English DT Article ID LI-S BATTERIES; SULFIDE CATHODES; PERFORMANCE; DESIGN; BINDER; ELECTRODES; DEPOSITION; COMPOSITE; SURFACE C1 [Fan, Lei; Li, Qi; Lu, Yingying] Zhejiang Univ, Coll Chem & Biol Engn, Inst Pharmaceut Engn, State Key Lab Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Zhuang, Houlong L.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Zhang, Kaihang] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China. [Cooper, Valentino R.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Lu, YY (reprint author), Zhejiang Univ, Coll Chem & Biol Engn, Inst Pharmaceut Engn, State Key Lab Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China. EM yingyinglu@zju.edu.cn RI Cooper, Valentino /A-2070-2012; Zhuang, Houlong/D-8801-2014 OI Cooper, Valentino /0000-0001-6714-4410; Zhuang, Houlong/0000-0002-3845-4601 FU Chinese government under the "Thousand Youth Talents Program"; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; DOE Office of Science [DE-AC02-05CH11231] FX L.F. and H.L.Z. contributed equally to this work. This work was supported by Chinese government under the "Thousand Youth Talents Program." We thank Prof. Qiaohong He and Prof. Fang Chen from Department of Chemistry, Zhejiang University for TEM and SEM analyses. We thank Prof. Chuanhong Jin from Materials Science and Engineering, Zhejiang University for SAED analysis. V.R.C. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The simulation part of this research used resources of the National Energy Research Scientific Computing Center, which is supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231. NR 35 TC 3 Z9 3 U1 37 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2198-3844 J9 ADV SCI JI Adv. Sci. PD DEC PY 2016 VL 3 IS 12 AR 1600175 DI 10.1002/advs.201600175 PG 8 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EF5VZ UT WOS:000390399000008 PM 27981007 ER PT J AU Thyne, G Brady, P AF Thyne, Geoffrey Brady, Patrick TI Evaluation of formation water chemistry and scale prediction: Bakken Shale SO APPLIED GEOCHEMISTRY LA English DT Article DE Formation water chemistry; Bakken Shale; Scale formation; Geochemical models ID HYDROCARBON RESERVOIRS; WILLISTON BASIN; OIL-FIELDS; INJECTION; PH; TEMPERATURE; EQUILIBRIUM; SURFACE; MODEL AB Determination of in situ formation water chemistry is an essential component of reservoir management. This paper details the use of thermodynamic computer models to calculate reservoir pH and restore produced water analyses for prediction of scale formation. Bakken produced water samples were restored to formation conditions and calculations of scale formation performed. In situ pH is controlled by feldspar-clay equilibria. Calcite scale is readily formed due to changes in pH during pressure drop from in situ to surface conditions. The formation of anhydrite and halite scale, which has been observed, was predicted only for the most saline samples. In addition, the formation of anhydrite and/or halite may be related to the localized conditions of increased salinity as water is partitioned into the gas phase during production. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Thyne, Geoffrey] ESal LLC, 1938 Harney St, Laramie, WY 82072 USA. [Brady, Patrick] Sandia Natl Labs, 1515 Eubank, Albuquerque, NM 87185 USA. RP Thyne, G (reprint author), ESal LLC, 1938 Harney St, Laramie, WY 82072 USA. EM gthyne@esalinity.com; pvbrady@sandia.gov FU Sandia Laboratory Directed Research and Development office; Sandia Corporation, a Lockheed Martin United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We greatly appreciate funding from the Sandia Laboratory Directed Research and Development office. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 49 TC 0 Z9 0 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD DEC PY 2016 VL 75 BP 107 EP 113 DI 10.1016/j.apgeochem.2016.10.015 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EF1KY UT WOS:000390084900011 ER PT J AU Haberl, B Strobel, TA Bradby, JE AF Haberl, Bianca Strobel, Timothy A. Bradby, Jodie E. TI Pathways to exotic metastable silicon allotropes SO APPLIED PHYSICS REVIEWS LA English DT Review ID DIRECT-BAND-GAP; HIGH-PRESSURE PHASE; SPLIT SPHERE APPARATUS; CUBIC BORON-NITRIDE; X-RAY-DIFFRACTION; SI-GE ALLOYS; CRYSTAL-STRUCTURE; AMBIENT-PRESSURE; ELECTRONIC-STRUCTURE; MICRO-INDENTATION AB The Group 14 element silicon possesses a complex free-energy landscape with many (local) minima, allowing for the formation of a variety of unusual structures, some of which may be stabilized at ambient conditions. Such exotic silicon allotropes represent a significant opportunity to address the ever-increasing demand for novel materials with tailored functionality since these exotic forms are expected to exhibit superlative properties including optimized band gaps for solar power conversion. The application of pressure is a well-recognized and uniquely powerful method to access exotic states of silicon since it promotes large changes to atomic bonding. Conventional high-pressure syntheses, however, lack the capability to access many of these local minima and only four forms of exotic silicon allotropes have been recovered over the last 50 years. However, more recently, significant advances in high pressure methodologies and the use of novel precursor materials have yielded at least three more recoverable exotic Si structures. This review aims to give an overview of these innovative methods of high-pressure application and precursor selection and the recent discoveries of new Si allotropes. The background context of the conventional pressure methods and multitude of predicted new phases are also provided. This review also offers a perspective for possible access to many further exotic functional allotropes not only of silicon but also of other materials, in a technologically feasible manner. Published by AIP Publishing. C1 [Haberl, Bianca] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Strobel, Timothy A.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Bradby, Jodie E.] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 0200, Australia. RP Haberl, B (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. FU Alvin M. Weinberg Fellowship (ORNL) - U.S. Department of Energy, Office of Basic Energy Sciences; Spallation Neutron Source (ORNL) - U.S. Department of Energy, Office of Basic Energy Sciences; DOE-BES Contract [DE-AC05-00OR22725]; Scientific User Facilities division, DOE-BES [DE-AC05-00OR22725]; Alvin M. Weinberg Fellowship by the ORNL LDRD scheme [7620]; Energy Frontier Research in Extreme Environments (EFree) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science [DE-SC0001057]; Australian Research Council FX B.H. gratefully acknowledges full funding from an Alvin M. Weinberg Fellowship (ORNL) and the Spallation Neutron Source (ORNL), sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences. ORNL is funded under DOE-BES Contract No. DE-AC05-00OR22725; the SNS is supported by the Scientific User Facilities division, DOE-BES under Contract No. DE-AC05-00OR22725 and the Alvin M. Weinberg Fellowship by the ORNL LDRD scheme under Project No. 7620.; T.A.S. acknowledges support from Energy Frontier Research in Extreme Environments (EFree) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science under Award No. DE-SC0001057.; J.E.B. would like to acknowledge the Australian Research Council for a Future Fellowship and funding under the Discovery Project scheme. NR 206 TC 2 Z9 2 U1 13 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1931-9401 J9 APPL PHYS REV JI Appl. Phys. Rev. PD DEC PY 2016 VL 3 IS 4 AR 040808 DI 10.1063/1.4962984 PG 19 WC Physics, Applied SC Physics GA EF6LZ UT WOS:000390443800009 ER PT J AU Wippermann, S He, YP Voros, M Galli, G AF Wippermann, Stefan He, Yuping Voros, Marton Galli, Giulia TI Novel silicon phases and nanostructures for solar energy conversion SO APPLIED PHYSICS REVIEWS LA English DT Review ID MULTIPLE EXCITON GENERATION; DIRECT-BAND-GAP; ATOMIC LAYER DEPOSITION; II QUANTUM DOTS; CARRIER MULTIPLICATION; SEMICONDUCTOR NANOCRYSTALS; DRIFT MOBILITY; AB-INITIO; OPTOELECTRONIC PROPERTIES; OPTICAL-PROPERTIES AB Silicon exhibits a large variety of different bulk phases, allotropes, and composite structures, such as, e.g., clathrates or nanostructures, at both higher and lower densities compared with diamondlike Si-I. New Si structures continue to be discovered. These novel forms of Si offer exciting prospects to create Si based materials, which are non-toxic and earth-abundant, with properties tailored precisely towards specific applications. We illustrate how such novel Si based materials either in the bulk or as nanostructures may be used to significantly improve the efficiency of solar energy conversion devices. (C) 2016 Author(s). C1 [Wippermann, Stefan] Max Planck Inst Eisenforsch GmbH, Interface Chem & Surface Engn Dept, Max Planck Str 1, D-40237 Dusseldorf, Germany. [He, Yuping] Sandia Natl Labs, Livermore, CA 94551 USA. [Voros, Marton; Galli, Giulia] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Voros, Marton; Galli, Giulia] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Wippermann, S (reprint author), Max Planck Inst Eisenforsch GmbH, Interface Chem & Surface Engn Dept, Max Planck Str 1, D-40237 Dusseldorf, Germany. RI Wippermann, Stefan/H-8481-2014; OI Wippermann, Stefan/0000-0001-9680-2128; Voros, Marton/0000-0003-1321-9207 FU DOE/BES [DE-FG02-06ER46262]; Deutsche Forschungsgemeinschaft [WI3879/1]; U.S. DOE, Office of Science [DE-AC02-06CH11357]; BMBF NanoMatFutur Grant [13N12972] FX This work was supported by DOE/BES (Contract No. DE-FG02-06ER46262) and the Deutsche Forschungsgemeinschaft (Grant No. WI3879/1), as well as supercomputer time provided by NERSC (NISE-35687). M.V. was supported by U.S. DOE, Office of Science under Contract No. DE-AC02-06CH11357. S.W. acknowledges BMBF NanoMatFutur Grant No. 13N12972. NR 129 TC 3 Z9 3 U1 21 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1931-9401 J9 APPL PHYS REV JI Appl. Phys. Rev. PD DEC PY 2016 VL 3 IS 4 AR 040807 DI 10.1063/1.4961724 PG 12 WC Physics, Applied SC Physics GA EF6LZ UT WOS:000390443800008 ER PT J AU Hutchinson, TA Bolton, AS Dawson, KS Prieto, CA Bailey, S Bautista, JE Brownstein, JR Conroy, C Guy, J Myers, AD Newman, JA Prakash, A Carnero-Rosell, A Seo, HJ Tojeiro, R Vivek, M Ben Zhu, G AF Hutchinson, Timothy A. Bolton, Adam S. Dawson, Kyle S. Allende Prieto, Carlos Bailey, Stephen Bautista, Julian E. Brownstein, Joel R. Conroy, Charlie Guy, Julien Myers, Adam D. Newman, Jeffrey A. Prakash, Abhishek Carnero-Rosell, Aurelio Seo, Hee-Jong Tojeiro, Rita Vivek, M. Ben Zhu, Guangtun TI REDSHIFT MEASUREMENT AND SPECTRAL CLASSIFICATION FOR eBOSS GALAXIES WITH THE REDMONSTER SOFTWARE SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: data analysis; surveys; techniques: spectroscopic ID DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; INITIAL MASS FUNCTION; 1ST DATA RELEASE; SDSS-III; CHEMICAL-COMPOSITION; TARGET SELECTION; DATA REDUCTION; FINAL DATA; EVOLUTION AB We describe the redmon ster automated redshift measurement and spectral classification software designed for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV). We describe the algorithms, the template standard and requirements, and the newly developed galaxy templates to be used on eBOSS spectra. We present results from testing on early data from eBOSS, where we have found a 90.5% automated redshift and spectral classification success rate for the luminous red galaxy sample (redshifts 0.6 less than or similar to z less than or similar to 1.0). The redmon ster performance meets the eBOSS cosmology requirements for redshift classification and catastrophic failures and represents a significant improvement over the previous pipeline. We describe the empirical processes used to determine the optimum number of additive polynomial terms in our models and an acceptable Delta chi(2)(r) threshold for declaring statistical confidence. Statistical errors on redshift measurement due to photon shot noise are assessed, and we find typical values of a few tens of km s(-1). An investigation of redshift differences in repeat observations scaled by error estimates yields a distribution with a Gaussian mean and standard deviation of mu similar to 0.01 and sigma similar to 0.65, respectively, suggesting the reported statistical redshift uncertainties are over-estimated by similar to 54%. We assess the effects of object magnitude, signal-to-noise ratio, fiber number, and fiber head location on the pipeline's redshift success rate. Finally, we describe directions of ongoing development. C1 [Hutchinson, Timothy A.; Bolton, Adam S.; Dawson, Kyle S.; Bautista, Julian E.; Brownstein, Joel R.; Vivek, M.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Bolton, Adam S.] Natl Opt Astron Observ, 950 N Cherry Ave, Tucson, AZ 85719 USA. [Allende Prieto, Carlos] Inst Astrofis Canarias, Via Lactea, E-38205 Tenerife, Spain. [Allende Prieto, Carlos] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Bailey, Stephen] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Conroy, Charlie] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Guy, Julien] Univ Denis Diderot Paris 7, Univ Pierre & Marie Curie Paris 6, IN2P3, LPNHE,CNRS, 4 Pl Jussieu, F-75252 Paris, France. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Newman, Jeffrey A.; Prakash, Abhishek] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Newman, Jeffrey A.; Prakash, Abhishek] Univ Pittsburgh, PITT PACC, Pittsburgh, PA 15260 USA. [Carnero-Rosell, Aurelio] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero-Rosell, Aurelio] LIneA, Lab Interinst E Astron, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Seo, Hee-Jong] Ohio Univ, Dept Phys & Astron, 251B Clippinger Labs, Athens, OH 45701 USA. [Tojeiro, Rita] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Ben Zhu, Guangtun] Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. RP Hutchinson, TA (reprint author), Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. EM t.hutchinson@utah.cdu FU Alfred P. Sloan Foundation; Center for High-Performance Computing at the University of Utah; Brazilian Participation Group; Carnegie Institution for Science; Carnegie Mellon University; Chilean Participation Group; Harvard-Smithsonian Center for Astrophysics; Instituto de AstrofIsica de Canarias; Johns Hopkins University; Kavli Institute for the Physics and Mathematics of the universe (IPMU)/University of Tokyo; Lawrence Berkeley National Laboratory; Leibniz Institut fur Astrophysik Potsdam (AIP); Max-Planck-Institut fur Astrophysik (MPA Garching); Max-Planck-Institut fur Extraterrestrische Physik (MPE); Max-Planck-Institut fur Astronomie (MPIA Heidelberg); National Astronomical Observatory of China; New Mexico State University; New York University; University of Notre Dame; Observatorio Nacional do Brasil; Ohio State University; Pennsylvania State University; Shanghai Astronomical Observatory; United Kingdom Participation Group; Universidad Nacional Autonoma de Mexico; University of Arizona; University of Colorado Boulder; University of Portsmouth; University of Utah; University of Washington; University of Wisconsin; Vanderbilt University; Yale University; U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-SC0010331, DE-SC0009959, DE-SC0007914] FX Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org.; SDSS-IV is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de AstrofIsica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the universe (IPMU)/University of Tokyo, Lawrence Berkeley National Laboratory, Leibniz Institut fur Astrophysik Potsdam (AIP), Max-Planck-Institut fur Astrophysik (MPA Garching), Max-Planck-Institut fur Extraterrestrische Physik (MPE), Max-Planck-Institut fur Astronomie (MPIA Heidelberg), National Astronomical Observatory of China, New Mexico State University, New York University, University of Notre Dame, Observatorio Nacional do Brasil, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autonoma de Mexico, University of Arizona, University of Colorado Boulder, University of Portsmouth, University of Utah, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.; The work of T.H., A.B., K.D., J.B., and M.V. was supported in part by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Numbers DE-SC0010331 and DE-SC0009959, and that of J.N. and A.P. under Award Number DE-SC0007914. NR 51 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 205 DI 10.3847/0004-6256/152/6/205 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF5HK UT WOS:000390361100003 ER PT J AU Florian, MK Li, N Gladders, MD AF Florian, Michael K. Li, Nan Gladders, Michael D. TI THE GINI COEFFICIENT AS A MORPHOLOGICAL MEASUREMENT OF STRONGLY LENSED GALAXIES IN THE IMAGE PLANE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: high-redshift; gravitational lensing: strong; methods: observational ID COMMISSIONING DATA; STAR-FORMATION; SPECTROSCOPY; METALLICITY; KINEMATICS; EVOLUTION; CANDELS AB Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images from which morphological measurements can be made, though at the expense of a highly spatially variable telescope point-spread function (PSF) when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time-and resource-intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rather than the source plane, it would bypass this issue and obviate the need for a source reconstruction process for some applications. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that the Gini coefficient may be well preserved by strong gravitational lensing. Through simulations, we test the extent to which the Gini coefficient is conserved, including by effects due to PSF convolution and pixelization, to determine whether it is invariant enough under lensing to be used as a measurement of galaxy morphology that can be made in the image plane. C1 [Florian, Michael K.; Li, Nan; Gladders, Michael D.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Florian, Michael K.; Li, Nan; Gladders, Michael D.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Li, Nan] Argonne Natl Lab, 9700 South Cass Ave B109, Lemont, IL 60439 USA. RP Florian, MK (reprint author), Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.; Florian, MK (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. OI Florian, Michael/0000-0001-5097-6755 FU U. S. Department of Energy [DE-AC02-06CH11357]; Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-1125897] FX Argonne National Laboratory's work was supported under the U. S. Department of Energy contract DE-AC02-06CH11357.; This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grant NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli, and by the Strategic Collaborative Initiative administered by the University of Chicago's Office of the Vice President for Research and for National Laboratories. NR 27 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 168 DI 10.3847/0004-637X/832/2/168 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF7DK UT WOS:000390490100028 ER PT J AU Enright, HA Malfatti, MA Zimmermann, M Ognibene, T Henderson, P Turteltaub, KW AF Enright, Heather A. Malfatti, Michael A. Zimmermann, Maike Ognibene, Ted Henderson, Paul Turteltaub, Kenneth W. TI Use of Accelerator Mass Spectrometry in Human Health and Molecular Toxicology SO CHEMICAL RESEARCH IN TOXICOLOGY LA English DT Review ID DNA-ADDUCT FORMATION; POSITRON-EMISSION-TOMOGRAPHY; IN-VIVO PHARMACOKINETICS; BLADDER-CANCER CELLS; GAS ION-SOURCE; DRUG-DEVELOPMENT; HUMAN VOLUNTEERS; ABSOLUTE BIOAVAILABILITY; PEDIATRIC MICRODOSE; RECEIVING CISPLATIN AB Accelerator mass spectrometry (AMS) has been adopted as a powerful bioanalytical method for human studies in the areas of pharmacology and toxicology. The exquisite sensitivity (10(-18) mol) of AMS has facilitated studies of toxins and drugs at environmentally and physiologically relevant concentrations in humans. Such studies include risk assessment of environmental toxicants, drug candidate selection, absolute bioavailability determination, and more recently, assessment of drug-target binding as a biomarker of response to chemotherapy. Combining AMS with complementary capabilities such as high performance liquid chromatography (HPLC) can maximize data within a single experiment and provide additional insight when assessing drugs and toxins, such as metabolic profiling. Recent advances in the AMS technology at Lawrence Livermore National Laboratory have allowed for direct coupling of AMS with complementary capabilities such as HPLC via a liquid sample moving wire interface, offering greater sensitivity compared to that of graphite-based analysis, therefore enabling the use of lower C-14 and chemical doses, which are imperative for clinical testing. The aim of this review is to highlight the recent efforts in human studies using AMS, including technological advancements and discussion of the continued promise of AMS for innovative clinical based research. C1 [Enright, Heather A.; Malfatti, Michael A.; Turteltaub, Kenneth W.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. [Ognibene, Ted] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Zimmermann, Maike; Henderson, Paul] Univ Calif Davis, Med Ctr, Div Hematol & Oncol, Dept Internal Med, Sacramento, CA 95817 USA. [Zimmermann, Maike; Henderson, Paul] Accelerated Med Diagnost Inc, Berkeley, CA 95618 USA. RP Turteltaub, KW (reprint author), 7000 East Ave,L-452, Livermore, CA 94550 USA. EM turteltaub2@llnl.gov FU National Institutes of Health [NIGMS 8P41GM103483]; NIH/NCI SBIR contracts [HHSN261201000133C, HHSN261201200048C, HHSN261201200084C]; U.S. Department of Energy [DE-AC52-07NA27344.LLNL-JRNL-696717] FX This work was supported by the National Institutes of Health (NIGMS 8P41GM103483, LLNL) and NIH/NCI SBIR contracts HHSN261201000133C, HHSN261201200048C, and HHSN261201200084C to Accelerated Medical Diagnostics Incorporated. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.LLNL-JRNL-696717. NR 91 TC 1 Z9 1 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0893-228X EI 1520-5010 J9 CHEM RES TOXICOL JI Chem. Res. Toxicol. PD DEC PY 2016 VL 29 IS 12 BP 1976 EP 1986 DI 10.1021/acs.chemrestox.6b00234 PG 11 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology SC Pharmacology & Pharmacy; Chemistry; Toxicology GA EF4KR UT WOS:000390294700006 PM 27726383 ER PT J AU Zinkle, SJ Terrani, KA Snead, LL AF Zinkle, S. J. Terrani, K. A. Snead, L. L. TI Motivation for utilizing new high-performance advanced materials in nuclear energy systems SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Nuclear materials; Reactor pressure vessel steels; Fuel cladding; Accident tolerant fuels; Light water reactors; Sodium-cooled fast reactors; Very high temperature gas-cooled reactors ID LWR COOLANT ENVIRONMENTS; ACCIDENT TOLERANT FUELS; FAST BREEDER-REACTORS; COOLED FAST-REACTORS; STRUCTURAL-MATERIALS; STAINLESS-STEEL; POWER-PLANT; FERRITIC/MARTENSITIC STEELS; MATERIALS CHALLENGES; MARTENSITIC STEELS AB Despite the very demanding operational environment in nuclear reactors, there have been relatively few advanced high-performance materials introduced into fission reactors during the past 50 years. Some of the regulatory and operational barriers to the introduction of high performance materials are briefly discussed, and several examples of potential improvement in current and planned fission reactor systems that could be enabled by advanced structural materials for in-core applications are outlined. Enhanced non-proprietary public-private research and development on advanced structural materials could yield numerous performance, economic, environmental and safety benefits for current boiling water and pressurized water reactors as well as future Generation IV reactor systems such as sodium cooled fast reactors or very high temperature gas cooled reactors. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zinkle, S. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Zinkle, S. J.; Terrani, K. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Snead, L. L.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Zinkle, SJ (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. EM szinkle@utk.edu FU U.S. Department of Energy, Office of Nuclear Energy; Office of Fusion Energy Sciences [DE-SC0006661]; University of Tennessee FX This work was sponsored in part by the U.S. Department of Energy, Office of Nuclear Energy, and in part by the Office of Fusion Energy Sciences grant DE-SC0006661 with the University of Tennessee. NR 116 TC 0 Z9 0 U1 24 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD DEC PY 2016 VL 20 IS 6 SI SI BP 401 EP 410 DI 10.1016/j.cossms.2016.10.004 PG 10 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA EF1GN UT WOS:000390073400010 ER PT J AU Pribulick, CE Foster, LM Bearup, LA Navarre-Sitchler, AK Williams, KH Carroll, RWH Maxwell, RM AF Pribulick, Christine E. Foster, Lauren M. Bearup, Lindsay A. Navarre-Sitchler, Alexis K. Williams, Kenneth H. Carroll, Rosemary W. H. Maxwell, Reed M. TI Contrasting the hydrologic response due to land cover and climate change in a mountain headwaters system SO ECOHYDROLOGY LA English DT Article DE climate change; headwaters; hydrologic response; integrated hydrologic modeling; land cover change; mountain ID TREE MORTALITY; STREAMFLOW; IMPACTS; FORESTS; MODEL AB Land cover change due to drought and insect-induced tree mortality or altered vegetation succession is one of the many consequences of anthropogenic climate change. While the hydrologic response to land cover change and increases in temperature have been explored independently, few studies have compared these two impacts in a systematic manner. These changes are particularly important in snow-dominated, headwaters systems that provide streamflow for continental river systems. Here we study the hydrologic impacts of both vegetation change and climate warming along three transects in a mountain headwaters watershed using an integrated hydrologic model. Results show that while impacts due to warming generally outweigh those resulting from vegetation change, the inherent variability within the transects provides varying degrees of response. The combination of both vegetation change and warming results in greater changes to streamflow amount and timing than either impact individually, indicating a nonlinear response from these systems to multiple perturbations. The complexity of response underscores the need to integrate observational data and the challenge of deciphering hydrologic impacts from proxy studies. C1 [Pribulick, Christine E.; Foster, Lauren M.; Bearup, Lindsay A.; Navarre-Sitchler, Alexis K.; Maxwell, Reed M.] Colorado Sch Mines, Golden, CO 80401 USA. [Bearup, Lindsay A.; Williams, Kenneth H.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Carroll, Rosemary W. H.] Desert Res Inst, Reno, NV USA. RP Maxwell, RM (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. EM rmaxwell@mines.edu RI Navarre-Sitchler, Alexis/J-3389-2014 FU Sustainable Systems Scientific Focus Area - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work is based upon work supported as part of the Sustainable Systems Scientific Focus Area funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-AC02-05CH11231. The authors declare no conflicts of interest or competing financial interest. We thank the anonymous reviewers for their constructive comments, which have improved the quality and clarity of this work. NR 25 TC 0 Z9 0 U1 12 U2 12 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1936-0584 EI 1936-0592 J9 ECOHYDROLOGY JI Ecohydrology PD DEC PY 2016 VL 9 IS 8 BP 1431 EP 1438 DI 10.1002/eco.1779 PG 8 WC Ecology; Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA EF0NR UT WOS:000390023000001 ER PT J AU Li, ZL Lepore, A Davison, BH Narula, CK AF Li, Zhenglong Lepore, Andrew Davison, Brian H. Narula, Chaitanya K. TI Catalytic Conversion of Biomass-Derived Ethanol to Liquid Hydrocarbon Blendstock: Effect of Light Gas Recirculation SO ENERGY & FUELS LA English DT Article ID HZSM-5; ZEOLITE; ALKYLATION; MECHANISM; AROMATICS; OXIDATION; VARIABLES; METHANOL; BENZENE; ZSM-5 AB We describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with a reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is similar to 40% from one-pass ethanol conversion over the V-ZSM-5 catalyst at 350 degrees C and atmospheric pressure, where the remaining similar to 60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g(-1) h(-1) with ethanol as a result of the conversion of most of the light olefins. The LGR also significantly improves the quality of the liquid hydrocarbon blendstock by reducing the aromatic content and overall benzene concentration. For 0.027 mol g(-1) h(-1) light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared to 62.5% aromatic content in the ethanol only experiment. The average benzene concentration decreases from 3.75 to 1.5%, which is highly desirable because the United States Environmental Protection Agency (U.S. EPA) limits the benzene concentration in gasoline to 0.62%. As a result of a low benzene concentration, the blend wall for ethanol-derived liquid hydrocarbons changes from similar to 18 to 43%. The remaining light paraffins and olefins can be further converted to valuable benzene, toluene, and xylenes (BTX) products (94% BTX in the liquid) over Ga-ZSM-5 at 500 degrees C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with a higher liquid yield and low aromatic content, especially a low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol-derived hydrocarbon blendstock. C1 [Li, Zhenglong] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Lepore, Andrew; Narula, Chaitanya K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Davison, Brian H.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Lepore, Andrew; Narula, Chaitanya K.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res, 821 Volunteer Blvd, Knoxville, TN 37996 USA. RP Narula, CK (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA.; Narula, CK (reprint author), Univ Tennessee, Bredesen Ctr Interdisciplinary Res, 821 Volunteer Blvd, Knoxville, TN 37996 USA. EM narulack@ornl.gov FU BioEnergy Technologies Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC. FX This research is sponsored by the BioEnergy Technologies Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, under Contract DE-AC05-00OR22725, with UT-Battelle, LLC. The authors thank Steven Evitt for helpful discussions on the LGR. NR 23 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD DEC PY 2016 VL 30 IS 12 BP 10611 EP 10617 DI 10.1021/acs.energyfuels.6b02562 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EF1GI UT WOS:000390072900064 ER PT J AU Bau, D Alzraiee, A Zoccarato, C Gambolati, G Ferronato, M Bottazzi, F Mantica, S Teatini, P AF Bau, Domenico Alzraiee, Ayman Zoccarato, Claudia Gambolati, Giuseppe Ferronato, Massimiliano Bottazzi, Francesca Mantica, Stefano Teatini, Pietro TI Testing a data assimilation approach to reduce geomechanical uncertainties in modelling land subsidence SO ENVIRONMENTAL GEOTECHNICS-JOURNAL LA English DT Article ID OIL-FIELDS; SEA; SMOOTHER; DYNAMICS AB The compaction of a gas/ oil bearing reservoir or an aquifer system due to subsurface fluid production may result in land subsidence as has been observed worldwide during the 20th century. Uncertainties on geomechanical parameters typically affect model prediction of anthropogenic land settlement. Usually, soil compressibility, Young's modulus, and the Poisson ratio, that is, the most important parameters characterising the rock geomechanical properties, are derived from laboratory tests and/ or in situ measurements, whose reliability may be limited in some cases. In the present work, the authors test the capability to reduce the uncertainty on geomechanical parameters by assimilating a given number of surface displacements. A data-assimilation algorithm, known as ensemble smoother (ES), is used along with a radial-symmetric finite element (FE) code in a realistic orthotropic geological setting, where a 1200-m deep disk-shaped reservoir is assumed to be developed. The results show that the ES constitutes a quite promising tool to reduce geomechanical uncertainties in modelling land subsidence. C1 [Bau, Domenico] Univ Sheffield, Dept Civil & Struct Engn, Sheffield, S Yorkshire, England. [Alzraiee, Ayman] Sandia Natl Labs, Carlsbad, NM USA. [Zoccarato, Claudia; Gambolati, Giuseppe; Ferronato, Massimiliano; Teatini, Pietro] Univ Padua, Dept Civil Environm & Architectural Engn, Padua, Italy. [Bottazzi, Francesca; Mantica, Stefano] Eni SpA, Dev Operat & Technol, San Donato Milanese, Italy. RP Bau, D (reprint author), Univ Sheffield, Dept Civil & Struct Engn, Sheffield, S Yorkshire, England. FU eni S.p.A. FX The research has been performed within the DAG (Data Assimilation in Geomechanics) Project supported by eni S.p.A. NR 23 TC 2 Z9 2 U1 2 U2 2 PU ICE PUBLISHING PI WESTMINISTER PA INST CIVIL ENGINEERS, 1 GREAT GEORGE ST, WESTMINISTER SW 1P 3AA, ENGLAND SN 2051-803X J9 ENVIRON GEOTECH-J JI Environ. Geotech.-J. PD DEC PY 2016 VL 3 IS 6 BP 386 EP 396 DI 10.1680/envgeo.15.00005 PG 11 WC Engineering, Geological SC Engineering GA EF3SK UT WOS:000390244500007 ER PT J AU Wilson, RE De Sio, S Vallet, V AF Wilson, Richard E. De Sio, Stephanie Vallet, Valerie TI Structural and Electronic Properties of Fluoride Complexes of Nb-V, Ta-V, and Pa-V: The Influence of Relativistic Effects on Group V Elements SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Niobium; Tantalum; Protactinium; EXAFS spectroscopy; Relativistic effects ID ABSORPTION FINE-STRUCTURE; CONSISTENT BASIS-SETS; X-RAY; SOLUTION CHEMISTRY; INTERATOMIC DISTANCES; MP2 CALCULATIONS; HYDROLYSIS; HYDROGEN; DENSITY; RAMAN AB Aqueous fluorido complexes of niobium and tantalum were studied by using synchrotron-based extended X-ray absorption spectroscopy (EXAFS) as model systems for comparison of the structural and coordination chemistry of the group V metals Nb, Ta, and their pseudo-homologue Pa-V. The EXAFS measurements indicate differences in the coordination chemistry of Nb and Ta in these systems that were not intuitively based on their similar charge and ionic radii. The Ta speciation is dominated by six- and seven-coordinate fluorido complexes, while the chemical speciation of Nb under the same conditions is dominated by its hydrolyzed oxyfluoride complexes. Quantum chemical computations were performed to more fully describe these observations, and these results are compared to our earlier study on the fluorido complexes of protactinium. Computations performed with and without the inclusion of scalar relativistic effects reveal that the differences in chemistry among the group V elements and their pseudo-homologue protactinium are due to the increasing influence of relativistic effects as Z increases from niobium to protactinium. C1 [Wilson, Richard E.; De Sio, Stephanie] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Vallet, Valerie] Univ Lille, CNRS, UMR 8523, PhLAM,Phys Lasers Atomes & Mol, F-59000 Lille, France. RP Wilson, RE (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.; Vallet, V (reprint author), Univ Lille, CNRS, UMR 8523, PhLAM,Phys Lasers Atomes & Mol, F-59000 Lille, France. EM rewilson@anl.gov; valerie.vallet@univ-lille1.fr RI Vallet, Valerie/G-8491-2012; Wilson, Richard/H-1763-2011 OI Vallet, Valerie/0000-0002-2202-3858; Wilson, Richard/0000-0001-8618-5680 FU United States Department of Energy, Office of Science [DE-AC02-06CH11357]; Office of Science Early Career Research Program; CaPPA (Chemical and Physical Properties of the Atmosphere) project - French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) ["ANR-11-LABX-0005-01"]; Regional Council "Nord-Pas de Calais"; European Funds for Regional Economic Development (FEDER) FX This work was performed at Argonne National Laboratory and the Advanced Photon Source at Argonne, operated by the University of Chicago Limited Liability Corporation (UChicago-Argonne LLC) for the United States Department of Energy, Office of Science under contract number DE-AC02-06CH11357 and the Office of Science Early Career Research Program. The computations were performed partly in the Laboratory Computing Resource Center of the Argonne National Laboratory (Project MDCounterIons FY-15) and in the PhLAM cluster, both financed by the CaPPA (Chemical and Physical Properties of the Atmosphere) project funded by the French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) under contract "ANR-11-LABX-0005-01" and by the Regional Council "Nord-Pas de Calais" and the European Funds for Regional Economic Development (FEDER). NR 63 TC 0 Z9 0 U1 7 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD DEC PY 2016 IS 35 BP 5467 EP 5476 DI 10.1002/ejic.201600981 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EF5CR UT WOS:000390348800010 ER PT J AU Harding, SF Richmond, MC Rom-Gomez, P Serkowski, JA AF Harding, S. F. Richmond, M. C. Rom-Gomez, P. Serkowski, J. A. TI Effects of non-homogeneous flow on ADCP data processing in a hydroturbine forebay SO FLOW MEASUREMENT AND INSTRUMENTATION LA English DT Article DE Acoustic Doppler Current Profiler (ADCP); Non-homogeneous velocity; Hydropower; Turbine; Intake; Virtual instrument AB Accurate modeling of the velocity field in the forebay of a hydroelectric power station is important for both power generation and fish passage, and is able to be increasingly well represented by computational fluid dynamics (CFD) simulations. Acoustic Doppler Current Profiler (ADCP) are investigated herein as a method of validating the numerical flow solutions, particularly in observed and calculated regions of non -homogeneous flow velocity. By using a numerical model of an ADCP operating in a velocity field calculated using CFD, the errors due to the spatial variation of the flow velocity are quantified. The numerical model of the ADCP is referred to herein as a Virtual ADCP (VADCP). Two applications of the VADCP are modeled in the numerical analyses presented. Firstly the virtual measurement error of the VADCP is calculated for a single instrument adjacent to the short converging intake of a powerhouse. Secondly, the flow discharge through the forebay is estimated from a transect of VADCP instruments at different distances from the powerhouse. The influence of instrument location and orientation are investigated for both cases. A velocity error of up to 94% of the reference velocity is calculated for a VADCP modeled adjacent to an operating intake and is shown to decrease with distance from the powerhouse. Qualitative agreement is observed between the calculated VADCP velocities and reference velocities by a horizontal offset distance of 18 m upstream of the powerhouse. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Harding, S. F.; Richmond, M. C.; Rom-Gomez, P.; Serkowski, J. A.] Pacific Northwest Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Richmond, MC (reprint author), Pacific Northwest Natl Lab, Hydrol Grp, Richland, WA 99352 USA. EM marshall.richmond@pnnl.gov RI Richmond, Marshall/D-3915-2013 OI Richmond, Marshall/0000-0003-0111-1485 FU U.S. Department of Energy, Energy Efficiency and Renewable Energy, Wind and Water Power Program; U.S. Department of Energy [DE-AC06-76RLO 1830] FX This research was funded by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Wind and Water Power Program.; Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle under Contract no. DE-AC06-76RLO 1830. NR 16 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-5986 EI 1873-6998 J9 FLOW MEAS INSTRUM JI Flow Meas. Instrum. PD DEC PY 2016 VL 52 BP 1 EP 9 DI 10.1016/j.flowmeasinst.2015.12.010 PG 9 WC Engineering, Mechanical; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA EF1GY UT WOS:000390074500001 ER PT J AU Sreehari, S Venkatakrishnan, SV Wohlberg, B Buzzard, GT Drummy, LF Simmons, JP Bouman, CA AF Sreehari, Suhas Venkatakrishnan, S. V. Wohlberg, Brendt Buzzard, Gregery T. Drummy, Lawrence F. Simmons, Jeffrey P. Bouman, Charles A. TI Plug-and-Play Priors for Bright Field Electron Tomography and Sparse Interpolation SO IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING LA English DT Article DE Plug-and-play; prior modeling; bright field electron tomography; sparse interpolation; non-local means; doubly stochastic gradient non-local means; BM3D ID ITERATIVE RECONSTRUCTION ALGORITHM; VARIATIONAL FRAMEWORK; INVERSE PROBLEMS; MODEL; REGULARIZATION; TRANSMISSION; IMAGES AB Many material and biological samples in scientific imaging are characterized by nonlocal repeating structures. These are studied using scanning electron microscopy and electron tomography. Sparse sampling of individual pixels in a two-dimensional image acquisition geometry, or sparse sampling of projection images with large tilt increments in a tomography experiment, can enable high speed data acquisition and minimize sample damage caused by the electron beam. In this paper, we present an algorithm for electron tomographic reconstruction and sparse image interpolation that exploits the nonlocal redundancy in images. We adapt a framework, termed plug-and-play priors, to solve these imaging problems in a regularized inversion setting. The power of the plug-and-play approach is that it allows a wide array of modern denoising algorithms to be used as a "prior model" for tomography and image interpolation. We also present sufficient mathematical conditions that ensure convergence of the plug-and-play approach, and we use these insights to design a new nonlocal means denoising algorithm. Finally, we demonstrate that the algorithm produces higher quality reconstructions on both simulated and real electron microscope data, along with improved convergence properties compared to other methods. C1 [Sreehari, Suhas; Bouman, Charles A.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Venkatakrishnan, S. V.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Wohlberg, Brendt] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Buzzard, Gregery T.] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA. [Drummy, Lawrence F.; Simmons, Jeffrey P.] Air Force Res Lab, Dayton, OH 45433 USA. RP Sreehari, S (reprint author), Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. EM ssreehar@purdue.edu; svvenkatakrishnan@lbl.gov; brendt@ieee.org; buzzard@math.purdue.edu; lawrence.drummy.1@us.af.mil; jeff.simmons.3@us.af.mil; bouman@purdue.edu OI Wohlberg, Brendt/0000-0002-4767-1843 NR 71 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2333-9403 J9 IEEE TRANS COMPUT IM JI IEEE Trans. Comput. Imaging PD DEC PY 2016 VL 2 IS 4 BP 408 EP 423 DI 10.1109/TCI.2016.2599778 PG 16 WC Imaging Science & Photographic Technology SC Imaging Science & Photographic Technology GA EF2JH UT WOS:000390150200002 ER PT J AU Li, XD Wan, WM Kattel, S Chen, JGG Wang, TF AF Li, Xiaodan Wan, Weiming Kattel, Shyam Chen, Jingguang G. Wang, Tiefeng TI Selective hydrogenation of biomass-derived 2(5H)-furanone over Pt-Ni and Pt-Co bimetallic catalysts: From model surfaces to supported catalysts SO JOURNAL OF CATALYSIS LA English DT Article DE 2(5H)-furanone; gamma-Butyrolactone; Selective hydrogenation; Ni/Pt(111) surfaces; Co/Pt(111) surfaces; Bimetallic catalysts ID LOW-TEMPERATURE HYDROGENATION; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; MONOMETALLIC CATALYSTS; REACTION PATHWAYS; MALEIC-ANHYDRIDE; ACID CATALYST; METALS; REACTIVITY; CHEMISTRY AB The selective hydrogenation of biomass-derived 2(5H)-furanone to gamma-butyrolactone (GBL) was studied over Pt-Ni and Pt-Co bimetallic model surfaces and supported catalysts. The reactions of 2(5H)-furanone were investigated on Ni/Pt(111) and Co/Pt(111) bimetallic surfaces using temperature-programmed desorption (TPD), revealing that the Ni-terminated bimetallic Ni-Pt-Pt(111) surface was more active and selective to produce GBL. Parallel density functional theory (DFT) calculations also confirmed the higher hydrogenation activity on Ni-Pt-Pt(111) due to bimetallic effect. The promising results on model surfaces were extended to SiO2-supported catalysts. The hydrogenation activity in terms of the initial turnover frequency (TOF) followed the trend of Pt-Ni > Pt-Co > Pt > Ni > Co, where the TOF over Pt-Ni was almost twice higher than that over Pt. With the excellent correlation between model surfaces and supported catalysts, the Pt-Ni bimetallic catalyst was identified as a promising option for the selective hydrogenation of 2(5H)-furanone to GBL. (C) 2016 Elsevier Inc. All rights reserved. C1 [Li, Xiaodan; Wang, Tiefeng] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green React Engn & Technol, Beijing 100084, Peoples R China. [Wan, Weiming; Chen, Jingguang G.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Kattel, Shyam; Chen, Jingguang G.] Brookhaven Natl Lab, Dept Chem, New York, NY 11973 USA. RP Chen, JGG (reprint author), Columbia Univ, Dept Chem Engn, New York, NY 10027 USA.; Wang, TF (reprint author), Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China. EM jgchen@columbia.edu; wangtf@tsinghua.edu.cn FU National Natural Science Foundation of China [21676155, 21476122]; Program for New Century Excellent Talents in University of China [NCET-12-0297]; Catalysis Center for Energy Innovation (CCEI), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001004] FX This work was supported by the National Natural Science Foundation of China (No. 21676155 and No. 21476122) and Program for New Century Excellent Talents in University of China (NCET-12-0297). Contributions from Columbia University (for DFT and UHV studies) were funded through the Catalysis Center for Energy Innovation (CCEI), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001004. NR 48 TC 0 Z9 0 U1 37 U2 37 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD DEC PY 2016 VL 344 BP 148 EP 156 DI 10.1016/j.jcat.2016.09.027 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA EF2VD UT WOS:000390182800015 ER PT J AU Song, Y Chia, SH Sanyal, U Gutierrez, OY Lercher, JA AF Song, Yang Chia, Shao Hua Sanyal, Udishnu Gutierrez, Oliver Y. Lercher, Johannes A. TI Integrated catalytic and electrocatalytic conversion of substituted phenols and diaryl ethers SO JOURNAL OF CATALYSIS LA English DT Article DE Hydrogenation; Electrocatalysis; Biomass conversion; Mild reaction conditions ID COUPLED ELECTRON-TRANSFER; C-O BOND; ARYL ETHERS; AQUEOUS-PHASE; CLEAVAGE; HYDROGENATION; BIOMASS; ADSORPTION; SOLVENT; NI AB Electrocatalytic hydrogenation and catalytic thermal hydrogenation of substituted phenols and diary] ethers were studied on carbon-supported Rh. The rates of electrocatalytic hydrogenation increase with increasingly negative potentials, which have been related with the coverage of adsorbed hydrogen. For electrocatalytic and catalytic thermal hydrogen addition reactions, the dominant reaction pathway is hydrogenation to cyclic alcohols and cycloalkyl ethers. The presence of substituting methyl or methoxy groups led to lower rates compared to unsubstituted phenol or diphenyl ether. Methoxy or benzyloxy groups, however, undergo C-O bond cleavage via hydrogenolysis and hydrolysis (minor pathway). The surface chemical potential of hydrogen can be increased also by generating a H-2 atmosphere above the reaction media, supporting the conclusion that thermal and electrochemical routes share the same reaction pathways. (C) 2016 Elsevier Inc. All rights reserved. C1 [Song, Yang; Chia, Shao Hua; Sanyal, Udishnu; Gutierrez, Oliver Y.; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-84747 Garching, Germany. [Song, Yang; Chia, Shao Hua; Sanyal, Udishnu; Gutierrez, Oliver Y.; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-84747 Garching, Germany. [Lercher, Johannes A.] Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. RP Gutierrez, OY; Lercher, JA (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-84747 Garching, Germany.; Gutierrez, OY; Lercher, JA (reprint author), Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-84747 Garching, Germany. EM Oliver.Gutierrez@mytum.de; Johannes.Lercher@ch.tum.de FU Chinese Scholarship Council; Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multi-program national laboratory FX The authors would like to thank the group of Prof. Hubert A. Gasteiger at the Technische Universitat Munchen and the group of Prof. Jorge Gascon at the Delft University of Technology for scientific and technical advice. The authors are grateful to Nirala Singh, Donald M. Camaioni, Philipp Rheinlander, Erika Ember, Robert Weber, Gary Haller, Hany El-Sayed, Juan Herranz Salaner, and Constantinos Vayenas for fruitful discussions. We are also grateful to Marianne Hanzlik for TEM measurements and to Xaver Hecht and Martin Neukamm for technical support. Y.S. would like to thank the Chinese Scholarship Council for the financial support. J.A.L. acknowledges support for his contribution by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. NR 25 TC 1 Z9 1 U1 10 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD DEC PY 2016 VL 344 BP 263 EP 272 DI 10.1016/j.jcat.2016.09.030 PG 10 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA EF2VD UT WOS:000390182800027 ER PT J AU Landry, AM Iglesia, E AF Landry, Alexandra M. Iglesia, Enrique TI Displacement-reduction routes to PtPd clusters and mechanistic inferences for the synthesis of other bimetallic compositions SO JOURNAL OF CATALYSIS LA English DT Article DE Colloidal synthesis; Bimetallic catalyst; Galvanic displacement; Uniform nanoparticles; Platinum; Gold; Palladium; Polymer removal; Polyvinylpyrrolidone ID TOLERANT OXYGEN REDUCTION; TRANSITION-METAL ALLOYS; ELEMENTARY STEPS; CHARGE-TRANSFER; CLEAN SURFACES; NANOPARTICLES; CATALYSTS; PLATINUM; OXIDATION; METHANOL AB Bimetallic PtPd clusters (2.1-2.9 nm) dispersed on SiO2 and uniform in composition and size were prepared using colloidal methods with reagents containing only C, O, H, and N atoms. These synthetic protocols extend galvanic displacement-reduction (GDR) processes previously used to prepare AuPd and AuPt clusters. Such processes exploit the different redox potentials of two elements to encourage their deposition within the same cluster. The size, composition, and formation mechanism of PtPd clusters were probed using transmission electron microscopy, UV-visible spectroscopy, energy-dispersive X-ray spectroscopy, and high-angle annular dark-field imaging. Taken together with previous data for AuPd and AuPt systems, these findings highlight key general features, properties, and protocols required to form uniform bimetallic clusters. Exothermic alloys, such as PtPd and AuPd, form predominantly via selective GDR routes; in contrast, alternate routes become significant for endothermic alloys, such as AuPt. Bimetallic clusters grow via GDR processes (PtPd, AuPd) at rates proportional to the surface area of each cluster; therefore, compositional uniformity is dictated by the size distribution of the seed clusters. The rate of GDR processes reflects the difference in reduction potentials of the two components, as shown by more facile formation of AuPd than PtPd dusters. These considerations and experimental evidence provide useful guidance for conditions and protocols likely to succeed for other bimetallic pairs. Low-temperature (<= 423 K) reductive treatments (in H-2 or EtOH) successfully removed all synthetic detritus from Pd and PtPd clusters dispersed on SiO2, without significant coalescence. Such removal strategies are more challenging for Pd than for Pt clusters because of stronger Pd-polymer bonds and the greater sintering tendency of Pd clusters. (C) 2016 Elsevier Inc. All rights reserved. C1 [Iglesia, Enrique] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM iglesia@berkeley.edu RI Iglesia, Enrique/D-9551-2017 OI Iglesia, Enrique/0000-0003-4109-1001 FU Achievement Rewards for College Scientists (ARCS) Fellowship; National Science Foundation Graduate Research Fellowship (NSF GRF); Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX The author would like to acknowledge the Achievement Rewards for College Scientists (ARCS) Fellowship and the National Science Foundation Graduate Research Fellowship (NSF GRF) for funding, the Electron Microscopy Lab (EML) at the University of California, Berkeley, for TEM services, and the National Center for Electron Microscopy (NCEM), which is supported by the Office of Basic Energy Sciences of the U.S. Department of Energy under contract No. DE-AC02-05CH11231, for access to EDS and HAADF facilities. This work was supported by the Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. NR 47 TC 0 Z9 0 U1 13 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD DEC PY 2016 VL 344 BP 389 EP 400 DI 10.1016/j.jcat.2016.10.007 PG 12 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA EF2VD UT WOS:000390182800039 ER PT J AU Yohe, SL Choudhari, HJ Mehta, DD Dietrich, PJ Detwiler, MD Akatay, CM Stach, EA Miller, JT Delgass, WN Agrawal, R Ribeiro, FH AF Yohe, Sara L. Choudhari, Harshavardhan J. Mehta, Dhairya D. Dietrich, Paul J. Detwiler, Michael D. Akatay, Cem M. Stach, Eric A. Miller, Jeffrey T. Delgass, W. Nicholas Agrawal, Rakesh Ribeiro, Fabio H. TI High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization SO JOURNAL OF CATALYSIS LA English DT Article DE Dihydroeugenol; 2-Methoxy-4-propylphenol; Lignin; Pyrolysis upgrading; Hydrodeoxygenation (HDO); Bimetallic catalysts; Platinum; Molybdenum ID RAY PHOTOELECTRON-SPECTROSCOPY; BIO-OIL; FAST PYROLYSIS; MODEL COMPOUNDS; MOLYBDENUM; GUAIACOL; BIOMASS; CO; CONVERSION; MOO3 AB High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst component's identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases. (C) 2016 Elsevier Inc. All rights reserved. C1 [Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.; Dietrich, Paul J.; Detwiler, Michael D.; Akatay, Cem M.; Miller, Jeffrey T.; Delgass, W. Nicholas; Agrawal, Rakesh; Ribeiro, Fabio H.] Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Ribeiro, FH (reprint author), Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM fabio@purdue.edu RI Stach, Eric/D-8545-2011; BM, MRCAT/G-7576-2011; ID, MRCAT/G-7586-2011 OI Stach, Eric/0000-0002-3366-2153; FU National Science Foundation Graduate Research Fellowship Program (NSF GRFP) [DGE-1333468]; U.S. Department of Energy (DOE) [DE-FG36-08GO18087]; Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997]; National Science Foundation Emerging Frontiers in Research and Innovation (NSF EFRI) [0938033-DGE]; Institute for Atom-efficient Chemical Transformations (IACT); U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-SC0012704] FX This work was supported as part of (1) the National Science Foundation Graduate Research Fellowship Program (NSF GRFP, grant #DGE-1333468), (2) the U.S. Department of Energy (DOE) (grant # DE-FG36-08GO18087), (3) the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000997, (4) National Science Foundation Emerging Frontiers in Research and Innovation (NSF EFRI) (grant #0938033-DGE), and (5) the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The support is gratefully acknowledged. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. Scanning transmission electron microscopy was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract Nos. DE-AC02-98CH10886 and DE-SC0012704. NR 57 TC 1 Z9 1 U1 26 U2 26 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD DEC PY 2016 VL 344 BP 535 EP 552 DI 10.1016/j.jcat.2016.10.009 PG 18 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA EF2VD UT WOS:000390182800053 ER PT J AU Wang, LC Personick, ML Karakalos, S Fushimi, R Friend, CM Madix, RJ AF Wang, Lu-Cun Personick, Michelle L. Karakalos, Stavros Fushimi, Rebecca Friend, Cynthia M. Madix, Robert J. TI Active sites for methanol partial oxidation on nanoporous gold catalysts SO JOURNAL OF CATALYSIS LA English DT Article DE Nanoporous gold catalysts; O-2 activation; Methanol; TAP reactor; Selective oxidation ID TEMPERATURE CO OXIDATION; OXYGEN-ADSORPTION; MOLECULAR-OXYGEN; AU(321) SURFACE; CARBON-MONOXIDE; SINGLE-CRYSTAL; AU; AG; SILVER; AU(110)-(1X2) AB Nanoporous gold is a complex material comprised of a small amount of silver that is the residual from the dealloying process used in its formation. This material activates dioxygen and selectively self-couples methanol. The dissociative adsorption of O-2 and the subsequent reaction of methanol with the adsorbed atomic oxygen are critical steps in this selective oxidation. The density of sites for O-2 dissociation was determined to be 0.1% of the total surface (3 x 10(12) per cm(2)) using both transient and steady flow measurements. The activation energy for O-2 dissociation was measured to be 5.0 kcal/mol and is similar in magnitude to that on metallic Ag and much lower than expected for Au surfaces. The area-averaged dissociation probability of O-2 at 423 K is similar to 1 x 10(-7), commensurate with the active site density and the activation barrier to dissociation. The reactive oxygen is immobile under reaction conditions. The collisional reaction probability of methanol striking an adsorbed 0 atom is 10(-4)-10(-5), which corresponds well with the measured turnover frequency for methanol conversion to form methylformate of similar to 160 s(-1) at 423 K. Taken together, these results strongly indicate that Ag is an integral part of the active site for O-2 activation and the subsequent activation of methanol. (C) 2016 Elsevier Inc. All rights reserved. C1 [Wang, Lu-Cun; Personick, Michelle L.; Karakalos, Stavros; Friend, Cynthia M.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Friend, Cynthia M.; Madix, Robert J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Fushimi, Rebecca] Idaho Natl Lab, Biol & Chem Proc Dept, Idaho Falls, ID 83415 USA. [Personick, Michelle L.] Wesleyan Univ, Hall Atwater Labs, Dept Chem, Middletown, CT 06459 USA. [Karakalos, Stavros] Univ South Carolina, Swearingen Engn Ctr, Dept Chem Engn, Columbia, SC 29208 USA. RP Madix, RJ (reprint author), Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. EM rmadix@seas.harvard.edu RI Wang, Lu-Cun/K-2632-2014; OI Wang, Lu-Cun/0000-0002-4930-8618; Karakalos, Stavros/0000-0002-3428-5433 FU Integrated Mesoscale Architectures for Sustainable Catalysis, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012573]; U.S. Department of Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work was supported as part of the Integrated Mesoscale Architectures for Sustainable Catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0012573. Support for Dr. Fushimi was provided by the U.S. Department of Energy, under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 42 TC 1 Z9 1 U1 36 U2 36 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD DEC PY 2016 VL 344 BP 778 EP 783 DI 10.1016/j.jcat.2016.08.012 PG 6 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA EF2VD UT WOS:000390182800076 ER PT J AU Ro, I Sener, C Stadelman, TM Ball, MR Venegas, JM Burt, SP Hermans, I Dumesic, JA Huber, GW AF Ro, Insoo Sener, Canan Stadelman, Thomas M. Ball, Madelyn R. Venegas, Juan M. Burt, Samuel P. Hermans, Ive Dumesic, James A. Huber, George W. TI Measurement of intrinsic catalytic activity of Pt monometallic and Pt-MoOx interfacial sites over visible light enhanced PtMoOx/SiO2 catalyst in reverse water gas shift reaction SO JOURNAL OF CATALYSIS LA English DT Article DE Bimetallic catalyst; Monometallic sites; Interfacial sites; Photocatalysis; Visible light response; Active sites; Reverse water gas shift (RWGS) reaction ID CONTROLLED SURFACE-REACTIONS; GOLD NANOPARTICLES; BIMETALLIC CATALYSTS; AROMATIC ALCOHOLS; RHENIUM CATALYSTS; H2O DISSOCIATION; OXIDATION; SOLAR; TIO2; SIZE AB Supported Pt-Mo catalysts were prepared with different Mo contents by a controlled surface reaction (CSR) method and studied for the reverse water gas shift (RWGS) reaction under dark and visible light irradiation conditions. Characterization results from Raman spectroscopy, scanning transmission electron microscopy (STEM), CO chemisorption, and inductively coupled plasma-absorption emission spectroscopy (ICP-AES) indicate that selective Mo deposition onto Pt was achieved at low Mo loading (Mo/Pt ratio < 0.3). Mo deposition changed the apparent activation energy and CO2 and CO reaction orders. Visible light irradiation changed the apparent activation energy and reaction orders of CO2, CO, and H-2, ascribed to direct photoexcitation. The intrinsic activity of a Pt site is 0.4 and 4.1 mint under dark and light conditions at 473 K, respectively, whereas the intrinsic activity of a Pt-MoOx site is increased to 22.7 and 160 min(-1) under dark and light conditions at 473 K, respectively. (C) 2016 Elsevier Inc. All rights reserved. C1 [Ro, Insoo; Sener, Canan; Stadelman, Thomas M.; Ball, Madelyn R.; Venegas, Juan M.; Burt, Samuel P.; Hermans, Ive; Dumesic, James A.; Huber, George W.] Univ Wisconsin Madison, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA. [Sener, Canan; Dumesic, James A.] Univ Wisconsin Madison, Great Lakes Bioenergy Res Ctr, 1552 Univ Ave, Madison, WI 53726 USA. [Venegas, Juan M.; Burt, Samuel P.; Hermans, Ive] Univ Wisconsin Madison, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. RP Huber, GW (reprint author), Univ Wisconsin Madison, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA. EM huber@engr.wisc.edu FU NSF through the University of Wisconsin Materials Research Science and Engineering Center [DMR-1121288]; US Department of Energy, Office of Basic Energy Sciences [DE-SC0014058]; Great Lakes Bioenergy Research Center (DOE Office of Science) [BER-DE-FC02-07ER64494]; Wisconsin Materials Research Science and Engineering Center [DMR-1121288] FX The authors acknowledge support of this research by NSF through the University of Wisconsin Materials Research Science and Engineering Center (DMR-1121288). The authors also acknowledge US Department of Energy, Office of Basic Energy Sciences Grant DE-SC0014058. This work is also supported by the Great Lakes Bioenergy Research Center (DOE Office of Science BER-DE-FC02-07ER64494). Use of facilities supported by the Wisconsin Materials Research Science and Engineering Center is also acknowledged (DMR-1121288). NR 57 TC 0 Z9 0 U1 25 U2 25 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD DEC PY 2016 VL 344 BP 784 EP 794 DI 10.1016/j.jcat.2016.08.011 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA EF2VD UT WOS:000390182800077 ER PT J AU Sanwald, KE Berto, TF Eisenreich, W Gutierrez, OY Lercher, JA AF Sanwald, Kai E. Berto, Tobias F. Eisenreich, Wolfgang Gutierrez, Oliver Y. Lercher, Johannes A. TI Catalytic routes and oxidation mechanisms in photoreforming of polyols SO JOURNAL OF CATALYSIS LA English DT Article DE Photocatalysis; TiO2; H-2 production; Photoreforming; Glycerol; Polyols; Oxidation mechanism ID PHOTOCATALYTIC HYDROGEN-PRODUCTION; DIOXIDE-FLUORIDE SYSTEM; VALUE-ADDED CHEMICALS; TITANIUM-DIOXIDE; H-2 PRODUCTION; METAL COCATALYSTS; ORGANIC-COMPOUNDS; AQUEOUS-SOLUTION; WATER MIXTURES; GLYCEROL AB Photocatalytic reforming of biomass-derived oxygenates leads to H-2 generation and evolution of CO2 via parallel formation of organic intermediates through anodic oxidations on a RhiTiO(2) photocatalyst. The reaction pathways and kinetics in the photoreforming of C-3-C-6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C-C bonds, (ii) oxidation to alpha-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo beta-C-C-cleavage, is proposed for the oxidative C-C rupture. Carbonyl group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti center dot center dot O center dot center dot center dot Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C-C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number. (C) 2016 Elsevier Inc. All rights reserved. C1 [Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang; Gutierrez, Oliver Y.; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany. [Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang; Gutierrez, Oliver Y.; Lercher, Johannes A.] Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany. [Lercher, Johannes A.] Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA USA. RP Gutierrez, OY; Lercher, JA (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany.; Gutierrez, OY; Lercher, JA (reprint author), Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany. EM oliver.gutierrez@mytum.de; johannes.lercher@ch.tum.de FU German Federal Ministry of Education and Research (BMBF) [01RC1106A]; Fond der Chemischen Industrie (FCI) FX We would like to thank Clariant for fruitful discussions within the framework of MuniCat and the iC4 PhotoCOO project. The authors are grateful to Donald M. Camaioni for critical reading of the manuscript. Additionally, we would like to thank the German Federal Ministry of Education and Research (BMBF) for financial support (project no. 01RC1106A). K.E.S. gratefully acknowledges financial support by the Fond der Chemischen Industrie (FCI). The authors thank Xaver Hecht for BET and H2-chemisorption measurements and Martin Neukamm for AAS measurements. Christine Schwarz and Martina Haack are acknowledged for technical assistance concerning NMR and HPLC analysis, respectively. NR 58 TC 0 Z9 0 U1 16 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD DEC PY 2016 VL 344 BP 806 EP 816 DI 10.1016/j.jcat.2016.08.009 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA EF2VD UT WOS:000390182800079 ER PT J AU Chang, W Stein, ML Wang, JL Kotamarthi, VR Moyer, EJ AF Chang, Won Stein, Michael L. Wang, Jiali Kotamarthi, V. Rao Moyer, Elisabeth J. TI Changes in Spatiotemporal Precipitation Patterns in Changing Climate Conditions SO JOURNAL OF CLIMATE LA English DT Article ID OBJECT-BASED VERIFICATION; BIAS CORRECTION; WATER-RESOURCES; MODEL SIMULATIONS; UNITED-STATES; DELTA CHANGE; GAUGE DATA; TRACKING; IDENTIFICATION; METHODOLOGY AB Climate models robustly imply that some significant change in precipitation patterns will occur. Models consistently project that the intensity of individual precipitation events increases by approximately 6%-7% K-1, following the increase in atmospheric water content, but that total precipitation increases by a lesser amount (1%-2% K-1 in the global average in transient runs). Some other aspect of precipitation eventsmust then change to compensate for this difference. The authors develop a new methodology for identifying individual rainstorms and studying their physical characteristics-including starting location, intensity, spatial extent, duration, and trajectory-that allows identifying that compensating mechanism. This technique is applied to precipitation over the contiguous United States from both radar-based data products and high-resolution model runs simulating 80 years of business-as-usual warming. In the model study the dominant compensating mechanism is a reduction of storm size. In summer, rainstorms become more intense but smaller; in winter, rainstorm shrinkage still dominates, but storms also become less numerous and shorter duration. These results imply that flood impacts from climate change will be less severe than would be expected from changes in precipitation intensity alone. However, these projected changes are smaller than model-observation biases, implying that the best means of incorporating them into impact assessments is via "data-driven simulations" that apply model-projected changes to observational data. The authors therefore develop a simulation algorithm that statistically describes model changes in precipitation characteristics and adjusts data accordingly, and they show that, especially for summertime precipitation, it outperforms simulation approaches that do not include spatial information. C1 [Chang, Won; Stein, Michael L.] Univ Chicago, Dept Stat, Chicago, IL 60637 USA. [Wang, Jiali; Kotamarthi, V. Rao] Argonne Natl Lab, Div Environm Sci, Lemont, IL USA. [Moyer, Elisabeth J.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. [Chang, Won] Univ Cincinnati, Dept Math Sci, 4199 French Hall West, Cincinnati, OH 45221 USA. RP Chang, W (reprint author), Univ Cincinnati, Dept Math Sci, 4199 French Hall West, Cincinnati, OH 45221 USA. EM changwn@uc.edu FU NSF [1106862, 1106974, 1107046]; Center for Robust Decision-making on Climate and Energy Policy (RDCEP) - NSF "Decision Making under Uncertainty" program [0951576] FX The authors thank Dongsoo Kim and Mihai Antinescu for helpful comments and suggestions. This work was conducted as part of the Research Network for Statistical Methods for Atmospheric and Oceanic Sciences (STATMOS), supported by NSF awards 1106862, 1106974, and 1107046, and the Center for Robust Decision-making on Climate and Energy Policy (RDCEP), supported by the NSF "Decision Making under Uncertainty" program award 0951576. NR 67 TC 0 Z9 0 U1 12 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC PY 2016 VL 29 IS 23 BP 8355 EP 8376 DI 10.1175/JCLI-D-15-0844.1 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2LK UT WOS:000388676000005 ER PT J AU Yang, Y Russell, LM Lou, S Lamjiri, MA Liu, Y Singh, B Ghan, SJ AF Yang, Yang Russell, Lynn M. Lou, Sijia Lamjiri, Maryam A. Liu, Ying Singh, Balwinder Ghan, Steven J. TI Changes in Sea Salt Emissions Enhance ENSO Variability SO JOURNAL OF CLIMATE LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; EL-NINO; TROPICAL PACIFIC; RAINFALL VARIABILITY; AEROSOL PRODUCTION; NATURAL AEROSOLS; LAST MILLENNIUM; MARINE AEROSOL; WIND-SPEED; CLIMATE AB Two 150-yr preindustrial simulations with and without interactive sea salt emissions from the Community Earth System Model (CESM) are performed to quantify the interactions between sea salt emissions and El Nino-Southern Oscillation (ENSO). Variations in sea salt emissions over the tropical Pacific Ocean are affected by changing wind speed associated with ENSO variability. ENSO-induced interannual variations in sea salt emissions result in decreasing (increasing) aerosol optical depth (AOD) by 0.03 over the equatorial central-eastern (western) Pacific Ocean during El Nino events compared to those during La Nina events. These changes in AOD further increase (decrease) radiative fluxes into the atmosphere by +0.2 (-0.4) W m(-2) over the tropical eastern (western) Pacific. Thereby, sea surface temperature increases (decreases) by 0.2-0.4K over the tropical eastern (western) Pacific Ocean during El Nino compared to La Nina events and enhances ENSO variability by 10%. The increase in ENSO amplitude is a result of systematic heating (cooling) during the warm (cold) phase of ENSO in the eastern Pacific. Interannual variations in sea salt emissions then produce the anomalous ascent (subsidence) over the equatorial eastern (western) Pacific between El Nino and La Nina events, which is a result of heating anomalies. Owing to variations in sea salt emissions, the convective precipitation is enhanced by 0.6-1.2 mm day(-1) over the tropical central-eastern Pacific Ocean and weakened by 0.9-1.5 mm day(-1) over the Maritime Continent during El Nino compared to La Nina events, enhancing the precipitation variability over the tropical Pacific. C1 [Yang, Yang; Russell, Lynn M.; Lou, Sijia; Lamjiri, Maryam A.] Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Yang, Yang; Lou, Sijia; Liu, Ying; Singh, Balwinder; Ghan, Steven J.] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA USA. RP Russell, LM (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM lmrussell@ucsd.edu RI Ghan, Steven/H-4301-2011 OI Ghan, Steven/0000-0001-8355-8699 FU National Science Foundation [AGS1048995]; DOE as part of the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Decadal and Regional Climate Prediction using Earth System Models (EaSM) program [DE-SC0006679]; DOE [DE-AC05-76RLO 1830]; DOE, Office of Science, Biological and Environmental Research FX This research was supported by National Science Foundation AGS1048995 and by DOE DE-SC0006679 as part of the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Decadal and Regional Climate Prediction using Earth System Models (EaSM) program. The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under Contract DE-AC05-76RLO 1830. The National Energy Research Scientific Computing Center (NERSC) provided computational resources. We acknowledge support from the DOE, Office of Science, Biological and Environmental Research, as part of the Regional and Global Climate Modeling program. The reanalysis data are obtained from ERA-Interim at the European Centre for Medium-Range Weather Forecasts (ECMWF; accessed 6 October 2016; http://apps.ecmwf.int/datasets/). The data and codes for these results are posted at the NERSC repository (accessed 6 October 2016; http://portal.nersc.gov/project/m1374/Seasalt_ENSO). NR 51 TC 0 Z9 0 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC PY 2016 VL 29 IS 23 BP 8575 EP 8588 DI 10.1175/JCLI-D-16-0237.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2LK UT WOS:000388676000016 ER PT J AU Geist, DR Colotelo, AH Linley, TJ Wagner, KA Miracle, AL AF Geist, David R. Colotelo, Alison H. Linley, Timothy J. Wagner, Katie A. Miracle, Ann L. TI Effects of a Novel Fish Transport System on the Health of Adult Fall Chinook Salmon SO JOURNAL OF FISH AND WILDLIFE MANAGEMENT LA English DT Article DE Whooshh; transport; in-stream barriers; hydropower ID SOCKEYE-SALMON; RAINBOW-TROUT; ONCORHYNCHUS-NERKA; PLASMA-CORTISOL; SPAWNING MIGRATION; FINAL MATURATION; STRESS; MORTALITY; QUALITY; VITELLOGENESIS AB Movement past hydroelectric dams and related in-river structures has important implications for habitat connectivity and population persistence in migratory fish. A major problem is that many of these structures lack effective fish passage facilities, which can fragment spawning and rearing areas and negatively impact recruitment. While traditional fish passage facilities (e.g., ladders, trap and haul) can effectively enable fish to pass over barriers, their capital or operational costs can be significant. We evaluated the utility of a novel transport device that utilizes a flexible tube with differential internal air pressure to pass fish around in-river barriers. We apportioned a total of 147 adult fall Chinook salmon (Oncorhynchus tshawytscha) nearing maturation to three treatments and a control group. In two of the treatments, adult fall Chinook salmon were transported through the device via two lengths of tube (12 or 77 m) and we compared their injury, stress, and immune system responses and reproductive function to a third treatment where fish were moved by a standard trap-and-haul method and also to a control group. We observed no significant differences among the treatment or control groups in posttreatment adult survival, injury, or stress. Indicators of immune system response and reproductive readiness were also not significantly different among the four groups. Egg survival was significantly different among the groups, with the highest survival in the eggs from females transported 77 m and lowest in the control group; the differences were highly variable within groups and not consistent with the duration of treatment or degree of handling. Taken together, the results suggest the device did not injure or alter normal physiological functioning of adult fall Chinook salmon nearing maturation and may provide an effective method for transporting such fish around in-river barriers during their spawning migration. C1 [Geist, David R.; Colotelo, Alison H.; Linley, Timothy J.; Wagner, Katie A.; Miracle, Ann L.] Pacific Northwest Natl Lab, Earth Syst Sci Div, Richland, WA 99352 USA. RP Geist, DR (reprint author), Pacific Northwest Natl Lab, Earth Syst Sci Div, Richland, WA 99352 USA. EM David.Geist@pnnl.gov FU U.S. Department of Energy's Wind and Water Power Technologies Office; U.S. Department of Energy [DE-AC05-76RL1830] FX Funding for the research described in this article was provided by the U.S. Department of Energy's Wind and Water Power Technologies Office. None of the authors have any financial interest in the WFTS. The authors thank Hoyt Battey and Jocelyn Brown-Saracino of the Wind and Water Power Technologies Office for their commitment and oversight of the project; neither Mr. Battey nor Ms. Brown-Saracino participated in the research or reporting of its findings. We would also like to thank Whooshh Innovations, LLC, including Chief Executive Officer Vince Bryan III and staff Jim Otten, Pete Kunzler, and Ryan Johnson for their assistance in setting up and operating the WFTS. The tote dumper and forklift came from Cave B Estate Winery; it was delivered to the hatchery by Bob Olson, a retired equipment operator for Cave B. The authors acknowledge Mike Lewis and Glenn Pearson of the Washington Department of Fish and Wildlife for providing fish for this study and Grant County Public Utility District for use of their facility. Finally, this research required the assistance of many Pacific Northwest National Laboratory staff members. The authors thank Erika Cutsforth, Jill Janak, Stephanie Liss, Sean Porse, Sadie Montgomery, Bob Mueller, Megan Nims, and Vanessa Paurus of the Pacific Northwest National Laboratory. Finally, the authors thank the Editor-in-Chief, Associate Editor, two anonymous reviewers, and the Copy Editor for their collective efforts to improve the quality of the manuscript; the final version is better due to their efforts. The Pacific Northwest National Laboratory is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care; fish were handled in accordance with federal guidelines for the care and use of laboratory animals, and protocols for our study were approved by the Institutional Animal Care and Use Committee. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL1830. NR 44 TC 0 Z9 0 U1 9 U2 9 PU U S FISH & WILDLIFE SERVICE PI SHEPHERDSTOWN PA NATL CONSERVATION TRAINING CENTER, CONSERVATION LIBRARY, 698 CONSERVATION WAY, SHEPHERDSTOWN, WV 25443 USA SN 1944-687X J9 J FISH WILDL MANAG JI J. Fish Wildl. Manag. PD DEC PY 2016 VL 7 IS 2 BP 347 EP 358 DI 10.3996/102015-JFWM-108 PG 12 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA EF4SG UT WOS:000390321700006 ER PT J AU Young, DA Cynn, H Soderlind, P Landa, A AF Young, David A. Cynn, Hyunchae Soderlind, Per Landa, Alexander TI Zero-Kelvin Compression Isotherms of the Elements 1 <= Z <= 92 to 100 GPa SO JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA LA English DT Article DE chemical elements; equation of state; high pressure; isotherms; megabar chemistry; periodic table ID EQUATION-OF-STATE; X-RAY-DIFFRACTION; STRUCTURAL PHASE-TRANSITIONS; HIGH-PRESSURE PHASE; GENERALIZED GRADIENT APPROXIMATION; COMPLEX CRYSTAL-STRUCTURE; CERIUM METAL; ELECTRONIC-TRANSITIONS; MOLECULAR DISSOCIATION; THERMAL-EXPANSION AB Most of the chemical elements have now been compressed close to or above 100 GPa (1 Mbar) pressure in diamond-anvil cells and the pressure-volume room-temperature isotherms have been measured. We collect these data and use simple lattice-dynamics models to reduce the isotherms to 0 K. We have extended the published work by making new diamond-anvil-cell measurements on Cr and Rh, and by conducting density-functional calculations on the elements Po, At, Rn, Fr, Ra, and Ac. The 0 K data are tabulated for all elements 1 <= Z <= 92 and 0 <= P <= 100 GPa. These data are useful for generating wide-range equation of state models and for studying the stability of chemical compounds at high pressure ("Megabar chemistry"). The tables presented here are intended to be reference thermodynamic tables for use in high-pressure research. Further experimental and theoretical work will be needed to extend the tables to higher pressure and to improve accuracy. (C) 2016 AIP Publishing LLC for the National Institute of Standards and Technology. C1 [Young, David A.; Cynn, Hyunchae; Soderlind, Per; Landa, Alexander] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Young, DA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM young5@llnl.gov FU U.S. DOE by LLNL [DE-AC52-07NA27344] FX We thank A. Dewaele for sharing her helium data and B. Baer and J. Moriarty for useful comments on the manuscript. Editorial and reviewer comments were very helpful in improving the manuscript. This work was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344. NR 178 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0047-2689 EI 1529-7845 J9 J PHYS CHEM REF DATA JI J. Phys. Chem. Ref. Data PD DEC PY 2016 VL 45 IS 4 AR 043101 DI 10.1063/1.4963086 PG 36 WC Chemistry, Multidisciplinary; Chemistry, Physical; Physics, Multidisciplinary SC Chemistry; Physics GA EF6RB UT WOS:000390457200001 ER PT J AU Burnum-Johnson, KE Nie, S Casey, CP Monroe, ME Orton, DJ Ibrahim, YM Gritsenko, MA Clauss, TRW Shukla, AK Moore, RJ Purvine, SO Shi, TJ Qian, WJ Liu, T Baker, ES Smith, RD AF Burnum-Johnson, Kristin E. Nie, Song Casey, Cameron P. Monroe, Matthew E. Orton, Daniel J. Ibrahim, Yehia M. Gritsenko, Marina A. Clauss, Therese R. W. Shukla, Anil K. Moore, Ronald J. Purvine, Samuel O. Shi, Tujin Qian, Weijun Liu, Tao Baker, Erin S. Smith, Richard D. TI Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID LC-IMS-MS; HIGH-RESOLUTION; QUANTITATIVE PROTEOMICS; SHOTGUN PROTEOMICS; ACCURATE MASS; SEPARATIONS; PEPTIDES; STRATEGY; PLASMA AB Current proteomic approaches include both broad discovery measurements and quantitative targeted analyses. In many cases, discovery measurements are initially used to identify potentially important proteins (e.g. candidate biomarkers) and then targeted studies are employed to quantify a limited number of selected proteins. Both approaches, however, suffer from limitations. Discovery measurements aim to sample the whole proteome but have lower sensitivity, accuracy, and quantitation precision than targeted approaches, whereas targeted measurements are significantly more sensitive but only sample a limited portion of the proteome. Herein, we describe a new approach that performs both discovery and targeted monitoring (DTM) in a single analysis by combining liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS). In DTM, heavy labeled target peptides are spiked into tryptic digests and both the labeled and unlabeled peptides are detected using LC-IMS-MS instrumentation. Compared with the broad LC-MS discovery measurements, DTM yields greater peptide/protein coverage and detects lower abundance species. DTM also achieved detection limits similar to selected reaction monitoring (SRM) indicating its potential for combined high quality discovery and targeted analyses, which is a significant step toward the convergence of discovery and targeted approaches. C1 [Burnum-Johnson, Kristin E.; Nie, Song; Casey, Cameron P.; Monroe, Matthew E.; Orton, Daniel J.; Ibrahim, Yehia M.; Gritsenko, Marina A.; Clauss, Therese R. W.; Shukla, Anil K.; Moore, Ronald J.; Purvine, Samuel O.; Shi, Tujin; Qian, Weijun; Liu, Tao; Baker, Erin S.; Smith, Richard D.] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA USA. RP Baker, ES; Smith, RD (reprint author), 902 Battelle Blvd,POB 999,MSIN K8-98, Richland, WA 99352 USA. EM erin.baker@pnnl.gov; rds@pnnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Casey, Cameron/0000-0001-6790-2170 FU DOE [DE-AC05-76RL0 1830] FX We thank Nathan Johnson for assistance in preparing the figures. This work was performed in the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a DOE national scientific user facility at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the DOE under contract DE-AC05-76RL0 1830. NR 42 TC 0 Z9 0 U1 5 U2 5 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD DEC PY 2016 VL 15 IS 12 BP 3694 EP 3705 DI 10.1074/mcp.M116.061143 PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA EF5BV UT WOS:000390346600012 PM 27670688 ER PT J AU Yu, KY Chen, Y Li, J Liu, Y Wang, H Kirk, MA Li, M Zhang, X AF Yu, K. Y. Chen, Y. Li, J. Liu, Y. Wang, H. Kirk, M. A. Li, M. Zhang, X. TI Measurement of Heavy Ion Irradiation Induced In-Plane Strain in Patterned Face-Centered-Cubic Metal Films: An in Situ Study SO NANO LETTERS LA English DT Article DE In situ irradiation; patterned films; in-plane strain; grain activities ID STACKING-FAULT TETRAHEDRA; GRAIN-BOUNDARY MIGRATION; RADIATION-DAMAGE; STAINLESS-STEEL; NANOCRYSTALLINE NICKEL; PLASTIC-DEFORMATION; DEFECT ACCUMULATION; NANOTWINNED METALS; ROOM-TEMPERATURE; TWIN BOUNDARIES AB Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in plane strain. C1 [Yu, K. Y.] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China. [Yu, K. Y.] China Univ Petr, Dept Mat Sci & Engn, Beijing 102249, Peoples R China. [Chen, Y.; Li, J.; Liu, Y.] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Chen, Y.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. [Wang, H.; Zhang, X.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Wang, H.] Purdue Univ, Dept Elect Engn, W Lafayette, IN 47907 USA. [Kirk, M. A.; Li, M.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Yu, KY (reprint author), China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China.; Yu, KY (reprint author), China Univ Petr, Dept Mat Sci & Engn, Beijing 102249, Peoples R China.; Zhang, X (reprint author), Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. EM kyyu@cup.edu.cn; xzhang98@purdue.edu RI Chen, Youxing/P-5006-2016 OI Chen, Youxing/0000-0003-1111-4495 FU National Science Foundation of China [51501225]; China University of Petroleum-Beijing [2462014YJRC019, 2462015YQ0602]; NSF-DMR-Metallic Materials and Nanostructures Program [1643915]; US Office of Naval Research [N00014-16-1-2778] FX K.Y. acknowledges financial supports from National Science Foundation of China (51501225) and Start-up Program of China University of Petroleum-Beijing (2462014YJRC019 and 2462015YQ0602). Authors at Purdue University acknowledge financial support by NSF-DMR-Metallic Materials and Nanostructures Program under grant no. 1643915. H.W. acknowledges financial support from the US Office of Naval Research (N00014-16-1-2778). We also acknowledge the use of microscopes at the DOE Center for Integrated Nanotechnologies managed by Los Alamos National Laboratory. The IVEM facility at Argonne National Laboratory is supported by DOE-Office of Nuclear Energy. NR 71 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2016 VL 16 IS 12 BP 7481 EP 7489 DI 10.1021/acs.nanolett.6b03195 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE9RF UT WOS:000389963200026 PM 27960484 ER PT J AU Yu, Y Zhang, DD Kisielowski, C Dou, LT Kornienko, N Bekenstein, Y Wong, AB Alivisatos, AP Yang, PD AF Yu, Yi Zhang, Dandan Kisielowski, Christian Dou, Letian Kornienko, Nikolay Bekenstein, Yehonadav Wong, Andrew B. Alivisatos, A. Paul Yang, Peidong TI Atomic Resolution Imaging of Halide Perovskites SO NANO LETTERS LA English DT Article DE Atomic resolution; halide perovskites; low dose-rate; in-line holography; radiation-sensitive materials ID CESIUM LEAD HALIDE; ELECTRON-MICROSCOPY; HOLOGRAPHY; OXYGEN; ROUTE; LEVEL; SCALE AB The radiation-sensitive nature of halide perovskites has hindered structural studies at the atomic scale. We overcome this obstacle by applying low dose-rate in-line holography, which combines aberration-corrected high-resolution transmission electron microscopy with exit-wave reconstruction. This technique successfully yields the genuine atomic structure of ultrathin two-dimensional CsPbBr3 halide perovskites, and a quantitative structure determination was achieved atom column by atom column using the phase information of the reconstructed exit-wave function without causing electron beam-induced sample alterations. An extraordinarily high image quality enables an unambiguous structural analysis of coexisting high-temperature and low-temperature phases of CsPbBr3 in single particles. On a broader level, our approach offers unprecedented opportunities to better understand halide perovskites at the atomic level as well as other radiation-sensitive materials. C1 [Yu, Yi; Zhang, Dandan; Dou, Letian; Kornienko, Nikolay; Bekenstein, Yehonadav; Wong, Andrew B.; Alivisatos, A. Paul; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yu, Yi; Zhang, Dandan; Dou, Letian; Kornienko, Nikolay; Bekenstein, Yehonadav; Wong, Andrew B.; Alivisatos, A. Paul; Yang, Peidong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kisielowski, Christian] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Alivisatos, A. Paul; Yang, Peidong] Kavli Energy NanoScience Inst, Berkeley, CA 94720 USA. [Alivisatos, A. Paul; Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU Physical Chemistry of Inorganic Nanostructures Program, Office of Basic Energy Sciences of the United States Department of Energy [KC3103, DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Physical Chemistry of Inorganic Nanostructures Program, KC3103, Office of Basic Energy Sciences of the United States Department of Energy under Contract No. DE-AC02-05CH11231. TEM Work at the NCEM, Molecular Foundry, and GIWAXS measurements at beamline 7.3.3 at the Advanced Light Source (ALS), were supported by the Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would like to thank Chenhui Zhu for help with GIWAXS measurements. NR 29 TC 2 Z9 2 U1 30 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2016 VL 16 IS 12 BP 7530 EP 7535 DI 10.1021/acs.nanolett.6b03331 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE9RF UT WOS:000389963200033 PM 27960472 ER PT J AU Rungtaweevoranit, B Baek, J Araujo, JR Archanjo, BS Choi, KM Yaghi, OM Somotjai, GA AF Rungtaweevoranit, Bunyarat Baek, Jayeon Araujo, Joyce R. Archanjo, Braulio S. Choi, Kyung Min Yaghi, Omar M. Somotjai, Gabor A. TI Copper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO2 Hydrogenation to Methanol SO NANO LETTERS LA English DT Article DE Metal-organic framework; metal nanocrystal; heterogeneous catalyst; CO2 hydrogenation; methanol; strong metal-support interaction ID CARBON-DIOXIDE; CATALYSTS; NANOPARTICLES; SHELL; OXIDE; NANOSTRUCTURES; PERFORMANCE; STABILITY; MECHANISM; MIXTURES AB We show that the activity and selectivity of Cu catalyst can be promoted by a Zr-based metal-organic framework (MOF), Zr6O4(OH)(4)(BDC)(6) (BDC = 1,4-benzenedicarboxylate), UiO-66, to have a strong interaction with Zr oxide [Zr6O4(OH)(4)(-CO2)(12)] secondary building units (SBUs) of the MOF for CO2 hydrogenation to methanol. These interesting features are achieved by a catalyst composed of 18 nm single Cu nanocrystal (NC) encapsulated within single crystal UiO-66 (Cu subset of UiO-66). The performance of this catalyst construct exceeds the benchmark Cu/ZnO/Al2O3 catalyst and gives a steady 8 fold enhanced yield and 100% selectivity for methanol. The X-ray photoelectron spectroscopy data obtained on the surface of the catalyst show that Zr 3d binding energy is shifted toward lower oxidation state in the presence of Cu NC, suggesting that there is a strong interaction between Cu NC and Zr oxide SBUs of the MOF to make a highly active Cu catalyst. C1 [Rungtaweevoranit, Bunyarat; Baek, Jayeon; Araujo, Joyce R.; Choi, Kyung Min; Yaghi, Omar M.; Somotjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Rungtaweevoranit, Bunyarat; Baek, Jayeon; Choi, Kyung Min; Yaghi, Omar M.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Somotjai, Gabor A.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Araujo, Joyce R.; Archanjo, Braulio S.] Natl Inst Metrol Qual & Technol, Div Mat Metrol, BR-25250020 Rio De Janeiro, Brazil. [Yaghi, Omar M.] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. RP Yaghi, OM; Somotjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Yaghi, OM (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Somotjai, GA (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.; Yaghi, OM (reprint author), King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. EM yaghi@berkeley.edu; somorjai@berkeley.edu RI Araujo, Joyce/I-4546-2013; OI Araujo, Joyce/0000-0002-6784-7041; Rungtaweevoranit, Bunyarat/0000-0002-9069-4370 FU Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy [DEAC02-05CH11231]; BASF SE (Ludwigshafen, Germany); U.S. Department of Defense, Defense Threat Reduction Agency [HDTRA 1-12-1-0053]; King Abdulaziz City for Science and Technology (Riyadh, Saudi Arabia); Office of Science, Office of Basic Energy Sciences, of the DOE [DE-AC02-05CH11231]; Royal Thai Government Scholarship; CNPq [234217/2014-6] FX G.A.S. acknowledges support from the Director, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the U.S. Department of Energy under contract No. DEAC02-05CH11231. O.M.Y. thanks BASF SE (Ludwigshafen, Germany), U.S. Department of Defense, Defense Threat Reduction Agency (HDTRA 1-12-1-0053), and King Abdulaziz City for Science and Technology (Riyadh, Saudi Arabia) for financial support. NMR, TEM, and XPS measurements were performed at the Molecular Foundry, which was supported by the Office of Science, Office of Basic Energy Sciences, of the DOE under Contract No. DE-AC02-05CH11231. We thank Dr. Juncong Jiang (Yaghi group) for providing MIL-101 (Cr) sample and Drs. Peter Siman, Gerome Melaet, Kairat Sabyrov, and Mr. Walter T. Ralston for useful discussions. B.R is supported by the Royal Thai Government Scholarship. J.R.A. and B.S.A. acknowledge CNPq for their fellowships 234217/2014-6. NR 38 TC 2 Z9 2 U1 91 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2016 VL 16 IS 12 BP 7645 EP 7649 DI 10.1021/acs.nanolett.6b03637 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE9RF UT WOS:000389963200049 PM 27960445 ER PT J AU Kim, IS Cao, DH Buchholz, DB Emery, JD Farha, OK Hupp, JT Kanatzidis, MG Martinson, ABF AF Kim, In Soo Cao, Duyen H. Buchholz, D. Bruce Emery, Jonathan D. Farha, Omar K. Hupp, Joseph T. Kanatzidis, Mercouri G. Martinson, Alex B. F. TI Liquid Water- and Heat-Resistant Hybrid Perovskite Photovoltaics via an Inverted ALD Oxide Electron Extraction Layer Design SO NANO LETTERS LA English DT Article DE Hybrid perovskites; photovoltaics; stability; atomic layer deposition; inverted design ID SOLAR-CELLS; LEAD-TRIHALIDE; DEGRADATION; PERFORMANCE; STABILITY; LIGHT; TEMPERATURE; CH3NH3PBI3; EFFICIENT; LENGTHS AB Despite rapid advances in conversion efficiency (>22%), the environmental stability of perovskite solar cells remains a substantial barrier to commercialization. Here, we show a significant improvement in the stability of inverted perovskite solar cells against liquid water and high operating temperature (100 degrees C) by integrating an ultrathin amorphous oxide electron extraction layer via atomic layer deposition (ALD). These unencapsulated inverted devices exhibit a stable operation over at least 10 h when subjected to high thermal stress (100 degrees C) in ambient environments, as well as upon direct contact with a droplet of water without further encapsulation. C1 [Kim, In Soo; Kanatzidis, Mercouri G.; Martinson, Alex B. F.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Kim, In Soo; Cao, Duyen H.; Farha, Omar K.; Hupp, Joseph T.; Kanatzidis, Mercouri G.; Martinson, Alex B. F.] Argonne Northwestern Solar Energy Res Ctr, Evanston, IL 60208 USA. [Cao, Duyen H.; Farha, Omar K.; Hupp, Joseph T.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Buchholz, D. Bruce; Emery, Jonathan D.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Martinson, ABF (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.; Martinson, ABF (reprint author), Argonne Northwestern Solar Energy Res Ctr, Evanston, IL 60208 USA. EM martinson@anl.gov OI Martinson, Alex/0000-0003-3916-1672 FU Argonne Northwestern Solar Energy Research Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0001059]; National Science Foundation's MRSEC program [DMR-1121262]; Link Foundation through the Link Foundation Energy Fellowship Program; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported as part of the Argonne Northwestern Solar Energy Research Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0001059. This work made use of Pulsed Laser Deposition Shared Facility at the Materials Research Center at Northwestern University supported by the National Science Foundation's MRSEC program (DMR-1121262). D.H.C. acknowledges support from the Link Foundation through the Link Foundation Energy Fellowship Program. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 41 TC 0 Z9 0 U1 32 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2016 VL 16 IS 12 BP 7786 EP 7790 DI 10.1021/acs.nanolett.6b03989 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE9RF UT WOS:000389963200070 PM 27960476 ER PT J AU Zhou, WD Xue, LG Lu, XJ Gao, HC Li, YT Xin, S Fu, GT Cui, ZM Zhu, Y Goodenough, JB AF Zhou, Weidong Xue, Leigang Lu, Xujie Gao, Hongcai Li, Yutao Xin, Sen Fu, Gengtao Cui, Zhiming Zhu, Ye Goodenough, John B. TI NaxMV(PO4)(3) (M = Mn, Fe, Ni) Structure and Properties for Sodium Extraction SO NANO LETTERS LA English DT Article DE Sodium cathodes; framework oxide; manganese oxidation; Na+ transport; STEM ID ION BATTERIES; ENERGY-STORAGE; RECHARGEABLE BATTERIES; CATHODE MATERIALS; LITHIUM; PERFORMANCE; NA; LI3FE2(PO4)(3); NA3V2(PO4)(3); CHALLENGES AB NASICON (Na+ super ionic conductor) structures of NaxMV(PO4)(3) (M = Mn, Fe, Ni) were prepared, characterized by aberration-corrected STEM and synchrotron radiation, and demonstrated to be durable cathode materials for rechargeable sodium-ion batteries. In Na4MnV(PO4)(3), two redox couples of Mn3+/Mn2+ and V4+/V3+ are accessed with two voltage plateaus located at 3.6 and 3.3 V and a capacity of 101 mAh g(-1) at 1 C. Furthermore, the Na4MnV(PO4)(3) cathode delivers a high initial efficiency of 97%, long durability over 1000 cycles, and good rate performance to 10 C. The robust framework structure and stable electrochemical performance makes it a reliable cathode materials for sodium-ion batteries. C1 [Zhou, Weidong; Xue, Leigang; Gao, Hongcai; Li, Yutao; Xin, Sen; Fu, Gengtao; Cui, Zhiming; Goodenough, John B.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Lu, Xujie] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Zhu, Ye] Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China. RP Li, YT; Goodenough, JB (reprint author), Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA.; Zhu, Y (reprint author), Hong Kong Polytech Univ, Dept Appl Phys, Kowloon, Hong Kong, Peoples R China. EM lytthu@gmail.com; yezhu@polyu.edu.hk; jgoodenough@mail.utexas.edu RI Lu, Xujie/L-9672-2014; Gao, Hongcai/K-2803-2016; Cui, Zhiming/C-2988-2011 OI Lu, Xujie/0000-0001-8402-7160; Gao, Hongcai/0000-0002-3671-8765; Cui, Zhiming/0000-0002-0305-4181 FU National Science Foundation [CBET-1438007]; Hong Kong Polytechnic University [1-ZE6G]; Robert A. Welch Foundation [F-1066] FX This work was supported by the National Science Foundation grant number CBET-1438007. Y.Z. was financially supported by The Hong Kong Polytechnic University grant (1-ZE6G). J.G. would also like to thank the Robert A. Welch Foundation Grant number F-1066. Y.Z. thanks Prof. Joanne Etheridge for granting the access of the FEI Titan TEM/STEM at the Monash Centre for Electron Microscopy and Prof. Matthew Weyland for optimizing the Titan microscope for STEM imaging. NR 35 TC 0 Z9 0 U1 69 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2016 VL 16 IS 12 BP 7836 EP 7841 DI 10.1021/acs.nanolett.6b04044 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE9RF UT WOS:000389963200077 PM 27960482 ER PT J AU Fei, Z Foley, JJ Gannett, W Liu, MK Dai, S Ni, GX Zettl, A Fogler, MM Wiederrecht, GP Gray, SK Basov, DN AF Fei, Z. Foley, J. J. Gannett, W. Liu, M. K. Dai, S. Ni, G. X. Zettl, A. Fogler, M. M. Wiederrecht, G. P. Gray, S. K. Basov, D. N. TI Ultraconfined Plasmonic Hotspots Inside Graphene Nanobubbles SO NANO LETTERS LA English DT Article DE Graphene nanobubbles; heterostructures; nanoinfrared imaging; plasmon hotspots; FDTD simulation ID NATURAL HYPERBOLIC MATERIAL; DER-WAALS HETEROSTRUCTURES; ENHANCED RAMAN-SCATTERING; HEXAGONAL BORON-NITRIDE; PHONON-POLARITONS; HIGH-QUALITY; HOT-SPOTS; SPECTROSCOPY; NANOSTRUCTURES; ULTRAFAST AB We report on a nanoinfrared (IR) imaging study of ultraconfmed plasmonic hotspots inside graphene nanobubbles formed in graphene/hexagonal boron nitride (hBN) heterostructures. The volume of these plasmonic hotspots is more than one-million-times smaller than what could be achieved by free-space IR photons, and their real space distributions are controlled by the sizes and shapes of the nanobubbles. Theoretical analysis indicates that the observed plasmonic hotspots are formed due to a significant increase of the local plasmon wavelength in the nanobubble regions. Such an increase is attributed to the high sensitivity of graphene plasmons to its dielectric environment. Our work presents a novel scheme for plasmonic hotspot formation and sheds light on future applications of graphene nanobubbles for plasmon-enhanced IR spectroscopy. C1 [Fei, Z.; Liu, M. K.; Dai, S.; Ni, G. X.; Fogler, M. M.; Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Fei, Z.; Foley, J. J.; Wiederrecht, G. P.; Gray, S. K.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. [Fei, Z.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Foley, J. J.] William Paterson Univ, Dept Chem, Wayne, NJ 07470 USA. [Gannett, W.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Gannett, W.; Zettl, A.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Liu, M. K.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Basov, D. N.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. RP Fei, Z (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.; Fei, Z (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.; Fei, Z (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM zfei@iastate.edu RI Fei, Zhe/E-6475-2015 OI Fei, Zhe/0000-0002-7940-5566 FU ONR; AFOSR; ARO; Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF4S33]; UCOP; Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility [DE-AC02-06CH11357] FX Authors acknowledge support from ONR and AFOSR. The development of scanning plasmon interferometry is supported by ARO. D.N.B. is supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant No. GBMF4S33. M.M.F. is supported by UCOP. Theory and analysis work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357. NR 64 TC 0 Z9 0 U1 36 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2016 VL 16 IS 12 BP 7842 EP 7848 DI 10.1021/acs.nanolett.6b04076 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE9RF UT WOS:000389963200078 PM 27960518 ER PT J AU Wang, YP Sun, X Shivanna, R Yang, YB Chen, ZZ Guo, YW Wang, GC Wertz, E Deschler, F Cai, ZH Zhou, H Lu, TM Shi, J AF Wang, Yiping Sun, Xin Shivanna, Ravichandran Yang, Yunbo Chen, Zhizhong Guo, Yuwei Wang, Gwo-Ching Wertz, Esther Deschler, Felix Cai, Zhonghou Zhou, Hua Lu, Toh-Ming Shi, Jian TI Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX3 Arrays SO NANO LETTERS LA English DT Article DE Halide; perovskite; incommensurate; epitaxy; photon; transport ID PEROVSKITE SOLAR-CELLS; CONTROLLED ORIENTATIONS; VAPOR-DEPOSITION; HIGH-PERFORMANCE; NANOWIRE ARRAYS; PHASE SYNTHESIS; GUIDED GROWTH; NANOSTRUCTURES; LASERS; PHOTOLUMINESCENCE AB One-dimensional nanoscale epitaxial arrays serve as a great model in studying fundamental physics and for emerging applications. With an increasing focus laid on the Cs-based inorganic halide perovskite out of its outstanding material stability, we have applied vapor phase epitaxy to grow well aligned horizontal CsPbX3 (X: Cl, Br, or I or their mixed) nanowire arrays in large scale on mica substrate. The as-grown nanowire features a triangular prism morphology with typical length ranging from a few tens of micrometers to a few millimeters. Structural analysis reveals that the wire arrays follow the symmetry of mica substrate through incommensurate epitaxy, paving a way for a universally applicable method to grow a broad family of halide perovskite materials. The unique photon transport in the one-dimensional structure has been studied in the all-inorganic Cs-based perovskite wires via temperature dependent and spatially resolved photoluminescence. Epitaxy of well oriented wire arrays in halide perovskite would be a promising direction for enabling the circuit-level applications of halide perovskite in high-performance electro-optics and optoelectronics. C1 [Wang, Yiping; Chen, Zhizhong; Guo, Yuwei; Shi, Jian] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. [Sun, Xin; Yang, Yunbo; Wang, Gwo-Ching; Wertz, Esther; Lu, Toh-Ming] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Shivanna, Ravichandran; Deschler, Felix] Univ Cambridge, Cavendish Lab, Cambridge CB2 1TN, England. [Cai, Zhonghou; Zhou, Hua] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Shi, J (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. EM shij4@rpi.edu OI Wang, Yiping/0000-0001-7626-3278 FU NSF [CMMI 1550941, CMMI 1635520]; NYSTAR Focus Center at RPI [C130117] FX Y.W., Z.C., and J.S. are supported by NSF Awards under CMMI 1550941 and CMMI 1635520. X.S. is supported by the NYSTAR Focus Center at RPI, C130117. NR 58 TC 1 Z9 1 U1 30 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD DEC PY 2016 VL 16 IS 12 BP 7974 EP 7981 DI 10.1021/acs.nanolett.6b04297 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE9RF UT WOS:000389963200098 PM 27960450 ER PT J AU Brown, CT Olm, MR Thomas, BC Banfield, JF AF Brown, Christopher T. Olm, Matthew R. Thomas, Brian C. Banfield, Jillian F. TI Measurement of bacterial replication rates in microbial communities SO NATURE BIOTECHNOLOGY LA English DT Article ID METAGENOMIC SAMPLES; ESCHERICHIA-COLI; GENOME SEQUENCES; DARK-MATTER; LIFE-STYLE; REVEALS; METABOLISM; PHYLUM; RECONSTRUCTION; MICROORGANISMS AB Culture-independent microbiome studies have increased our understanding of the complexity and metabolic potential of microbial communities. However, to understand the contribution of individual microbiome members to community functions, it is important to determine which bacteria are actively replicating. We developed an algorithm, iRep, that uses draft-quality genome sequences and single time-point metagenome sequencing to infer microbial population replication rates. The algorithm calculates an index of replication (iRep) based on the sequencing coverage trend that results from bi-directional genome replication from a single origin of replication. We apply this method to show that microbial replication rates increase after antibiotic administration in human infants. We also show that uncultivated, groundwater-associated, Candidate Phyla Radiation bacteria only rarely replicate quickly in subsurface communities undergoing substantial changes in geochemistry. Our method can be applied to any genome-resolved microbiome study to track organism responses to varying conditions, identify actively growing populations and measure replication rates for use in modeling studies. C1 [Brown, Christopher T.; Olm, Matthew R.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Thomas, Brian C.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Banfield, Jillian F.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Banfield, Jillian F.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.; Banfield, JF (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA.; Banfield, JF (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu OI Brown, Chris/0000-0002-7758-6447 FU NIH [R01A1092531]; Sloan Foundation grant [APSF-2012-10-05]; US Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231, DE-SC0004918] FX Funding was provided by NIH grant R01A1092531 Sloan Foundation grant APSF-2012-10-05, and by the US Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research under award number DE-AC02-05CH11231 (Sustainable Systems Scientific Focus Area and DOE-JGI) and award number DE-SC0004918 (Systems Biology Knowledge Base Focus Area). We thank T. Raveh-Sadka, B. Brooks, and D. Burstein for helpful discussions, and M. Albertsen for comments regarding GC sequencing bias. NR 45 TC 2 Z9 2 U1 15 U2 15 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 EI 1546-1696 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD DEC PY 2016 VL 34 IS 12 BP 1256 EP 1263 DI 10.1038/nbt.3704 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EF2WC UT WOS:000390185300016 PM 27819664 ER PT J AU McLellan, TM Caldwell, JA Lieberman, HR AF McLellan, Tom M. Caldwell, John A. Lieberman, Harris R. TI A review of caffeine's effects on cognitive, physical and occupational performance SO NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS LA English DT Review DE Adenosine receptors; Energy drinks; Vigilance; Attention; Reaction time; Time-to-exhaustion; Time-trial; Muscle strength and power; High-intensity sprints; Restricted sleep; Sustained wakefulness ID LEG-MUSCLE PAIN; FLUID-ELECTROLYTE BALANCE; 2000-M ROWING PERFORMANCE; CONTAINING ENERGY DRINK; TIME TRIAL PERFORMANCE; YERKES-DODSON LAW; SLEEP-DEPRIVATION; EXERCISE PERFORMANCE; CYCLING PERFORMANCE; PROLONGED EXERCISE AB Caffeine is consumed by over 80% of U.S. adults. This review examines the effects caffeine has on cognitive and physical function, since most real-world activities require complex decision making, motor processing and movement. Caffeine exerts its effects by blocking adenosine receptors. Following low (similar to 40 mg or similar to 0.5 mg kg(-1)) to moderate (similar to 300 mg or 4 mg kg(-1)) caffeine doses, alertness, vigilance, attention, reaction time and attention improve, but less consistent effects are observed on memory and higher-order executive function, such as judgment and decision making. Effects on physical performance on a vast array of physical performance metrics such as time-to-exhaustion, time-trial, muscle strength and endurance, and high-intensity sprints typical of team sports are evident following doses that exceed about 200 mg (similar to 3 mg kg(-1)). Many occupations, including military, first responders, transport workers and factory shift workers, require optimal physical and cognitive function to ensure success, workplace safety and productivity. In these circumstances, that may include restricted sleep, repeated administration of caffeine is an effective strategy to maintain physical and cognitive capabilities. Published by Elsevier Ltd. C1 [McLellan, Tom M.] TM McLellan Res Inc, Stouffville, ON L4A 8A7, Canada. [Caldwell, John A.] Oak Ridge Inst Sci & Educ, Belcamp, MD 21017 USA. [Lieberman, Harris R.] USARIEM, Mil Nutr Div, Natick, MA 01760 USA. RP Lieberman, HR (reprint author), USARIEM, Mil Nutr Div, Natick, MA 01760 USA. EM DrTom.McLellan@gmail.com; drjohncaldwell@gmail.com; harris.r.lieberman.civ@mail.mil FU US Army Medical Research and Materiel Command (USAMRMC); Department of Defense Center Alliance for Nutrition and Dietary Supplements Research; Oak Ridge Institute for Science and Education; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. FX The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the views of the Army or the Department of Defense. Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations. This work was supported by the US Army Medical Research and Materiel Command (USAMRMC) and the Department of Defense Center Alliance for Nutrition and Dietary Supplements Research.; J.A. Caldwell was supported by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and US Army Medical Research and Materiel Command. T.M. McLellan was supported by the Oak Ridge Institute for Science and Education, as well as through a consulting agreement with the Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. NR 282 TC 1 Z9 1 U1 64 U2 64 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-7634 EI 1873-7528 J9 NEUROSCI BIOBEHAV R JI Neurosci. Biobehav. Rev. PD DEC PY 2016 VL 71 BP 294 EP 312 DI 10.1016/j.neubiorev.2016.09.001 PG 19 WC Behavioral Sciences; Neurosciences SC Behavioral Sciences; Neurosciences & Neurology GA EF7IA UT WOS:000390502100019 PM 27612937 ER PT J AU Tabares, FL Hirooka, Y Maingi, R Mazzitelli, G Mirnov, V Nygren, R Ono, M Ruzic, DN AF Tabares, F. L. Hirooka, Y. Maingi, R. Mazzitelli, G. Mirnov, V. Nygren, R. Ono, M. Ruzic, D. N. TI Conference Report on the 4rd International Symposium on Lithium Applications SO NUCLEAR FUSION LA English DT Editorial Material DE Conference Proceedings; liquid metals; target materials; fusion reactor AB The fourth International Symposium on Liquid Metal Application for Fusion Devices (ISLA-2015) was held on 28-30 September 2015 at Granada, Spain, with growing participation and interest from the community working on general aspects of liquid metal research for fusion energy development. The ISLA symposia remain the largest, and arguably, the most important meetings dedicated to liquid metal application for the magnetic fusion research. Overall, 43 presentations plus 7 posters were given, representing 28 institutions from 12 countries. The latest experimental results from 9 magnetic fusion devices were given in 17 presentations from NSTX and LTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST (ASIPP, China), HT-7 (ASIPP, China), DIII-D (GA, USA), ISTTOK (IPFN, Portugal) and KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) liquid metals (LM) in magnetic confinement experiments (facility overviews), (II) LM in magnetic confinement experiments (topical issues), (III) laboratory experiments, (IV) LM tests in linear plasma devices, (V) LM theory/modeling (VI) LM technology and (VII) a special session on lithium-safety and lithium handling. There were contributions from fusion technology communities including IFMIF and TBM, which provided productive exchanges with physics-oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference), with the next workshop scheduled for Moscow, Russian Federation, in 2017. C1 [Tabares, F. L.] As EURATOM CIEMAT, Natl Inst Fus, Ave Complutense 22, Madrid 28040, Spain. [Hirooka, Y.] Natl Inst Nat Sci, Grad Univ Adv Studies, 322-6 Oroshi, Toki, Gifu 5095292, Japan. [Maingi, R.; Ono, M.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Mazzitelli, G.] Assoc EURATOM ENEA Fus, Ctr Ric Frascati, CP 65, I-00044 Frascati, Italy. [Mirnov, V.] TRINITI, Troitsk 142190, Moscow Reg, Russia. [Mirnov, V.] NRNU MEPhI, Kashirskoye Sh 31, Moscow 115409, Russia. [Nygren, R.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Ruzic, D. N.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Ctr Plasma Mat Interact, Urbana, IL 61801 USA. RP Tabares, FL (reprint author), As EURATOM CIEMAT, Natl Inst Fus, Ave Complutense 22, Madrid 28040, Spain. EM tabares@ciemat.es OI Tabares, Francisco/0000-0001-7045-8672 NR 3 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD DEC PY 2016 VL 56 IS 12 AR 127002 DI 10.1088/0029-5515/56/12/127002 PG 8 WC Physics, Fluids & Plasmas SC Physics GA EF4ZA UT WOS:000390339300001 ER PT J AU Huber, SP Medvedev, VV Meyer-Ilse, J Gullikson, E Padavala, B Edgar, JH Sturm, JM De Kruijs, RWEV Prendergast, D Bijkerk, F AF Huber, S. P. Medvedev, V. V. Meyer-Ilse, J. Gullikson, E. Padavala, B. Edgar, J. H. Sturm, J. M. De Kruijs, R. W. E. Van Prendergast, D. Bijkerk, F. TI Exploiting the P L-2,L-3 absorption edge for optics: spectroscopic and structural characterization of cubic boron phosphide thin films SO OPTICAL MATERIALS EXPRESS LA English DT Article ID TRANSMITTANCE METHOD; MULTILAYER MIRRORS; ENERGY REGION; NM WAVELENGTH; TRANSMISSION; CONSTANTS; YTTRIUM; LA/B AB The transmission of cubic boron phosphide (c-BP) thin films, prepared by chemical vapor deposition (CVD), was evaluated near the phosphorous L-2,L- 3 and boron K absorption edge. The c-BP films were analyzed with transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES), to study their structural and chemical properties. The TEM analysis reveals that c-BP initially grows in islands. The merging of the P L-2, (3), P K and B K absorption edges culminates in a sharp absorption feature starting at 130 eV, showing that c-BP can be used in applications that require a relatively transparent material in the energy range just below that absorption feature. Due to experimental constraints the samples were grown at a temperature significantly below the temperature for optimal crystal growth. XANES analysis showed that, as a result of the reduced crystal quality, the intensities of the absorption transitions are reduced compared to those in high quality crystalline reference samples. Optimizing the quality of the BP films will increase the contrast in transmission across the absorption edge. (C) 2016 Optical Society of America C1 [Huber, S. P.; Prendergast, D.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Huber, S. P.; Sturm, J. M.; De Kruijs, R. W. E. Van; Bijkerk, F.] Univ Twente, MESA Inst Nanotechnol, Ind Focus Grp XUV Opt, POB 217, NL-7500 AE Enschede, Netherlands. [Medvedev, V. V.] RAS, Inst Spect, Fiz Skaya Str 5, Moscow 108840, Russia. [Medvedev, V. V.] ISTEQ, High Tech Campus 84, NL-5656 AG Eindhoven, Netherlands. [Meyer-Ilse, J.; Gullikson, E.] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Padavala, B.; Edgar, J. H.] Kansas State Univ, Dept Chem Engn, Durland Hall, Manhattan, KS 66506 USA. RP Huber, SP (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.; Huber, SP (reprint author), Univ Twente, MESA Inst Nanotechnol, Ind Focus Grp XUV Opt, POB 217, NL-7500 AE Enschede, Netherlands. EM mail@sphuber.net RI Medvedev, Viacheslav/K-5988-2015 FU NanoNextNL [7B-13]; Department of Energy (DOE) [DE-0005156, DE-AC02-05CH11231] FX NanoNextNL (7B-13); Department of Energy (DOE)(DE-0005156); Department of Energy (DOE)(DE-AC02-05CH11231) NR 39 TC 1 Z9 1 U1 2 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2159-3930 J9 OPT MATER EXPRESS JI Opt. Mater. Express PD DEC 1 PY 2016 VL 6 IS 12 BP 3946 EP 3959 DI 10.1364/OME.6.003946 PG 14 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA EF5ZL UT WOS:000390408500026 ER PT J AU Rasool, H Dunn, G Fathalizadeh, A Zettl, A AF Rasool, Haider Dunn, Gabriel Fathalizadeh, Aidin Zettl, Alex TI Graphene-sealed Si/SiN cavities for high-resolution in situ electron microscopy of nano-confined solutions SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE graphene; in situ electron microscopy; nanoconfinement; TEM ID GROWTH; LIQUID; NANOREACTORS; CELLS AB We demonstrate new liquid cell architectures utilizing graphene-sealed Si or SiN cavities for in situ electron microscopy. While previous graphene liquid cell techniques have shown graphene to be an ideal sealing layer and electron-transparent viewing window, they trap irregular geometries of liquid with unknown sample volumes. Our new technique allows for a leak-proof confinement of liquids of precise volume in the tens of attoliter range while maintaining the benefits of graphene as a viewing window. The utility of this new cell architecture is demonstrated by imaging the dynamics of gold nanoparticles in three dimensions with atomic resolution under a transmission electron microscope. C1 [Rasool, Haider; Dunn, Gabriel; Fathalizadeh, Aidin; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Rasool, Haider; Dunn, Gabriel; Fathalizadeh, Aidin; Zettl, Alex] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Zettl, Alex] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM azettl@berkeley.edu FU HDTRA grant [HDTRA1-13-1-0035]; Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy [DE-AC02-05CH11231] FX We thank Jim Ciston for advice and technical assistance. This work was supported in part by HDTRA grant HDTRA1-13-1-0035 which provided for postdoctoral support and design and construction of the cells; the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy Contract DE-AC02-05CH11231 within the SP2-bonded Materials Program, which provided for student support and graphene growth, and within the Molecular Foundry which provided for TEM characterization. NR 27 TC 0 Z9 0 U1 5 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD DEC PY 2016 VL 253 IS 12 BP 2351 EP 2354 DI 10.1002/pssb.201600232 PG 4 WC Physics, Condensed Matter SC Physics GA EF4YX UT WOS:000390339000010 ER PT J AU Barzegar, HR Pham, T Talyzin, AV Zettl, A AF Barzegar, Hamid Reza Thang Pham Talyzin, Alexandr V. Zettl, Alex TI Synthesis of graphene nanoribbons inside boron nitride nanotubes SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE boron nitride nanotubes; coronene; graphene nanoribbons ID WALLED CARBON NANOTUBES; COLUMNS; PACKING; PEAPODS AB We report on bottom-up synthesis of graphene nanoribbons inside boron nitride nanotubes, using coronene molecules as building blocks. The synthesized ribbons are one or two coronene molecules wide, depending on the diameter of the host nanotube. The encapsulated carbon nanostructures can be eliminated from the inner cavity of the filled boron nitride nanotube via oxidation without any damage to the nanotube structure. C1 [Barzegar, Hamid Reza; Thang Pham; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Barzegar, Hamid Reza; Talyzin, Alexandr V.] Umea Univ, Dept Phys, S-90187 Umea, Sweden. [Barzegar, Hamid Reza; Thang Pham; Zettl, Alex] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Barzegar, Hamid Reza; Thang Pham; Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Barzegar, Hamid Reza; Thang Pham; Zettl, Alex] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM azettl@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05-CH11231, KC2207]; Office of Naval Research [N00014-16-1-2229]; Swedish Research Council [dnr 2015-00520] FX This work was supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract #DE-AC02-05-CH11231, within the sp2-Bonded Materials Program (KC2207), which provided for BNNT synthesis and TEM characterization; by the Office of Naval Research under contract N00014-16-1-2229 which provided for the nanoribbon synthesis; and by the Swedish Research Council (grant dnr 2015-00520) which provided support for HRB. NR 21 TC 0 Z9 0 U1 18 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD DEC PY 2016 VL 253 IS 12 BP 2377 EP 2379 DI 10.1002/pssb.201600294 PG 3 WC Physics, Condensed Matter SC Physics GA EF4YX UT WOS:000390339000015 ER PT J AU Onishi, S Ugeda, MM Zhang, Y Chen, Y Ojeda-Aristizabal, C Ryu, H Mo, SK Hussain, Z Shen, ZX Crommie, MF Zettl, A AF Onishi, Seita Ugeda, Miguel M. Zhang, Yi Chen, Yi Ojeda-Aristizabal, Claudia Ryu, Hyejin Mo, Sung-Kwan Hussain, Zahid Shen, Zhi-Xun Crommie, Michael F. Zettl, Alex TI Selenium capped monolayer NbSe2 for two-dimensional superconductivity studies SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE monolayer niobium diselenide; superconductivity; molecular beam epitaxy; in situ ID CRITICAL-FIELD; LIMIT; TRANSITIONS; 2H-NBSE2; CRYSTALS AB Superconductivity in monolayer niobium diselenide (NbSe2) on bilayer graphene is studied by electrical transport. Monolayer NbSe2 is grown on bilayer graphene by molecular beam epitaxy and capped with a selenium film to avoid degradation in air. The selenium capped samples have T-C=1.9K. In situ measurements down to 4K in ultrahigh vacuum show that the effect of the selenium layer on the transport is negligible. The superconducting transition and upper critical fields in air exposed and selenium capped samples are compared. Schematic of monolayer NbSe2/bilayer graphene with selenium capping layer and electrical contacts. C1 [Onishi, Seita; Ugeda, Miguel M.; Chen, Yi; Ojeda-Aristizabal, Claudia; Crommie, Michael F.; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Onishi, Seita; Crommie, Michael F.; Zettl, Alex] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Yi; Ryu, Hyejin; Mo, Sung-Kwan; Hussain, Zahid] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Zhang, Yi; Shen, Zhi-Xun] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Shen, Zhi-Xun] Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA. [Shen, Zhi-Xun] Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. [Crommie, Michael F.; Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Crommie, Michael F.; Zettl, Alex] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ugeda, Miguel M.] CIC NanoGUNE, Donostia San Sebastian 20018, Spain. [Ojeda-Aristizabal, Claudia] Calif State Univ Long Beach, Dept Phys & Astron, Long Beach, CA 90840 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Mo, Sung-Kwan/F-3489-2013; nanoGUNE, CIC/A-2623-2015; Moreno Ugeda, Miguel/N-3006-2016 OI Mo, Sung-Kwan/0000-0003-0711-8514; FU Office of Energy Research, Materials Sciences and Engineering Division, of the US Department of Energy (DOE) [DE-AC02-05CH11231]; National Science Foundation [DMR-1206512]; NSF [EFRI-2DARE 1542741]; DOE BES [DE-AC02-05CH11231]; Max Planck Korea/POSTECH Research Initiative of NRF, Korea FX Research supported in part by the Director, Office of Energy Research, Materials Sciences and Engineering Division, of the US Department of Energy (DOE), under grant DE-AC02-05CH11231 supporting the sp2-bonded-Materials Program (magneto-transport), and by the National Science Foundation under award # DMR-1206512 (UHV transport). Synthesis was in part supported by NSF grant EFRI-2DARE 1542741. Work at the ALS is supported by DOE BES under contract no. DE-AC02-05CH11231. H.R. acknowledges support from Max Planck Korea/POSTECH Research Initiative of NRF, Korea. NR 19 TC 0 Z9 0 U1 17 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD DEC PY 2016 VL 253 IS 12 BP 2396 EP 2399 DI 10.1002/pssb.201600235 PG 4 WC Physics, Condensed Matter SC Physics GA EF4YX UT WOS:000390339000019 ER PT J AU Ergen, O Gilbert, SM Turner, SJ Zettl, A AF Ergen, Onur Gilbert, Stephen Matthew Turner, Sally J. Zettl, Alex TI Hexagonal boron nitride as a cationic diffusion barrier to form a graded band gap perovskite heterostructure SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE 2D materials; cationic diffusion barrier; graded bandgap; hexagonal boron nitride (h-BN); perovskites ID SOLAR-CELLS; HALIDE PEROVSKITES; PLANAR HETEROJUNCTION; PERFORMANCE; EFFICIENT; CH3NH3SNI3; TRIHALIDE AB We demonstrate a new technique to produce graded bandgap organohalide perovskite heterostructures using hexagonal boron nitride (h-BN) as a cationic separator. With this technique, we successfully deposit CH3NH3PbI3-xBrx on CH3NH3SnI3 without cation mixing. C1 [Ergen, Onur; Gilbert, Stephen Matthew; Turner, Sally J.; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ergen, Onur; Gilbert, Stephen Matthew; Zettl, Alex] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ergen, Onur; Gilbert, Stephen Matthew; Turner, Sally J.; Zettl, Alex] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. [Ergen, Onur; Gilbert, Stephen Matthew; Turner, Sally J.; Zettl, Alex] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Turner, Sally J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA.; Zettl, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM onurergen@berkeley.edu; azettl@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231, KC2207]; National Science Foundation [1542741]; Office of Naval Research (MURI) [N0014-16-1-2229]; NSF Graduate Fellowship Program FX This research was supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under contract no. DE-AC02-05CH11231, which provided for PL measurements under an LDRD award, and, within the sp2-bonded materials program (KC2207), for the design of the experiment and material characterization; the National Science Foundation under grant 1542741, which provided for perovskite preparation; and by the Office of Naval Research (MURI) under grant N0014-16-1-2229, which provided for h-BN growth. SMG and ST acknowledge support from the NSF Graduate Fellowship Program. NR 18 TC 0 Z9 0 U1 13 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD DEC PY 2016 VL 253 IS 12 BP 2478 EP 2480 DI 10.1002/pssb.201600234 PG 3 WC Physics, Condensed Matter SC Physics GA EF4YX UT WOS:000390339000034 ER PT J AU Copeland, E Turok, N Zurek, W AF Copeland, Edmund Turok, Neil Zurek, Wojciech TI Thomas Walter Bannerman Kibble OBITUARY SO PHYSICS TODAY LA English DT Biographical-Item C1 [Copeland, Edmund] Univ Nottingham, Nottingham, England. [Turok, Neil] Perimeter Inst Theoret Phys, Waterloo, ON, Canada. [Zurek, Wojciech] Los Alamos Natl Lab, Los Alamos, NM USA. RP Copeland, E (reprint author), Univ Nottingham, Nottingham, England. NR 1 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD DEC PY 2016 VL 69 IS 12 BP 68 EP 69 DI 10.1063/PT.3.3405 PG 2 WC Physics, Multidisciplinary SC Physics GA EF3PY UT WOS:000390237900022 ER PT J AU Mason, KE Hilmer, JK Maaty, WS Reeves, BD Grieco, PA Bothner, B Fischer, AM AF Mason, Katelyn E. Hilmer, Jonathan K. Maaty, Walid S. Reeves, Benjamin D. Grieco, Paul A. Bothner, Brian Fischer, Andreas M. TI Proteomic comparison of near-isogenic barley (Hordeum vulgare L.) germplasm differing in the allelic state of a major senescence QTL identifies numerous proteins involved in plant pathogen defense SO PLANT PHYSIOLOGY AND BIOCHEMISTRY LA English DT Article DE 2D-DIGE proteomics; Barley (Hordeum vulgare L.); Defense; Plant-pathogen interaction; Senescence; Shotgun proteomics ID OPEN-SOURCE LIBRARY; LEAF SENESCENCE; CONTENT LOCUS; NITROGEN REALLOCATION; ARABIDOPSIS-THALIANA; TRANSCRIPTION FACTOR; FLAG LEAF; GENES; RESISTANCE; LEAVES AB Senescence is the last developmental phase of plant tissues, organs and, in the case of monocarpic senescence, entire plants. In monocarpic crops such as barley, it leads to massive remobilization of nitrogen and other nutrients to developing seeds. To further investigate this process, a proteomic comparison of flag leaves of near-isogenic late- and early-senescing barley germplasm was performed. Protein samples at 14 and 21 days past anthesis were analyzed using both two-dimensional gel-based and label-free quantitative mass spectrometry-based ('shotgun') proteomic techniques. This approach identified >9000 barley proteins, and one-third of them were quantified. Analysis focused on proteins that were significantly (p < 0.05; difference >= 1.5-fold) upregulated in early-senescing line '10_11' as compared to late-senescing variety 'Karl', as these may be functionally important for senescence. Proteins in this group included family 1 pathogenesis-related proteins, intracellular and membrane receptors or co-receptors (NBS-LRRs, LRR-RLKs), enzymes involved in attacking pathogen cell walls (glucanases), enzymes with possible roles in cuticle modification, and enzymes involved in DNA repair. Additionally, proteases and elements of the ubiquitin-proteasome system were upregulated in line '10_11', suggesting involvement of nitrogen remobilization and regulatory processes. Overall, the proteomic data highlight a correlation between early senescence and upregulated defense functions. This correlation emerges more clearly from the current proteomic data than from a previously performed transcriptomic comparison of 'Karl' and '10_11'. Our findings stress the value of studying biological systems at both the transcript and protein levels, and point to the importance of pathogen defense functions during developmental leaf senescence. (C) 2016 Elsevier Masson SAS. All rights reserved. C1 [Mason, Katelyn E.; Hilmer, Jonathan K.; Maaty, Walid S.; Reeves, Benjamin D.; Grieco, Paul A.; Bothner, Brian] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Hilmer, Jonathan K.; Bothner, Brian] Montana State Univ, Prote Metabol & Mass Spectrometry Facil, Bozeman, MT 59717 USA. [Fischer, Andreas M.] Montana State Univ, Dept Plant Sci & Plant Pathol, Bozeman, MT 59717 USA. [Mason, Katelyn E.] Lawrence Livermore Natl Lab, Forens Sci Ctr, 7000 East Ave, Livermore, CA 94550 USA. [Maaty, Walid S.] Agr Res Ctr, AGERI, Dept Nucle Acid & Prot Struct, 9 Gamaa St, Giza, Egypt. RP Fischer, AM (reprint author), Montana State Univ, Dept Plant Sci & Plant Pathol, Bozeman, MT 59717 USA. EM fischer@montana.edu FU U.S. National Institute of Food and Agriculture (NIFA) [0192396]; Montana Agricultural Experiment Station (MAES); Murdock Charitable Trust; National Institutes of Health (NIH) of the Centers of Biomedical Research Excellence (CoBRE) program [5P20RR02437] FX This work was supported by the U.S. National Institute of Food and Agriculture (NIFA), Hatch project 0192396 and by the Montana Agricultural Experiment Station (MAES). The Proteomics, Metabolomics, and Mass Spectrometry facility at Montana State University received support from the Murdock Charitable Trust and National Institutes of Health (NIH) 5P20RR02437 of the Centers of Biomedical Research Excellence (CoBRE) program. Funding sources had no role in study design. NR 68 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 0981-9428 J9 PLANT PHYSIOL BIOCH JI Plant Physiol. Biochem. PD DEC PY 2016 VL 109 BP 114 EP 127 DI 10.1016/j.plaphy.2016.09.008 PG 14 WC Plant Sciences SC Plant Sciences GA EE2BW UT WOS:000389389700013 PM 27665045 ER PT J AU Xing, Q AF Xing, Q. TI Information or resolution: Which is required from an SEM to study bulk inorganic materials? SO SCANNING LA English DT Review DE scanning electron microscopy (SEM); probe performance; detection performance ID SCANNING-ELECTRON-MICROSCOPY; PROBE FORMING SYSTEMS; IMAGE-RESOLUTION; CONTRAST; VOLTAGE; DETECTOR; MICROANALYSIS; EBSD; DIFFRACTION; PERFORMANCE AB Significant technological advances in scanning electron microscopy (SEM) have been achieved over the past years. Different SEMs can have significant differences in functionality and performance. This work presents the perspectives on selecting an SEM for research on bulk inorganic materials. Understanding materials demands quantitative composition and orientation information, and informative and interpretable images that reveal subtle differences in chemistry, orientation/structure, topography, and electronic structure. The capability to yield informative and interpretable images with high signal-to-noise ratios and spatial resolutions is an overall result of the SEM system as a whole, from the electron optical column to the detection system. The electron optical column determines probe performance. The roles of the detection system are to capture, filter or discriminate, and convert signal electrons to imaging information. The capability to control practical operating parameters including electron probe size and current, acceleration voltage or landing voltage, working distance, detector selection, and signal filtration is inherently determined by the SEM itself. As a platform for various accessories, e.g. an energy-dispersive spectrometer and an electron backscatter diffraction detector, the properties of the electron optical column, specimen chamber, and stage greatly affect the performance of accessories. Ease-of-use and ease-of-maintenance are of practical importance. It is practically important to select appropriate test specimens, design suitable imaging conditions, and analyze the specimen chamber geometry and dimensions to assess the overall functionality and performance of an SEM. For an SEM that is controlled/operated with a computer, the stable software and user-friendly interface significantly improve the usability of the SEM. SCANNING 38:864-879, 2016. (c) 2016 Wiley Periodicals, Inc. C1 [Xing, Q.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Xing, Q (reprint author), Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM qxing@ameslab.gov FU U.S. Department of Energy (DOE), Office of Basic Sciences, Division of Materials Sciences FX Contract grant sponsor: U.S. Department of Energy (DOE), Office of Basic Sciences, Division of Materials Sciences. NR 58 TC 0 Z9 0 U1 8 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0161-0457 EI 1932-8745 J9 SCANNING JI Scanning PD DEC PY 2016 VL 38 IS 6 BP 864 EP 879 DI 10.1002/sca.21336 PG 16 WC Instruments & Instrumentation; Microscopy SC Instruments & Instrumentation; Microscopy GA EF4AP UT WOS:000390267000044 PM 27400457 ER PT J AU Wu, WT Yang, F Wu, JC Aubry, N Massoudi, M Antaki, JF AF Wu, Wei-Tao Yang, Fang Wu, Jingchun Aubry, Nadine Massoudi, Mehrdad Antaki, James F. TI High fidelity computational simulation of thrombus formation in Thoratec HeartMate II continuous flow ventricular assist device SO SCIENTIFIC REPORTS LA English DT Article ID PUMP THROMBOSIS; INTERAGENCY REGISTRY; PLATELET DEPOSITION; CIRCULATORY SUPPORT; BLOOD-FLOW; ACTIVATION; VISUALIZATION; TRIAL AB Continuous flow ventricular assist devices (cfVADs) provide a life-saving therapy for severe heart failure. However, in recent years, the incidence of device-related thrombosis (resulting in stroke, device-exchange surgery or premature death) has been increasing dramatically, which has alarmed both the medical community and the FDA. The objective of this study was to gain improved understanding of the initiation and progression of thrombosis in one of the most commonly used cfVADs, the Thoratec HeartMate II. A computational fluid dynamics simulation (CFD) was performed using our recently updated mathematical model of thrombosis. The patterns of deposition predicted by simulation agreed well with clinical observations. Furthermore, thrombus accumulation was found to increase with decreased flow rate, and can be completely suppressed by the application of anticoagulants and/or improvement of surface chemistry. To our knowledge, this is the first simulation to explicitly model the processes of platelet deposition and thrombus growth in a continuous flow blood pump and thereby replicate patterns of deposition observed clinically. The use of this simulation tool over a range of hemodynamic, hematological, and anticoagulation conditions could assist physicians to personalize clinical management to mitigate the risk of thrombosis. It may also contribute to the design of future VADs that are less thrombogenic. C1 [Wu, Wei-Tao; Antaki, James F.] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA. [Yang, Fang] Jilin Univ, Key Lab Mol Enzymol & Engn, Minist Educ, Changchun 130012, Peoples R China. [Wu, Jingchun] Adv Design Optimizat, Irvine, CA 92618 USA. [Aubry, Nadine] Northeastern Univ, Dept Mech Engn, Boston, MA 02115 USA. [Massoudi, Mehrdad] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Antaki, JF (reprint author), Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA. EM antaki@cmu.edu FU NIH [1 R01 HL089456] FX This research was supported by NIH grant 1 R01 HL089456. NR 39 TC 1 Z9 1 U1 2 U2 2 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD DEC 1 PY 2016 VL 6 AR 38025 DI 10.1038/srep38025 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EF0LW UT WOS:000390017900001 PM 27905492 ER PT J AU Fox, NJ McComas, DJ AF Fox, Nicola J. McComas, David J. TI Editorial: Topical Volume on Developing the Solar Probe Plus Mission SO SPACE SCIENCE REVIEWS LA English DT Editorial Material C1 [Fox, Nicola J.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [McComas, David J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Fox, NJ (reprint author), Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2016 VL 204 IS 1-4 BP 1 EP 6 DI 10.1007/s11214-016-0323-7 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF0XX UT WOS:000390050700001 ER PT J AU Kasper, JC Abiad, R Austin, G Balat-Pichelin, M Bale, SD Belcher, JW Berg, P Bergner, H Berthomier, M Bookbinder, J Brodu, E Caldwell, D Case, AW Chandran, BDG Cheimets, P Cirtain, JW Cranmer, SR Curtis, DW Daigneau, P Dalton, G Dasgupta, B DeTomaso, D Diaz-Aguado, M Djordjevic, B Donaskowski, B Effinger, M Florinski, V Fox, N Freeman, M Gallagher, D Gary, SP Gauron, T Gates, R Goldstein, M Golub, L Gordon, DA Gurnee, R Guth, G Halekas, J Hatch, K Heerikuisen, J Ho, G Hu, Q Johnson, G Jordan, SP Korreck, KE Larson, D Lazarus, AJ Li, G Livi, R Ludlam, M Maksimovic, M McFadden, JP Marchant, W Maruca, BA McComas, DJ Messina, L Mercer, T Park, S Peddie, AM Pogorelov, N Reinhart, MJ Richardson, JD Robinson, M Rosen, I Skoug, RM Slagle, A Steinberg, JT Stevens, ML Szabo, A Taylor, ER Tiu, C Turin, P Velli, M Webb, G Whittlesey, P Wright, K Wu, ST Zank, G AF Kasper, Justin C. Abiad, Robert Austin, Gerry Balat-Pichelin, Marianne Bale, Stuart D. Belcher, John W. Berg, Peter Bergner, Henry Berthomier, Matthieu Bookbinder, Jay Brodu, Etienne Caldwell, David Case, Anthony W. Chandran, Benjamin D. G. Cheimets, Peter Cirtain, Jonathan W. Cranmer, Steven R. Curtis, David W. Daigneau, Peter Dalton, Greg Dasgupta, Brahmananda DeTomaso, David Diaz-Aguado, Millan Djordjevic, Blagoje Donaskowski, Bill Effinger, Michael Florinski, Vladimir Fox, Nichola Freeman, Mark Gallagher, Dennis Gary, S. Peter Gauron, Tom Gates, Richard Goldstein, Melvin Golub, Leon Gordon, Dorothy A. Gurnee, Reid Guth, Giora Halekas, Jasper Hatch, Ken Heerikuisen, Jacob Ho, George Hu, Qiang Johnson, Greg Jordan, Steven P. Korreck, Kelly E. Larson, Davin Lazarus, Alan J. Li, Gang Livi, Roberto Ludlam, Michael Maksimovic, Milan McFadden, James P. Marchant, William Maruca, Bennet A. McComas, David J. Messina, Luciana Mercer, Tony Park, Sang Peddie, Andrew M. Pogorelov, Nikolai Reinhart, Matthew J. Richardson, John D. Robinson, Miles Rosen, Irene Skoug, Ruth M. Slagle, Amanda Steinberg, John T. Stevens, Michael L. Szabo, Adam Taylor, Ellen R. Tiu, Chris Turin, Paul Velli, Marco Webb, Gary Whittlesey, Phyllis Wright, Ken Wu, S. T. Zank, Gary TI Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus SO SPACE SCIENCE REVIEWS LA English DT Review DE Solar probe plus; SWEAP; Solar wind plasma; Corona; Heating; Acceleration ID ION-CYCLOTRON WAVES; KINETIC SHELL-MODEL; MAGNETIC-FIELD; MAGNETOHYDRODYNAMIC TURBULENCE; PARTICLE-ACCELERATION; ALFVEN WAVES; COSMIC-RAYS; FLUCTUATIONS; DISSIPATION; TEMPERATURE AB The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes the implementation of the SWEAP Investigation, the driving requirements for the suite, expected performance of the instruments, and planned data products, as of mission preliminary design review. C1 [Kasper, Justin C.] Univ Michigan, Ann Arbor, MI 48109 USA. [Kasper, Justin C.; Austin, Gerry; Bergner, Henry; Bookbinder, Jay; Caldwell, David; Case, Anthony W.; Cheimets, Peter; Daigneau, Peter; Freeman, Mark; Gauron, Tom; Gates, Richard; Golub, Leon; Guth, Giora; Jordan, Steven P.; Korreck, Kelly E.; Park, Sang; Stevens, Michael L.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Abiad, Robert; Bale, Stuart D.; Berg, Peter; Curtis, David W.; Dalton, Greg; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Gordon, Dorothy A.; Hatch, Ken; Johnson, Greg; Larson, Davin; Livi, Roberto; Ludlam, Michael; McFadden, James P.; Marchant, William; Maruca, Bennet A.; Messina, Luciana; Mercer, Tony; Robinson, Miles; Rosen, Irene; Slagle, Amanda; Taylor, Ellen R.; Tiu, Chris; Turin, Paul] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Balat-Pichelin, Marianne; Brodu, Etienne] PROMES CNRS, Lab Proc Mat & Energie Solaire, 7 Rue 4 Solaire, F-66120 Font Romeu, France. [Belcher, John W.; Lazarus, Alan J.; Richardson, John D.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Berthomier, Matthieu] Ecole Polytech, Lab Phys Plasmas, Palaiseau, France. [Chandran, Benjamin D. G.] Univ New Hampshire, Durham, NH 03824 USA. [Cirtain, Jonathan W.; Effinger, Michael; Gallagher, Dennis] Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Cirtain, Jonathan W.; Effinger, Michael; Gallagher, Dennis] Univ Colorado, Boulder, CO 80309 USA. [Dasgupta, Brahmananda; Florinski, Vladimir; Heerikuisen, Jacob; Hu, Qiang; Li, Gang; Pogorelov, Nikolai; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary] Univ Alabama Huntsville, Huntsville, AL 35805 USA. [DeTomaso, David; Fox, Nichola; Gurnee, Reid; Ho, George; Reinhart, Matthew J.] Appl Phys Lab, Laurel, MD 20723 USA. [Gary, S. Peter; Skoug, Ruth M.; Steinberg, John T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goldstein, Melvin; Peddie, Andrew M.; Szabo, Adam] Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Halekas, Jasper] Univ Iowa, Iowa City, IA 52242 USA. [Maksimovic, Milan] LESIA, Observ Paris, CNRS, UMR 8109, F-92195 Meudon, France. [McComas, David J.] Southwest Res Inst, San Antonio, TX 78228 USA. [McComas, David J.] Univ Texas San Antonio, San Antonio, TX 78249 USA. [Velli, Marco] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Kasper, JC (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA.; Kasper, JC (reprint author), Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. EM jckasper@umich.edu RI Bale, Stuart/E-7533-2011; OI Bale, Stuart/0000-0002-1989-3596; Halekas, Jasper/0000-0001-5258-6128 FU NASA [NNN06AA01C, NNN10AA08T]; CNES; NASA; rest of the SPP team FX We acknowledge support from NASA under contract NNN06AA01C (Task NNN10AA08T). We are grateful for the creativity and dedication of the many people at SWEAP institutions who make this investigation possible. We also acknowledge early support for technology development by the Smithsonian Institution, NASA Marshall Space Flight Center and the CNRS PROMES research group in Odeillo-Font Romeu, France. We thank Jean-Yves Prado and CNES for providing financial support for our activities in France. We also thank NASA and the rest of the SPP team for their support on this project. J.C. Kasper personally thanks John Alexander Simpson and Alan Jay Lazarus for their contributions to Solar Probe and for exposing a student to this exciting mission of discovery. NR 103 TC 5 Z9 5 U1 3 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD DEC PY 2016 VL 204 IS 1-4 BP 131 EP 186 DI 10.1007/s11214-015-0206-3 PG 56 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF0XX UT WOS:000390050700005 ER PT J AU Lei, WY Zhang, TT Liu, P Rodriguez, JA Liu, G Liu, MH AF Lei, Wanying Zhang, Tingting Liu, Ping Rodriguez, Jose A. Liu, Gang Liu, Minghua TI Bandgap- and Local Field-Dependent Photoactivity of Ag/Black Phosphorus Nanohybrids SO ACS CATALYSIS LA English DT Article DE black phosphorus; Ag nanoparticles; photocatalysis; localized surface plasmon resonance; density functional theory ID BLACK PHOSPHORUS; VISIBLE-LIGHT; 2-DIMENSIONAL NANOMATERIALS; PHOTOCATALYTIC CONVERSION; MEDIATED PHOTOCATALYSIS; TIO2 PHOTOCATALYSIS; CHEMICAL ENERGY; GAS SENSORS; SEMICONDUCTOR; GRAPHENE AB Black phosphorus (BP) is the most exciting post-graphene layered nanomaterial that serendipitously bridges the 2D materials gap between semimetallic graphene and large bandgap transition-metal dichalcogenides in terms of high charge-carrier mobility and tunable direct bandgap, yet research into BP-based solar to chemical energy conversion is still in its infancy. Herein, a novel hybrid photocatalyst with Ag nanoparticles supported on BP nanosheets is prepared using a chemical reduction approach. Spin-polarized density functional theory (DFT) calculations show that Ag nanoparticles are stabilized on BP by covalent bonds at the Ag/BP interface and Ag Ag interactions. In the visible-light photocatalysis of rhodamine B by Ag/BP plasmonic nanohybrids, a significant rise in photoactivity compared with pristine BP nanosheets is observed either by decreasing BP layer thickness or increasing Ag particle size, with the greatest enhancement being up to similar to 20-fold. By virtue of finite-difference time domain (FDTD) simulations and photocurrent measurements, we give insights into the enhanced photocatalytic performance of Ag/BP nanohybrids, including the effects of BP layer thickness and Ag particle size. In comparison with BP, Ag/BP nanohybrids present intense local field amplification at the perimeter of Ag NPs, which is increased by either decreasing the BP layer thickness from multiple to few layers or increasing the Ag particle size from 20 to 40 nm. Additionally, when the BP layer thickness is decreased from multiple to few layers, the bandgap becomes favorable to generate more strongly oxidative holes in the proximity of the Ag/BP interface to enhance photoactivity. Our findings illustrate a synergy between locally enhanced electric fields and BP bandgap, in which BP layer thickness and Ag particle size can be independently tuned to enhance photoactivity. This study may open a new avenue for further exploiting BP-based plasmonic nanostructures in photocatalysis, photodetectors, and photovoltaics. C1 [Lei, Wanying; Zhang, Tingting; Liu, Gang; Liu, Minghua] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing 100190, Peoples R China. [Lei, Wanying] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China. [Lei, Wanying] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Liu, Ping; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Liu, G; Liu, MH (reprint author), Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Standardizat & Measurement Nanotechno, Beijing 100190, Peoples R China.; Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM pingliu3@bnl.gov; liug@nanoctr.cn; liuminghua@nanoctr.cn FU National Natural Science Foundation of China [91027042, 21321063, 51272048]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC-00112704]; Office of Science of the U.S. DOE [DE-AC02-05CH11231] FX We gratefully acknowledge financial support from the National Natural Science Foundation of China (91027042, 21321063, 51272048). The first-principles calculations were performed at Brookhaven National Laboratory, which was founded by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC-00112704. The first-principles calculations were performed using computational resources at the Center for Functional Nanomaterials, a user facility at Brookhaven National Laboratory, and at the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. DOE under Contract No. DE-AC02-05CH11231. NR 75 TC 0 Z9 0 U1 67 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD DEC PY 2016 VL 6 IS 12 BP 8009 EP 8020 DI 10.1021/acscatal.6b02520 PG 12 WC Chemistry, Physical SC Chemistry GA EE2FP UT WOS:000389399400003 ER PT J AU Lustemberg, PG Ramirez, PJ Liu, ZY Gutierrez, RA Grinter, DG Carrasco, J Senanayake, SD Rodriguez, JA Ganduglia-Pirovano, MV AF Lustemberg, Pablo G. Ramirez, Pedro J. Liu, Zongyuan Gutierrez, Ramon A. Grinter, David G. Carrasco, Javier Senanayake, Sanjaya D. Rodriguez, Jose A. Veronica Ganduglia-Pirovano, M. TI Room-Temperature Activation of Methane and Dry Re-forming with CO2 on Ni-CeO2(111) Surfaces: Effect of Ce3+ Sites and Metal-Support Interactions on C-H Bond Cleavage SO ACS CATALYSIS LA English DT Article DE methane activation; dry re-forming; ceria; nickel; supported catalysts; support effect; XPS; DFT ID GAS SHIFT REACTION; NI 111; CATALYSTS; NANOPARTICLES; OXIDATION; CLUSTERS; WATER; ADSORPTION; CEO2(111); NI(111) AB The results of core-level photoemission indicate that Ni-CeO2,(111) surfaces with small or medium coverages of nickel are able to activate methane at 300 K, producing adsorbed CHx and CO (x = 2, 3) groups. Calculations based on density functional theory predict a relatively low activation energy of 0.6-0.7 eV for the cleavage of the first C-H bond in the adsorbed methane molecule. Ni and O centers of ceria work in a cooperative way in the dissociation of the C-H bond at room temperature, where a low Ni loading is crucial for the catalyst activity and stability. The strong electronic perturbations in the Ni nanoparticles produced by the ceria supports of varying natures, such as stoichiometric and reduced, result in a drastic change in their chemical properties toward methane adsorption and dissociation as well as the dry reforming of methane reaction. The coverage of Ni has a drastic effect on the ability of the system to dissociate methane and catalyze the dry re-forming process. C1 [Lustemberg, Pablo G.] UNR, CONICET, Inst Fis Rosario IFIR, Bv 27 Febrero 210Bis,S2000EZP, Rosario, Santa Fe, Argentina. [Ramirez, Pedro J.; Gutierrez, Ramon A.] Cent Univ Venezuela, Fac Ciencias, Caracas 1020A, Venezuela. [Liu, Zongyuan; Grinter, David G.; Rodriguez, Jose A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11749 USA. [Carrasco, Javier] CIC Energigune, Albert Einstein 48, Minano 01510, Alava, Spain. [Senanayake, Sanjaya D.; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Veronica Ganduglia-Pirovano, M.] CSIC, ICP, C Marie Curie 2, E-28049 Madrid, Spain. RP Rodriguez, JA (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11749 USA.; Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.; Ganduglia-Pirovano, MV (reprint author), CSIC, ICP, C Marie Curie 2, E-28049 Madrid, Spain. EM rodrigez@bnl.gov; vgp@icp.csic.es RI Carrasco, Javier/I-5488-2015; Senanayake, Sanjaya/D-4769-2009 OI Carrasco, Javier/0000-0003-3117-6933; Senanayake, Sanjaya/0000-0003-3991-4232 FU U.S. Department of Energy (Chemical Sciences Division) [DE-SC0012704]; U.S. Department of Energy; MINECO-Spain [CTQ2012-32928, CTQ2015-71823-R]; CONICET; Ramon y Cajal Fellowship; Marie Curie Career Integration Grant [FP7-PEOPLE-2011-CIG]; Royal Society through the Newton Alumnus scheme; National Science Foundation [CHE1151846]; Wyoming NASA EPSCoR (NASA) [NNX13AB13A] FX The work carried out at Brookhaven National Laboratory was supported by the U.S. Department of Energy (Chemical Sciences Division, DE-SC0012704). Parts of these studies were done at the Advanced Light Source (ALS), which is supported by the U.S. Department of Energy. The theoretical work was supported by the MINECO-Spain (CTQ2012-32928 and CTQ2015-71823-R). P.G.L. thanks CONICET for an external postdoctoral fellowship. J.C. acknowledges support by the Ramon y Cajal Fellowship, the Marie Curie Career Integration Grant FP7-PEOPLE-2011-CIG: Project NanoWGS, and the Royal Society through the Newton Alumnus scheme. The COST action CM1104 is gratefully acknowledged. Computer time provided by the BIFI-ZCAM, and the Spanish Supercomputing Network (RES) at BSC, UMA, UV, and FCSCL is acknowledged. J.Z. acknowledges support by the National Science Foundation (Award No. CHE1151846) and Wyoming NASA EPSCoR (NASA Grant No. NNX13AB13A). NR 52 TC 2 Z9 2 U1 55 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD DEC PY 2016 VL 6 IS 12 BP 8184 EP 8191 DI 10.1021/acscatal.6b02360 PG 8 WC Chemistry, Physical SC Chemistry GA EE2FP UT WOS:000389399400021 ER PT J AU Liu, S Tan, JM Gulec, A Schweitzer, NM Delferro, M Marks, LD Stair, PC Marks, TJ AF Liu, Shengsi Tan, J. Miles Gulec, Ahmet Schweitzer, Neil M. Delferro, Massimiliano Marks, Laurence D. Stair, Peter C. Marks, Tobin J. TI Direct Synthesis of Low-Coordinate Pd Catalysts Supported on SiO2 via Surface Organometallic Chemistry SO ACS CATALYSIS LA English DT Article DE heterogeneous catalysis; palladium nanoparticles; benzyl alcohol oxidation; DRIFTS; surface organometallic chemistry; solution-phase grafting ID LIQUID-PHASE OXIDATION; SOLVENT-FREE OXIDATION; DIRECT H2O2 SYNTHESIS; SITE HETEROGENEOUS CATALYSTS; SELECTIVE AEROBIC OXIDATION; OXYGEN REDUCTION REACTION; BENZYL ALCOHOL OXIDATION; 100-PERCENT ACTIVE-SITES; ACIDIC SULFATED ALUMINA; ATOMIC LAYER DEPOSITION AB Highly dispersed low-coordinate Pd sites on SiO2 are fabricated by grafting the Pd-II PCP-pincer complex ((PCP)-P-iota Bu)Pd OH ((PCP)-P-iota Bu = 2,6-C6H3(CH2P`Bu-2)(2)) on SiO2 followed by calcination with ozone (100 degrees C) and reduction with H-2 (300 degrees C). The chemisorption process and structure of this organometallic complex on SiO2 is established by solution phase H-1 and P-31 NMR and solid-state P-31 CPMAS NMR spectroscopy, XPS, DRIFTS, and AC-HAADF-STEM. The CO adsorption properties of the Pd centers reveal a surprisingly high fraction of adsorption sites where CO is bound in a linear fashion, indicative of low-coordinate Pd. Furthermore, enhanced selectivity of these catalyst centers in aerobic alcohol oxidation versus a control catalyst argues that these low-coordinate sites are the catalytically active sites. C1 [Liu, Shengsi; Tan, J. Miles; Delferro, Massimiliano; Stair, Peter C.; Marks, Tobin J.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Gulec, Ahmet; Marks, Laurence D.] Northwestern Univ, Dept Mat Sci & Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Schweitzer, Neil M.] Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Delferro, Massimiliano; Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. RP Stair, PC; Marks, TJ (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Stair, PC (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM pstair@northwestern.edu; t-marks@northwestem.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DOE DE-FG02-03ER15457]; National Science Foundation [NSF CHE-9871268, NSF CHE-1048773, NSF DMR-0521267, DMR-0959470]; Department of Energy [DE-FG02-03ER15457, DE-AC02-06CH11357]; Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource [NSF NNCI-1542205]; MRSEC program at the Materials Research Center [NSF DMR-1121262]; International Institute for Nanotechnology (IIN); Keck Foundation; State of Illinois, through the IIN FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DOE DE-FG02-03ER15457. This work also made use of instruments at the IMSERC center at Northwestern University, which were supported by the National Science Foundation under NSF CHE-9871268 (1998), NSF CHE-1048773, and NSF DMR-0521267 (2005). The CleanCat Core facility acknowledges funding from the Department of Energy (DE-FG02-03ER15457 and DE-AC02-06CH11357) used for the purchase of the Nicolet 6700 FT-IR, Harrick DRIFTS accessory, and Altamira AMI-200. This work made use of the JEOL JEM-ARM200CF in the Electron Microscopy Service (Research Resources Center, UIC). The acquisition of the UIC JEOL JEM-ARM200CF was supported by a MRI-R2 grant from the National Science Foundation (DMR-0959470). This work made use of the Keck II facility of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. NR 111 TC 1 Z9 1 U1 27 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD DEC PY 2016 VL 6 IS 12 BP 8380 EP 8388 DI 10.1021/acscatal.6602046 PG 9 WC Chemistry, Physical SC Chemistry GA EE2FP UT WOS:000389399400043 ER PT J AU Lewis, CS Li, YR Wang, L Li, J Stach, EA Takeuchi, KJ Marschilok, AC Takeuchi, ES Wong, SS AF Lewis, Crystal S. Li, Yue Ru Wang, Lei Li, Jing Stach, Eric A. Takeuchi, Kenneth J. Marschilok, Amy C. Takeuchi, Esther S. Wong, Stanislaus S. TI Correlating Titania Nanostructured Morphologies with Performance as Anode Materials for Lithium-Ion Batteries SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Titanium dioxide; Metal oxide; Morphology dependence; Electrochemical performance; Anode materials; Lithium-ion batteries ID ONE-DIMENSIONAL NANOSTRUCTURES; NANOCRYSTALLINE TIO2 ANATASE; CRYSTALLITE SIZE CONTROL; RUTILE TIO2; ELECTROCHEMICAL PROPERTIES; CONTROLLABLE SYNTHESIS; INSERTION REACTIONS; PARTICLE-SIZE; 001 FACETS; STORAGE AB Titanium oxide is a ubiquitous and commonly used material in the environment. Herein, we have systematically probed the use of various hydrothermally derived titania (TiO2) architectures including zero-dimensional (OD) nano particles, one-dimensional (1D) nanowires, and three-dimensional (3D) urchin-like motifs as anode materials for lithium ion batteries. The structure and morphology of these nanomaterials were characterized using electron microscopy. The surface areas of these materials were quantitatively analyzed through Brunauer-Emmett-Teller (BET) adsorption measurements and were found to be relatively similar for both 1D and 3D samples with a slightly higher surface area associated with the OD nanoparticles. Hence, to normalize for the surface area effect, readily available OD commercial nanoparticles (Degussa P25), which possessed a similar surface area to that of as-prepared 1D and 3D materials, were also analyzed. Electrochemical analysis revealed a superior performance of hydrothermally derived 3D urchin-like motifs as compared with both as-prepared OD and 1D samples as well as commercial Degussa P25. Our studies suggest the greater overall importance of morphology as opposed to surface area in dictating the efficiency of the Li ion diffusion process. Specifically, the 3D urchins yielded consistent rate capabilities, delivering 214, 167, 120, 99, and 52 mAh/g under corresponding discharge rates of 0.1, 1, 10, 20, and 50 C, respectively. Moreover, these 3D motifs gave rise to a stable cycling performance, exhibiting a capacity retention of similar to 90% in cycles 1-100 under a discharge rate of 1 C. Furthermore, the rate capability and cycling performance of our 3D hierarchical motifs were (0 comparable to those of anatase TiO2/TiO2-(B) hybrid structures even with little if any electrochemically promising bronze (B) phase herein and (ii) clearly enhanced as compared with previous results using similar anatase 3D microspheres. C1 [Lewis, Crystal S.; Li, Yue Ru; Wang, Lei; Takeuchi, Kenneth J.; Marschilok, Amy C.; Takeuchi, Esther S.; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Li, Jing; Takeuchi, Kenneth J.; Marschilok, Amy C.; Takeuchi, Esther S.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Bldg 735, Upton, NY 11973 USA. [Takeuchi, Esther S.] Brookhaven Natl Lab, Energy Sci Directorate, Interdisciplinary Sci Bldg,Bldg 734, Upton, NY 11973 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Bldg 480, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Wong, SS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Bldg 480, Upton, NY 11973 USA. EM Stanislaus.wong@stonybrook.edu RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 FU Center for Mesoscale Transport Properties; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673, DE-SC0012704] FX All work described in this study was funded as part of the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0012673. Research characterization was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. The authors acknowledge Altug S. Poyraz for assistance with surface area data interpretation. NR 73 TC 2 Z9 2 U1 23 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD DEC PY 2016 VL 4 IS 12 BP 6299 EP 6312 DI 10.1021/acssuschemeng.6b00763 PG 14 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA EE3OC UT WOS:000389497900008 ER PT J AU Zhang, LB Pu, YQ Cort, JR Ragauskas, AJ Yang, B AF Zhang, Libing Pu, Yunqiao Cort, John R. Ragauskas, Arthur J. Yang, Bin TI Revealing the Molecular Structural Transformation of Hardwood and Softwood in Dilute Acid Flowthrough Pretreatment SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Flowthrough pretreatment; Softwood; Hardwood; Lignin chemistry; Lignin recondensation ID ENZYMATIC-HYDROLYSIS; CORN STOVER; STEAM PRETREATMENT; SUGAR RECOVERY; LODGEPOLE PINE; SCOTS PINE; LIGNIN; WOOD; POPLAR; ETHANOL AB To understand better the intrinsic recalcitrance of lignocellulosic biomass, the main hurdle to its efficient deconstruction, the effects of dilute acid flowthrough pretreatment on the dissolution chemistry of hemicellulose, cellulose, and lignin for both hardwood (e.g., poplar wood) and softwood (e.g., lodgepole pine wood) were investigated at temperatures of 200 to 270 degrees C and a flow rate of 25 mL/min with 0.05% (w/ w) H2SO4. Results suggested that the softwood cellulose was more readily degraded into monomeric sugars than that of hardwood under same pretreatment conditions. However, while the hardwood lignin was completely removed into hydrolysate, 30% of the softwood lignin remained as solid residues under identical conditions, which was plausibly caused by vigorous CS-active recondensation reactions (C-CS). Effects of molecular structural features (i.e., lignin molecular weight, cellulose crystallinity, and condensed lignin structures) on the recalcitrance of hardwood and softwood to dilute acid pretreatment were identified for the first time in this study, providing important insights to establish the effective biomass pretreatment. C1 [Zhang, Libing; Yang, Bin] Washington State Univ, Dept Biol Syst Engn, Bioprod Sci & Engn Lab, Richland, WA 99354 USA. [Pu, Yunqiao; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Pu, Yunqiao; Ragauskas, Arthur J.] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Cort, John R.] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA 99354 USA. RP Yang, B (reprint author), Washington State Univ, Dept Biol Syst Engn, Bioprod Sci & Engn Lab, Richland, WA 99354 USA. EM binyang@tricity.wsu.edu OI yang, bin/0000-0003-1686-8800 FU Sun Grant-DOT Award [T0013G-A-Task 8]; DOE-EERE Award [DE-EE0006112]; Chinese Scholarship Council (CSC); Department of Energy's Office of Biological and Environmental Research (BER); DOE [DE-AC05-00OR22725] FX We are grateful to the Sun Grant-DOT Award # T0013G-A-Task 8, DOE-EERE Award # DE-EE0006112 for funding this research. We acknowledge the Bioproducts, Sciences and Engineering Laboratory, Department of Biosystems Engineering at Washington State University. L. Zhang was partially supported by the Chinese Scholarship Council (CSC). Part of this work was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) and sponsored by the Department of Energy's Office of Biological and Environmental Research (BER). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the DOE under Contract DE-AC05-00OR22725. We also thank Dr. Haisheng Pei and Ms. Marie S. Swita for insightful discussions. NR 54 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD DEC PY 2016 VL 4 IS 12 BP 6618 EP 6628 DI 10.1021/acssuschemeng.6b01491 PG 11 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA EE3OC UT WOS:000389497900042 ER PT J AU Black, BA Michener, WE Ramirez, KJ Biddy, MJ Knott, BC Jarvis, MW Olstad, J Mante, OD Dayton, DC Beckham, GT AF Black, Brenna A. Michener, William E. Ramirez, Kelsey J. Biddy, Mary J. Knott, Brandon C. Jarvis, Mark W. Olstad, Jessica Mante, Ofei D. Dayton, David C. Beckham, Gregg T. TI Aqueous Stream Characterization from Biomass Fast Pyrolysis and Catalytic Fast Pyrolysis SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Pyrolysis; Reforming; Wastewater; Biomass conversion; Biorefinery; Thermochemical conversion ID BIO-OIL; LIPID PRODUCTION; FERMENTATION; SUGARS; FRACTIONS; HYDROGEN; LIGNIN; LEVOGLUCOSAN; FEEDSTOCKS; CHEMICALS AB Biomass pyrolysis offers a promising means to rapidly depolymerize lignocellulosic biomass for subsequent catalytic upgrading to renewable fuels. Substantial efforts are currently ongoing to optimize pyrolysis processes including various fast pyrolysis and catalytic fast pyrolysis schemes. In all cases, complex aqueous streams are generated containing solubilized organic compounds that are not converted to target fuels or chemicals and are often slated for wastewater treatment, in turn creating an economic burden on the biorefinery. Valorization of the species in these aqueous streams, however, offers significant potential for substantially improving the economics and sustainability of thermochemical biorefineries. To that end, here we provide a thorough characterization of the aqueous streams from four pilot-scale pyrolysis processes: namely, from fast pyrolysis, fast pyrolysis with downstream fractionation, in situ catalytic fast pyrolysis, and ex situ catalytic fast pyrolysis. These configurations and processes represent characteristic pyrolysis processes undergoing intense development currently. Using a comprehensive suite of aqueous-compatible analytical techniques, we quantitatively characterize between 12 g kg-1 of organic carbon of a highly aqueous catalytic fast pyrolysis stream and up to 315 g kg(-1) of organic carbon present in the fast pyrolysis aqueous streams. In all cases, the analysis ranges between 75 and 100% of mass closure. The composition and stream properties closely match the nature of pyrolysis processes, with high contents of carbohydrate-derived compounds in the fast pyrolysis aqueous phase, high acid content in nearly all streams, and mostly recalcitrant phenolics in the heavily deoxygenated ex situ catalytic fast pyrolysis stream. Overall, this work provides a detailed compositional analysis of aqueous streams from leading thermochemical processes analyses that are critical for subsequent development of selective valorization strategies for these waste streams. C1 [Black, Brenna A.; Michener, William E.; Ramirez, Kelsey J.; Biddy, Mary J.; Knott, Brandon C.; Jarvis, Mark W.; Olstad, Jessica; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Mante, Ofei D.; Dayton, David C.] RTI Int, Div Energy Technol, 3040 E Cornwallis Rd, Res Triangle Pk, NC 27709 USA. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Gregg.Beckham@nrel.gov FU U.S. Department of Energy's Bioenergy Technologies Office at the National Renewable Energy Laboratory [DE-AC36-08GO28308] FX The U.S. Department of Energy's Bioenergy Technologies Office Contract No. DE-AC36-08GO28308 at the National Renewable Energy Laboratory. NR 55 TC 1 Z9 1 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD DEC PY 2016 VL 4 IS 12 BP 6815 EP 6827 DI 10.1021/aastischemeng.6b01766 PG 13 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA EE3OC UT WOS:000389497900064 ER PT J AU Rorrer, NA Dorgan, JR Vardon, DR Martinez, CR Yang, Y Beckham, GT AF Rorrer, Nicholas A. Dorgan, John R. Vardon, Derek R. Martinez, Chelsea R. Yang, Yuan Beckham, Gregg T. TI Renewable Unsaturated Polyesters from Muconic Acid SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Unsaturated Polyester; Composites; Muconic Acid; Poly(butylene succinate) ID GLASS-TRANSITION TEMPERATURES; SUCCINIC ACID; ADIPIC ACID; POLY(BUTYLENE SUCCINATE); CHEMICAL CATALYSIS; MESOPOROUS CARBON; ESCHERICHIA-COLI; BLOCK-COPOLYMERS; BIOMASS; 1,4-BUTANEDIOL AB cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated into poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Overall, this study demonstrates the utility of muconic acid as a monomer suitable for direct use in commercial composites. C1 [Rorrer, Nicholas A.; Vardon, Derek R.; Martinez, Chelsea R.; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Dr, Golden, CO 80401 USA. [Rorrer, Nicholas A.; Dorgan, John R.] Colorado Sch Mines, Dept Chem & Biol Engn, 1500 Illinois St, Golden, CO 80401 USA. [Yang, Yuan] Colorado Sch Mines, Dept Chem, 1500 Illinois St, Golden, CO 80401 USA. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Dr, Golden, CO 80401 USA. EM Gregg.Beckham@nrel.gov RI Vardon, Derek/B-8249-2017 OI Vardon, Derek/0000-0002-0199-4524 FU U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program; DOE [DE-AC05-06OR23100]; NREL Laboratory Directed Research and Development program; U.S. Department of Energy Bioenergy Technologies Office; Colorado College Riley Scholar-in-Residence program FX Support for N.A.R. was partially provided by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract number DE-AC05-06OR23100. N.A.R, D.R.V., and G.T.B. thank the NREL Laboratory Directed Research and Development program for partially funding the polymerization work. We thank the U.S. Department of Energy Bioenergy Technologies Office for funding the muconate production efforts. C.R.M. thanks the Colorado College Riley Scholar-in-Residence program for research support. NR 47 TC 1 Z9 1 U1 26 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD DEC PY 2016 VL 4 IS 12 BP 6867 EP 6876 DI 10.1021/acssuschemeng.6601820 PG 10 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA EE3OC UT WOS:000389497900069 ER PT J AU Renders, T Van den Bosch, S Vangeel, T Ennaert, T Koelewijn, SF Van den Bossche, G Courtin, CM Schutyser, W Sels, BF AF Renders, Tom Van den Bosch, Sander Vangeel, Thijs Ennaert, Thijs Koelewijn, Steven-Friso Van den Bossche, Gil Courtin, Christophe M. Schutyser, Wouter Sels, Bert F. TI Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Lignocellulose; Lignin; Biorefinery; Fractionation; Heterogeneous catalysis; Solvent effects; Biomass; CRF ID LIGNIN DEPOLYMERIZATION; LIGNOCELLULOSIC BIOMASS; ALKALINE PRETREATMENT; VALUABLE CHEMICALS; PLATFORM MOLECULES; HYDROCARBON FUELS; BUILDING-BLOCKS; PLANT BIOMASS; RANEY-NICKEL; BIRCH WOOD AB One of the foremost challenges in lignocellulose conversion encompasses the integration of effective lignin valorization in current carbohydrate-oriented biorefinery schemes. Catalytic reductive fractionation (CRF) of lignocellulose offers a technology to simultaneously produce lignin-derived platform chemicals and a carbohydrate-enriched pulp via the combined action of lignin solvolysis and metal-catalyzed hydrogenolysis. Herein, the solvent (composition) plays a crucial role. In this contribution, we study the influence of alcohol/water mixtures by processing poplar sawdust in varying MeOH/water and EtOH/water blends. The results show particular effects that strongly depend on the applied water concentration. Low water concentrations enhance the removal of lignin from the biomass, while the majority of the carbohydrates are left untouched (scenario A). Contrarily, high water concentrations favor the solubilization of both hemicellulose and lignin, resulting in a more pure cellulosic residue (scenario B). For both scenarios, an evaluation was made to determine the most optimal solvent composition, based on two earlier introduced empirical efficiency descriptors (denoted LFDE and LFFE). According to these measures, 30 (A) and 70 vol % water (B) showed to be the optimal balance for both MeOH/water and EtOH/water mixtures. This successful implementation of alcohol/water mixtures allows operation under milder processing conditions in comparison to pure alcohol solvents, which is advantageous from an industrial point of view. C1 [Renders, Tom; Van den Bosch, Sander; Vangeel, Thijs; Ennaert, Thijs; Koelewijn, Steven-Friso; Van den Bossche, Gil; Schutyser, Wouter; Sels, Bert F.] Katholieke Univ Leuven, Ctr Surface Chem & Catalysis, Celestijnenlaan 200F, B-3001 Heverlee, Belgium. [Courtin, Christophe M.] Katholieke Univ Leuven, Ctr Food & Microbial Technol, Kasteelpk Arenberg 22, B-3001 Heverlee, Belgium. [Schutyser, Wouter] Natl Bioenergy Ctr, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Schutyser, W; Sels, BF (reprint author), Katholieke Univ Leuven, Ctr Surface Chem & Catalysis, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.; Schutyser, W (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM wouter.schutyser@biw.kuleuven.be; bert.sels@biw.kuleuven.be FU Research Foundation Flanders (FWO Vlaanderen); agency for Innovation by Science and Technology, Flanders (IWT-Vlaanderen); KU Leuven; IWT-SBO project ARBOREF; FISCH-ICON project MAIA FX This work was performed in the framework of the IWT-SBO project ARBOREF. T.R acknowledges a doctoral fellowship from the Research Foundation Flanders (FWO Vlaanderen). S.V.d.B. and T.E. acknowledge the agency for Innovation by Science and Technology, Flanders (IWT-Vlaanderen), for a doctoral fellowship. W.S. acknowledges a postdoctoral fellowship (PDM) from KU Leuven. S.-F.K. acknowledges funding through IWT-SBO project ARBOREF. G.V.d.B acknowledges funding through FISCH-ICON project MAIA. The authors kindly thank Roosje Ooms for technical support with GC analysis. NR 98 TC 0 Z9 0 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD DEC PY 2016 VL 4 IS 12 BP 6894 EP 6904 DI 10.1021/acssuschemeng.6b01844 PG 11 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA EE3OC UT WOS:000389497900072 ER PT J AU Anderson, EM Katahira, R Reed, M Resch, MG Karp, EM Beckham, GT Roman-Leshkov, Y AF Anderson, Eric M. Katahira, Rui Reed, Michelle Resch, Michael G. Karp, Eric M. Beckham, Gregg T. Roman-Leshkov, Yuriy TI Reductive Catalytic Fractionation of Corn Stover Lignin SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Lignocellulose; Biomass; Lignin; Pretreatment ID LIGNOCELLULOSIC BIOMASS; WOODY BIOMASS; MAIZE LIGNIN; PRETREATMENT; CONVERSION; CLEAVAGE; DEPOLYMERIZATION; HYDROGENOLYSIS; TECHNOLOGIES; HYDROLYSIS AB Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 degrees C in methanol and, in the presence or absence of an acid cocatalyst (H3PO4 or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residual solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 degrees C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 degrees C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 degrees C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 degrees C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed that soluble oligomers are formed via solvolysis, followed by further fragmentation on the catalyst surface via hydrogenolysis. Overall, the results show that clear tradeoffs exist between the levels of lignin extraction, monomer yields, and carbohydrate retention in the residual solids for different RCF conditions of corn stover. C1 [Anderson, Eric M.; Roman-Leshkov, Yuriy] MIT, Dept Chem Engn, 25 Ames ST, Cambridge, MA 02139 USA. [Anderson, Eric M.; Katahira, Rui; Reed, Michelle; Resch, Michael G.; Karp, Eric M.; Beckham, Gregg T.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, 15013 Denver West PKY Golden, Golden, CO 80401 USA. RP Roman-Leshkov, Y (reprint author), MIT, Dept Chem Engn, 25 Ames ST, Cambridge, MA 02139 USA.; Beckham, GT (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 15013 Denver West PKY Golden, Golden, CO 80401 USA. EM gregg.beckham@nrel.gov; yroman@mit.edu FU National Science Foundation, CBET Award [1454299]; U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program; DOE [DE-SC0014664]; Department of Energy Bioenergy Technologies Office FX We would like to thank Robert Sykes for performing pyrolysis to determine the S/G ratio of corn stover, Amy Settle for synthesizing the acidified carbon support, and Todd Eaton for performing TPD. The work performed was supported by the National Science Foundation, CBET Award No 1454299. Additional support was provided by The U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract number DE-SC0014664. Additionally, R.K., M.R, M.G.R, E.M.K., and G.T.B. thank the Department of Energy Bioenergy Technologies Office for funding. NR 40 TC 0 Z9 0 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD DEC PY 2016 VL 4 IS 12 BP 6940 EP 6950 DI 10.1021/acssuschemeng.6b01858 PG 11 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA EE3OC UT WOS:000389497900077 ER PT J AU Matthiesen, JE Suastegui, M Wu, YT Viswanathan, M Qu, Y Cao, MF Rodriguez-Quiroz, N Okerlund, A Kraus, G Raman, DR Shao, ZY Tessonnier, JP AF Matthiesen, John E. Suastegui, Miguel Wu, Yutong Viswanathan, Mothi Qu, Yang Cao, Mingfeng Rodriguez-Quiroz, Natalia Okerlund, Adam Kraus, George Raman, D. Raj Shao, Zengyi Tessonnier, Jean-Philippe TI Electrochemical Conversion of Biologically Produced Muconic Acid: Key Considerations for Scale-Up and Corresponding Technoeconomic Analysis SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Cascade catalysis; Electrocatalysis; Electrochemical hydrogenation; Muconic acid; 3-Hexenedioic acid; Hydromuconic acid; Biorenewable chemicals; Nylon ID LINEAR ALIPHATIC POLYESTERS; RENEWABLE RESOURCES; CHEMICAL PRODUCTION; CATALYSIS; HYDROGENATION; FERMENTATION; LACTONE; BIOMASS; ELECTROCATALYSIS; IMPURITIES AB Muconic acid, an unsaturated diacid that can be produced from cellulosic sugars and lignin monomers by fermentation, emerges as a promising intermediate for the sustainable manufacture of commodity polyamides and polyesters including Nylon-6,6 and polyethylene terephthalate (PET). Current conversion schemes consist in the biological production of cis,cis-muconic acid using metabolically engineered yeasts and bacteria, and the subsequent diversification to adipic acid, terephthalic acid, and their derivatives using chemical catalysts. In some instances, conventional precious metal catalysts can be advantageously replaced by base metal electrocatalysts. Here, we show the economic relevance of utilizing a hybrid biological-electrochemical conversion scheme to convert glucose to trans-3-hexenedioic acid (t3HDA), a monomer used for the synthesis of bioadvantaged Nylon-6,6. Potential roadblocks to biological and electrochemical integration in a single reactor, including electrocatalyst deactivation due to biogenic impurities and low faradaic efficiency inherent to side reactions in complex media, have been studied and addressed. In this study, t3HDA was produced with 94% yield and 100% faradaic efficiency. With consideration of the high t3HDA yield and faradaic efficiency, a technoeconomic analysis was developed on the basis of the current yield and titer achieved for muconic acid, the figures of merit defined for industrial electrochemical processes, and the separation of the desired product from the medium. On the basis of this analysis, t3HDA could be produced for approximately $2.00 kg(-1). The low cost for t3HDA is a primary factor of the electrochemical route being able to cascade biological catalysis and electrocatalysis in one pot without separation of the muconic acid intermediate from the fermentation broth. C1 [Matthiesen, John E.; Suastegui, Miguel; Wu, Yutong; Cao, Mingfeng; Rodriguez-Quiroz, Natalia; Shao, Zengyi; Tessonnier, Jean-Philippe] Iowa State Univ, Dept Chem & Biol Engn, 618 Bissell Rd, Ames, IA 50011 USA. [Matthiesen, John E.; Suastegui, Miguel; Wu, Yutong; Viswanathan, Mothi; Qu, Yang; Cao, Mingfeng; Rodriguez-Quiroz, Natalia; Okerlund, Adam; Kraus, George; Raman, D. Raj; Shao, Zengyi; Tessonnier, Jean-Philippe] NSF Engn Res Ctr Biorenewable Chem CBiRC, 617 Bissell Rd, Ames, IA 50011 USA. [Matthiesen, John E.; Shao, Zengyi; Tessonnier, Jean-Philippe] US DOE, Ames Lab, 2408 Pammel Dr, Ames, IA 50011 USA. [Viswanathan, Mothi; Raman, D. Raj] Iowa State Univ, Dept Agr & Biosyst Engn, 617 Bissell Rd, Ames, IA 50011 USA. [Qu, Yang; Kraus, George] Iowa State Univ, Dept Chem, 2438 Pammel Dr, Ames, IA 50011 USA. [Rodriguez-Quiroz, Natalia] Univ Delaware, Dept Chem & Biomol Engn, Colburn Lab, 150 Acad St, Newark, DE 19716 USA. RP Tessonnier, JP (reprint author), Iowa State Univ, Dept Chem & Biol Engn, 618 Bissell Rd, Ames, IA 50011 USA.; Tessonnier, JP (reprint author), NSF Engn Res Ctr Biorenewable Chem CBiRC, 617 Bissell Rd, Ames, IA 50011 USA.; Tessonnier, JP (reprint author), US DOE, Ames Lab, 2408 Pammel Dr, Ames, IA 50011 USA. EM tesso@iastate.edu OI Suastegui, Miguel/0000-0001-6362-1283 FU National Science Foundation [CBET-1512126, EEC-0813570, EPSC-1101284]; Plant Sciences Institute at Iowa State University FX Part of this material is based upon work supported in part by National Science Foundation Grants CBET-1512126, EEC-0813570, and EPSC-1101284, and the Plant Sciences Institute at Iowa State University. We would like to thank Dr. Sarah Cady (ISU Chemical Instrumentation Facility) for training and assistance pertaining to the AVIII-600 results included in this publication, Patrick Johnston for assistance pertaining to the ICP-OES results included in this publication, and Xiaotong Chadderdon and David Chadderdon for helpful discussions. NR 49 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD DEC PY 2016 VL 4 IS 12 BP 7098 EP 7109 DI 10.1021/acssuschemeng.6b01981 PG 12 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA EE3OC UT WOS:000389497900095 ER PT J AU Munson, MS Karp, EM Nimlos, CT Salit, M Beckham, GT AF Munson, Matthew S. Karp, Eric M. Nimlos, Claire T. Salit, Marc Beckham, Gregg T. TI Gradient Elution Moving Boundary Electrophoresis Enables Rapid Analysis of Acids in Complex Biomass-Derived Streams SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Alkaline pretreatment; Analytical chemistry; Biomass conversion; Biorefinery; Lignin; GEMBE ID CHANNEL CURRENT DETECTION; KRAFT PULPING LIQUORS; CONTACTLESS CONDUCTIVITY DETECTION; CONTINUOUS SAMPLE INJECTION; CAPILLARY-ELECTROPHORESIS; INORGANIC ANIONS; ALKALINE PRETREATMENT; CARBOXYLIC-ACIDS; BLACK LIQUORS; STEP WIDTH AB Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment. As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 mu mol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Overall, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams. C1 [Munson, Matthew S.; Salit, Marc] Stanford Univ, Joint Initiat Metrol Biol, Shriram Ctr, 443 Via Ortega, Stanford, CA 94305 USA. [Munson, Matthew S.; Salit, Marc] Natl Inst Stand & Technol, Genome Scale Measurements Grp, Shriram Ctr, 443 Via Ortega, Stanford, CA 94305 USA. [Munson, Matthew S.; Salit, Marc] Stanford Univ, Dept Bioengn, Shriram Ctr, 443 Via Ortega, Stanford, CA 94305 USA. [Karp, Eric M.; Nimlos, Claire T.; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Gregg.Beckham@nrel.gov FU U.S. Department of Energy Bioenergy Technologies Office (DOE-BETO) [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX E.M.K., C.T.N., and G.T.B. thank the U.S. Department of Energy Bioenergy Technologies Office (DOE-BETO) for funding via Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 35 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD DEC PY 2016 VL 4 IS 12 BP 7175 EP 7185 DI 10.1021/acssuschemeng.6b02076 PG 11 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA EE3OC UT WOS:000389497900103 ER PT J AU Erbe, D Lord, R Sciarra, L Richman, E Rosenberg, M Athalye, R Liu, B Glazer, J AF Erbe, Drake Lord, Richard Sciarra, Len Richman, Eric Rosenberg, Michael Athalye, Rahul Liu, Bing Glazer, Jason TI A Conversation on Standard 90.1-2016 SO ASHRAE JOURNAL LA English DT Editorial Material AB Editor's Note: ANSI/ASHRAE/IES Standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings, has been a benchmark and national model code for commercial buildings for over 35 years and indispensable for engineers and other professionals involved in the design of buildings and building systems. Now, with well over 100 addenda incorporated since the 2013 edition, Standard 90.1-2016 will significantly change the way buildings are built as these new modifications find their way into the world's energy codes. C1 [Erbe, Drake] Airxchange Inc, Market Dev, Rockland, MA 02370 USA. [Lord, Richard] United Technol Carrier Corp, Murfreesboro, TN USA. [Sciarra, Len] Gensler, Chicago, IL USA. [Richman, Eric; Rosenberg, Michael; Athalye, Rahul; Liu, Bing] Pacific Northwest Natl Lab, Richland, WA USA. [Glazer, Jason] GARD Analyt, Arlington Hts, IL USA. RP Erbe, D (reprint author), Airxchange Inc, Market Dev, Rockland, MA 02370 USA. NR 3 TC 0 Z9 0 U1 4 U2 4 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 EI 1943-6637 J9 ASHRAE J JI ASHRAE J. PD DEC PY 2016 VL 58 IS 12 BP 34 EP 38 PG 5 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA EE6QG UT WOS:000389736700015 ER PT J AU Matolyak, L Keum, J Korley, LTJ AF Matolyak, Lindsay Keum, Jong Korley, LaShanda T. J. TI Molecular Design: Network Architecture and Its Impact on the Organization and Mechanics of Peptide-Polyurea Hybrids SO BIOMACROMOLECULES LA English DT Article ID STRUCTURE-PROPERTY RELATIONSHIPS; CROSS-LINKING; SOFT SEGMENT; HIERARCHICAL STRUCTURE; MULTIGRAFT COPOLYMERS; HYSTERESIS BEHAVIOR; SECONDARY STRUCTURE; BLOCK-COPOLYMERS; HARD SEGMENTS; BETA-SHEETS AB Nature has achieved controlled and tunable mechanics via hierarchical organization driven by physical and covalent interactions. Polymer peptide hybrids have been designed to mimic natural materials utilizing these architectural strategies, obtaining diverse mechanical properties, stimuli responsiveness, and bioactivity. Here, utilizing a molecular design pathway, peptide polyurea hybrid networks were synthesized to investigate the role of architecture and structural interplay on peptide hydrogen bonding, assembly, and mechanics. Networks formed from poly(beta-benzyl-L-aspartate) poly(dimethylsiloxane) copolymers covalently cross-linked with a triisocyanate yielded polyurea films with a globular-like morphology and parallel beta-sheet secondary structures. The geometrical constraints imposed by the network led to an increase in peptide loading and similar to 7x increase in Young's modulus while maintaining extensibility (similar to 160%). Thus, the interplay of physical and chemical bonds allowed for the modulation of resulting mechanical properties. This investigation provides a framework for the utilization of structural interplay and mechanical tuning in polymer peptide hybrids, which offers a pathway for the design of future hybrid biomaterial systems. C1 [Matolyak, Lindsay; Korley, LaShanda T. J.] Case Western Reserve Univ, Dept Macromol Sci & Engn, 2100 Adelbert Rd, Cleveland, OH 44106 USA. [Keum, Jong] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Keum, Jong] Oak Ridge Natl Lab, Chem & Engn Mat Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Korley, LTJ (reprint author), Case Western Reserve Univ, Dept Macromol Sci & Engn, 2100 Adelbert Rd, Cleveland, OH 44106 USA. EM lashanda.korley@case.edu RI Keum, Jong/N-4412-2015 OI Keum, Jong/0000-0002-5529-1373 FU National Science Foundation [CAREER DMR- 0953236] FX The authors acknowledge funding support from the National Science Foundation (CAREER DMR- 0953236). The authors thank Richard Tomazin from the Swagelok Center for Surface Analysis of Materials at Case Western Reserve University for AFM image assistance on all film samples. NR 55 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 EI 1526-4602 J9 BIOMACROMOLECULES JI Biomacromolecules PD DEC PY 2016 VL 17 IS 12 BP 3931 EP 3939 DI 10.1021/acs.biomac.6b01309 PG 9 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA EE7HT UT WOS:000389787200009 PM 27936724 ER PT J AU Lund, R Ang, J Shu, JY Xu, T AF Lund, Reidar Ang, JooChuan Shu, Jessica Y. Xu, Ting TI Understanding Peptide Oligomeric State in Langmuir Monolayers of Amphiphilic 3-Helix Bundle-Forming Peptide-PEG Conjugates SO BIOMACROMOLECULES LA English DT Article ID X-RAY-DIFFRACTION; AIR-WATER-INTERFACE; HYBRID BLOCK-COPOLYMERS; AIR/WATER INTERFACE; NEUTRON REFLECTIVITY; MICELLES; SCATTERING; ACTIVATION; MECHANISMS; MICROSCOPY AB Coiled-coil peptide polymer conjugates are an emerging class of biomaterials. Fundamental understanding of the coiled-coil oligomeric state and assembly process of these hybrid building blocks is necessary to exert control over their assembly into well-defined structures. Here, we studied the effect of peptide structure and PEGylation on the self-assembly process and oligomeric state of a Langmuir monolayer of amphiphilic coiled-coil peptide polymer conjugates using X-ray reflectivity (XR) and grazing-incidence X-ray diffraction (GIRD). Our results show that the oligomeric state of PEGylated amphiphiles based on 3-helix bundle-forming peptide is surface pressure dependent, a mixture of dimers and trimers was formed at intermediate surface pressure but transitions into trimers completely upon increasing surface pressure. Moreover, the interhelical distance within the coiled-coil bundle of 3-helix peptide-PEG conjugate amphiphiles was not perturbed under high surface pressure. Present studies provide valuable insights into the self-assembly process of hybrid peptide polymer conjugates and guidance to develop biomaterials with controlled multivalency of ligand presentation. C1 [Lund, Reidar; Ang, JooChuan; Shu, Jessica Y.; Xu, Ting] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Xu, Ting] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Lund, Reidar; Xu, Ting] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lund, Reidar] Univ Oslo, Dept Chem, POB 1033, N-0315 Oslo, Norway. RP Xu, T (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Xu, T (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Xu, T (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM tingxu@berkeley.edu RI Lund, Reidar/F-3534-2014; Ang, JooChuan/Q-5024-2016 OI Ang, JooChuan/0000-0001-7731-2051 FU National Institutes of Health [5R21EB016947-02]; Division of Chemistry (CHE), National Science Foundation [NSF/CHE-1346572]; Division of Materials Research (DMR), National Science Foundation [NSF/CHE-1346572]; U.S. DOE [DE-AC02-06CH11357] FX J.C.A., R.L., J.Y.S., and T.X. were supported by National Institutes of Health (Contract 5R21EB016947-02). We thank Binhua Lin and Mati Meron for technical support at beamline 15-ID-C of APS. ChemMatCARS Sector 15 is principally supported by the Divisions of Chemistry (CHE) and Materials Research (DMR), National Science Foundation, under grant number NSF/CHE-1346572. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 58 TC 1 Z9 1 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 EI 1526-4602 J9 BIOMACROMOLECULES JI Biomacromolecules PD DEC PY 2016 VL 17 IS 12 BP 3964 EP 3972 DI 10.1021/acs.biomac.6b01356 PG 9 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA EE7HT UT WOS:000389787200013 PM 27784156 ER PT J AU Garcia-Nunez, JA Rodriguez, DT Fontanilla, CA Ramirez, N Lora, EE Frear, CS Stockle, C Amonette, J Garcia-Perez, M AF Alberto Garcia-Nunez, Jesus Tatiana Rodriguez, Deisy Andres Fontanilla, Carlos Elizabeth Ramirez, Nidia Silva Lora, Electo Eduardo Frear, Craig Stuart Stockle, Claudio Amonette, James Garcia-Perez, Manuel TI Evaluation of alternatives for the evolution of palm oil mills into biorefineries SO BIOMASS & BIOENERGY LA English DT Article DE Palm oil mill (POM); Biorefinery comparison; Empty fruit bunches (EFB); Shell; Fiber; Life Cycle Assessment (LCA); Eutrophication potential (EP); Economic assessment ID GREENHOUSE-GAS EMISSIONS; EMPTY FRUIT BUNCHES; BIO-OIL; CURRENT STATE; BIOMASS; ENERGY; PYROLYSIS; THAILAND; MALAYSIA; OPTIMIZATION AB Six alternatives for the conversion of an average Colombian palm oil mill (30 t h(-1) of fresh fruit bunches (FFB) into biorefineries were evaluated. The alternatives studied were: (C1) Production of biogas from the Palm Oil Mill Effluents (POME), (C2) Composting of empty fruit bunches (EFB) and fiber, (C3) Biomass combustion for high pressure steam combined heat and power, (C4) Pellets production, (C5) Biochar production and, (C6) Biochar and bio-oil production. The available biomass could result in up to 125 kWh of electricity, 207 kg of compost, 125 kg of pellet, 44 kg of biochar and 63 kg of bio-oil per metric ton of FFB. The global warming potential (GWP), eutrophication potential (EP), net energy ratio (NER), capital expenditures (CAPEX), operational costs (OPEX), net present value (NPV) and internal rate of return (IRR) were calculated for all the alternatives. GHG reductions of more than 33% could be achieved. Anaerobic digestion and composting contributed to 30% reduction of the EP. The CAPEX for all of the biorefinery alternatives studied varies between 0.7 $ t(-1) and 2.8 $ t(-1) of FEB. The OPEX varies between 1.6 $ t(-1) and 73 $ t(-1) of FFB. The NPV for viable scenarios ranged between 2.5 million and 13.9 million US dollars. The IRR calculated varied between 3% and 56% and the payback periods were between 3 and 8 years. The total extra incomes reached values up to 15.2 $ t(-1) of FFB. Overall the pellets production biorefinery was the preferred alternative. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Alberto Garcia-Nunez, Jesus; Tatiana Rodriguez, Deisy; Andres Fontanilla, Carlos; Elizabeth Ramirez, Nidia] Colombian Oil Palm Res Ctr, Bogota, Colombia. [Alberto Garcia-Nunez, Jesus; Frear, Craig Stuart; Stockle, Claudio; Garcia-Perez, Manuel] Washington State Univ, Dept Biol & Agr Engn, Pullman, WA USA. [Silva Lora, Electo Eduardo] Univ Fed Itajuba, Excellence Grp Thermal Power & Distributed Gener, Itajuba, MG, Brazil. [Amonette, James] Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA. RP Garcia-Perez, M (reprint author), Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. EM mgarcia-perez@wsu.edu OI Garcia-Perez, Manuel/0000-0002-9386-2632 FU Oil Palm Promotion Fund; Washington State Agricultural Research Center [NIFA-Hatch-WNP00701]; CAPES (Brazil) [1454/81-3]; CNPq (Brazil) [311481/2014-0]; FAPEMIG (Brazil) [APQ-02463-13]; Fulbright scholarship program FX The authors acknowledge the support of the Oil Palm Promotion Fund administered by Fedepalma for financial support provided to Jesus A. Garcia -Nunez. We also thank the Washington State Agricultural Research Center (NIFA-Hatch-WNP00701) for the financial support provided to Dr. Garcia-Perez. We are also very thankful for the support received by Prof. Electo Silva from CAPES (1454/81-3) CNPq (311481/2014-0) and FAPEMIG (APQ-02463-13) (Brazil) and from the Fulbright scholarship program. NR 87 TC 1 Z9 1 U1 9 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD DEC PY 2016 VL 95 BP 310 EP 329 DI 10.1016/j.biombioe.2016.05.020 PG 20 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA EE0SJ UT WOS:000389288900034 ER PT J AU Xue, YK De Sales, F Lau, WKM Boone, A Kim, KM Mechoso, CR Wang, GL Kucharski, F Schiro, K Hosaka, M Li, SS Druyan, LM Sanda, IS Thiaw, W Zeng, N Comer, RE Lim, YK Mahanama, S Song, GQ Gu, Y Hagos, SM Chin, M Schubert, S Dirmeyer, P Leung, LR Kalnay, E Kitoh, A Lu, CH Mahowald, NM Zhang, ZQ AF Xue, Yongkang De Sales, Fernando Lau, William K. -M. Boone, Aaron Kim, Kyu-Myong Mechoso, Carlos R. Wang, Guiling Kucharski, Fred Schiro, Kathleen Hosaka, Masahiro Li, Suosuo Druyan, Leonard M. Sanda, Ibrah Seidou Thiaw, Wassila Zeng, Ning Comer, Ruth E. Lim, Young-Kwon Mahanama, Sarith Song, Guoqiong Gu, Yu Hagos, Samson M. Chin, Mian Schubert, Siegfried Dirmeyer, Paul Leung, L. Ruby Kalnay, Eugenia Kitoh, Akio Lu, Cheng-Hsuan Mahowald, Natalie M. Zhang, Zhengqiu TI West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) SO CLIMATE DYNAMICS LA English DT Article DE Sahel seasonal and decadal climate variability; Sahel drought; SST and land forcings; GCM ID SAHEL RAINFALL VARIABILITY; LAND-USE TRANSITIONS; LONG-TERM LINK; CLIMATE VARIABILITY; SUMMER RAINFALL; VEGETATION DYNAMICS; AIR-TEMPERATURE; SECONDARY LANDS; REGIONAL MODEL; GLOBAL-MODEL AB The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The project's strategy is to apply prescribed observationally based anomaly forcing, i.e., "idealized but realistic" forcing, in simulations by climate models. The goal is to assess these forcings' effects in producing/amplifying seasonal and decadal climate variability in the Sahel between the 1950s and the 1980s, which is selected to characterize the great drought period of the last century. This is the first multi-model experiment specifically designed to simultaneously evaluate such relative contributions. The WAMME II models have consistently demonstrated that SST forcing is a major contributor to the twentieth century Sahel drought. Under the influence of the maximum possible SST forcing, the ensemble mean of WAMME II models can produce up to 60 % of the precipitation difference during the period. The present paper also addresses the role of SSTs in triggering and maintaining the Sahel drought. In this regard, the consensus of WAMME II models is that both Indian and Pacific Ocean SSTs greatly contributed to the drought, with the former producing an anomalous displacement of the Intertropical Convergence Zone before the WAM onset, and the latter mainly contributes to the summer WAM drought. The WAMME II models also show that the impact of LULCC forcing on the Sahel climate system is weaker than that of SST forcing, but still of first order magnitude. According to the results, under LULCC forcing the ensemble mean of WAMME II models can produces about 40 % of the precipitation difference between the 1980s and the 1950s. The role of land surface processes in responding to and amplifying the drought is also identified. The results suggest that catastrophic consequences are likely to occur in the regional Sahel climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought. C1 [Xue, Yongkang; Mechoso, Carlos R.; Schiro, Kathleen; Li, Suosuo; Song, Guoqiong; Gu, Yu; Zhang, Zhengqiu] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [De Sales, Fernando] San Diego State Univ, San Diego, CA 92182 USA. [Lau, William K. -M.; Zeng, Ning; Kalnay, Eugenia] Univ Maryland, College Pk, MD 20742 USA. [Boone, Aaron] Meteo France, Ctr Natl Rech Meteorol, Toulouse, France. [Kim, Kyu-Myong; Lim, Young-Kwon; Mahanama, Sarith; Chin, Mian; Schubert, Siegfried] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Wang, Guiling] Univ Connecticut, Storrs, CT USA. [Kucharski, Fred] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Hosaka, Masahiro] Meteorol Res Inst, Tsukuba, Ibaraki, Japan. [Li, Suosuo] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou, Peoples R China. [Druyan, Leonard M.] NASA Goddard Inst Space Studies, New York, NY USA. [Druyan, Leonard M.] Columbia Univ, New York, NY USA. [Sanda, Ibrah Seidou] AGRHYMET Reg Ctr, Niamey, Niger. [Sanda, Ibrah Seidou] Abdou Moumouni Univ, Niamey, Niger. [Thiaw, Wassila; Lu, Cheng-Hsuan] Natl Ctr Environm Predict, College Pk, MD USA. [Comer, Ruth E.] Hadley Ctr, Met Off, Exeter, Devon, England. [Lim, Young-Kwon] IM Syst Grp, Goddard Earth Sci Technol & Res, Greenbelt, MD USA. [Dirmeyer, Paul] George Mason Univ, Ctr Ocean Land Atmosphere Interact Studies, Fairfax, VA 22030 USA. [Hagos, Samson M.; Leung, L. Ruby] Pacific Northwest Natl Lab, Richland, WA USA. [Kitoh, Akio] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Lu, Cheng-Hsuan] SUNY Albany, Albany, NY 12222 USA. [Mahowald, Natalie M.] Cornell Univ, Ithaca, NY USA. [Zhang, Zhengqiu] Chinese Acad Meteorol Sci, Beijing, Peoples R China. RP Xue, YK (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. EM yxue@geog.ucla.edu RI Zeng, Ning/A-3130-2008; OI Zeng, Ning/0000-0002-7489-7629; xue, yongkang/0000-0002-6169-9631 FU U.S. NSF [AGS-1115506, AGS-1419526]; NASA; European Union; AMMA FX We appreciate AMMA's support for the WAMME project, including use of the AMMA database for the WAMME II experiment. The WAMME activity and analysis are supported by U.S. NSF Grants AGS-1115506 and AGS-1419526. Each WAMME model group's efforts are supported by U.S. NSF and NASA, the European Union, and other funding agencies. A number of WAMME models simulations were conducted with the NCAR Supercomputers. NR 104 TC 4 Z9 4 U1 7 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD DEC PY 2016 VL 47 IS 11 BP 3517 EP 3545 DI 10.1007/s00382-016-3224-2 PG 29 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EE1NM UT WOS:000389349000008 ER PT J AU Boone, AA Xue, YK De Sales, F Comer, RE Hagos, S Mahanama, S Schiro, K Song, GQ Wang, GL Li, S Mechoso, CR AF Boone, Aaron Anthony Xue, Yongkang De Sales, Fernando Comer, Ruth E. Hagos, Samson Mahanama, Sarith Schiro, Kathleen Song, Guoqiong Wang, Guiling Li, S. Mechoso, Carlos R. TI The regional impact of Land-Use Land-cover Change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project SO CLIMATE DYNAMICS LA English DT Article DE African monsoon; Land use land cover change; Land degradation; Climate simulations; Land surface models; Land-atmosphere coupling ID GENERAL-CIRCULATION MODEL; MONSOON MULTIDISCIPLINARY ANALYSIS; SEMIARID REGIONS; SECONDARY LANDS; USE TRANSITIONS; SURFACE ALBEDO; WOOD-HARVEST; SAHEL; PRECIPITATION; VARIABILITY AB The population of the Sahel region of West Africa has approximately doubled in the past 50 years, and could potentially double again by the middle of this century. This has led to the northward expansion of agricultural areas at the expense of natural savanna, leading to widespread land use -land cover change (LULCC). Because there is strong evidence of significant surface-atmosphere coupling in this region, one of the main goals of the West African Monsoon Modeling and Evaluation project phase II is to provide basic understanding of LULCC on the regional climate, and to evaluate the sensitivity of the seasonal variability of the West African Monsoon to LULCC. The prescribed LULCC is based on the changes from 1950 through 1990, representing a maximum feasible degradation scenario in the past half century. It is applied to 5 state of the art global climate models (GCMs) over a 6-year simulation period. Multiple GCMs are used because the magnitude of the impact of LULCC depends on model-dependent coupling strength between the surface and the overlying atmosphere, the magnitude of the surface biophysical changes, and how the key processes linking the surface with the atmosphere are parameterized within a particular model framework. Land cover maps and surface parameters may vary widely among models; therefore a special effort was made to impose consistent biogeophysical responses of surface parameters to LULCC using a simple experimental setup. The prescribed LULCC corresponds to degraded vegetation conditions, which mainly cause increases in the Bowen ratio and decreases in the surface net radiation, and result in a significant reduction in surface evaporation (upwards of 1 mm day(-1) over a large part of the Sahel). This, in turn, mainly leads to less moisture convergence and precipitation over the LULCC zone. The overall impact is a rainfall reduction with every model, which ranges across models from 4 to 25 % averaged over the Sahel, and a southward shift of the rainfall peak in three of the five models which evokes a precipitation dipole pattern which is consistent with the observed pattern for dry climate anomalies over this region. The African Easterly Jet shifts equator-ward, although the strength of this change varies considerably among the models. In most of the models, the main factor causing diabatic cooling of the upper troposphere and enhanced subsidence over the region of LULCC is the reduction of convective heating rates linked to reduced latent heat flux and moisture flux convergence. In broad agreement with previous studies, the impact of degradation on the regional climate is found to vary among the different models, however, the signal is stronger and more consistent between the models here than in previous inter-comparison projects. This is likely related to our emphasis on prioritizing a consistent impact of LULCC on the surface biophysical properties. C1 [Boone, Aaron Anthony] Meteo France CNRS, CNRM UMR 3589, Toulouse, France. [Xue, Yongkang; Schiro, Kathleen; Song, Guoqiong; Li, S.; Mechoso, Carlos R.] Univ Calif Los Angeles, Los Angeles, CA USA. [Wang, Guiling] Univ Connecticut, Storrs, CT USA. [Comer, Ruth E.] Hadley Ctr, Met Off, Exeter, Devon, England. [Hagos, Samson] Pacific Northwest Natl Lab, Richland, WA USA. [Mahanama, Sarith] SSAI, Lanham, MD USA. [Mahanama, Sarith] NASA Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD USA. [De Sales, Fernando] San Diego State Univ, San Diego, CA 92182 USA. RP Boone, AA (reprint author), Meteo France CNRS, CNRM UMR 3589, Toulouse, France. EM aaron.a.boone@gmail.com FU AMMA; Based on French initiative; European Community's Sixth Framework Research Programme; UK Department for International Development (DFID); U.S. NSF [AGS-1115506, AGS-1419526] FX This study was supported by the French component of AMMA. Based on French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, especially from France, UK, US and Africa. It has been beneficiary of a major financial contribution from the European Community's Sixth Framework Research Programme. Detailed information on scientific coordination and funding is available on the AMMA International website http://www.amma-international.org. The authors acknowledge the ESPRI/IPSL database team for hosting the WAMME2 workspace within the framework of the AMMA database, and to K. Ramage, S. Bouffies-Cloche, and L. Fleury for their kind assistance with the WAMME2 database. We wish to acknowledge comments by R. Koster. R. Comer's contribution was funded by the UK Department for International Development (DFID). The WAMME activity and analysis are supported by U.S. NSF Grants AGS-1115506 and AGS-1419526. NR 76 TC 1 Z9 1 U1 10 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD DEC PY 2016 VL 47 IS 11 BP 3547 EP 3573 DI 10.1007/s00382-016-3252-y PG 27 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EE1NM UT WOS:000389349000009 ER PT J AU DeBenedictis, EP AF DeBenedictis, Erik P. TI Computational Complexity and New Computing Approaches SO COMPUTER LA English DT Editorial Material ID NETWORKS AB Computational complexity analysis allows us to quantify energy-efficiency scaling potential-an important task for assessing research options. C1 [DeBenedictis, Erik P.] Sandia Natl Labs, Ctr Res Comp, Livermore, CA 94550 USA. RP DeBenedictis, EP (reprint author), Sandia Natl Labs, Ctr Res Comp, Livermore, CA 94550 USA. EM epdeben@sandia.gov NR 7 TC 0 Z9 0 U1 3 U2 3 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD DEC PY 2016 VL 49 IS 12 BP 76 EP 79 PG 4 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA EE1LB UT WOS:000389341900010 ER PT J AU Conroy, M Li, HN Zubialevich, VZ Kusch, G Schmidt, M Collins, T Glynn, C Martin, RW O'Dwyer, C Morris, MD Holmes, JD Parbrook, PJ AF Conroy, Michele Li, Haoning Zubialevich, Vitaly Z. Kusch, Gunnar Schmidt, Michael Collins, Timothy Glynn, Colm Martin, Robert W. O'Dwyer, Colm Morris, Michael D. Holmes, Justin D. Parbrook, Peter J. TI Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods SO CRYSTAL GROWTH & DESIGN LA English DT Article ID EPITAXIAL LATERAL OVERGROWTH; EMITTING DIODE-ARRAYS; PLASMA-INDUCED DAMAGE; N-TYPE GAN; VAPOR-DEPOSITION; III-NITRIDES; LASER-DIODES; SUBSTRATE; NANOWIRES; GROWTH AB With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure can be "self-healed". Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain-and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors. C1 [Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.; Schmidt, Michael; Collins, Timothy; Morris, Michael D.; Holmes, Justin D.; Parbrook, Peter J.] Tyndall Natl Inst, Cork, Ireland. [Conroy, Michele; Li, Haoning; Parbrook, Peter J.] Univ Coll Cork, Sch Engn, Cork, Ireland. [Conroy, Michele; Collins, Timothy; Glynn, Colm; O'Dwyer, Colm; Morris, Michael D.; Holmes, Justin D.] Univ Coll Cork, Dept Chem, Cork, Ireland. [Conroy, Michele; Collins, Timothy; Morris, Michael D.; Holmes, Justin D.] Trinity Coll Dublin, AMBER CRANN, Dublin, Ireland. [Kusch, Gunnar; Martin, Robert W.] Univ Strathclyde, Dept Phys, SUPA, 107 Rottenrow, Glasgow G4 0NG, Lanark, Scotland. [Conroy, Michele] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. RP Conroy, M; Parbrook, PJ (reprint author), Tyndall Natl Inst, Cork, Ireland.; Conroy, M; Parbrook, PJ (reprint author), Univ Coll Cork, Sch Engn, Cork, Ireland.; Conroy, M (reprint author), Univ Coll Cork, Dept Chem, Cork, Ireland.; Conroy, M (reprint author), Trinity Coll Dublin, AMBER CRANN, Dublin, Ireland.; Conroy, M (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM micheleannconroy@gmail.com; peter.parbrok@tyndall.ie OI Conroy, Michele/0000-0002-6658-1819 FU Science Foundation Ireland (SFI) [SFI/10/IN.1/I2993]; SFI Engineering Professorship Scheme [07/EN/E001A]; INSPIRE FX This research was enabled by the Irish Higher Education Authority Programme for Research in Third Level Institutions Cycles 4 and 5 via the INSPIRE and TYFFANI projects, and by Science Foundation Ireland (SFI) under Grant No. SFI/10/IN.1/I2993. P.J.P. acknowledges funding from SFI Engineering Professorship Scheme (07/EN/E001A) and M.C. acknowledges a Ph.D. research scholarship from INSPIRE. This work was conducted under the framework of the Irish Government's Programme for Research in Third Level Institutions Cycle 5, National Development Plan 2007-2013 with the assistance of the European Regional Development Fund. NR 49 TC 0 Z9 0 U1 17 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD DEC PY 2016 VL 16 IS 12 BP 6769 EP 6775 DI 10.1021/acs.cgd.6b00756 PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA EE5DD UT WOS:000389624200013 ER PT J AU Highland, MJ Perret, E Folkman, CM Fong, DD Thompson, C Fuoss, PH Eastman, JA AF Highland, Matthew J. Perret, Edith Folkman, Chad M. Fong, Dillon D. Thompson, Carol Fuoss, Paul H. Eastman, Jeffrey A. TI Effect of SrO Doping on LaGaO3 Synthesis via Magnetron Sputtering SO CRYSTAL GROWTH & DESIGN LA English DT Article ID OXIDE INTERFACES; CRYSTAL-SURFACES; EPITAXY AB The high temperature growth behavior of epitaxial LaGaO3 thin films with and without SrO is determined with realtime X-ray scattering. We find SrO alters the thin film growth mode of LaGaO3, both when predeposited on a surface as well as when SrO and LaGaO3 are codeposited. We also find that depositing a small amount of SrO on a LaGaO3 surface induces significant structural rearrangement in the film. We describe mechanisms under which these transformations can occur. The strong effect of SrO on the microstructure of Lai,SrxGaO(3) likely has wider implications for other ionically conducting oxide materials. C1 [Highland, Matthew J.; Perret, Edith; Folkman, Chad M.; Fong, Dillon D.; Fuoss, Paul H.; Eastman, Jeffrey A.] Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. [Thompson, Carol] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Perret, Edith] Univ Fribourg, Chemin Musee 3, CH-1700 Fribourg, Switzerland. [Folkman, Chad M.] Seagate LLC, 47488 Kato Rd, Fremont, CA 94538 USA. RP Highland, MJ (reprint author), Argonne Natl Lab, Mat Sci Div, Argonne, IL 60439 USA. EM mhighland@anl.gov FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Science and Engineering Division; DOE, Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Science and Engineering Division. The use of the Advanced Photon Source at Argonne National Laboratory was supported by the DOE, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 20 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD DEC PY 2016 VL 16 IS 12 BP 6812 EP 6816 DI 10.1021/acs.cgd.6b00914 PG 5 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA EE5DD UT WOS:000389624200019 ER PT J AU Bozdag, E Peter, D Lefebvre, M Komatitsch, D Tromp, J Hill, J Podhorszki, N Pugmire, D AF Bozdag, Ebru Peter, Daniel Lefebvre, Matthieu Komatitsch, Dimitri Tromp, Jeroen Hill, Judith Podhorszki, Norbert Pugmire, David TI Global adjoint tomography: first-generation model SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Body waves; Surface waves and free oscillations; Seismic anisotropy; Seismic tomography; Computational seismology; Wave propagation; Waveform inversion ID WAVE-FORM INVERSION; SHEAR-VELOCITY MODEL; UPPER-MANTLE STRUCTURE; 3-DIMENSIONAL SENSITIVITY KERNELS; AUTOMATED MULTIMODE INVERSION; SPECTRAL-ELEMENT SIMULATIONS; SOUTHERN CALIFORNIA CRUST; MOMENT TENSOR INVERSIONS; SEISMIC-REFLECTION DATA; FREQUENCY TRAVEL-TIMES AB We present the first-generation global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. Synthetic seismograms were calculated using GPU-accelerated spectral-element simulations of global seismic wave propagation, accommodating effects due to 3-D anelastic crust & mantle structure, topography & bathymetry, the ocean load, ellipticity, rotation, and self-gravitation. Fr,chet derivatives were calculated in 3-D anelastic models based on an adjoint-state method. The simulations were performed on the Cray XK7 named 'Titan', a computer with 18 688 GPU accelerators housed at Oak Ridge National Laboratory. The transversely isotropic global model is the result of 15 tomographic iterations, which systematically reduced differences between observed and simulated three-component seismograms. Our starting model combined 3-D mantle model S362ANI with 3-D crustal model Crust2.0. We simultaneously inverted for structure in the crust and mantle, thereby eliminating the need for widely used 'crustal corrections'. We used data from 253 earthquakes in the magnitude range 5.8 a parts per thousand M-w a parts per thousand 7.0. We started inversions by combining similar to 30 s body-wave data with similar to 60 s surface-wave data. The shortest period of the surface waves was gradually decreased, and in the last three iterations we combined similar to 17 s body waves with similar to 45 s surface waves. We started using 180 min long seismograms after the 12th iteration and assimilated minor- and major-arc body and surface waves. The 15th iteration model features enhancements of well-known slabs, an enhanced image of the Samoa/Tahiti plume, as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone and Erebus. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the starting model. Point-spread function tests demonstrate that we are approaching the resolution of continental-scale studies in some areas, for example, underneath Yellowstone. This is a consequence of our multiscale smoothing strategy in which we define our smoothing operator as a function of the approximate Hessian kernel, thereby smoothing gradients less wherever we have good ray coverage, such as underneath North America. C1 [Bozdag, Ebru] Univ Nice Sophia Antipolis, Lab Geoazur, F-06560 Valbonne, France. [Peter, Daniel] KAUST, Extreme Comp Res Ctr, Thuwal 239556900, Saudi Arabia. [Lefebvre, Matthieu; Tromp, Jeroen] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Komatitsch, Dimitri] Aix Marseille Univ, CNRS, UPR 7051, LMA,Cent Marseille, F-13453 Marseille 13, France. [Tromp, Jeroen] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA. [Hill, Judith; Podhorszki, Norbert; Pugmire, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bozdag, E (reprint author), Univ Nice Sophia Antipolis, Lab Geoazur, F-06560 Valbonne, France. EM bozdag@geoazur.unice.fr OI Komatitsch, Dimitri/0000-0003-2309-8269 FU DOE Office of Science User Facility [DE-AC05-00OR22725]; NSF [1112906]; UNS-CNRS Chaire d'Excellence grant FX EB dedicates this manuscript to her parents, Zahire & Hilmi Bozdag. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under contract DE-AC05-00OR22725. Additional computational resources were provided by the Princeton Institute for Computational Science& Engineering (PICSciE). We acknowledge IRIS (iris.edu) and ORFEUS (orfeus-eu.org) for providing the data used in this study. We gratefully acknowledge editor Gabi Laske, Carl Tape and an anonymous reviewer for constructive feedback which improved the manuscript. We thank Heiner Igel, Suzan van der Lee, Guust Nolet, Jeroen Ritsema, Frederik J. Simons and Jeannot Trampert for their support and fruitful discussions. We also thank Wenjie Lei and Youyi Ruan for providing 40 reinverted CMT solutions for tests with an independent set of earthquakes, and Yanhua Yuan, Ryan Modrak, Vadim Monteiller, Lion Krischer and James Smith for various discussions on FWI. The open source spectral-element software package SPECFEM3D_GLOBE and the seismic measurement software package FLEXWIN used for this article are freely available via the Computational Infrastructure for Geodynamics (CIG; geodynamics.org). This research was supported by NSF grant 1112906. EB was partly supported by her UNS-CNRS Chaire d'Excellence grant. NR 159 TC 0 Z9 0 U1 26 U2 26 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD DEC PY 2016 VL 207 IS 3 BP 1739 EP 1766 DI 10.1093/gji/ggw356 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA ED5ZP UT WOS:000388933300026 ER PT J AU Oldenburg, CM Cihan, A Zhou, QL Fairweather, S Spangler, LH AF Oldenburg, Curtis M. Cihan, Abdullah Zhou, Quanlin Fairweather, Stacey Spangler, Lee H. TI Geologic carbon sequestration injection wells in overpressured storage reservoirs: estimating area of review SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Review DE area of review; Class VI; overpressured reservoirs; non-hydrostatic; USDW endangerment ID PRESSURE BUILDUP; CO2 STORAGE; AQUIFERS AB The Area of Review (AoR) under the US Environmental Protection Agency's (EPA) Class VI CO2 injection permit is defined as the region surrounding the geologic carbon sequestration (GCS) project where underground sources of drinking water (USDWs) may be endangered. Estimation of the AoR is based on the calculated reservoir pressurization due to CO2 injection and the associated potential to lift saline water into potable groundwater aquifers through open flow paths (e.g. wells) assuming the system is hydrostatic. In cases where the storage reservoirs are not initially hydrostatic, and in particular where they are overpressured, AoR estimation methods need to be altered. In this paper, we present and apply an approach to evaluating potential endangerment of USDW based on comparing brine leakage through a hypothetical open flow path in a no-injection scenario and brine leakage in a CO2-injection scenario. We present six possible ways to normalize injection-related leakage relative to no-injection leakage. We calculate leakage using semi-analytical solutions for single-phase flow and model reservoir pressurization and flow up (single) leaky wells located progressively farther from the injection well. For an example case of relative overpressure and using an injection-rate-based approach, results show 50-60% larger open-well-leakage rates for wells located at 2 km and 10% increase for wells located at 10 km from the injection well relative to the no-injection case. If total brine leakage is considered, the results depend strongly on the assumed pre-injection to post-injection time frames and on the methods of normalization used to calculate incremental leakage. (C) 2016 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Oldenburg, Curtis M.; Zhou, Quanlin] Lawrence Berkeley Natl Lab, Earth Sci Div 74-316C, Berkeley, CA USA. [Cihan, Abdullah] Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA USA. [Fairweather, Stacey; Spangler, Lee H.] Montana State Univ, Big Sky Carbon Sequestrat Partnership, Bozeman, MT 59717 USA. RP Oldenburg, CM (reprint author), Lawrence Berkeley Natl Lab, Earth Sci Div 74-316C, Berkeley, CA USA. EM cmoldenburg@lbl.gov RI Zhou, Quanlin/B-2455-2009; Cihan, Abdullah/D-3704-2015 OI Zhou, Quanlin/0000-0001-6780-7536; FU Office of Sequestration, Hydrogen, and Clean Coal Fuels, through the Big Sky Carbon Sequestration Partnership (BSCSP) [DE-FC26-05NT42587]; US Department of Energy [DE-AC02-05CH11231] FX We thank Chris Doughty (LBNL) for a careful and constructive internal review. This work was supported by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, through the Big Sky Carbon Sequestration Partnership (BSCSP) managed by the National Energy Technology Laboratory Regional Carbon Sequestration Partnership Program Award Number: DE-FC26-05NT42587. Additional support came from the US Department of Energy under Contract No. DE-AC02-05CH11231. This report was prepared as an account of work sponsored by an agency of the United States Government. NR 18 TC 0 Z9 0 U1 6 U2 6 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD DEC PY 2016 VL 6 IS 6 BP 775 EP 786 DI 10.1002/ghg.1607 PG 12 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA EE7ZX UT WOS:000389845100005 ER PT J AU Soong, Y Howard, BH Dilmore, RM Haljasmaa, I Crandall, DM Zhang, LW Zhang, W Lin, RH Irdi, GA Romanov, VN Mclendon, TR AF Soong, Yee Howard, Bret H. Dilmore, Robert M. Haljasmaa, Igor Crandall, Dustin M. Zhang, Liwei Zhang, Wu Lin, Ronghong Irdi, Gino A. Romanov, Vyacheslav N. Mclendon, Thomas R. TI CO2/brine/rock interactions in Lower Tuscaloosa formation SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE CO2 sequestration; Tuscaloosa formation; chemical interaction; permeability; saline aquifer ID CO2 SEQUESTRATION; CARBON-DIOXIDE; DISSOLUTION; COAL; STORAGE AB Saline aquifers are the largest potential continental geologic CO2 sequestration resource. Understanding of potential geochemically induced changes to the porosity and permeability of host CO2 storage and sealing formation rock will improve our ability to predict CO2 plume dynamics, storage capacity, and long-term reservoir behavior. Experiments exploring geochemical interactions of CO2/brine/rock on saline formations under CO2 sequestration conditions were conducted in a static system. Chemical interactions in core samples from the Lower Tuscaloosa formation from Jackson County, Mississippi, with exposure to CO2-saturated brine under sequestration conditions were studied through six months of batch exposure. The experimental conditions to which the core samples of Lower Tuscaloosa sandstone and Selma chalk were exposed to a temperature of 85 degrees C, CO2 pressure of 23.8 MPa (3500 psig), while immersed in a model brine representative of Tuscaloosa Basin. Computed tomography (CT), X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), brine chemistry, and petrography analyses were performed before and after the exposure. Permeability measurements from the sandstone core sample before and after exposure showed a permeability reduction. No significant change of the permeability measurements was noticed for the core sample obtained from Selma chalk after it was exposed to CO2/brine for six months. These results have implications for performance of the storage interval, and the integrity of the seal in a CO2 storage setting. (C) 2016 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Soong, Yee; Howard, Bret H.; Dilmore, Robert M.; Haljasmaa, Igor; Crandall, Dustin M.; Zhang, Liwei; Zhang, Wu; Lin, Ronghong; Irdi, Gino A.; Romanov, Vyacheslav N.; Mclendon, Thomas R.] US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. RP Soong, Y (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM Soong@netl.doe.gov FU United States Government FX This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 29 TC 0 Z9 0 U1 1 U2 1 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD DEC PY 2016 VL 6 IS 6 BP 824 EP 837 DI 10.1002/ghg.1611 PG 14 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA EE7ZX UT WOS:000389845100009 ER PT J AU Nilsen, J Bachmann, B Zimmerman, GB Hatarik, R Doppner, T Swift, D Hawreliak, J Collins, GW Falcone, RW Glenzer, SH Kraus, D Landen, OL Kritcher, AL AF Nilsen, J. Bachmann, B. Zimmerman, G. B. Hatarik, R. Doppner, T. Swift, D. Hawreliak, J. Collins, G. W. Falcone, R. W. Glenzer, S. H. Kraus, D. Landen, O. L. Kritcher, A. L. TI Using neutrons to measure keV temperatures in highly compressed plastic at multi-Gbar pressures SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Gbar; Shock compression; EOS; Hugoniot ID HYDRA SIMULATIONS AB We have designed an experiment for the National Ignition Facility to measure the Hugoniot of materials such as plastic at extreme pressures. The design employs a strong spherically converging shock launched through a solid ball of material using a hohlraum radiation drive. The shock front conditions can be characterized using X-ray radiography until background from shock coalescence overtakes the backlit signal. Shock coalescence at the center is predicted to reach tens of Gbars and can be further characterized by measuring the X-ray self-emission and 2.45 MeV neutrons emitted from the shock flash region. In this simulation design work the standard plastic sphere is replaced with a deuterated polyethylene sphere, CD2, that reaches sufficiently high densities and temperatures in the central hot spot to produce neutrons from Deuterium -Deuterium (DD) fusion reactions that can be measured by a neutron time of flight spectrometer (nTOF) and act as a temperature diagnostic. This paper focuses on the design of these experiments, based on an extensive suite of radiation-hydrodynamics simulations, and the interpretation of the predicted DD neutron signals. The simulations predict mean temperatures of 1 keV in the central hot spot with mean densities of 33 g/cc and mean pressures of 25 Gbar. A preliminary comparison with early experimental results looks promising with an average ion temperature of 1.06 +/- 0.15 keV in the central hot spot estimated from the nTOF spectral width and measured neutron yield of 7.0 (+/- 0.5) x 10(9) DD neutrons. (C) 2016 Elsevier B.V. All rights reserved. C1 [Nilsen, J.; Bachmann, B.; Zimmerman, G. B.; Hatarik, R.; Doppner, T.; Swift, D.; Collins, G. W.; Landen, O. L.; Kritcher, A. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Hawreliak, J.] Washington State Univ, Pullman, WA 99164 USA. [Falcone, R. W.; Kraus, D.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Glenzer, S. H.] Stanford Linear Accelerator Ctr, Stanford, CA 94305 USA. RP Nilsen, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM jnilsen@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344]; Laboratory Directed Research and Development [13-ERD-073] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by Laboratory Directed Research and Development Grant No.13-ERD-073. The experiments on NIF were done under the NIF Discovery Science Program. We thank Bruce Remington for his advice during the preparation of this manuscript. NR 14 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD DEC PY 2016 VL 21 BP 20 EP 26 DI 10.1016/j.hedp.2016.10.001 PG 7 WC Physics, Fluids & Plasmas SC Physics GA EE4PB UT WOS:000389584700004 ER PT J AU Xu, YJ Pan, F Tong, L AF Xu, Yunjian Pan, Feng Tong, Lang TI Dynamic Scheduling for Charging Electric Vehicles: A Priority Rule SO IEEE TRANSACTIONS ON AUTOMATIC CONTROL LA English DT Article DE Deadline scheduling; demand response; dynamic programming; plug-in hybrid electric vehicle ID INTEGRATION; SYSTEM AB We consider the scheduling of multiple tasks with pre-determined deadlines under arbitrarily random processing cost and task arrival. This problemis motivated by the potential of large scale adoption of plug-in (hybrid) electric vehicles (PHEVs) in the near future. We seek to properly schedule the battery charging of multiple PHEVs so as to minimize the overall cost, which is derived from the total charging cost and the penalty for not completing charging before requested deadlines. Through a dynamic programming formulation, we establish the Less Laxity and Longer remaining Processing time (LLLP) principle that improves any charging policy on a sample-path basis, when the non-completion penalty is a convex function of the additional time needed to fulfill the uncompleted request. Specifically, the LLLP principle states that priority should be given to vehicles that have less laxity and longer remaining processing times. Numerical results demonstrate that heuristic policies that violate the LLLP principle, for example, the earliest deadline first policy, can result in significant performance loss. C1 [Xu, Yunjian] Singapore Univ Technol & Design, Engn Syst & Design Pillar, Singapore, Singapore. [Pan, Feng] Pacific Northwest Natl Lab, Elect Infrastruct Grp, Richland, WA 99354 USA. [Tong, Lang] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA. RP Xu, YJ (reprint author), Singapore Univ Technol & Design, Engn Syst & Design Pillar, Singapore, Singapore. EM yunjian_xu@sutd.edu.sg; feng.pan@pnnl.gov; ltong@cornell.edu FU National Science Foundation [CNS 1135844] FX This work was supported in part by the National Science Foundation under CNS 1135844. A preliminary version of this paper was previously presented at the Proceedings of the 2012 IEEE Annual Conference on Decision and Control, Maui, HI, December 2012 [23]. Recommended by Associate Editor I. V. Kolmanovsky. NR 24 TC 0 Z9 0 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9286 EI 1558-2523 J9 IEEE T AUTOMAT CONTR JI IEEE Trans. Autom. Control PD DEC PY 2016 VL 61 IS 12 BP 4094 EP 4099 DI 10.1109/TAC.2016.2541305 PG 6 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA EE8QP UT WOS:000389891100034 ER PT J AU Duan, GX Hachtel, JA Zhang, EX Zhang, CX Fleetwood, DM Schrimpf, RD Reed, RA Mitard, J Linten, D Witters, L Collaert, N Mocuta, A Thean, AVY Chisholm, MF Pantelides, ST AF Duan, Guo Xing Hachtel, Jordan A. Zhang, En Xia Zhang, Cher Xuan Fleetwood, Daniel M. Schrimpf, Ronald D. Reed, Robert A. Mitard, Jerome Linten, Dimitri Witters, Liesbeth Collaert, Nadine Mocuta, Anda Thean, Aaron Voon-Yew Chisholm, Matthew F. Pantelides, Sokrates T. TI Effects of Negative-Bias-Temperature-Instability on Low-Frequency Noise in SiGe pMOSFETs SO IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY LA English DT Article DE SiGe; HfO2; NBTI; oxygen vacancy defects; 1/f noise; defect energy distribution; relaxation-assisted transitions ID 1/F NOISE; MOS DEVICES; GATE DIELECTRICS; BORDER TRAPS; AMORPHOUS SIO2; OXIDE; STRESS; TRANSISTORS; HYDROGEN; CHANNEL AB We have measured the low-frequency 1/f noise of Si0.55Ge0.45 pMOSFETs with a Si capping layer and SiO2/HfO2/TiN gate stack as a function of frequency, gate voltage, and temperature (100-440 K). The magnitude of the excess drain voltage noise power spectral density (S-vd) is unaffected by negative-bias-temperature stress (NBTS) for temperatures below similar to 250 K, but increases significantly at higher temperatures. The noise is described well by the Dutta-Horn model before and after NBTS. The noise at higher measuring temperatures is attributed primarily to oxygen-vacancy and hydrogen-related defects in the SiO2 and HfO2 layers. At lower measuring temperatures, the noise also appears to be affected strongly by hydrogen-dopant interactions in the SiGe layer of the device. C1 [Duan, Guo Xing; Zhang, En Xia; Zhang, Cher Xuan; Fleetwood, Daniel M.; Schrimpf, Ronald D.; Reed, Robert A.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Hachtel, Jordan A.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Mitard, Jerome; Linten, Dimitri; Witters, Liesbeth; Collaert, Nadine; Mocuta, Anda; Thean, Aaron Voon-Yew] IMEC, B-3001 Leuven, Belgium. [Chisholm, Matthew F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Duan, GX (reprint author), Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. EM guoxing.duan@vanderbilt.edu; jordan.hachtel@gmail.com; enxia.zhang@vanderbilt.edu; xuan.zhang@vanderbilt.edu; dan.fleetwood@vanderbilt.edu; ron.schrimpf@vanderbilt.edu; robert.reed@vanderbilt.edu; jerome.mitard@imec.be; dimitri.linten@imec.be; liesbeth.witters@imec.be; collaert@imec.be; anda.mocuta@imec.be; aaron.thean@imec.be; chisholmmf@ornl.gov; pantelides@vanderbilt.edu FU Air Force Office of Scientific Research; Air Force Research Laboratory through the HiREV Program; Defense Threat Reduction Agency through its Fundamental Research Program; National Science Foundation [ECCS-1508898]; Department of Energy [DE-FG02-09ER46554]; U.S. Department of Energy Office of Science, Basic Energy Sciences, Materials Science, and Engineering Directorate FX This work was supported in part by the Air Force Office of Scientific Research and Air Force Research Laboratory through the HiREV Program, in part by the Defense Threat Reduction Agency through its Fundamental Research Program, in part by the National Science Foundation under Grant ECCS-1508898, in part by the Department of Energy under Grant DE-FG02-09ER46554, and in part by the U.S. Department of Energy Office of Science, Basic Energy Sciences, Materials Science, and Engineering Directorate. NR 66 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-4388 EI 1558-2574 J9 IEEE T DEVICE MAT RE JI IEEE Trans. Device Mater. Reliab. PD DEC PY 2016 VL 16 IS 4 BP 541 EP 548 DI 10.1109/TDMR.2016.2611533 PG 8 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA EE8CN UT WOS:000389852400018 ER PT J AU Chaudhari, MI Nair, JR Pratt, LR Soto, FA Balbuena, PB Rempe, SB AF Chaudhari, Mangesh I. Nair, Jijeesh R. Pratt, Lawrence R. Soto, Fernando A. Balbuena, Perla B. Rempe, Susan B. TI Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; QUASI-CHEMICAL THEORY; DENSITY-FUNCTIONAL THEORY; GIBBS FREE-ENERGY; PROPYLENE CARBONATE; ETHYLENE CARBONATE; THERMODYNAMIC PROPERTIES; POLYMER ELECTROLYTES; TRANSFERENCE NUMBERS; HYDRATION STRUCTURE AB Lithium-ion solvation and diffusion properties in ethylene carbonate (EC) and propylene carbonate (PC) were studied by molecular simulation, experiments, and electronic structure calculations. Studies carried out in water provide a reference for interpretation. Classical molecular dynamics simulation results are compared to ab initio molecular dynamics to assess nonpolarizable force field parameters for solvation structure of the carbonate solvents. Quasi-chemical theory (QCT) was adapted to take advantage of fourfold occupancy of the near-neighbor solvation structure observed in simulations and used to calculate salvation free energies. The computed free energy for transfer of Li+ to PC from water, based on electronic structure calculations with cluster-QCT, agrees with the experimental value. The simulation-based direct-QCT results with scaled partial charges agree with the electronic structure-based QCT values. The computed Li+/PF6- transference numbers of 0.35/0.65 (EC) and 0.31/0.69 (PC) agree well with NMR experimental values of 0.31/0.69 (EC) and 0.34/0.66 (PC) and similar values obtained here with impedance spectroscopy. These combined results demonstrate that solvent partial charges can be scaled in systems dominated by strong electrostatic interactions to achieve trends in ion solvation and transport properties that are comparable to ab initio and experimental results. Thus, the results support the use of scaled partial charges in simple, nonpolarizable force fields in future studies of these electrolyte solutions. C1 [Chaudhari, Mangesh I.; Rempe, Susan B.] Sandia Natl Labs, Ctr Biol & Engn Sci, POB 5800, Albuquerque, NM 87185 USA. [Nair, Jijeesh R.] Politecn Torino, Dept Appl Sci & Technol, I-10129 Turin, Italy. [Pratt, Lawrence R.] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. [Soto, Fernando A.; Balbuena, Perla B.] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. RP Chaudhari, MI; Rempe, SB (reprint author), Sandia Natl Labs, Ctr Biol & Engn Sci, POB 5800, Albuquerque, NM 87185 USA. EM michaud@sandia.gov; slrempe@sandia.gov FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; Advanced Batteries Materials Research (BMR) Program [7060634]; Sandia's LDRD program FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract DE-AC02-05CH11231, Subcontract 7060634 under the Advanced Batteries Materials Research (BMR) Program and Sandia's LDRD program (MIC and SBR). NR 67 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2016 VL 12 IS 12 BP 5709 EP 5718 DI 10.1021/acs.jctc.6b00824 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EE8HO UT WOS:000389866500004 PM 27767309 ER PT J AU Zhao, LN Neuscamman, E AF Zhao, Luning Neuscamman, Eric TI Amplitude Determinant Coupled Cluster with Pairwise Doubles SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-ORBITAL METHODS; BOND DISSOCIATIONS; QUANTUM-CHEMISTRY; BERYLLIUM ATOM; WAVE-FUNCTIONS; GEMINALS; OPTIMIZATION; SYSTEMS; MATRIX; STATES AB Recently developed pair coupled cluster doubles (pCCD) theory successfully reproduces doubly occupied configuration interaction (DOCI) with mean field cost. However, the projective nature of pCCD makes the method nonvariational and thus hard to improve systematically. As a variational alternative, we explore the idea of coupled-cluster-like expansions based on amplitude determinants and develop a specific theory similar to pCCD based on determinants of pairwise doubles. The new ansatz admits a variational treatment through Monte Carlo methods while remaining size-consistent and, crucially, polynomial cost. In the dissociations of LiH, HF, H2O, and N-2, the method performs very similarly to pCCD and DOCI, suggesting that coupled-cluster-like ansatzes and variational evaluation may not be mutually exclusive. In an attractive pairing model, the method retains its accuracy even when pCCD suffers a severe variational violation. C1 [Zhao, Luning; Neuscamman, Eric] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neuscamman, Eric] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neuscamman, E (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM eneuscamman@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge funding from the Office of Science, Office of Basic Energy Sciences, the US Department of Energy, Contract No. DE-AC02-05CH11231. NR 50 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2016 VL 12 IS 12 BP 5841 EP 5850 DI 10.1021/acs.jctc.6b00812 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EE8HO UT WOS:000389866500016 PM 27951670 ER PT J AU Wilhelm, J Seewald, P Del Ben, M Hutter, J AF Wilhelm, Jan Seewald, Patrick Del Ben, Mauro Hutter, Jurg TI Large-Scale Cubic-Scaling Random Phase Approximation Correlation Energy Calculations Using a Gaussian Basis SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLLER-PLESSET THEORY; PLANE-WAVES SCHEME; PERIODIC-SYSTEMS; MOLECULAR INTEGRALS; PERTURBATION-THEORY; LAPLACE TRANSFORM; EXCESS ELECTRONS; RESOLUTION; RPA; MP2 AB We present an algorithm for computing the correlation energy in the random phase approximation (RPA) in a Gaussian basis requiring O(N-3) operations and O(N-2) memory. The method is based on the resolution of the identity (RI) with the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time, and imaginary frequency integration techniques, and the use of sparse linear algebra. Additional memory reduction without extra computations can be achieved by an iterative scheme that overcomes the memory bottleneck of canonical RPA implementations. We report a massively parallel implementation that is the key for the application to large systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a correlation-consistent triple-zeta quality basis. C1 [Wilhelm, Jan; Seewald, Patrick; Hutter, Jurg] Univ Zurich, Dept Chem, CH-8057 Zurich, Switzerland. [Wilhelm, Jan; Seewald, Patrick; Hutter, Jurg] Univ Zurich, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-8057 Zurich, Switzerland. [Del Ben, Mauro] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Wilhelm, J; Hutter, J (reprint author), Univ Zurich, Dept Chem, CH-8057 Zurich, Switzerland.; Wilhelm, J; Hutter, J (reprint author), Univ Zurich, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-8057 Zurich, Switzerland. EM jan.wilhelm@chem.uzh.ch; hutter@chem.uzh.ch FU Swiss National Super computing Center (CSCS) [mr2, uzh1]; NCCR MARVEL - Swiss National Science Foundation FX Calculations were enabled by the Swiss National Super computing Center (CSCS) under project ID mr2 and uzh1. We thank Andreas Gloss and Joost VandeVondele for helpful discussions. This research was supported by the NCCR MARVEL, funded by the Swiss National Science Foundation. NR 89 TC 1 Z9 1 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD DEC PY 2016 VL 12 IS 12 BP 5851 EP 5859 DI 10.1021/acs.jctc.6b00840 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EE8HO UT WOS:000389866500017 PM 27779863 ER PT J AU Lieberman, HR Agarwal, S Fulgoni, VL AF Lieberman, Harris R. Agarwal, Sanjiv Fulgoni, Victor L., III TI Tryptophan Intake in the US Adult Population Is Not Related to Liver or Kidney Function but Is Associated with Depression and Sleep Outcomes SO JOURNAL OF NUTRITION LA English DT Article; Proceedings Paper CT 9th Workshop on the Assessment of Adequate and Safe Intake of Dietary Amino Acids at the 9th Amino Acid Assessment Workshop CY OCT 15-16, 2015 CL Paris, FRANCE SP Int Council Amino Acid Sci DE liver function markers; kidney function markers; glucose; insulin; mood; Patient Health Questionnaire (PHQ-9); serotonin ID EOSINOPHILIA-MYALGIA-SYNDROME; MOOD; PERFORMANCE; DEPLETION; NUTRITION; MELATONIN; ILLNESS; TESTS AB Background: Tryptophan is an indispensable amino acid and is a precursor of the neurotransmitter serotonin. Tryptophan metabolites, such as serotonin and melatonin, are thought to participate in the regulation of mood and sleep and tryptophan is used to treat insomnia, sleep apnea, and depression. Objective: This study examined the intake of tryptophan and its associations with biochemical, behavioral, sleep, and health and safety outcomes in adults in a secondary analysis of a large, publicly available database of the US population. Methods: Data from the NHANES 2001-2012 (n = 29,687) were used to determine daily intakes of tryptophan and its associations with biochemical markers of health- and safety-related outcomes, self-reported depression, and sleep-related variables. Data were adjusted for demographic factors and protein intake. Linear trends were computed across deciles of intake for each outcome variable, and P-trends were determined. Results: The usual tryptophan intake by US adults was 826 mg/d, severalfold higher than the Estimated Average Requirement for adults of 4 mg/(kg . d) (similar to 280 mg/d for a 70-kg adult). Most health- and safety-related biochemical markers of liver function, kidney function, and carbohydrate metabolism were not significantly (P-trend > 0.05) associated with deciles of tryptophan intake and were well within normal ranges, even for individuals in the 99th percentile of intake. Usual intake deciles of tryptophan were inversely associated with self-reported depression measured by the Patient Health Questionnaire raw score (0-27; P-trend < 0.01) and calculated level (1 = no depression, 5 = severe depression; P-trend < 0.01) and were positively associated with self-reported sleep duration (P-trend = 0.02). Conclusions: Tryptophan intake was not related to most markers of liver function, kidney function or carbohydrate metabolism. Levels of tryptophan intake in the US population appear to be safe as shown by the absence of abnormal laboratory findings. Tryptophan intake was inversely associated with self-reported level of depression and positively associated with sleep duration. C1 [Lieberman, Harris R.] US Army Res Inst Environm Med, Mil Nutr Div, Natick, MA 01760 USA. [Agarwal, Sanjiv; Fulgoni, Victor L., III] Oak Ridge Inst Sci & Educ, Belcamp, MD USA. [Fulgoni, Victor L., III] Henry M Jackson Fdn, Bethesda, MD USA. RP Lieberman, HR (reprint author), US Army Res Inst Environm Med, Mil Nutr Div, Natick, MA 01760 USA. EM harriss.lieberman.civ@mail.mil NR 47 TC 0 Z9 0 U1 4 U2 4 PU AMER SOC NUTRITION-ASN PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-3166 EI 1541-6100 J9 J NUTR JI J. Nutr. PD DEC PY 2016 VL 146 IS 12 BP 2609 EP 2615 DI 10.3945/jn.115.226969 PG 7 WC Nutrition & Dietetics SC Nutrition & Dietetics GA EE2CP UT WOS:000389391600024 PM 27934652 ER PT J AU Sun, H Stockbridge, N Ariagno, RL Murphy, D Nelson, RM Rodriguez, W AF Sun, H. Stockbridge, N. Ariagno, R. L. Murphy, D. Nelson, R. M. Rodriguez, W. TI Reliable and developmentally appropriate study end points are needed to achieve drug development for treatment of pediatric pulmonary arterial hypertension SO JOURNAL OF PERINATOLOGY LA English DT Article ID POSITRON-EMISSION-TOMOGRAPHY; 6-MINUTE WALK DISTANCE; PHYSICAL-ACTIVITY; CARDIAC-OUTPUT; ELECTRICAL VELOCIMETRY; NONINVASIVE ASSESSMENT; THERMODILUTION; BOSENTAN; HEMODYNAMICS; ACTIGRAPHY AB OBJECTIVE: To identify suitable end points and surrogates for pediatric pulmonary arterial hypertension (PAH) as the lack of developmentally appropriate end point and clinical trials contribute to the unmet medical need. STUDY DESIGN: Reviewed the efficacy end points and surrogates for all trials (1995 to 2013) that were submitted to the Food and Drug Administration (FDA) to support the approval of PAH therapy and conducted literature search. RESULTS: An increase in the 6 min walking distance (6MWD) was used as a primary end point in 8/9 adult PAH trials. This end point is not suitable for infants and young children because of performance limitations and lack of control data. One adult PAH trial used time to the first morbidity or mortality event as a primary end point, which could potentially be used in pediatric PAH trials. In the sildenafil pediatric PAH trial, the change in pulmonary vascular resistance index or mean pulmonary artery pressure was used as a surrogate for the 6MWD to assess exercise capacity. However, two deaths and three severe adverse events during the catheterizations made this an unacceptably high-risk surrogate. The INOmax persistent pulmonary hypertension of the newborn trial used a reduction in initiation of extracorporeal membrane oxygenation treatment as a primary end point, which is not feasible for other pediatric PAH trials. A Literature review revealed none of the existing noninvasive markers are fully validated as surrogates to assess PAH efficacy and long-term safety. CONCLUSIONS: For pediatric PAH trials, clinical end points are acceptable, and novel validated surrogates would be helpful. FDA seeks collaboration with academia, industry and parents to develop other suitable and possibly more efficient efficacy end points to facilitate pediatric PAH drug development. C1 [Sun, H.; Murphy, D.; Nelson, R. M.; Rodriguez, W.] US FDA, Off Pediat Therapeut, Off Commissioner, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA. [Stockbridge, N.] Food & Drug Adm, Div Cardiovasc & Renal Prod, Silver Spring, MD USA. [Ariagno, R. L.] Stanford Univ, Div Neonatal & Dev Med, Palo Alto, CA 94304 USA. [Ariagno, R. L.] Oak Ridge Inst Sci & Educ, Silver Spring, MD USA. RP Sun, H (reprint author), US FDA, Off Pediat Therapeut, Off Commissioner, 10903 New Hampshire Ave, Silver Spring, MD 20993 USA. EM haihao.sun@fda.hhs.gov FU FDA Chief Scientist Challenge Grant FX This work was in part supported by the FDA Chief Scientist Challenge Grant. NR 40 TC 0 Z9 0 U1 7 U2 7 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0743-8346 EI 1476-5543 J9 J PERINATOL JI J. Perinatol. PD DEC PY 2016 VL 36 IS 12 BP 1029 EP 1033 DI 10.1038/jp.2016.103 PG 5 WC Obstetrics & Gynecology; Pediatrics SC Obstetrics & Gynecology; Pediatrics GA EE6PW UT WOS:000389735700001 PM 27416322 ER PT J AU Han, QY AF Han, Qingyou TI A Modified Cast-on Method for the Reinforcement of Aluminum Castings with Dissimilar Metals SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article; Proceedings Paper CT International Symposium on Advances in Materials Manufacturing at the Conference of Metallurgists (COM) CY AUG 23-26, 2015 CL Toronto, CANADA SP Canadian Inst Min, Met & Petr, Met Soc AB A modified cast-on method has been developed to reinforce aluminum castings with steel insert. Defect-free bond between the steel insert and the aluminum casting has been consistently obtained. Data obtained from a push-out experiment indicated that the bond strength was much higher than that obtained using the Al-Fin approach. This paper introduces this modified method in four sections: the coating of the steel pins, the cast-on method, microstructure characterization, and the bond strength. The section on the coating of the steel pins contains coating material selection, electroplating technique for plating Cu and Ni on steel, and diffusion bonding of the coatings to the steel. The section on cast-on method deals with factors that affecting the quality of the metallurgical bond between the coated steel and the aluminum castings. The results of microstructure characteristics of the bonding are presented in the microstructure characterization section. A push-out experiment and the results obtained using this method is described in the section of bond strength/mechanical property. (C) The Minerals, Metals & Materials Society and ASM International 2016 C1 [Han, Qingyou] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Han, Qingyou] Purdue Univ, 401 N Grant St, W Lafayette, IN 47906 USA. RP Han, QY (reprint author), Purdue Univ, 401 N Grant St, W Lafayette, IN 47906 USA. EM hanq@purdue.edu NR 12 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 EI 1543-1916 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD DEC PY 2016 VL 47 IS 6 BP 3266 EP 3273 DI 10.1007/s11663-016-0612-2 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EE7MC UT WOS:000389800800011 ER PT J AU Bernardis, S Fakra, SC Dal Martello, E Larsen, RB Newman, BK Fenning, DP Di Sabatino, M Buonassisi, T AF Bernardis, Sarah Fakra, Sirine C. Dal Martello, Elena Larsen, Rune B. Newman, Bonna K. Fenning, David P. Di Sabatino, Marisa Buonassisi, Tonio TI X-ray Microprobe Investigation of Iron During a Simulated Silicon Feedstock Extraction Process SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article; Proceedings Paper CT International Symposium on Advances in Materials Manufacturing at the Conference of Metallurgists (COM) CY AUG 23-26, 2015 CL Toronto, CANADA SP Canadian Inst Min, Met & Petr, Met Soc ID C-O SYSTEM; SOLAR-CELLS; MULTICRYSTALLINE SILICON; METALLIC SILICON; TRACE-ELEMENTS; QUARTZ; IMPURITIES; KINETICS; THERMODYNAMICS; ABSORPTION AB Elemental silicon is extracted through carbothermic reduction from silicon-bearing raw feedstock materials such as quartz and quartzites. We investigate the micron-scale distribution and valence state of iron, a deleterious impurity in several iron-sensitive applications, in hydrothermal quartz samples of industrial relevance during a laboratory-scale simulated reduction process. We use X-ray diffraction to inspect the quartz structural change and synchrotron-based microprobe techniques to monitor spatial distribution and oxidation state of iron. In the untreated quartz, most of the iron is embedded in foreign minerals, both as ferric (Fe3+, e.g., in muscovite) and ferrous (Fe2+, e.g., as in biotite) iron. Upon heating the quartz to 1273 K (1000 degrees C) under industrial-like conditions in a CO(g) environment, iron is found in ferrous (Fe2+) particles. At this temperature, its chemical state is influenced by mineral decomposition and melting processes, whereas at higher temperatures it is influenced by the silicate melts. As the quartz grains partially transform to cristobalite 1873 K (1600 degrees C), iron diffuses towards liquid-solid interfaces forming ferrous clusters. Silica is liquid at 2173 K (1900 degrees C) and the iron migrates towards the interfaces between gas phases and the silicate liquid. (C) The Minerals, Metals & Materials Society and ASM International 2016 C1 [Bernardis, Sarah; Newman, Bonna K.; Fenning, David P.; Buonassisi, Tonio] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Bernardis, Sarah] French Commiss Atom & Alternat Energies CEA, Le Bourget Du Lac, France. [Fakra, Sirine C.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Dal Martello, Elena] Norwegian Univ Sci & Technol, Trondheim, Norway. [Dal Martello, Elena] BundeGruppen AS, Oslo, Norway. [Larsen, Rune B.] Norwegian Univ Sci & Technol, Geol & Mineral Resources Engn, Trondheim, Norway. [Newman, Bonna K.] Energy Res Ctr Netherlands ECN, Petten, Netherlands. [Fenning, David P.] Univ Calif San Diego, San Diego, CA 92103 USA. [Di Sabatino, Marisa] Norwegian Univ Sci & Technol, Mat Sci & Engn Dept, Trondheim, Norway. RP Bernardis, S (reprint author), French Commiss Atom & Alternat Energies CEA, Le Bourget Du Lac, France. EM bernardis@alum.mit.edu NR 64 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 EI 1543-1916 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD DEC PY 2016 VL 47 IS 6 BP 3565 EP 3574 DI 10.1007/s11663-016-0795-6 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EE7MC UT WOS:000389800800042 ER PT J AU Greenblatt, JB Wei, M AF Greenblatt, Jeffery B. Wei, Max TI Assessment of the climate commitments and additional mitigation policies of the United States SO NATURE CLIMATE CHANGE LA English DT Article ID GREENHOUSE-GAS EMISSIONS; AMERICAN METHANE EMISSIONS; HIGH-SPATIAL-RESOLUTION; SATELLITE DATA AB Current intended nationally determined contributions (INDCs) are insufficient(1) to meet the Paris Agreement goal of limiting temperature change to between 1.5 and 2.0 degrees C above pre-industrial levels(2), so the effectiveness of existing INDCs will be crucial to further progress. Here we assess the likely range of US greenhouse gas (GHG) emissions in 2025 and whether the US's INDC can be met, on the basis of updated historical and projected estimates. We group US INDC policies into three categories reflecting potential future policies, and model 17 policies across these categories. With all modelled policies included, the upper end of the uncertainty range overlaps with the 2025 INDC target, but the required reductions are not achieved using reference values. Even if all modelled policies are implemented, additional GHG reduction is probably required; we discuss several potential policies. C1 [Greenblatt, Jeffery B.; Wei, Max] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, 1 Cyclotron Rd,MS 90-2002, Berkeley, CA 94720 USA. RP Greenblatt, JB (reprint author), Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, 1 Cyclotron Rd,MS 90-2002, Berkeley, CA 94720 USA. EM jbgreenblatt@lbl.gov FU Energy-Foundation under US Department of Energy [DE-AC02-05CH11231] FX The authors thank D. Cullenward for early feedback on our approach, S. M. Donovan for research assistance on CH4 and N2O mitigation options, L. K. Price and J. Lin for guidance and feedback, and M. L. Fischer for comments on the manuscript. Work was supported by the Energy-Foundation under US Department of Energy Contract No. DE-AC02-05CH11231. NR 55 TC 0 Z9 0 U1 10 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD DEC PY 2016 VL 6 IS 12 BP 1090 EP + DI 10.1038/NCLIMATE3125 PG 6 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA EE2RP UT WOS:000389432200014 ER PT J AU Naskar, AK Keum, JK Boeman, RG AF Naskar, Amit K. Keum, Jong K. Boeman, Raymond G. TI Polymer matrix nanocomposites for automotive structural components SO NATURE NANOTECHNOLOGY LA English DT Article ID WALLED CARBON NANOTUBES; MECHANICAL-PROPERTIES; GRAPHENE; CRYSTALLIZATION; PERFORMANCE; PERCOLATION; COMPOSITES; MORPHOLOGY; PARTICLES; STRENGTH AB Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications. C1 [Naskar, Amit K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Carbon & Composites Grp, Oak Ridge, TN 37831 USA. [Keum, Jong K.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Boeman, Raymond G.] Oak Ridge Natl Lab, Energy & Environm Sci Directorate, Oak Ridge, TN 37831 USA. [Boeman, Raymond G.] Michigan State Univ, E Lansing, MI 48824 USA. RP Naskar, AK (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Carbon & Composites Grp, Oak Ridge, TN 37831 USA. EM naskarak@ornl.gov RI Keum, Jong/N-4412-2015 OI Keum, Jong/0000-0002-5529-1373 FU Laboratory Directed Research and Development Program; Technology Innovation Program of Oak Ridge National Laboratory; Center for Nanophase Materials Sciences and the Spallation Neutron Source; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX We acknowledge support from the Laboratory Directed Research and Development Program and Technology Innovation Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy. J.K.K. also acknowledges the financial support of the Center for Nanophase Materials Sciences and the Spallation Neutron Source, which are sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 49 TC 0 Z9 0 U1 32 U2 32 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD DEC PY 2016 VL 11 IS 12 BP 1026 EP 1030 DI 10.1038/NNANO.2016.262 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EE9QY UT WOS:000389962500009 PM 27920443 ER PT J AU Lu, J Chen, ZH Ma, ZF Pan, F Curtiss, LA Amine, K AF Lu, Jun Chen, Zonghai Ma, Zifeng Pan, Feng Curtiss, Larry A. Amine, Khalil TI The role of nanotechnology in the development of battery materials for electric vehicles SO NATURE NANOTECHNOLOGY LA English DT Review ID LITHIUM-ION BATTERIES; GRAPHITE NEGATIVE ELECTRODES; ATOMIC LAYER DEPOSITION; COATED NATURAL GRAPHITE; ANODE MATERIAL; SULFUR BATTERIES; HIGH-CAPACITY; HIGH-ENERGY; ELECTROCHEMICAL PERFORMANCE; RECHARGEABLE BATTERIES AB A significant amount of battery research and development is underway, both in academia and industry, to meet the demand for electric vehicle applications. When it comes to designing and fabricating electrode materials, nanotechnology-based approaches have demonstrated numerous benefits for improved energy and power density, cyclability and safety. In this Review, we offer an overview of nanostructured materials that are either already commercialized or close to commercialization for hybrid electric vehicle applications, as well as those under development with the potential to meet the requirements for long-range electric vehicles. C1 [Lu, Jun; Chen, Zonghai; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Ma, Zifeng] Shanghai Jiao Tong Univ, Dept Chem Engn, Inst Electrochem & Energy Technol, Shanghai 200240, Peoples R China. [Pan, Feng] Peking Univ, Shenzhen Grad Sch, Mat, Shenzhen 518055, Peoples R China. [Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Amine, K (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA.; Pan, F (reprint author), Peking Univ, Shenzhen Grad Sch, Mat, Shenzhen 518055, Peoples R China.; Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM panfeng@pkusz.edu.cn; curtiss@anl.gov; amine@anl.gov FU US Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE); Chinese Electric Power Research Institute (CEPRI) FX This work was supported by the US Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). We also acknowledge support from the Chinese Electric Power Research Institute (CEPRI). NR 115 TC 2 Z9 2 U1 118 U2 118 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD DEC PY 2016 VL 11 IS 12 BP 1031 EP 1038 DI 10.1038/NNANO.2010.207 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EE9QY UT WOS:000389962500010 PM 27920438 ER PT J AU Guo, JL Tardy, BL Christofferson, AJ Dai, YL Richardson, JJ Zhu, W Hu, M Ju, Y Cui, JW Dagastine, RR Yarovsky, I Caruso, F AF Guo, Junling Tardy, Blaise L. Christofferson, Andrew J. Dai, Yunlu Richardson, Joseph J. Zhu, Wei Hu, Ming Ju, Yi Cui, Jiwei Dagastine, Raymond R. Yarovsky, Irene Caruso, Frank TI Modular assembly of superstructures from polyphenol-functionalized building blocks SO NATURE NANOTECHNOLOGY LA English DT Article ID NANOPARTICLE ASSEMBLIES; MACROSCOPIC MATERIALS; DNA; SUPRAPARTICLES; TRANSFORMATION; ORGANIZATION; PARTICLES; CHEMISTRY; CAPSULES; COATINGS AB The organized assembly of particles into superstructures is typically governed by specific molecular interactions or external directing factors associated with the particle building blocks, both of which are particle-dependent. These superstructures are of interest to a variety of fields because of their distinct mechanical, electronic, magnetic and optical properties. Here, we establish a facile route to a diverse range of superstructures based on the polyphenol surface-functionalization of micro- and nanoparticles, nanowires, nanosheets, nanocubes and even cells. This strategy can be used to access a large number of modularly assembled superstructures, including core-satellite, hollow and hierarchically organized supraparticles. Colloidal probe atomic force microscopy and molecular dynamics simulations provide detailed insights into the role of surface functionalization and how this facilitates superstructure construction. Our work provides a platform for the rapid generation of superstructured assemblies across a wide range of length scales, from nanometres to centimetres. C1 [Guo, Junling; Tardy, Blaise L.; Dai, Yunlu; Richardson, Joseph J.; Ju, Yi; Cui, Jiwei; Caruso, Frank] Univ Melbourne, ARC Ctr Excellence Convergent Bionano Sci & Techn, Parkville, Vic 3010, Australia. [Guo, Junling; Tardy, Blaise L.; Dai, Yunlu; Zhu, Wei; Hu, Ming; Ju, Yi; Cui, Jiwei; Dagastine, Raymond R.; Caruso, Frank] Univ Melbourne, Dept Chem & Biomol Engn, Parkville, Vic 3010, Australia. [Christofferson, Andrew J.; Yarovsky, Irene] RMIT Univ, Sch Engn, GPO Box 2476, Melbourne, Vic 3001, Australia. [Richardson, Joseph J.] CSIRO, CSIRO Mfg Flagship, Clayton, Vic 3169, Australia. [Zhu, Wei] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA. [Hu, Ming] East China Normal Univ, Dept Phys, Ctr Funct Nanomat & Devices, Shanghai 200241, Peoples R China. RP Caruso, F (reprint author), Univ Melbourne, ARC Ctr Excellence Convergent Bionano Sci & Techn, Parkville, Vic 3010, Australia.; Caruso, F (reprint author), Univ Melbourne, Dept Chem & Biomol Engn, Parkville, Vic 3010, Australia. EM fcaruso@unimelb.edu.au RI Hu, Ming/C-3187-2012; Caruso, Frank/A-9587-2011; OI Hu, Ming/0000-0002-5024-5650; Caruso, Frank/0000-0002-0197-497X; Yarovsky, Irene/0000-0002-4033-5150; Christofferson, Andrew J./0000-0003-0904-6630; Cui, Jiwei/0000-0003-1018-4336 FU Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology [CE140100036]; ARC under Australian Laureate Fellowship scheme [FL120100030]; ARC under Discovery Project scheme [DP130101846]; Chinese government by China Scholarship Council (CSC) FX This research was conducted and funded by the Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science and Technology (project number CE140100036). This work was also supported by the ARC under the Australian Laureate Fellowship (F.C., FL120100030) and Discovery Project (F.C., DP130101846) schemes. J.G. is grateful for a scholarship under the Chinese government award for outstanding self-financed students abroad by the China Scholarship Council (CSC). This work was performed in part at the Materials Characterisation and Fabrication Platform (MCFP) at the University of Melbourne and the Victorian Node of the Australian National Fabrication Facility (ANFF). We acknowledge F. Tian, Q. Dai, D. Song, X. Chen, M. Bjornmalm, M. Faria, Q. Besford and E. Hirotaka for assistance with experiments. We thank X. Wang, X. Liao and B. Shi for providing the skin collagen matrix and polyphenol extracts. We also thank M. Penna and P. Charchar for useful discussions. A.J.C. and I.Y. acknowledge the generous allocation of high-performance computational resources from the Australian National Computational Infrastructure (NCI), the Western Australian computational facility (iVEC), the Victorian Partnership for Advanced Computing (VPAC), and the Victorian Life Sciences Computational Initiative (VLSCI). NR 45 TC 2 Z9 2 U1 37 U2 37 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD DEC PY 2016 VL 11 IS 12 BP 1105 EP 1111 DI 10.1038/NNANO.2016.172 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EE9QY UT WOS:000389962500022 PM 27723730 ER PT J AU Spindel, JE McCouch, SR AF Spindel, Jennifer E. McCouch, Susan R. TI When more is better: how data sharing would accelerate genomic selection of crop plants SO NEW PHYTOLOGIST LA English DT Article ID MARKER-ASSISTED SELECTION; LINEAR UNBIASED PREDICTION; WHEAT BREEDING PROGRAM; QUANTITATIVE TRAITS; WIDE PREDICTION; GENETIC VALUES; GENOMEWIDE SELECTION; ENABLED PREDICTION; HYBRID PERFORMANCE; MOLECULAR MARKERS C1 [Spindel, Jennifer E.] Lawrence Berkeley Natl Lab, Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. [McCouch, Susan R.] Cornell Univ, Sect Plant Breeding & Genet, 240 Emerson Hall, Ithaca, NY 14853 USA. RP McCouch, SR (reprint author), Cornell Univ, Sect Plant Breeding & Genet, 240 Emerson Hall, Ithaca, NY 14853 USA. EM srm4@cornell.edu RI Spindel, Jennifer/F-1373-2017 NR 81 TC 1 Z9 1 U1 13 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD DEC PY 2016 VL 212 IS 4 BP 814 EP 826 PG 13 WC Plant Sciences SC Plant Sciences GA ED9KQ UT WOS:000389189100013 PM 27716975 ER PT J AU Skavdahl, I Utgikar, V Christensen, R Chen, MH Sun, XD Sabharwall, P AF Skavdahl, Isaac Utgikar, Vivek Christensen, Richard Chen, Minghui Sun, Xiaodong Sabharwall, Piyush TI Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Advanced nuclear reactors; Control system response; Heat exchangers; Load disturbances ID DELAY; POWER AB Alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) are presented in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T-co) and the hot outlet temperature of the intermediate heat exchanger (Th-o2) by manipulating the hot-side flow rates of the heat exchangers (F-h/F-h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the control of the cold outlet temperature of the SHX (T-co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The third option appears preferable as it has an intermediate response time and requires only a minimal flow rate change. Copyright (C) 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This is an open access article under the CC BY-NC-ND license. C1 [Skavdahl, Isaac; Utgikar, Vivek] Univ Idaho, Dept Chem & Mat Engn, 875 Perimeter Dr, Moscow, ID 83844 USA. [Christensen, Richard] Univ Idaho, Nucl Engn Program, 1776 Sci Ctr Dr, Idaho Falls, ID 83402 USA. [Chen, Minghui; Sun, Xiaodong] Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, 281 W Lane Ave, Columbus, OH 43210 USA. [Sabharwall, Piyush] Idaho Natl Lab, 1955 N Fremont Ave, Idaho Falls, ID 83415 USA. RP Utgikar, V (reprint author), Univ Idaho, Dept Chem & Mat Engn, 875 Perimeter Dr, Moscow, ID 83844 USA. EM vutgikar@uidaho.edu FU U.S. Department of Energy's Nuclear Energy University Program [128504] FX This research was made possible through funding received from the U.S. Department of Energy's Nuclear Energy University Program (grant #128504). NR 13 TC 0 Z9 0 U1 4 U2 4 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD DEC PY 2016 VL 48 IS 6 BP 1349 EP 1359 DI 10.1016/j.net.2016.05.001 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EE4IE UT WOS:000389564700007 ER PT J AU Lukens, JM Peters, NA Pooser, RC AF Lukens, Joseph M. Peters, Nicholas A. Pooser, Raphael C. TI Naturally stable Sagnac-Michelson nonlinear interferometer SO OPTICS LETTERS LA English DT Article ID PHASE-SENSITIVE AMPLIFICATION; SHOT-NOISE LIMIT; QUANTUM LIMITS AB Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing-conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors. C1 [Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.] Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. [Peters, Nicholas A.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. [Pooser, Raphael C.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Lukens, JM (reprint author), Oak Ridge Natl Lab, Quantum Informat Sci Grp, Oak Ridge, TN 37831 USA. EM lukensjm@ornl.gov OI Pooser, Raphael/0000-0002-2922-453X; Lukens, Joseph/0000-0001-9650-4462 FU Oak Ridge National Laboratory (ORNL); U.S. Department of Energy (DOE) [DE-AC05-00OR22725] FX Oak Ridge National Laboratory (ORNL); U.S. Department of Energy (DOE) (DE-AC05-00OR22725). NR 34 TC 0 Z9 0 U1 12 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD DEC 1 PY 2016 VL 41 IS 23 BP 5438 EP 5441 DI 10.1364/OL.41.005438 PG 4 WC Optics SC Optics GA EE5ND UT WOS:000389654000006 PM 27906207 ER PT J AU Goueguel, CL McIntyre, DL Jain, JC AF Goueguel, Christian L. McIntyre, Dustin L. Jain, Jinesh C. TI Influence of CO2 pressure on the emission spectra and plasma parameters in underwater laser-induced breakdown spectroscopy SO OPTICS LETTERS LA English DT Article ID BULK AQUEOUS-SOLUTIONS AB Optical emission spectroscopic studies have been carried out to investigate the pressure effect of CO2 on laser-produced underwater plasma. The plasma was generated by focusing 1064 nm, 6 ns pulses from a Nd:YAG laser in a CO2-bearing solution. The temporal evolution of the continuum emission, Sr and Ba lines, and plasma electron density and temperature was characterized under CO2 pressure ranging from 10 to 300 bars. The electron density measurements were made using the Stark broadening of the 455.40 nm Ba II line, while the temperature measurements have been performed by the Saha-Boltzmann method using the Sr I-II lines at 460.73 and 407.77 nm, respectively. It was found that CO2 pressure has little effect on the emission line intensity and signal-to-background ratio. The electron density and the temperature are found to be independent of the CO2 pressure at early times. When time becomes longer, the electron density exhibits an appreciable rise as the CO2 pressure increases, while the temperature is found to be unchanged. (C) 2016 Optical Society of America C1 [Goueguel, Christian L.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [McIntyre, Dustin L.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Jain, Jinesh C.] AECOM Technol Corp, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Goueguel, CL (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM christian.goueguel@netl.doe.gov FU U.S. Department of Energy (DOE); Oak Ridge Institute for Science and Education (ORISE) FX U.S. Department of Energy (DOE); Oak Ridge Institute for Science and Education (ORISE). NR 15 TC 0 Z9 0 U1 7 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD DEC 1 PY 2016 VL 41 IS 23 BP 5458 EP 5461 DI 10.1364/OL.41.005458 PG 4 WC Optics SC Optics GA EE5ND UT WOS:000389654000011 PM 27906212 ER PT J AU Matlis, NH Maksimchuk, A Yanovsky, V Leemans, WP Downer, MC AF Matlis, N. H. Maksimchuk, A. Yanovsky, V. Leemans, W. P. Downer, M. C. TI Analysis of sinusoidally modulated chirped laser pulses by temporally encoded spectral shifting SO OPTICS LETTERS LA English DT Article ID INTERFEROMETRY; RESOLUTION; PROBE AB We present an analytical formalism elucidating how information is stored in chirped optical probes by describing the effects of sinusoidal temporal modulations on the electric field. We show that the modulations produce spectral sidebands which can be interpreted as temporal sidebands due to the time-wavelength mapping, an effect we call temporally encoded spectral shifting (TESS). A derivation is presented for the case of chirped-pulse spectral interferometry showing how to recover both the amplitude and the periodicity of the modulation from a Fourier transform of the interferogram. The TESS effect, which provides an intuitive picture for interpreting pump-probe experiments with chirped pulses, is illustrated for probing wakefields from a laser-plasma accelerator. (C) 2016 Optical Society of America C1 [Matlis, N. H.; Downer, M. C.] Univ Texas Austin, Austin, TX 78712 USA. [Matlis, N. H.; Leemans, W. P.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Maksimchuk, A.; Yanovsky, V.] Univ Michigan, Ann Arbor, MI 48109 USA. [Matlis, N. H.] DESY, D-22607 Hamburg, Germany. RP Matlis, NH (reprint author), Univ Texas Austin, Austin, TX 78712 USA.; Matlis, NH (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Matlis, NH (reprint author), DESY, D-22607 Hamburg, Germany. EM nmatlis@gmail.com FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231, DE-SC0012444, DE-SC0011617]; National Science Foundation (NSF) [PHY-1416218] FX U.S. Department of Energy (DOE) (DE-AC02-05CH11231, DE-SC0012444, DE-SC0011617); National Science Foundation (NSF) (PHY-1416218). NR 10 TC 0 Z9 0 U1 1 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD DEC 1 PY 2016 VL 41 IS 23 BP 5503 EP 5506 DI 10.1364/OL.41.005503 PG 4 WC Optics SC Optics GA EE5ND UT WOS:000389654000023 PM 27906224 ER PT J AU Pronskikh, VS AF Pronskikh, Vitaly S. TI E-36: The First Proto-Megascience Experiment at NAL SO PHYSICS IN PERSPECTIVE LA English DT Article ID CROSS-SECTION; SCATTERING; SLOPE AB E-36, an experiment on small-angle proton-proton scattering, began testing equipment at the National Accelerator Laboratory (NAL) using a newly achieved 100 GeV proton beam on February 12, 1972, marking the beginning of NAL's experimental program. This experiment, which drew collaborators from NAL, the Joint Institute for Nuclear Research (Dubna, USSR), the University of Rochester (Rochester, New York), and Rockefeller University (New York, New York) was significant not only as a milestone in Fermilab's history but also as a model of cooperation between the East and West at a time when Cold War tensions still ran high. An examination of the origin, operation, and resolution of E-36 and the chain of experiments it spawned reveals the complex interplay of science and politics that drove these experiments as well as seeds of the megascience paradigm that has come to dominate high energy physics research since the 1970s. C1 [Pronskikh, Vitaly S.] Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500,Ms 220, Batavia, IL 60510 USA. RP Pronskikh, VS (reprint author), Fermilab Natl Accelerator Lab, Accelerator Phys Ctr, POB 500,Ms 220, Batavia, IL 60510 USA. EM vspron@fnal.gov NR 68 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER BASEL AG PI BASEL PA PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND SN 1422-6944 EI 1422-6960 J9 PHYS PERSPECT JI Phys. Perspect. PD DEC PY 2016 VL 18 IS 4 BP 357 EP 378 DI 10.1007/s00016-016-0192-1 PG 22 WC History & Philosophy Of Science SC History & Philosophy of Science GA EE7NJ UT WOS:000389806300002 ER PT J AU Zhang, B Xia, Y Wen, XH Wang, XH Yang, YF Zhou, JZ Zhang, Y AF Zhang, Bing Xia, Yu Wen, Xianghua Wang, Xiaohui Yang, Yunfeng Zhou, Jizhong Zhang, Yu TI The Composition and Spatial Patterns of Bacterial Virulence Factors and Antibiotic Resistance Genes in 19 Wastewater Treatment Plants SO PLOS ONE LA English DT Article ID MICROBIAL COMMUNITY ANALYSIS; ACTIVATED-SLUDGE; METAGENOMIC APPROACH; TREATMENT SYSTEMS; DIVERSITY; PATHOGENS; GEOCHIP; DISSEMINATION; TEMPERATURE; TECHNOLOGY AB Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs. C1 [Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong] Tsinghua Univ, Environm Simulat & Pollut Control State Key Joint, Sch Environm, Beijing, Peoples R China. [Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA. [Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Zhang, Yu] Chinese Acad Sci, State Key Lab Environm Aquat Chem, Res Ctr Ecoenvironm Sci, Beijing, Peoples R China. RP Wen, XH (reprint author), Tsinghua Univ, Environm Simulat & Pollut Control State Key Joint, Sch Environm, Beijing, Peoples R China. EM xhwen@tsinghua.edu.cn RI wen, xianghua/A-7551-2015 FU NSFC [51678335]; State Key Joint Laboratory of Environment Simulation and Pollution Control [15L03ESPC]; Tsinghua University Initiative Scientific Research Program [20161080112] FX This study was supported by the NSFC (51678335), State Key Joint Laboratory of Environment Simulation and Pollution Control (15L03ESPC) and Tsinghua University Initiative Scientific Research Program (No.20161080112). NR 48 TC 0 Z9 0 U1 33 U2 33 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD DEC 1 PY 2016 VL 11 IS 12 AR e0167422 DI 10.1371/journal.pone.0167422 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EE3JC UT WOS:000389482700151 PM 27907117 ER PT J AU Parrillo, SJ Christensen, D Teitelbaum, HS Glassman, ES AF Parrillo, Steven J. Christensen, Doran Teitelbaum, Howard S. Glassman, Erik S. TI A Survey of Disaster Medical Education in Osteopathic Medical School Curricula SO PREHOSPITAL AND DISASTER MEDICINE LA English DT Editorial Material DE disaster; medial education; osteopathic medical schools ID PUBLIC-HEALTH PREPAREDNESS C1 [Parrillo, Steven J.] Thomas Jefferson Univ, Sidney Kimmel Med Coll, Emergency Med, Philadelphia, PA 19107 USA. [Parrillo, Steven J.] Philadelphia Coll Osteopath Med, Emergency Med, Philadelphia, PA USA. [Parrillo, Steven J.] Einstein Healthcare Network, Philadelphia, PA 19141 USA. [Christensen, Doran] ORISE, REAC TS, Oak Ridge, TN USA. [Teitelbaum, Howard S.; Glassman, Erik S.] Lincoln Mem Univ, DeBusk Coll Osteopath Med, Dept Prevent & Community Med, Harrogate, TN USA. RP Parrillo, SJ (reprint author), Einstein Healthcare Network, Philadelphia, PA 19141 USA. EM parrills@einstein.edu NR 10 TC 0 Z9 0 U1 1 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1049-023X EI 1945-1938 J9 PREHOSPITAL DISASTER JI Prehospital Disaster Med. PD DEC PY 2016 VL 31 IS 6 BP 581 EP 582 DI 10.1017/S1049023X16000868 PG 2 WC Emergency Medicine SC Emergency Medicine GA EE6DK UT WOS:000389698700002 PM 27641448 ER PT J AU Wood, CS Weis, CP Caro, CM Roe, A AF Wood, Carol S. Weis, Christopher P. Caro, Carla M. Roe, Amy TI A practice analysis of toxicology SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE Toxicology; Practice analysis; Delineation; Examination specifications AB In 2015, the American Board of Toxicology (ABT), with collaboration from the Society of Toxicology (SOT), in consultation with Professional Examination Service, performed a practice analysis study of the knowledge required for general toxicology. The purpose of this study is to help assure that the examination and requirements for attainment of Diplomate status are relevant to modern toxicology and based upon an empirical foundation of knowledge. A profile of the domains and tasks used in toxicology practice was developed by subject-matter experts representing a broad range of experiences and perspectives. An on-line survey of toxicologists, including Diplomates of the ABT and SOT members, confirmed the delineation. Results of the study can be used to improve understanding of toxicology practice, to better serve all toxicologists, and to present the role of toxicologists to those outside the profession. Survey results may also be used by the ABT Board of Directors to develop test specifications for the certifying examination and will be useful for evaluating and updating the content of professional preparation, development, and continuing education programs. (C) 2016 The Authors. Published by Elsevier Inc. C1 [Wood, Carol S.] Oak Ridge Natl Lab, POB 2008,Bldg 1507,MS 6407, Oak Ridge, TN 38501 USA. [Weis, Christopher P.] NIEHS, 31 Ctr Dr,Bldg 31,Room B1C02, Bethesda, MD 20892 USA. [Caro, Carla M.] Profess Exam Serv, 475 Riverside Dr,6th Floor, New York, NY 10115 USA. [Roe, Amy] Procter & Gamble Co, 8700 Mason Montgomery Rd, Cincinnati, OH 45040 USA. RP Wood, CS (reprint author), Oak Ridge Natl Lab, POB 2008,Bldg 1507,MS 6407, Oak Ridge, TN 38501 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 EI 1096-0295 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD DEC PY 2016 VL 82 BP 140 EP 146 DI 10.1016/j.yrtph.2016.09.017 PG 7 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA EE6PU UT WOS:000389735500013 PM 27647630 ER PT J AU Lee, MY Bauer, SJ AF Lee, Moo Y. Bauer, Stephen J. TI Development of Helium-Mass-Spectrometry-Permeameter for the Measurement of Permeability of Near-Impermeable Rock SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article DE Gas permeability; Mass spectrometer; Shale; Limestone; Permeameter ID GRANITE; PRESSURE AB A helium leakage detection system was modified to measure gas permeability on extracted cores of nearly impermeable rock. The Helium-Mass-Spectrometry-Permeameter (HMSP) is duplicating the classic Darcy's experiment with a constant pressure differential and steady-state flow through a sample using helium gas. Under triaxial stress condition, the newly developed HMSP can measure hydraulic permeability of rocks and geomaterials down to the nanoDarcy scale (10(-21) m(2)). The extension of measuring the lower end of the permeability scale may help answer important questions regarding the permeability of rock at great depth where fractures may close completely under high lithostatic stress. C1 [Lee, Moo Y.; Bauer, Stephen J.] Sandia Natl Labs, Geomech Dept, POB 5800, Albuquerque, NM 87185 USA. RP Bauer, SJ (reprint author), Sandia Natl Labs, Geomech Dept, POB 5800, Albuquerque, NM 87185 USA. EM sjbauer@sandia.gov FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The technical support received from Steve Webb and David Bronowski as part of this study is also gratefully appreciated. NR 15 TC 0 Z9 0 U1 6 U2 6 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 EI 1434-453X J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD DEC PY 2016 VL 49 IS 12 BP 4661 EP 4665 DI 10.1007/s00603-016-1058-1 PG 5 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA EE4YJ UT WOS:000389611500006 ER PT J AU Liu, SW Zhang, CH Osman, E Chen, XC Ma, TB Hu, YZ Luo, JB Erdemir, A AF Liu ShuWei Zhang ChenHui Osman, Eryilmaz Chen XinChun Ma TianBao Hu YanZhong Luo JianBin Erdemir, Ali TI Influence of tribofilm on superlubricity of highly-hydrogenated amorphous carbon films in inert gaseous environments SO SCIENCE CHINA-TECHNOLOGICAL SCIENCES LA English DT Article DE diamond-like carbon (DLC) films; superlubricty; tribofilm; high resolution transmission electron microscopy (HRTEM); phase transformation ID DIAMOND-LIKE CARBON; NANOCOMPOSITE TIALC COATINGS; A-C-H; DLC COATINGS; TRIBOLOGICAL PROPERTIES; DIFFERENT ATMOSPHERES; FRICTIONAL BEHAVIOR; SUPERLOW-FRICTION; WEAR; GRAPHITIZATION AB In this study, we mainly focus on the structural morphology and inter-atomic bonding state of tribofilms resulting from a highly-hydrogenated amorphous carbon (a-C:H) film in order to ascertain the underlying mechanisms for its superlubric behavior (i.e., less than 0.01 friction coefficient). Specifically, we achieved superlubricity (i.e., friction coefficients of down to 0.003) with this film in dry nitrogen and argon atmospheres especially when the tribo-pair is made of an a-C:H coated Si disk sliding against an a-C:H coated steel ball, while the a-C:H coated disk against uncoated ball does not provide superlubricity. We also found that the state of superlubricity is more stable in argon than in nitrogen and the formation of a smooth and uniformly-thick carbonaceous tribofilm appears to be one of the key factors for the realization of such superlubricity. Besides, the interfacial morphology of sliding test pairs and the atomic-scale bond structure of the carbon-based tribofilms also play an important role in the observed superlubric behavior of a-C:H films. Using Raman spectroscopy and high resolution transmission electron microscopy, we have compared the structural differences of the tribofilms produced on bare and a-C:H coated steel balls. For the a-C:H coated ball as mating material which provided superlow friction in argon, structural morphology of the tribofilm was similar or comparable to that of the original a-C:H coating; while for the bare steel ball, the sp(2)-bonded C fraction in the tribofilm increased and a fingerprint-like nanocrystalline structure was detected by high resolution transmission electron microscopy (HRTEM). We also calculated the shear stresses for different tribofilms, and established a relationship between the magnitude of the shear stresses and the extent of sp(3)-sp(2) phase transformation. C1 [Liu ShuWei; Zhang ChenHui; Chen XinChun; Ma TianBao; Hu YanZhong; Luo JianBin] Tsinghua Univ, State Key Lab Tribol, Beijing 100084, Peoples R China. [Osman, Eryilmaz; Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Zhang, CH (reprint author), Tsinghua Univ, State Key Lab Tribol, Beijing 100084, Peoples R China. EM chzhang@tsinghua.edu.cn FU National Basic Research Program of China [2011CB013404]; National Natural Science Foundation of China [51321092, 51527901, 51375010] FX This work was supported by the National Basic Research Program of China (Grant No. 2011CB013404) and National Natural Science Foundation of China (Grant Nos. 51321092, 51527901 and 51375010). The authors would like to thank Tsinghua National Laboratory for Information Science and Technology. NR 44 TC 0 Z9 0 U1 29 U2 29 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1674-7321 EI 1869-1900 J9 SCI CHINA TECHNOL SC JI Sci. China-Technol. Sci. PD DEC PY 2016 VL 59 IS 12 BP 1795 EP 1803 DI 10.1007/s11431-016-0078-6 PG 9 WC Engineering, Multidisciplinary; Materials Science, Multidisciplinary SC Engineering; Materials Science GA EE7VJ UT WOS:000389832600001 ER PT J AU Pritychenko, B AF Pritychenko, B. TI Evolving landscape of low-energy nuclear physics publications SO SCIENTOMETRICS LA English DT Article DE Nuclear science trends; Publication analysis; Nuclear data mining; Relational databases ID NEUTRON AB Evolution of low-energy nuclear physics publications over the last 120 years has been analyzed using nuclear physics databases. An extensive study of Nuclear Science References, Experimental Nuclear Reaction Data (EXFOR), and Evaluated Nuclear Structure Data File (ENSDF) contents provides a unique picture of refereed and non-refereed nuclear physics references. Significant fractional contributions of non-refereed reports, private communications and conference proceedings in EXFOR and ENSDF databases in the 1970's reflect extensive experimental campaigns and an insufficient number of research journals. This trend has been reversed in recent years because the number of measurements is much lower, while number of journals is higher. In addition, nuclear physics results are mainly published in a limited number of journals, such as Physical Review C and Nuclear Physics A. In the present work, historic publication trends and averages have been extracted and analyzed using nuclear data mining techniques. The results of this study and implications are discussed and conclusions presented. C1 [Pritychenko, B.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Pritychenko, B (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. EM pritychenko@bnl.gov OI Pritychenko, Boris/0000-0002-3342-8631 FU Office of Nuclear Physics, Office of Science of the U.S. Department of Energy [DE-AC02-98CH10886]; Brookhaven Science Associates, LLC FX The author is grateful to Nuclear Reaction Data Centres (NRDC) network members and Dr. V. Unferth (Viterbo University) for productive discussions and careful reading of the manuscript and useful suggestions, respectively. This work was funded by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy, under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC. NR 9 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0138-9130 EI 1588-2861 J9 SCIENTOMETRICS JI Scientometrics PD DEC PY 2016 VL 109 IS 3 BP 2067 EP 2076 DI 10.1007/s11192-016-2149-1 PG 10 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science SC Computer Science; Information Science & Library Science GA EE1JA UT WOS:000389336100034 ER PT J AU Li, Y Bao, L Li, WX Deng, HP AF Li, Ye Bao, Lei Li, Wenxiang Deng, Haopeng TI Inventory and Policy Reduction Potential of Greenhouse Gas and Pollutant Emissions of Road Transportation Industry in China SO SUSTAINABILITY LA English DT Article DE emission inventory; reduction potential; Long-range Energy Alternatives Planning System (LEAP); road transportation industry; mitigation policy; logistic informatization; auto emission standards ID LEAP MODEL; VEHICLE EMISSION; SECTOR; TRENDS; CONSUMPTION; SCENARIOS AB In recent years, emissions from the road transportation industry in China have been increasing rapidly. To evaluate the reduction potential of greenhouse gas and pollutant emissions of the industry in China, its emission inventory was calculated and scenario analysis was created for the period between 2012 and 2030 in this paper. Based on the Long-range Energy Alternatives Planning System (LEAP) model, the development of China's road transportation industry in two scenarios (the business-as-usual (BAU) scenario and the comprehensive-mitigation (CM) scenario) was simulated. In the Comprehensive Mitigation scenario, there are nine various measures which include Fuel Economy Standards, Auto Emission Standards, Energy-saving Technology, Tax Policy, Eco-driving, Logistics Informatization, Vehicle Liquidation, Electric Vehicles, and Alternative Fuels. The cumulative energy and emission reductions of these specific measures were evaluated. Our results demonstrate that China's road transportation produced 881 million metric tons of CO2 and emitted 1420 thousand tons of CO, 2150 thousand tons of NOx, 148 thousand tons of PM10, and 745 thousand tons of HC in 2012. The reduction potential is quite large, and road freight transportation is the key mitigation subsector, accounting for 85%-92% of the total emission. For energy conservation and carbon emission mitigation, logistics informatization is the most effective method, potentially reducing 1.80 billion tons of coal equivalent and 3.83 billion tons of CO2 from 2012 to 2030. In terms of air pollutant emission mitigation, the auto emission standards measure performs best with respect to NOx, PM10, and HC emission mitigation, and logistic informatization measure is the best in CO emission reduction. In order to maximize the mitigation potential of China's road transportation industry, the government needs to implement various measures in a timely and strict fashion. C1 [Li, Ye; Bao, Lei; Li, Wenxiang; Deng, Haopeng] Tongji Univ, State Minist Educ, Key Lab Rd & Traff Engn, Shanghai 201804, Peoples R China. [Bao, Lei] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. RP Bao, L (reprint author), Tongji Univ, State Minist Educ, Key Lab Rd & Traff Engn, Shanghai 201804, Peoples R China.; Bao, L (reprint author), Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. EM jamesli@tongji.edu.cn; 1210716@tongji.edu.cn; 01wxfff@tongji.edu.cn; 89kevindeng@tongji.edu.cn OI LI, Wenxiang/0000-0002-1919-0794 FU Soft Science Project Foundation of Ministry of Transport of PRC named "The Strategy Study of Energy Saving and Emission Reduction on Road Transportation Industry" [2013-312-822-370]; Fundamental Research Funds for the Central Universities named "Fundamental Research on New Energy Transportation System Planning" [1600144506]; Program for New Century Excellent Talents in University [NCET-11-0383] FX This study was supported by Soft Science Project Foundation of Ministry of Transport of PRC named "The Strategy Study of Energy Saving and Emission Reduction on Road Transportation Industry (2013-312-822-370)", Fundamental Research Funds for the Central Universities named "Fundamental Research on New Energy Transportation System Planning (1600144506)" and Program for New Century Excellent Talents in University (NCET-11-0383). Special thanks is given to the Ministry of Transport of PRC for help in data collection. The authors are responsible for all viewpoints, conclusions, and errors. NR 49 TC 0 Z9 0 U1 17 U2 17 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD DEC PY 2016 VL 8 IS 12 AR 1218 DI 10.3390/su8121218 PG 19 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences; Environmental Studies SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA EE1CA UT WOS:000389317100009 ER PT J AU Yang, J Dong, J Lin, ZH Hu, L AF Yang, Jie Dong, Jing Lin, Zhenhong Hu, Liang TI Predicting market potential and environmental benefits of deploying electric taxis in Nanjing, China SO TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT LA English DT Article DE Battery electric vehicles; Taxi service; Charging infrastructure; Taxi apps; GPS trajectory data; Tailpipe emissions ID VEHICLE CHARGING INFRASTRUCTURE; EMISSIONS; LOCATION; STATIONS; POLICIES; MODEL AB This paper investigates the market potential and environmental benefits of replacing internal combustion engine (ICE) vehicles with battery electric vehicles (BEVs) in the taxi fleet in Nanjing, China. Vehicle trajectory data collected by onboard global positioning system (GPS) units are used to study the travel patterns of taxis. The impacts of charger power, charging infrastructure coverage, and taxi apps on the feasibility of electric taxis are quantified, considering taxi drivers' recharging behavior and operating activities. It is found that (1) depending on the charger power and coverage, 19% (with AC Level 2 chargers and 20% charger network coverage) to 56% (with DC chargers and 100% charger network coverage) of the ICE vehicles can be replaced by electric taxis without driving pattern changes; (2) by using taxi apps to find nearby passengers and charging stations, drivers could utilize the empty cruising time to charge the battery, which may increase the acceptance of BEVs by up to 82.6% compared to the scenario without taxi apps; and (3) tailpipe emissions in urban areas could be significantly reduced with taxi electrification: a mixed taxi fleet with 46% compressed-natural-gas-powered (CNG) and 54% electricity-powered vehicles can reduce the tailpipe emissions by 48% in comparison with the fleet of 100% CNG taxis. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Yang, Jie] Southeast Univ, Dev Res Inst Transportat Governed Law, Nanjing, Jiangsu, Peoples R China. [Dong, Jing; Hu, Liang] Iowa State Univ, Dept Civil Construct & Environm Engn, Ames, IA 50011 USA. [Lin, Zhenhong] Oak Ridge Natl Lab, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. RP Yang, J (reprint author), Sipailou 2, Nanjing 210096, Jiangsu, Peoples R China. EM jieyang@seu.edu.cn FU Social Science Foundation of Jiangsu Province of China [14FXC001]; State Scholarship Fund from China Scholarship Council - China; US Department of Energy's Vehicle Technologies Office FX This work was partially supported by the Social Science Foundation of Jiangsu Province of China under project NO. 14FXC001. Y.J. acknowledges the support of the State Scholarship Fund from China Scholarship Council - China. L.Z. is sponsored by the US Department of Energy's Vehicle Technologies Office. NR 46 TC 0 Z9 0 U1 6 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1361-9209 J9 TRANSPORT RES D-TR E JI Transport. Res. Part D-Transport. Environ. PD DEC PY 2016 VL 49 BP 68 EP 81 DI 10.1016/j.trd.2016.08.037 PG 14 WC Environmental Studies; Transportation; Transportation Science & Technology SC Environmental Sciences & Ecology; Transportation GA EE2CF UT WOS:000389390600006 ER PT J AU Griffiths, NA Sebestyen, SD AF Griffiths, Natalie A. Sebestyen, Stephen D. TI Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland SO WETLANDS LA English DT Article DE Black spruce-Sphagnum ombrotrophic bog; Solute chemistry; Spatial and temporal variability; Depth profiles; Groundwater ID DISSOLVED ORGANIC-CARBON; SURFACE-WATER CHEMISTRY; PORE-WATER; SEASONAL-VARIATION; CLIMATIC-CHANGE; BLANKET BOG; MINNESOTA; GROUNDWATER; GRADIENTS; CANADA AB We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0-3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and these patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. Characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models. C1 [Griffiths, Natalie A.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Griffiths, Natalie A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Sebestyen, Stephen D.] US Forest Serv, Northern Res Stn, USDA, Grand Rapids, MN 55744 USA. RP Griffiths, NA (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA.; Griffiths, NA (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. EM griffithsna@ornl.gov RI Sebestyen, Stephen/D-1238-2013 OI Sebestyen, Stephen/0000-0002-6315-0108 FU U.S. Department of Energy's Office of Science, Biological and Environmental Research; Northern Research Station of the USDA Forest Service; Oak Ridge National Laboratory; UT-Battelle, LLC; U.S. Department of Energy [DE-AC05-00OR22725] FX We thank the late Pat Mulholland for his guidance, mentoring, and friendship. Pat's input into the early stages of this project greatly improved our experimental design and analysis. We thank K. Oleheiser, N. Aspelin, J. Larson, C. Dorrance, D. Kyllander, R. Nettles, J. Riggs, R. Peterson, B. Munson, M. Olds, M. Wiley, and L. Kastenson for technical assistance, and P. Hanson and R. Kolka for manuscript comments and for their leadership on the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) project. Comments from two anonymous reviewers greatly improved an earlier version of this manuscript. This research was part of the SPRUCE project and supported by the U.S. Department of Energy's Office of Science, Biological and Environmental Research and the Northern Research Station of the USDA Forest Service. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 49 TC 0 Z9 0 U1 10 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0277-5212 EI 1943-6246 J9 WETLANDS JI Wetlands PD DEC PY 2016 VL 36 IS 6 BP 1119 EP 1130 DI 10.1007/s13157-016-0829-5 PG 12 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA EE5FE UT WOS:000389630100012 ER PT J AU Yu, CW Simmons, BA Singer, SW Thelen, MP VanderGheynst, JS AF Yu, Chaowei Simmons, Blake A. Singer, Steven W. Thelen, Michael P. VanderGheynst, Jean S. TI Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Review DE Ionic liquid tolerance; Microbial community enrichment; Ionic liquid pretreatment; Engineering ionic liquid tolerance ID SULFURIC-ACID PRETREATMENT; GRAM-NEGATIVE BACTERIA; MULTIDRUG EFFLUX PUMPS; ENZYMATIC-HYDROLYSIS; CORN STOVER; 1-ETHYL-3-METHYLIMIDAZOLIUM ACETATE; MEMBRANE-PERMEABILITY; ESCHERICHIA-COLI; STEAM EXPLOSION; ANTIMICROBIAL ACTIVITIES AB Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment. C1 [Yu, Chaowei; VanderGheynst, Jean S.] Univ Calif Davis, Dept Biol & Agr Engn, One Shields Ave, Davis, CA 95616 USA. [Simmons, Blake A.; Singer, Steven W.; Thelen, Michael P.; VanderGheynst, Jean S.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Simmons, Blake A.; Singer, Steven W.] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. [Thelen, Michael P.] Lawrence Livermore Natl Lab, Biosci Div, Livermore, CA 94551 USA. RP VanderGheynst, JS (reprint author), Univ Calif Davis, Dept Biol & Agr Engn, One Shields Ave, Davis, CA 95616 USA.; VanderGheynst, JS (reprint author), Joint BioEnergy Inst, Emeryville, CA 94608 USA. EM jsvander@ucdavis.edu FU National Institute of Food and Agriculture [CA-D-BAE-2228-RR]; UC Lab Fees Research Program [237496]; Joint BioEnergy Institute; US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was supported by National Institute of Food and Agriculture project CA-D-BAE-2228-RR, the UC Lab Fees Research Program under project no. 237496, and completed as part of the Joint BioEnergy Institute, supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. NR 122 TC 0 Z9 0 U1 31 U2 31 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 EI 1432-0614 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD DEC PY 2016 VL 100 IS 24 BP 10237 EP 10249 DI 10.1007/s00253-016-7955-0 PG 13 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA ED6HA UT WOS:000388955500002 PM 27838839 ER PT J AU Nielsen, EL De Rosa, RJ Wang, J Rameau, J Song, I Graham, JR Macintosh, B Ammons, M Bailey, VP Barman, TS Bulger, J Chilcote, JK Cotten, T Doyon, R Duchene, G Fitzgerald, MP Follette, KB Greenbaum, AZ Hibon, P Hung, LW Ingraham, P Kalas, P Konopacky, QM Larkin, JE Maire, J Marchis, F Marley, MS Marois, C Metchev, S Millar-Blanchaer, MA Oppenheimer, R Palmer, DW Patience, J Perrin, MD Poyneer, LA Pueyo, L Rajan, A Rantakyro, FT Savransky, D Schneider, AC Sivaramakrishnan, A Soummer, R Thomas, S Wallace, JK Ward-Duong, K Wiktorowicz, SJ Wolff, SG AF Nielsen, Eric L. De Rosa, Robert J. Wang, Jason Rameau, Julien Song, Inseok Graham, James R. Macintosh, Bruce Ammons, Mark Bailey, Vanessa P. Barman, Travis S. Bulger, Joanna Chilcote, Jeffrey K. Cotten, Tara Doyon, Rene Duchene, Gaspard Fitzgerald, Michael P. Follette, Katherine B. Greenbaum, Alexandra Z. Hibon, Pascale Hung, Li-Wei Ingraham, Patrick Kalas, Paul Konopacky, Quinn M. Larkin, James E. Maire, Jerome Marchis, Franck Marley, Mark S. Marois, Christian Metchev, Stanimir Millar-Blanchaer, Maxwell A. Oppenheimer, Rebecca Palmer, David W. Patience, Jenny Perrin, Marshall D. Poyneer, Lisa A. Pueyo, Laurent Rajan, Abhijith Rantakyro, Fredrik T. Savransky, Dmitry Schneider, Adam C. Sivaramakrishnan, Anand Soummer, Remi Thomas, Sandrine Wallace, J. Kent Ward-Duong, Kimberly Wiktorowicz, Sloane J. Wolff, Schuyler G. TI DYNAMICAL MASS MEASUREMENT OF THE YOUNG SPECTROSCOPIC BINARY V343 NORMAE AaAb RESOLVED WITH THE GEMINI PLANET IMAGER SO ASTRONOMICAL JOURNAL LA English DT Article DE planets and satellites: detection; stars: individual (V343 Nor) ID PICTORIS MOVING GROUP; STELLAR KINEMATIC GROUPS; PRE-MAIN-SEQUENCE; SUBSTELLAR COMPANION; FINDING CAMPAIGN; EVOLUTIONARY MODELS; SOLAR NEIGHBORHOOD; ORBITAL PARAMETERS; GIANT PLANETS; DEBRIS DISK AB We present new spatially resolved astrometry and photometry from the Gemini Planet Imager of the inner binary of the young multiple star system V343 Normae, which is a member of the beta Pictoris (beta Pic) moving group. V343 Normae comprises a K0 and mid-M star in a similar to 4.5 year orbit (AaAb) and a wide 10 '' M5 companion (B). By combining these data with archival astrometry and radial velocities we fit the orbit and measure individual masses for both components of M-Aa = 1.10 +/- 0.10M(circle dot) and M-Ab= 0.290 +/- 0.018 M-circle dot. Comparing to theoretical isochrones, we find good agreement for the measured masses and JHK band magnitudes of the two components consistent with the age of the beta Pic moving group. We derive a model-dependent age for the beta Pic moving group of 26 +/- 3 Myr by combining our results for V343 Normae with literature measurements for GJ. 3305, which is another group member with resolved binary components and dynamical masses. C1 [Nielsen, Eric L.; Marchis, Franck] Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. [Nielsen, Eric L.; Macintosh, Bruce; Bailey, Vanessa P.; Follette, Katherine B.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [De Rosa, Robert J.; Wang, Jason; Graham, James R.; Duchene, Gaspard; Kalas, Paul] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Rameau, Julien; Doyon, Rene] Univ Montreal, Dept Phys, Inst Rech Exoplanetes, Montreal, PQ H3C 3J7, Canada. [Song, Inseok; Cotten, Tara] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Ammons, Mark; Palmer, David W.; Poyneer, Lisa A.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Barman, Travis S.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Bulger, Joanna] NAOJ, Subaru Telescope, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Chilcote, Jeffrey K.; Maire, Jerome] Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON, Canada. [Duchene, Gaspard] Univ Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France. [Fitzgerald, Michael P.; Hung, Li-Wei; Larkin, James E.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Greenbaum, Alexandra Z.; Wolff, Schuyler G.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Hibon, Pascale] European Southern Observ, Alonso Cordova 3107, Santiago, Chile. [Ingraham, Patrick; Thomas, Sandrine] Large Synopt Survey Telescope, 950 N Cherry Ave, Tucson, AZ 85719 USA. [Konopacky, Quinn M.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Marley, Mark S.] NASA, Ames Res Ctr, Div Space Sci, Mail Stop 245-3, Moffett Field, CA 94035 USA. [Marois, Christian] Natl Res Council Canada Herzberg, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada. [Marois, Christian] Univ Victoria, Dept Phys & Astron, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada. [Metchev, Stanimir] Univ Western Ontario, Dept Phys & Astron, Ctr Planetary Sci & Explorat, London, ON N6A 3K7, Canada. [Metchev, Stanimir] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Oppenheimer, Rebecca] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West &79th St, New York, NY 10024 USA. [Patience, Jenny; Rajan, Abhijith; Ward-Duong, Kimberly] Arizona State Univ, Sch Earth & Space Explorat, POB 871404, Tempe, AZ 85287 USA. [Perrin, Marshall D.; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Rantakyro, Fredrik T.] Gemini Observ, Casilla 603, La Serena, Chile. [Savransky, Dmitry] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Schneider, Adam C.] Univ Toledo, Dept Phys & Astron, 2801 W Bancroft St, Toledo, OH 43606 USA. [Wallace, J. Kent] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wiktorowicz, Sloane J.] Aerosp Corp, 2310 E El Segundo Blvd, El Segundo, CA 90245 USA. RP Nielsen, EL (reprint author), Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA.; Nielsen, EL (reprint author), Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. RI Savransky, Dmitry/M-1298-2014; OI Savransky, Dmitry/0000-0002-8711-7206; Song, Inseok/0000-0002-5815-7372; Greenbaum, Alexandra/0000-0002-7162-8036; Bailey, Vanessa/0000-0002-5407-2806 FU NSF [AST-0909188, AST-1313718, AST-1411868, AST-141378, NNX11AF74G, DGE-1232825]; NASA [NNX15AD95G/NEXSS, NNX11AD21G, NNX14AJ80G]; Fonds de Recherche du Quebec; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Sciences and Engineering Research Council of Canada; JPL Research and Technology Grant FX We thank the anonymous referee for helpful comments that improved the quality of this work. These results are based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Supported by NSF grants AST-0909188 and AST-1313718 (RJDR, JRG, JJW, TME, PGK), AST-1411868 (BM, KF, JLP, AR, KWD), AST-141378 (PA, GD, MPF), NNX11AF74G (AZG, AS), and DGE-1232825 (AZG). Supported by NASA grants NNX15AD95G/NEXSS and NNX11AD21G (RJDR, JRG, JJW, TME, PGK), and NNX14AJ80G (ELN, SCB, BM, FM, MP). J.R., R.D., and D.L. acknowledge support from the Fonds de Recherche du Quebec. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (SMA). B.G. and M.J.G. acknowledge support from the National Sciences and Engineering Research Council of Canada. G.V. acknowledges a JPL Research and Technology Grant for improvements to the GPI CAL system. NR 55 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 175 DI 10.3847/0004-6256/152/6/175 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE1FT UT WOS:000389327100004 ER PT J AU Desai, MI Dayeh, MA Allegrini, F McComas, DJ Funsten, H Heerikhuisen, J Fuselier, SA Pogorelov, N Schwadron, NA Zank, GP Zirnstein, EJ Janzen, P Reisenfeld, DB AF Desai, M. I. Dayeh, M. A. Allegrini, F. McComas, D. J. Funsten, H. Heerikhuisen, J. Fuselier, S. A. Pogorelov, N. Schwadron, N. A. Zank, G. P. Zirnstein, E. J. Janzen, P. Reisenfeld, D. B. TI LATITUDE, ENERGY, AND TIME VARIATIONS IN THE ENERGETIC NEUTRAL ATOM SPECTRAL INDICES MEASURED BY THE INTERSTELLAR BOUNDARY EXPLORER (IBEX) SO ASTROPHYSICAL JOURNAL LA English DT Article DE Interstellar medium (ISM), Nebulae; ISM: atoms; shock waves; solar wind; Sun: heliosphere ID 1ST 5 YEARS; SOLAR-WIND; LO OBSERVATIONS; ENA FLUX; HELIOSHEATH; RIBBON; HELIOSPHERE; SEPARATION; POLES; MAPS AB We investigate the latitude, energy, and temporal variations of the similar to 0.5-6 keV energetic neutral atom (ENA) fluxes and spectral indices measured by the Interstellar Boundary Explorer (IBEX) outside of the Ribbon from 2009 to 2013. By combining all-sky maps for years 1-3 and years 4-5, we find that the > 1.2 keV globally distributed (GD) ENA fluxes at all latitudes decrease by similar to 25% from years 1-3 to years 4-5, but there is no change (< 5%) in the corresponding spectral indices. We also show that the latitudinal profile and energy-dependence of the >= 1 keV ENA spectral indices outside the Ribbon exhibit no significant time differences between years 1-3 and 4-5, lending strong support for the notion that the highly organized, persistent energy dependence and latitudinal pattern of the ENA spectral indices during 2009-2014 are determined by that of the solar wind (SW) speed observed in the inner heliosphere during the deep solar minimum conditions of 2006-2010. In contrast, the similar to 25% decrease in the > 1.2 keV ENA fluxes at all latitudes from years 1-3 to years 4-5 occurs because the magnitude of the driving SW parameters (SW density or dynamic pressure) diminished significantly from 2006 to 2010. Based on the reconstructed latitudinal and temporal profiles of SW parameters from 2011 to 2014, i.e., during the rising phase of solar cycle 24, we suggest that the GD ENA fluxes in years 2014-2017, i.e., in maps 6-9, will either stabilize or increase and the latitudinal pattern and energy dependence of the corresponding spectral indices will be disrupted. C1 [Desai, M. I.; Dayeh, M. A.; Allegrini, F.; Fuselier, S. A.; Schwadron, N. A.; Zirnstein, E. J.] Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA. [Desai, M. I.; Allegrini, F.; Fuselier, S. A.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. [McComas, D. J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Funsten, H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Heerikhuisen, J.; Pogorelov, N.; Zank, G. P.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA. [Heerikhuisen, J.; Pogorelov, N.; Zank, G. P.] Univ Alabama, Dept Space Sci, Huntsville, AL 35805 USA. [Schwadron, N. A.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Schwadron, N. A.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Janzen, P.; Reisenfeld, D. B.] Univ Montana, Phys & Astron, Durham, MT 59812 USA. RP Desai, MI (reprint author), Southwest Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA.; Desai, MI (reprint author), Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. EM mdesai@swri.edu OI Heerikhuisen, Jacob/0000-0001-7867-3633; Zank, Gary P/0000-0002-4642-6192 FU U.S. Department of Energy; NASA [NNX11AB48G, NNX12AH44G, NNX12AB30G, NNX14AJ53G]; DOE [DE-SC0008334]; NSF [OCI-1144120] FX We thank all the outstanding men and women who have made IBEX a successful mission. Work at LANL was carried out under the auspices of the U.S. Department of Energy. This research was carried out under the IBEX mission, which is part of the NASA Explorer Program. J.H. and N.P. were supported in part by NASA grants NNX11AB48G, NNX12AH44G, NNX12AB30G, and NNX14AJ53G, DOE grant DE-SC0008334, and NSF grant OCI-1144120. NR 37 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 116 DI 10.3847/0004-637X/832/2/116 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EE0DJ UT WOS:000389243600007 ER PT J AU Toma, M Bloodworth, CH Einstein, DR Pierce, EL Cochran, RP Yoganathan, AP Kunzelman, KS AF Toma, Milan Bloodworth, Charles H. Einstein, Daniel R. Pierce, Eric L. Cochran, Richard P. Yoganathan, Ajit P. Kunzelman, Karyn S. TI High-resolution subject-specific mitral valve imaging and modeling: experimental and computational methods SO BIOMECHANICS AND MODELING IN MECHANOBIOLOGY LA English DT Article DE Fluid-structure interaction; Mitral valve; Comprehensive computational model; Smooth particle hydrodynamics; Chordal structure; Chordae tendineae; Fixation; Glutaraldehyde ID FINITE-ELEMENT MODEL; CHORDAL REPLACEMENT; REGURGITATION; DILATATION; STRESSES; SUTURE AB The diversity of mitral valve (MV) geometries and multitude of surgical options for correction of MV diseases necessitates the use of computational modeling. Numerical simulations of the MV would allow surgeons and engineers to evaluate repairs, devices, procedures, and concepts before performing them and before moving on to more costly testing modalities. Constructing, tuning, and validating these models rely upon extensive in vitro characterization of valve structure, function, and response to change due to diseases. Micro-computed tomography (mu CT) allows for unmatched spatial resolution for soft tissue imaging. However, it is still technically challenging to obtain an accurate geometry of the diastolic MV. We discuss here the development of a novel technique for treating MV specimens with glutaraldehyde fixative in order to minimize geometric distortions in preparation for mu CT scanning. The technique provides a resulting MV geometry which is significantly more detailed in chordal structure, accurate in leaflet shape, and closer to its physiological diastolic geometry. In this paper, computational fluid-structure interaction (FSI) simulations are used to show the importance of more detailed subject-specific MV geometry with 3D chordal structure to simulate a proper closure validated against mu CT images of the closed valve. Two computational models, before and after use of the aforementioned technique, are used to simulate closure of the MV. C1 [Toma, Milan; Bloodworth, Charles H.; Pierce, Eric L.; Yoganathan, Ajit P.] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Technol Enterprise Pk,Suite 200,387 Technol Circl, Atlanta, GA 30313 USA. [Einstein, Daniel R.] Pacific Northwest Natl Lab, Computat Biol & Bioinformat, Richland, WA 99352 USA. [Cochran, Richard P.; Kunzelman, Karyn S.] Univ Maine, Dept Mech Engn, 219 Boardman Hall, Orono, ME 04469 USA. RP Kunzelman, KS (reprint author), Univ Maine, Dept Mech Engn, 219 Boardman Hall, Orono, ME 04469 USA. EM tomamil@tomamil.eu; daniel.einstein@pnnl.gov; ajit.yoganathan@bme.gatech.edu; kunzelka@superiorsurgicalsolutions.com FU National Heart Lung and Blood Institute [R01-HL092926]; National Science Foundation Graduate Research Fellowship [DGE-1148903] FX This study was supported by a grant from the National Heart Lung and Blood Institute (R01-HL092926) and by a grant from the National Science Foundation Graduate Research Fellowship (DGE-1148903). NR 38 TC 2 Z9 2 U1 6 U2 6 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-7959 EI 1617-7940 J9 BIOMECH MODEL MECHAN JI Biomech. Model. Mechanobiol. PD DEC PY 2016 VL 15 IS 6 BP 1619 EP 1630 DI 10.1007/s10237-016-0786-1 PG 12 WC Biophysics; Engineering, Biomedical SC Biophysics; Engineering GA ED4IQ UT WOS:000388811700015 PM 27094182 ER PT J AU Chiang, A Dreger, DS Ford, SR Walter, WR Yoo, SH AF Chiang, Andrea Dreger, Douglas S. Ford, Sean R. Walter, William R. Yoo, Seung-Hoon TI Moment Tensor Analysis of Very Shallow Sources SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID UNDERGROUND NUCLEAR DETONATIONS; DOUBLE-COUPLE EARTHQUAKES; SEISMIC SOURCE; CRANDALL CANYON; EXPLOSIONS; WAVE; INVERSIONS; CONSTRAINTS; SEISMOGRAMS; RADIATION AB An issue for moment tensor (MT) inversion of shallow seismic sources is that some components of the Green's functions have vanishing amplitudes at the free surface, which can result in bias in the MT solution. The effects of the free surface on the stability of the MT method become important as we continue to investigate and improve the capabilities of regional full MT inversion for source-type identification and discrimination. It is important to understand free-surface effects on discriminating shallow explosive sources for nuclear monitoring purposes. It may also be important in natural systems that have very shallow seismicity, such as volcanic and geothermal systems. We examine the effects of the free surface on the MT via synthetic testing and apply the MT-based discrimination method to three quarry blasts from the HUMMING ALBATROSS experiment. These shallow chemical explosions at similar to 10 m depth and recorded up to several kilometers distance represent rather severe source-station geometry in terms of free-surface effects. We show that the method is capable of recovering a predominantly explosive source mechanism, and the combined waveform and first-motion method enables the unique discrimination of these events. Recovering the design yield using seismic moment estimates from MT inversion remains challenging, but we can begin to put error bounds on our moment estimates using the network sensitivity solution technique (Ford et al., 2010). C1 [Chiang, Andrea; Ford, Sean R.; Walter, William R.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Dreger, Douglas S.] Berkeley Seismol Lab, 307 McCone Hall, Berkeley, CA 94720 USA. [Yoo, Seung-Hoon] Weston Geophys Corp, 181 Bedford St,Suite 1, Lexington, MA 02420 USA. RP Chiang, A (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM chiang4@llnl.gov RI Walter, William/C-2351-2013; Yoo, Seung-Hoon/F-1048-2010 OI Walter, William/0000-0002-0331-0616; Yoo, Seung-Hoon/0000-0003-0297-7934 FU Air Force Research Laboratory [FA9453-10-C-0263]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We acknowledge funding from the Air Force Research Laboratory, Contract Number FA9453-10-C-0263 that supported this research, and we thank Vaclav Vavrycuk and an anonymous reviewer for their comments and suggestions on the article. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract Number DE-AC52-07NA27344. NR 43 TC 0 Z9 0 U1 4 U2 4 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD DEC PY 2016 VL 106 IS 6 BP 2436 EP 2449 DI 10.1785/0120150233 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA ED6BG UT WOS:000388938300002 ER PT J AU Stroujkova, A Carnevale, M Vorobiev, O AF Stroujkova, Anastasia Carnevale, Mario Vorobiev, Oleg TI Cavity Radius Scaling for Underground Explosions in Hard Rock SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID SEISMIC SOURCE; GRANITE; STRENGTH; MODEL AB The main objective of this study was to examine the relationship between the explosive yield and the cavity sizes for chemical explosions in granite. We performed borehole studies in the two cavities produced by chemical explosions in Vermont, including the caliper, acoustic, and optical televiewer logs. The two irregularly shaped explosive cavities imaged during this study have the equivalent scaled radii of 8.26 and 8: 34 m/kt(1/3). Comparison of the cavity radii, determined in this study, with historical data from other chemical and nuclear explosions in hard rock (e.g., granite) demonstrates that the cavity radius as a function of yield obeys cube root scaling law. The empirical linear fit calculated for the nuclear cavity radii as a function of yield also provides a good approximation for the chemical cavity radii, even though the mechanisms responsible for the creation of cavities during chemical and nuclear shots are different. The depth dependence of the cavity size in hard rock appears to be weaker than proposed by the classical source theory, although there is not enough data to unambiguously resolve the depth dependence. The experimental field measurements of the cavity sizes (determined from geophysical log measurements) agree with the numerical simulations using the hydrodynamic code GEODYN (Antoun et al., 2000; Lomov et al., 2005), which confirm approximate cube root scaling with yield assuming that the quality of the rock mass is similar for all events. C1 [Stroujkova, Anastasia] Weston Geophys Corp, 181 Bedford St,Suite 1, Lexington, MA 02420 USA. [Carnevale, Mario] Hager GeoSci Inc, 596 Main St, Woburn, MA 01801 USA. [Vorobiev, Oleg] Lawrence Livermore Natl Lab, L-286, Livermore, CA 94550 USA. RP Stroujkova, A (reprint author), Weston Geophys Corp, 181 Bedford St,Suite 1, Lexington, MA 02420 USA. EM ana@westongeo.com; ihagerg1350@earthlink.net; Vorobiev1@llnl.gov OI Stroujkova, Anastasia/0000-0003-3196-0170 FU Department of Defense, Defense Threat Reduction Agency [HDTRA1-11-1-0029]; Air Force Research Laboratory [AFRL-FA9453-10-C-0257]; National Nuclear Security Administration [DE-AC52-07NA27344]; U.S. Department of Energy by University of California, Lawrence National Laboratory FX The research described in this article was supported by Department of Defense, Defense Threat Reduction Agency Grant HDTRA1-11-1-0029. The New England Damage Experiment (NEDE) was sponsored by Air Force Research Laboratory Contract Number AFRL-FA9453-10-C-0257. Numerical simulations were supported by National Nuclear Security Administration under Contract Number DE-AC52-07NA27344 and performed under the auspices of the U.S. Department of Energy by University of California, Lawrence National Laboratory. The content of the information does not necessarily reflect the position of the federal government, and no official endorsement should be inferred. The authors thank Robert Reinke of Defense Threat Reduction Agency for fruitful discussions as well as Howard Patton, Esteban Rougier of Los Alamos National Laboratory, and an anonymous reviewer for the thorough review of the article. The authors are grateful to Jim Lewkowicz for his support and help with editing the article. NR 32 TC 0 Z9 0 U1 0 U2 0 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD DEC PY 2016 VL 106 IS 6 BP 2500 EP 2510 DI 10.1785/0120160122 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA ED6BG UT WOS:000388938300007 ER PT J AU Ballard, S Hipp, JR Begnaud, ML Young, CJ Encarnacao, AV Chael, EP Phillips, WS AF Ballard, Sanford Hipp, James R. Begnaud, Michael L. Young, Christopher J. Encarnacao, Andre V. Chael, Eric P. Phillips, W. Scott TI SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth's Mantle for Improved Travel-Time Prediction and Travel-Time Prediction Uncertainty SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID SEISMIC EVENT LOCATION; VELOCITY MODEL; LEAST-SQUARES; NORTH-AFRICA; IDENTIFICATION; COMPUTATION; ALGORITHM; EURASIA AB The task of monitoring the Earth for nuclear explosions relies heavily on seismic data to detect, locate, and characterize suspected nuclear tests. Motivated by the need to locate suspected explosions as accurately and precisely as possible, we developed a tomographic model of the compressional wave slowness in the Earth's mantle with primary focus on the accuracy and precision of travel-time predictions for P and Pn ray paths through the model. Path-dependent travel-time prediction uncertainties are obtained by computing the full 3D model covariance matrix and then integrating slowness variance and covariance along ray paths from source to receiver. Path-dependent travel-time prediction uncertainties reflect the amount of seismic data that was used in tomography with very low values for paths represented by abundant data in the tomographic data set and very high values for paths through portions of the model that were poorly sampled by the tomography data set. The pattern of travel-time prediction uncertainty is a direct result of the off-diagonal terms of the model covariance matrix and underscores the importance of incorporating the full model covariance matrix in the determination of travel-time prediction uncertainty. The computed pattern of uncertainty differs significantly from that of 1D distance-dependent travel-time uncertainties computed using traditional methods, which are only appropriate for use with travel times computed through 1D velocity models. C1 [Ballard, Sanford; Chael, Eric P.] Sandia Natl Labs, POB 5800,MS 0404, Albuquerque, NM 87185 USA. [Hipp, James R.; Young, Christopher J.; Encarnacao, Andre V.] Sandia Natl Labs, POB 5800,MS 0401, Albuquerque, NM 87185 USA. [Begnaud, Michael L.; Phillips, W. Scott] Los Alamos Natl Lab, POB 1663,F665, Los Alamos, NM 87545 USA. RP Ballard, S (reprint author), Sandia Natl Labs, POB 5800,MS 0404, Albuquerque, NM 87185 USA. EM sballar@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Dale Anderson for helpful suggestions and discussions and Stephen Arrowsmith, Megan Slinkard, Wim Spakman, and an anonymous reviewer for constructive reviews of the article. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract Number DE-AC04-94AL85000. NR 47 TC 0 Z9 0 U1 2 U2 2 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD DEC PY 2016 VL 106 IS 6 BP 2900 EP 2916 DI 10.1785/0120150271 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA ED6BG UT WOS:000388938300038 ER PT J AU Simon, MJK Beil, FT Riedel, C Lau, G Tomsia, A Zimmermann, EA Koehne, T Ueblacker, P Ruther, W Pogoda, P Ignatius, A Amling, M Oheim, R AF Simon, Maciej J. K. Beil, Frank Timo Riedel, Christoph Lau, Grace Tomsia, Antoni Zimmermann, Elizabeth A. Koehne, Till Ueblacker, Peter Ruether, Wolfgang Pogoda, Pia Ignatius, Anita Amling, Michael Oheim, Ralf TI Deterioration of teeth and alveolar bone loss due to chronic environmental high-level fluoride and low calcium exposure SO Clinical Oral Investigations LA English DT Article DE Fluoride; Fluorosis; Sheep; Histomorphometry; Alveolar bone; HR-pQCT ID SKELETAL FLUOROSIS; DENTAL FLUOROSIS; CARIES MANAGEMENT; DEVELOPING TOOTH; ENAMEL; OSTEOPOROSIS; MINERALIZATION; WATER; MECHANISMS; STRENGTH AB Health risks due to chronic exposure to highly fluoridated groundwater could be underestimated because fluoride might not only influence the teeth in an aesthetic manner but also seems to led to dentoalveolar structure changes. Therefore, we studied the tooth and alveolar bone structures of Dorper sheep chronically exposed to very highly fluoridated and low calcium groundwater in the Kalahari Desert in comparison to controls consuming groundwater with low fluoride and normal calcium levels within the World Health Organization (WHO) recommended range. Two flocks of Dorper ewes in Namibia were studied. Chemical analyses of water, blood and urine were performed. Mineralized tissue investigations included radiography, HR-pQCT analyses, histomorphometry, energy-dispersive X-ray spectroscopy and X-ray diffraction-analyses. Fluoride levels were significantly elevated in water, blood and urine samples in the Kalahari group compared to the low fluoride control samples. In addition to high fluoride, low calcium levels were detected in the Kalahari water. Tooth height and mandibular bone quality were significantly decreased in sheep, exposed to very high levels of fluoride and low levels of calcium in drinking water. Particularly, bone volume and cortical thickness of the mandibular bone were significantly reduced in these sheep. The current study suggests that chronic environmental fluoride exposure with levels above the recommended limits in combination with low calcium uptake can cause significant attrition of teeth and a significant impaired mandibular bone quality. In the presence of high fluoride and low calcium-associated dental changes, deterioration of the mandibular bone and a potential alveolar bone loss needs to be considered regardless whether other signs of systemic skeletal fluorosis are observed or not. C1 [Simon, Maciej J. K.; Beil, Frank Timo; Riedel, Christoph; Zimmermann, Elizabeth A.; Koehne, Till; Ueblacker, Peter; Pogoda, Pia; Amling, Michael; Oheim, Ralf] Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, Martinistr 52, D-20246 Hamburg, Germany. [Simon, Maciej J. K.; Beil, Frank Timo; Ruether, Wolfgang] Univ Med Ctr Hamburg Eppendorf, Dept Orthoped, Martinistr 52, D-20246 Hamburg, Germany. [Lau, Grace; Tomsia, Antoni] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA USA. [Koehne, Till] Univ Med Ctr Hamburg Eppendorf, Dept Orthodont, Martinistr 52, D-20246 Hamburg, Germany. [Ueblacker, Peter] MW Ctr Orthoped & Sports Med, Dienerstr 12, D-80331 Munich, Germany. [Ignatius, Anita] Univ Ulm, Ctr Musculoskeletal Res, Inst Orthopaed Res & Biomech, Helmholtzstr 14, D-89081 Ulm, Germany. RP Amling, M (reprint author), Univ Med Ctr Hamburg Eppendorf, Dept Osteol & Biomech, Martinistr 52, D-20246 Hamburg, Germany. EM amling@uke.de RI Ignatius, Anita/M-6012-2013; OI Ignatius, Anita/0000-0002-4782-1979; Zimmermann, Elizabeth/0000-0001-9927-3372 NR 46 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1432-6981 EI 1436-3771 J9 CLIN ORAL INVEST JI Clin. Oral Investig. PD DEC PY 2016 VL 20 IS 9 BP 2361 EP 2370 DI 10.1007/s00784-016-1727-1 PG 10 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA ED6HP UT WOS:000388957000005 PM 26818581 ER PT J AU Jimenez-Martinez, J Garcia-Arostegui, JL Hunink, JE Contreras, S Baudron, P Candela, L AF Jimenez-Martinez, J. Garcia-Arostegui, J. L. Hunink, J. E. Contreras, S. Baudron, P. Candela, L. TI The role of groundwater in highly human-modified hydrosystems: a review of impacts and mitigation options in the Campo de Cartagena-Mar Menor coastal plain (SE Spain) SO ENVIRONMENTAL REVIEWS LA English DT Review DE water imbalance; aquifer-cross contamination; acid-mine drainage; eutrophication ID UNION-MINING-DISTRICT; SOUTH-EASTERN SPAIN; LA-UNION; SALT-MARSH; MINE WASTES; CLIMATE-CHANGE; PHOSPHORUS FRACTIONATION; MEDITERRANEAN CATCHMENT; IRRIGATION TECHNOLOGY; SEASONAL DISTRIBUTION AB Hydrological processes and water resources are increasingly modified by anthropogenic actions, leading to multiple pressures on the environment and related ecosystems. A better understanding of the interactions between the anthroposphere and the hydrosphere is necessary to shape more sustainable societies. The pressure of human activities on the environment is especially high along the circum-Mediterranean area because of a combination of biophysical and economic factors. The Campo de Cartagena coastal plain, together with the Mar Menor lagoon, is one of the most exemplary areas in this aspect. This work analyzes this system at the basin level by providing a synthesis of the state of knowledge of each hydrological compartment and the links between them. We pay special attention to the important role that groundwater plays in the overall functioning of the system, both as a promoting and (or) mitigating agent. The principal identified impacts from human actions are water imbalance (28% of consumed water resources are not renewable); aquifer-cross contamination (high areal density, similar to 1.2 wells/km(2)); acid-mine drainage (mine wastes, accounting for similar to 175 hm(3) on land and similar to 25 hm(3) in the sea, accumulated mainly between 1957 and 1992); and lagoon eutrophication (NO3- up to 1 mg/L). A set of mitigation options and complementary management measures that should be implemented following an integrative and holistic approach are presented and discussed, supporting a more sustainable regional economy and the recovery of critical ecosystem services. C1 [Jimenez-Martinez, J.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Garcia-Arostegui, J. L.] Geol Survey Spain, Murcia Off, Murcia 30009, Spain. [Garcia-Arostegui, J. L.] Univ Murcia, Inst Water & Environm, Campus Espinardo, Murcia 30010, Spain. [Hunink, J. E.; Contreras, S.] FutureWater, Paseo Alfonse 13, Cartagena 30203, Spain. [Baudron, P.] Ecole Polytech, Dept Civil Geol & Min Engn, Montreal, PQ H3T 1J4, Canada. [Candela, L.] Tech Univ Catalonia, Dept Civil Engn & Environm GHS, Barcelona 08034, Spain. RP Jimenez-Martinez, J (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. EM jjimenez@lanl.gov RI Garcia-Arostegui, Jose-Luis/K-3454-2012; OI Garcia-Arostegui, Jose-Luis/0000-0002-1659-8436; Contreras, Sergio/0000-0003-3991-8241; Jimenez-Martinez, Joaquin/0000-0002-2063-6490 FU Spanish Ministry of Economy (Spanish Government) [GESINH-IMPADAPT (CGL2013-48424-C2-2-R), EUNCEM (CGL2013-48802-C3-3-R)]; Research Program of Universidad Catolica de San Antonio (UCAM) [PMAFI-06-14]; Fundacion Instituto Euromediterraneo del Agua (F-IEA); Region de Murcia Government FX The authors gratefully acknowledge support from the Spanish Ministry of Economy (Spanish Government) through the Projects GESINH-IMPADAPT (CGL2013-48424-C2-2-R) and EUNCEM (CGL2013-48802-C3-3-R), the Research Program of Universidad Catolica de San Antonio (UCAM) (PMAFI-06-14), Fundacion Instituto Euromediterraneo del Agua (F-IEA), and the Region de Murcia Government. NR 149 TC 1 Z9 1 U1 15 U2 15 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA SN 1208-6053 EI 1181-8700 J9 ENVIRON REV JI Environ. Rev. PD DEC PY 2016 VL 24 IS 4 BP 377 EP 392 DI 10.1139/er-2015-0089 PG 16 WC Environmental Sciences SC Environmental Sciences & Ecology GA ED3FV UT WOS:000388735900002 ER PT J AU Tanzil, AH Sultana, ST Saunders, SR Dohnalkova, AC Shi, L Davenport, E Ha, P Beyenal, H AF Tanzil, Abid H. Sultana, Sujala T. Saunders, Steven R. Dohnalkova, Alice C. Shi, Liang Davenport, Emily Phuc Ha Beyenal, Haluk TI Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms SO ENZYME AND MICROBIAL TECHNOLOGY LA English DT Article DE Gold nanoparticles; Geobacter sulfurreducens; Extracellular substances; Biofilms ID EXTRACELLULAR POLYMERIC SUBSTANCES; SHEWANELLA-ONEIDENSIS; REDUCTION; METAL; SIZE; PALLADIUM; SILVER; ROLES; SITES; PH AB The goal of this work was to synthesize gold nanoparticles (AuNPs) using electrode-respiring Geobacter sulfurreducens biofilms. We found that AuNPs are generated in the extracellular matrix of Geobacter biofilms and have an average particle size of 20 nm. The formation of AuNPs was verified using TEM, FTIR and EDX. We also found that the extracellular substances extracted from electrode-respiring G. sulfurreducens biofilms reduce Au3+ to AuNPs. From FTIR spectra, it appears that reduced sugars were involved in the bioreduction and synthesis of AuNPs and that amine groups acted as the major biomolecules involved in binding. (C) 2016 Elsevier Inc. All rights reserved. C1 [Tanzil, Abid H.; Sultana, Sujala T.; Saunders, Steven R.; Davenport, Emily; Phuc Ha; Beyenal, Haluk] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Dohnalkova, Alice C.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA USA. [Shi, Liang] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA USA. RP Beyenal, H (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM beyenal@wsu.edu OI Saunders, Steven/0000-0001-6714-7435 FU NSF CAREER [0954186]; NIH [5T32GM008336-24]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory FX This work was supported by NSF CAREER award 0954186. E.K.D acknowledges NIH training grant 5T32GM008336-24. A portion of this research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 51 TC 1 Z9 1 U1 9 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0141-0229 EI 1879-0909 J9 ENZYME MICROB TECH JI Enzyme Microb. Technol. PD DEC PY 2016 VL 95 SI SI BP 69 EP 75 DI 10.1016/j.enzmictec.2016.07.012 PG 7 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA ED9AD UT WOS:000389161400007 PM 27866628 ER PT J AU Wollenberg, E Richards, M Smith, P Havlik, P Obersteiner, M Tubiello, FN Herold, M Gerber, P Carter, S Reisinger, A van Vuuren, DP Dickie, A Neufeldt, H Sander, BO Wassmann, R Sommer, R Amonette, JE Falcucci, A Herrero, M Opio, C Roman-Cuesta, RM Stehfest, E Westhoek, H Ortiz-Monasterio, I Sapkota, T Rufino, MC Thornton, PK Verchot, L West, PC Soussana, JF Baedeker, T Sadler, M Vermeulen, S Campbell, BM AF Wollenberg, Eva Richards, Meryl Smith, Pete Havlik, Petr Obersteiner, Michael Tubiello, Francesco N. Herold, Martin Gerber, Pierre Carter, Sarah Reisinger, Andrew van Vuuren, Detlef P. Dickie, Amy Neufeldt, Henry Sander, Bjorn O. Wassmann, Reiner Sommer, Rolf Amonette, James E. Falcucci, Alessandra Herrero, Mario Opio, Carolyn Roman-Cuesta, Rosa Maria Stehfest, Elke Westhoek, Henk Ortiz-Monasterio, Ivan Sapkota, Tek Rufino, Mariana C. Thornton, Philip K. Verchot, Louis West, Paul C. Soussana, Jean-Francois Baedeker, Tobias Sadler, Marc Vermeulen, Sonja Campbell, Bruce M. TI Reducing emissions from agriculture to meet the 2 degrees C target SO GLOBAL CHANGE BIOLOGY LA English DT Article DE agriculture; climate change; integrated assessment modeling; mitigation; policy; target; United Nations Framework Convention on Climate Change ID GREENHOUSE-GAS MITIGATION; CLIMATE-CHANGE; STABILIZATION WEDGES; METHANE; GOALS AB More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of similar to 1GtCO(2)eyr(-1) by 2030 to limit warming in 2100 to 2 degrees C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 degrees C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 degrees C limit. C1 [Wollenberg, Eva; Richards, Meryl; Thornton, Philip K.; Vermeulen, Sonja; Campbell, Bruce M.] CGIAR Res Program Climate Change Agr & Food Secur, Copenhagen, Denmark. [Wollenberg, Eva; Richards, Meryl] Univ Vermont, Burlington, VT 05405 USA. [Smith, Pete] Scottish Food Secur Alliance Crops, Aberdeen, Scotland. [Smith, Pete] Univ Aberdeen, Aberdeen, Scotland. [Havlik, Petr; Obersteiner, Michael] Int Inst Appl Syst Anal, Laxenburg, Austria. [Tubiello, Francesco N.; Gerber, Pierre; Falcucci, Alessandra; Opio, Carolyn] United Nations FAO, Food & Agr Org, Rome, Italy. [Herold, Martin; Gerber, Pierre; Carter, Sarah; Roman-Cuesta, Rosa Maria] Wageningen Univ & Res Ctr WUR, Wageningen, Netherlands. [Reisinger, Andrew] New Zealand Agr Greenhouse Gas Res Ctr NZAGRC, Wellington, New Zealand. [van Vuuren, Detlef P.; Stehfest, Elke; Westhoek, Henk] Netherlands Environm Assessment Agcy PBL, Bilthoven, Netherlands. [Dickie, Amy] Calif Environm Associates, San Francisco, CA USA. [Sander, Bjorn O.; Wassmann, Reiner] Int Rice Res Inst, Los Banos, Philippines. [Sommer, Rolf; Campbell, Bruce M.] Int Ctr Trop Agr CIAT, Cali, Colombia. [Amonette, James E.] Pacific Northwest Natl Lab, Richland, WA USA. [Herrero, Mario] CSIRO, Brisbane, Qld, Australia. [Roman-Cuesta, Rosa Maria; Rufino, Mariana C.; Verchot, Louis] Ctr Int Forestry Res CIFOR, Nairobi, Kenya. [Ortiz-Monasterio, Ivan; Sapkota, Tek] Int Maize & Wheat Improvement Ctr CIMMYT, El Batan, Mexico. [Thornton, Philip K.] Int Livestock Res Inst, Nairobi, Kenya. [West, Paul C.] Univ Minnesota, Inst Environm IONE, St Paul, MN 55108 USA. [Soussana, Jean-Francois] French Natl Inst Agr Res INRA, Clermont Ferrand, France. [Baedeker, Tobias; Sadler, Marc] World Bank, 1818 H St NW, Washington, DC 20433 USA. [Vermeulen, Sonja] Univ Copenhagen, Copenhagen, Denmark. RP Wollenberg, E (reprint author), CGIAR Res Program Climate Change Agr & Food Secur, Copenhagen, Denmark.; Wollenberg, E (reprint author), Univ Vermont, Burlington, VT 05405 USA. EM lini.wollenberg@uvm.edu RI Smith, Pete/G-1041-2010; Herold, Martin/F-8553-2012; Herrero, Mario/A-6678-2015 OI Smith, Pete/0000-0002-3784-1124; Herold, Martin/0000-0003-0246-6886; Herrero, Mario/0000-0002-7741-5090 FU European Union (EU) FX Data are presented in the Supporting Information and available from authors upon request. Thank you to Julianna White, Tapan Adhya, William Hohenstein, Tim Searchinger, Kitty Cardwell, Elise Golan, and several anonymous reviewers for their comments and contributions. This work was undertaken as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), which is a strategic partnership of CGIAR and Future Earth. This research was carried out with funding by the European Union (EU) and technical support from the International Fund for Agricultural Development (IFAD). The views expressed in the document cannot be taken to reflect the official opinions of CGIAR, Future Earth, or donors. NR 32 TC 3 Z9 3 U1 37 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD DEC PY 2016 VL 22 IS 12 BP 3859 EP 3864 DI 10.1111/gcb.13340 PG 6 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA EC0TJ UT WOS:000387813300003 PM 27185416 ER PT J AU Johnson, MO Galbraith, D Gloor, M De Deurwaerder, H Guimberteau, M Rammig, A Thonicke, K Verbeeck, H von Randow, C Monteagudo, A Phillips, OL Brienen, RJW Feldpausch, TR Gonzalez, GL Fauset, S Quesada, CA Christoffersen, B Ciais, P Sampaio, G Kruijt, B Meir, P Moorcroft, P Zhang, K Alvarez-Davila, E de Oliveira, AA Amaral, I Andrade, A Aragao, LEOC Araujo-Murakami, A Arets, EJMM Arroyo, L Aymard, GA Baraloto, C Barroso, J Bonal, D Boot, R Camargo, J Chave, J Cogollo, A Valverde, FC da Costa, ACL Di Fiore, A Ferreira, L Higuchi, N Honorio, EN Killeen, TJ Laurance, SG Laurance, WF Licona, J Lovejoy, T Malhi, Y Marimon, B Marimon, B Matos, DCL Mendoza, C Neill, DA Pardo, G Pena-Claros, M Pitman, NCA Poorter, L Prieto, A Ramirez-Angulo, H Roopsind, A Rudas, A Salomao, RP Silveira, M Stropp, J ter Steege, H Terborgh, J Thomas, R Toledo, M Torres-Lezama, A van der Heijden, GMF Vasquez, R Vieira, ICG Vilanova, E Vos, VA Baker, TR AF Johnson, Michelle O. Galbraith, David Gloor, Manuel De Deurwaerder, Hannes Guimberteau, Matthieu Rammig, Anja Thonicke, Kirsten Verbeeck, Hans von Randow, Celso Monteagudo, Abel Phillips, Oliver L. Brienen, Roel J. W. Feldpausch, Ted R. Gonzalez, Gabriela Lopez Fauset, Sophie Quesada, Carlos A. Christoffersen, Bradley Ciais, Philippe Sampaio, Gilvan Kruijt, Bart Meir, Patrick Moorcroft, Paul Zhang, Ke Alvarez-Davila, Esteban de Oliveira, Atila Alves Amaral, Ieda Andrade, Ana Aragao, Luiz E. O. C. Araujo-Murakami, Alejandro Arets, Eric J. M. M. Arroyo, Luzmila Aymard, Gerardo A. Baraloto, Christopher Barroso, Jocely Bonal, Damien Boot, Rene Camargo, Jose Chave, Jerome Cogollo, Alvaro Cornejo Valverde, Fernando Lola da Costa, Antonio C. Di Fiore, Anthony Ferreira, Leandro Higuchi, Niro Honorio, Euridice N. Killeen, Tim J. Laurance, Susan G. Laurance, William F. Licona, Juan Lovejoy, Thomas Malhi, Yadvinder Marimon, Bia Marimon, Ben Hur Matos, Darley C. L. Mendoza, Casimiro Neill, David A. Pardo, Guido Pena-Claros, Marielos Pitman, Nigel C. A. Poorter, Lourens Prieto, Adriana Ramirez-Angulo, Hirma Roopsind, Anand Rudas, Agustin Salomao, Rafael P. Silveira, Marcos Stropp, Juliana ter Steege, Hans Terborgh, John Thomas, Raquel Toledo, Marisol Torres-Lezama, Armando van der Heijden, Geertje M. F. Vasquez, Rodolfo Guimaraes Vieira, Ima Celia Vilanova, Emilio Vos, Vincent A. Baker, Timothy R. TI Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models SO GLOBAL CHANGE BIOLOGY LA English DT Article DE allometry; carbon; dynamic global vegetation model; forest plots; productivity; tropical forest ID ENVIRONMENT SIMULATOR JULES; TROPICAL RAIN-FORESTS; CARBON BALANCE; EARTH SYSTEM; DROUGHT SENSITIVITY; WOOD PRODUCTIVITY; ECOSYSTEM MODEL; TREE MORTALITY; CLIMATE-CHANGE; WATER-BALANCE AB Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs. C1 [Johnson, Michelle O.; Galbraith, David; Gloor, Manuel; Phillips, Oliver L.; Brienen, Roel J. W.; Gonzalez, Gabriela Lopez; Fauset, Sophie; Baker, Timothy R.] Univ Leeds, Sch Geog, Leeds LS6 2QT, W Yorkshire, England. [De Deurwaerder, Hannes; Verbeeck, Hans] Univ Ghent, Fac Biosci Engn, CAVElab Computat & Appl Vegetat Ecol, Coupure Links 653, B-9000 Ghent, Belgium. [Guimberteau, Matthieu; Ciais, Philippe] Univ Paris Saclay, UVSQ, LSCE, IPSL,CEA,CNRS, F-91191 Gif Sur Yvette, France. [Guimberteau, Matthieu] UPMC, Sorbonne Univ, UMR 7619, METIS,IPSL,CNRS,EPHE, F-75252 Paris, France. [Rammig, Anja] Tech Univ Munich, TUM Sch Life Sci Weihenstephan, Hans Carl von Carlowitz Pl 2, D-85354 Freising Weihenstephan, Germany. [Rammig, Anja; Thonicke, Kirsten] Potsdam Inst Climate Impact Res PIK, Telegrafenberg A62,POB 60 12 03, D-14412 Potsdam, Germany. [von Randow, Celso; Sampaio, Gilvan] INPE, Ave Dos Astronautas,1-758,Jd Granja, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Monteagudo, Abel; Aragao, Luiz E. O. C.] Prolongac Bolognesi Mz E, Jardin Bot Missouri, Lote 6, Oxapampa, Pasco, Peru. [Feldpausch, Ted R.; Vasquez, Rodolfo] Univ Exeter, Coll Life & Environm Sci, Geog, Rennes Dr, Exeter EX4 4RJ, Devon, England. [Quesada, Carlos A.; de Oliveira, Atila Alves; Amaral, Ieda; Andrade, Ana; Camargo, Jose; Higuchi, Niro] INPA, Ave Andre Araujo 2,936, BR-69067375 Manaus, AM, Brazil. [Christoffersen, Bradley; Meir, Patrick] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3FF, Midlothian, Scotland. [Christoffersen, Bradley] Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. [Kruijt, Bart; Arets, Eric J. M. M.] Wageningen UR, ALTERRA, POB 47, NL-6700 AA Wageningen, Netherlands. [Meir, Patrick] Australian Natl Univ, Res Sch Biol, Canberra, ACT 0200, Australia. [Moorcroft, Paul] Harvard Univ, Dept Organism & Evolutionary Biol, 26 Oxford St, Cambridge, MA 02138 USA. [Zhang, Ke] Univ Oklahoma, Natl Weather Ctr, Cooperat Inst Mesoscale Meteorol Studies, Suite 2100,120 David L Boren Blvd, Norman, OK 73072 USA. [Alvarez-Davila, Esteban] Fdn Con Vida, Cr68 A 46 A-77 Medellin, Medellin, Colombia. [Araujo-Murakami, Alejandro; Arroyo, Luzmila] Univ Autonoma Gabriel Rene Moreno, Museo Hist Nat Noel Kempff Mercado, Casilla 2489,Ave Irala 565, Santa Cruz, Bolivia. [Aymard, Gerardo A.] Herbario Univ PORT, Programa Ciencias Agro & Mar, UNELLEZ Guanare, Mesa De Cavacas 3350, Estado Portugue, Venezuela. [Baraloto, Christopher] Florida Int Univ, Dept Biol Sci, Int Ctr Trop Bot, 112200 SW 8th St,OE 167, Miami, FL 33199 USA. [Barroso, Jocely] Univ Fed Acre, Campus Cruzeiro Sul, Rio Branco, Brazil. [Bonal, Damien] INRA, UMR Ecol & Ecophysiol Forestiere 1137, F-54280 Champenoux, France. [Boot, Rene] Tropenbos Int, POB 232, NL-6700 AE Wageningen, Netherlands. [Chave, Jerome] Univ Paul Sabatier, CNRS, UMR Evolut & Divers Biol 5174, Batiment 4R1, F-31062 Toulouse, France. [Cogollo, Alvaro] Jardin Bot Medellin Joaquin Antonio Uribe, Calle 73 51 D 14 Medellin, Medellin, Colombia. [Cornejo Valverde, Fernando] Andes Amazon Biodivers Program, Puerto Maldonado, Madre De Dios, Peru. [Lola da Costa, Antonio C.] Fed Univ Para, Ctr Geociencias, BR-66017970 Belem, Para, Brazil. [Di Fiore, Anthony] Univ Texas Austin, Dept Anthropol, SAC Room 5-150,2201 Speedway Stop C3200, Austin, TX 78712 USA. [Ferreira, Leandro; Matos, Darley C. L.; Salomao, Rafael P.; Guimaraes Vieira, Ima Celia] Museu Paraense Emilio Goeldi, Ave Magalhaes Barata 376 Sao Braz, BR-66040170 Belem, PA, Brazil. [Honorio, Euridice N.] Inst Invest Amazonia Peruana, Ave Jose Quinones Km 2-5, Iquitos, Peru. [Killeen, Tim J.] World Wildlife Fund, 1250 24th St NW, Washington, DC 20037 USA. [Laurance, Susan G.; Laurance, William F.] James Cook Univ, Ctr Trop Environm & Sustainabil Sci TESS, Cairns, Qld 4878, Australia. [Laurance, Susan G.; Laurance, William F.] James Cook Univ, Coll Marine & Environm Sci, Cairns, Qld 4878, Australia. [Licona, Juan; Pena-Claros, Marielos; Toledo, Marisol] Inst Boliviano Invest Forestal, CP 6201, Santa Cruz 6201, Bolivia. [Lovejoy, Thomas] George Mason Univ, Environm Sci & Policy Dept, 3351 Fairfax Dr, Arlington, VA 22201 USA. [Lovejoy, Thomas] George Mason Univ, Dept Publ & Int Affairs, 3351 Fairfax Dr, Arlington, VA 22201 USA. [Malhi, Yadvinder] Univ Oxford, Sch Geog & Environm, Environm Change Inst, South Pk Rd, Oxford OX1 3QY, England. [Marimon, Bia; Marimon, Ben Hur] Univ Estado Mato Grosso, Caixa Postal 08, BR-78690000 Nova Xavantina, MT, Brazil. [Mendoza, Casimiro] Escuela Ciencias Forestales ESFOR, Ave Final Atahuallpa S-N,Casilla 447, Cochabamba, Bolivia. [Neill, David A.] Univ Estatal Amazonica, Fac Ingn Ambiental, Paso Lateral Km 2 1-2 Via Napo, Puyo, Pastaza, Ecuador. [Pardo, Guido] Univ Autonoma Beni, Campus Univ,Ave Ejercito Nacl, Riberalta, Beni, Bolivia. [Pena-Claros, Marielos; Poorter, Lourens] Wageningen Univ, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands. [Pitman, Nigel C. A.; Terborgh, John] Duke Univ, Ctr Trop Conservat, Box 90381, Durham, NC 27708 USA. [Prieto, Adriana; Rudas, Agustin] Univ Nacl Colombia, Doctorado Inst Ciencias Nat, Bogota, Colombia. [Ramirez-Angulo, Hirma; Torres-Lezama, Armando; Vilanova, Emilio] Univ Los Andes, Inst Invest Desarrollo Forestal, Ave Principal Chorros de Milla, Merida, Venezuela. [Roopsind, Anand; Thomas, Raquel] Iwokrama Int Ctr Rainforest Conservat & Dev, 77 High St Kingston, Georgetown, Guyana. [Silveira, Marcos] Univ Fed Acre, Museu Univ, BR-69910900 Rio Branco, AC, Brazil. [Stropp, Juliana] Univ Fed Alagoas, Inst Biol & Hlth Sci, Ave Lourival Melo Mota S-N, BR-57072900 Maceio, AL, Brazil. [ter Steege, Hans] Nat Biodivers Ctr, POB 9517, NL-2300 RA Leiden, Netherlands. [van der Heijden, Geertje M. F.] Univ Nottingham, Sch Geog, Nottingham NG7 2RD, England. [Vos, Vincent A.] Reg Norte Amazon, Ctr Invest & Promoc Campesinado, C Nicanor Gonzalo Salvatierra 362,Casilla 16, Riberalta, Bolivia. [Vos, Vincent A.] Univ Autonoma Beni, Ave 6 Agosto 64, Riberalta, Bolivia. RP Baker, TR (reprint author), Univ Leeds, Sch Geog, Leeds LS6 2QT, W Yorkshire, England. EM t.r.baker@leeds.ac.uk RI Zhang, Ke/B-3227-2012; Phillips, Oliver/A-1523-2011; ter Steege, Amaz/B-5866-2011; OI Zhang, Ke/0000-0001-5288-9372; Phillips, Oliver/0000-0002-8993-6168; ter Steege, Amaz/0000-0002-8738-2659; Thonicke, Kirsten/0000-0001-5283-4937; Honorio Coronado, Euridice/0000-0003-2314-590X; Guimberteau, Matthieu/0000-0001-8582-6087; Vos, Vincent Antoine/0000-0002-0388-8530 FU European Union [282664, 283080]; Gordon and Betty Moore Foundation; ERC; Natural Environment Research Council (NERC) Urgency; Consortium and Standard Grant 'AMAZONICA' [NE/F005806/1]; Consortium and Standard Grant 'TROBIT' [NE/D005590/1]; Consortium and Standard Grant 'Niche Evolution of South American Trees' [NE/I028122/1]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico of Brazil (CNPq); project Programa de Pesquisas Ecologicas de Longa Duracao [PELD-403725/2012-7]; Helmholtz Alliance 'Remote Sensing and Earth System Dynamics'; EU FP7 project 'ROBIN' [283093]; Dutch Ministry of Economic Affairs [KB-14-003-030]; US DOE (BER) NGEE-Tropics project; ERC Advanced Grant; Royal Society-Wolfson Research Merit Award; ARC [FT110100457]; NERC [NE/J011002/1]; Leverhulme Trust Research Fellowship FX This paper is a product of the European Union's Seventh Framework Programme AMAZALERT project (282664). The field data used in this study have been generated by the RAINFOR network, which has been supported by a Gordon and Betty Moore Foundation grant, the European Union's Seventh Framework Programme projects 283080, 'GEOCARBON'; and 282664, 'AMAZALERT'; ERC grant 'Tropical Forests in the Changing Earth System'), and Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grants 'AMAZONICA' (NE/F005806/1), 'TROBIT' (NE/D005590/1) and 'Niche Evolution of South American Trees' (NE/I028122/1). Additional data were included from the Tropical Ecology Assessment and Monitoring (TEAM) Network-a collaboration between Conservation International, the Missouri Botanical Garden, the Smithsonian Institution and the Wildlife Conservation Society, and partly funded by these institutions, the Gordon and Betty Moore Foundation, and other donors. Fieldwork was also partially supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico of Brazil (CNPq), project Programa de Pesquisas Ecologicas de Longa Duracao (PELD-403725/2012-7). A.R. acknowledges funding from the Helmholtz Alliance 'Remote Sensing and Earth System Dynamics'; L.P., M.P.C. E.A. and M.T. are partially funded by the EU FP7 project 'ROBIN' (283093), with co-funding for E.A. from the Dutch Ministry of Economic Affairs (KB-14-003-030); B.C. [was supported in part by the US DOE (BER) NGEE-Tropics project (subcontract to LANL). O.L.P. is supported by an ERC Advanced Grant and is a Royal Society-Wolfson Research Merit Award holder. P.M. acknowledges support from ARC grant FT110100457 and NERC grants NE/J011002/1, and T.R.B. acknowledges support from a Leverhulme Trust Research Fellowship. NR 84 TC 6 Z9 6 U1 14 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD DEC PY 2016 VL 22 IS 12 BP 3996 EP 4013 DI 10.1111/gcb.13315 PG 18 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA EC0TJ UT WOS:000387813300015 PM 27082541 ER PT J AU Bull, CL Funnell, NP Tucker, MG Hull, S Francis, DJ Marshall, WG AF Bull, C. L. Funnell, N. P. Tucker, M. G. Hull, S. Francis, D. J. Marshall, W. G. TI PEARL: the high pressure neutron powder diffractometer at ISIS SO HIGH PRESSURE RESEARCH LA English DT Article DE Neutron; diffraction; large volume press; high pressure; temperature; crystal structure ID PARIS-EDINBURGH CELL; ICE VII; ROOM-TEMPERATURE; 10 GPA; DIFFRACTION; PHASE; SCATTERING; DIHYDRATE; ACID AB The PEARL instrument at ISIS has been designed for, and dedicated to, in situ studies of materials at high pressure, using the Paris-Edinburgh press. In recent years, upgrades to the instrument have led to improvements in data quality and the range of achievable pressures and temperatures; currently 0.5-28GPa and 80-1400K. This paper describes the technical characteristics of the instrument, its current capabilities, and gives a brief overview of the science that has been performed, using representative examples. C1 [Bull, C. L.; Funnell, N. P.; Tucker, M. G.; Hull, S.; Francis, D. J.; Marshall, W. G.] Rutherford Appleton Lab, ISIS Facil, Chilton OX11 0QX, Oxon, England. [Tucker, M. G.] Spallat Neutron Source, One Bethel Valley Rd,MS-6475, Oak Ridge, TN USA. RP Bull, CL (reprint author), Rutherford Appleton Lab, ISIS Facil, Chilton OX11 0QX, Oxon, England. EM Craig.Bull@stfc.ac.uk FU EPSRC; CSIC (Consejo Superior de Investigaciones Cientificas) in Spain FX Funding for the initial design and build of the PEARL instrument was provided by an EPSRC Facility Development Fund and the most recent upgrade of PEARL was funded by the CSIC (Consejo Superior de Investigaciones Cientificas) in Spain. NR 61 TC 5 Z9 5 U1 3 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0895-7959 EI 1477-2299 J9 HIGH PRESSURE RES JI High Pressure Res. PD DEC PY 2016 VL 36 IS 4 BP 493 EP 511 DI 10.1080/08957959.2016.1214730 PG 19 WC Physics, Multidisciplinary SC Physics GA ED6AW UT WOS:000388937000001 ER PT J AU Chamindu, DTKK Smits, KM Oldenburg, CM AF Chamindu, Deepagoda T. K. K. Smits, Kathleen M. Oldenburg, Curtis M. TI Effect of subsurface soil moisture variability and atmospheric conditions on methane gas migration in shallow subsurface SO International Journal of Greenhouse Gas Control LA English DT Article DE Methane gas migration; Natural gas; Unsaturated soil; Gas transport; Shallow subsurface ID POROUS-MEDIA CONTAMINATION; NATURAL-GAS; DIFFUSION COEFFICIENT; NUMERICAL-SIMULATION; MULTIPHASE APPROACH; ORGANIC-COMPOUNDS; GREENHOUSE GASES; TRANSPORT; MODEL; EQUATION AB A major concern resulting from the increased use and production of natural gas has been how to mitigate fugitive greenhouse gas emissions (predominantly methane) from natural gas infrastructure (e.g., leaky shallow pipelines). Subsurface migration and atmospheric loading of methane from pipeline leakage is controlled by source configurations and subsurface soil conditions (e.g., soil heterogeneity and soil moisture) and are further affected by atmospheric conditions (e.g., wind and temperature). However, the transport and attenuation of methane under varying subsurface and atmospheric conditions are poorly understood, making it difficult to estimate leakage fluxes from methane concentration measurements at and above the soil surface. Based on a series of controlled bench-scale experiments using a large porous media tank interfaced with an open-return wind tunnel, this study investigated multiphase processes controlling migration of methane from a point source representing a buried pipeline leaking at fixed flow rate (kg/s) under various saturation and soil-texture conditions. In addition, potential effects of atmospheric boundary controls, wind (0.5 and 2.0 m s(-1)) and temperature (22 and 35 degrees C), were also examined. Results showed the distinct effects of soil heterogeneity and, to a varying degree, of soil moisture on surface methane concentrations. In addition, results also showed the pronounced effects of wind and, to a lesser degree, of temperature on surface methane concentrations in the presence of varying soil and moisture conditions. The observed subsurface methane profiles were simulated using the multiphase transport simulator TOUGH2-EOS7CA. Observed agreement between measured and simulated data demonstrates that for the conditions studied, multiphase migration of a multicomponent gas mixture (including methane) under density-dependent flow can be adequately represented with a Fickian advection-diffusion (or dispersion) model (ADM) framework. The dominant effect of saturation over the soil texture, could also be inferred from numerical characterization. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Smits, Kathleen M.] Colorado Sch Mines, Dept Civil & Environm Engn, Ctr Expt Study Subsurface Environm Proc CESEP, Golden, CO 80401 USA. [Chamindu, Deepagoda T. K. K.] Univ Peradeniya, Dept Civil Engn, Peradeniya 20400, Sri Lanka. [Oldenburg, Curtis M.] Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd Berkeley, Berkeley, CA 94720 USA. RP Smits, KM (reprint author), Colorado Sch Mines, Dept Civil & Environm Engn, Ctr Expt Study Subsurface Environm Proc CESEP, Golden, CO 80401 USA. EM chamindu78@yahoo.com FU Department of Energy's National Energy Technology Laboratory (NETL); Research Partnership to Secure Energy for America project [RFP2012UN001]; National Science Foundation Project [1447533]; University of Peradeniya, Sri Lanka [URG/2016/33/E] FX This research was funded in part by the Department of Energy's National Energy Technology Laboratory (NETL), the Research Partnership to Secure Energy for America project (#RFP2012UN001) and the National Science Foundation Project Award Number 1447533. The research grant from the University of Peradeniya, Sri Lanka (URG/2016/33/E) is also acknowledged. Any opinion, findings, and conclusions or recommendations expressed herein are those of the authors and do not necessarily reflect the views of those providing technical input or financial support. The trade names mentioned herein are merely for identification purposes and does not constitute endorsement by any entity involved in this study. NR 66 TC 0 Z9 0 U1 13 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD DEC PY 2016 VL 55 BP 105 EP 117 DI 10.1016/j.ijggc.2016.10.016 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA ED8TU UT WOS:000389144600011 ER PT J AU White, SK Zhang, ZF Oostrom, M AF White, S. K. Zhang, Z. F. Oostrom, M. TI Simulation of carbon dioxide injection at the FutureGen2.0 site: Class VI permit model and local sensitivity analysis SO International Journal of Greenhouse Gas Control LA English DT Article DE Carbon sequestration; Reservoir simulation; Modeling; Local sensitivity analysis ID REGIONAL PRESSURE BUILDUP; CO2 STORAGE; RELATIVE PERMEABILITY; SALINE AQUIFERS; GEOLOGIC STORAGE; CHARACTERISTIC CURVES; RESERVOIR BEHAVIOR; SALT-PRECIPITATION; MULTIPHASE FLOW; ILLINOIS BASIN AB Numerical simulation was conducted to evaluate supercritical CO2 (scCO(2)) storage in the Mt. Simon sandstone at the FutureGen 2.0 site in Morgan County, Illinois. The simulations illustrate the recent modeling effort conducted to successfully obtain a Class VI permit under the Underground Injection Control Program of the U.S. Environmental Protection Agency. The scCO(2) was injected into a highly stratified reservoir, distributed among four lateral wells. Results show that each of the multiple reservoir layers with low permeability traps a fraction of the scCO(2) beneath it so that the injected scCO(2) does not reach the top of the reservoir by the end of the simulation period. Hence, all of the injected scCO(2) is considered to be safely trapped by the stratified structure within the reservoir. A local sensitivity analysis (LSA) was conducted for injectivity and plume size at the end of the 20 year injection period. The LSA indicates that the imposed initial conditions and the hydraulic properties of the injection layer contribute the most to the sensitivity. Overall, the simulation outputs are very sensitive to only a small fraction of the inputs. However, the parameters that are important for controlling CO2 injectivity are not the same as those controlling the plume area. The three most sensitive inputs for injectivity are the horizontal permeability and the residual aqueous saturation of the injection layer, and the initial fracture-pressure gradient. For the plume area, the most sensitive inputs are the horizontal permeability of the injection layer and the residual aqueous saturation of the two adjacent layers above the injection layer. The advantages of requiring just a single set of simulation results, scalability to the proper parameter errors, and straightforward calculation of the composite sensitivities make the proposed analysis attractive for guiding site characterization, injection well design, estimating Area of Review uncertainty and, and monitoring network design. (C) 2016 Elsevier Ltd. All rights reserved. C1 [White, S. K.; Zhang, Z. F.; Oostrom, M.] Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99354 USA. RP Oostrom, M (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99354 USA. EM mart.oostrom@pnnl.gov FU U.S. Department of Energy [DE-FE0001882]; FutureGen Industrial Alliance [DE-FE0001882]; Department of Energy (DOE) [DE-AC06-76RLO 1830] FX Funding for this research was provided by the FutureGen 2.0 program, implemented under Cooperative Agreement DE-FE0001882 between the U.S. Department of Energy and the FutureGen Industrial Alliance, a non-profit membership organization created to benefit the public interest and the interests of science through research, development, and demonstration of near-zero emissions coal technology. For more information on FutureGen 2.0, please visit wwwfuturegenalliance.org. Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the Department of Energy (DOE) under Contract DE-AC06-76RLO 1830. NR 70 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD DEC PY 2016 VL 55 BP 177 EP 194 DI 10.1016/j.ijggc.2016.10.009 PG 18 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA ED8TU UT WOS:000389144600016 ER PT J AU Orlov, D Joshi, V AF Orlov, D. Joshi, V. TI Advances and Achievements in In Situ Analysis of Corrosion and Structure-Property Relationship in Mg Alloys SO JOM LA English DT Article C1 [Orlov, D.] Lund Univ, Div Mat Engn, Dept Mech Engn, LTH, Ole Romers Vag 1, S-22363 Lund, Sweden. [Joshi, V.] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. RP Orlov, D (reprint author), Lund Univ, Div Mat Engn, Dept Mech Engn, LTH, Ole Romers Vag 1, S-22363 Lund, Sweden. EM dmytro.orlov@material.lth.se; vineet.joshi@pnl.gov RI Orlov, Dmytro/C-4626-2008 OI Orlov, Dmytro/0000-0002-1115-4609 NR 1 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD DEC PY 2016 VL 68 IS 12 BP 3040 EP 3041 DI 10.1007/s11837-016-2167-8 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA ED4KX UT WOS:000388818100007 ER PT J AU Head, AR Schnadt, J AF Head, Ashley R. Schnadt, Joachim TI UHV and Ambient Pressure XPS: Potentials for Mg, MgO, and Mg(OH)(2) Surface Analysis SO JOM LA English DT Review ID RAY PHOTOELECTRON-SPECTROSCOPY; ELECTRON-SPECTROSCOPY; MGO(100) SURFACE; THIN-FILMS; ADSORPTION; WATER; HYDROXYLATION; MOLECULES; SCATTERING; INTERFACE AB The surface sensitivity of x-ray photoelectron spectroscopy ( XPS) has positioned the technique as a routine analysis tool for chemical and electronic structure information. Samples ranging from ideal model systems to industrial materials can be analyzed. Instrumentational developments in the past two decades have popularized ambient pressure XPS, with pressures in the tens of mbar now commonplace. Here, we briefly review the technique, including a discussion of developments that allow data collection at higher pressures. We illustrate the information XPS can provide by using examples from the literature, including MgO studies. We hope to illustrate the possibilities of ambient pressure XPS to Mg, MgO, and Mg(OH)(2) systems, both in fundamental and applied studies. C1 [Head, Ashley R.] Lawrence Berkeley Natl Lab, Div Chem Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Schnadt, Joachim] Lund Univ, Div Synchrotron Radiat Res, Dept Phys, Box 118, S-22100 Lund, Sweden. RP Schnadt, J (reprint author), Lund Univ, Div Synchrotron Radiat Res, Dept Phys, Box 118, S-22100 Lund, Sweden. EM joachim.schnadt@sljus.lu.se OI Schnadt, Joachim/0000-0001-9375-831X; Head, Ashley/0000-0001-8733-0165 NR 57 TC 0 Z9 0 U1 17 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD DEC PY 2016 VL 68 IS 12 BP 3070 EP 3077 DI 10.1007/s11837-016-2112-x PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA ED4KX UT WOS:000388818100012 ER PT J AU Kim, JS Kug, JS Yoon, JH Jeong, SJ AF Kim, Jin-Soo Kug, Jong-Seong Yoon, Jin-Ho Jeong, Su-Jong TI Increased Atmospheric CO2 Growth Rate during El Nino Driven by Reduced Terrestrial Productivity in the CMIP5 ESMs SO JOURNAL OF CLIMATE LA English DT Article ID EARTH SYSTEM MODELS; CARBON-CYCLE FEEDBACKS; LINE SIMULATION CHARACTERISTICS; NET PRIMARY PRODUCTION; SOUTHERN-OSCILLATION; INTERANNUAL VARIABILITY; CLIMATE-CHANGE; LAND BIOSPHERE; DIOXIDE; TEMPERATURE AB Better understanding of factors that control the global carbon cycle could increase confidence in climate projections. Previous studies found good correlation between the growth rate of atmospheric CO2 concentration and El Nino-Southern Oscillation (ENSO). The growth rate of atmospheric CO2 increases during El Nino but decreases during La Nina. In this study, long-term simulations of the Earth system models (ESMs) in phase 5 of the Coupled Model Intercomparison Project archive were used to examine the interannual carbon flux variability associated with ENSO. The ESMs simulate the relationship reasonably well with a delay of several months between ENSO and the changes in atmospheric CO2. The increase in atmospheric CO2 associated with El Nino is mostly caused by decreasing net primary production (NPP) in the ESMs. It is suggested that NPP anomalies over South Asia are at their maxima during boreal spring; therefore, the increase in CO2 concentration lags 4-5 months behind the peak phase of El Nino. The decrease in NPP during El Nino may be caused by decreased precipitation and increased temperature over tropical regions. Furthermore, systematic errors may exist in the ESM-simulated temperature responses to ENSO phases over tropical land areas, and these errors may lead to an overestimation of ENSO-related NPP anomalies. In contrast, carbon fluxes from heterotrophic respiration and natural fires are likely underestimated in the ESMs compared with offline model results and observational estimates, respectively. These uncertainties should be considered in long-term projections that include climate-carbon feedbacks. C1 [Kim, Jin-Soo; Kug, Jong-Seong] Pohang Univ Sci & Technol POSTECH, Sch Environm Sci & Engn, Pohang, South Korea. [Yoon, Jin-Ho] Pacific Northwest Natl Lab, Richland, WA USA. [Jeong, Su-Jong] CALTECH, Jet Prop Lab, Pasadena, CA USA. RP Kug, JS (reprint author), Pohang Univ Sci & Technol, Sch Environm Sci & Engn, Pohang 790784, South Korea. EM jskug1@gmail.com RI Kim, Jin-Soo/D-4528-2016 OI Kim, Jin-Soo/0000-0003-0631-2294 FU Korea Meteorological Administration Research and Development Program [KMIPA 2015-2092]; National Research Foundation [NRF-2014R1A2A2A01003827] FX This study was supported by the Korea Meteorological Administration Research and Development Program under Grant KMIPA 2015-2092 and the National Research Foundation (NRF-2014R1A2A2A01003827). NR 98 TC 0 Z9 0 U1 9 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC PY 2016 VL 29 IS 24 BP 8783 EP 8805 DI 10.1175/JCLI-D-14-00672.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2LR UT WOS:000388677100007 ER PT J AU Ivanova, DP Gleckler, PJ Taylor, KE Durack, PJ Marvel, KD AF Ivanova, Detelina P. Gleckler, Peter J. Taylor, Karl E. Durack, Paul J. Marvel, Kate D. TI Moving beyond the Total Sea Ice Extent in Gauging Model Biases SO JOURNAL OF CLIMATE LA English DT Article ID EARTH SYSTEM MODEL; HIGH-RESOLUTION; COUPLED MODEL; CMIP5 MODELS; CLIMATE; OCEAN; SIMULATIONS; PROJECTIONS; PERFORMANCE; NORESM1-M AB Reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. Anew approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differences between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the "sector scale'' metric used here aids in reducing the impact of compensating errors in hemispheric integrals. C1 [Ivanova, Detelina P.; Gleckler, Peter J.; Taylor, Karl E.; Durack, Paul J.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. [Ivanova, Detelina P.] Nansen Environm & Remote Sensing Ctr, Thormohlens Gate 47, N-5006 Bergen, Norway. [Ivanova, Detelina P.] Bjerknes Ctr Climate Res, Bergen, Norway. [Marvel, Kate D.] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY USA. RP Ivanova, DP (reprint author), Nansen Environm & Remote Sensing Ctr, Thormohlens Gate 47, N-5006 Bergen, Norway. EM detelina.ivanova@nersc.no RI Taylor, Karl/F-7290-2011; Durack, Paul/A-8758-2010 OI Taylor, Karl/0000-0002-6491-2135; Durack, Paul/0000-0003-2835-1438 FU U.S. Department of Energy's (DOE's) Office of Science (Biological and Environmental Research); Centre for Climate Dynamics at the Bjerknes Centre; Norwegian Research School on Climate Dynamics; [DE-AC52-07NA27344] FX This work was supported by the U.S. Department of Energy's (DOE's) Office of Science (Biological and Environmental Research) through its Regional and Global Climate Modeling Program and was performed at Lawrence Livermore National Laboratory as a contribution to the U.S. Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program under Contract DE-AC52-07NA27344. The research was partly supported by the Centre for Climate Dynamics at the Bjerknes Centre and the Norwegian Research School on Climate Dynamics. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 2 of this paper) for producing and making available their model output. For CMIP, the U.S. DOE's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We also thank the anonymous reviewers and the editor for their constructive comments, which helped to substantially improve the quality of the paper. NR 49 TC 1 Z9 1 U1 2 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD DEC PY 2016 VL 29 IS 24 BP 8965 EP 8987 DI 10.1175/JCLI-D-16-0026.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2LR UT WOS:000388677100018 ER PT J AU Radchenko, I Tippabhotla, SK Tamura, N Budiman, AS AF Radchenko, I. Tippabhotla, S. K. Tamura, N. Budiman, A. S. TI Probing Phase Transformations and Microstructural Evolutions at the Small Scales: Synchrotron X-ray Microdiffraction for Advanced Applications in 3D IC (Integrated Circuits) and Solar PV (Photovoltaic) Devices SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Reliability; solar PV; mu XRD; TSV ID THROUGH-SILICON; STRESS; CU; GROWTH; SI; TECHNOLOGIES; DIFFRACTION; STRENGTH; CELLS AB Synchrotron x-ray microdiffraction () allows characterization of a crystalline material in small, localized volumes. Phase composition, crystal orientation and strain can all be probed in few-second time scales. Crystalline changes over a large areas can be also probed in a reasonable amount of time with submicron spatial resolution. However, despite all the listed capabilities, is mostly used to study pure materials but its application in actual device characterization is rather limited. This article will explore the recent developments of the technique illustrated with its advanced applications in microelectronic devices and solar photovoltaic systems. Application of in microelectronics will be illustrated by studying stress and microstructure evolution in Cu TSV (through silicon via) during and after annealing. The approach allowing study of the microstructural evolution in the solder joint of crystalline Si solar cells due to thermal cycling will be also demonstrated. C1 [Radchenko, I.; Tippabhotla, S. K.; Budiman, A. S.] SUTD, EPD Pillar, 8 Somapah Rd, Singapore 487372, Singapore. [Tamura, N.] LBNL, ALS, Berkeley, CA 94720 USA. RP Budiman, AS (reprint author), SUTD, EPD Pillar, 8 Somapah Rd, Singapore 487372, Singapore. EM suriadi@stanfordalumni.org NR 33 TC 1 Z9 1 U1 8 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD DEC PY 2016 VL 45 IS 12 BP 6222 EP 6232 DI 10.1007/s11664-016-5012-5 PG 11 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA ED6EK UT WOS:000388948200023 ER PT J AU Saadatkia, P Ariyawansa, G Leedy, KD Look, DC Boatner, LA Selim, FA AF Saadatkia, Pooneh Ariyawansa, G. Leedy, K. D. Look, D. C. Boatner, L. A. Selim, F. A. TI Fourier Transform Infrared Spectroscopy Measurements of Multi-phonon and Free-Carrier Absorption in ZnO SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE FTIR spectroscopy; ZnO; free-carrier absorption; multi-phonon absorption; hydrogen vibrational modes ID ZINC-OXIDE; BULK ZNO; HYDROGEN; LUMINESCENCE; CRYSTALS; DEFECTS AB Fourier transform infrared (FTIR) measurements were carried out on thin films and bulk single crystals of ZnO over a wide temperature range to study the free-carrier and multi-phonon infrared absorptions and the effects of hydrogen incorporation on these properties. Aluminum-doped ZnO thin films were deposited on quartz substrates using atomic-layer deposition (ALD) and sol-gel methods. Hall-effect measurements showed that the ALD films have a resistivity of rho = 1.11 x 10(-3) a"broken vertical bar cm, three orders of magnitude lower than sol-gel films (rho = 1.25 a"broken vertical bar cm). This result is consistent with the significant difference in their free-carrier absorption as revealed by FTIR spectra obtained at room temperature. By reducing the temperature to 80 K, the free carriers were frozen out, and their absorption spectrum was suppressed. From the FTIR measurements on ZnO single crystals that were grown by the chemical vapor transport method, we identified a shoulder around 3350 cm(-1) and associated it with the presence of two or more hydrogen ions in a Zn vacancy. After reducing the hydrogen level in the crystal, the measurements revealed the multi-phonon absorption of ZnO in the range of 700-1200 cm(-1). This study shows that the multi-phonon absorption bands can be completely masked by the presence of a large concentration of hydrogen in the crystals. C1 [Saadatkia, Pooneh; Selim, F. A.] Bowling Green State Univ, Ctr Photochem Sci, Bowling Green, OH 43403 USA. [Saadatkia, Pooneh; Selim, F. A.] Bowling Green State Univ, Dept Phys & Astron, Bowling Green, OH 43403 USA. [Ariyawansa, G.; Leedy, K. D.; Look, D. C.] Air Force Res Lab, Sensors Directorate, Dayton, OH 45433 USA. [Boatner, L. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Selim, FA (reprint author), Bowling Green State Univ, Ctr Photochem Sci, Bowling Green, OH 43403 USA.; Selim, FA (reprint author), Bowling Green State Univ, Dept Phys & Astron, Bowling Green, OH 43403 USA. EM faselim@bgsu.edu NR 59 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD DEC PY 2016 VL 45 IS 12 BP 6329 EP 6336 DI 10.1007/s11664-016-5023-2 PG 8 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA ED6EK UT WOS:000388948200038 ER PT J AU Xie, JY Wei, JX Di, BR Xu, KC Chen, YK AF Xie, Jianyong Wei, Jianxin Di, Bangrang Xu, Kaichi Chen, Yangkang TI Experimental and theoretical enhancement of the inversion accuracy of the Thomsen parameter delta in organic-rich shale SO Journal of Geophysics and Engineering LA English DT Article DE organic-rich shale; ultrasonic measurement; laser ultrasonic; Thomsen parameter; anisotropy ID VELOCITY ANISOTROPY; SEISMIC ANISOTROPY; ELASTIC-ANISOTROPY; FORMULAS; ROCKS AB Experimental physical inversion of rock from the diagonal group velocities is an effective method for the determination of Thomsen's delta anisotropy parameter in organic-rich shale. We further enhance the inversion accuracy of d through conducting more reliable experimental measurements and through theoretical expression. First, we assembled two sets of group velocity acquisition methods, a rotational ultrasonic transducer system and a laser ultrasonic system, and then we assessed which of them was more applicable and accurate by comparing the waveforms and observations on the same cylindrical organicrich shale. Second, we combined the delta-based phase velocity approximation and stricter physical constraints of d, which are deduced on a standard VTI medium, to improve the theoretical part of the inversion. As a result of better observations by the optimal test methods and the proposed d inversion methods, the least errors between the best fitted curve to the observations are 3.24% for the traditional method and 2.1% for the proposed method, which verifies the superiority of the proposed method. Based on experimental tests on two cylindrical shale specimens, we find that rotational ultrasonic transducer measurement is more applicable for quick velocity anisotropy measurements, while for observations obtained by the laser technique, system relative error and the necessary scattering effect processing should be conducted. The procedure of the inversion is more robust and accurate when conducted on the proposed d-based inversion. C1 [Xie, Jianyong; Wei, Jianxin; Di, Bangrang] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing, Peoples R China. [Xie, Jianyong; Wei, Jianxin; Di, Bangrang] China Univ Petr, CNPC Key Lab Geophys Prospecting, Beijing, Peoples R China. [Xu, Kaichi] PetroChina, Res Inst Explorat & Dev, Tarim Oilfield Co, Beijing, Peoples R China. [Chen, Yangkang] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Xie, Jianyong] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. RP Di, BR (reprint author), China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing, Peoples R China.; Di, BR (reprint author), China Univ Petr, CNPC Key Lab Geophys Prospecting, Beijing, Peoples R China. EM cupdbr@126.com FU Major National Project Program [2016ZX05035003]; National Natural Science Fund Projects [U1262207, U1663203, U1262208]; NSFC [41574108] FX This research is supported by the Major National Project Program (no. 2016ZX05035003), the National Natural Science Fund Projects (no. U1262207, U1663203, U1262208) and the NSFC (no. 41574108). We are grateful for the insightful comments from the referees, and Zongqing Yang is especially thanked for his helpful suggestions during the revision. Thanks also to the Shell PhD Scholarship to support excellence in geophysical research. NR 21 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-2132 EI 1742-2140 J9 J GEOPHYS ENG JI J. Geophys. Eng. PD DEC PY 2016 VL 13 IS 6 BP 984 EP 993 DI 10.1088/1742-2132/13/6/984 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EE1AR UT WOS:000389313200001 ER PT J AU Baldwin, AG Yang, Y Bridges, NJ Braley, JC AF Baldwin, Anna G. Yang, Yuan Bridges, Nicholas J. Braley, Jenifer C. TI Tributyl Phosphate Aggregation in the Presence of Metals: An Assessment Using Diffusion NMR Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID STUDYING TRANSLATIONAL DIFFUSION; NUCLEAR-MAGNETIC-RESONANCE; STICKY SPHERES MODEL; N-BUTYL PHOSPHATE; SOLVENT-EXTRACTION; SELF-DIFFUSION; HARD-SPHERES; REVERSED MICELLES; SURFACE-ADHESION; TBP PHASE AB Diffusion nuclear magnetic resonance (NMR) spectroscopy was used to find the interaggregate interactions and sizes of tributyl phosphate (TBP) aggregates containing varying concentrations of uranium or zirconium and HNO3 in an n-dodecane diluent. The average diffusion coefficients of TBP species were measured using a pulsed-field gradient stimulated echo experiment with a longitudinal eddy-current delay (STE-LED). Interaggregate interactions were determined by measuring the diffusion coefficient of TBP in a sample after a series of dilutions with n-dodecane. The interaction-independent infinite dilution diffusion coefficient was also calculated from these measurements. The sizes of TBP aggregates were calculated from the infinite dilution diffusion coefficient using the WilkeChang equation. Interactions between TBP aggregates were observed to correspond to a hard sphere potential with a repulsive component. Aggregate sizes found by NMR were comparable to literature values found using small-angle neutron scattering. The diffusion of TBP in heavy organic third phases indicates that the third phase is not a bicontinuous structure like that found in traditional surfactant systems. C1 [Baldwin, Anna G.; Yang, Yuan; Braley, Jenifer C.] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. [Bridges, Nicholas J.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Braley, JC (reprint author), Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. EM jbraley@mines.edu OI Baldwin, Anna/0000-0001-5114-4870 FU U.S. Department of Homeland Security [2012-DN-130-NF0001] FX This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award 2012-DN-130-NF0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. NR 57 TC 0 Z9 0 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD DEC 1 PY 2016 VL 120 IS 47 BP 12184 EP 12192 DI 10.1021/acs.jpcb.6b09154 PG 9 WC Chemistry, Physical SC Chemistry GA ED9AB UT WOS:000389161200016 PM 27805405 ER PT J AU Rubio, EJ Mates, TE Manandhar, S Nandasir, M Shutthanandan, V Ramana, CV AF Rubio, E. J. Mates, T. E. Manandhar, S. Nandasir, M. Shutthanandan, V. Ramana, C. V. TI Tungsten Incorporation into Gallium Oxide: Crystal Structure, Surface and Interface Chemistry, Thermal Stability, and Interdiffusion SO Journal of Physical Chemistry C LA English DT Article ID WO3 THIN-FILMS; OPTICAL-PROPERTIES; HIGH-TEMPERATURE; GAS SENSORS; GA2O3; OXYGEN; BETA-GA2O3; MORPHOLOGY; NANOWIRES; GROWTH AB Tungsten (W) incorporated gallium oxide (Ga2O3) (GWO) thin films were deposited by radio-frequency magnetron cosputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying sputtering power applied to the W-target in order to achieve variable W-content (0-12 at. %) into Ga2O3 while substrate temperature was kept constant at 500 degrees C. Chemical composition, chemical valence states, microstructure, and crystal structure of as-deposited and annealed GWO films were evaluated as a function of W-content. The structural and chemical analyses indicate that the samples deposited without any W-incorporation are stoichiometric, nanocrystalline Ga2O3 films, which crystallize in beta-phase monoclinic structure. While GWO films also crystallize in monoclinic beta-Ga2O3 phase, W-incorporation induces surface amorphization as revealed by structural studies. The chemical valence state of Ga ions probed by X-ray photoelectron spectroscopic (XPS) analyses is characterized by the highest oxidation state, i.e., Ga3+. No changes in Ga chemical state are noted for variable W-incorporation in the range of 0-12 at. %. Rutherford backscattering spectrometry (RBS) analyses indicate the uniform distribution of W-content in the GWO films. However, XPS analyses indicate the formation of mixed valence states for W ions, which may be responsible for surface amorphization in GWO films. GWO films were stable up to 900 degrees C, at which point thermally induced secondary phase (W-oxide) formation was observed. A transition to mesoporous structure coupled with W interdiffusion occurs due to thermal annealing as derived from the chemical analyses at the GWO films' surface as well as depth profiling toward the GWO Si interface. Surface imaging analyses indicate thermally induced morphological changes are dependent on W-concentration in the GWO films. Thermally induced diffusion of W in the film is responsible for the observed formation of pores of variable size; the maximum pore radius noted was, similar to 27 nm for GWO films with highest W-content. The electronic charge redistribution appears to be dominated by the hydroxyl groups and W-chemistry as evident in XPS analyses. RBS data indicate that the extent of diffusion and intermixing layer depth are dependent on W-content in the GWO films. Thermally induced W-diffusion and depth penetration into the Si substrate with Si-W-Ga2O3 intermixing at the interface is evident only in GWO samples with highest (12 at. %) W incorporation. A model has been formulated to account for the mechanism of W-incorporation, thermal stability, and interdiffusion via pore formation in GWO films. C1 [Rubio, E. J.; Manandhar, S.; Ramana, C. V.] Univ Texas El Paso, Dept Mech Engn, El Paso, TX 79968 USA. [Mates, T. E.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Manandhar, S.; Nandasir, M.; Shutthanandan, V.] PNNL, EMSL, Richland, WA 99352 USA. RP Ramana, CV (reprint author), Univ Texas El Paso, Dept Mech Engn, El Paso, TX 79968 USA. EM rvchintalapalle@utep.edu FU National Science Foundation (NSF) [ECCS-1509653]; National Science Foundation (NSF); Office of Biological and Environmental Research at Pacific Northwest National Laboratory; MRSEC Program of the NSF [DMR 1121053]; NSF-PREM grant [DMR-1205302] FX Authors at the University of Texas at El Paso acknowledge, with pleasure, support from the National Science Foundation (NSF) with grant # ECCS-1509653. Part of the work and sample analysis was also performed by support from the National Science Foundation (NSF) with NSF-PREM grant # DMR-1205302. A portion of the research was performed using Environmental Molecular Sciences Laboratory (EMSL), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. XPS data were obtained at the Materials Research Laboratory (MRL) Shared Experimental Facilities at UCSB supported by the MRSEC Program of the NSF under Award DMR 1121053, a member of the NSF-funded Materials Research Facilities Network. NR 72 TC 0 Z9 0 U1 20 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 1 PY 2016 VL 120 IS 47 BP 26720 EP 26735 DI 10.1021/acs.jpcc.6b05487 PG 16 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED9AC UT WOS:000389161300016 ER PT J AU Robinson, AM Mark, L Rasmussen, MJ Hensley, JE Medlin, JW AF Robinson, Allison M. Mark, Lesli Rasmussen, Mathew J. Hensley, Jesse E. Medlin, J. Will TI Surface Chemistry of Aromatic Reactants on Catalysts Pt- and Mo-Modified Pt SO Journal of Physical Chemistry C LA English DT Article ID AUGMENTED-WAVE METHOD; SOFT-X-RAY; PT(111) SURFACE; CARBON-MONOXIDE; 1ST PRINCIPLES; M-CRESOL; PHASE HYDRODEOXYGENATION; CRYSTAL-SURFACES; BENZYL ALCOHOL; FE CATALYSTS AB Supported catalysts containing an oxophilic metal such as Mo and a noble metal such as Pt have shown promising activity and selectivity for deoxygenation of biomass-derived compounds. Here, we report that PtMo catalysts also promote hydrogenolysis of the model compound benzyl alcohol, while decarbonylation is most prevalent over unmodified Pt. A combination of single crystal surface science studies, density functional theory (DFT) calculations, and vapor phase upgrading experiments using supported catalysts was carried out to better understand the mechanism by which Mo promotes deoxygenation. Molybdenum was deposited in submonolayer quantities on a Pt(111) surface and reduced at high temperature. Temperature-programmed desorption (TPD) experiments using benzyl alcohol as a reactant showed greatly enhanced yields of the deoxygenation product toluene at moderate Mo coverages. To understand how the interaction of the aromatic group with the surface influenced this reactivity, we investigated the adsorption of toluene as a probe molecule. We found that the addition of Mo to Pt(111) resulted in a significant decrease in toluene decomposition. DFT calculations indicated that this decrease was consistent with decreased aromatic adsorption strengths that accompany incorporation of Mo into the Pt subsurface. The weaker aromatic surface interaction on Pt/Mo surfaces led to a tilted adsorption geometry for benzyl alcohol, which presumably promotes hydrogenolysis to produce toluene instead of decarbonylation to produce benzene and CO. Alumina-supported Pt and PtMo catalysts were also tested for benzyl alcohol deoxygenation. PtMo catalysts had a higher rate of toluene production and lower rates of benzene and benzaldehyde production. Additionally, when benzaldehyde was used as the reactant to measure decarbonylation activity the mass-normalized rate of benzene production was 2.5 times higher on Pt than PtMo. Overall, the results of TPD, DFT, and supported catalyst experiments suggest that subsurface Mo sites weaken the binding of aromatic rings on PtMo surfaces; the weakened aromatic surface interaction is correlated with an improvement in selectivity to CO bond scission. C1 [Robinson, Allison M.; Mark, Lesli; Medlin, J. Will] Univ Colorado, Boulder, CO 80303 USA. [Rasmussen, Mathew J.] Univ Missouri, Columbia, MO 65211 USA. [Hensley, Jesse E.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Medlin, JW (reprint author), Univ Colorado, Boulder, CO 80303 USA. EM will.medlin@colorado.edu FU Department of Energy BioEnergy Technologies Office [DE-AC36-08-GO28308]; National Science Foundation [CHE-1464979, CNS-0821794]; Department of Education Graduate Assistantships in Areas of National Need (GAANN); University of Colorado Boulder; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by the Department of Energy BioEnergy Technologies Office under Contract no. DE-AC36-08-GO28308. A.M.R. acknowledges support from the National Science Foundation for funding this research (Award CHE-1464979) and partial support from the Department of Education Graduate Assistantships in Areas of National Need (GAANN). This work utilized the Janus supercomputer, which is supported by the National Science Foundation (award number CNS-0821794) and the University of Colorado Boulder. The Janus supercomputer is a joint effort of the University of Colorado Boulder, the University of Colorado Denver and the National Center for Atmospheric Research. Research was carried out in part at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We acknowledge assistance from Dr. Anibal Boscoboinik in carrying out the XPS experiments. NR 51 TC 0 Z9 0 U1 19 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 1 PY 2016 VL 120 IS 47 BP 26824 EP 26833 DI 10.1021/acs.jpcc.6b08415 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED9AC UT WOS:000389161300025 ER PT J AU Alderman, OLG Benmore, CJ Tamalonis, A Sendelbach, S Heald, S Weber, R AF Alderman, O. L. G. Benmore, C. J. Tamalonis, A. Sendelbach, S. Heald, S. Weber, R. TI Continuous Structural Transition in Glass-Forming Molten Titanate BaTi2O5 SO Journal of Physical Chemistry C LA English DT Article ID X-RAY-ABSORPTION; POTASSIUM GERMANATE GLASSES; PARTIAL MOLAR VOLUME; MEDIUM-RANGE ORDER; GE-O COORDINATION; K-EDGE XANES; SILICATE-GLASSES; HIGH-TEMPERATURE; NEUTRON-DIFFRACTION; THERMOPHYSICAL PROPERTY AB The structure of the model titanate glass former BaTi2O5 has been studied over a wide temperature (T) range in the molten, supercooled, and glassy states under conditions of aerodynamic levitation. Both high-energy X-ray diffraction and Ti K-edge X-ray absorption spectroscopy reveal a continuous structural transition involving reduction of the cation-oxygen (and oxygen-cation) average coordination numbers and bond lengths with increasing T. Ti-0 coordination in the moderately supercooled and equilibrium melt follows a linear trend n(Tio) = 5.4(1)- [3.5(7) x 10(-4)]T [K] (1300 <= T <= 1830 K, T-g = 960 K, T-m = 1660 K). Comparison to the melt-quenched glass implies an increase in partial derivative n(Tio)/partial derivative T at lower T, as T-g is approached from above. Both Ba-0 coordination and bond length also decrease at higher T, and the role of Ba addition is to reduce n(Tio) below its value in pure molten TiO2, which is related to the presence of density maxima in molten BaO-TiO2. Density measurements made by imaging of the levitated melt yielded rho(T) = 4.82(55)- 0.0004(3)T in units of K and g cm(-3). While BaTi2O5 glass likely consists of a fully connected Ti-0 network, free of nonbridging oxygen (NBO) [OTi1 and with at least 13(4)% [OTi3] triclusters, the 1835(40) K equilibrium melt contains at least 10(4)% NBO along with 90(4)% bridging oxygen [OTi2]. The results highlight the fact that glasses can be considered as structural analogues of melts only for those melts deeply supercooled into the glass transition region. The results imply possible fictive T dependence of titanate glass structure, suggesting applications as, e.g., laser written waveguides with large refractive indices and refractive index contrasts. The temperature-dependent structure further implies a super-Arrhenian melt viscosity with consequences for glass manufacture, titanate-rich slags produced in iron smelting, TiO2-bearing magmas, and by analogy silicate melts at high pressures, as found in planetary interiors. C1 [Alderman, O. L. G.; Tamalonis, A.; Sendelbach, S.; Weber, R.] Mat Dev Inc, Arlington Hts, IL 60004 USA. [Alderman, O. L. G.; Benmore, C. J.; Heald, S.; Weber, R.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Alderman, OLG (reprint author), Mat Dev Inc, Arlington Hts, IL 60004 USA.; Alderman, OLG (reprint author), Argonne Natl Lab, Xray Sci Div, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM o.alderman@gmail.com OI Alderman, Oliver/0000-0002-2342-811X FU U.S. Department of Energy (DOE) [DE-SC0007564]; U.S. DOE [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy (DOE) under grant number DE-SC0007564 (O.L.G.A., A.T., S.S., R.W.). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 116 TC 2 Z9 2 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD DEC 1 PY 2016 VL 120 IS 47 BP 26974 EP 26985 DI 10.1021/acs.jpcc.6b08248 PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED9AC UT WOS:000389161300042 ER PT J AU Hernandez, LA Nelson, T Gelin, MF Lupton, JM Tretiak, S Fernandez-Alberti, S AF Alfonso Hernandez, Laura Nelson, Tammie Gelin, Maxim F. Lupton, John M. Tretiak, Sergei Fernandez-Alberti, Sebastian TI Interference of Interchromophoric Energy-Transfer Pathways in pi-Conjugated Macrocycles SO Journal of Physical Chemistry Letters LA English DT Article ID LIGHT-HARVESTING COMPLEXES; NONLINEAR POLARIZABILITIES; ELECTRONIC EXCITATIONS; MOLECULAR-DYNAMICS; CHARGE-TRANSFER; EXCITED-STATES; POLYMERS; CYCLOPARAPHENYLENES; FLUORESCENCE; MORPHOLOGY AB The interchromophoric energy-transfer pathways between weakly coupled units in a pi-conjugated phenylene-ethynylene macrocycle and its half-ring analogue have been investigated using the nonadiabatic excited-state molecular dynamics approach. To track the flow of electronic transition density between macrocycle units, we formulate a transition density flux analysis adapted from the statistical minimum flow method previously developed to investigate vibrational energy flow. Following photoexcitation, transition density is primarily delocalized on two chromophore units and the system undergoes ultrafast energy transfer, creating a localized excited state on a single unit. In the macrocycle, distinct chromophore units donate transition density to a single acceptor unit but do not interchange transition density among each other. We find that energy transfer in the macrocycle is slower than in the corresponding half ring because of the presence of multiple interfering energy-transfer pathways. Simulation results are validated by modeling the fluorescence anisotropy decay. C1 [Alfonso Hernandez, Laura; Fernandez-Alberti, Sebastian] Univ Nacl Quilmes, CONICET, Roque Saenz Pena 352,B1876BXD, Bernal, Argentina. [Nelson, Tammie; Tretiak, Sergei] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. [Gelin, Maxim F.] Tech Univ Munich, Dept Chem, D-85747 Garching, Germany. [Lupton, John M.] Univ Regensburg, Inst Angew & Expt Phys, Univ Str 31, D-93053 Regensburg, Germany. RP Fernandez-Alberti, S (reprint author), Univ Nacl Quilmes, CONICET, Roque Saenz Pena 352,B1876BXD, Bernal, Argentina.; Tretiak, S (reprint author), Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. EM serg@lanl.gov; sfalberti@gmail.com RI Tretiak, Sergei/B-5556-2009 OI Tretiak, Sergei/0000-0001-5547-3647 FU CONICET; UNQ; ANPCyT [PICT-2014-2662]; Los Alamos National Laboratory (LANL) Directed Research and Development Funds (LDRD); U.S. Department of Energy [DE-AC52-06NA25396]; Center for Integrated Nanotechnology (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences FX L.A.H and S.F.-A. are supported by CONICET, UNQ, ANPCyT (PICT-2014-2662). S.T. and T.N. acknowledge support from Los Alamos National Laboratory (LANL) Directed Research and Development Funds (LDRD). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. We acknowledge support of the Center for Integrated Nanotechnology (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. We also acknowledge the LANL Institutional Computing (IC) Program for providing computational resources. NR 58 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD DEC 1 PY 2016 VL 7 IS 23 BP 4936 EP 4944 DI 10.1021/acs.jpclett.6b02236 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA ED9FI UT WOS:000389175200023 ER PT J AU Ben-Naim, E Krapivsky, PL AF Ben-Naim, E. Krapivsky, P. L. TI Kinetics of diffusion-controlled annihilation with sparse initial conditions SO Journal of Physics A-Mathematical and Theoretical LA English DT Article DE reaction kinetics; finite-size scaling; reaction-diffusion processes; stochastic processes ID ONE-DIMENSION; LIMITED REACTIONS; SYSTEMS; AGGREGATION AB We study diffusion-controlled single-species annihilation with sparse initial conditions. In this random process, particles undergo Brownian motion, and when two particles meet, both disappear. We focus on sparse initial conditions where particles occupy a subspace of dimension delta that is embedded in a larger space of dimension d. We find that the co-dimension Delta = d - delta governs the behavior. All particles disappear when the co-dimension is sufficiently small, Delta <= 2; otherwise, a finite fraction of particles indefinitely survive. We establish the asymptotic behavior of the probability S(t) that a test particle survives until time t. When the subspace is a line, delta = 1, we find inverse logarithmic decay, S similar to (ln t)(-1), in three dimensions, and a modified power-law decay, S similar to (lnt)t(-1/2), in two dimensions. In general, the survival probability decays algebraically when Delta < 2, and there is an inverse logarithmic decay at the critical co-dimension Delta = 2. C1 [Ben-Naim, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ben-Naim, E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krapivsky, P. L.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.; Ben-Naim, E (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM ebn@lanl.gov RI Krapivsky, Pavel/A-4612-2014; Ben-Naim, Eli/C-7542-2009 OI Ben-Naim, Eli/0000-0002-2444-7304 FU US-DOE grant [DE-AC52-06NA25396]; BSF [2012145] FX We acknowledge support from the US-DOE grant DE-AC52-06NA25396 (EB) and the BSF Grant No. 2012145 (PLK). NR 36 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 EI 1751-8121 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD DEC PY 2016 VL 49 IS 50 AR 504005 DI 10.1088/1751-8113/49/50/504005 PG 8 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA EE1HR UT WOS:000389332300001 ER PT J AU Montiel-Garcia, DJ Mannige, RV Reddy, VS Carrillo-Tripp, M AF Montiel-Garcia, Daniel J. Mannige, Ranjan V. Reddy, Vijay S. Carrillo-Tripp, Mauricio TI Structure based sequence analysis of viral and cellular protein assemblies SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Viral capsid proteins; Sequence conservation; Protein-protein interactions; Subunit interface; Bioinformatics; Protein complexes ID INTERFACES; CONSERVATION; DATABASE; SIMILARITY; ALIGNMENT; MUTATION; VIRUSES; PHAGE AB It is well accepted that, in general, protein structural similarity is strongly related to the amino acid sequence identity. To analyze in great detail the correlation, distribution and variation levels of conserved residues in the protein structure, we analyzed all available high-resolution structural data of 5245 cellular complex-forming proteins and 293 spherical virus capsid proteins (VCPs). We categorized and compare them in terms of protein structural regions. In all cases, the buried core residues are the most conserved, followed by the residues at the protein-protein interfaces. The solvent-exposed surface shows greater sequence variations. Our results provide evidence that cellular monomers and VCPs could be two extremes in the quaternary structural space, with cellular dimers and oligomers in between. Moreover, based on statistical analysis, we detected a distinct group of icosahedral virus families whose capsid proteins seem to evolve much slower than the rest of the protein complexes analyzed in this work. (C) 2016 Elsevier Inc. All rights reserved. C1 [Montiel-Garcia, Daniel J.; Carrillo-Tripp, Mauricio] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Biomol Div Lab, Mexico City 07738, DF, Mexico. [Mannige, Ranjan V.; Reddy, Vijay S.] Scripps Res Inst, Integrat Struct & Computat Biol, La Jolla, CA 92037 USA. [Mannige, Ranjan V.] Lawrence Berkeley Natl Lab, Mol Foundry, Theory Nanostruct Mat Facil, Berkeley, CA 94720 USA. [Carrillo-Tripp, Mauricio] Ctr Invest Matemat AC, Ciencias Comp, Guanajuato 36000, Mexico. RP Carrillo-Tripp, M (reprint author), Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Biomol Div Lab, Mexico City 07738, DF, Mexico.; Carrillo-Tripp, M (reprint author), Ctr Invest Matemat AC, Ciencias Comp, Guanajuato 36000, Mexico. EM mauricio.carrillo@cinvestav.mx RI Carrillo-Tripp, Mauricio/A-4607-2013 OI Carrillo-Tripp, Mauricio/0000-0003-0060-6486 FU USA National Institutes of Health (NIH) [RR012255]; Mexican Consejo Nacional de Ciencia y Tecnologia (Conacyt) [132376]; Fulbright-Garcia Robles funding by USA J. William Fulbright Scholarship Board FX We acknowledge the thoughtful suggestions of the editor and reviewers which greatly improved this article. V.S.R and M.C.T. would also like to acknowledge the discussions with Professor Charles L. Brooks III at the inception of this work. M.C.T. would like to thank Dr. Johan Van Horebeek from the Computer Science Department, CIMAT, Mexico, for his helpful advice on the statistical methodology. This work was supported by the USA National Institutes of Health (NIH) to the center of Multi-scale modeling tools for structural biology (MMTSB) grant number RR012255 to V.S.R., the Mexican Consejo Nacional de Ciencia y Tecnologia (Conacyt) grant number 132376 to M.C.T., and the 2013 Fulbright-Garcia Robles funding to Dj.M.-G and M.C.T. by the USA J. William Fulbright Scholarship Board. NR 41 TC 0 Z9 0 U1 3 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 EI 1095-8657 J9 J STRUCT BIOL JI J. Struct. Biol. PD DEC PY 2016 VL 196 IS 3 BP 299 EP 308 DI 10.1016/j.jsb.2016.07.013 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA EE0US UT WOS:000389295000002 PM 27480508 ER PT J AU Wang, X Deng, Y Li, QT Huang, YJ Gong, ZL Tom, KB Yao, J AF Wang, Xi Deng, Yang Li, Qitong Huang, Yijing Gong, Zilun Tom, Kyle B. Yao, Jie TI Excitation and propagation of surface plasmon polaritons on a non-structured surface with a permittivity gradient SO Light-Science & Applications LA English DT Article DE gradient negative permittivity; non-structured surface; rainbow trapping; surface plasmonics ID ROUGH SURFACES; LIGHT; METAMATERIALS; DIFFRACTION; GRATINGS AB Accompanied by the rise of plasmonic materials beyond those based on noble metals and the development of advanced materials processing techniques, it is important to understand the plasmonic behavior of materials with large-scale inhomogeneity (such as gradient permittivity materials) because they cannot be modeled simply as scatterers. In this paper, we theoretically analyze the excitation and propagation of surface plasmon polaritons (SPPs) on a planar interface between a homogeneous dielectric and a material with a gradient of negative permittivity. We demonstrate the following: (i) free-space propagating waves and surface waves can be coupled by a gradient negative-permittivity material and (ii) the coupling can be enhanced if the material permittivity variation is suitably designed. This theory is then verified by numerical simulations. A direct application of this theory, 'rainbow trapping', is also proposed, considering a realistic design based on doped indium antimonide. This theory may lead to various applications, such as ultracompact spectroscopy and dynamically controllable generation of SPPs. C1 [Wang, Xi; Deng, Yang; Li, Qitong; Huang, Yijing; Gong, Zilun; Tom, Kyle B.; Yao, Jie] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Gong, Zilun] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Tom, Kyle B.; Yao, Jie] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yao, J (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Yao, J (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM yaojie@berkeley.edu FU Samsung Advanced Institute of Technology [037361-003]; Hellman Family Foundation FX We thank Kaichen Dong for useful discussions. This work is supported by the Samsung Advanced Institute of Technology under the Grant 037361-003 and the Hellman Family Foundation. NR 45 TC 0 Z9 0 U1 13 U2 13 PU CHINESE ACAD SCIENCES, CHANGCHUN INST OPTICS FINE MECHANICS AND PHYSICS PI CHANGCHUN PA 3888, DONGNANHU ROAD, CHANGCHUN, 130033, PEOPLES R CHINA SN 2047-7538 J9 LIGHT-SCI APPL JI Light-Sci. Appl. PD DEC PY 2016 VL 5 AR e16179 DI 10.1038/lsa.2016.179 PG 6 WC Optics SC Optics GA EE3FC UT WOS:000389472200003 ER PT J AU Wei, T Chern, MS Liu, FR Ronald, PC AF Wei, Tong Chern, Mawsheng Liu, Furong Ronald, Pamela C. TI Suppression of bacterial infection in rice by treatment with a sulfated peptide SO MOLECULAR PLANT PATHOLOGY LA English DT Article DE bacterial blight disease of rice; post-inoculation treatment; sulfated RaxX; XA21-mediated immunity; Xanthomonas oryzae pv. oryzae ID CONSERVED MICROBIAL SIGNATURES; PATTERN-RECOGNITION RECEPTORS; KINASE-LIKE PROTEIN; ORYZAE PV. ORYZAE; DISEASE RESISTANCE; BLIGHT RESISTANCE; PERCEPTION; ARABIDOPSIS; PLANT; GENE AB The rice XA21 receptor kinase confers robust resistance to bacterial blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). A tyrosine-sulfated peptide from Xoo, called RaxX, triggers XA21-mediated immune responses, including the production of ethylene and reactive oxygen species and the induction of defence gene expression. It has not been tested previously whether these responses confer effective resistance to Xoo. Here, we describe a newly established post-inoculation treatment assay that facilitates investigations into the effect of the sulfated RaxX peptide in planta. In this assay, rice plants were inoculated with a virulent strain of Xoo and then treated with the RaxX peptide 2 days after inoculation. We found that post-inoculation treatment of XA21 plants with the sulfated RaxX peptide suppresses the development of Xoo infection in XA21 rice plants. The treated plants display restricted lesion development and reduced bacterial growth. Our findings demonstrate that exogenous application of sulfated RaxX activates XA21-mediated immunity in planta, and provides a potential strategy for the control of bacterial disease in the field. C1 [Wei, Tong; Chern, Mawsheng; Liu, Furong; Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. [Wei, Tong; Chern, Mawsheng; Liu, Furong; Ronald, Pamela C.] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA. [Wei, Tong; Chern, Mawsheng; Ronald, Pamela C.] Lawrence Berkeley Natl Lab, Feedstocks Div, Joint BioEnergy Inst, Berkeley, CA 94720 USA. RP Ronald, PC (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA.; Ronald, PC (reprint author), Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA.; Ronald, PC (reprint author), Lawrence Berkeley Natl Lab, Feedstocks Div, Joint BioEnergy Inst, Berkeley, CA 94720 USA. EM pcronald@ucdavis.edu FU National Institutes of Health (NIH) [GM59962]; Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231] FX We thank Benjamin Schwessinger, Rory N. Pruitt, Daniel Caddell, Nick Thomas, Dee Dee Luu and Gena Hoffman for discussion and critical reading of the manuscript. This work was supported by National Institutes of Health (NIH) GM59962 to Pamela C. Ronald. The work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 2 Z9 2 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1464-6722 EI 1364-3703 J9 MOL PLANT PATHOL JI Mol. Plant Pathol. PD DEC PY 2016 VL 17 IS 9 BP 1493 EP 1498 DI 10.1111/mpp.12368 PG 6 WC Plant Sciences SC Plant Sciences GA ED8QB UT WOS:000389134900015 PM 26765864 ER PT J AU Osuna, CE Lim, SY Deleage, C Griffin, BD Stein, D Schroeder, LT Omange, RW Best, K Luo, M Hraber, PT Andersen-Elyard, H Ojeda, EFC Huang, S Vanlandingham, DL Higgs, S Perelson, AS Estes, JD Safronetz, D Lewis, MG Whitney, JB AF Osuna, Christa E. Lim, So-Yon Deleage, Claire Griffin, Bryan D. Stein, Derek Schroeder, Lukas T. Omange, Robert Were Best, Katharine Luo, Ma Hraber, Peter T. Andersen-Elyard, Hanne Ojeda, Erwing Fabian Cardozo Huang, Scott Vanlandingham, Dana L. Higgs, Stephen Perelson, Alan S. Estes, Jacob D. Safronetz, David Lewis, Mark G. Whitney, James B. TI Zika viral dynamics and shedding in rhesus and cynomolgus macaques SO NATURE MEDICINE LA English DT Article ID NATURAL-KILLER-CELLS; WEST NILE VIRUS; SEXUAL TRANSMISSION; DENGUE VIRUS; INFECTION; BRAZIL; MOSQUITOS; OUTBREAK; SERUM; EXPRESSION AB Infection with Zika virus has been associated with serious neurological complications and fetal abnormalities. However, the dynamics of viral infection, replication and shedding are poorly understood. Here we show that both rhesus and cynomolgus macaques are highly susceptible to infection by lineages of Zika virus that are closely related to, or are currently circulating in, the Americas. After subcutaneous viral inoculation, viral RNA was detected in blood plasma as early as 1 d after infection. Viral RNA was also detected in saliva, urine, cerebrospinal fluid (CSF) and semen, but transiently in vaginal secretions. Although viral RNA during primary infection was cleared from blood plasma and urine within 10 d, viral RNA was detectable in saliva and seminal fluids until the end of the study, 3 weeks after the resolution of viremia in the blood. The control of primary Zika virus infection in the blood was correlated with rapid innate and adaptive immune responses. We also identified Zika RNA in tissues, including the brain and male and female reproductive tissues, during early and late stages of infection. Re-infection of six animals 45 d after primary infection with a heterologous strain resulted in complete protection, which suggests that primary Zika virus infection elicits protective immunity. Early invasion of Zika virus into the nervous system of healthy animals and the extent and duration of shedding in saliva and semen underscore possible concern for additional neurologic complications and nonarthropod-mediated transmission in humans. C1 [Osuna, Christa E.; Lim, So-Yon; Whitney, James B.] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Ctr Virol & Vaccine Res, Boston, MA USA. [Deleage, Claire; Estes, Jacob D.] Frederick Natl Lab Canc Res, Leidos Biomed Res, Frederick, MD USA. [Griffin, Bryan D.; Stein, Derek; Schroeder, Lukas T.; Omange, Robert Were; Luo, Ma; Safronetz, David] Natl Microbiol Lab, Winnipeg, MB, Canada. [Best, Katharine; Hraber, Peter T.; Ojeda, Erwing Fabian Cardozo; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Andersen-Elyard, Hanne; Lewis, Mark G.] Bioqual, Rockville, MD USA. [Huang, Scott; Vanlandingham, Dana L.; Higgs, Stephen] Kansas State Univ, Biosecur Res Inst, Manhattan, KS 66506 USA. [Whitney, James B.] Ragon Inst Massachusetts Gen Hosp Massachusetts I, Cambridge, MA 02139 USA. RP Whitney, JB (reprint author), Harvard Med Sch, Beth Israel Deaconess Med Ctr, Ctr Virol & Vaccine Res, Boston, MA USA.; Whitney, JB (reprint author), Ragon Inst Massachusetts Gen Hosp Massachusetts I, Cambridge, MA 02139 USA. EM jwhitne2@bidmc.harvard.edu OI Osuna, Christa/0000-0003-2761-2456; Hraber, Peter/0000-0002-2920-4897 FU National Cancer Institute ( NIH Contract) [HHSN261200800001E]; NIH [AI028433, OD0110995]; Public Health Agency of Canada FX We thank B. Finneyfrock, Z. Pippin, A. Dodson and A. Cook for their expert animal husbandry and care, and J. Guedj for suggestions about the model simulations. CD38 antibodies were obtained from the NIH Nonhuman Primate Reagent Resource supported by HHSN272200900037C and OD010976. The data presented in this study are tabulated in the main paper and in the supplementary materials. This work was supported in part by federal funds from the National Cancer Institute ( NIH Contract HHSN261200800001E). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products or organizations imply endorsement by the US Government. A.S.P. acknowledges support from NIH grants AI028433 and OD0110995. D.S. acknowledges support from the Public Health Agency of Canada. NR 54 TC 8 Z9 8 U1 11 U2 11 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1078-8956 EI 1546-170X J9 NAT MED JI Nat. Med. PD DEC PY 2016 VL 22 IS 12 BP 1448 EP + DI 10.1038/nm.4206 PG 10 WC Biochemistry & Molecular Biology; Cell Biology; Medicine, Research & Experimental SC Biochemistry & Molecular Biology; Cell Biology; Research & Experimental Medicine GA EE4CI UT WOS:000389549000022 PM 27694931 ER PT J AU Chen, XQ Shen, Y Draper, W Buenrostro, JD Litzenburger, U Cho, SW Satpathy, AT Carter, AC Ghosh, RP East-Seletsky, A Doudna, JA Greenleaf, WJ Liphardt, JT Changsites, HY AF Chen, Xingqi Shen, Ying Draper, Will Buenrostro, Jason D. Litzenburger, Ulrike Cho, Seung Woo Satpathy, Ansuman T. Carter, Ava C. Ghosh, Rajarshi P. East-Seletsky, Alexandra Doudna, Jennifer A. Greenleaf, William J. Liphardt, Jan T. Changsites, Howard Y. TI ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing SO NATURE METHODS LA English DT Article ID NEUTROPHIL EXTRACELLULAR TRAPS; DOMAIN ORGANIZATION; CHROMATIN ACCESSIBILITY; NUCLEAR ARCHITECTURE; GENE-EXPRESSION; HIGH-RESOLUTION; CELLS; CHROMOSOMES; PRINCIPLES; BINDING AB Spatial organization of the genome plays a central role in gene expression, DNA replication, and repair. But current epigenomic approaches largely map DNA regulatory elements outside of the native context of the nucleus. Here we report assay of transposase-accessible chromatin with visualization (ATAC-see), a transposase-mediated imaging technology that employs direct imaging of the accessible genome in situ, cell sorting, and deep sequencing to reveal the identity of the imaged elements. ATAC-see revealed the cell-type-specific spatial organization of the accessible genome and the coordinated process of neutrophil chromatin extrusion, termed NETosis. Integration of ATAC-see with flow cytometry enables automated quantitation and prospective cell isolation as a function of chromatin accessibility, and it reveals a cell-cycle dependence of chromatin accessibility that is especially dynamic in G1 phase. The integration of imaging and epigenomics provides a general and scalable approach for deciphering the spatiotemporal architecture of gene control. C1 [Chen, Xingqi; Shen, Ying; Buenrostro, Jason D.; Litzenburger, Ulrike; Cho, Seung Woo; Satpathy, Ansuman T.; Carter, Ava C.; Greenleaf, William J.; Changsites, Howard Y.] Stanford Univ, Ctr Personal Dynam Regulomes, Stanford, CA 94305 USA. [Shen, Ying; Ghosh, Rajarshi P.; Liphardt, Jan T.] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA. [Buenrostro, Jason D.; Greenleaf, William J.] Stanford Univ, Dept Genet, Stanford, CA 94305 USA. [East-Seletsky, Alexandra; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [East-Seletsky, Alexandra; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. [Greenleaf, William J.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Changsites, HY (reprint author), Stanford Univ, Ctr Personal Dynam Regulomes, Stanford, CA 94305 USA. EM howchang@stanford.edu OI Liphardt, Jan/0000-0003-2835-5025 FU NIH [P50-HG007735]; Life Extension Foundation; NCI Physical Sciences Oncology Center [U54CA143836]; National Institute of Biomedical Imaging and Bioengineering (NIBIB)/4D Nucleome Roadmap Initiative grant [1U01EB021237] FX We thank S. Kim (Stanford) for FACS access. This work was supported by NIH grant P50-HG007735 (to H.Y.C. and W.J.G.), the Life Extension Foundation (to H.Y.C.), NCI Physical Sciences Oncology Center grant U54CA143836 (to J.T.L.), and National Institute of Biomedical Imaging and Bioengineering (NIBIB)/4D Nucleome Roadmap Initiative grant 1U01EB021237 (to J.T.L.). NR 32 TC 0 Z9 0 U1 7 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 EI 1548-7105 J9 NAT METHODS JI Nat. Methods PD DEC PY 2016 VL 13 IS 12 BP 1013 EP + DI 10.1038/NMETH.4031 PG 12 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA ED8PI UT WOS:000389133000021 PM 27749837 ER PT J AU Chin, CS Peluso, P Sedlazeck, FJ Nattestad, M Concepcion, GT Clum, A Dunn, C O'Malley, R Figueroa-Balderas, R Morales-Cruz, A Cramer, GR Delledonne, M Luo, CY Ecker, JR Cantu, D Rank, DR Schatz, MC AF Chin, Chen-Shan Peluso, Paul Sedlazeck, Fritz J. Nattestad, Maria Concepcion, Gregory T. Clum, Alicia Dunn, Christopher O'Malley, Ronan Figueroa-Balderas, Rosa Morales-Cruz, Abraham Cramer, Grant R. Delledonne, Massimo Luo, Chongyuan Ecker, Joseph R. Cantu, Dario Rank, David R. Schatz, Michael C. TI Phased diploid genome assembly with single-molecule real-time sequencing SO NATURE METHODS LA English DT Article ID LOCAL ALIGNMENT; EFFICIENT; DNA AB While genome assembly projects have been successful in many haploid and inbred species, the assembly of noninbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short-or long-read approaches. The phased diploid assembly enabled the study of haplotype structure and heterozygosities between homologous chromosomes, including the identification of widespread heterozygous structural variation within coding sequences. C1 [Chin, Chen-Shan; Peluso, Paul; Concepcion, Gregory T.; Dunn, Christopher; Rank, David R.] Pacific Biosci, Menlo Pk, CA 94025 USA. [Sedlazeck, Fritz J.; Schatz, Michael C.] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA. [Nattestad, Maria; Schatz, Michael C.] Cold Spring Harbor Lab, Simons Ctr Quantitat Biol, POB 100, Cold Spring Harbor, NY 11724 USA. [Clum, Alicia] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [O'Malley, Ronan; Luo, Chongyuan; Ecker, Joseph R.] Salk Inst Biol Studies, Genom Anal Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA. [Figueroa-Balderas, Rosa; Morales-Cruz, Abraham; Cantu, Dario] Univ Calif Davis, Dept Viticulture & Enol, Davis, CA 95616 USA. [Cramer, Grant R.] Univ Nevada, Dept Biochem & Mol Biol, Reno, NV 89557 USA. [Delledonne, Massimo] Univ Verona, Dipartimento Biotecnol, Verona, Italy. [Schatz, Michael C.] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA. RP Chin, CS (reprint author), Pacific Biosci, Menlo Pk, CA 94025 USA. EM jchin@pacb.com; michael.schatz@gmail.com RI Cantu, Dario /E-7658-2010; OI Cantu, Dario /0000-0002-4858-1508; Sedlazeck, Fritz/0000-0001-6040-2691 FU National Institutes of Health award [R01-HG006677]; National Science Foundation [DBI-1350041, IOS-1237880, MCB 0929402, MCB 1122246]; J. Lohr Vineyards and Wines FX The sequencing of the Cabernet Sauvignon genome was supported in part by a gift from the J. Lohr Vineyards and Wines to D.C. We would also like to thank F. Neto for providing an early-release BUSCO plant data set. Clavicorona pyxidata DNA was provided by L. Nagy (Institute of Biochemistry Biological Research Centre of the Hungarian Academy of Sciences). We thank J. Puglisi, F. Jupe, A. Copeland, and A. Wenger for reading and critiquing the manuscript. The project was supported in part by National Institutes of Health award (R01-HG006677 to M.C.S.) and by National Science Foundation awards (DBI-1350041 and IOS-1237880 to M.C.S.; MCB 0929402; and MCB 1122246 to J.R.E.). J.R.E. is an investigator at the Howard Hughes Medical Institute and Gordon and Betty Moore Foundation (GBMF 3034). NR 40 TC 4 Z9 4 U1 12 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 EI 1548-7105 J9 NAT METHODS JI Nat. Methods PD DEC PY 2016 VL 13 IS 12 BP 1050 EP + DI 10.1038/NMETH.4035 PG 7 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA ED8PI UT WOS:000389133000026 PM 27749838 ER PT J AU Wong, ZJ Xu, YL Kim, J O'Brien, K Wang, Y Feng, L Zhang, X AF Wong, Zi Jing Xu, Ye-Long Kim, Jeongmin O'Brien, Kevin Wang, Yuan Feng, Liang Zhang, Xiang TI Lasing and anti-lasing in a single cavity SO Nature Photonics LA English DT Article ID NON-HERMITIAN HAMILTONIANS; PARITY-TIME SYMMETRY; LASERS; MODULATORS; ABSORPTION; ABSORBER AB Lasing, light amplification by stimulated emission of radiation, is a key attribute for many important applications in optical communications, medicine and defence. Conversely, anti-lasing represents the time-reversed counterpart of laser emission, where incoming radiation is coherently absorbed. Here, we experimentally realize lasing and anti-lasing at the same frequency in a single cavity using parity-time symmetry. Because of the time-reversal property, the demonstrated lasing and anti-lasing resonances share common resonant features such as identical frequency dependence, coherent in-phase response and fine spectral resolution. Lasing and anti-lasing in a single device offers a new route for light modulation with high contrast approaching the ultimate limit. C1 [Wong, Zi Jing; Xu, Ye-Long; Kim, Jeongmin; O'Brien, Kevin; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. [Wang, Yuan; Zhang, Xiang] Lawrence Berkeley Natl Lab, Mat Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Feng, Liang] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. [Zhang, Xiang] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA.; Zhang, X (reprint author), Lawrence Berkeley Natl Lab, Mat Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Feng, L (reprint author), SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA.; Zhang, X (reprint author), King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia. EM fengl@buffalo.edu; xiang@berkeley.edu RI Wang, Yuan/F-7211-2011 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy within the Metamaterials Program [KC12XZ]; US Army Research Office [W911NF-15-1-0152] FX This work was primarily funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy within the Metamaterials Program (KC12XZ). L.F. acknowledges the US Army Research Office (W911NF-15-1-0152) that supports the simulation. We thank the Molecular Foundry, Lawrence Berkeley National Laboratory for the technical support in nanofabrication, and D. Olynick for discussions. NR 34 TC 4 Z9 4 U1 15 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD DEC PY 2016 VL 10 IS 12 BP 796 EP 801 DI 10.1038/NPHOTON.2016.216 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA EE3CQ UT WOS:000389465000012 ER PT J AU Deng, K Wan, GL Deng, P Zhang, KN Ding, SJ Wang, EY Yan, MZ Huang, HQ Zhang, HY Xu, ZL Denlinger, J Fedorov, A Yang, HT Duan, WH Yao, H Wu, Y Fan, SS Zhang, HJ Chen, X Zhou, SY AF Deng, Ke Wan, Guoliang Deng, Peng Zhang, Kenan Ding, Shijie Wang, Eryin Yan, Mingzhe Huang, Huaqing Zhang, Hongyun Xu, Zhilin Denlinger, Jonathan Fedorov, Alexei Yang, Haitao Duan, Wenhui Yao, Hong Wu, Yang Fan, Shoushan Zhang, Haijun Chen, Xi Zhou, Shuyun TI Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 SO Nature Physics LA English DT Article ID PHASE; TRANSITION; BETA-MOTE2; ELECTRON; TAAS AB Weyl semimetal is a new quantum state of matter(1-12) hosting the condensed matter physics counterpart of the relativistic Weyl fermions(13) originally introduced in high-energy physics. The Weyl semimetal phase realized in the TaAs class of materials features multiple Fermi arcs arising from topological surface states(10,11,14-16) and exhibits novel quantum phenomena, such as a chiral anomaly-induced negative magnetoresistance(17-19) and possibly emergent supersymmetry(20). Recently it was proposed theoretically that a new type (type-II) of Weyl fermion(21,22) that arises due to the breaking of Lorentz invariance, which does not have a counterpart in high-energy physics, can emerge as topologically protected touching between electron and hole pockets. Here, we report direct experimental evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 (refs 23-25). The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy, and the quasi-particle interference pattern between the putative topological Fermi arcs in scanning tunnelling microscopy. By establishing MoTe2 as an experimental realization of a type-II Weyl semimetal, our work opens up opportunities for probing the physical properties of this exciting new state. C1 [Deng, Ke; Wan, Guoliang; Deng, Peng; Zhang, Kenan; Ding, Shijie; Wang, Eryin; Yan, Mingzhe; Huang, Huaqing; Zhang, Hongyun; Xu, Zhilin; Yang, Haitao; Duan, Wenhui; Fan, Shoushan; Chen, Xi; Zhou, Shuyun] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Deng, Ke; Wan, Guoliang; Deng, Peng; Zhang, Kenan; Ding, Shijie; Wang, Eryin; Yan, Mingzhe; Huang, Huaqing; Zhang, Hongyun; Xu, Zhilin; Yang, Haitao; Duan, Wenhui; Fan, Shoushan; Chen, Xi; Zhou, Shuyun] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Denlinger, Jonathan; Fedorov, Alexei] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Yang, Haitao; Wu, Yang; Fan, Shoushan] Tsinghua Univ, Tsinghua Foxconn Nanotechnol Res Ctr, Beijing 100084, Peoples R China. [Duan, Wenhui; Yao, Hong; Fan, Shoushan; Chen, Xi; Zhou, Shuyun] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China. [Yang, Haitao] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China. [Zhang, Haijun] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Zhang, Haijun] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China. [Zhang, Haijun] Collaborat Innovat Ctr Adv Microstruct, Nanjing, Jiangsu, Peoples R China. RP Chen, X; Zhou, SY (reprint author), Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China.; Chen, X; Zhou, SY (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.; Wu, Y (reprint author), Tsinghua Univ, Tsinghua Foxconn Nanotechnol Res Ctr, Beijing 100084, Peoples R China.; Chen, X; Zhou, SY (reprint author), Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China. EM wuyangthu@mail.tsinghua.edu.cn; xc@mail.tsinghua.edu.cn; syzhou@mail.tsinghua.edu.cn RI Yao, Hong/D-3202-2011; Zhou, Shuyun/A-5750-2009; Duan, Wenhui /H-4992-2011; Wu, Yang/B-9233-2017 OI Yao, Hong/0000-0003-2867-6144; Duan, Wenhui /0000-0001-9685-2547; FU National Natural Science Foundation of China [11274191, 11334006]; Ministry of Science and Technology of China [2015CB92100, 2016YFA0301004, 2012CB932301]; Tsinghua University Initiative Scientific Research Program [2012Z02285]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This work is supported by the National Natural Science Foundation of China (grant no. 11274191, 11334006), Ministry of Science and Technology of China (no. 2015CB92100, 2016YFA0301004 and 2012CB932301) and Tsinghua University Initiative Scientific Research Program (no. 2012Z02285). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 40 TC 13 Z9 13 U1 48 U2 48 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD DEC PY 2016 VL 12 IS 12 BP 1105 EP + DI 10.1038/NPHYS3871 PG 7 WC Physics, Multidisciplinary SC Physics GA ED8PQ UT WOS:000389133800010 ER PT J AU Wang, EY Lu, XB Ding, SJ Yao, W Yan, MZ Wan, GL Deng, K Wang, SP Chen, GR Ma, LG Jung, J Fedorov, AV Zhang, YB Zhang, GY Zhou, SY AF Wang, Eryin Lu, Xiaobo Ding, Shijie Yao, Wei Yan, Mingzhe Wan, Guoliang Deng, Ke Wang, Shuopei Chen, Guorui Ma, Liguo Jung, Jeil Fedorov, Alexei V. Zhang, Yuanbo Zhang, Guangyu Zhou, Shuyun TI Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride SO Nature Physics LA English DT Article ID GRAPHENE SUPERLATTICES; MOIRE SUPERLATTICES; FERMIONS; HETEROSTRUCTURES AB Graphene/hexagonal boron nitride (h-BN) has emerged as a model van der Waals heterostructure(1) as the superlattice potential, which is induced by lattice mismatch and crystal orientation, gives rise to various novel quantum phenomena, such as the self-similar Hofstadter butterflystates(2-5). Although the newly generated second-generation Dirac cones (SDCs) are believed to be crucial for understanding such intriguing phenomena, fundamental knowledge of SDCs, such as locations and dispersion, and the effect of inversion symmetry breaking on the gap opening, still remains highly debated due to the lack of direct experimental results. Here we report direct experimental results on the dispersion of SDCs in O degrees-aligned graphene/h-BN heterostructures using angle-resolved photoemission spectroscopy. Our data unambiguously reveal SDCs at the corners of the superlattice Brillouin zone, and at only one of the two superlattice valleys. Moreover, gaps of approximately 100 meV and approximately 160 meV are observed at the SDCs and the original graphene Dirac cone, respectively. Our work highlights the important role of a strong inversion-symmetry-breaking perturbation potential in the physics of graphene/h-BN, and fills critical knowledge gaps in the band structure engineering of Dirac fermions by a superlattice potential. C1 [Wang, Eryin; Ding, Shijie; Yao, Wei; Yan, Mingzhe; Wan, Guoliang; Deng, Ke; Zhou, Shuyun] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Wang, Eryin; Ding, Shijie; Yao, Wei; Yan, Mingzhe; Wan, Guoliang; Deng, Ke; Zhou, Shuyun] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Lu, Xiaobo; Wang, Shuopei; Zhang, Guangyu] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Lu, Xiaobo; Wang, Shuopei; Zhang, Guangyu] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Chen, Guorui; Ma, Liguo; Zhang, Yuanbo] Fudan Univ, State Key Lab Surface Phys, Shanghai 200433, Peoples R China. [Chen, Guorui; Ma, Liguo; Zhang, Yuanbo] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Jung, Jeil] Univ Seoul, Dept Phys, Seoul 02504, South Korea. [Fedorov, Alexei V.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Zhang, Guangyu; Zhou, Shuyun] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China. RP Zhou, SY (reprint author), Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China.; Zhou, SY (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.; Zhou, SY (reprint author), Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China. EM syzhou@mail.tsinghua.edu.cn RI Zhou, Shuyun/A-5750-2009; OI Yao, Wei/0000-0003-4518-3632 FU National Natural Science Foundation of China [11274191, 11334006, 11427903]; Ministry of Science and Technology of China [2015CB921001, 2016YFA0301004]; Tsinghua University Initiative Scientific Research Program [2012Z02285]; Advanced Light Source Doctoral Fellowship Program; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We thank V. I. Fal'ko for useful discussions. This work is supported by the National Natural Science Foundation of China (Grant No. 11274191, 11334006, and 11427903), Ministry of Science and Technology of China (Grant No. 2015CB921001, 2016YFA0301004) and Tsinghua University Initiative Scientific Research Program (2012Z02285). E.Y.W. is grateful for support from the Advanced Light Source Doctoral Fellowship Program. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 30 TC 1 Z9 1 U1 42 U2 42 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD DEC PY 2016 VL 12 IS 12 BP 1111 EP + DI 10.1038/NPHYS3856 PG 6 WC Physics, Multidisciplinary SC Physics GA ED8PQ UT WOS:000389133800011 ER PT J AU Zhang, LM Jiang, W Fadanelli, RC Ai, WS Peng, JX Wang, TS Zhang, CH AF Zhang, L. M. Jiang, W. Fadanelli, R. C. Ai, W. S. Peng, J. X. Wang, T. S. Zhang, C. H. TI Microstructural response of InGaN to swift heavy ion irradiation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Swift heavy ion irradiation; Microstructure; InGaN ID THERMAL SPIKE MODEL; STRUCTURAL DAMAGE; GAN; IMPLANTATION; SEMICONDUCTORS; NITRIDES; PROGRESS; METALS; GROWTH; INP AB A monocrystalline In0.18Ga0.82N film of similar to 275 nm in thickness grown on a GaN/Al2O3 substrate was irradiated with 290 MeV U-238(32+) ions to a fluence of 1.2 x 10(12) cm(-2) at room temperature. The irradiated sample was characterized using helium ion microscopy (HIM), Rutherford backscattering spectrometry under ion-channeling conditions (RBS/C), and high-resolution X-ray diffraction (HRXRD). The irradiation leads to formation of ion tracks throughout the thin In0.18Ga0.82N film and the 3.0 mu m thick GaN buffer layer. The mean diameter of the tracks in In0.18Ga0.82N is similar to 9 nm, as determined by HIM examination. Combination of the HIM and RBS/C data suggests that the In0.18Ga0.82N material in the track is likely to be highly disordered or fully amorphized. The irradiation induced lattice relaxation in In0.18Ga0.82N and a distribution of d-spacing of the (0 0 02) planes in GaN with lattice expansion are observed by HRXRD. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zhang, L. M.; Ai, W. S.; Peng, J. X.; Wang, T. S.] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. [Jiang, W.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Fadanelli, R. C.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91500 Porto Alegre, RS, Brazil. [Zhang, C. H.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. RP Zhang, LM (reprint author), Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. EM zhanglm@lzu.edu.cn OI Jiang, Weilin/0000-0001-8302-8313 FU National Natural Science Foundation of China [11305081]; Fundamental Research Funds for the Central Universities [lzujbky-2016-28]; DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL); China Scholarship Council FX This work was supported by the National Natural Science Foundation of China (Grant No. 11305081) and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2016-28). A part of the research was performed under a general proposal at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). L.M. Zhang was financially supported by China Scholarship Council during his visit to PNNL. NR 37 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD DEC 1 PY 2016 VL 388 BP 30 EP 34 DI 10.1016/j.nimb.2016.10.035 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA ED9CR UT WOS:000389168300007 ER PT J AU Demoin, DW Dame, AN Minard, WD Gallazzi, F Seickman, GL Rold, TL Bernskoetter, N Fassbender, ME Hoffman, TJ Deakyne, CA Jurisson, SS AF Demoin, Dustin Wayne Dame, Ashley N. Minard, William D. Gallazzi, Fabio Seickman, Gary L. Rold, Tammy L. Bernskoetter, Nicole Fassbender, Michael E. Hoffman, Timothy J. Deakyne, Carol A. Jurisson, Silvia S. TI Monooxorhenium(V) complexes with 222-N2S2 MAMA ligands for bifunctional chelator agents: Syntheses and preliminary in vivo evaluation SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article DE Rhenium-186; Rhenium(V); MAMA ligands; Quantum chemical studies; Bombesin; Radiotherapy ID PROSTATE-CANCER CELLS; TARGETING VECTOR; BOMBESIN ANALOGS; MOUSE MODEL; RADIOPHARMACEUTICALS; STABILIZATION; DERIVATIVES; PALLIATION; RE-186; LU-177 AB Introduction: Targeted radiotherapy using the bifunctional chelate approach with Re-186/188(V) is challenging because of the susceptibility of monooxorhenium(V)-based complexes to oxidize in vivo at high dilution. A monoamine monoamide dithiol (MAMA)-based bifunctional chelating agent was evaluated with both rhenium and technetium to determine its utility for in vivo applications. Methods: A 222-MAMA chelator, 222-MAMA(N-6-Ahx-OEt) bifunctional chelator, and 222-MAMA(N-6-Ahx-BBN(7-14)NH2) were synthesized, complexed with rhenium, radiolabeled with Tc-99m and Re-186 (carrier added and no carrier added), and evaluated in initial biological distribution studies. Results: An IC50 value of 2.0 +/- 0.7 nM for (ReO)-Re-nat-222-MAMA(N-6-Ahx-BBN(7-14)NH2) compared to [I-125]-Tyr(4)-BBN(NH2) was determined through competitive cell binding assays with PC-3 tumor cells. In vivo evaluation of the no-carrier added Tc-99m-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex showed little gastric uptake and blocicable pancreatic uptake in normal mice. Conclusions: The (ReO)-Re-186-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex showed stability in biological media, which indicates that the 222-N2S2 chelator is appropriate for chelating 1(86/188)Re in radiopharmaceuticals involving peptides. Additionally, the in vitro cell studies showed that the ReO-222-N2S2(N-6-Ahx-BBN(7-14)NH2) complex (macroscopically) bound to PO-tumor cell surface receptors with high affinity. The 99mTc analog was stable in vivo and exhibited pancreatic uptake in mice that was blockable, indicating BB2r targeting. (C) 2016 Elsevier Inc. All rights reserved. C1 [Demoin, Dustin Wayne; Dame, Ashley N.; Minard, William D.; Hoffman, Timothy J.; Deakyne, Carol A.; Jurisson, Silvia S.] Univ Missouri, Dept Chem, 601 South Coll Ave, Columbia, MO 65211 USA. [Gallazzi, Fabio] Univ Missouri, Dept Struct Biol Core, Columbia, MO 65211 USA. [Rold, Tammy L.; Hoffman, Timothy J.] Univ Missouri, Dept Med, Columbia, MO 65211 USA. [Seickman, Gary L.; Rold, Tammy L.; Bernskoetter, Nicole; Hoffman, Timothy J.] Harry S Truman Mem Vet Hosp, Div Res, Columbia, MO 65201 USA. [Fassbender, Michael E.] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. RP Jurisson, SS (reprint author), Univ Missouri, Dept Chem, 601 South Coll Ave, Columbia, MO 65211 USA. EM jurissons@missouri.edu FU National Science Foundation [NSF-CHE-89-08304]; National Institute of Biomedical Imaging and Bioengineering Training Grant [NIBIB 5 T32 EB004822]; U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry program [DE-FG02-09ER16097]; U.S. Department of Energy, Office of Basic Energy Sciences, Projects for Interrogations of Biological Systems [DE-SC0002040]; Biomedical Laboratory Research and Development Service of the U.S. Department of Veterans Affairs [1I01BX001699] FX Dr. Susan Lever provided helpful suggestions with the organic chemistry work. Drs. Tim Glass, Michael Harmata, and Vikram Gaddam were instrumental in obtaining 3 and 4. Ma-Guadalupe Ruvalcaba Andrade helped with corroborating the synthesis of these compounds. The authors acknowledge the University of Missouri Bioinformatics Consortium for the use of their High Performance Computing resources, University of Missouri Mass Spectroscopy Facility, National Science Foundation grant NSF-CHE-89-08304 for the use of the NMR facility, and Dr. Wei Wycoff for assistance with the NMR. Research was supported by the National Institute of Biomedical Imaging and Bioengineering Training Grant No. NIBIB 5 T32 EB004822 (DWD). The research was also supported in part by the U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry program under grant No. DE-FG02-09ER16097 and Projects for Interrogations of Biological Systems No. DE-SC0002040 as well as VA Merit Award Number 1I01BX001699 and a Research Career Scientist Award (TJH) from the Biomedical Laboratory Research and Development Service of the U.S. Department of Veterans Affairs. NR 38 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 EI 1872-9614 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD DEC PY 2016 VL 43 IS 12 BP 802 EP 811 DI 10.1016/j.nucmedbio.2016.08.017 PG 10 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA EE0TB UT WOS:000389290700008 PM 27694058 ER PT J AU Ma, CH Sun, H Nowakowski, G Mauer, E Bernitsas, MM AF Ma, Chunhui Sun, Hai Nowakowski, Gary Mauer, Erik Bernitsas, Michael M. TI Nonlinear piecewise restoring force in hydrokinetic power conversion using flow induced motions of single cylinder SO OCEAN ENGINEERING LA English DT Article DE Hydrokinetic energy; Nonlinear restoring force; Flow-induced motions; Vortex-induced vibrations; Galloping; Distributed surface roughness ID VORTEX-INDUCED VIBRATIONS; RIGID CIRCULAR-CYLINDER; SURFACE-ROUGHNESS; X 10(5) AB Flow Induced Motions (FIMs) of a single, rigid, circular cylinder with piecewise continuous restoring force are investigated for Reynolds number 24,000 <= Re <= 120,000 with damping, and different piecewise functions as parameters. Selective roughness is applied to enhance FIM and increase the hydrokinetic energy captured by the VIVACE (Vortex Induced Vibration for Aquatic Clean Energy) Converter at higher Reynolds numbers. The second generation of virtual spring-damping system Vck, developed in the Marine Renewable Energy Laboratory (MRELab), enables embedded computer-controlled change of viscous-damping and spring-stiffness for fast and precise oscillator modeling. Experimental results for amplitude response, frequency response, energy harvesting, and efficiency are presented and discussed. All experiments were conducted in the Low Turbulence Free Surface Water (LTFSW) Channel of the MRELab of the University of Michigan. The main conclusions are: (1) The nonlinear piecewise spring Converter can harness energy from flows as slow as 0.275 m/s with no upper limit. (2) In galloping, the nonlinear spring Converter has up to 76% better performance than its linear spring counterpart. (3) The FIM response is predominantly periodic for all nonlinear spring functions used. (4) Optimal power harnessing is achieved by changing the nonlinear piecewise spring function and the linear viscous damping. (5) VIVACE exhibits local maxima in power conversion at the end of the upper branch in VIV and the highest velocity reached in galloping. (6) The efficiency optima though are at the beginning of the VIV initial branch and at the beginning of galloping. C1 [Ma, Chunhui] Jiangsu Maritime Inst, Nanjing, Jiangsu, Peoples R China. [Ma, Chunhui] Univ Michigan, Ann Arbor, MI 48109 USA. [Sun, Hai; Bernitsas, Michael M.] Univ Michigan, Dept Naval Architecture & Marine Engn, Marine Renewable Energy Lab, 2600 Draper Rd, Ann Arbor, MI 48109 USA. [Sun, Hai] Univ Michigan, Ann Arbor, MI 48109 USA. [Sun, Hai] Harbin Engn Univ, Harbin, Peoples R China. [Nowakowski, Gary] US DOE, Wind & Water Power Technol Off, Golden, CO USA. [Mauer, Erik] US DOE, Allegheny Sci & Technol, Bridgeport, CT USA. [Bernitsas, Michael M.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Bernitsas, Michael M.] Vortex Hydro Energy, Ann Arbor, MI USA. RP Sun, H (reprint author), Univ Michigan, Dept Naval Architecture & Marine Engn, Marine Renewable Energy Lab, 2600 Draper Rd, Ann Arbor, MI 48109 USA.; Sun, H (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA.; Sun, H (reprint author), Harbin Engn Univ, Harbin, Peoples R China.; Sun, H (reprint author), Harbin Engn Univ, Coll Aerosp & Civil Engn, 154 Nantong Ave, Harbin 150001, Heilongjiang, Peoples R China. EM sunhai2009@gmail.com FU National Nature Science Foundation of China [51609053]; Vortex Hydro Energy, Inc. [DE-EE0006780]; U.S. Department of Energy FX Prepared under National Nature Science Foundation of China (No. 51609053) and Cooperative Agreement No. DE-EE0006780 between Vortex Hydro Energy, Inc. and the U.S. Department of Energy. The MRELab is a subcontractor through the University of Michigan. NR 20 TC 1 Z9 1 U1 18 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0029-8018 J9 OCEAN ENG JI Ocean Eng. PD DEC 1 PY 2016 VL 128 BP 1 EP 12 DI 10.1016/j.oceaneng.2016.10.020 PG 12 WC Engineering, Marine; Engineering, Civil; Engineering, Ocean; Oceanography SC Engineering; Oceanography GA EE0UR UT WOS:000389294900001 ER PT J AU Sarkimaki, K Hirvijoki, E Decker, J Varje, J Kurki-Suonio, T AF Sarkimaki, Konsta Hirvijoki, Eero Decker, Joan Varje, Jari Kurki-Suonio, Taina TI An advection-diffusion model for cross-field runaway electron transport in perturbed magnetic fields SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE runaway electron; radial transport; stochastic magnetic field; advection; diffusion ID TOKAMAK PLASMAS; SURFACES AB Disruption-generated runaway electrons (RE) present an outstanding issue for ITER. The predictive computational studies of RE generation rely on orbit-averaged computations and, as such, they lack the effects from the magnetic field stochasticity. Since stochasticity is naturally present in post-disruption plasma, and externally induced stochastization offers a prominent mechanism to mitigate RE avalanche, we present an advection-diffusion model that can be used to couple an orbit-following code to an orbit-averaged tool in order to capture the cross-field transport and to overcome the latter's limitation. The transport coefficients are evaluated via a Monte Carlo method. We show that the diffusion coefficient differs significantly from the well-known Rechester-Rosenbluth result. We also demonstrate the importance of including the advection: it has a two-fold role both in modelling transport barriers created by magnetic islands and in amplifying losses in regions where the islands are not present. C1 [Sarkimaki, Konsta; Varje, Jari; Kurki-Suonio, Taina] Aalto Univ, Espoo, Finland. [Hirvijoki, Eero] PPPL, Princeton, NJ USA. [Decker, Joan] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Kurki-Suonio, Taina] Chalmers, Gothenburg, Sweden. RP Sarkimaki, K (reprint author), Aalto Univ, Espoo, Finland. EM konsta.sarkimaki@aalto.fi FU EUROFUSION Enabling Research project [ER15-CEA-09]; Fusion For Energy Grant [379]; Academy of Finland [259675]; Tekes-the Finnish Funding Agency for Innovation under the FinnFusion Consortium FX This work is part of the EUROFUSION Enabling Research project ER15-CEA-09. The work was partially funded by Fusion For Energy Grant 379 and the Academy of Finland project No. 259675, and has also received funding from Tekes-the Finnish Funding Agency for Innovation under the FinnFusion Consortium. The simulations performed for this work were carried out using the computer resources within the Aalto University School of Science 'Science-IT' project. NR 23 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2016 VL 58 IS 12 AR 125017 DI 10.1088/0741-3335/58/12/125017 PG 11 WC Physics, Fluids & Plasmas SC Physics GA ED3KO UT WOS:000388748200001 ER PT J AU Asmussen, RM Neeway, JJ Lawter, AR Wilson, A Qafoku, NP AF Asmussen, R. Matthew Neeway, James J. Lawter, Amanda R. Wilson, Andrew Qafoku, Nikolla P. TI Silver-based getters for I-129 removal from low-activity waste SO RADIOCHIMICA ACTA LA English DT Article DE Low activity waste; iodine; getters; Hanford site; separations ID IMPREGNATED ACTIVATED CARBON; IODIDE; ADSORPTION; IMMOBILIZATION; SEQUESTRATION; ENTRAPMENT; MANAGEMENT; DISPOSAL; FISSION AB A prominent radionuclide of concern in nuclear wastes, I-129, is present in low-activity wastes (LAW) at the Hanford site. Several Ag-containing materials were tested as immobilization agents, or "getters", for I (as iodide, I-) removal from deionized (DI) water and a liquid LAW simulant: Ag impregnated activate carbon (Ag-C), Ag exchanged zeolite (Ag-Z), and argentite. In anoxic batch experiments with DI water, the Ag-C and argentite were most effective, with maximum K-d values of 6.2 x 10(5) mL/g for the Ag-C and 3.7 x 10(5) mL/g for the argentite after 15 days. Surface area and Ag content were found to influence the performance of the getters in DI water. In the anoxic batch experiments with LAW simulant, Ag-Z vastly outperformed the other getters with K-d values of 2.2 x 10(4) mL/g at 2 h, which held steady until 15 days, compared with 1.8 x 10(3) mL/g reached at 15 days by the argentite. All getters were stable over long periods of time (i.e. 40 days) in DI water, while the Ag-Z and argentite were also stable in the LAW simulant. Ag-Z was found to have consistent I removal upon crushing to a smaller particle size and in the presence of O-2, making it a strong candidate for the treatment of LAW containing I. C1 [Asmussen, R. Matthew; Neeway, James J.; Lawter, Amanda R.; Wilson, Andrew; Qafoku, Nikolla P.] Pacific Northwest Natl Lab, Geosci Grp, Energy & Environm Directorate, Richland, WA 99352 USA. RP Asmussen, RM (reprint author), Pacific Northwest Natl Lab, Geosci Grp, Energy & Environm Directorate, Richland, WA 99352 USA. EM matthew.asmussen@pnnl.gov FU U.S. Department of Energy's Office of Environment Management FX This work was completed as part of the Supplemental Immobilization of Hanford Low-Activity Waste project with Washington River Protection Solutions (WRPS). Support for this project came from the U.S. Department of Energy's Office of Environment Management. The authors wish to thank David Swanberg of WRPS for continued support, the analytical staff in the Environmental Sciences Lab at PNNL and the staff at the Environmental Molecular Sciences Lab (EMSL) at PNNL. A. Wilson participated in this work as part of the U.S. D.O.E. Science Undergraduate Laboratory Internship (SULI) program. NR 39 TC 0 Z9 0 U1 6 U2 6 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0033-8230 J9 RADIOCHIM ACTA JI Radiochim. Acta PD DEC PY 2016 VL 104 IS 12 BP 905 EP 913 DI 10.1515/ract-2016-2598 PG 9 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA EE1ES UT WOS:000389324400008 ER PT J AU Peterson, I Harder, R Robinson, IK AF Peterson, I. Harder, R. Robinson, I. K. TI Probe-diverse ptythography SO ULTRAMICROSCOPY LA English DT Article ID PTYCHOGRAPHY; MICROSCOPY; SCATTERING AB We propose an extension of ptychography where the target sample is scanned separately through several probes with distinct amplitude and phase profiles and a diffraction image is recorded for each probe and each sample translation. The resulting probe-diverse dataset is used to iteratively retrieve high-resolution images of the sample and all probes simultaneously. The method is shown to yield significant improvement in the reconstructed sample image compared to the image obtained using the standard single-probe ptychographic phase-retrieval scheme. (C) 2016 Published by Elsevier B.V. C1 [Peterson, I.] Univ Melbourne, ARC Ctr Excellence Coherent Xray Sci, Sch Phys, Melbourne, Vic 3010, Australia. [Harder, R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Robinson, I. K.] Res Complex Harwell, Didcot 0X11 0DE, Oxon, England. [Robinson, I. K.] UCL, London Ctr Nanotechnol, London WC1H 0AH, England. RP Peterson, I (reprint author), Univ Melbourne, ARC Ctr Excellence Coherent Xray Sci, Sch Phys, Melbourne, Vic 3010, Australia. EM isaac.russellpeterson@rmit.edu.au FU US National Science Foundation [DMR-9724294]; US Department of Energy, Office of Basic Energy Sciences [DE-AC0206CH11357]; Australian Research Council Centre of Excellence for Coherent X-ray Science; UK EPSRC [EP/I022562/1] FX The measurements were carried out at APS beamline 34-ID-C, built with US National Science Foundation grant DMR-9724294 and operated by the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC0206CH11357. I. Peterson acknowledges support from the Australian Research Council Centre of Excellence for Coherent X-ray Science. I. K. Robinson acknowledges support from the UK EPSRC under EP/I022562/1 "Phase modulation technology for X-ray imaging". NR 24 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD DEC PY 2016 VL 171 BP 77 EP 81 DI 10.1016/j.ultramic.2016.08.003 PG 5 WC Microscopy SC Microscopy GA ED8FA UT WOS:000389106200010 PM 27643460 ER PT J AU Yang, H Ercius, P Nellist, PD Ophus, C AF Yang, Hao Ercius, Peter Nellist, Peter D. Ophus, Colin TI Enhanced phase contrast transfer using ptychography combined with a pre-specimen phase plate in a scanning transmission electron microscope SO ULTRAMICROSCOPY LA English DT Article DE STEM; Pixelated detectors; Ptychography; Phase contrast; Phase plate; PCTF ID ATOMIC-RESOLUTION; STEM; DIFFRACTION; OBJECTS; FIELDS; IMAGES; WAVE AB The ability to image light elements in both crystalline and noncrystalline materials at near atomic resolution with an enhanced contrast is highly advantageous to understand the structure and properties of a wide range of beam sensitive materials including biological specimens and molecular heterostructures. This requires the imaging system to have an efficient phase contrast transfer at both low and high spatial frequencies. In this work we introduce a new phase contrast imaging method in a scanning transmission electron microscope (STEM) using a pre-specimen phase plate in the probe forming aperture, combined with a fast pixelated detector to record diffraction patterns at every probe position, and phase reconstruction using ptychography. The phase plate significantly enhances the contrast transfer of low spatial frequency information, and ptychography maximizes the extraction of the phase information at all spatial frequencies. In addition, the STEM probe with the presence of the phase plate retains its atomic resolution, allowing simultaneous incoherent Z-contrast imaging to be obtained along with the ptychographic phase image. An experimental image of Au nanoparticles on a carbon support shows high contrast for both materials. Multislice image simulations of a DNA molecule shows the capability of imaging soft matter at low dose conditions, which implies potential applications of low dose imaging of a wide range of beam sensitive materials. Published by Elsevier B.V. C1 [Yang, Hao; Ercius, Peter; Ophus, Colin] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Nellist, Peter D.] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. RP Ophus, C (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM clophus@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; UK Engineer and Physical Research Council [EP/M010708/1] FX Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The phase plates used in the experimental portion of this study were fabricated and tested by Jordan Pierce, Tyler Harvey, Jordan Chess and Ben McMorran. PDN acknowledges support from the UK Engineer and Physical Research Council through grant number EP/M010708/1. NR 34 TC 2 Z9 2 U1 14 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD DEC PY 2016 VL 171 BP 117 EP 125 DI 10.1016/j.ultramic.2016.09.002 PG 9 WC Microscopy SC Microscopy GA ED8FA UT WOS:000389106200015 PM 27664566 ER PT J AU Remo, JL Lawrence, RJ Jacobsen, SB Furnish, MD AF Remo, J. L. Lawrence, R. J. Jacobsen, S. B. Furnish, M. D. TI High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation SO ACTA ASTRONAUTICA LA English DT Article ID DEFLECTION AB We applied MBBAY high fluence pulsed radiation intensity driven momentum transfer analysis to calculate Xray momentum coupling coefficients C-M=(Pa s)/(J/m(2)) for two simplified comet analog materials: i) water ice, and ii) 70% water ice and 30% distributed olivine grains. The momentum coupling coefficients (C-M) (max) of 50x10(-5) s/m, are about an order of magnitude greater than experimentally determined and computed MBBAY values for meteoritic materials that are analogs for asteroids. From the values for comet analog materials we infer applied energies (via momentum transfer) required to deflect an Earth crossing comet from impacting Earth by a sufficient amount (-1 cm/s) to avert collision-a year in advance. Comet model calculations indicate for C-M=5x10(-4) s/m the deflection of a 2 km comet with a density 600 kg/m(3) by 1 cm/s requires an applied energy on the target surface of 5x10(13) J, the equivalent of 12 kT of TNT. Depending on the geometrical configuration of the interaction the explosive yield required could be an order of magnitude higher. C1 [Remo, J. L.] Harvard Univ, Dept Astron, 20 Oxford St, Cambridge, MA 02138 USA. [Remo, J. L.; Jacobsen, S. B.] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA. [Remo, J. L.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Lawrence, R. J.; Furnish, M. D.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Furnish, MD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jremo@cfa.harvard.edu; mdfurni@sandia.gov FU Department of Energy National Nuclear Security Administration [DE-FG52-09NA29457, DE-NA0001804, DE-NA0002937]; Harvard University; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX A portion of this research was conducted under the Sandia Z Fundamental Science Program and supported by the Department of Energy National Nuclear Security Administration under Award Numbers DE-FG52-09NA29457, DE-NA0001804 and DE-NA0002937 to S. B. Jacobsen (PI) with Harvard University. This research is the authors' views and not those of the DOE. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 17 TC 0 Z9 0 U1 5 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 EI 1879-2030 J9 ACTA ASTRONAUT JI Acta Astronaut. PD DEC PY 2016 VL 129 BP 384 EP 388 DI 10.1016/j.actaastro.2016.09.026 PG 5 WC Engineering, Aerospace SC Engineering GA ED7YF UT WOS:000389087900043 ER PT J AU Gupta, RR Kuhlmann, S Kovacs, E Spinka, H Kessler, R Goldstein, DA Liotine, C Pomian, K D'Andrea, CB Sullivan, M Carretero, J Castander, FJ Nichol, RC Finley, DA Fischer, JA Foley, RJ Kim, AG Papadopoulos, A Sako, M Scolnic, DM Smith, M Tucker, BE Uddin, S Wolf, RC Yuan, F Abbott, TMC Abdalla, FB Benoit-Levy, A Bertin, E Brooks, D Rosell, AC Kind, MC Cunha, CE da Costa, LN Desai, S Doel, P Eifler, TF Evrard, AE Flaugher, B Fosalba, P Gaztanaga, E Gruen, D Gruendl, R James, DJ Kuehn, K Kuropatkin, N Maia, MAG Marshall, JL Miquel, R Plazas, AA Romer, AK Sanchez, E Schubnell, M Sevilla-Noarbe, I Sobreira, F Suchyta, E Swanson, MEC Tarle, G Walker, AR Wester, W AF Gupta, Ravi R. Kuhlmann, Steve Kovacs, Eve Spinka, Harold Kessler, Richard Goldstein, Daniel A. Liotine, Camille Pomian, Katarzyna D'Andrea, Chris B. Sullivan, Mark Carretero, Jorge Castander, Francisco J. Nichol, Robert C. Finley, David A. Fischer, John A. Foley, Ryan J. Kim, Alex G. Papadopoulos, Andreas Sako, Masao Scolnic, Daniel M. Smith, Mathew Tucker, Brad E. Uddin, Syed Wolf, Rachel C. Yuan, Fang Abbott, Tim M. C. Abdalla, Filipe B. Benoit-Levy, Aurelien Bertin, Emmanuel Brooks, David Rosell, Aurelio Carnero Kind, Matias Carrasco Cunha, Carlos E. da Costa, Luiz N. Desai, Shantanu Doel, Peter Eifler, Tim F. Evrard, August E. Flaugher, Brenna Fosalba, Pablo Gaztanaga, Enrique Gruen, Daniel Gruendl, Robert James, David J. Kuehn, Kyler Kuropatkin, Nikolay Maia, Marcio A. G. Marshall, Jennifer L. Miquel, Ramon Plazas, Andres A. Romer, A. Kathy Sanchez, Eusebio Schubnell, Michael Sevilla-Noarbe, Ignacio Sobreira, Flavia Suchyta, Eric Swanson, Molly E. C. Tarle, Gregory Walker, Alistair R. Wester, William TI HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; galaxies: general; supernovae: general; surveys ID HUBBLE-SPACE-TELESCOPE; DARK ENERGY SURVEY; CHALLENGE LIGHTCONE SIMULATION; IA SUPERNOVAE; SDSS-II; COSMOLOGICAL CONSTRAINTS; STRUCTURAL PARAMETERS; LUMINOSITY FUNCTION; CLUSTER SURVEY; TRANSIENT AB Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey. C1 [Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. [Kessler, Richard; Scolnic, Daniel M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kessler, Richard] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Goldstein, Daniel A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall 3411, Berkeley, CA 94720 USA. [Goldstein, Daniel A.] Lawrence Berkeley Natl Lab, Div Phys, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [D'Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [D'Andrea, Chris B.; Sullivan, Mark; Smith, Mathew] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Carretero, Jorge; Castander, Francisco J.; Fosalba, Pablo; Gaztanaga, Enrique] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Barcelona, Spain. [Carretero, Jorge; Miquel, Ramon] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Finley, David A.; Flaugher, Brenna; Kuropatkin, Nikolay; Wester, William] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Fischer, John A.; Sako, Masao; Wolf, Rachel C.; Eifler, Tim F.; Suchyta, Eric] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA. [Foley, Ryan J.; Kind, Matias Carrasco; Gruendl, Robert] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, Ryan J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Papadopoulos, Andreas] European Univ Cyprus, Sch Sci, 6 Diogenis St, CY-1516 Nicosia, Cyprus. [Tucker, Brad E.; Yuan, Fang] Australian Natl Univ, Mt Stromlo Observ, Res Sch Astron & Astrophys, Via Cotter Rd, Weston, ACT 2611, Australia. [Uddin, Syed] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Yuan, Fang] ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW, Australia. [Abbott, Tim M. C.; James, David J.] Natl Opt Astron Observ, Cerro Tololo Inter Amer Observ, Casilla 603, La Serena, Chile. [Abdalla, Filipe B.; Benoit-Levy, Aurelien; Brooks, David; Doel, Peter] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Abdalla, Filipe B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Benoit-Levy, Aurelien; Bertin, Emmanuel] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Benoit-Levy, Aurelien; Bertin, Emmanuel] UPMC Univ Paris 06, Sorbonne Univ, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Rosell, Aurelio Carnero; da Costa, Luiz N.; Maia, Marcio A. G.; Sobreira, Flavia] Lab Interinstituc & Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Rosell, Aurelio Carnero; da Costa, Luiz N.; Maia, Marcio A. G.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, Matias Carrasco; Gruendl, Robert; Swanson, Molly E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Cunha, Carlos E.; Gruen, Daniel] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Desai, Shantanu] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, Shantanu] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, Tim F.; Plazas, Andres A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Evrard, August E.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Evrard, August E.; Schubnell, Michael; Tarle, Gregory] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Gruen, Daniel] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Kuehn, Kyler] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Marshall, Jennifer L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Marshall, Jennifer L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Miquel, Ramon] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Romer, A. Kathy] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, Eusebio] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. RP Gupta, RR (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. EM raviryan@gmail.com OI Abdalla, Filipe/0000-0003-2063-4345; Sullivan, Mark/0000-0001-9053-4820; Sobreira, Flavia/0000-0002-7822-0658 FU Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; MareNostrum supercomputer; Port d'Informacio Cientifica; CosmoHUB; EU/FP7-ERC grant [615929]; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) [CE110001020]; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; OzDES Membership Consortium; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union's Seventh Framework Programme (FP7); ERC [240672, 291329, 306478] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013). We acknowledge support from the MareNostrum supercomputer (BSC-CNS,. www.bsc.es), Port d'Informacio Cientifica (PIC, www.pic.es), and CosmoHUB (cosmohub.pic.es), where the MICE simulations were run, stored, and distributed, respectively. M. Sullivan acknowledges support from EU/FP7-ERC grant No. [615929]. Part of this research was conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020.; Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766.; The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. NR 66 TC 2 Z9 2 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD DEC PY 2016 VL 152 IS 6 AR 154 DI 10.3847/0004-6256/152/6/154 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC9QP UT WOS:000388479500002 ER PT J AU Amaudruz, PA Batygov, M Beltran, B Bonatt, J Boudjemline, K Boulay, MG Broerman, B Bueno, JF Butcher, A Cai, B Caldwell, T Chen, M Chouinard, R Cleveland, BT Cranshaw, D Dering, K Duncan, F Fatemighomi, N Ford, R Gagnon, R Giampa, P Giuliani, F Gold, M Golovko, VV Gorel, P Grace, E Graham, K Grant, DR Hakobyan, R Hallina, AL Hamstra, M Harvey, P Hearns, C Hofgartner, J Jillings, CJ Kuzniak, M Lawson, I La Zia, F Li, O Lidgard, JJ Liimatainen, P Lippincott, WH Mathew, R McDonald, AB McElroy, T McFarlane, K McKinsey, DN Mehdiyev, R Monroe, J Muir, A Nantais, C Nicolics, K Nikkel, J Noble, AJ O'Dwyer, E Olsen, K Ouellett, C Pasuthip, P Peeters, SM Pollmann, T Rau, W Retiere, F Ronquest, M Seeburn, N Skensved, P Smith, B Sonley, T Tang, J Vazquez-Jauregui, E Veloce, L Walding, J Ward, M AF Amaudruz, P-A. Batygov, M. Beltran, B. Bonatt, J. Boudjemline, K. Boulay, M. G. Broerman, B. Bueno, J. F. Butcher, A. Cai, B. Caldwell, T. Chen, M. Chouinard, R. Cleveland, B. T. Cranshaw, D. Dering, K. Duncan, F. Fatemighomi, N. Ford, R. Gagnon, R. Giampa, P. Giuliani, F. Gold, M. Golovko, V. V. Gorel, P. Grace, E. Graham, K. Grant, D. R. Hakobyan, R. Hallina, A. L. Hamstra, M. Harvey, P. Hearns, C. Hofgartner, J. Jillings, C. J. Kuzniak, M. Lawson, I. La Zia, F. Li, O. Lidgard, J. J. Liimatainen, P. Lippincott, W. H. Mathew, R. McDonald, A. B. McElroy, T. McFarlane, K. McKinsey, D. N. Mehdiyev, R. Monroe, J. Muir, A. Nantais, C. Nicolics, K. Nikkel, J. Noble, A. J. O'Dwyer, E. Olsen, K. Ouellett, C. Pasuthip, P. Peeters, Sj. M. Pollmann, T. Rau, W. Retiere, F. Ronquest, M. Seeburn, N. Skensved, P. Smith, B. Sonley, T. Tang, J. Vazquez-Jauregui, E. Veloce, L. Walding, J. Ward, M. TI Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1 SO ASTROPARTICLE PHYSICS LA English DT Article DE Dark matter; WIMPs; Liquid noble gas detector; Liquid argon; Pulse-shape discrimination; DEAP ID DARK-MATTER; GRAN SASSO; AR-39; DEPENDENCE; DETECTORS AB The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keV(ee). In the surface dataset using a triple-coincidence tag we found the fraction of,6 events that are misidentified as nuclear recoils to be < 1.4 x 10(-7) (90% C.L.) for energies between 43-86 keV(ee) and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement to be done with only a double-coincidence tag. The combined data set contains 1.23 x 10(8) events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the level of electronic recoil contamination is < 2.7 x 10(-8) (90% C.L.) between 44-89 keV(ee) and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe pulse-shape-discrimination parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approximately 10(-10) for an electron-equivalent energy threshold of 15 keVee for a detector with 8 PE/keV(ee) light yield. This reduction enables a search for spin independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 10(-46) cm(2), assuming negligible contribution from nuclear recoil backgrounds. (C) 2016 Elsevier B.V. All rights reserved. C1 [Beltran, B.; Bueno, J. F.; Chouinard, R.; Gorel, P.; Grant, D. R.; Hakobyan, R.; Hallina, A. L.; McElroy, T.; Olsen, K.; Tang, J.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2R3, Canada. [Boudjemline, K.; Boulay, M. G.; Graham, K.; Hamstra, M.; Mehdiyev, R.; Ouellett, C.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Batygov, M.; Cleveland, B. T.; Duncan, F.; Ford, R.; Hofgartner, J.; Jillings, C. J.; Lawson, I.] Laurentian Univ, Dept Phys & Astron, Sudbury, ON P3E 2C6, Canada. [Giuliani, F.; Gold, M.] Univ New Mexico, Dept Phys, Albuquerque, NM 87131 USA. [Ronquest, M.] Univ N Carolina, Chapel Hill, NC 27517 USA. [Caldwell, T.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Bonatt, J.; Boulay, M. G.; Broerman, B.; Cai, B.; Chen, M.; Cranshaw, D.; Dering, K.; Gagnon, R.; Giampa, P.; Golovko, V. V.; Harvey, P.; Hearns, C.; Kuzniak, M.; Lidgard, J. J.; Mathew, R.; McDonald, A. B.; Nantais, C.; Nicolics, K.; Noble, A. J.; O'Dwyer, E.; Pasuthip, P.; Pollmann, T.; Rau, W.; Skensved, P.; Sonley, T.; Veloce, L.; Ward, M.] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada. [Butcher, A.; Fatemighomi, N.; Grace, E.; La Zia, F.; Monroe, J.; Seeburn, N.; Walding, J.] Royal Holloway Univ London, Egham Hill, Egham TW20 0EX, Surrey, England. [Cleveland, B. T.; Duncan, F.; Ford, R.; Jillings, C. J.; Lawson, I.; Li, O.; Liimatainen, P.; McFarlane, K.; Pollmann, T.; Vazquez-Jauregui, E.] SNOLAB, Lively, ON P3Y 1M3, Canada. [Peeters, Sj. M.] Univ Sussex, Sussex House, Brighton BN1 9RH, E Sussex, England. [Amaudruz, P-A.; Muir, A.; Retiere, F.; Smith, B.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Lippincott, W. H.; McKinsey, D. N.; Nikkel, J.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Batygov, M.; Kuzniak, M.] Carleton Univ, Ottawa, ON K1S 5B6, Canada. [Golovko, V. V.] CNL, Chalk River, ON K0J 1J0, Canada. [Hofgartner, J.] Cornell Univ, Ithaca, NY 14850 USA. [Lippincott, W. H.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ronquest, M.] LANL, POB 1663, Los Alamos, NM 87545 USA. [Vazquez-Jauregui, E.] Univ Nacl Autonoma Mexico, Inst Fis, POB 20-364, Mexico City 01000, DF, Mexico. RP Boulay, MG; Ouellett, C (reprint author), Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada.; Boulay, MG; Kuzniak, M; Pollmann, T (reprint author), Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada.; Pollmann, T (reprint author), SNOLAB, Lively, ON P3Y 1M3, Canada.; Kuzniak, M (reprint author), Carleton Univ, Ottawa, ON K1S 5B6, Canada. EM mark.boulay@carleton.ca; kuzniak@owl.phy.queensu.ca; couellet@physics.carleton.ca; tina.pollmann@snolab.ca RI Kuzniak, Marcin/A-3053-2015 OI Kuzniak, Marcin/0000-0001-9632-9115 FU National Science and Engineering Research Council of Canada (NSERC); Canada Foundation for Innovation (CFI); Ontario Ministry of Research and Innovation (MRI); David and Lucille Packard Foundation FX This work is supported by the National Science and Engineering Research Council of Canada (NSERC), by the Canada Foundation for Innovation (CFI), by the Ontario Ministry of Research and Innovation (MRI), and by the David and Lucille Packard Foundation. NR 48 TC 1 Z9 1 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD DEC PY 2016 VL 85 BP 1 EP 23 DI 10.1016/j.astropartphys.2016.09.002 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED8HO UT WOS:000389112800001 ER PT J AU Chan, JHH Suyu, SH More, A Oguri, M Chiueh, T Coupon, J Hsieh, BC Komiyama, Y Miyazaki, S Murayama, H Nishizawa, AJ Price, P Tait, PJ Terai, T Utsumi, Y Wang, SY AF Chan, James H. H. Suyu, Sherry H. More, Anupreeta Oguri, Masamune Chiueh, Tzihong Coupon, Jean Hsieh, Bau-Ching Komiyama, Yutaka Miyazaki, Satoshi Murayama, Hitoshi Nishizawa, Atsushi J. Price, Paul Tait, Philip J. Terai, Tsuyoshi Utsumi, Yousuke Wang, Shiang-Yu TI GALAXY-SCALE GRAVITATIONAL LENS CANDIDATES FROM THE HYPER SUPRIME-CAM IMAGING SURVEY AND THE GALAXY AND MASS ASSEMBLY SPECTROSCOPIC SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE Galaxy: general; gravitational lensing: strong ID STELLAR MASS; DARK-MATTER; GAMA; SAMPLE; REDSHIFT; CATALOG; POPULATION; RESOLUTION; UNIVERSE; DUSTY AB We present a list of galaxy-scale lens candidates including a highly probable interacting galaxy-scale lens in the Hyper Suprime-Cam (HSC) imaging survey. We combine HSC imaging with the blended-spectra catalog from the Galaxy And Mass Assembly (GAMA) survey to identify lens candidates, and use lens mass modeling to confirm the candidates. There are 45 matches between the HSC S14A_0b imaging data release and the GAMA catalog. We separate lens and lensed arcs using color information, and exclude those candidates with small image separations (<.'' 10, estimated with the lens/source redshifts from the GAMA survey) that are not easily resolved with ground-based imaging. After excluding these, we find 10 probable lens systems. There is one system with an interacting galaxy pair, HSC J084928+000949, that has a valid mass model. We predict the total mass enclosed by the Einstein radius of similar to 0.'' 72 (similar to 1.65 kpc) for this new expected lens system to be similar to 10(10.59) M-circle dot. Using the photometry in the grizy bands of the HSC survey and stellar population synthesis modeling with a Salpeter stellar initial mass function, we estimate the stellar mass within the Einstein radius to be similar to 10(10.46) M-circle dot. We thus find a dark matter mass fraction within the Einstein radius of similar to 25%. Further spectroscopy or high-resolution imaging would allow confirmation of the nature of these lens candidates. The particular system with the interacting galaxy pair, if confirmed, would provide an opportunity to study the interplay between dark matter and stars as galaxies build up through hierarchical mergers. C1 [Chan, James H. H.; Chiueh, Tzihong] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Chan, James H. H.; Suyu, Sherry H.; Hsieh, Bau-Ching; Wang, Shiang-Yu] Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10617, Taiwan. [Suyu, Sherry H.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. [More, Anupreeta] Univ Tokyo, Kavli IPMU WPI, UTIAS, Kashiwa, Chiba 2778583, Japan. [Oguri, Masamune; Murayama, Hitoshi] Univ Tokyo, WPI, Kavli IPMU, 5-1-5 Kashi Wanoha, Kashiwa, Chiba 2778583, Japan. [Oguri, Masamune] Univ Tokyo, Res Ctr Early Universe, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Oguri, Masamune] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Chiueh, Tzihong] Natl Taiwan Univ, Inst Astrophys, Taipei 10617, Taiwan. [Chiueh, Tzihong] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 10617, Taiwan. [Coupon, Jean] Univ Geneva, Astron Observ, Ch Ecogia 16, CH-1290 Versoix, Switzerland. [Komiyama, Yutaka; Miyazaki, Satoshi] Natl Astron Observ Japan, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan. [Komiyama, Yutaka; Miyazaki, Satoshi] SOKENDAI, Sch Sci, Dept Astron, Mitaka, Tokyo 1818588, Japan. [Murayama, Hitoshi] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Murayama, Hitoshi] Lawrence Berkeley Natl Lab, MS 50A-5104, Berkeley, CA 94720 USA. [Nishizawa, Atsushi J.] Nagoya Univ, Inst Adv Res, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Price, Paul] Princeton Univ Observ, Peyton Hall, Princeton, NJ 08544 USA. [Tait, Philip J.; Terai, Tsuyoshi] Natl Astron Observ Japan, 650 North Aohoku Pl, Hilo, HI 96720 USA. [Utsumi, Yousuke] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan. RP Chan, JHH (reprint author), Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan.; Chan, JHH (reprint author), Acad Sinica, Inst Astron & Astrophys, POB 23-141, Taipei 10617, Taiwan. EM d00222002@ntu.edu.tw RI Oguri, Masamune/C-6230-2011 FU Ministry of Science and Technology in Taiwan [MOST-103-2112-M-001-003-MY3, MOST-103-2112-M-002-020-MY3]; Max Planck Society through the Max Planck Research Group for SHS; Japan Society for Promotion of Science (JSPS) fellowship; JSPS [26800093]; Japanese Cabinet Office; Ministry of Education, Culture, Sports, Science and Technology (MEXT); Japan Society for the Promotion of Science (JSPS); Japan Science and Technology Agency (JST); Toray Science Foundation; NAOJ; Kavli IPMU; KEK; ASIAA; Princeton University; National Aeronautics and Space Administration [NNX08AR22G]; National Science Foundation [AST-1238877]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan FX We thank Ying-Tung Chen and Li-Hwai Lin for useful discussions, and the anonymous referee for helpful comments. JHHC. would like to thank Chih-Fan Chen and Kenneth Wong for algorithm support. JHHC. and SHS. gratefully acknowledge support by the Ministry of Science and Technology in Taiwan via grant MOST-103-2112-M-001-003-MY3, and support by the Max Planck Society through the Max Planck Research Group for SHS. TC. acknowledges the Ministry of Science and Technology in Taiwan via grant MOST-103-2112-M-002-020-MY3. AM. is supported by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and also acknowledges the support of the Japan Society for Promotion of Science (JSPS) fellowship. MO. acknowledges support in part by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and Grant-in-Aid for Scientific Research from the JSPS (26800093). The Hyper Suprime-Cam (HSC) collaboration includes the astronomical communities of Japan and Taiwan, and Princeton University. The HSC instrumentation and software were developed by the National Astronomical Observatory of Japan (NAOJ), the Kavli Institute for the Physics and Mathematics of the universe (Kavli IPMU), the University of Tokyo, the High Energy Accelerator Research Organization (KEK), the Academia Sinica Institute for Astronomy and Astrophysics in Taiwan (ASIAA), and Princeton University. Funding was contributed by the FIRST program from the Japanese Cabinet Office, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Japan Society for the Promotion of Science (JSPS), Japan Science and Technology Agency (JST), the Toray Science Foundation, NAOJ, Kavli IPMU, KEK, ASIAA, and Princeton University. This paper makes use of software developed for the Large Synoptic Survey Telescope. We thank the LSST Project for making their code available as free software at http://dm.lsstcorp.org. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg, and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE). NR 42 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD DEC 1 PY 2016 VL 832 IS 2 AR 135 DI 10.3847/0004-637X/832/2/135 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED7MM UT WOS:000389049800006 ER PT J AU Nelson, MA Brown, MJ Halverson, SA Bieringer, PE Annunzio, A Bieberbach, G Meech, S AF Nelson, Matthew A. Brown, Michael J. Halverson, Scot A. Bieringer, Paul E. Annunzio, Andrew Bieberbach, George Meech, Scott TI A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 2: Gas Tracer Dispersion SO BOUNDARY-LAYER METEOROLOGY LA English DT Article DE Quick Urban and Industrial Complex modelling system; Transport and dispersion; Weather Research and Forecasting model ID WIND-FIELD; WRF MODEL; TURBULENCE; TRANSPORT; LAYER; FLOW; IMPACT AB The Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The first method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model's Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance. C1 [Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.] Los Alamos Natl Lab, POB 1663,MS F609, Los Alamos, NM 87545 USA. [Bieringer, Paul E.; Bieberbach, George] Aeris, 1314 Main St,Suite 101, Louisville, CO 80027 USA. [Annunzio, Andrew] Citadel, 131 South Dearborn St, Chicago, IL 60603 USA. [Meech, Scott] STAR LLC, 3125 Sterling Circle,Suite 107, Boulder, CO 80301 USA. RP Nelson, MA (reprint author), Los Alamos Natl Lab, POB 1663,MS F609, Los Alamos, NM 87545 USA. EM nelsonm@lanl.gov FU Defense Threat Reduction Agency; Dugway Proving Ground; H. E. Cramer Company, Inc. FX The Joint Urban 2003 field campaign was supported by the Defense Threat Reduction Agency and Dugway Proving Ground through a contract with the H. E. Cramer Company, Inc. The authors also acknowledge the hard work of the other JU2003 team workers and others that contributed to the datasets and figures presented in this work. In addition, the authors are very grateful to the local government workers, business owners and workers, and citizens of Oklahoma City who made the JU2003 field experiment possible. NR 43 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-8314 EI 1573-1472 J9 BOUND-LAY METEOROL JI Bound.-Layer Meteor. PD DEC PY 2016 VL 161 IS 3 BP 461 EP 490 DI 10.1007/s10546-016-0188-z PG 30 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED1EB UT WOS:000388586100004 ER PT J AU Shi, SW Weber, AZ Kusoglu, A AF Shi, Shouwen Weber, Adam Z. Kusoglu, Ahmet TI STRUCTURE-TRANSPORT RELATIONSHIP OF PERFLUOROSULFONIC-ACID MEMBRANES IN DIFFERENT CATIONIC FORMS SO ELECTROCHIMICA ACTA LA English DT Article DE Cations; PFSA membranes; Structure-transport; Conductivity; Water uptake; SAXS ID PERFLUORINATED IONOMER MEMBRANES; FUEL-CELL APPLICATIONS; REDOX-FLOW BATTERIES; ANGLE X-RAY; WATER TRANSPORT; NAFION MEMBRANES; EXCHANGE MEMBRANE; ION-EXCHANGE; ELECTROLYTE MEMBRANES; NEUTRON-SCATTERING AB Perfluorosulfonic-acid (PFSA) ionomers are widely used as solid electrolytes and ion-exchange membranes in electrochemical devices, wherein their properties are impacted by the interactions among the anionic sulfonate groups, mobile counter-ions (cations), and hydration levels. Cation-form and humidity collectively affect the structure/transport-property relationship, yet their interplay is still not well known. In this paper, we report changes in water uptake and conductivity of cation-exchanged PFSA in both vapor and liquid water, which are then correlated with changes in mechanical properties and nanostructure (hydrophilic-domain spacing and phase-separation). It is found that the magnitude of changes depends significantly on the membrane water content, with master curves in terms of water volume fraction and water per charge realized. Moreover, membrane nanostructure and dynamical mechanical behavior is examined to establish structure/transport and transport/stability relationships. It is found that with increasing cation size (radius) and valence, the storage modulus increases, while the water uptake and conductivity decrease. In addition, regardless of the cation type, a universal relationship is found between the conductivity and modulus, indicative of a transport/stability tradeoff. The extent to which the cations impact the transport properties depends on the water content: at low hydration levels the controlling factor is the cation (and its interaction with the sulfonate sites), at increasing hydration the dominant factor becomes water volume fraction, although it is also controlled by the cations. Similarly, the decrease in hydrophilic domain spacing of PFSA exchanged with larger cations scales with cation radius at low water contents, but with Lewis acid strength (LAS) at higher hydration levels. The findings reported here not only provide valuable insights into the interaction between sulfonate groups, cations, and water surrounding these ionic groups, but also for understanding cation contamination in fuel cells and redox flow batteries. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Shi, Shouwen; Weber, Adam Z.; Kusoglu, Ahmet] Lawrence Berkeley Natl Lab, Energy Technol Area, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Shi, Shouwen] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China. RP Kusoglu, A (reprint author), Lawrence Berkeley Natl Lab, Energy Technol Area, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM akusoglu@lbl.gov OI Kusoglu, Ahmet/0000-0002-2761-1050 FU Department of Energy, Office of Basic Energy Sciences; China Scholarship Council (CSC); Fuel Cell Performance and Durability Consortium (FC-PAD), Office of Energy Efficiency and Renewable Energy (EERE), of the U.S. Department of Energy [DE-AC02-05CH11231]; Program Development Managers Dimitrios Papageorgopoulos and Greg Kleen FX We thank Andrew Crothers (UC Berkeley) for the helpful discussions. SAXS/WAXS experiments were performed in the beamline 7.3.3 at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, which is a national user facility funded by the Department of Energy, Office of Basic Energy Sciences. We thank Chenhui Zhu and Eric Schiable for their assistance during facilitating the use of equipment at the ALS. Shouwen Shi greatly thanks China Scholarship Council (CSC) for financial support during his visit to Lawrence Berkeley National Laboratory. This work was funded under the Fuel Cell Performance and Durability Consortium (FC-PAD), by the Fuel Cell Technologies Office (FCTO), Office of Energy Efficiency and Renewable Energy (EERE), of the U.S. Department of Energy under contract number DE-AC02-05CH11231 and Program Development Managers Dimitrios Papageorgopoulos and Greg Kleen. NR 70 TC 1 Z9 1 U1 29 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD DEC 1 PY 2016 VL 220 BP 517 EP 528 DI 10.1016/j.electacta.2016.10.096 PG 12 WC Electrochemistry SC Electrochemistry GA ED7ZH UT WOS:000389090800061 ER PT J AU Ni, XQ Joda, H Sedova, A Biala, K Flechsig, GU AF Ni, Xiaoqi Joda, Hamdi Sedova, Ada Biala, Katarzyna Flechsig, Gerd-Uwe TI Sequence Detection of Unlabeled DNA Using the Sandwich Assay: Strand-Displacement, Hybridization Efficiency, and Probe-Conformation Considerations for the Tethered Surface SO ELECTROCHIMICA ACTA LA English DT Article DE DNA Electrochemical Biosenor; Osmium Tetroxide Bipyridine Labeling; Sandwich Hybridization Assay; Melting Temperature; Surface-Immobilized DNA ID ELECTROCHEMICAL DETECTION; GOLD ELECTRODES; BIOSENSORS; KINETICS; SENSORS; DAMAGE AB We report the development of a "sandwich-hybridization" electrochemical DNA-detection assay on gold electrodes using osmium tetroxide-labeled reporter strands, while avoiding chemical modification of analyte strands. Successful design of the oligonucleotides used in the assay required a significant adjustment to solution-based estimates of melting temperature for the immobilized-probe/target duplex, to achieve optimal displacement kinetics. This allowed for reduced hybridization times and temperatures, and a higher sensitivity at low concentrations of DNA-analyte than oligos designed using solution-based melting temperatures as a guide. In addition we found that for the highest ranges of probe surface density, signal response was sluggish until the DNA self-assembled monolayer (SAM) was exposed to several hybridization procedures, suggesting a modification of the SAM in response to a hybridization experiment. Use of a less-dense SAM eliminated this effect, suggesting increased influence of molecular crowding on the sandwich assay versus a simple hybridization. The high sensitivity, quick response time, relative simplicity and low cost demonstrated here helps pave the way for a field-level electrochemical genetic sensor using our method, as the unmodified target from samples in question can be tested directly without a chemical labeling step. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Ni, Xiaoqi; Biala, Katarzyna] Univ Rostock, Inst Chem, A Einstein Str 3a, D-18059 Rostock, Germany. [Ni, Xiaoqi; Joda, Hamdi; Sedova, Ada; Biala, Katarzyna; Flechsig, Gerd-Uwe] SUNY Albany, Dept Chem, 1400 Washington Ave, Albany, NY 12222 USA. [Joda, Hamdi] Univ Miami, Miller Sch Med, Dept Biochem & Mol Biol, 1011 NW 15th St, Miami, FL 33136 USA. [Sedova, Ada] Oak Ridge Natl Lab, Sci Comp Grp, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. RP Sedova, A; Flechsig, GU (reprint author), SUNY Albany, Dept Chem, 1400 Washington Ave, Albany, NY 12222 USA.; Sedova, A (reprint author), Oak Ridge Natl Lab, Sci Comp Grp, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. EM ada.a.sedova@gmail.com; gflechsig@albany.edu FU SUNY Albany; SUNY Albany from the China Scholarship Council [CSC 2011613023]; DFG Heisenberg Fellowship from the German Research Foundation [FL 384/7-2] FX The authors are grateful for financial support: Start-up funds from SUNY Albany, a Ph.D. scholarship (CSC 2011613023) from the China Scholarship Council to X.N., and a DFG Heisenberg Fellowship (FL 384/7-2) from the German Research Foundation to G.-U.F.. NR 24 TC 0 Z9 0 U1 9 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD DEC 1 PY 2016 VL 220 BP 581 EP 586 DI 10.1016/j.electacta.2016.10.039 PG 6 WC Electrochemistry SC Electrochemistry GA ED7ZH UT WOS:000389090800068 ER PT J AU Pan, SY Lin, YJ Snyder, SW Ma, HW Chiang, PC AF Pan, Shu-Yuan Lin, Yupo J. Snyder, Seth W. Ma, Hwong-Wen Chiang, Pen-Chi TI Assessing the environmental impacts and water consumption of pretreatment and conditioning processes of corn stover hydrolysate liquor in biorefineries SO ENERGY LA English DT Article DE Lignocellulose; Life cycle assessment; Water footprint; Carbon footprint; Umberto; Integrated membrane process ID SO2-CATALYZED STEAM EXPLOSION; CARBONATION; HYDROXIDE; REMOVAL; ETHANOL; BIOMASS AB In biorefinery procedures, pretreatment and conditioning of lignocellulose substrates are considered critical to enhance yields and rates of transformation. These processes use large volumes of water and chemicals, impacting the sustainability and economics of the biorefinery industry. In this study, we evaluate four pretreatment and conditioning process scenarios for removing acidic impurities from corn stover hydrolysate liquor, i.e., overliming, ammonia addition, two-stage treatment and membrane separations. The environmental impacts of these processes were determined using a life cycle assessment (LCA). Moreover, both the water and carbon footprints were estimated by considering energy and materials consumption. The results indicate that ammonia addition, two-stage treatment and membrane separations reduce environmental impacts in comparison to overliming. Integrated membrane separations exhibited the lowest water consumption (i.e., 2.5 L/kg-biomass) and carbon footprint (i.e., 6.2 g CO2/kg-biomass). In membrane separations, acidic impurities can be selectively recovered by electro-deionization as value-added products or reuse as process chemicals. Based on the LCA results, an integrated solution for hydrolysate pretreatment and conditioning is proposed as a cleaner and more sustainable process for the biorefinery industry. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Pan, Shu-Yuan; Ma, Hwong-Wen; Chiang, Pen-Chi] Natl Taiwan Univ, Grad Inst Environm Engn, Taipei 10673, Taiwan. [Pan, Shu-Yuan; Lin, Yupo J.; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. [Chiang, Pen-Chi] Natl Taiwan Univ, Carbon Cycle Res Ctr, Taipei 10673, Taiwan. RP Chiang, PC (reprint author), 71 Chou Shan Rd, Taipei 10673, Taiwan.; Lin, YJ (reprint author), 9700 S Cass Ave, Argonne, IL 60439 USA. EM yplin@anl.gov; pcchiang@ntu.edu.tw RI Pan, Shu-Yuan/A-3199-2017 OI Pan, Shu-Yuan/0000-0003-2082-4077 FU Ministry of Science and Technology (MOST) of Taiwan (R.O.C.) [MOST 105-3113-E-007-001, 104-2911-I-002-576]; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) FX High appreciation goes to the Ministry of Science and Technology (MOST) of Taiwan (R.O.C.) under Grant Number MOST 105-3113-E-007-001 and 104-2911-I-002-576 for the financial support. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under contract no. DE-AC02-06CH11357. Technical data collection of membrane separations was financially sponsored by the U.S. Department of Energy's (DOE's) Bioenergy Technologies Office (BETO). The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the government. NR 39 TC 0 Z9 0 U1 6 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD DEC 1 PY 2016 VL 116 BP 436 EP 444 DI 10.1016/j.energy.2016.09.109 PN 1 PG 9 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA ED7YQ UT WOS:000389089000036 ER PT J AU Reed, DW Fujita, Y Daubaras, AL Jiao, Y Thompson, VS AF Reed, David W. Fujita, Yoshiko Daubaras, Adayna L. Jiao, Yongqin Thompson, Vicki S. TI Bioleaching of rare earth elements from waste phosphors and cracking catalysts SO HYDROMETALLURGY LA English DT Article DE Heterotrophic bioleaching; Urban biomining; Rare earth elements; Gluconic acid; Retorted phosphor powders; Fluid catalytic cracking catalyst ID GLUCONOBACTER-OXYDANS; PSEUDOMONAS-FLUORESCENS; 5-KETO-D-GLUCONIC ACID; SOLUBILIZING BACTERIA; METALS; ACINETOBACTER; RECOVERY; GLUCOSE; SYSTEM; LAMPS AB Microbial cultures were evaluated for organic acid production and their potential utility for leaching of rare earth elements (REE) from retorted phosphor powder (RPP) and spent fluid catalytic cracking (FCC) catalyst. Two bacterial and one fungal strain were isolated from environmental and industrial materials known to contain REE and compared to the industrially important bacterium Gluconobacter oxydans. Gluconic acid was the predominant organic acid product identified in all of the cultures. Maximum REE leaching (49% of the total REE) from the FCC material was observed using cell-free culture supernatants of G. oxydans, with preferential recovery of lanthanum over cerium. The phosphor powder was more difficult to leach; only about 2% of the total REE was leached with G. oxydans. Leaching experiments with the RPP material indicated that the extent of REE solubilization was similar whether whole cell cultures or cell-free supernatants were used. Abiotic control experiments showed that increasing gluconic acid concentrations increased leaching efficiency; for example, total REE leaching from FCC catalyst increased from 24% to 45% when gluconic acid was increased from 10 mM to 90 mM. However, G. oxydans cell-free culture supernatants containing 10-15 mM gluconic acid were more effective than abiotically prepared leaching solutions with higher gluconic acid concentrations, suggesting that other exudate components were important too. Our results indicate that microorganisms producing gluconic and other organic acids can induce effective leaching of REE from waste materials, and that increasing organic acid production will improve recovery. Published by Elsevier B.V. C1 [Reed, David W.; Fujita, Yoshiko; Daubaras, Adayna L.; Thompson, Vicki S.] Idaho Natl Lab, Biol & Chem Proc Dept, Idaho Falls, ID 83415 USA. [Jiao, Yongqin] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Biosci & Biotechnol Div, Livermore, CA 94550 USA. RP Reed, DW (reprint author), INL, POB 1625,MS 2203, Idaho Falls, ID 83415 USA. EM David.Reed@inl.gov RI Thompson, Vicki/B-9086-2017; Reed, David/C-3337-2017 OI Thompson, Vicki/0000-0003-4975-392X; Reed, David/0000-0003-4877-776X FU Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office; DOE Idaho Operations Office at the Idaho National Laboratory [DE-AC07-051D14517]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We express our appreciation to M. Mcllwain, D. Bruhn, and J. Reiss (INL) and F. Roberto (Newmont Mining Corporation) for helpful discussions. We thank A. Van Rythoven (RER) for providing ore samples, B. Swavely (AERC Recycling Solutions) for retorted phosphors, and J. Hude (Valero) for the spent FCC catalyst. We thank D. Combs (INL) for assistance in preparing the Graphic Abstract We are grateful for the sequencing services provided at the Molecular Research Core Facility, Idaho State University and ICP-MS analysis provided by D. Lacroix at University of Idaho and B. White (INL). This research was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office and conducted under DOE Idaho Operations Office at the Idaho National Laboratory Contract DE-AC07-051D14517 and Lawrence Livermore National Laboratory Contract DE-AC52-07NA27344. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, and allow others to do so, for U.S. Government purposes. NR 60 TC 0 Z9 0 U1 15 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-386X EI 1879-1158 J9 HYDROMETALLURGY JI Hydrometallurgy PD DEC PY 2016 VL 166 BP 34 EP 40 DI 10.1016/j.hydromet.2016.08.006 PG 7 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA ED8AR UT WOS:000389094600005 ER PT J AU Hodas, N Loh, M Shin, HM Li, D Bennett, D McKone, TE Jolliet, O Weschler, CJ Jantunen, M Lioy, P Fantke, P AF Hodas, N. Loh, M. Shin, H. -M. Li, D. Bennett, D. McKone, T. E. Jolliet, O. Weschler, C. J. Jantunen, M. Lioy, P. Fantke, P. TI Indoor inhalation intake fractions of fine particulate matter: review of influencing factors SO INDOOR AIR LA English DT Review DE Fine particulate matter; Human exposure; Indoor air; Intake fraction; Life cycle impact assessment; Ventilation ID SECONDARY ORGANIC AEROSOL; CYCLE IMPACT ASSESSMENT; AIR EXCHANGE-RATES; POLYCYCLIC AROMATIC-HYDROCARBONS; INFILTRATION-RATE DISTRIBUTIONS; PARTICLE-SIZE DISTRIBUTIONS; NATURAL VENTILATION RATE; LAND-USE CHANGE; SOLID-FUEL USE; RESIDENTIAL BUILDINGS AB Exposure to fine particulate matter (PM2.5) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures per unit mass emitted indoors are two to three orders of magnitude larger than exposures to outdoor emissions. Variability in indoor PM2.5 intake fraction (iF(in,total)), which is defined as the integrated cumulative intake of PM2.5 per unit of emission, is driven by a combination of building-specific, human-specific, and pollutant-specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier, a literature review was conducted and data characterizing factors influencing iF(in,total) were compiled. In addition to providing data for the calculation of iF(in,total) in various indoor environments and for a range of geographic regions, this paper discusses remaining limitations to the incorporation of PM2.5-derived health impacts into life cycle assessments and makes recommendations regarding future research. C1 [Hodas, N.] CALTECH, Div Chem Engn, Pasadena, CA 91125 USA. [Hodas, N.] Portland State Univ, Dept Environm Sci & Management, Portland, OR 97207 USA. [Loh, M.] Inst Occupat Med, Edinburgh, Midlothian, Scotland. [Shin, H. -M.; Bennett, D.] Univ Calif Davis, Dept Publ Hlth Sci, Davis, CA 95616 USA. [Li, D.; Jolliet, O.] Univ Michigan, Dept Environm Hlth Sci, Ann Arbor, MI 48109 USA. [McKone, T. E.] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [McKone, T. E.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Weschler, C. J.; Lioy, P.] Rutgers State Univ, Environm & Occupat Hlth Sci Inst, Piscataway, NJ USA. [Weschler, C. J.] Tech Univ Denmark, Int Ctr Indoor Environm & Energy, Lyngby, Denmark. [Jantunen, M.] Natl Inst Hlth & Welf, Dept Environm Hlth, Helsinki, Finland. [Fantke, P.] Tech Univ Denmark, Dept Engn Management, Lyngby, Denmark. RP Fantke, P (reprint author), Tech Univ Denmark, Dept Engn Management, Quantitat Sustainabil Assessment Div, Produktionstorvet 424, DK-2800 Lyngby, Denmark. EM pefan@dtu.dk RI Weschler, Charles/A-9788-2009; Li, Dingsheng/D-1187-2010; OI Weschler, Charles/0000-0002-9097-5850; Li, Dingsheng/0000-0002-8432-4023; Fantke, Peter/0000-0001-7148-6982 FU UNEP/SETAC Life Cycle Initiative; National Science Foundation [1433246] FX This work was supported by the UNEP/SETAC Life Cycle Initiative. Natasha Hodas was funded by National Science Foundation award no. 1433246. NR 212 TC 2 Z9 2 U1 33 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0905-6947 EI 1600-0668 J9 INDOOR AIR JI Indoor Air PD DEC PY 2016 VL 26 IS 6 BP 836 EP 856 DI 10.1111/ina.12268 PG 21 WC Construction & Building Technology; Engineering, Environmental; Public, Environmental & Occupational Health SC Construction & Building Technology; Engineering; Public, Environmental & Occupational Health GA EC0RK UT WOS:000387808200002 PM 26562829 ER PT J AU Choo, J White, JA Borja, RI AF Choo, Jinhyun White, Joshua A. Borja, Ronaldo I. TI Hydromechanical Modeling of Unsaturated Flow in Double Porosity Media SO INTERNATIONAL JOURNAL OF GEOMECHANICS LA English DT Article DE Coupled problem; Double porosity; Effective stress; Mixture theory; Unsaturated flow ID FRACTURED POROUS-MEDIA; ELASTOPLASTIC CONSTITUTIVE MODEL; WATER-RETENTION PROPERTIES; PORE-SIZE DISTRIBUTION; EFFECTIVE STRESS; STRAIN LOCALIZATION; MATHEMATICAL FRAMEWORK; HYDRAULIC CONDUCTIVITY; GRANULAR-MATERIALS; PREFERENTIAL FLOW AB Geomaterials with aggregated structure or containing fissures often exhibit a bimodal pore size distribution that can be viewed as two coexisting pore regions of different scales. The double-porosity concept enables continuum modeling of such materials by considering two interacting pore scales satisfying relevant conservation laws. This paper develops a thermodynamically consistent framework for hydromechanical modeling of unsaturated flow in double-porosity media. With an explicit treatment of the two pore scales, conservation laws are formulated incorporating an effective stress tensor that is energy-conjugate to the rate of deformation tensor of the solid matrix. A constitutive framework is developed on the basis of energy-conjugate pairs identified in the first law of thermodynamics, which is then incorporated into a three-field mixed finite-element formulation for double-porosity media. Numerical simulations of laboratory- and field-scale problems are presented to demonstrate the impact of double porosity on the resulting hydromechanical responses. (C) 2016 American Society of Civil Engineers. C1 [Choo, Jinhyun; Borja, Ronaldo I.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [White, Joshua A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. RP Borja, RI (reprint author), Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. EM borja@stanford.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program [DE-FG02-03ER15454]; Fulbright Program; John A. Blume Earthquake Engineering Center FX This material is based on work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program, under Award Number DE-FG02-03ER15454. Financial support for the first author was provided by the Fulbright Program and the John A. Blume Earthquake Engineering Center. NR 108 TC 1 Z9 1 U1 13 U2 13 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1532-3641 EI 1943-5622 J9 INT J GEOMECH JI Int. J. Geomech. PD DEC PY 2016 VL 16 IS 6 SI SI AR D4016002 DI 10.1061/(ASCE)GM.1943-5622.0000558 PG 18 WC Engineering, Geological SC Engineering GA ED1IT UT WOS:000388599600002 ER PT J AU Vilarrasa, V Rutqvist, J Martin, LB Birkholzer, J AF Vilarrasa, Victor Rutqvist, Jonny Martin, Laura Blanco Birkholzer, Jens TI Use of a Dual-Structure Constitutive Model for Predicting the Long-Term Behavior of an Expansive Clay Buffer in a Nuclear Waste Repository SO INTERNATIONAL JOURNAL OF GEOMECHANICS LA English DT Article DE Expansive soil; Engineered barrier systems; Unsaturated porous media; Swelling; Thermo-hydro-mechanical coupling ID GENERALIZED PLASTICITY MODEL; EXCAVATION DAMAGED ZONE; MECHANICAL-BEHAVIOR; COMPACTED BENTONITE; HYDRAULIC CONDUCTIVITY; PERFORMANCE ASSESSMENT; RADIOACTIVE-WASTE; UNSATURATED SOILS; SWELLING CLAYS; DISPOSAL AB Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materials can significantly delay the time it takes to reach full saturation. To simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and hosted in a clay rock formation. The thermo-hydro-mechanical results of the dual-structure model were compared with those of the standard single-structure BBM. The main difference between the simulation results from the two models is that the dual-structure model predicted a time to fully saturate the expansive clay barrier on the order of thousands of years, whereas the standard single-structure BBM yielded a time on the order of tens of years. These examples show that a dual-structure model, such as the one presented here, is necessary to properly model the thermo-hydro-mechanical behavior of expansive soils. (C) 2015 American Society of Civil Engineers. C1 [Vilarrasa, Victor; Rutqvist, Jonny; Martin, Laura Blanco; Birkholzer, Jens] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Vilarrasa, V (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM victor.vilarrasa@upc.edu RI Birkholzer, Jens/C-6783-2011; Rutqvist, Jonny/F-4957-2015; OI Birkholzer, Jens/0000-0002-7989-1912; Rutqvist, Jonny/0000-0002-7949-9785; Vilarrasa, Victor/0000-0003-1169-4469 FU Used Fuel Disposition Campaign, Office of Nuclear Energy, of the US Department of Energy [DE-AC02-05CH11231]; Berkeley Lab FX Funding for this work was provided by the Used Fuel Disposition Campaign, Office of Nuclear Energy, of the US Department of Energy under Contract Number DE-AC02-05CH11231 with Berkeley Lab. Technical review comments by Dr. Carlos Jove-Colon from Sandia National Laboratories are greatly appreciated. NR 43 TC 0 Z9 0 U1 11 U2 11 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1532-3641 EI 1943-5622 J9 INT J GEOMECH JI Int. J. Geomech. PD DEC PY 2016 VL 16 IS 6 SI SI AR D4015005 DI 10.1061/(ASCE)GM.1943-5622.0000603 PG 13 WC Engineering, Geological SC Engineering GA ED1IT UT WOS:000388599600008 ER PT J AU Skoog, SA Kumar, G Zheng, JW Sumant, AV Goering, PL Narayan, RJ AF Skoog, Shelby A. Kumar, Girish Zheng, Jiwen Sumant, Anirudha V. Goering, Peter L. Narayan, Roger J. TI Biological evaluation of ultrananocrystalline and nanocrystalline diamond coatings SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE LA English DT Article ID HEART-VALVE PROSTHESES; PYROLYTIC CARBON; NANOSTRUCTURED DIAMOND; PROTEIN ADSORPTION; JOINT REPLACEMENT; WEAR BEHAVIOR; CELL-ADHESION; SURFACE; BONE; IMPLANTS AB Nanostructured biomaterials have been investigated for achieving desirable tissue-material interactions in medical implants. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) coatings are the two most studied classes of synthetic diamond coatings; these materials are grown using chemical vapor deposition and are classified based on their nanostructure, grain size, and sp(3) content. UNCD and NCD are mechanically robust, chemically inert, biocompatible, and wear resistant, making them ideal implant coatings. UNCD and NCD have been recently investigated for ophthalmic, cardiovascular, dental, and orthopaedic device applications. The aim of this study was (a) to evaluate the in vitro biocompatibility of UNCD and NCD coatings and (b) to determine if variations in surface topography and sp(3) content affect cellular response. Diamond coatings with various nanoscale topographies (grain sizes 5-400 nm) were deposited on silicon substrates using microwave plasma chemical vapor deposition. Scanning electron microscopy and atomic force microscopy revealed uniform coatings with different scales of surface topography; Raman spectroscopy confirmed the presence of carbon bonding typical of diamond coatings. Cell viability, proliferation, and morphology responses of human bone marrow-derived mesenchymal stem cells (hBMSCs) to UNCD and NCD surfaces were evaluated. The hBMSCs on UNCD and NCD coatings exhibited similar cell viability, proliferation, and morphology as those on the control material, tissue culture polystyrene. No significant differences in cellular response were observed on UNCD and NCD coatings with different nanoscale topographies. Our data shows that both UNCD and NCD coatings demonstrate in vitro biocompatibility irrespective of surface topography. C1 [Skoog, Shelby A.; Narayan, Roger J.] Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. [Skoog, Shelby A.; Narayan, Roger J.] North Carolina State Univ, Raleigh, NC 27695 USA. [Skoog, Shelby A.; Kumar, Girish; Zheng, Jiwen; Goering, Peter L.] US FDA, Ctr Devices & Radiol Hlth, Silver Spring, MD USA. [Sumant, Anirudha V.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Narayan, RJ (reprint author), Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA.; Narayan, RJ (reprint author), North Carolina State Univ, Raleigh, NC 27695 USA. EM roger_narayan@unc.edu FU NSF [1136330]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; FDA intramural research funding FX Shelby Skoog was supported in part by NSF Award #1136330. Use of the Center for Nanoscale Materials, Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors would like to acknowledge FDA intramural research funding and the FDA White Oak Nanotechnology Core Facility for instrument use, scientific, and technical assistance. Note: The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services. The findings and conclusions in this paper have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any agency determination or policy. NR 47 TC 0 Z9 0 U1 8 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-4530 EI 1573-4838 J9 J MATER SCI-MATER M JI J. Mater. Sci.-Mater. Med. PD DEC PY 2016 VL 27 IS 12 AR 187 DI 10.1007/s10856-016-5798-y PG 13 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA ED1UU UT WOS:000388631200014 PM 27796686 ER PT J AU Despotopulos, JD Kmak, KN Gharibyan, N Henderson, RA Moody, KJ Shaughnessy, DA Sudowe, R AF Despotopulos, John D. Kmak, Kelly N. Gharibyan, Narek Henderson, Roger A. Moody, Kenton J. Shaughnessy, Dawn A. Sudowe, Ralf TI Characterization of the homologs of flerovium with crown ether based extraction chromatography resins: studies in hydrochloric acid SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Macrocycles; Crown ethers; Extraction chromatography; Flerovium; Homologs; Heavy element ID ELEMENT 114; ELECTRONIC-STRUCTURE; METAL; LEAD AB A crown-ether-based extraction chromatography resin, Eichrom Pb resin, was characterized for separations of flerovium (Fl) homologs, specifically Pb and Sn. The batch uptake of Pb(II) and Sn(IV) radionuclides was determined from an HCl matrix. Both Pb(II) and Sn(IV) are strongly retained on the resin at different HCl concentrations. The affinity for Pb(II) decreases with increasing HCl concentration while Sn(IV) uptake increases. Extraction kinetics for Pb(II) and Sn(IV) were examined and show suitable uptake on the second time scale. Separation methods for the isolation of individual homologs, Pb(II) and Sn(IV), have been established using 2 mL pre-packed vacuum flow Pb resin columns. C1 [Despotopulos, John D.; Gharibyan, Narek; Henderson, Roger A.; Moody, Kenton J.; Shaughnessy, Dawn A.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, 7000 East Ave, Livermore, CA 94550 USA. [Despotopulos, John D.; Sudowe, Ralf] Univ Nevada, 4505 South Maryland Pkwy, Las Vegas, NV 89154 USA. [Kmak, Kelly N.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Despotopulos, JD (reprint author), Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, 7000 East Ave, Livermore, CA 94550 USA. EM despotopulos1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development Program at LLNL [11-ERD-011]; LLNL Livermore Graduate Scholar Program FX The authors would like to thank the CAMS facility staff at LLNL, specifically Scott Tumey, Thomas Brown and Graham Bench for providing beam time and expertise to the production of radionuclides used in this study. This study was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 11-ERD-011, as well as by the LLNL Livermore Graduate Scholar Program. NR 29 TC 1 Z9 1 U1 2 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD DEC PY 2016 VL 310 IS 3 BP 1201 EP 1207 DI 10.1007/s10967-016-4917-z PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA ED1UH UT WOS:000388629900029 ER PT J AU Lebensohn, RA Needleman, A AF Lebensohn, Ricardo A. Needleman, Alan TI Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article; Proceedings Paper CT Symposium on Length Scale in Solid Mechanics - Mathematical and Physical Aspects CY JUN 19-20, 2014 CL Inst Henri Poincare, Paris, FRANCE HO Inst Henri Poincare DE Crystal plasticity; Non-local plasticity; Polycrystalline material; Spectral methods; Numerical algorithms ID GRADIENT CRYSTAL PLASTICITY; MECHANICAL-PROPERTIES; NONLINEAR COMPOSITES; STRAIN GRADIENTS; SINGLE-CRYSTALS; SIZE DEPENDENCE; COLUMNAR ICE; GRAIN-SIZE; DEFORMATION; DISLOCATION AB We present the numerical implementation of a non-local polycrystal plasticity theory using the FFT-based formulation of Suquet and co-workers. Gurtin (2002) non-local formulation, with geometry changes neglected, has been incorporated in the EVP-FFT algorithm of Lebensohn et al. (2012). Numerical procedures for the accurate estimation of higher order derivatives of micromechanical fields, required for feedback into single crystal constitutive relations, are identified and applied. A simple case of a periodic laminate made of two fcc crystals with different plastic properties is first used to assess the soundness and numerical stability of the proposed algorithm and to study the influence of different model parameters on the predictions of the non-local model. Different behaviors at grain boundaries are explored, and the one consistent with the micro-clamped condition gives the most pronounced size effect. The formulation is applied next to 3-D fcc polycrystals, illustrating the possibilities offered by the proposed numerical scheme to analyze the mechanical response of polycrystalline aggregates in three dimensions accounting for size dependence arising from plastic strain gradients with reasonable computing times. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lebensohn, Ricardo A.] Los Alamos Natl Lab, Mat Sci & Technol Div, MS G755, Los Alamos, NM 87845 USA. [Needleman, Alan] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. RP Lebensohn, RA (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, MS G755, Los Alamos, NM 87845 USA. EM lebenso@lanl.gov RI Lebensohn, Ricardo/A-2494-2008 OI Lebensohn, Ricardo/0000-0002-3152-9105 NR 48 TC 1 Z9 1 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD DEC PY 2016 VL 97 SI SI BP 333 EP 351 DI 10.1016/j.jmps.2016.03.023 PG 19 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA ED8EX UT WOS:000389105900018 ER PT J AU Schultz, P van der Giessen, E AF Schultz, Peter van der Giessen, Erik TI Untitled SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Editorial Material C1 [Schultz, Peter] Sandia Natl Labs, Adv Device Technol, POB 5800, Albuquerque, NM 87185 USA. [van der Giessen, Erik] Univ Groningen, Zernike Inst Adv Mat, Groningen, Netherlands. RP Schultz, P (reprint author), Sandia Natl Labs, Adv Device Technol, POB 5800, Albuquerque, NM 87185 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD DEC PY 2016 VL 24 IS 8 AR 080202 DI 10.1088/0965-0393/24/8/080202 PG 1 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA ED1SC UT WOS:000388624200002 ER PT J AU Crowther, TW Todd-Brown, KEO Rowe, CW Wieder, WR Carey, JC Machmuller, MB Snoek, BL Fang, S Zhou, G Allison, SD Blair, JM Bridgham, SD Burton, AJ Carrillo, Y Reich, PB Clark, JS Classen, AT Dijkstra, FA Elberling, B Emmett, BA Estiarte, M Frey, SD Guo, J Harte, J Jiang, L Johnson, BR Kroel-Dulay, G Larsen, KS Laudon, H Lavallee, JM Luo, Y Lupascu, M Ma, LN Marhan, S Michelsen, A Mohan, J Niu, S Pendall, E Penuelas, J Pfeifer-Meister, L Poll, C Reinsch, S Reynolds, LL Schmidt, IK Sistla, S Sokol, NW Templer, PH Treseder, KK Welker, JM Bradford, MA AF Crowther, T. W. Todd-Brown, K. E. O. Rowe, C. W. Wieder, W. R. Carey, J. C. Machmuller, M. B. Snoek, B. L. Fang, S. Zhou, G. Allison, S. D. Blair, J. M. Bridgham, S. D. Burton, A. J. Carrillo, Y. Reich, P. B. Clark, J. S. Classen, A. T. Dijkstra, F. A. Elberling, B. Emmett, B. A. Estiarte, M. Frey, S. D. Guo, J. Harte, J. Jiang, L. Johnson, B. R. Kroel-Dulay, G. Larsen, K. S. Laudon, H. Lavallee, J. M. Luo, Y. Lupascu, M. Ma, L. N. Marhan, S. Michelsen, A. Mohan, J. Niu, S. Pendall, E. Penuelas, J. Pfeifer-Meister, L. Poll, C. Reinsch, S. Reynolds, L. L. Schmidt, I. K. Sistla, S. Sokol, N. W. Templer, P. H. Treseder, K. K. Welker, J. M. Bradford, M. A. TI Quantifying global soil carbon losses in response to warming SO NATURE LA English DT Article ID EARTH SYSTEM MODELS; CLIMATE-CHANGE; TEMPERATURE SENSITIVITY; ORGANIC-CARBON; FEEDBACKS; TUNDRA; DECOMPOSITION; UNCERTAINTY; PROJECTIONS; ECOSYSTEMS AB The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming(1-4). Despite evidence that warming enhances carbon fluxes to and from the soil(5,6), the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 +/- 30 petagrams of carbon to 203 +/- 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 +/- 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period(7,8). Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change. C1 [Crowther, T. W.; Snoek, B. L.; Bradford, M. A.] Netherlands Inst Ecol, Droevendaalsesteeg 10, NL-6708 PB Wageningen, Netherlands. [Crowther, T. W.; Rowe, C. W.; Bradford, M. A.] Yale Univ, Yale Sch Forestry & Environm Studies, 370 Prospect St, New Haven, CT 06511 USA. [Todd-Brown, K. E. O.; Sokol, N. W.] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Wieder, W. R.] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, Boulder, CO 80307 USA. [Wieder, W. R.] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80303 USA. [Carey, J. C.] Marine Biol Lab, 7 MBL St, Woods Hole, MA 02543 USA. [Machmuller, M. B.; Lavallee, J. M.] Colorado State Univ, Nat Resource Ecol Lab, 1499 Campus Delivery, Ft Collins, CO 80523 USA. [Snoek, B. L.] Wageningen Univ, Lab Nematol, Droevendaalsesteeg 1, NL-6708 PB Wageningen, Netherlands. [Fang, S.; Zhou, G.] Chinese Acad Meteorol Sci, 46 Zhongguancun South St, Beijing 100081, Peoples R China. [Fang, S.] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast Meteorol Disast, Nanjing 210044, Jiangsu, Peoples R China. [Allison, S. D.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Allison, S. D.; Treseder, K. K.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA. [Blair, J. M.] Kansas State Univ, Div Biol, Ackert Hall, Manhattan, KS 66506 USA. [Bridgham, S. D.; Pfeifer-Meister, L.; Reynolds, L. L.] Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 USA. [Burton, A. J.] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. [Carrillo, Y.; Reich, P. B.; Pendall, E.] Univ Western Sydney, Hawkesbury Inst Environm, Penrith, NSW 2570, Australia. [Reich, P. B.] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA. [Clark, J. S.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Classen, A. T.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Macroecol Evolut & Climate, Univ Pk 15, DK-2100 Copenhagen O, Denmark. [Classen, A. T.] Univ Tennessee, Dept Ecol & Evolutionary Biol, 569 Dabney Hall,1416 Circle Dr, Knoxville, TN 37996 USA. [Dijkstra, F. A.] Univ Sydney, Ctr Carbon Water & Food, Camden, NSW 2570, Australia. [Elberling, B.; Michelsen, A.] Univ Copenhagen, Dept Geosci & Nat Resource Management, Ctr Permafrost CENPERM, Oster Voldgade 10, DK-1350 Copenhagen K, Denmark. [Emmett, B. A.; Reinsch, S.] Environm Ctr Wales, Ctr Ecol & Hydrol, Bangor LL57 2UW, Gwynedd, Wales. [Estiarte, M.; Penuelas, J.] CSIC, Global Ecol Unit CREAF CSIC, Cerdanyola Del Valles 08193, Catalonia, Spain. [Estiarte, M.; Penuelas, J.] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain. [Frey, S. D.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA. [Guo, J.] Northeast Normal Univ, Minist Educ, Key Lab Vegetat Ecol, Changchun 130024, Jilin, Peoples R China. [Harte, J.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. [Jiang, L.; Luo, Y.] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Johnson, B. R.] Univ Oregon, Dept Landscape Architecture, Eugene, OR 97403 USA. [Kroel-Dulay, G.] Magyar Tud Akad Ctr Ecol Res, Inst Ecol & Bot, 2-4 Alkotmany Utcakereso, H-2163 Vacratot, Hungary. [Larsen, K. S.; Schmidt, I. K.] Univ Copenhagen, Dept Geosci & Nat Resource Management, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark. [Laudon, H.] Swedish Univ Agr Sci, Dept Forest Ecol & Management, S-90183 Umea, Sweden. [Lavallee, J. M.] Univ Manchester, Fac Life Sci, Dover St, Manchester M13 9PT, Lancs, England. [Luo, Y.] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Lupascu, M.] Natl Univ Singapore, Dept Geog, 1 Arts Link, Singapore 117570, Singapore. [Ma, L. N.] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China. [Marhan, S.; Poll, C.] Univ Hohenheim, Inst Soil Sci & Land Evaluat, D-70593 Stuttgart, Germany. [Michelsen, A.] Univ Copenhagen, Dept Biol, Univ Pk 15, DK-2100 Copenhagen, Denmark. [Mohan, J.] Univ Georgia, Odum Sch Ecol, Athens, GA 30601 USA. [Niu, S.] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing 100101, Peoples R China. [Sistla, S.] Hampshire Coll, Sch Nat Sci, 893 West St, Amherst, MA 01002 USA. [Templer, P. H.] Boston Univ, Dept Biol, Boston, MA 02215 USA. [Welker, J. M.] Univ Alaska Anchorage, Dept Biol Sci, Anchorage, AK 99508 USA. RP Crowther, TW (reprint author), Netherlands Inst Ecol, Droevendaalsesteeg 10, NL-6708 PB Wageningen, Netherlands.; Crowther, TW (reprint author), Yale Univ, Yale Sch Forestry & Environm Studies, 370 Prospect St, New Haven, CT 06511 USA. EM thomas.crowther11@gmail.com RI Treseder, Kathleen/E-5148-2011; Blair, John/I-4082-2014; Classen, Aimee/C-4035-2008; Snoek, L/E-4713-2014; Bradford, Mark/G-3850-2012; Michelsen, Anders/L-5279-2014; Emmett, Bridget/D-6199-2011; Allison, Steven/E-2978-2010; OI KNAW, NIOO-KNAW/0000-0002-3835-159X; Blair, John/0000-0003-0072-0721; Classen, Aimee/0000-0002-6741-3470; Snoek, L/0000-0001-5321-2996; Bradford, Mark/0000-0002-2022-8331; Michelsen, Anders/0000-0002-9541-8658; Emmett, Bridget/0000-0002-2713-4389; Allison, Steven/0000-0003-4629-7842; Larsen, Klaus Steenberg/0000-0002-1421-6182 FU Global Soil Biodiversity Initiative (GSBI); Marie Sklodowska-Curie actions; British Ecological Society; Yale Climate and Energy Institute; US National Science Foundation; US Department of Energy; Linus Pauling Distinguished Postdoctoral Fellowship programme FX We would like to thank the Global Soil Biodiversity Initiative (GSBI) for support during this project. This project was largely funded by grants to T.W.C. from Marie Sklodowska-Curie actions, the British Ecological Society and the Yale Climate and Energy Institute. M.A.B. and W.R.W. were supported by grants from the US National Science Foundation and W.R.W. from the US Department of Energy and K.E.O.T.-B. by the Linus Pauling Distinguished Postdoctoral Fellowship programme. The experiments that produced the data were funded by grants too numerous to list here. NR 30 TC 5 Z9 5 U1 124 U2 124 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD DEC 1 PY 2016 VL 540 IS 7631 BP 104 EP + DI 10.1038/nature20150 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED5UA UT WOS:000388916600057 PM 27905442 ER PT J AU Zhang, YG Gang, O AF Zhang, Yugang Gang, Oleg TI NANOCRYSTAL SUPERLATTICES The pathway to atomic alignment SO NATURE MATERIALS LA English DT News Item ID NANOPARTICLES C1 [Zhang, Yugang] Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. [Gang, Oleg] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Gang, Oleg] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Gang, O (reprint author), Columbia Univ, Dept Chem Engn, New York, NY 10027 USA.; Gang, O (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.; Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM og2226@columbia.edu NR 10 TC 0 Z9 0 U1 19 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD DEC PY 2016 VL 15 IS 12 BP 1225 EP 1226 PG 2 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA ED8EI UT WOS:000389104400003 PM 27876755 ER PT J AU Kyung, WS Huh, SS Koh, YY Choi, KY Nakajima, M Eisaki, H Denlinger, JD Mo, SK Kim, C Kim, YK AF Kyung, W. S. Huh, S. S. Koh, Y. Y. Choi, K. -Y. Nakajima, M. Eisaki, H. Denlinger, J. D. Mo, S. -K. Kim, C. Kim, Y. K. TI Enhanced superconductivity in surface-electron-doped iron pnictide Ba(Fe1.94Co0.06)(2)As-2 SO NATURE MATERIALS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; LAYER FESE FILMS; THIN-FILMS; CRYSTAL AB The superconducting transition temperature (T-c) in a FeSe monolayer on SrTiO3 is enhanced up to 100 K (refs 1-4). High T-c is also found in bulk iron chalcogenides with similar electronic structure(5-7) to that of monolayer FeSe, which suggests that higher T-c may be achieved through electron doping, pushing the Fermi surface (FS) topology towards leaving only electron pockets. Such an observation, however, has been limited to chalcogenides, and is in contrast to the iron pnictides, for which the maximum T-c is achieved with both hole and electron pockets forming considerable FS nesting instability(8-11). Here, we report angle-resolved photoemission characterization revealing a monotonic increase of T-c from 24 to 41.5 K upon surface doping on optimally doped Ba(Fe1-xCox)(2)As-2. The doping changes the overall FS topology towards that of chalcogenides through a rigid downward band shift. Our findings suggest that higher electron doping and concomitant changes in FS topology are favourable conditions for the superconductivity, not only for iron chalcogenides, but also for iron pnictides. C1 [Kyung, W. S.; Huh, S. S.] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [Kyung, W. S.; Huh, S. S.; Choi, K. -Y.; Kim, C.; Kim, Y. K.] Inst for Basic Sci Korea, Ctr Correlated Elect Syst, Seoul 151742, South Korea. [Kyung, W. S.; Huh, S. S.; Choi, K. -Y.; Kim, C.; Kim, Y. K.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Koh, Y. Y.] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang 790784, South Korea. [Nakajima, M.] Osaka Univ, Dept Phys, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan. [Eisaki, H.] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Denlinger, J. D.; Mo, S. -K.; Kim, Y. K.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kim, Y. K.] Korea Adv Inst Sci & Technol, Dept Phys, Daejon 34141, South Korea. RP Kim, C; Kim, YK (reprint author), Inst for Basic Sci Korea, Ctr Correlated Elect Syst, Seoul 151742, South Korea.; Kim, C; Kim, YK (reprint author), Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea.; Mo, SK; Kim, YK (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.; Kim, YK (reprint author), Korea Adv Inst Sci & Technol, Dept Phys, Daejon 34141, South Korea. EM SKMo@lbl.gov; changyoung@snu.ac.kr; YKim@lbl.gov RI Mo, Sung-Kwan/F-3489-2013 OI Mo, Sung-Kwan/0000-0003-0711-8514 FU Basic Science Research Program - Korean Federation of Science and Technology Societies [2012-008233]; Strategic International Collaborative Research Program (SICORP) from Japan Science and Technology Agency; Office of Basic Energy Sciences of the US DOE [DE-AC02-05CH11231]; [IBS-R009-G2]; [IBS-R009-G1] FX This work is supported by IBS-R009-G2, IBS-R009-G1 and the Basic Science Research Program (No. 2012-008233) funded by Korean Federation of Science and Technology Societies. This research is also supported by the Strategic International Collaborative Research Program (SICORP) from Japan Science and Technology Agency. The Advanced Light Source is supported by the Office of Basic Energy Sciences of the US DOE under Contract No. DE-AC02-05CH11231. NR 34 TC 0 Z9 0 U1 18 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD DEC PY 2016 VL 15 IS 12 BP 1233 EP 1236 DI 10.1038/NMAT4728 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA ED8EI UT WOS:000389104400008 PM 27525569 ER PT J AU Llordes, A Wang, Y Fernandez-Martinez, A Xiao, P Lee, T Poulain, A Zandi, O Cabezas, CAS Henkelman, G Milliron, DJ AF Llordes, Anna Wang, Yang Fernandez-Martinez, Alejandro Xiao, Penghao Lee, Tom Poulain, Agnieszka Zandi, Omid Cabezas, Camila A. Saez Henkelman, Graeme Milliron, Delia J. TI Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing SO NATURE MATERIALS LA English DT Article ID REVERSIBLE LITHIUM STORAGE; ULTRATHIN NANOSHEETS; SOL-GEL; FILMS; DEVICES; TRANSMITTANCE; MODULATION; BATTERIES; ELECTRODE; ION AB Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and 'nanocrystal-in-glass' composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices. C1 [Llordes, Anna; Lee, Tom; Milliron, Delia J.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Llordes, Anna] Ikerbasque, Basque Fdn Sci CICenergiGUNE, Minano 01510, Alava, Spain. [Wang, Yang; Zandi, Omid; Cabezas, Camila A. Saez; Milliron, Delia J.] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA. [Fernandez-Martinez, Alejandro] Univ Grenoble Alpes, ISTerre, F-38041 Grenoble, France. [Fernandez-Martinez, Alejandro] CNRS, ISTerre, F-38041 Grenoble, France. [Xiao, Penghao; Henkelman, Graeme] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA. [Lee, Tom] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Poulain, Agnieszka] European Synchrotron Radiat Facil, 71 Ave Martyrs, F-38043 Grenoble, France. RP Llordes, A; Milliron, DJ (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Llordes, A (reprint author), Ikerbasque, Basque Fdn Sci CICenergiGUNE, Minano 01510, Alava, Spain.; Milliron, DJ (reprint author), Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA. EM allordes@cicenergigune.com; milliron@che.utexas.edu RI Llordes, Anna/H-2370-2015; OI Llordes, Anna/0000-0003-4169-9156; Fernandez-Martinez, Alejandro/0000-0001-5073-9629 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy ARPA-E; Welch Foundation [F-1848, F-1841] FX This work was carried out at the University of Texas at Austin and the Molecular Foundry, Lawrence Berkeley National Laboratory, a user facility supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. This research was supported by a US Department of Energy ARPA-E grant. D.J.M. and G.H. acknowledge support of the Welch Foundation (F-1848 and F-1841, respectively). PDF measurements were performed at beamline ID15B of the European Synchrotron Radiation Facility (ESRF), Grenoble, France. GIWAXS data was acquired at beamline 11-3 of the Stanford Synchrotron Radiation Lightsource (SSRL). We thank D. Van Campen and C. Miller for assistance at SSRL. We also thank B. Koo for providing some of the ITO and CeO2 nanocrystals, as well as G. Garcia and J. Rivest for helpful discussions. NR 48 TC 1 Z9 1 U1 48 U2 48 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD DEC PY 2016 VL 15 IS 12 BP 1267 EP 1273 DI 10.1038/NMAT4734 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA ED8EI UT WOS:000389104400014 PM 27548708 ER PT J AU Nardes, AM Ahn, S Rourke, D Mao, CC van de Lagemaat, J Ferguson, AJ Park, W Kopidakis, N AF Nardes, Alexandre M. Ahn, Sungmo Rourke, Devin Mao, Chenchen van de lagemaat, Jao Ferguson, Andrew J. Park, Wounjhang Kopidakis, Nikos TI Integrating nanostructured electrodes in organic photovoltaic devices for enhancing near-infrared photoresponse SO ORGANIC ELECTRONICS LA English DT Article DE Organic photovoltaics; Photonic electrodes; Nanostructured electrodes; Plasmons; Surface plasmon polaritons ID OPEN-CIRCUIT VOLTAGE; POLYMER SOLAR-CELLS; OPTICAL-ABSORPTION; LAMINATION; GENERATION AB We introduce a simple methodology to integrate prefabricated nanostructured-electrodes in solution processed organic photovoltaic (OPV) devices. The tailored "photonic electrode" nanostructure is used for light management in the device and for hole collection. This approach opens up new possibilities for designing photonically active structures that can enhance the absorption of sub-bandgap photons in the active layer. We discuss the design, fabrication and characterization of photonic electrodes, and the methodology for integrating them to OPV devices using a simple lamination technique. We demonstrate theoretically and experimentally that OPV devices using photonic electrodes show a factor of ca. 5 enhancement in external quantum efficiency (EQE) in the near infrared region. We use simulations to trace this observed efficiency enhancement to surface plasmon polariton modes in the nanostructure. (C) 2016 Published'by Elsevier B.V. C1 [Nardes, Alexandre M.; van de lagemaat, Jao; Ferguson, Andrew J.; Kopidakis, Nikos] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Ahn, Sungmo; Rourke, Devin; Mao, Chenchen; Park, Wounjhang] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. [Park, Wounjhang] Univ Colorado, Mat Sci & Engn Program, Boulder, CO 80303 USA. [Kopidakis, Nikos] Macquarie Univ, Dept Engn, N Ryde, NSW 2109, Australia. RP Ferguson, AJ (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.; Kopidakis, N (reprint author), Macquarie Univ, Dept Engn, N Ryde, NSW 2109, Australia. EM andrew.ferguson@nrel.gov; nikos.kopidakis@mq.edu.au OI Ferguson, Andrew/0000-0003-2544-1753 FU U.S. Department of Energy (DOE) [DE-AC36-08GO28308]; National Renewable Energy Laboratory; DOE's Advanced Research Projects Agency - Energy (ARPA-E) [DE-AR0000289] FX We would like to thank Dr. Paul Ndione for his help with variable-angle spectroscopic ellipsometry measurements of the optical properties. AMN and SA have contributed equally to this work. This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding provided by DOE's Advanced Research Projects Agency - Energy (ARPA-E) under Grant Number DE-AR0000289. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 30 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-1199 EI 1878-5530 J9 ORG ELECTRON JI Org. Electron. PD DEC PY 2016 VL 39 BP 59 EP 63 DI 10.1016/j.orgel.2016.09.011 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA ED7YA UT WOS:000389087400008 ER PT J AU Chinotti, M Pal, A Ren, WJ Petrovic, C Degiorgi, L AF Chinotti, M. Pal, A. Ren, W. J. Petrovic, C. Degiorgi, L. TI Electrodynamic response of the type-II Weyl semimetal YbMnBi2 SO PHYSICAL REVIEW B LA English DT Article ID FERMION SEMIMETAL; ARCS AB Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. Materials based on quasi-two-dimensional bismuth layers were recently designed and provide an arena for studying the interplay between anisotropic Dirac fermions, magnetism, and structural changes, allowing the formation of Weyl fermions in condensed matter. Here, we perform an optical investigation of YbMnBi2, a representative type-IIWeyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi2. Our comparative study allows us to disentangle the optical fingerprints of type-IIWeyl fermions, but also challenges the present theoretical understanding of their electrodynamic response. C1 [Chinotti, M.; Pal, A.; Degiorgi, L.] Swiss Fed Inst Technol, Festkorperphys Lab, CH-8093 Zurich, Switzerland. [Ren, W. J.; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys, Upton, NY 11973 USA. [Ren, W. J.; Petrovic, C.] Brookhaven Natl Lab, Dept Mat Sci, Upton, NY 11973 USA. [Ren, W. J.] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Peoples R China. RP Degiorgi, L (reprint author), Swiss Fed Inst Technol, Festkorperphys Lab, CH-8093 Zurich, Switzerland. EM degiorgi@solid.phys.ethz.ch FU Swiss National Science Foundation (SNSF); U.S. DOE-BES, Division of Materials Science and Engineering [DE-SC0012704] FX The authors wish to thank S. Borisenko, J. Carbotte, and M. Troyer for fruitful discussions. This work was supported by the Swiss National Science Foundation (SNSF). Work at Brookhaven National Laboratory was supported by the U.S. DOE-BES, Division of Materials Science and Engineering, under Contract No. DE-SC0012704. L.D. acknowledges the hospitality at Aspen Center for Physics, where part of this paper was conceived. NR 33 TC 1 Z9 1 U1 18 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD DEC 1 PY 2016 VL 94 IS 24 AR 245101 DI 10.1103/PhysRevB.94.245101 PG 5 WC Physics, Condensed Matter SC Physics GA ED7EQ UT WOS:000389025300001 ER PT J AU Carena, M Huang, PS Ismail, A Low, I Shah, NR Wagner, CEM AF Carena, Marcela Huang, Peisi Ismail, Ahmed Low, Ian Shah, Nausheen R. Wagner, Carlos E. M. TI Double peak searches for scalar and pseudoscalar resonances at the LHC SO PHYSICAL REVIEW D LA English DT Article AB Many new physics models contain a neutral scalar resonance that can be predominantly produced via gluon fusion through loops. In such a case, there could be important effects of additional particles, that in turn may hadronize before decaying and form bound states. This interesting possibility may lead to novel signatures with double peaks that can be searched for at the LHC. We study the phenomenology of double peak searches in diboson final states from loop-induced production and decay of a new neutral spin-0 resonance at the LHC. The loop-induced couplings should be mediated by particles carrying color and electroweak charge that after forming bound states will induce a second peak in the diboson invariant mass spectrum near twice their mass. A second peak could be present via loop-induced couplings into gg (dijet),gamma gamma and Z gamma final states as well as in the WW and ZZ channels for the case of a pseudoscalar resonance or for scalars with suppressed tree-level coupling to gauge bosons. C1 [Carena, Marcela] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Carena, Marcela; Huang, Peisi; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Carena, Marcela; Wagner, Carlos E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Huang, Peisi; Ismail, Ahmed; Low, Ian; Wagner, Carlos E. M.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Ismail, Ahmed] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Ismail, Ahmed] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Low, Ian] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Shah, Nausheen R.] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.; Carena, M (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Carena, M (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. FU U.S. Department of Energy [DE-AC02-07CH11359, DE-FG02-13ER41958, DE-AC02-06CH11357, DE-FG02-04ER41286, DE-FG02-12ER41811, DE-SC0010143]; National Science Foundation [NSF PHY11-25915]; Wayne State University FX Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Work at University of Chicago is supported in part by U.S. Department of Energy Grant No. DE-FG02-13ER41958. Work at Argonne National Laboratory (ANL) is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. P.H. is partially supported by U.S. Department of Energy Grant No. DE-FG02-04ER41286. A. I. thanks the Kavli Institute for Theoretical Physics for its hospitality, and is supported in part by the U.S. Department of Energy under Grant No. DE-FG02-12ER41811 and the National Science Foundation under Grant No. NSF PHY11-25915. I. L. is supported in part by the U.S. Department of Energy under Contract No. DE-SC0010143. N. R. S. is supported in part by the Wayne State University Start-up package. C. W. would like to thank G. Bodwin, H. S. Chung, A. Joglekar and A. Katz for helpful discussions on this subject. NR 31 TC 1 Z9 1 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 1 PY 2016 VL 94 IS 11 AR 115001 DI 10.1103/PhysRevD.94.115001 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED7FE UT WOS:000389026700003 ER PT J AU Chiang, CT Li, Y Hu, WN LoVerde, M AF Chiang, Chi-Ting Li, Yin Hu, Wayne LoVerde, Marilena TI Quintessential scale dependence from separate universe simulations SO PHYSICAL REVIEW D LA English DT Article ID MATTER POWER SPECTRUM; PERTURBATION-THEORY; COSMOLOGICAL SIMULATIONS; INITIAL CONDITIONS AB By absorbing fluctuations into a local background, separate universe simulations provide a powerful technique to characterize the response of small-scale observables to the long-wavelength density fluctuations, for example those of the power spectrum and halo mass function which lead to the squeezed-limit n-point function and halo bias, respectively. Using quintessence dark energy as the paradigmatic example, we extend these simulation techniques to cases where non-gravitational forces in other sectors establish a Jeans scale across which the growth of density fluctuations becomes scale dependent. By characterizing the separate universes with matching background expansion histories, we show that the power spectrum and mass function responses depend on whether the long-wavelength mode is above or below the Jeans scale. Correspondingly, the squeezed bispectrum and halo bias also become scale dependent. Models of bias that are effectively local in the density field at a single epoch, initial or observed, cannot describe this effect which highlights the importance of temporal nonlocality in structure formation. Validated by these quintessence tests, our techniques are applicable to a wide range of models where the complex dynamics of additional fields affect the clustering of matter in the linear regime and it would otherwise be difficult to simulate their impact in the nonlinear regime. C1 [Chiang, Chi-Ting; LoVerde, Marilena] SUNY Stony Brook, Dept Phys & Astron, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Li, Yin] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Li, Yin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Li, Yin] Univ Tokyo, UTIAS, Kavli Inst Phys & Math Universe WPI, Chiba 2778583, Japan. [Hu, Wayne] Univ Chicago, Enrico Fermi Inst, Dept Astron & Astrophys, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. RP Chiang, CT (reprint author), SUNY Stony Brook, Dept Phys & Astron, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. FU National Science Foundation [PHY-1066293]; U.S. Department of Energy [DE-FG02-13ER41958]; NASA Grant [ATP NNX15AK22G]; Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; [NSF PHY-1316617] FX We thank Eiichiro Komatsu and Fabian Schmidt for useful discussions. We would also like to thank Alexander Knebe for guiding us to implement the dark energy model into Amiga Halo Finder. W. H. thanks the Aspen Center for Physics, which is supported by National Science Foundation Grant No. PHY-1066293, where part of this work was completed. Results in this paper were obtained using the high-performance computing system at the Institute for Advanced Computational Science at Stony Brook University and with the computation and storage resources provided by the University of Chicago Research Computing Center. C. C. and M. L. are supported by Grant No. NSF PHY-1316617. W. H. was supported by U.S. Department of Energy Contract No. DE-FG02-13ER41958, NASA Grant No. ATP NNX15AK22G, and the Kavli Institute for Cosmological Physics at the University of Chicago through Grants No. NSF PHY-0114422 and No. NSF PHY-0551142. NR 48 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD DEC 1 PY 2016 VL 94 IS 12 AR 123502 DI 10.1103/PhysRevD.94.123502 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED7FQ UT WOS:000389028000003 ER PT J AU Kunz, MW Stone, JM Quataert, E AF Kunz, Matthew W. Stone, James M. Quataert, Eliot TI Magnetorotational Turbulence and Dynamo in a Collisionless Plasma SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETICALLY DRIVEN ACCRETION; ADVECTION-DOMINATED ACCRETION; RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS; MAGNETO-ROTATIONAL INSTABILITY; ION-CYCLOTRON INSTABILITY; SHEARING-BOX SIMULATIONS; IN-CELL SIMULATIONS; SGR A-ASTERISK; BLACK-HOLE; SOLAR-WIND AB We present results from the first 3D kinetic numerical simulation of magnetorotational turbulence and dynamo, using the local shearing-box model of a collisionless accretion disk. The kinetic magnetorotational instability grows from a subthermal magnetic field having zero net flux over the computational domain to generate self-sustained turbulence and outward angular-momentum transport. Significant Maxwell and Reynolds stresses are accompanied by comparable viscous stresses produced by field-aligned ion pressure anisotropy, which is regulated primarily by the mirror and ion-cyclotron instabilities through particle trapping and pitch-angle scattering. The latter endow the plasma with an effective viscosity that is biased with respect to the magnetic-field direction and spatiotemporally variable. Energy spectra suggest an Alfven-wave cascade at large scales and a kinetic-Alfven-wave cascade at small scales, with strong small-scale density fluctuations and weak nonaxisymmetric density waves. Ions undergo nonthermal particle acceleration, their distribution accurately described by a. distribution. These results have implications for the properties of low-collisionality accretion flows, such as that near the black hole at the Galactic center. C1 [Kunz, Matthew W.; Stone, James M.] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA. [Kunz, Matthew W.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Quataert, Eliot] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall 3411, Berkeley, CA 94720 USA. [Quataert, Eliot] Univ Calif Berkeley, Theoret Astrophys Ctr, 601 Campbell Hall 3411, Berkeley, CA 94720 USA. RP Kunz, MW (reprint author), Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA.; Kunz, MW (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM mkunz@princeton.edu FU Lyman Spitzer, Jr. Fellowship; NSF [AST-1333091, AST 13-33612, PHY-1144374]; Simons Foundation; David and Lucile Packard Foundation FX Support for M. W. K. during the early stages of this project was provided by a Lyman Spitzer, Jr. Fellowship. J. M. S. was supported in part by NSF Grant No. AST-1333091. E. Q. was supported in part by NSF Grant No. AST 13-33612, a Simons Investigator Award from the Simons Foundation, and the David and Lucile Packard Foundation. The results of this research have been achieved using the PRACE Research Infrastructure resource Curie based in France at CEA (TGCC). This work benefitted from useful conversations with Sebastien Fromang, Greg Hammett, Tobias Heinemann, Geoffroy Lesur, Alexander Schekochihin, and Jonathan Squire. Aspects of this work were facilitated by the Max-Planck/Princeton Center for Plasma Physics (NSF Grant No. PHY-1144374), the NSF Theoretical and Computational Astrophysics Network on Black Hole Accretion, and the Wolfgang Pauli Institute Vienna. NR 70 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD DEC 1 PY 2016 VL 117 IS 23 AR 235101 DI 10.1103/PhysRevLett.117.235101 PG 6 WC Physics, Multidisciplinary SC Physics GA ED7HC UT WOS:000389032300004 PM 27982637 ER PT J AU Mount, E Gaultney, D Vrijsen, G Adams, M Baek, SY Hudek, K Isabella, L Crain, S van Rynbach, A Maunz, P Kim, J AF Mount, Emily Gaultney, Daniel Vrijsen, Geert Adams, Michael Baek, So-Young Hudek, Kai Isabella, Louis Crain, Stephen van Rynbach, Andre Maunz, Peter Kim, Jungsang TI Scalable digital hardware for a trapped ion quantum computer SO QUANTUM INFORMATION PROCESSING LA English DT Article DE Quantum computation; Qubits; Trapped ions ID ATOMIC IONS; FREQUENCY STABILIZATION; LASER AB Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges. C1 [Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Kim, Jungsang] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. [Maunz, Peter] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Kim, J (reprint author), Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. EM jungsang@duke.edu FU Office of the Director of National Intelligence and Intelligence Advanced Research Projects Activity through the Army Research Office FX This work was supported by the Office of the Director of National Intelligence and Intelligence Advanced Research Projects Activity through the Army Research Office. NR 24 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1570-0755 EI 1573-1332 J9 QUANTUM INF PROCESS JI Quantum Inf. Process. PD DEC PY 2016 VL 15 IS 12 BP 5281 EP 5298 DI 10.1007/s11128-015-1120-z PG 18 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA ED6EZ UT WOS:000388950100023 ER PT J AU Liang, C Kao-Kniffin, J Sanford, GR Wickings, K Balser, TC Jackson, RD AF Liang, Chao Kao-Kniffin, Jenny Sanford, Gregg R. Wickings, Kyle Balser, Teri C. Jackson, Randall D. TI Microorganisms and their residues under restored perennial grassland communities of varying diversity SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Microbial residue; Microbial community; Plant diversity; Soil depth; Biomarker; Grassland ecosystems ID SOIL CARBON STORAGE; NORTH CENTRAL USA; MICROBIAL COMMUNITIES; ORGANIC-MATTER; AMINO-SUGARS; MURAMIC ACID; PLANT; SEQUESTRATION; BACTERIAL; PRODUCTIVITY AB Rising atmospheric CO2 concentration and global mean temperatures have stimulated interest in managing terrestrial systems to sequester more carbon and mitigate climate change. In a restored prairie experiment, we compared high diversity (HD, 25 species) with low diversity (LD, 6 species) prairies to investigate the effect of plant diversity on soil microbial communities and their residues with soil depth. We assayed lipid and amino sugar biomarkers for soil samples, taken after 9 years following the establishment of the prairie treatment, at 5 depth increment layers: 0-2 cm, 12-15 cm, 25-27 cm, 50 52 cm, and 98-100 cm. We found that the microbial biomass and residues decreased considerably with depth in both diversity treatments. Ordination analysis of lipid profiles indicated soil microbial communities were consistently distinct between the deeper and the upper layers, regardless of treatment, and also differed between the LD and HD treatments. Plant diversity effects on soil microbial communities strongly correlated with arbuscular mycorrhizal fungi (AMF), as indicated by the lipid marker 16:1 omega 5c. Soil microbial residues in deeper horizons were relatively more enriched in HD than LD treatments, suggesting that greater plant diversity might sustain higher soil carbon storage through relatively recalcitrant necromass inputs in the long term. Decreasing glucosamine/muramic acid (GluN/ MurA) ratio in LD and increasing in HD with depth suggested that the new microbially-accumulated carbon was positively contributed by fungal -derived residues. Our results indicate that plant diversity drives soil microbial carbon sequestration through changes in AMF abundance in restored native tallgrass ecosystems. These findings have implications for understanding how the management of plant diversity can improve soil quality and sustainability in grasslands, and how efforts to conserve and restore diverse grasslands could mitigate greenhouse gas emissions. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Liang, Chao] Chinese Acad Sci, Inst Appl Ecol, Shenyang 110016, Peoples R China. [Liang, Chao; Sanford, Gregg R.; Balser, Teri C.; Jackson, Randall D.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Kao-Kniffin, Jenny; Wickings, Kyle] Cornell Univ, Coll Agr & Life Sci, Ithaca, NY 14853 USA. [Sanford, Gregg R.; Jackson, Randall D.] Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. [Balser, Teri C.] Curtin Univ, Fac Sci & Engn, Perth, WA, Australia. RP Liang, C (reprint author), Chinese Acad Sci, Inst Appl Ecol, Shenyang 110016, Peoples R China. EM cliang823@gmail.com FU National Key Research and Development Program [2016YFA0600802]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15010303]; Natural Science Foundation of China [41471218]; U.S. funds from DOE-Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX We would like to thank Dr. Josh Posner, in great memory, for his foresight in setting up the WICST trials, and Janet Hedtcke for field and logistical support. Dr. Harry Read was invaluable for his help with laboratory analyses, and Dr. Jinsong Zhao with statistical expertise. This work was supported by the China funds from the National Key Research and Development Program (2016YFA0600802), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB15010303), the Natural Science Foundation of China (41471218), and by the U.S. funds from the DOE-Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 70 TC 0 Z9 0 U1 33 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD DEC PY 2016 VL 103 BP 192 EP 200 DI 10.1016/j.soilbio.2016.08.002 PG 9 WC Soil Science SC Agriculture GA ED3VA UT WOS:000388775400019 ER PT J AU Erdemir, A AF Erdemir, Ali TI The water-energy-tribology nexus SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Editorial Material C1 [Erdemir, Ali] Argonne Natl Lab, Lemont, IL 60439 USA. RP Erdemir, A (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA. EM erdemir@anl.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD DEC PY 2016 VL 72 IS 12 BP 4 EP 4 PG 1 WC Engineering, Mechanical SC Engineering GA ED0SZ UT WOS:000388553500001 ER PT J AU Erdemir, A AF Erdemir, Ali TI 7th Annual Corporate Member Profiles Issue SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Article C1 [Erdemir, Ali] Argonne Natl Lab, Lemont, IL 60439 USA. RP Erdemir, A (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA. EM erdemir@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD DEC PY 2016 VL 72 IS 12 BP 43 EP 44 PG 2 WC Engineering, Mechanical SC Engineering GA ED0SZ UT WOS:000388553500012 ER PT J AU Segundo, FDS Montiel, NA Sturza, DF Perez-Martin, E Hickman, D Ramirez-Medina, E Grubman, MJ de los Santosa, T AF Segundo, Fayna Diaz-San Montiel, Nestor A. Sturza, Diego F. Perez-Martin, Eva Hickman, Danielle Ramirez-Medina, Elizabeth Grubman, Marvin J. de los Santosa, Teresa TI Combination of Adt-O1Manisa and Ad5-boIFN lambda 3 induces early protective immunity against foot-and-mouth disease in cattle SO VIROLOGY LA English DT Article DE FMDV; Ad5-boIFN lambda 3; Foot-and-mouth disease; Early protection adjuvant effect; Cattle; Ad5-vector vaccine ID HEPATITIS-C VIRUS; DELTA T-CELLS; INNATE LYMPHOID-CELLS; MOLECULAR-CLONING; SUBUNIT VACCINE; IFN-LAMBDA; ACTIVATION ANTIGEN-B7; ANTIBODY-RESPONSE; RAPID PROTECTION; INTERFERON-ALPHA AB Foot-and-mouth-disease (FMD) remains the most infectious livestock disease worldwide. Although commercially available inactivated or adenovirus-vectored-vaccines (Ad5-FMD) are effective, they require 5-7 days to induce protection. Therefore, new control strategies that stimulate rapid immune responses are needed. Expression of bovine interferon lambda 3 using the Ad5-vector platform (Ad5-boIFN lambda 3) is able to delay disease in cattle, but clinical signs appear at 9 days after challenge. We hypothesized that combination of Ad5-boIFN lambda 3 and Ad5-FMD could induce immediate and lasting protection against FMD. Cattle were vaccinated with an Ad5-FMD, Ad5-boIFN lambda 3, or the combination of both, followed by challenge at three days post-immunization. All animals treated with Ad5-FMD combined with Ad5-boIFN lambda 3 were fully protected against FMD, despite the absence of systemic neutralizing antibodies or antiviral activity at the time of challenge. Induction of a strong cell-mediated immune response suggested that Ad5-boIFN lambda 3 is able to act as an adjuvant of Ad5-FMD vaccine in cattle. C1 [Segundo, Fayna Diaz-San; Montiel, Nestor A.; Sturza, Diego F.; Perez-Martin, Eva; Hickman, Danielle; Ramirez-Medina, Elizabeth; Grubman, Marvin J.; de los Santosa, Teresa] ARS, Plum Isl Anim Dis Ctr, North Atlantic Area, USDA, Greenport, NY 11944 USA. [Montiel, Nestor A.; Sturza, Diego F.; Perez-Martin, Eva; Ramirez-Medina, Elizabeth] Oak Ridge Inst Sci & Educ, Plum Isl Anim Dis Ctr, Res Participat Program, Oak Ridge, TN 37831 USA. [Segundo, Fayna Diaz-San] Univ Connecticut, Dept Pathobiol & Vet Sci, Storrs, CT 06269 USA. RP de los Santosa, T (reprint author), ARS, Plum Isl Anim Dis Ctr, North Atlantic Area, USDA, Greenport, NY 11944 USA. EM teresa.delossantos@ars.usda.gov FU ARS-CRIS Project [1940-32000-057-00D]; ARS; Science and Technology Directorate of the Department of Homeland Security (DHS) [HSHQDC-11-X-00189, HSHQPM-13-X-00113]; USDA [58-1940-4-003]; University of Connecticut [58-1940-4-003]; Plum Island Animal Disease Center Research Participation Program FX This work was funded by ARS-CRIS Project 1940-32000-057-00D and ARS interagency agreements with the Science and Technology Directorate of the Department of Homeland Security (DHS) (award# HSHQDC-11-X-00189 and HSHQPM-13-X-00113) and Specific Cooperative Agreement #58-1940-4-003 between USDA and University of Connecticut. NAM, DFS and EPM are recipients of a Plum Island Animal Disease Center Research Participation Program fellowship, administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement with the U.S. Department of Energy. We thank DHS for providing Adt. O1M vaccine produced by GenVec Inc. We are grateful to PIADC animal research branch for professional assistance with animal experiments. NR 77 TC 0 Z9 0 U1 4 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0042-6822 J9 VIROLOGY JI Virology PD DEC PY 2016 VL 499 BP 340 EP 349 DI 10.1016/j.virol.2016.09.027 PG 10 WC Virology SC Virology GA EC3YI UT WOS:000388062600036 ER PT J AU Wang, R Fu, PC Zhang, JM Dafalias, Y AF Wang, Rui Fu, Pengcheng Zhang, Jian-Min Dafalias, Yannis F. TI DEM study of fabric features governing undrained post-liquefaction shear deformation of sand SO ACTA GEOTECHNICA LA English DT Article DE DEM; Fabric; Sand liquefaction; Shear deformation; Undrained cyclic biaxial ID DISCRETE ELEMENT METHOD; GRANULAR-MATERIALS; CYCLIC MOBILITY; STRAIN; SOILS; MODEL; GEOMECHANICS; SIMULATIONS; EARTHQUAKES; ASSEMBLIES AB In an effort to study undrained post-liquefaction shear deformation of sand, the discrete element method (DEM) is adopted to conduct undrained cyclic biaxial compression simulations on granular assemblies consisting of 2D circular particles. The simulations are able to successfully reproduce the generation and eventual saturation of shear strain through the series of liquefaction states that the material experiences during cyclic loading after the initial liquefaction. DEM simulations with different deviatoric stress amplitudes and initial mean effective stresses on samples with different void ratios and loading histories are carried out to investigate the relationship between various mechanics- or fabric-related variables and post-liquefaction shear strain development. It is found that well-known metrics such as deviatoric stress amplitude, initial mean effective stress, void ratio, contact normal fabric anisotropy intensity, and coordination number, are not adequately correlated to the observed shear strain development and, therefore, could not possibly be used for its prediction. A new fabric entity, namely the Mean Neighboring Particle Distance (MNPD), is introduced to reflect the space arrangement of particles. It is found that the MNPD has an extremely strong and definitive relationship with the post-liquefaction shear strain development, showing MNPD's potential role as a parameter governing post-liquefaction behavior of sand. C1 [Wang, Rui; Zhang, Jian-Min] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China. [Fu, Pengcheng] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. [Dafalias, Yannis F.] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. [Dafalias, Yannis F.] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Dept Mech, Athens, Greece. RP Fu, PC (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. EM wangrui_05@mail.tsinghua.edu.cn; fu4@llnl.gov; zhangjm@mail.tsinghua.edu.cn; jfdafalias@ucdavis.edu FU National Natural Science Foundation of China [51678346, 51038007]; China Postdoctoral Science Foundation [2015M570106, 2016T90099]; European Research Council under European Union's Seventh Framework Program FP7-ERC-IDEAS Advanced Grant (SOMEF) [290963]; National Science Foundation (NSF) [CMMI-1162096]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank the National Natural Science Foundation of China (Nos. 51678346 and 51038007) and the China Postdoctoral Science Foundation (2015M570106 and 2016T90099) for funding the work presented in this paper. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program FP7-ERC-IDEAS Advanced Grant Agreement No. 290963 (SOMEF), and the National Science Foundation (NSF) project CMMI-1162096. Pengcheng Fu's contribution was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This paper is LLNL report LLNL-JRNL-681216. NR 43 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1861-1125 EI 1861-1133 J9 ACTA GEOTECH JI Acta Geotech. PD DEC PY 2016 VL 11 IS 6 BP 1321 EP 1337 DI 10.1007/s11440-016-0499-8 PG 17 WC Engineering, Geological SC Engineering GA ED0YY UT WOS:000388571600007 ER PT J AU Nguy, L Shubbar, E Jernas, M Nookaew, I Lundgren, J Olsson, B Nilsson, H Guron, G AF Nguy, L. Shubbar, E. Jernas, M. Nookaew, I. Lundgren, J. Olsson, B. Nilsson, H. Guron, G. TI Adenine-induced chronic renal failure in rats decreases aortic relaxation rate and alters expression of proteins involved in vascular smooth muscle calcium handling SO ACTA PHYSIOLOGICA LA English DT Article DE aorta; chronic kidney disease; excitation-contraction coupling; hypertension; microarray ID CHRONIC KIDNEY-DISEASE; PULSE-WAVE VELOCITY; NA+-K+-ATPASE; ARTERIAL STIFFNESS; CARDIOVASCULAR EVENTS; CALCIFICATION; MICE; PUMP; CA2+; ACTIVATION AB Aim: Rats with adenine-induced chronic renal failure (A-CRF) develop a reduced rate of relaxation of the thoracic aorta. The aim of this study was to elucidate the mechanisms underlying this abnormality. Methods: Male Sprague Dawley rats received either chow containing adenine or were pair-fed with normal chow (controls). After 8-14 weeks, arterial function was analysed ex vivo using wire myography and the expression of proteins involved in vascular smooth muscle excitation-contraction coupling in the thoracic aorta was analysed. Results: The rate of relaxation following washout of KCl was reduced in A-CRF rats vs. controls in the thoracic aorta (P < 0.01), abdominal aorta (P < 0.05), and common carotid artery (P < 0.05), but not in the common femoral artery. Relaxation rates of thoracic aortas increased (P < 0.01), but were not normalized, in response to washout of KCl with Ca2+-free buffer. Microarray and qRT-PCR analyses of genes involved in excitation-contraction coupling identified 10 genes, which showed significantly altered expression in A-CRF thoracic aortas. At the protein level, the alpha 2 subunit of the Na, K-ATPase (P < 0.001) and SERCA2 (P < 0.05) was significantly downregulated, whereas stromal interaction molecule 1 and calsequestrin-1 and calsequestrin-2 were significantly upregulated (P < 0.05). Conclusions: Rats with A-CRF show a marked alteration in relaxation of larger conduit arteries localized proximal to the common femoral artery. This abnormality may be caused by reduced cytosolic Ca2+ clearance in vascular smooth muscle cells secondary to dysregulation of proteins crucially involved in this process. C1 [Nguy, L.; Shubbar, E.; Lundgren, J.; Guron, G.] Inst Med, Dept Mol & Clin Med Nephrol, Gothenburg, Sweden. [Nguy, L.; Nilsson, H.] Inst Neurosci & Physiol, Dept Physiol, Gothenburg, Sweden. [Jernas, M.] Inst Med, Dept Internal Med, Gothenburg, Sweden. [Nookaew, I.] Chalmers, Dept Chem & Biol Engn, Gothenburg, Sweden. [Nookaew, I.] Oak Ridge Natl Lab, Biosci Div, Comparat Genom Grp, Oak Ridge, TN USA. [Olsson, B.] Univ Gothenburg, Sahlgrenska Acad, Inst Neurosci & Physiol, Dept Psychiat & Neurochem, Gothenburg, Sweden. RP Guron, G (reprint author), Univ Gothenburg, Sahlgrenska Acad, Inst Med, Dept Mol & Clin Med Nephrol, Vita Straket 12, SE-41345 Gothenburg, Sweden. EM gregor.guron@sahlgrenska.gu.se RI Nilsson, Holger/G-2071-2011; OI Nilsson, Holger/0000-0003-2350-7157; Olsson, Bob/0000-0002-6368-6172 FU Swedish Heart-Lung Foundation; Swedish Federal Government under LUA-ALF; Goteborg Medical Society; Swedish Medical Society; Swedish Association for Kidney Patients; Swedish Society of Nephrology; Inger Bendix Foundation; Paul Frankenius Foundation; Britt Wennerstrom's Research Foundation; IngaBritt and Arne Lundberg's Research Foundation; Marianne and Marcus Wallenberg's Foundation; Swedish Kidney Association; Sahlgrenska University Hospital; Knut and Alice Wallenberg Foundation; Chalmers Foundation; Bioinformatics Infrastructure for Life Sciences (BILS) FX This study was supported by grants from the Swedish Heart-Lung Foundation, Swedish Federal Government under the LUA-ALF agreement, Goteborg Medical Society, Swedish Medical Society, Swedish Association for Kidney Patients, Swedish Society of Nephrology, Inger Bendix Foundation, Paul Frankenius Foundation, Britt Wennerstrom's Research Foundation, IngaBritt and Arne Lundberg's Research Foundation, Marianne and Marcus Wallenberg's Foundation, Swedish Kidney Association, The Sahlgrenska University Hospital, Knut and Alice Wallenberg Foundation, Chalmers Foundation and Bioinformatics Infrastructure for Life Sciences (BILS). We thank professor Gerald F. DiBona for fruitful discussions and Mohamed Ibrahim for excellent technical assistance. NR 25 TC 1 Z9 1 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1748-1708 EI 1748-1716 J9 ACTA PHYSIOL JI Acta Physiol. PD DEC PY 2016 VL 218 IS 4 BP 250 EP 264 DI 10.1111/apha.12724 PG 15 WC Physiology SC Physiology GA EC4ZA UT WOS:000388141700007 PM 27239807 ER PT J AU Zhao, G Gao, HL Naz, BS Kao, SC Voisin, N AF Zhao, Gang Gao, Huilin Naz, Bibi S. Kao, Shih-Chieh Voisin, Nathalie TI Integrating a reservoir regulation scheme into a spatially distributed hydrological model SO ADVANCES IN WATER RESOURCES LA English DT Article DE Reservoir; DHSVM; Water resources; Operation rules ID WORLD WATER-RESOURCES; CLIMATE-CHANGE; RIVER-BASIN; VEGETATION MODEL; UNITED-STATES; STREAMFLOW; MANAGEMENT; COLORADO; SYSTEM; DAMS AB During the past several decades, numerous reservoirs have been built across the world for a variety of purposes such as flood control, irrigation, municipal/industrial water supplies, and hydropower generation. Consequently, the timing and magnitude of natural streamflow have been altered significantly by reservoir operations. In addition, the hydrological cycle is also modified by land-use/land-cover change and by climate change. To understand the fine-scale feedback between hydrological processes and water management decisions, a distributed hydrological model embedded with a reservoir component is desired. In this study, a multi-purpose reservoir module with predefined complex operational rules was integrated into the Distributed Hydrology Soil Vegetation Model (DHSVM). Conditional operating rules, which are designed to reduce flood risk and enhance water supply reliability, were adopted in this module. The performance of the integrated model was tested over the upper Brazos River Basin in Texas, where two U.S. Army Corps of Engineers managed reservoirs, Lake Whitney and Aquilla Lake, are located. The integrated model was calibrated and validated using observed reservoir inflow, outflow, and storage data. The error statistics were summarized for both reservoirs on a daily, weekly, and monthly basis. Using the weekly reservoir storage for Lake Whitney as an example, the coefficient of determination (R-2) was 0.85 and the Nash-Sutcliff Efficiency (NSE) was 0.75. These results suggest that this reservoir module holds promise for use in sub-monthly hydrological simulations. With the new reservoir component, the DHSVM provides a platform to support adaptive water resources management under the impacts of evolving anthropogenic activities and substantial environmental changes. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zhao, Gang; Gao, Huilin] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA. [Naz, Bibi S.; Kao, Shih-Chieh] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Naz, Bibi S.; Kao, Shih-Chieh] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Voisin, Nathalie] Pacific Northwest Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Gao, HL (reprint author), Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA. EM hgao@civil.tamu.edu OI Voisin, Nathalie/0000-0002-6848-449X FU U.S. National Science Foundation [CBET-1454297]; W. G. Mills Scholarship [02-650509]; Texas Water Research Institute [G16AP00085]; U.S. Department of Energy [DE-AC05-00OR22725, DE-AC05-76RL01830] FX This research was supported by U.S. National Science Foundation grant CBET-1454297. Gang Zhao was also partially supported by the W. G. Mills Scholarship (02-650509) and the USGS Graduate Student Research Program (G16AP00085) provided by the Texas Water Research Institute. We want to express our great appreciation to Michael F. Schwind (working for USACE) for sharing information about the reservoirs. This research has also benefitted from the use of the Texas A&M Supercomputing Facility (http://sc.tamu.edu) and the Oak Ridge Leadership Computing Facility (https://www.olcf.ornl.gov/). This paper was coauthored by employees of Oak Ridge National Laboratory, managed by UT Battelle, LLC, under contract DE-AC05-00OR22725, and the Pacific Northwest National Laboratory, managed by Battelle under contract DE-AC05-76RL01830 (both contracts are with the U.S. Department of Energy). Accordingly, the publisher, by accepting the article for publication, acknowledges that the United States government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States government purposes. NR 64 TC 0 Z9 0 U1 33 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD DEC PY 2016 VL 98 BP 16 EP 31 DI 10.1016/j.advwatres.2016.10.014 PG 16 WC Water Resources SC Water Resources GA ED2IQ UT WOS:000388667600002 ER PT J AU Sengor, SS Singh, G Dohnalkova, A Spycher, N Ginn, TR Peyton, BM Sani, RK AF Sengor, S. Sevinc Singh, Gursharan Dohnalkova, Alice Spycher, Nicolas Ginn, Timothy R. Peyton, Brent M. Sani, Rajesh K. TI Impact of different environmental conditions on the aggregation of biogenic U(IV) nanoparticles synthesized by Desulfovibrio alaskensis G20 SO BIOMETALS LA English DT Article DE Biogenic uranium; Mobile uraninite; Nanoparticles; Sulfate reducing bacteria; Uranium aggregates ID URANIUM-CONTAMINATED AQUIFER; SHEWANELLA-ONEIDENSIS MR-1; DEHALOGENANS STRAIN 2CP-C; METAL-REDUCING BACTERIUM; IN-SITU BIOREDUCTION; U(VI) REDUCTION; URANINITE NANOPARTICLES; SUBSURFACE SEDIMENTS; MICROBIAL COMMUNITY; DESULFURICANS G20 AB This study investigates the impact of specific environmental conditions on the formation of colloidal U(IV) nanoparticles by the sulfate reducing bacteria (SRB, Desulfovibrio alaskensis G20). The reduction of soluble U(VI) to less soluble U(IV) was quantitatively investigated under growth and non-growth conditions in bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) buffered environments. The results showed that under non-growth conditions, the majority of the reduced U nanoparticles aggregated and precipitated out of solution. High resolution transmission electron microscopy revealed that only a very small fraction of cells had reduced U precipitates in the periplasmic spaces in the presence of PIPES buffer, whereas in the presence of bicarbonate buffer, reduced U was also observed in the cytoplasm with greater aggregation of biogenic U(IV) particles at higher initial U(VI) concentrations. The same experiments were repeated under growth conditions using two different electron donors (lactate and pyruvate) and three electron acceptors (sulfate, fumarate, and thiosulfate). In contrast to the results of the non-growth experiments, even after 0.2 mu m filtration, the majority of biogenic U(IV) remained in the aqueous phase resulting in potentially mobile biogenic U(IV) nanoparticles. Size fractionation results showed that U(IV) aggregates were between 18 and 200 nm in diameter, and thus could be very mobile. The findings of this study are helpful to assess the size and potential mobility of reduced U nanoparticles under different environmental conditions, and would provide insights on their potential impact affecting U(VI) bioremediation efforts at subsurface contaminated sites. C1 [Sengor, S. Sevinc] Southern Methodist Univ, Dept Civil & Environm Engn, Dallas, TX 75275 USA. [Singh, Gursharan; Sani, Rajesh K.] South Dakota Sch Mines & Technol, Dept Chem & Biol Engn, 501 East St Joseph St, Rapid City, SD 57701 USA. [Dohnalkova, Alice] Pacif Northwest Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Spycher, Nicolas] Div Earth Sci, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Ginn, Timothy R.] Washington State Univ, Dept Civil & Environm Engn, 405 Spokane St, Pullman, WA 99164 USA. [Peyton, Brent M.] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT 59715 USA. RP Sani, RK (reprint author), South Dakota Sch Mines & Technol, Dept Chem & Biol Engn, 501 East St Joseph St, Rapid City, SD 57701 USA. EM Rajesh.Sani@sdsmt.edu RI Spycher, Nicolas/E-6899-2010; OI Peyton, Brent/0000-0003-0033-0651 FU Environmental Remediation Sciences Program (ERSP) within the office of Biological and Environmental Research, U.S. Department of Energy [DE-FG02-07-ER-64366, G125-08-W1577]; Department of Energy's Office of Biological and Environmental Research; Department of Chemical and Biological Engineering at the South Dakota School of Mines and Technology FX The authors acknowledge the financial support provided by Environmental Remediation Sciences Program (ERSP) within the office of Biological and Environmental Research, U.S. Department of Energy (grant#DE-FG02-07-ER-64366 with Subaward#G125-08-W1577). A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Rajesh Sani also acknowledges the support from the Department of Chemical and Biological Engineering at the South Dakota School of Mines and Technology. NR 62 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0966-0844 EI 1572-8773 J9 BIOMETALS JI Biometals PD DEC PY 2016 VL 29 IS 6 BP 965 EP 980 DI 10.1007/s10534-016-9969-6 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EC6NL UT WOS:000388253100002 PM 27623995 ER PT J AU Wang, XF Zhao, HY Wu, TP Liu, YZ Liang, XH AF Wang, Xiaofeng Zhao, Haiyan Wu, Tianpin Liu, Yuzi Liang, Xinhua TI Synthesis of Highly Dispersed and Highly Stable Supported Au-Pt Bimetallic Catalysts by a Two-Step Method SO CATALYSIS LETTERS LA English DT Article DE Gold (Au); Platinum (Pt); Atomic layer deposition (ALD); Glucose oxidation; Bimetallic catalyst; High stability ID ATOMIC LAYER DEPOSITION; SELECTIVE OXIDATION; GLUCOSE-OXIDATION; INCIPIENT WETNESS; CARBON NANOTUBES; GOLD CATALYSTS; NANOPARTICLES; HYDROGENATION; SHELL; ACID AB Highly dispersed and highly stable supported bimetallic catalysts were prepared using a two-step process. Pt nanoparticles (NPs) were first deposited on porous gamma-Al2O3 particles by atomic layer deposition (ALD). Au NPs were synthesized by using gold(III) chloride as the Au precursor, and then immobilized on ALD Pt/gamma-Al2O3 particles. The Au-Pt bimetallic catalysts were highly active and highly stable in a vigorously stirred liquid phase reaction of glucose oxidation. [GRAPHICS] . C1 [Wang, Xiaofeng; Liang, Xinhua] Missouri Univ Sci & Technol, Dept Chem & Biochem Engn, Rolla, MO 65409 USA. [Zhao, Haiyan] Univ Idaho, Dept Chem & Mat Engn, Idaho Falls, ID 83401 USA. [Wu, Tianpin] Argonne Natl Lab, Adv Photon Source, XRay Sci Div, 9700 S Cass Ave Argonne, Argonne, IL 60439 USA. [Liu, Yuzi] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Liang, XH (reprint author), Missouri Univ Sci & Technol, Dept Chem & Biochem Engn, Rolla, MO 65409 USA. EM liangxin@mst.edu FU ACS; U.S. DOE [DE-AC02-06CH11357] FX This work was supported in part by the ACS Petroleum Research Fund. The authors thank Jessica TerBush at the Materials Research Center at Missouri University of Science and Technology for TEM analysis. Use of the Advanced Photon Source and Center for Nanoscale Materials, Office of Science User Facilities operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 35 TC 1 Z9 1 U1 22 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD DEC PY 2016 VL 146 IS 12 BP 2606 EP 2613 DI 10.1007/s10562-016-1893-4 PG 8 WC Chemistry, Physical SC Chemistry GA EC6NV UT WOS:000388254100021 ER PT J AU Alexandrov, V Sushko, ML Schreiber, DK Bruemmer, SM Rosso, KM AF Alexandrov, Vitaly Sushko, Maria L. Schreiber, Daniel K. Bruemmer, Stephen M. Rosso, Kevin M. TI Adsorption and diffusion of atomic oxygen and sulfur at pristine and doped Ni surfaces with implications for stress corrosion cracking SO CORROSION SCIENCE LA English DT Article DE Alloy; Nickel; Modelling studies; Oxidation; Sulfidation ID INITIO MOLECULAR-DYNAMICS; ELECTRON-MICROSCOPY; STAGE OXIDATION; ALLOY; WATER; CR; SULFIDATION; TRANSITION; SUPERALLOYS; STEAM AB A density-functional-theory modeling study of atomic oxygen/sulfur adsorption and diffusion at pristine and doped Ni(111) and (110) surfaces is presented. We find that oxygen and sulfur feature comparable adsorption energies over the same surface sites, however, the surface diffusion of sulfur is characterized by an activation barrier about one half that of oxygen. Calculations with different alloying elements at Ni surfaces show that Cr strongly enhances surface binding of both species in comparison to Al. These results in combination with previous modeling studies help explain the observed differences in selective grain boundary oxidation mechanisms of Ni-Cr and Ni-Al alloys. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Alexandrov, Vitaly; Sushko, Maria L.; Schreiber, Daniel K.; Bruemmer, Stephen M.; Rosso, Kevin M.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Alexandrov, Vitaly] Univ Nebraska, Dept Biomol & Chem Engn, Lincoln, NE 68588 USA. RP Alexandrov, V (reprint author), Univ Nebraska, Dept Biomol & Chem Engn, Lincoln, NE 68588 USA. EM valexandrov2@unl.edu FU US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This material is based upon research supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The computations were performed using the PNNL Institutional Computing Facility at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for DOE by Battelle. NR 38 TC 0 Z9 0 U1 14 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD DEC PY 2016 VL 113 BP 26 EP 30 DI 10.1016/j.corsci.2016.10.001 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EC5EK UT WOS:000388155700003 ER PT J AU Tumuluru, JS McCulloch, R AF Tumuluru, Jaya Shankar McCulloch, Richard TI Application of Hybrid Genetic Algorithm Routine in Optimizing Food and Bioengineering Processes SO FOODS LA English DT Article DE hybrid genetic algorithm; optimization; Ackley function; response surface functions; anthocyanin yield; fatty acid methyl ester; xylanase activity ID RESPONSE-SURFACE METHODOLOGY; SINGLE-SCREW EXTRUSION; DIE PELLET MILL; OSMOTIC DEHYDRATION; ENERGY-CONSUMPTION; OPTIMIZATION; MOISTURE; COOKING; DESIGN; FISH AB Optimization is a crucial step in the analysis of experimental results. Deterministic methods only converge on local optimums and require exponentially more time as dimensionality increases. Stochastic algorithms are capable of efficiently searching the domain space; however convergence is not guaranteed. This article demonstrates the novelty of the hybrid genetic algorithm (HGA), which combines both stochastic and deterministic routines for improved optimization results. The new hybrid genetic algorithm developed is applied to the Ackley benchmark function as well as case studies in food, biofuel, and biotechnology processes. For each case study, the hybrid genetic algorithm found a better optimum candidate than reported by the sources. In the case of food processing, the hybrid genetic algorithm improved the anthocyanin yield by 6.44%. Optimization of bio-oil production using HGA resulted in a 5.06% higher yield. In the enzyme production process, HGA predicted a 0.39% higher xylanase yield. Hybridization of the genetic algorithm with a deterministic algorithm resulted in an improved optimum compared to statistical methods. C1 [Tumuluru, Jaya Shankar; McCulloch, Richard] Idaho Natl Lab, Biofuels Dept, Energy & Environm Directorate, 750 Univ Blvd,MS 3570, Idaho Falls, ID 83415 USA. RP Tumuluru, JS (reprint author), Idaho Natl Lab, Biofuels Dept, Energy & Environm Directorate, 750 Univ Blvd,MS 3570, Idaho Falls, ID 83415 USA. EM jayashankar.tumuluru@inl.gov OI Tumuluru, Jaya Shankar/0000-0002-6691-0723 NR 27 TC 0 Z9 0 U1 6 U2 6 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2304-8158 J9 FOODS JI Foods PD DEC PY 2016 VL 5 IS 4 AR 76 DI 10.3390/foods5040076 PG 13 WC Food Science & Technology SC Food Science & Technology GA EC9DQ UT WOS:000388444800010 ER PT J AU Cogliati, A Duan, ZY Wohlberg, B AF Cogliati, Andrea Duan, Zhiyao Wohlberg, Brendt TI Context-Dependent Piano Music Transcription With Convolutional Sparse Coding SO IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING LA English DT Article DE Automatic music transcription; convolutional sparse coding; piano transcription; reverberation ID FUNDAMENTAL-FREQUENCY ESTIMATION; POLYPHONIC MUSIC; MULTIPITCH ESTIMATION; SPECTRAL SMOOTHNESS; REPRESENTATIONS; SIGNALS; MODEL; SYSTEM; MELODY AB This paper presents a novel approach to automatic transcription of piano music in a context-dependent setting. This approach employs convolutional sparse coding to approximate the music waveform as the summation of piano note waveforms (dictionary elements) convolved with their temporal activations (onset transcription). The piano note waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. During transcription, the note waveforms are fixed and their temporal activations are estimated and post-processed to obtain the pitch and onset transcription. This approach works in the time domain, models temporal evolution of piano notes, and estimates pitches and onsets simultaneously in the same framework. Experiments show that it significantly outperforms a state-of-the-art music transcriptionmethod trained in the same context-dependent setting, in both transcription accuracy and time precision, in various scenarios including synthetic, anechoic, noisy, and reverberant environments. C1 [Cogliati, Andrea; Duan, Zhiyao] Univ Rochester, Dept Elect & Comp Engn, 601 Elmwood Ave, Rochester, NY 14627 USA. [Wohlberg, Brendt] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Cogliati, A (reprint author), Univ Rochester, Dept Elect & Comp Engn, 601 Elmwood Ave, Rochester, NY 14627 USA. EM andrea.cogliati@rochester.edu; zhiyao.duan@rochester.edu; brendt@lanl.gov OI Wohlberg, Brendt/0000-0002-4767-1843; Cogliati, Andrea/0000-0001-5877-7654 FU U.S. Department of Energy through the LANL/LDRD Program FX This research was supported by the U.S. Department of Energy through the LANL/LDRD Program. NR 63 TC 0 Z9 0 U1 4 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2329-9290 J9 IEEE-ACM T AUDIO SPE JI IEEE-ACM Trans. Audio Speech Lang. PD DEC PY 2016 VL 24 IS 12 BP 2218 EP 2230 DI 10.1109/TASLP.2016.2598305 PG 13 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA EC5TK UT WOS:000388199000001 ER PT J AU Forrester, DI Bonal, D Dawud, S Gessler, A Granier, A Pollastrini, M Grossiord, C AF Forrester, David I. Bonal, Damien Dawud, Seid Gessler, Arthur Granier, Andre Pollastrini, Martina Grossiord, Charlotte TI Drought responses by individual tree species are not often correlated with tree species diversity in European forests SO JOURNAL OF APPLIED ECOLOGY LA English DT Article DE carbon isotopes; climate change; competition; complementarity; drought; European mixed-species forest; facilitation; forest diversity; species interaction; water stress ID WATER-USE EFFICIENCY; CARBON-ISOTOPE DISCRIMINATION; SPRUCE PICEA-ABIES; NORWAY SPRUCE; BOREAL FORESTS; STAND DENSITY; RING WIDTH; SCOTS PINE; CLIMATE; BEECH AB Drought frequency and intensity are predicted to increase in many parts of the Northern Hemisphere and the effects of such changes on forest growth and tree mortality are already evident in many regions around the world. Mixed-species forests and increasing tree species diversity have been put forward as important risk reduction and adaptation strategies in the face of climate change. However, little is known about whether the species interactions that occur in diverse forests will reduce drought susceptibility or water stress. In this study, we focused on the effect of drought on individual tree species (n=16) within six regions of Europe and assessed whether this response was related to tree species diversity and stand density, and whether community-level responses resulted from many similar or contrasting species-level responses. For each species in each plot, we calculated the increase in carbon isotope composition of latewood from a wet to a dry year (C-13) as an estimate of its drought stress level. When significant community-level relationships occurred (three of six regions), there was only one species within the given community that showed a significant relationship (three of 25 species-region combinations), showing that information about a single species can be a poor indicator of the response of other species or the whole community. There were many two-species mixtures in which both species were less water-stressed compared with their monocultures, but also many mixtures where both species were more stressed compared with their monocultures. Furthermore, a given species combination responded differently in different regions.Synthesis and applications. Our study shows that drought stress may sometimes be reduced in mixed-species forests, but this is not a general pattern, and even varies between sites for a given combination. The management or prediction of drought stress requires consideration of the physiological characteristics of the mixed species, and how this complements the water-related climatic and edaphic features of the site, rather than species richness. Our study shows that drought stress may sometimes be reduced in mixed-species forests, but this is not a general pattern, and even varies between sites for a given combination. The management or prediction of drought stress requires consideration of the physiological characteristics of the mixed species, and how this complements the water-related climatic and edaphic features of the site, rather than species richness. C1 [Forrester, David I.] Univ Freiburg, Fac Environm & Nat Resources, Chair Silviculture, Tennenbacherstr 4, D-79108 Freiburg, Germany. [Bonal, Damien; Granier, Andre] Univ Lorraine, INRA, UMR EEF INRA, F-54280 Champenoux, France. [Dawud, Seid] Wollo Univ, Coll Agr, Dept Forestry, POB 1145, Dessie, Ethiopia. [Gessler, Arthur] Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland. [Gessler, Arthur] Berlin Brandenburg Inst Adv Biodivers Res, D-14195 Berlin, Germany. [Pollastrini, Martina] Univ Florence, Dept Agrifood Prod & Environm Sci, Piazzale Cascine 28, I-50144 Florence, Italy. [Grossiord, Charlotte] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. RP Forrester, DI (reprint author), Univ Freiburg, Fac Environm & Nat Resources, Chair Silviculture, Tennenbacherstr 4, D-79108 Freiburg, Germany. EM david.forrester@waldbau.un-ifreiburg.de RI Pollastrini, Martina/N-7989-2014; Gessler, Arthur/C-7121-2008 OI Pollastrini, Martina/0000-0003-0959-9489; Gessler, Arthur/0000-0002-1910-9589 FU European Union [265171]; Heisenberg Fellowship from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) [FO 791/4-1]; Swiss National Science Foundation [31003A_159866/1]; French National Research Agency [ANR-12-LABXARBRE-01] FX We are especially grateful to Bogdan Jaroszewicz, Filippo Bussotti, Timo Domish, Olivier Bouriaud, Helge Bruelheide, Leena Finer, Fernando Valladares and all the site technicians for establishing the study stands and for their logistical help. We thank Daniel Avacariei, Iulian Danila, Gabriel Duduman and Ionu. Barnoaiea for their help with the wood core sampling. We thank the technical Isotope Platform of INRA Nancy and the Isotope Facility of UC Davis for the carbon isotope analyses. Part of the research leading to these results received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 265171. We thank Michael Scherer-Lorenzen for his contribution to the success of the FunDivEUROPE project. D.I.F. was funded by a Heisenberg Fellowship (FO 791/4-1) from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). A.G. acknowledges support from the Swiss National Science Foundation (31003A_159866/1). This research was conducted within the framework of the Laboratory of Excellence ARBRE ('Recherches Avancees sur la Biologie de l'Arbre et les Ecosystemes Forestiers'; ANR-12-LABXARBRE-01) supported by the French National Research Agency. NR 48 TC 0 Z9 0 U1 21 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8901 EI 1365-2664 J9 J APPL ECOL JI J. Appl. Ecol. PD DEC PY 2016 VL 53 IS 6 BP 1725 EP 1734 DI 10.1111/1365-2664.12745 PG 10 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA EC0DT UT WOS:000387768800010 ER PT J AU Borovikov, V Mendelev, MI King, AH AF Borovikov, Valery Mendelev, Mikhail I. King, Alexander H. TI Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article DE stacking fault energy; molecular dynamics simulation; semi-empirical potentials ID TILT GRAIN-BOUNDARIES; MOLECULAR-DYNAMICS; INTERATOMIC POTENTIALS; FREE-VOLUME; FCC METALS; SIMULATION; INTERFACES; SIGMA; SLIP; AL AB Dislocation nucleation from grain boundaries (GB) can control plastic deformation in nano-crystalline metals under certain conditions, but little is known about what controls dislocation nucleation, because when data from different materials are compared, the variations of many interacting properties tend to obscure the effects of any single property. In this study, we seek clarification by applying a unique capability of semi-empirical potentials in molecular dynamics simulations: the potentials can be modified such that all significant material properties but one, are kept constant. Using a set of potentials developed to isolate the effects of stacking fault energy, we show that for a given grain boundary, loading orientation and strain rate, the yield stress depends linearly on both the stable and unstable stacking fault energies. The coefficients of proportionality depend on the GB structure and the value of the yield stress is related to the density of the E structural units in the GB. While the impact of the stable stacking fault energy is easy to understand, the unstable stacking fault energy requires more elucidation and we provide a framework for understanding how it affects the nucleation and propagation process. C1 [Borovikov, Valery; Mendelev, Mikhail I.; King, Alexander H.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [King, Alexander H.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Mendelev, MI (reprint author), Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM mendelev@ameslab.gov RI King, Alexander/P-6497-2015 OI King, Alexander/0000-0001-7101-6585 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. NR 33 TC 0 Z9 0 U1 12 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD DEC PY 2016 VL 24 IS 8 AR 085017 DI 10.1088/0965-0393/24/8/085017 PG 14 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA EC6GV UT WOS:000388235400001 ER PT J AU Palmese, A Lahav, O Banerji, M Gruen, D Jouvel, S Melchior, P Aleksic, J Annis, J Diehl, HT Hartley, WG Jeltema, T Romer, AK Rozo, E Rykoff, ES Seitz, S Suchyta, E Zhang, Y Abbott, TMC Abdalla, FB Allam, S Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Capozzi, D Rosell, AC Kind, MC Carretero, J Crocce, M Cunha, CE D'Andrea, CB da Costa, LN Desai, S Dietrich, JP Doel, P Estrada, J Evrard, AE Flaugher, B Frieman, J Gerdes, DW Goldstein, DA Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Li, TS Lima, M Maia, MAG Marshall, JL Miller, CJ Miquel, R Nord, B Ogando, R Plazas, AA Roodman, A Sanchez, E Scarpine, V Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Swanson, MEC Tarle, G Thomas, D Tucker, D Vikram, V AF Palmese, A. Lahav, O. Banerji, M. Gruen, D. Jouvel, S. Melchior, P. Aleksic, J. Annis, J. Diehl, H. T. Hartley, W. G. Jeltema, T. Romer, A. K. Rozo, E. Rykoff, E. S. Seitz, S. Suchyta, E. Zhang, Y. Abbott, T. M. C. Abdalla, F. B. Allam, S. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Capozzi, D. Carnero Rosell, A. Kind, M. Carrasco Carretero, J. Crocce, M. Cunha, C. E. D'Andrea, C. B. da Costa, L. N. Desai, S. Dietrich, J. P. Doel, P. Estrada, J. Evrard, A. E. Flaugher, B. Frieman, J. Gerdes, D. W. Goldstein, D. A. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Li, T. S. Lima, M. Maia, M. A. G. Marshall, J. L. Miller, C. J. Miquel, R. Nord, B. Ogando, R. Plazas, A. A. Roodman, A. Sanchez, E. Scarpine, V. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Swanson, M. E. C. Tarle, G. Thomas, D. Tucker, D. Vikram, V. TI Comparing Dark Energy Survey and HST-CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; galaxies: clusters: general; galaxies: evolution; galaxies: photometry ID SCIENCE VERIFICATION DATA; PHOTOMETRIC REDSHIFTS; LEGACY SURVEY; CATALOG; HUBBLE; FIELD; VLT; DISTRIBUTIONS; RESOLUTION; PRECISION AB We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (five filters) with those from the Hubble Space Telescope Cluster Lensing And Supernova Survey (CLASH; 17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25 per cent of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f(star) = (6.8 +/- 1.7) x 10(-3) within a radius of r(200c) similar or equal to 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both data sets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the similar to 100 000 clusters that will be observed within this survey and yield important information about galaxy evolution. C1 [Palmese, A.; Lahav, O.; Jouvel, S.; Hartley, W. G.; Abdalla, F. B.; Benoit-Levy, A.; Brooks, D.; Doel, P.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Banerji, M.] Univ Cambidge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Gruen, D.; Rykoff, E. S.; Burke, D. L.; Roodman, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Gruen, D.; Rykoff, E. S.; Burke, D. L.; Cunha, C. E.; Roodman, A.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Gruen, D.; Seitz, S.] Univ Observ Munich, Scheinerstr 1, D-81679 Munich, Germany. [Gruen, D.; Seitz, S.] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany. [Melchior, P.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Aleksic, J.; Carretero, J.; Miquel, R.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain. [Annis, J.; Diehl, H. T.; Allam, S.; Buckley-Geer, E.; Estrada, J.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Sobreira, F.; Tucker, D.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Jeltema, T.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Rozo, E.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Zhang, Y.; Evrard, A. E.; Gerdes, D. W.; Miller, C. J.; Tarle, G.] Univ Michigan, Dept Phys, 450 Church St, Ann Arbor, MI 48109 USA. [Abbott, T. M. C.; James, D. J.; Smith, R. C.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Abdalla, F. B.] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa. [Benoit-Levy, A.; Bertin, E.] Inst Astrophys Paris, CNRS, UMR 7095, F-75014 Paris, France. [Benoit-Levy, A.; Bertin, E.] UPMC Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Capozzi, D.; D'Andrea, C. B.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Carnero Rosell, A.; da Costa, L. N.; Lima, M.; Maia, M. A. G.; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Carnero Rosell, A.; da Costa, L. N.; Maia, M. A. G.; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Kind, M. Carrasco; Gruendl, R. A.; Sevilla-Noarbe, I.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Crocce, M.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans S-N, E-08193 Bellaterra, Barcelona, Spain. [D'Andrea, C. B.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Desai, S.; Dietrich, J. P.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.; Dietrich, J. P.] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Evrard, A. E.; Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Frieman, J.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Goldstein, D. A.] Univ Calif Berkeley, Dept Astron, 501 Campbell Hall, Berkeley, CA 94720 USA. [Goldstein, D. A.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Honscheid, K.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, J. L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Lima, M.] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Sanchez, E.; Sevilla-Noarbe, I.] CIEMAT, Madrid, Spain. [Vikram, V.] Argonne Natl Lab, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Palmese, A (reprint author), UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. EM antonella.palmese.13@ucl.ac.uk RI Ogando, Ricardo/A-1747-2010; OI Ogando, Ricardo/0000-0003-2120-1154; Abdalla, Filipe/0000-0003-2063-4345; Sobreira, Flavia/0000-0002-7822-0658 FU European Research Council [FP7/291329]; SFB-Transregio - Deutsche Forschungsgemeinschaft (DFG) [33]; DFG cluster of excellence 'Origin and Structure of the Universe'; NASA through the Einstein Fellowship Program [PF5-160138]; DOE [DE-SC0013541]; U.S. Department of Energy; U.S. National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundayao Carlos Chagas Filho de Amparo Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Unions [240672, 291329, 306478] FX AP acknowledges the UCL PhD studentship. OL acknowledges support from a European Research Council Advanced Grant FP7/291329, which also supported M. Banerji and S. Jouvel.; DG and SS were supported by SFB-Transregio 33 'The Dark Universe' by the Deutsche Forschungsgemeinschaft (DFG) and the DFG cluster of excellence 'Origin and Structure of the Universe'. DG was also supported by NASA through the Einstein Fellowship Program, grant PF5-160138.; TJ acknowledges support from the DOE grant DE-SC0013541.; This work has benefitted by data taken by the CLASH collaboration.; A. P and OL acknowledge N. Bahcall and M. Milgrom for stimulating discussions about this work. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundayao Carlos Chagas Filho de Amparo Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University.; The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986, and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. NR 55 TC 0 Z9 0 U1 4 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 1 PY 2016 VL 463 IS 2 BP 1486 EP 1499 DI 10.1093/mnras/stw2062 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC4RY UT WOS:000388122400029 ER PT J AU Bernard, EJ Ferguson, AMN Schlafly, EF Martin, NF Rix, HW Bell, EF Finkbeiner, DP Goldman, B Martinez-Delgado, D Sesar, B Wyse, RFG Burgett, WS Chambers, KC Draper, PW Hodapp, KW Kaiser, N Kudritzki, RP Magnier, EA Metcalfe, N Wainscoat, RJ Waters, C AF Bernard, Edouard J. Ferguson, Annette M. N. Schlafly, Edward F. Martin, Nicolas F. Rix, Hans-Walter Bell, Eric F. Finkbeiner, Douglas P. Goldman, Bertrand Martinez-Delgado, David Sesar, Branimir Wyse, Rosemary F. G. Burgett, William S. Chambers, Kenneth C. Draper, Peter W. Hodapp, Klaus W. Kaiser, Nicholas Kudritzki, Rolf-Peter Magnier, Eugene A. Metcalfe, Nigel Wainscoat, Richard J. Waters, Christopher TI A synoptic map of halo substructures from the Pan-STARRS1 3 pi survey SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; Hertzsprung-Russell and colour-magnitude diagrams; Galaxy: halo-Galaxy: structure ID DIGITAL SKY SURVEY; MILKY-WAY HALO; TRIANGULUM-ANDROMEDA REGION; GLOBULAR-CLUSTER PALOMAR-5; SURVEY COMMISSIONING DATA; DWARF SPHEROIDAL GALAXY; STELLAR TIDAL STREAMS; SATELLITE SEGUE 1; DARK-MATTER HALO; DEBRIS STREAM AB We present a panoramic map of the entire MilkyWay halo north of delta similar to -30 degrees (similar to 30 000 deg(2)), constructed by applying the matched-filter technique to the Pan-STARRS1 3 pi Survey data set. Using single-epoch photometry reaching to g similar to 22, we are sensitive to stellar substructures with heliocentric distances between 3.5 and similar to 35 kpc. We recover almost all previously reported streams in this volume and demonstrate that several of these are significantly more extended than earlier data sets have indicated. In addition, we also report five new candidate stellar streams. One of these features appears significantly broader and more luminous than the others and is likely the remnant of a dwarf galaxy. The other four streams are consistent with a globular cluster origin, and three of these are rather short in projection (less than or similar to 10 degrees), suggesting that streams like Ophiuchus may not be that rare. Finally, a significant number of more marginal substructures are also revealed by our analysis; many of these features can also be discerned in matched-filter maps produced by other authors from SDSS data, and hence they are very likely to be genuine. However, the extant 3 pi data is currently too shallow to determine their properties or produce convincing colour-magnitude diagrams. The global view of the Milky Way provided by Pan-STARRS1 provides further evidence for the important role of both globular cluster disruption and dwarf galaxy accretion in building the Milky Way's stellar halo. C1 [Bernard, Edouard J.] Univ Cote dAzur, CNRS, OCA, Lagrange, France. [Bernard, Edouard J.; Ferguson, Annette M. N.; Wyse, Rosemary F. G.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Schlafly, Edward F.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Martin, Nicolas F.] Univ Strasbourg, CNRS, UMR 7550, Observ Astron Strasbourg, 11 Rue Univ, F-67000 Strasbourg, France. [Martin, Nicolas F.; Rix, Hans-Walter; Goldman, Bertrand; Sesar, Branimir] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Bell, Eric F.] Univ Michigan, Dept Astron, 500 Church St, Ann Arbor, MI 48109 USA. [Finkbeiner, Douglas P.] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. [Finkbeiner, Douglas P.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Martinez-Delgado, David] Heidelberg Univ, Zentrum Astron, Astron Rechen Inst, Monchhofstr 12-14, D-69120 Heidelberg, Germany. [Wyse, Rosemary F. G.] Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA. [Burgett, William S.] GMTO Corp, 465 N Halstead St,Suite 250, Pasadena, CA 91107 USA. [Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Wainscoat, Richard J.; Waters, Christopher] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Draper, Peter W.; Metcalfe, Nigel] Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. RP Bernard, EJ (reprint author), Univ Cote dAzur, CNRS, OCA, Lagrange, France.; Bernard, EJ (reprint author), Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. EM ebernard@oca.eu FU STFC; CNES; DFG [SFB 881]; Leverhulme Trust; National Aeronautics and Space Administration [NNX08AR22G]; National Science Foundation [AST-1238877] FX The authors are grateful to Ana Bonaca for granting permission to use part of her maps in this publication, and to Jorge Penarrubia and the anonymous referee for useful comments. EJB acknowledges support from a consolidated grant from STFC and from the CNES postdoctoral fellowship program. HWR acknowledges support from the DFG grant SFB 881 (A3). RFGW acknowledges support through a Visiting Professorship from the Leverhulme Trust, held at the University of Edinburgh. This research work has made use of the Python packages Numpy4 (Walt, Colbert & Varoquaux 2011), Astropy5 (Astropy Collaboration et al. 2013), Matplotlib6 (Hunter 2007), and Pandas7 (McKinney 2010); the IAC-STAR Synthetic CMD computation code, which is supported and maintained by the computer division of the Instituto de Astrofisica de Canarias; and the NASA/IPAC Extragalactic Database which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.; The PS1 Surveys have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, and the University of Maryland. NR 86 TC 1 Z9 1 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 1 PY 2016 VL 463 IS 2 BP 1759 EP 1768 DI 10.1093/mnras/stw2134 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC4RY UT WOS:000388122400049 ER PT J AU Mehrtens, N Romer, AK Nichol, RC Collins, CA Sahlen, M Rooney, PJ Mayers, JA Bermeo-Hernandez, A Bristow, M Capozzi, D Christodoulou, L Comparat, J Hilton, M Hoyle, B Kay, ST Liddle, AR Mann, RG Masters, K Miller, CJ Parejko, JK Prada, F Ross, AJ Schneider, DP Stott, JP Streblyanska, A Viana, PTP White, M Wilcox, H Zehavi, I AF Mehrtens, Nicola Romer, A. Kathy Nichol, Robert C. Collins, Chris A. Sahlen, Martin Rooney, Philip J. Mayers, Julian A. Bermeo-Hernandez, A. Bristow, Martyn Capozzi, Diego Christodoulou, L. Comparat, Johan Hilton, Matt Hoyle, Ben Kay, Scott T. Liddle, Andrew R. Mann, Robert G. Masters, Karen Miller, Christopher J. Parejko, John K. Prada, Francisco Ross, Ashley J. Schneider, Donald P. Stott, John P. Streblyanska, Alina Viana, Pedro T. P. White, Martin Wilcox, Harry Zehavi, Idit TI The XMM Cluster Survey: the halo occupation number of BOSS galaxies in X-ray clusters SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: haloes; X-rays: galaxies: clusters ID OSCILLATION SPECTROSCOPIC SURVEY; DIGITAL SKY SURVEY; LUMINOUS RED GALAXIES; BARYON ACOUSTIC-OSCILLATIONS; WEAK LENSING SIGNAL; LOW-REDSHIFT SAMPLE; DARK-MATTER HALOES; SDSS-III; DATA RELEASE; FINAL DATA AB We present a direct measurement of the mean halo occupation distribution (HOD) of galaxies taken from the eleventh data release (DR11) of the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS). The HOD of BOSS low-redshift (LOWZ: 0.2 < z < 0.4) and Constant-Mass (CMASS: 0.43 < z < 0.7) galaxies is inferred via their association with the dark matter haloes of 174 X-ray-selected galaxy clusters drawn from the XMM Cluster Survey (XCS). Halo masses are determined for each galaxy cluster based on X-ray temperature measurements, and range between log(10)(M-180/M-circle dot) = 13 and 15. Our directly measured HODs are consistent with the HOD-model fits inferred via the galaxy-clustering analyses of Parejko et al. for the BOSS LOWZ sample and White et al. for the BOSS CMASS sample. Under the simplifying assumption that the other parameters that describe the HOD hold the values measured by these authors, we have determined a best-fitting alpha-index of 0.91 +/- 0.08 and 1.27(-0.04)(+0.03) for the CMASS and LOWZ HOD, respectively. These alpha-index values are consistent with those measured by White et al. and Parejko et al. In summary, our study provides independent support for the HOD models assumed during the development of the BOSS mock-galaxy catalogues that have subsequently been used to derive BOSS cosmological constraints. C1 [Mehrtens, Nicola] Texas A&M Univ, George P & Cynthia W Mitchell Inst Fundamental Ph, Dept Phys & Astron, College Stn, TX 77843 USA. [Mehrtens, Nicola; Romer, A. Kathy; Rooney, Philip J.; Mayers, Julian A.; Bermeo-Hernandez, A.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Nichol, Robert C.; Capozzi, Diego; Christodoulou, L.; Masters, Karen; Ross, Ashley J.; Wilcox, Harry] Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg, Portsmouth PO1 3FX, Hants, England. [Collins, Chris A.; Bristow, Martyn] Liverpool John Moores Univ, Astrophys Res Inst, IC2, Liverpool Sci Pk,Brownlow Hill, Liverpool L5 3AF, Merseyside, England. [Sahlen, Martin; Stott, John P.] Univ Oxford, Dept Phys, BIPAC, Denys Wilkinson Bldg,1 Keble Rd, Oxford OX1 3RH, England. [Comparat, Johan; Prada, Francisco] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain. [Hilton, Matt] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Sch Math Stat & Comp Sci, Westville Campus, ZA-4041 Durban, South Africa. [Hoyle, Ben] Ludwig Maximilians Univ Muenchen, Univ Sternwarte, Fak Phys, Scheinerstr 1, D-81679 Munich, Germany. [Kay, Scott T.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Liddle, Andrew R.; Mann, Robert G.] Univ Edinburgh, Inst Astron, Royal Observ, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Miller, Christopher J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Parejko, John K.] Univ Washington, Dept Astron, Box 351580, Seattle, WA 98195 USA. [Prada, Francisco] Inst Astrofis Andalucia CSIC, Glorieta Astron, E-18080 Granada, Spain. [Prada, Francisco] Univ Autonoma Madrid, Inst Fis Teor, E-28049 Madrid, Spain. [Ross, Ashley J.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Streblyanska, Alina] IAC, Calle Via Lactea S-N, E-38200 Tenerife, Spain. [Viana, Pedro T. P.] Univ Porto, Inst Astrofis & Ciencias Espaco, CAUP, Rua Estrelas, P-4150762 Oporto, Portugal. [Viana, Pedro T. P.] Univ Porto, Dept Fis & Astron, Fac Ciencias, Rua Campo Alegre 687, P-4169007 Oporto, Portugal. [White, Martin] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [White, Martin] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Zehavi, Idit] Case Western Reserve Univ, Dept Astron, 10900 Euclid Ave, Cleveland, OH 44106 USA. RP Mehrtens, N (reprint author), Texas A&M Univ, George P & Cynthia W Mitchell Inst Fundamental Ph, Dept Phys & Astron, College Stn, TX 77843 USA.; Mehrtens, N; Romer, AK (reprint author), Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. EM n.mehrtens@gmail.com; romer@sussex.ac.uk RI White, Martin/I-3880-2015; OI White, Martin/0000-0001-9912-5070; Sahlen, Martin/0000-0003-0973-4804 FU Texas AM University; George P. and Cynthia Woods Institute for Fundamental Physics and Astronomy; UK Science and Technology Facilities Council (STFC) [ST/K00090/1, STL000652/1, ST/L005573/1, ST/M000966/1, ST/L000644/1]; Templeton Foundation; STFC; University of Sussex Maths and Physical Sciences School; SEPNet; ICG; Hintze Research Fellowship; Fundacao para a Ciencia e a Tecnologia [UID/FIS/04434/2013]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX NM acknowledges generous support from the Texas A&M University and the George P. and Cynthia Woods Institute for Fundamental Physics and Astronomy. AKR, RN, CAC, ARL are supported by the UK Science and Technology Facilities Council (STFC) grants ST/K00090/1, ST/K00090/1, STL000652/1, ST/L005573/1, ST/M000966/1 and ST/L000644/1. MS acknowledges support by the Templeton Foundation. PR acknowledges support from STFC and the University of Sussex Maths and Physical Sciences School. HW acknowledges support from SEPNet, the ICG and STFC. JPS acknowledges support from a Hintze Research Fellowship. PTPV acknowledges financial support by Fundacao para a Ciencia e a Tecnologia through project UID/FIS/04434/2013. We offer our thanks to members of the BOSS collaboration for their comments on the draft, including David Weinberg, Rachel Mandelbaum and Surhud More.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 111 TC 0 Z9 0 U1 9 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD DEC 1 PY 2016 VL 463 IS 2 BP 1929 EP 1943 DI 10.1093/mnras/stw2119 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC4RY UT WOS:000388122400062 ER PT J AU Kalyoncu, S Heaner, DP Kurt, Z Bethel, CM Ukachukwu, CU Chakravarthy, S Spain, JC Lieberman, RL AF Kalyoncu, Sibel Heaner, David P., Jr. Kurt, Zohre Bethel, Casey M. Ukachukwu, Chiamaka U. Chakravarthy, Srinivas Spain, Jim C. Lieberman, Raquel L. TI Enzymatic hydrolysis by transition-metal-dependent nucleophilic aromatic substitution SO NATURE CHEMICAL BIOLOGY LA English DT Article ID SMALL-ANGLE SCATTERING; SP STRAIN JS329; 5-NITROANTHRANILIC ACID; NITROAROMATIC COMPOUNDS; STREPTOMYCES-SCABIES; MECHANISMS; BIODEGRADATION; EVOLUTIONARY; DEGRADATION; POTATO AB Nitroaromatic compounds are typically toxic and resistant to degradation. Bradyrhizobium species strain JS329 metabolizes 5-nitroanthranilic acid (5NAA), which is a molecule secreted by Streptomyces scabies, the plant pathogen responsible for potato scab. The first biodegradation enzyme is 5NAA-aminohydrolase (5NAA-A), a metalloprotease family member that converts 5NAA to 5-nitrosalicylic acid. We characterized 5NAA-A biochemically and obtained snapshots of its mechanism. 5NAA-A, an octamer that can use several divalent transition metals for catalysis in vitro, employs a nucleophilic aromatic substitution mechanism. Unexpectedly, the metal in 5NAA-A is labile but is readily loaded in the presence of substrate. 5NAA-A is specific for 5NAA and cannot hydrolyze other tested derivatives, which are likewise poor inhibitors. The 5NAA-A structure and mechanism expand our understanding of the chemical ecology of an agriculturally important plant and pathogen, and will inform bioremediation and biocatalytic approaches to mitigate the environmental and ecological impact of nitroanilines and other challenging substrates. C1 [Kalyoncu, Sibel; Heaner, David P., Jr.; Bethel, Casey M.; Ukachukwu, Chiamaka U.; Lieberman, Raquel L.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Spain, Jim C.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Chakravarthy, Srinivas] Argonne Natl Labs, Adv Photon Source, Biophys Collaborat Access Team, Lemont, IL USA. [Spain, Jim C.] Univ West Florida, Ctr Environm Diagnost & Bioremediat, Pensacola, FL 32514 USA. RP Lieberman, RL (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM Raquel.lieberman@chemistry.gatech.edu FU Pew Scholar; NSF CAREER award [0845445]; Georgia Tech Molecular Biophysics Training Award; Petit Undergraduate Research Fellowship; President's Undergraduate Research Award; Georgia Internship for Teachers award; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38]; NIH NIGMS [9P41 GM103622] FX This work was funded in part by a Pew Scholar and NSF CAREER award (0845445) to R.L.L., a Georgia Tech Molecular Biophysics Training Award to S.K., a Petit Undergraduate Research Fellowship and a President's Undergraduate Research Award to D.P.H., and a Georgia Internship for Teachers award to C.M.B. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. Work performed at Bio CAT was supported by NIH NIGMS 9P41 GM103622. Use of the Pilatus 3 1M detector was provided by NIGMS 1S10OD018090-01. NR 60 TC 0 Z9 0 U1 11 U2 11 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1552-4450 EI 1552-4469 J9 NAT CHEM BIOL JI Nat. Chem. Biol. PD DEC PY 2016 VL 12 IS 12 BP 1031 EP + DI 10.1038/NCHENBIO.2191 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA ED1CZ UT WOS:000388582900011 PM 27694799 ER PT J AU Park, JK AF Park, Jong-Kyu TI Special Issue on the 20th Workshop on MHD Stability Control SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Editorial Material C1 [Park, Jong-Kyu] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Park, JK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM jpark@pppl.gov NR 0 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2016 VL 58 IS 12 SI SI AR 120101 DI 10.1088/0741-3335/58/12/120101 PG 2 WC Physics, Fluids & Plasmas SC Physics GA EC5ZH UT WOS:000388215300001 ER PT J AU Wang, ZY Liu, J Zhou, YF Neeway, JJ Schreiber, DK Crum, JV Ryan, JV Wang, XL Wang, FY Zhu, ZH AF Wang, Zhaoying Liu, Jia Zhou, Yufan Neeway, James J. Schreiber, Daniel K. Crum, Jarrod V. Ryan, Joseph V. Wang, Xue-Lin Wang, Fuyi Zhu, Zihua TI Nanoscale imaging of Li and B in nuclear waste glass, a comparison of ToF-SIMS, NanoSIMS, and APT SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE ToF-SIMS; NanoSIMS; APT; nanoscale imaging; lithium; boron; nuclear waste glass ID ATOM-PROBE TOMOGRAPHY; CORROSION; MECHANISMS; DIFFUSION; LAYERS AB It has been very difficult to use popular elemental imaging techniques to image Li and B distribution in glass samples with nanoscale resolution. In this study, time-of-flight secondary ion mass spectrometry, nanoscale secondary ion mass spectrometry, and atom probe tomography (APT) were used to image the distribution of Li and B in two representative glass samples, and their performance was comprehensively compared. APT can provide three-dimensional Li and B imaging with very high spatial resolution (2nm). In addition, absolute quantification of Li and B is possible, although there remains room for improving accuracy. However, the major drawbacks of APT include poor sample compatibility and limited field of view (normally 100x100x500nm(3)). Comparatively, time-of-flight secondary ion mass spectrometry and nanoscale secondary ion mass spectrometry are sample-friendly with flexible field of view (up to 500x500 mu m(2) and image stitching is feasible); however, lateral resolution is limited to only about 100nm. Therefore, secondary ion mass spectrometry and APT can be regarded as complementary techniques for nanoscale imaging of Li and B in glass and other novel materials. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Wang, Zhaoying; Wang, Fuyi] Chinese Acad Sci, Beijing Ctr Mass Spectrometry, CAS Key Lab Analyt Chem Living Biosyst, Beijing Natl Lab Mol Sci,Inst Chem, Beijing 100190, Peoples R China. [Wang, Zhaoying; Liu, Jia; Zhou, Yufan; Zhu, Zihua] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Zhou, Yufan; Wang, Xue-Lin] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China. [Zhou, Yufan; Wang, Xue-Lin] Shandong Univ, Key Lab Particle Phys & Particle Irradiat MOE, Jinan 250100, Peoples R China. [Neeway, James J.; Schreiber, Daniel K.; Crum, Jarrod V.; Ryan, Joseph V.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Wang, FY (reprint author), Chinese Acad Sci, Beijing Ctr Mass Spectrometry, CAS Key Lab Analyt Chem Living Biosyst, Beijing Natl Lab Mol Sci,Inst Chem, Beijing 100190, Peoples R China.; Zhu, ZH (reprint author), Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM fuyi.wang@iccas.ac.cn; zihua.zhu@pnnl.gov RI Zhu, Zihua/K-7652-2012; OI Neeway, Jim/0000-0001-7046-8408 FU Department of Energy's (DOE) Office of Biological and Environmental Research; DOE [DE-AC06-76RLO-1830]; National Natural Science Foundation of China (NSFC) [21127901, 21135006, 21321003] FX The research was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility located at Pacific Northwest National Laboratory (PNNL), and sponsored by the Department of Energy's (DOE) Office of Biological and Environmental Research. PNNL is operated for DOE by Battelle Memorial Institute under contract number DE-AC06-76RLO-1830. F. Y. W. and Z. Y. W. thank the National Natural Science Foundation of China (NSFC grant nos. 21127901, 21135006, and 21321003) for support. We also appreciate Linda H. Burk's English editing. NR 33 TC 0 Z9 0 U1 13 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0142-2421 EI 1096-9918 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD DEC PY 2016 VL 48 IS 13 BP 1392 EP 1401 DI 10.1002/sia.6049 PG 10 WC Chemistry, Physical SC Chemistry GA ED0AQ UT WOS:000388505800005 ER PT J AU Billinge, SJL Duxbury, PM Goncalves, DS Lavor, C Mucherino, A AF Billinge, Simon J. L. Duxbury, Phillip M. Goncalves, Douglas S. Lavor, Carlile Mucherino, Antonio TI Assigned and unassigned distance geometry: applications to biological molecules and nanostructures SO 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH LA English DT Article DE Distance geometry; Graph rigidity; Molecular conformations; Nanostructures; Discretization orders ID GENERIC GLOBAL RIGIDITY; PROTEIN-STRUCTURE DETERMINATION; PAIR DISTRIBUTION-FUNCTIONS; AB-INITIO DETERMINATION; DISCRETIZATION ORDERS; BUILDUP ALGORITHM; GRAPHS; CRYSTALLOGRAPHY; REALIZATIONS; PLANE AB Considering geometry based on the concept of distance, the results found by Menger and Blumenthal originated a body of knowledge called distance geometry. This survey covers some recent developments for assigned and unassigned distance geometry and focuses on two main applications: determination of three-dimensional conformations of biological molecules and nanostructures. C1 [Billinge, Simon J. L.] Columbia Univ, Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Xray Scattering Grp, Upton, NY 11973 USA. [Duxbury, Phillip M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Goncalves, Douglas S.] Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Florianopolis, SC, Brazil. [Lavor, Carlile] Univ Estadual Campinas, Dept Appl Math IMECC UNICAMP, BR-13081970 Campinas, SP, Brazil. [Mucherino, Antonio] Univ Rennes 1, Inst Rech Informat & Syst Aleatoires, F-35042 Rennes, France. RP Goncalves, DS (reprint author), Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Florianopolis, SC, Brazil. EM sb2896@columbia.edu; Duxbury@pa.msu.edu; douglas.goncalves@ufsc.br; clavor@ime.unicamp.br; antonio.mucherino@irisa.fr OI Goncalves, Douglas Soares/0000-0002-8673-1319 FU MSU foundation; University of Rennes 1; FAPESP; CNPq; US National Science foundation DMREF program [DMR-1534910] FX Support for work at Michigan State University by the MSU foundation is gratefully acknowledged. Collaborations with Pavol Juhas, Luke Granlund, Saurabh Gujarathi, Chris Farrow and Connor Glosser are much appreciated. PMD, CL and AM would like to thank Leo Liberti for interesting and motivating discussions. AM was supported by a grant of University of Rennes 1 for the development of international collaborations. PMD and CL were financially supported by the Brazilian research agencies FAPESP and CNPq. Work in the Billinge group was supported by the US National Science foundation DMREF program through grant: DMR-1534910. NR 77 TC 0 Z9 0 U1 6 U2 6 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1619-4500 EI 1614-2411 J9 4OR-Q J OPER RES JI 4OR-Q. J. Oper. Res. PD DEC PY 2016 VL 14 IS 4 BP 337 EP 376 DI 10.1007/s10288-016-0314-2 PG 40 WC Operations Research & Management Science SC Operations Research & Management Science GA EB6DB UT WOS:000387470200002 ER PT J AU Overton, KW Park, DM Yung, MC Dohnalkova, AC Smit, J Jiao, YQ AF Overton, K. Wesley Park, Dan M. Yung, Mimi C. Dohnalkova, Alice C. Smit, John Jiao, Yongqin TI Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID GRAM-NEGATIVE BACTERIA; ESCHERICHIA-COLI; MULTIDRUG EFFLUX; I SECRETION; CYCLE PROGRESSION; SURFACE-LAYER; PROTEOMIC ANALYSIS; TOLC; RESISTANCE; MECHANISM AB Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior. Caulobacter crescentus is unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF(a) and RsaF(b), which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology to Escherichia coli TolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaF(a) and RsaF(b) are not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF(a) and RsaF(b) are required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF(a) and RsaF(b) led to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF(a) and RsaF(b) led to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF(a) and RsaF(b) in cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels in C. crescentus. IMPORTANCE Decreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can conceivably also occur in natural systems. As one example of a system evolved to prevent intracellular protein accumulation, our study demonstrates that Caulobacter crescentus has two homologous outer membrane transporter proteins that are involved in S-layer export. This is an interesting case study that demonstrates how bacteria can evolve redundancy to ensure adequate protein export functionality and maintain high cellular fitness. Moreover, we provide evidence that these two outer membrane proteins, although being the closest C. crescentus homologs to TolC in E. coli, do not process TolC functionality in C. crescentus. C1 [Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; Jiao, Yongqin] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Dohnalkova, Alice C.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA USA. [Smit, John] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC, Canada. RP Jiao, YQ (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM jiao1@llnl.gov OI Yung, Mimi/0000-0003-0534-0728 FU U.S. Department of Energy (DOE) [SCW1165]; Gouvernement du Canada \ Natural Sciences and Engineering Research Council of Canada (NSERC) FX This work, including the efforts of Yongqin Jiao, was funded by U.S. Department of Energy (DOE) (SCW1165). This work, including the efforts of John Smit, was funded by Gouvernement du Canada vertical bar Natural Sciences and Engineering Research Council of Canada (NSERC). NR 59 TC 0 Z9 0 U1 10 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD DEC PY 2016 VL 82 IS 23 BP 6961 EP 6972 DI 10.1128/AEM.02479-16 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA EC4HF UT WOS:000388087300015 ER PT J AU Boggs, MA Jiao, YQ Dai, ZR Zavarin, M Kersting, AB AF Boggs, Mark A. Jiao, Yongqin Dai, Zurong Zavarin, Mavrik Kersting, Annie B. TI Interactions of Plutonium with Pseudomonas sp Strain EPS-1W and Its Extracellular Polymeric Substances SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SP HRCR-1 BIOFILMS; SHEWANELLA-ONEIDENSIS; REDUCING BACTERIA; OXIDATION-STATES; HYDROUS OXIDE; HANFORD SITE; REDUCTION; SPECIATION; PU(V); ACTINIDES AB Safe and effective nuclear waste disposal, as well as accidental radionuclide releases, necessitates our understanding of the fate of radionuclides in the environment, including their interaction with microorganisms. We examined the sorption of Pu(IV) and Pu(V) to Pseudomonas sp. strain EPS-1W, an aerobic bacterium isolated from plutonium (Pu)-contaminated groundwater collected in the United States at the Nevada National Security Site (NNSS) in Nevada. We compared Pu sorption to cells with and without bound extracellular polymeric substances (EPS). Wild-type cells with intact EPS sorbed Pu(V) more effectively than cells with EPS removed. In contrast, cells with and without EPS showed the same sorption affinity for Pu(IV). In vitro experiments with extracted EPS revealed rapid reduction of Pu(V) to Pu(IV). Transmission electron microscopy indicated that 2-to 3-nm nanocrystalline Pu(IV) O-2 formed on cells equilibrated with high concentrations of Pu(IV) but not Pu(V). Thus, EPS, while facilitating Pu(V) reduction, inhibit the formation of nanocrystalline Pu(IV) precipitates. IMPORTANCE Our results indicate that EPS are an effective reductant for Pu(V) and sorbent for Pu(IV) and may impact Pu redox cycling and mobility in the environment. Additionally, the resulting Pu morphology associated with EPS will depend on the concentration and initial Pu oxidation state. While our results are not directly applicable to the Pu transport situation at the NNSS, the results suggest that, in general, stationary microorganisms and biofilms will tend to limit the migration of Pu and provide an important Pu retardation mechanism in the environment. In a broader sense, our results, along with a growing body of literature, highlight the important role of microorganisms as producers of redox-active organic ligands and therefore as modulators of radionuclide redox transformations and complexation in the subsurface. C1 [Boggs, Mark A.; Dai, Zurong; Zavarin, Mavrik; Kersting, Annie B.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94550 USA. [Jiao, Yongqin] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA USA. [Boggs, Mark A.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Boggs, MA (reprint author), Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94550 USA.; Boggs, MA (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM mboggs@lanl.gov FU Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research [SCW1053] FX This work, including the efforts of Mark Boggs, Mavrik Zavarin, Yongqin Jiao, Zurong Dai, and Annie Kersting, was funded by the Subsurface Biogeochemical Research Program of the U.S. Department of Energy's Office of Biological and Environmental Research, contract number SCW1053. NR 54 TC 0 Z9 0 U1 11 U2 11 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD DEC PY 2016 VL 82 IS 24 BP 7093 EP 7101 DI 10.1128/AEM.02572-16 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA EC4IH UT WOS:000388090500009 PM 27694230 ER PT J AU Tian, L Lo, J Shao, XJ Zheng, TY Olson, DG Lynd, LR AF Tian, Liang Lo, Jonathan Shao, Xiongjun Zheng, Tianyong Olson, Daniel G. Lynd, Lee R. TI Ferredoxin:NAD(+) Oxidoreductase of Thermoanaerobacterium saccharolyticum and Its Role in Ethanol Formation SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID CLOSTRIDIUM-THERMOCELLUM; NAD(+) OXIDOREDUCTASE; BIFUNCTIONAL ALCOHOL; ESCHERICHIA-COLI; GENE-CLUSTER; DEHYDROGENASE; METABOLISM; EXPRESSION; TRANSFORMATION; JW/SL-YS485 AB Ferredoxin:NAD(+) oxidoreductase (NADH-FNOR) catalyzes the transfer of electrons from reduced ferredoxin to NAD(+). This enzyme has been hypothesized to be the main enzyme responsible for ferredoxin oxidization in the NADH-based ethanol pathway in Thermoanaerobacterium saccharolyticum; however, the corresponding gene has not yet been identified. Here, we identified the Tsac_1705 protein as a candidate FNOR based on the homology of its functional domains. We then confirmed its activity in vitro with a ferredoxin-based FNOR assay. To determine its role in metabolism, the tsac_1705 gene was deleted in different strains of T. saccharolyticum. In wild-type T. saccharolyticum, deletion of tsac_1705 resulted in a 75% loss of NADH-FNOR activity, which indicated that Tsac_1705 is the main NADH-FNOR in T. saccharolyticum. When both NADH-and NADPH-linked FNOR genes were deleted, the ethanol titer decreased and the ratio of ethanol to acetate approached unity, indicative of the absence of FNOR activity. Finally, we tested the effect of heterologous expression of Tsac_1705 in Clostridium thermocellum and found improvements in both the titer and the yield of ethanol. IMPORTANCE Redox balance plays a crucial role in many metabolic engineering strategies. Ferredoxins are widely used as electron carriers for anaerobic microorganism and plants. This study identified the gene responsible for electron transfer from ferredoxin to NAD(+), a key reaction in the ethanol production pathway of this organism and many other metabolic pathways. Identification of this gene is an important step in transferring the ethanol production ability of this organism to other organisms. C1 [Tian, Liang; Shao, Xiongjun; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Lo, Jonathan] Natl Renewable Energy Lab, Golden, CO USA. [Tian, Liang; Shao, Xiongjun; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R.] Oak Ridge Natl Lab, Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Lynd, LR (reprint author), Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA.; Lynd, LR (reprint author), Oak Ridge Natl Lab, Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. EM lee.r.lynd@dartmouth.edu FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Office of Biological and Environmental Research in the DOE Office of Science; U.S. Department of Energy [DE-AC05-00OR22725] FX This work, including the efforts of Liang Tian, Jonathan Lo, Xiongjun Shao, Tianyong Zheng, Daniel Groban Olson, and Lee R. Lynd, was funded by U.S. Department of Energy (DOE) (DE-AC05-00OR22725).; The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This paper has been authored by Dartmouth College under contract no. DE-AC05-00OR22725 with the U.S. Department of Energy. NR 41 TC 0 Z9 0 U1 5 U2 5 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD DEC PY 2016 VL 82 IS 24 BP 7134 EP 7141 DI 10.1128/AEM.02130-16 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA EC4IH UT WOS:000388090500013 PM 27694237 ER PT J AU Sadler, NC Bernstein, HC Melnicki, MR Charania, MA Hill, EA Anderson, LN Monroe, ME Smith, RD Beliaev, AS Wright, AT AF Sadler, Natalie C. Bernstein, Hans C. Melnicki, Matthew R. Charania, Moiz A. Hill, Eric A. Anderson, Lindsey N. Monroe, Matthew E. Smith, Richard D. Beliaev, Alexander S. Wright, Aaron T. TI Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp Strain ATCC 51142 SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID FLAVODIIRON PROTEINS; PHOTOSYSTEM-II; H-2 PRODUCTION; PCC 7120; CYANOBACTERIUM; PROTEOMICS; PHOTOSYNTHESIS; ACTIVATION; EXPRESSION; DATABASE AB Photobiologically synthesized hydrogen (H-2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel. Cyanothece sp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H-2 production, a highly perplexing phenomenon because H-2 evolving enzymes are O-2 sensitive. We employed a system-level in vivo chemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve to prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK. IMPORTANCE Here, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex in Cyanothece sp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture the in situ dynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment and how redox chemistry can be utilized to alter metabolism and achieve homeostasis. C1 [Sadler, Natalie C.; Bernstein, Hans C.; Melnicki, Matthew R.; Charania, Moiz A.; Hill, Eric A.; Anderson, Lindsey N.; Monroe, Matthew E.; Smith, Richard D.; Beliaev, Alexander S.; Wright, Aaron T.] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Bernstein, Hans C.] Pacific Northwest Natl Lab, Chem & Biol Signature Sci, Richland, WA USA. RP Wright, AT (reprint author), Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Aaron.Wright@pnnl.gov RI Smith, Richard/J-3664-2012; Anderson, Lindsey /S-6375-2016; OI Smith, Richard/0000-0002-2381-2349; Anderson, Lindsey /0000-0002-8741-7823; Bernstein, Hans/0000-0003-2913-7708 FU U.S. Department of Energy (DOE); Genomic Science Program of the U.S. DOE-OBER; OBER at PNNL FX This work, including the efforts of Natalie Sadler, Hans Bernstein, Matthew R. Melnicki, Moiz Charania, Eric Hill, Lindsey Anderson, Matthew E. Monroe, Richard Smith, Alexander S. Beliaev, and Aaron T. Wright, was funded by U.S. Department of Energy (DOE).; This research was supported by the Genomic Science Program of the U.S. DOE-OBER and is a contribution of the PNNL Biofuels and Foundational Scientific Focus Areas. MS-based proteomic measurements used capabilities developed partially under the GSP Panomics project; MS-based measurements and microscopy were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by OBER at PNNL. NR 49 TC 0 Z9 0 U1 12 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD DEC PY 2016 VL 82 IS 24 BP 7227 EP 7235 DI 10.1128/AEM.02098-16 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA EC4IH UT WOS:000388090500022 PM 27742679 ER PT J AU Druwe, IL Burgoon, LD AF Druwe, Ingrid L. Burgoon, Lyle D. TI Response to Cohen et al. (2016) regarding response to Druwe and Burgoon SO ARCHIVES OF TOXICOLOGY LA English DT Letter ID INORGANIC ARSENIC EXPOSURE; LUNG-TUMORS; ARCH TOXICOL; MICE C1 [Druwe, Ingrid L.] US EPA, Oak Ridge Inst Sci & Educ, Res Participat Program, Natl Ctr Environm Assessment,Off Res & Dev, Res Triangle Pk, NC 27709 USA. [Burgoon, Lyle D.] US Army Engineer Res & Dev Ctr, Res Triangle Pk, NC USA. RP Druwe, IL (reprint author), US EPA, Oak Ridge Inst Sci & Educ, Res Participat Program, Natl Ctr Environm Assessment,Off Res & Dev, Res Triangle Pk, NC 27709 USA. EM druwe.ingrid@epa.gov OI Burgoon, Lyle/0000-0003-4977-5352 NR 10 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0340-5761 EI 1432-0738 J9 ARCH TOXICOL JI Arch. Toxicol. PD DEC PY 2016 VL 90 IS 12 BP 3131 EP 3132 DI 10.1007/s00204-016-1858-9 PG 2 WC Toxicology SC Toxicology GA EB9FH UT WOS:000387697600019 PM 27717971 ER PT J AU Ren, XR Luke, WT Kelley, P Cohen, MD Artz, R Olson, ML Schmeltz, D Puchalski, M Goldberg, DL Ring, A Mazzuca, GM Cummings, KA Wojdan, L Preaux, S Stehr, JW AF Ren, Xinrong Luke, Winston T. Kelley, Paul Cohen, Mark D. Artz, Richard Olson, Mark L. Schmeltz, David Puchalski, Melissa Goldberg, Daniel L. Ring, Allison Mazzuca, Gina M. Cummings, Kristin A. Wojdan, Lisa Preaux, Sandra Stehr, Jeff W. TI Atmospheric mercury measurements at a suburban site in the Mid-Atlantic United States: Inter-annual, seasonal and diurnal variations and source-receptor relationships SO ATMOSPHERIC ENVIRONMENT LA English DT Article; Proceedings Paper CT 9th International Acid Rain Conference (Acid Rain) CY OCT, 2015 CL Rochester, NY DE Atmospheric mercury; Gaseous elemental mercury; Gaseous oxidized mercury; Particulate-bound mercury; Trend; HYSPLIT ID GASEOUS OXIDIZED MERCURY; COASTAL; SPECIATION; EMISSIONS; EXPOSURE; MARINE; RAMIX; GEM; HG AB Different atmospheric mercury forms have been measured at a suburban site in Beltsville, Maryland in the Mid-Atlantic United States since 2007 to investigate their inter-annual, seasonal and diurnal variabilities. Average concentrations and standard deviations of hourly measurements from 2007 to 2015 were 1.41 +/- 0.23 ng m(-3) for gaseous elemental mercury (GEM), 4.6 +/- 33.7 pg m(-3) for gaseous oxidized mercury (GOM), and 8.6 +/- 56.8 pg m(-3) for particulate-bound mercury (PBM). Observations show that on average, the rates of decrease were 0.020 +/- 0.007 ng m(-3) yr(-1) (or 13 +/- 0.5% yr(-1), statistically significant, p-value < 0.01) for GEM, 0.54 +/- 0.19 pg m(-3) yr(-1) (or 7.3 +/- 2.6% yr(-1), statistically significant, p-value < 0.01) for GOM, and 0.15 +/- 0.35 pg m(-3) yr(-1) (or 1.6 +/- 3.8% yr(-1), statistically insignificant, p-value > 0.01) for PBM over this nine-year period. In addition, the collocated annual mercury wet deposition decreased at a rate of 0.51 +/- 0.24 mu g m(-2) yr(-2) (or 4.2 +/- 1.9% yr(-1), statistically insignificant, p-value > 0.01). Diurnal variation of GEM shows a slight peak in the morning, likely due to the shallow boundary layer. Seasonal variation of GEM shows lower levels in fall. Both diurnal variations of GOM and PBM show peaks in the afternoon likely due to the photochemical production of reactive mercury from the oxidation of GEM and the influence of boundary layer processes. Seasonally, GOM measurements show high levels in spring and constant low levels in the other three seasons, while PBM measurements exhibit higher levels from late fall to early spring and lower levels frdm late spring to fall. These measurement data were analyzed using the HYSPLIT back trajectory model in order to examine possible source-receptor relationships at this suburban site. Trajectory frequency analysis shows that high GEM/GOM/PBM events were generally associated with high frequencies of the trajectories passing through areas with high mercury emissions, while low GEM/GOM/PBM levels were largely associated the trajectories passing through relatively clean areas. This study indicates that local and regional sources appear to have a significant impact on the site and these impacts appear to have changed over time, as the local/regional emissions have been reduced. (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Ren, Xinrong; Luke, Winston T.; Kelley, Paul; Cohen, Mark D.; Artz, Richard] NOAA, Air Resources Lab, 5830 Univ Res Court, College Pk, MD 20740 USA. [Ren, Xinrong; Kelley, Paul] Univ Maryland, Cooperat Inst Climate & Satellites, College Pk, MD 20742 USA. [Ren, Xinrong; Goldberg, Daniel L.; Ring, Allison; Mazzuca, Gina M.; Cummings, Kristin A.; Wojdan, Lisa; Preaux, Sandra; Stehr, Jeff W.] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Cohen, Mark D.] Univ Illinois, Illinois State Water Survey, Champaign, IL USA. [Schmeltz, David; Puchalski, Melissa] US EPA, Clean Air Markets Div, Washington, DC 20460 USA. [Goldberg, Daniel L.] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. [Wojdan, Lisa] Iroquois High Sch, Elma, NY USA. [Preaux, Sandra] Stinger Ghaffarian Technol, Greenbelt, MD USA. [Stehr, Jeff W.] Booz Allen Hamilton, Washington, DC USA. RP Ren, XR (reprint author), NOAA, Air Resources Lab, 5830 Univ Res Court, College Pk, MD 20740 USA. EM xinrong.ren@noaa.gov RI Ren, Xinrong/E-7838-2015; OI Ren, Xinrong/0000-0001-9974-1666; Cohen, Mark/0000-0003-3183-2558 NR 37 TC 2 Z9 2 U1 13 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD DEC PY 2016 VL 146 SI SI BP 141 EP 152 DI 10.1016/j.atmosenv.2016.08.028 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA EC3UG UT WOS:000388051700013 ER PT J AU Naimi, LJ Collard, F Bi, XT Lim, CJ Sokhansanj, S AF Naimi, Ladan J. Collard, Flavien Bi, Xiaotao Lim, C. Jim Sokhansanj, Shahab TI Development of size reduction equations for calculating power input for grinding pine wood chips using hammer mill SO BIOMASS CONVERSION AND BIOREFINERY LA English DT Article DE Pine; Wood chips; Size reduction; Grinding; Rittinger; Kick; Bond; Specific energy; Hammer mill; Particle size ID PARTICLE-SIZE; PHYSICAL-PROPERTIES; SCALING LAWS; CORN STOVER; COMMINUTION; BIOMASS; ENERGY; WHEAT; SWITCHGRASS; IMPACT AB Size reduction is an unavoidable operation for preparing biomass for biofuels and bioproduct conversion. Yet, there is considerable uncertainty in power input requirement and the uniformity of ground biomass. Considerable gains are possible if the required power input for a size reduction ratio is estimated accurately. In this research, three well-known mechanistic equations attributed to Rittinger, Kick, and Bond available for predicting energy input for grinding pine wood chips by hammer mill were tested against experimental grinding data. Prior to testing, samples of pine wood chips were conditioned to 11.7 % wb, moisture content. The wood chips were successively ground in a hammer mill using screen sizes of 25.4, 10, 6.4, and 3.2 mm. The input power and the flow of material into the hammer mill were recorded continuously. The recorded power input vs. mean particle size showed that the Rittinger equation had the best fit to the experimental data. The ground particle sizes were four to seven times smaller than the size of the installed screen. Geometric mean size of particles were calculated using two methods: (1) Tyler sieves and using particle size analysis and (2) Sauter mean diameter calculated from the ratio of volume to surface that were estimated from measured length and width. The two mean diameters agreed well, pointing to the fact that either mechanical sieving or particle imaging can be used to characterize particle size. Specific energy input to the hammer mill increased from 1.4 kWh t(-1) (5.2 J g(-1)) for large 25.1-mm screen to 25 kWh t(-1) (90.4 J g(-1)) for small 3.2-mm screen. C1 [Naimi, Ladan J.; Bi, Xiaotao; Lim, C. Jim; Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Collard, Flavien] INSA Lyon, Dept Energy & Environm Engn, Lyon, France. RP Naimi, LJ (reprint author), Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC, Canada. EM lnaimi@mail.ubc.ca FU Natural Sciences and Engineering Research Council (NSERC) Discovery Grant FX The authors express their gratitude to Fibreco Export Inc. North Vancouver, BC, for providing pine wood chips. The Natural Sciences and Engineering Research Council (NSERC) Discovery Grant provided the financial support. NR 33 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2190-6815 EI 2190-6823 J9 BIOMASS CONVERS BIOR JI Biomass Convers. Biorefinery PD DEC PY 2016 VL 6 IS 4 BP 397 EP 405 DI 10.1007/s13399-015-0195-1 PG 9 WC Energy & Fuels SC Energy & Fuels GA EB9CZ UT WOS:000387690900004 ER PT J AU Lyons, J Walchak, D Haglund, J Kanehl, P Pracheil, B AF Lyons, J. Walchak, D. Haglund, J. Kanehl, P. Pracheil, B. TI Habitat use and population characteristics of potentially spawning shovelnose sturgeon Scaphirhynchus platorynchus (Rafinesque, 1820), blue sucker (Cycleptus elongatus (Lesueur,1817), and associated species in the lower WisconsinRiver,USA SO JOURNAL OF APPLIED ICHTHYOLOGY LA English DT Article ID LOWER PLATTE RIVER; REPRODUCTIVE-BIOLOGY; BIOTIC INTEGRITY; MISSOURI RIVER; WABASH RIVER; CYCLEPTUS-ELONGATUS; MISSISSIPPI RIVER; FLOODPLAIN RIVER; PALLID STURGEON; CONSERVATION AB The goal of this study was to compare the possible locations, timing, and characteristics of potentially spawning shovelnose sturgeon (Scaphirhynchus platorynchus), blue sucker (Cycleptus elongatus), and associated species during the spring of 2007-2015 in the 149-km-long lower Wisconsin River, Wisconsin, USA, a large, shallow, sand-dominated Mississippi River tributary. A 5-km index station of two pairs of rocky shoals surrounded by sandy areas was electrofished for shovelnose sturgeon and blue sucker in a standardized fashion a total of 40 times from late March through mid-June, the presumed spawning period. On one date in 2008 and two dates in 2012, all rocky shoals and adjacent sandy areas in the lowermost 149km of the river were also electrofished for both species. Shovelnose sturgeon and blue sucker appeared to spawn in the limited rocky areas of the river along with at least four other species: mooneye (Hiodon tergisus), quillback (Carpiodes cyprinus), smallmouth buffalo (Ictiobus bubalus), and shorthead redhorse (Moxostoma macrolepidotum), usually at depths of 0.8-2.0m and surface velocities of 0.4-1.0m/s. However, apparently spawning shovelnose sturgeon were found only on mid-channel cobble and coarse gravel shoals within a single 7-km segment that included the 5-km index station, whereas apparently spawning blue suckers were encountered on these same shoals but also more widely throughout the river on eroding bluff shorelines of bedrock and boulder and on artificial boulder wing dams and shoreline rip-rap. Both species showed evidence of homing to the same mid-channel shoal complexes across years. Blue sucker tended to concentrate on the shoals earlier in the spring than shovelnose sturgeon, usually from late April through mid-May at water temperatures of 8.0-15.5 degrees C along with quillback and shorthead redhorse. In comparison, shovelnose sturgeon usually concentrated on the shoals from mid-May through early June at 13.5-21.8 degrees C along with mooneye and smallmouth buffalo. Based on recaptures of tagged fish, at least some shovelnose sturgeon and blue sucker returned to the shoals at one-year intervals, although there was evidence that female blue sucker may have been more likely to return at two-year intervals. Most shovelnose sturgeon could not be reliably sexed based on external characteristics. Spawning shovelnose sturgeon ranged from 487 to 788mm fork length, 500-2400g weight, and 5-20years of age, whereas spawning blue sucker ranged from 495 to 822mm total length, 900-5100g weight, and 5-34years of age, although age estimates were uncertain. Females were significantly larger than males for both species although there was overlap. Growth in length was negligible for tagged and recaptured presumably spawning shovelnose sturgeon and low (3.5mm/y) for blue sucker, suggesting that nearly all growth may have occurred prior to maturity and that fish may have matured at a wide range of sizes. C1 [Lyons, J.; Walchak, D.; Haglund, J.; Kanehl, P.] Wisconsin Dept Nat Resources, Madison, WI 53703 USA. [Pracheil, B.] Univ Wisconsin, Ctr Limnol, Madison, WI 53706 USA. [Pracheil, B.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. RP Lyons, J (reprint author), Wisconsin Dept Nat Resources, Madison, WI 53703 USA. EM John.Lyons@Wisconsin.gov FU Federal Aid in Sportfish Restoration program [F-95-P]; Wisconsin State Wildlife Grant [T-2-5, SWG11-CAT1-005, 1005] FX We thank the many people who helped with field and laboratory work, especially E. Struck. P. Rasmussen assisted with statistical analyses. A. Rypel provided helpful comments on an earlier draft of this manuscript. This study was funded by the Federal Aid in Sportfish Restoration program, Project F-95-P, study SSQP, and a Wisconsin State Wildlife Grant, Program T-2-5, SWG11-CAT1-005, ID 1005, Study SSFW. NR 59 TC 0 Z9 0 U1 15 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0175-8659 EI 1439-0426 J9 J APPL ICHTHYOL JI J. Appl. Ichthyol. PD DEC PY 2016 VL 32 IS 6 BP 1003 EP 1015 DI 10.1111/jai.13201 PG 13 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA EC1IK UT WOS:000387857900001 ER PT J AU Croy, JR Park, JS Shin, Y Yonemoto, BT Balasubramanian, M Long, BR Ren, Y Thackeray, MM AF Croy, Jason R. Park, Joong Sun Shin, Youngho Yonemoto, Bryan T. Balasubramanian, Mahalingam Long, Brandon R. Ren, Yang Thackeray, Michael M. TI Prospects for spinel-stabilized, high-capacity lithium-ion battery cathodes SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium rich; Manganese rich; Composite; Cathode; Scale-up; Lithium-ion ID VOLTAGE-FADE; CO ELECTRODES; OXIDE ELECTRODES; ENERGY-DENSITY; MN; NI; OXYGEN; ELECTROCHEMISTRY; 400-DEGREES-C; ORIGIN AB Herein we report early results on efforts to optimize the electrochemical performance of a cathode composed of a lithium- and manganese-rich "layered-layered-spinel" (LLS) material for lithium-ion battery applications. Pre-pilot scale synthesis leads to improved particle properties compared with lab-scale efforts, resulting in high capacities (similar to 200 mAh g(-1)) and good energy densities (>700 Wh kg(oxide)(-1)) in tests with lithium-ion cells. Subsequent surface modifications give further improvements in rate capabilities and high-voltage stability. These results bode well for advances in the performance of this class of lithium- and manganese-rich cathode materials. (C) 2016 Elsevier B.V. All rights reserved. C1 [Croy, Jason R.; Park, Joong Sun; Yonemoto, Bryan T.; Long, Brandon R.; Thackeray, Michael M.] Argonne Natl Lab, Electrochem Energy Storage Dept, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Shin, Youngho] Argonne Natl Lab, Mat Engn Res Facil, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. [Balasubramanian, Mahalingam; Ren, Yang] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Croy, JR (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 200, Argonne, IL 60439 USA. EM croy@anl.gov FU Advanced Batteries Materials Research (BMR) Program; U.S. Department of Energy-Basic Energy Sciences; Canadian Light Source; University of Washington; Advanced Photon Source; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX Support from the Advanced Batteries Materials Research (BMR) Program, in particular David Howell and Tien Duong, of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, is gratefully acknowledged. XSD/PNC facilities at the Advanced Photon Source, and research at these facilities, are supported by the U.S. Department of Energy-Basic Energy Sciences, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 40 TC 0 Z9 0 U1 37 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD DEC 1 PY 2016 VL 334 BP 213 EP 220 DI 10.1016/j.jpowsour.2016.10.015 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA EB6WK UT WOS:000387526100025 ER PT J AU Walker, LR Hoyt, DW Walker, SM Ward, JK Nicora, CD Bingol, K AF Walker, Lawrence R. Hoyt, David W. Walker, S. Michael, II Ward, Joy K. Nicora, Carrie D. Bingol, Kerem TI Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D H-1 NMR/ESI MS1 approach SO MAGNETIC RESONANCE IN CHEMISTRY LA English DT Article DE metabolomics; metabolite identification; human urine; Arabidopsis thaliana; tomato; hybrid 1D 1H NMR; ESI MS1 ID NUCLEAR-MAGNETIC-RESONANCE; TOTAL CORRELATION SPECTROSCOPY; FLIGHT MASS-SPECTROMETRY; NMR-SPECTROSCOPY; COMPLEX-MIXTURES; HSQC SPECTRA; HUMAN URINE; DATA SETS; DATABASE; STRATEGIES AB A hybrid 1D H-1 NMR/ESI MS1 approach is introduced that allows accurate and unambiguous identification of catalogued, that is, known metabolites detected in 1D H-1 NMR and direct infusion ESI MS1 spectra of the same sample. The approach provides more accurate identification than individual analysis of 1D H-1 NMR and ESI MS1 spectra. Moreover, we developed a software tool for the approach, which works with Chenomx NMR Suite. C1 [Walker, Lawrence R.; Hoyt, David W.; Nicora, Carrie D.; Bingol, Kerem] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Walker, S. Michael, II; Ward, Joy K.] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA. RP Bingol, K (reprint author), Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. EM kerem.bingol@pnnl.gov FU DOE's Office of Biological and Environmental Research [48397]; DOE [DE-AC05-76RL01830] FX We thank Dr. Rafael Bruschweiler for his careful reading of the manuscript. This work was performed under a Science Theme Proposal (proposal ID: 48397, Joy K. Ward) using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 48 TC 2 Z9 2 U1 6 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0749-1581 EI 1097-458X J9 MAGN RESON CHEM JI Magn. Reson. Chem. PD DEC PY 2016 VL 54 IS 12 BP 998 EP 1003 DI 10.1002/mrc.4503 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Spectroscopy SC Chemistry; Spectroscopy GA EB8VM UT WOS:000387669400011 PM 27539910 ER PT J AU Barabash, RI AF Barabash, R. I. TI Foreword SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Editorial Material C1 [Barabash, R. I.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM rbarabas@utk.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2016 VL 47A IS 12 BP 5714 EP 5714 DI 10.1007/s11661-016-3791-1 PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EC1HR UT WOS:000387856000011 ER PT J AU Maser, J Shi, XB Reininger, R Lai, B Vogt, S AF Maser, Jorg Shi, Xianbo Reininger, Ruben Lai, Barry Vogt, Stefan TI HYBRID Simulations of Diffraction-Limited Focusing with Kirkpatrick-Baez Mirrors for a Next-Generation In Situ Hard X-ray Nanoprobe SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID WAVE-FRONT PROPAGATION; SOLAR-CELLS; ANODE; DEGRADATION; ELECTRODES; BATTERIES; OPTICS AB Next-generation hard X-ray nanoprobe beamlines such as the In Situ Nanoprobe (ISN) beamline being planned at the Advanced Photon Source aim at providing very high spatial resolution while also enabling very high focused flux, to study complex materials and devices using fast, multidimensional imaging across many length scales. The ISN will use diffractive optics to focus X-rays with a bandpass of a dagger E/E = 10(-4) into a focal spot of 20 nm or below. Reflective optics in Kirkpatrick-Baez geometry will be used to focus X-rays with a bandpass as large as a dagger E/E = 10(-2) into a focal spot of 50 nm. Diffraction-limited focusing with reflective optics is achieved by spatial filtering and use of a very long, vertically focusing mirror. To quantify the performance of the ISN beamline, we have simulated the propagation of both partially and fully coherent wavefronts from the undulator source, through the ISN beamline and into the mirror-based focal spot. Simulations were carried out using the recently developed software "HYBRID.". C1 [Maser, Jorg; Shi, Xianbo; Reininger, Ruben; Lai, Barry; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Maser, J (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM maser@anl.gov NR 23 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2016 VL 47A IS 12 BP 5715 EP 5721 DI 10.1007/s11661-016-3400-3 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EC1HR UT WOS:000387856000012 ER PT J AU Hu, XH Choi, KS Sun, X Ren, Y Wang, YD AF Hu, Xiaohua Choi, Kyoo Sil Sun, Xin Ren, Yang Wang, Yangdong TI Determining Individual Phase Flow Properties in a Quench and Partitioning Steel with In Situ High-Energy X-Ray Diffraction and Multiphase Elasto-Plastic Self-Consistent Method SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID MICROMECHANICAL BEHAVIOR; RESIDUAL-STRESSES; MARTENSITE; STRAIN; DUCTILITY; STRENGTH; TEXTURE; DEFORMATION; INDENTATION; CRYSTALS AB The micromechanical properties of the constituent phases were characterized for advanced high-strength steels (AHSS) produced by a quenching and partitioning (Q&P) process with in situ tensile loading under synchrotron-based, high-energy X-ray diffraction. The constituent phases present are retained austenite and three martensites (tempered, untampered, and freshly formed martensites). For the material investigated, the 200 and 220 lattice strains of the retained austenite phase were calculated by examining the changes of the X-ray diffraction peak positions during deformation. The 200 and 211 lattice strains of the various martensitic phases with similar crystal structures were determined by separating their overlapped diffraction peaks. Apart from tempered and untempered martensite, the diffraction peaks of freshly formed martensite as a result of austenite-to-martensite transformation can also be separated due to a high initial austenite volume fraction. The phase stresses are first estimated with an empirical relationship through the X-ray diffraction elastic constants. A multiphase elasto-plastic self-consistent model is next used for more accurate determination of the constitutive behaviors of the various phases by comparing the predicted lattice strain distributions and global stress-strain curves with the measured ones. The determined constitutive laws will be used for microstructure-based modeling for sheet formability of the Q&P AHSS steel. C1 [Hu, Xiaohua; Choi, Kyoo Sil; Sun, Xin] Pacific Northwestern Natl Lab, Richland, WA 99354 USA. [Ren, Yang] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Wang, Yangdong] Univ Sci & Technol, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. RP Hu, XH (reprint author), Pacific Northwestern Natl Lab, Richland, WA 99354 USA. EM xiaohua.hu@pnnl.gov RI wang, yandong/G-9404-2013; Hu, Xiaohua/J-6519-2012 OI Hu, Xiaohua/0000-0002-7735-5091 FU U.S. Department of Energy [DE-AC06-76RL01830]; Department of Energy Office of FreedomCar and Vehicle Technologies; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the U.S. Department of Energy under Contract no. DE-AC06-76RL01830. This work was funded by the Department of Energy Office of FreedomCar and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by Mr. William Joost. This research used resources from the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 42 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2016 VL 47A IS 12 BP 5733 EP 5749 DI 10.1007/s11661-016-3373-2 PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EC1HR UT WOS:000387856000014 ER PT J AU Cao, R Yu, X Feng, Z Ojima, M Inoue, J Koseki, T AF Cao, R. Yu, X. Feng, Z. Ojima, M. Inoue, J. Koseki, T. TI Effect of Annealing Temperature and Time on Microstructure and Mechanical Properties of Multilayered Steel Composite Sheets SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID CARBON-STEEL; TENSILE PROPERTIES; GRAIN-BOUNDARIES; FRACTURE; METAL; EMBRITTLEMENT; MARTENSITE; PHOSPHORUS; STRENGTH; BEHAVIOR AB Multilayered composite steels consisting of alternating layers of martensitic phase and austenitic phase exhibit an excellent combination of strength and elongation compared with conventional advanced high-strength steels. The deformation processes underlying these properties are of considerable interest. In this article, microstructure, grain size, and phase are characterized by scanning electron microscopy (SEM) and electron backscattering diffraction. The hardness of each layer is analyzed by a microindentation hardness testing system. Finally, the deformation and failure processes in multilayered steel are investigated by in-situ SEM. The hardness results indicate that various hardening modes occur in the soft austenitic layer and the hard martensitic layer. In-situ SEM results combined with microstructure analysis and hardness results reveal that annealing temperature and annealing time have a significant impact on final microstructure, fracture behavior, strength, hardness, and ductility. C1 [Cao, R.] Lanzhou Univ Technol, Lanzhou 730050, Peoples R China. [Cao, R.; Yu, X.; Feng, Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Ojima, M.; Inoue, J.; Koseki, T.] Univ Tokyo, Dept Mat Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan. RP Feng, Z (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM fengz@ornl.gov FU ORNL's Shared Research Equipment (ShaRE) User Program; Office of Basic Energy Sciences; United States Department of Energy FX The EBSD was supported by ORNL's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, the United States Department of Energy. The authors express their appreciation to Drs. W. Tang and J. Chen for their help with the experiments and English editing. The authors also thank the editors and reviewers for their comments and suggestions. NR 25 TC 0 Z9 0 U1 8 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2016 VL 47A IS 12 BP 6042 EP 6055 DI 10.1007/s11661-016-3747-5 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EC1HR UT WOS:000387856000045 ER PT J AU Radhakrishnan, B Gorti, S Babu, SS AF Radhakrishnan, Bala Gorti, Sarma Babu, Suresh Sudharsanam TI Phase Field Simulations of Autocatalytic Formation of Alpha Lamellar Colonies in Ti-6Al-4V SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID HEAT-AFFECTED ZONE; VARIANT SELECTION; MICROSTRUCTURAL EVOLUTION; TITANIUM-ALLOYS; SINGLE-CRYSTAL; MODEL; TRANSFORMATION; PRECIPITATION; BUILDS; STATE AB We present phase field simulations incorporating contributions due to chemical free energy, anisotropic interfacial energy, and elastic energy due to transformation strain, to demonstrate the nucleation and growth of multiple variants of alpha from undercooled beta in Ti-6Al-4V under isothermal conditions. A new composite nucleation seeding approach is used within the phase field simulations to demonstrate that the presence of a pre-existing strain field can cause the nucleation of specific crystallographic variants of alpha based on minimization of local elastic strain energy. Under conditions where specific combinations of elastic strains exist, for example in the vicinity of one or more pre-existing alpha variants, the nucleation of a new alpha variant is followed by the successive nucleation of the same variant in the form of a lamellar colony by an autocatalytic mechanism. At a given thermodynamic undercooling, the colony structure was favored at a nucleation rate that was low enough to allow sufficient growth of previously nucleated variants before another nucleus formed in their vicinity. Basket weave morphology was formed at higher nucleation rates where multiple nuclei variants grew almost simultaneously under evolving strain fields of several adjacent nuclei. C1 [Radhakrishnan, Bala; Gorti, Sarma] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Babu, Suresh Sudharsanam] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. RP Radhakrishnan, B (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM radhakrishnb@ornl.gov FU Laboratory Directed Research and Development program at Oak Ridge National Laboratory [DE-AC05-00OR22725]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the Laboratory Directed Research and Development program at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. This research used resources of the Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 35 TC 0 Z9 0 U1 6 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2016 VL 47A IS 12 BP 6577 EP 6592 DI 10.1007/s11661-016-3746-6 PG 16 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EC1HR UT WOS:000387856000091 ER PT J AU Li, L Ungar, T Toth, LS Skrotzki, W Wang, YD Ren, Y Choo, H Fogarassy, Z Zhou, XT Liaw, PK AF Li, Li Ungar, Tamas Toth, Laszlo S. Skrotzki, Werner Wang, Yan Dong Ren, Yang Choo, Hahn Fogarassy, Zsolt Zhou, X. T. Liaw, Peter K. TI Shear-Coupled Grain Growth and Texture Development in a Nanocrystalline Ni-Fe Alloy during Cold Rolling SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID LINE-PROFILE ANALYSIS; X-RAY-DIFFRACTION; BOUNDARY MIGRATION; DISLOCATION CONTRAST; THIN-FILMS; DEFORMATION; METALS; COPPER; MECHANISMS; NICKEL AB The evolution of texture, grain size, grain shape, dislocation, and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni-Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed-constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution of the microstructure parameters. Grain growth and texture evolution are shown to proceed by the shear coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm. C1 [Li, Li; Zhou, X. T.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China. [Li, Li; Choo, Hahn; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Ungar, Tamas] Eotvos Univ Budapest, Dept Mat Phys, POB 32, H-1518 Budapest, Hungary. [Ungar, Tamas; Toth, Laszlo S.] Univ Lorraine, Lab Excellence Design Alloy Met Low MAss Struct D, Metz, France. [Toth, Laszlo S.] Univ Lorraine Metz, Lab Etud Microstruct & Mecan Mat, Ile Saulcy, F-57045 Metz 01, France. [Skrotzki, Werner] Tech Univ Dresden, Inst Strukturphys, D-01062 Dresden, Germany. [Wang, Yan Dong] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Beamline, Argonne, IL 60439 USA. [Fogarassy, Zsolt] Hungarian Acad Sci, Res Inst Tech Phys & Mat Sci, Budapest, Hungary. RP Ungar, T (reprint author), Eotvos Univ Budapest, Dept Mat Phys, POB 32, H-1518 Budapest, Hungary. EM ungar@ludens.elte.hu RI wang, yandong/G-9404-2013; OI Toth, Laszlo/0000-0001-7598-9026 FU U.S. Department of Energy, Office of Science, and Office of Basic Energy Science [DE-AC02-06CH11357]; French State through the program "Investment in the future'' [ANR-11-LABX-0008-01]; National Science Foundation (NSF) -International Materials Institutes (IMI) Program [DMR-0231320, DMR-0909037, CMMI-0900271, CMMI-1100080]; Major State Basic Research Program of China [2010CB934501, 2012CB825705]; Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory [DE-FE0008855, DE-FE-0024054, DE-FE-0011194]; National Natural Science Foundation of China [11405257] FX The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Science, under Contract No. DE-AC02-06CH11357. TU, LST, and WS acknowledge the support of the French State through the program "Investment in the future'' operated by the National Research Agency (ANR) and referenced by ANR-11-LABX-0008-01, LabEx-DAMAS. The present work was also supported by the National Science Foundation (NSF) -International Materials Institutes (IMI) Program (DMR-0231320, DMR-0909037, CMMI-0900271, and CMMI-1100080). L.L. is grateful to the Major State Basic Research Program of China (Grant No. 2010CB934501 and 2012CB825705). PKL is grateful to the Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory for DE-FE0008855, DE-FE-0024054, and DE-FE-0011194 project numbers. L.L. is also grateful to the National Natural Science Foundation of China (#11405257). NR 56 TC 0 Z9 0 U1 8 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD DEC PY 2016 VL 47A IS 12 BP 6632 EP 6644 DI 10.1007/s11661-016-3753-7 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EC1HR UT WOS:000387856000095 ER PT J AU Luce, TC Petty, CC Meyer, WH Holcomb, CT Burrell, KH Bergsten, LJ AF Luce, T. C. Petty, C. C. Meyer, W. H. Holcomb, C. T. Burrell, K. H. Bergsten, L. J. TI Method for correction of measured polarization angles from motional Stark effect spectroscopy for the effects of electric fields SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE motional Stark effect; tokamak equilibrium reconstruction; radial electric field ID EQUILIBRIUM RECONSTRUCTION; DIII-D; POLARIMETRY AB An approximate method to correct the motional Stark effect (MSE) spectroscopy for the effects of intrinsic plasma electric fields has been developed. The motivation for using an approximate method is to incorporate electric field effects for between-pulse or real-time analysis of the current density or safety factor profile. The toroidal velocity term in the momentum balance equation is normally the dominant contribution to the electric field orthogonal to the flux surface over most of the plasma. When this approximation is valid, the correction to the MSE data can be included in a form like that used when electric field effects are neglected. This allows measurements of the toroidal velocity to be integrated into the interpretation of the MSE polarization angles without changing how the data is treated in existing codes. In some cases, such as the DIII-D system, the correction is especially simple, due to the details of the neutral beam and MSE viewing geometry. The correction method is compared using DIII-D data in a variety of plasma conditions to analysis that assumes no radial electric field is present and to analysis that uses the standard correction method, which involves significant human intervention for profile fitting. The comparison shows that the new correction method is close to the standard one, and in all cases appears to offer a better result than use of the uncorrected data. The method has been integrated into the standard DIII-D equilibrium reconstruction code in use for analysis between plasma pulses and is sufficiently fast that it will be implemented in real-time equilibrium analysis for control applications. C1 [Luce, T. C.; Petty, C. C.; Burrell, K. H.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Meyer, W. H.; Holcomb, C. T.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Bergsten, L. J.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. RP Luce, TC (reprint author), Gen Atom, POB 85608, San Diego, CA 92186 USA. EM luce@fusion.gat.com FU U.S. Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344]; National Undergraduate Fellowships in Plasma Physics and Fusion Energy Sciences from the US Department of Energy FX Discussions of the MSE geometry with B Victor and the use of profiles fit by J Ferron are gratefully acknowledged. Work was performed in part under U.S. Department of Energy Contracts DE-FC02-04ER546981 and DE-AC52-07NA273442. One of the authors (LJB) was funded by the National Undergraduate Fellowships in Plasma Physics and Fusion Energy Sciences from the US Department of Energy. NR 9 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2016 VL 58 IS 12 AR 125010 DI 10.1088/0741-3335/58/12/125010 PG 10 WC Physics, Fluids & Plasmas SC Physics GA EC0MK UT WOS:000387795000002 ER PT J AU Meier, ET Goldston, RJ Kaveeva, EG Makowski, MA Mordijck, S Rozhansky, VA Senichenkov, IY Voskoboynikov, SP AF Meier, E. T. Goldston, R. J. Kaveeva, E. G. Makowski, M. A. Mordijck, S. Rozhansky, V. A. Senichenkov, I. Yu Voskoboynikov, S. P. TI Analysis of drift effects on the tokamak power scrape-off width using SOLPS-ITER SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE power scrape-off width; heuristic drift model; plasma drifts; SOLPS-ITER ID ASDEX UPGRADE; EDGE PLASMA; DIII-D; LAYER; B2-EIRENE; FLOW AB SOLPS-ITER, a comprehensive 2D scrape-off layer modeling package, is used to examine the physical mechanisms that set the scrape-off width (lambda(q)) for inter-ELM power exhaust. Guided by Goldston's heuristic drift (HD) model, which shows remarkable quantitative agreement with experimental data, this research examines drift effects on lambda(q) in a DIII-D H-mode magnetic equilibrium. As a numerical expedient, a low target recycling coefficient of 0.9 is used in the simulations, resulting in outer target plasma that is sheath limited instead of conduction limited as in the experiment. Scrape-off layer (SOL) particle diffusivity (D-SOL) is scanned from 1 to 0.1 m(2) s(-1). Across this diffusivity range, outer divertor heat flux is dominated by a narrow (similar to 3-4 mm when mapped to the outer midplane) electron convection channel associated with thermoelectric current through the SOL from outer to inner divertor. An order-unity up-down ion pressure asymmetry allows net ion drift flux across the separatrix, facilitated by an artificial mechanism that mimics the anomalous electron transport required for overall ambipolarity in the HD model. At D-SOL = 0.1 m(2) s(-1), the density fall-off length is similar to the electron temperature fall-off length, as predicted by the HD model and as seen experimentally. This research represents a step toward a deeper understanding of the power scrape-off width, and serves as a basis for extending fluid modeling to more experimentally relevant, high-collisionality regimes. C1 [Meier, E. T.; Mordijck, S.] Coll William & Mary, Williamsburg, VA 23187 USA. [Goldston, R. J.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Kaveeva, E. G.; Rozhansky, V. A.; Senichenkov, I. Yu; Voskoboynikov, S. P.] Peter Great St Petersburg Polytech Univ, Polytechnicheskaya 29, St Petersburg 195251, Russia. [Makowski, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Meier, ET (reprint author), Coll William & Mary, Williamsburg, VA 23187 USA. EM emeier@wm.edu FU U.S. Department of Energy [DE-SC0010434] FX This work has been performed under U.S. Department of Energy Contract DE-SC0010434. NR 29 TC 0 Z9 0 U1 8 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2016 VL 58 IS 12 AR 125012 DI 10.1088/0741-3335/58/12/125012 PG 8 WC Physics, Fluids & Plasmas SC Physics GA EC0MK UT WOS:000387795000004 ER PT J AU Podesta, M Bell, RE AF Podesta, M. Bell, R. E. TI Initial operation of the NSTX-Upgrade real-time velocity diagnostic SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE NSTX-Upgrade; plasma rotation control; real time rotation measurements; charge exchange recombination spectroscopy ID FEEDBACK-CONTROL; PLASMA; SPECTROSCOPY; SYSTEM AB A real-time velocity (RTV) diagnostic based on active charge-exchange recombination spectroscopy is now operational on the National Spherical Torus Experiment-Upgrade (NSTX-U) spherical torus (Menard et al 2012 Nucl. Fusion 52 083015). The system has been designed to supply plasma velocity data in real time to the NSTX-U plasma control system, as required for the implementation of toroidal rotation control. Measurements are available from four radii at a maximum sampling frequency of 5 kHz. Post-discharge analysis of RTV data provides additional information on ion temperature, toroidal velocity and density of carbon impurities. Examples of physics studies enabled by RTV measurements from initial operations of NSTX-U are discussed. C1 [Podesta, M.; Bell, R. E.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Podesta, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM mpodesta@pppl.gov FU NSTX-U PCS group; US DoE Office of Science-Fusion Energy Sciences [DE-AC02-09CH11466] FX Discussions and support from the NSTX-U PCS group is kindly acknowledged. Importing real-time signals from the RTV systems into PCS has been made possible by the work of J E Lawson, K Lamb, K Erickson, R Rosenblatz and S P Gerhardt (PPPL). This work was supported by the US DoE Office of Science-Fusion Energy Sciences, under Contract Number DE-AC02-09CH11466. NSTX-U at Princeton Plasma Physics Laboratory (Princeton University, New Jersey-USA) is a DOE Office of Science User Facility. The digital data for this paper can be found from http://arks.princeton.edu/ark:/88435/dsp011v53k0334. NR 22 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2016 VL 58 IS 12 AR 125016 DI 10.1088/0741-3335/58/12/125016 PG 10 WC Physics, Fluids & Plasmas SC Physics GA EC1UE UT WOS:000387892600004 ER PT J AU Cadwallader, LC Zhao, HH AF Cadwallader, Lee C. Zhao, Haihua TI Personnel Safety with Pressurized Gas Systems SO PROCESS SAFETY PROGRESS LA English DT Article DE Hazards evaluation; Industrial hygiene/occupational health ID CAPTIVE BOLT DEVICES; INJECTION INJURIES; HAND INJURIES; JETS AB In this article, selected aspects of safety with compressed gas systems are discussed. Several accident case histories are described that illustrate the potential modes of injury from gas jets, pressure-driven missiles, and asphyxiants. Using high-pressure helium and nitrogen, estimates of safe exclusion distances to prevent skin injuries from gas leaks are calculated for differing pressures, temperatures, and breach sizes. (c) 2016 American Institute of Chemical Engineers Process Saf Prog 35: 330-336, 2016 C1 [Cadwallader, Lee C.; Zhao, Haihua] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. RP Cadwallader, LC (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM lee.cadwallader@inl.gov OI Cadwallader, Lee/0000-0003-0399-7400 FU U.S. Department of Energy Office of Science, under the DOE Idaho Operations Office [DE-AC07-05ID14517] FX This work supported by the U.S. Department of Energy Office of Science, under the DOE Idaho Operations Office (DE-AC07-05ID14517). NR 34 TC 0 Z9 0 U1 6 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1066-8527 EI 1547-5913 J9 PROCESS SAF PROG JI Process Saf. Prog. PD DEC PY 2016 VL 35 IS 4 BP 330 EP 336 DI 10.1002/prs.11850 PG 7 WC Engineering, Chemical SC Engineering GA EB8WN UT WOS:000387672200005 ER PT J AU Alvari, H Hajibagheri, A Sukthankar, G Lakkaraju, K AF Alvari, Hamidreza Hajibagheri, Alireza Sukthankar, Gita Lakkaraju, Kiran TI Identifying community structures in dynamic networks SO SOCIAL NETWORK ANALYSIS AND MINING LA English DT Article DE Community detection; Dynamic social networks; Game-theoretic models ID OVERLAPPING COMMUNITIES; SOCIAL NETWORKS AB Most real-world social networks are inherently dynamic, composed of communities that are constantly changing in membership. To track these evolving communities, we need dynamic community detection techniques. This article evaluates the performance of a set of game-theoretic approaches for identifying communities in dynamic networks. Our method, D-GT (Dynamic Game-Theoretic community detection), models each network node as a rational agent who periodically plays a community membership game with its neighbors. During game play, nodes seek to maximize their local utility by joining or leaving the communities of network neighbors. The community structure emerges after the game reaches a Nash equilibrium. Compared to the benchmark community detection methods, D-GT more accurately predicts the number of communities and finds community assignments with a higher normalized mutual information, while retaining a good modularity. C1 [Alvari, Hamidreza; Hajibagheri, Alireza; Sukthankar, Gita] Univ Cent Florida, Orlando, FL 32816 USA. [Lakkaraju, Kiran] Sandia Natl Labs, Albuquerque, NM USA. RP Sukthankar, G (reprint author), Univ Cent Florida, Orlando, FL 32816 USA. EM halvari@eecs.ucf.edu; hajibagheri@eecs.ucf.edu; gitars@eecs.ucf.edu; klakkar@sandia.gov NR 39 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 1869-5450 EI 1869-5469 J9 SOC NETW ANAL MIN JI Soc. Netw. Anal. Min. PD DEC PY 2016 VL 6 IS 1 AR UNSP 77 DI 10.1007/s13278-016-0390-5 PG 13 WC Computer Science, Information Systems SC Computer Science GA DW3KB UT WOS:000383539400006 ER PT J AU Ning, A Petch, D AF Ning, Andrew Petch, Derek TI Integrated design of downwind land-based wind turbines using analytic gradients SO WIND ENERGY LA English DT Article DE integrated turbine design; analytic gradients; downwind rotors; upwind rotors; blade optimization; wind turbine optimization ID OPTIMIZATION AB Wind turbines are complex systems where component-level changes can have significant system-level effects. Effective wind turbine optimization generally requires an integrated analysis approach with a large number of design variables. Optimizing across large variable sets is orders of magnitude more efficient with gradient-based methods as compared with gradient-free method, particularly when using exact gradients. We have developed a wind turbine analysis set of over 100 components where 90% of the models provide numerically exact gradients through symbolic differentiation, automatic differentiation, and adjoint methods. This framework is applied to a specific design study focused on downwind land-based wind turbines. Downwind machines are of potential interest for large wind turbines where the blades are often constrained by the stiffness required to prevent a tower strike. The mass of these rotor blades may be reduced by utilizing a downwind configuration where the constraints on tower strike are less restrictive. The large turbines of this study range in power rating from 5-7MW and in diameter from 105m to 175m. The changes in blade mass and power production have important effects on the rest of the system, and thus the nacelle and tower systems are also optimized. For high-speed wind sites, downwind configurations do not appear advantageous. The decrease in blade mass (10%) is offset by increases in tower mass caused by the bending moment from the rotor-nacelle-assembly. For low-wind speed sites, the decrease in blade mass is more significant (25-30%) and shows potential for modest decreases in overall cost of energy (around 1-2%). Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Ning, Andrew] Brigham Young Univ, 435 CTB, Provo, UT 84602 USA. [Petch, Derek] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ning, A (reprint author), Brigham Young Univ, 435 CTB, Provo, UT 84602 USA. EM aning@byu.edu OI Ning, Andrew/0000-0003-2190-823X FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; DOE Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding for the work was provided by the DOE Office of Energy Efficiency and Renewable Energy, Wind and Water Power Technologies Office. NR 31 TC 0 Z9 0 U1 9 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1095-4244 EI 1099-1824 J9 WIND ENERGY JI Wind Energy PD DEC PY 2016 VL 19 IS 12 BP 2137 EP 2152 DI 10.1002/we.1972 PG 16 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA EB8WG UT WOS:000387671400001 ER PT J AU Newman, JF Bonin, TA Klein, PM Wharton, S Newsom, RK AF Newman, Jennifer F. Bonin, Timothy A. Klein, Petra M. Wharton, Sonia Newsom, Rob K. TI Testing and validation of multi-lidar scanning strategies for wind energy applications SO WIND ENERGY LA English DT Article DE Doppler lidar; turbulence; virtual tower; scanning lidar ID DUAL-DOPPLER LIDAR; BOUNDARY-LAYER; TURBULENCE; ERROR AB Several factors cause lidars to measure different values of turbulence than an anemometer on a tower, including volume averaging, instrument noise and the use of a scanning circle to estimate the wind field. One way to avoid the use of a scanning circle is to deploy multiple scanning lidars and point them toward the same volume in space to collect velocity measurements and extract high-resolution turbulence information. This paper explores the use of two multi-lidar scanning strategies, the tri-Doppler technique and the virtual tower technique, for measuring 3-D turbulence. In summer 2013, a vertically profiling Leosphere WindCube lidar and three Halo Photonics Streamline lidars were operated at the Southern Great Plains Atmospheric Radiation Measurement site to test these multi-lidar scanning strategies. During the first half of the field campaign, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every second. Next, all three scanning lidars were used to build a virtual tower' above the WindCube lidar. Results indicate that the tri-Doppler technique measures higher values of horizontal turbulence than the WindCube lidar under stable atmospheric conditions, reduces variance contamination under unstable conditions and can measure high-resolution profiles of mean wind speed and direction. The virtual tower technique provides adequate turbulence information under stable conditions but cannot capture the full temporal variability of turbulence experienced under unstable conditions because of the time needed to readjust the scans. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Newman, Jennifer F.; Bonin, Timothy A.; Klein, Petra M.] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA. [Wharton, Sonia] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA USA. [Newsom, Rob K.] Pacific Northwest Natl Lab, Richland, WA USA. [Newman, Jennifer F.] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA. [Bonin, Timothy A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Bonin, Timothy A.] NOAA, Earth Syst Res Lab, Boulder, CO USA. RP Newman, JF (reprint author), Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA. EM Jennifer.Newman@nrel.gov RI Bonin, Timothy /C-9125-2016; Klein, Petra/G-1894-2012 OI Bonin, Timothy /0000-0001-7679-2890; Klein, Petra/0000-0003-2943-7831 FU Office of Biological and Environmental Research; Laboratory Directed Research and Development (LDRD); Lawrence Livermore National Laboratory [12-ERD-069]; US Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX The authors would like to thank the staff of the Southern Great Plains ARM site, Marc Fischer and Sebastien Biraud from Lawrence Berkeley National Laboratory, the members of the Boundary Layer Integrated Sensing and Simulation group at OU and the technical support staff at Sgurr Energy, Leosphere and Halo Photonics for their assistance during the experiment. We are also grateful for comments from two anonymous reviewers, which helped improve the manuscript. LABLE 2 data were obtained from the ARM Climate Research Facility, a US Department of Energy Office of Science user facility sponsored by the Office of Biological and Environmental Research. J.F.N. and S.W. received funding from Laboratory Directed Research and Development (LDRD) award number 12-ERD-069 from the Lawrence Livermore National Laboratory. Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 30 TC 4 Z9 4 U1 13 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1095-4244 EI 1099-1824 J9 WIND ENERGY JI Wind Energy PD DEC PY 2016 VL 19 IS 12 BP 2239 EP 2254 DI 10.1002/we.1978 PG 16 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA EB8WG UT WOS:000387671400007 ER PT J AU Helsen, J Guo, Y Keller, J Guillaume, P AF Helsen, J. Guo, Y. Keller, J. Guillaume, P. TI Experimental investigation of bearing slip in a wind turbine gearbox during a transient grid loss event SO WIND ENERGY LA English DT Article DE grid loss; bearing slip; dynamics; wind turbine; emergency stop; signal processing; modal analysis ID OF-THE-ART; ROTATING MACHINERY; TUTORIAL AB This work investigates the behaviour of the high-speed stage of a wind turbine gearbox during a transient grid loss event. Dynamometer testing on a full-scale wind turbine nacelle is used. A combination of external and internal gearbox measurements are analysed. Particular focus is on the characterization of the high-speed shaft tapered roller bearing slip behaviour. This slipping behaviour is linked to dynamic events by many researchers and described as a potential bearing failure initiator; however, only limited full-scale dynamic testing is documented. Strain gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing behaviour in detail. It is shown that during the transient event the high-speed shaft experiences a combined torsional and bending deformation. These unfavourable loading conditions induce roller slip in the bearings during the torque reversals, indicating the potential of the applied load case to go beyond the preload of the tapered roller bearing. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Helsen, J.; Guillaume, P.] Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium. [Guo, Y.; Keller, J.] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO USA. RP Helsen, J (reprint author), Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium. EM jan.helsen@vub.ac.be FU U.S. Department of Energy [DE-AC02-05CH11231]; Fonds Wetenschappelijk Onderzoek (FWO) Vlaanderen FX This research was performed in the framework of support schemes of the Fonds Wetenschappelijk Onderzoek (FWO) Vlaanderen.; The National Renewable Energy Laboratory's GRC is funded by th e U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 25 TC 0 Z9 0 U1 13 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1095-4244 EI 1099-1824 J9 WIND ENERGY JI Wind Energy PD DEC PY 2016 VL 19 IS 12 BP 2255 EP 2269 DI 10.1002/we.1979 PG 15 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA EB8WG UT WOS:000387671400008 ER PT J AU Morris, AB Pannala, S Ma, Z Hrenya, CM AF Morris, A. B. Pannala, S. Ma, Z. Hrenya, C. M. TI Development of soft-sphere contact models for thermal heat conduction in granular flows SO AICHE JOURNAL LA English DT Article DE heat conduction; discrete element method; soft-sphere contact models ID MFIX-DEM SOFTWARE; SIMULATIONS; PARTICLES AB Conductive heat transfer to flowing particles occurs when two particles (or a particle and wall) come into contact. The direct conduction between the two bodies depends on the collision dynamics, namely the size of the contact area and the duration of contact. For soft-sphere discrete-particle simulations, it is computationally expensive to resolve the true collision time because doing so would require a restrictively small numerical time step. To improve the computational speed, it is common to increase the softness of the material to artificially increase the collision time, but doing so affects the heat transfer. In this work, two physically-based correction terms are derived to compensate for the increased contact area and time stemming from artificial particle softening. By including both correction terms, the impact that artificial softening has on the conductive heat transfer is removed, thus enabling simulations at greatly reduced computational times without sacrificing physical accuracy. (c) 2016 American Institute of Chemical Engineers AIChE J, 62: 4526-4535, 2016 C1 [Morris, A. B.; Hrenya, C. M.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80303 USA. [Pannala, S.] SABIC Amer, Houston, TX 77042 USA. [Ma, Z.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hrenya, CM (reprint author), Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80303 USA. EM hrenya@colorado.edu FU DOE BRIDGE program [DE-EE0005954]; SunShot initiative; Office of Science of the Department of Energy through the Advanced Leadership Computing [DE-AC05-00OR22725]; National Science Foundation [CNS-0821794]; University of Colorado Boulder; University of Colorado Denver; National Center for Atmospheric Research FX The work was funded by the DOE BRIDGE program (grant no. DE-EE0005954) as part of the SunShot initiative. This research involved resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy through the Advanced Leadership Computing under Contract DE-AC05-00OR22725. Simulations were also performed on the Janus supercomputer, which is supported by the National Science Foundation (award number CNS-0821794), the University of Colorado Boulder, the University of Colorado Denver, and the National Center for Atmospheric Research. The Janus supercomputer is operated by the University of Colorado Boulder. NR 27 TC 0 Z9 0 U1 7 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 EI 1547-5905 J9 AICHE J JI AICHE J. PD DEC PY 2016 VL 62 IS 12 BP 4526 EP 4535 DI 10.1002/aic.15331 PG 10 WC Engineering, Chemical SC Engineering GA EB4QQ UT WOS:000387358300030 ER PT J AU Ozmen, O Yilmaz, L Smith, J AF Ozmen, Ozgur Yilmaz, Levent Smith, Jeffrey TI The impact of socio-technical communication styles on the diversity and innovation potential of global science collaboratories SO COMPUTATIONAL AND MATHEMATICAL ORGANIZATION THEORY LA English DT Article DE Complex adaptive systems; Agent-based modeling; Communication network; Collective action; Innovation; Diversity; Social network AB Emerging cyber-infrastructure tools are enabling scientists to transparently co-develop, share, and communicate about real-time diverse forms of knowledge artifacts. In these environments, communication preferences of scientists are posited as an important factor affecting innovation capacity and robustness of social and knowledge network structures. Scientific knowledge creation in such communities is called global participatory science (GPS). Recently, using agent-based modeling and collective action theory as a basis, a complex adaptive social communication network model (CollectiveInnoSim) is implemented. This work leverages CollectiveInnoSim implementing communication preferences of scientists. Social network metrics and knowledge production patterns are used as proxy metrics to infer innovation potential of emergent knowledge and collaboration networks. The objective is to present the underlying communication dynamics of GPS in a form of computational model and delineate the impacts of various communication preferences of scientists on innovation potential of the collaboration network. Gained insight can ultimately help policy-makers to design GPS environments and promote innovation. C1 [Ozmen, Ozgur] Oak Ridge Natl Lab, Computat Sci & Engn Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Yilmaz, Levent] Auburn Univ, Samuel Ginn Coll Engn, Comp Sci & Software Engn, Shelby Ctr 3116, Auburn, AL 36849 USA. [Smith, Jeffrey] Auburn Univ, Samuel Ginn Coll Engn, Ind & Syst Engn, Shelby Ctr 3306, Auburn, AL 36849 USA. RP Ozmen, O (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM ozmeno@ornl.gov; yilmale@auburn.edu; jsmith@auburn.edu FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy; DOE Public Access Plan; National Science Foundation (NSF) [NSF-SBE-0830261]; Industrial and Systems Engineering Department assistantships/fellowships at Auburn University FX This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This research is also partially supported by National Science Foundation (NSF) as authorized by the contract number NSF-SBE-0830261 and Industrial and Systems Engineering Department assistantships/fellowships at Auburn University. NR 29 TC 0 Z9 0 U1 10 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1381-298X EI 1572-9346 J9 COMPUT MATH ORGAN TH JI Comput. Math. Organ. Theory PD DEC PY 2016 VL 22 IS 4 BP 521 EP 548 DI 10.1007/s10588-016-9213-5 PG 28 WC Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Computer Science; Mathematics; Mathematical Methods In Social Sciences GA EB4PV UT WOS:000387355600006 ER PT J AU Garcia-Sanchez, T Gomez-Lazaro, E Muljadi, E Kessler, M Molina-Garcia, A AF Garcia-Sanchez, T. Gomez-Lazaro, E. Muljadi, E. Kessler, M. Molina-Garcia, A. TI Statistical and Clustering Analysis for Disturbances: A Case Study of Voltage Dips in Wind Farms SO IEEE TRANSACTIONS ON POWER DELIVERY LA English DT Article DE Clustering methods; principal component analysis; voltage dip ID RENEWABLE ENERGY-SOURCES; SYSTEMS; CLASSIFICATION; INTEGRATION; SAGS AB This paper proposes and evaluates an alternative statistical methodology to analyze a large number of voltage dips. For a given voltage dip, a set of lengths is first identified to characterize the root mean square ( rms) voltage evolution along the disturbance, deduced from partial linearized time intervals and trajectories. Principal component analysis and K-means clustering processes are then applied to identify rms-voltage patterns and propose a reduced number of representative rms-voltage profiles from the linearized trajectories. This reduced group of averaged rms-voltage profiles enables the representation of a large amount of disturbances, which offers a visual and graphical representation of their evolution along the events, aspects that were not previously considered in other contributions. The complete process is evaluated on real voltage dips collected in intense field-measurement campaigns carried out in a wind farm in Spain among different years. The results are included in this paper. C1 [Garcia-Sanchez, T.; Gomez-Lazaro, E.] Univ Castilla La Mancha, Renewable Energy Res Inst, Albacete 02071, Spain. [Garcia-Sanchez, T.; Gomez-Lazaro, E.] Univ Castilla La Mancha, DIEEAC EDII AB, Albacete 02071, Spain. [Muljadi, E.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Kessler, M.] Univ Politecn Cartagena, Dept Appl Math & Stat, Cartagena 30202, Spain. [Molina-Garcia, A.] Univ Politecn Cartagena, Dept Elect Engn, Cartagena 30202, Spain. RP Garcia-Sanchez, T (reprint author), Univ Castilla La Mancha, Renewable Energy Res Inst, Albacete 02071, Spain.; Garcia-Sanchez, T (reprint author), Univ Castilla La Mancha, DIEEAC EDII AB, Albacete 02071, Spain. EM tania.garcia@uclm.es; emilio.gomez@uclm.es; eduard.muljadi@nrel.gov; mathieu.kessler@upct.es; angel.molina@upct.es OI Kessler, Mathieu/0000-0002-0196-5811 NR 23 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8977 EI 1937-4208 J9 IEEE T POWER DELIVER JI IEEE Trans. Power Deliv. PD DEC PY 2016 VL 31 IS 6 BP 2530 EP 2537 DI 10.1109/TPWRD.2016.2522946 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA EA9JP UT WOS:000386959700010 ER PT J AU Beresh, SJ Wagner, JL Casper, KM AF Beresh, Steven J. Wagner, Justin L. Casper, Katya M. TI Compressibility effects in the shear layer over a rectangular cavity SO JOURNAL OF FLUID MECHANICS LA English DT Article DE compressible turbulence; high-speed flow; shear layer turbulence ID PLANAR VELOCITY-MEASUREMENTS; SELF-SUSTAINED OSCILLATIONS; LINEAR-STABILITY ANALYSIS; SUPERSONIC MIXING LAYERS; LARGE-SCALE STRUCTURES; LARGE-EDDY SIMULATION; 3-DIMENSIONAL INSTABILITIES; GROWTH-RATE; CENTRIFUGAL INSTABILITIES; FLOW OSCILLATIONS AB The influence of compressibility on the shear layer over a rectangular cavity of variable width has been studied in a free stream Mach number range of 0.6-2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a inure substantial drop in all three components as well as the turbulent shear stress. This contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width. C1 [Beresh, Steven J.; Wagner, Justin L.; Casper, Katya M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Beresh, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sjberes@sandia.gov FU Sandia National Laboratories; United States Department of Energy; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank S Arunajatesan, M. Barone, and E. DeMauro, all of Sandia, for numerous discussions of cavity flow physics and their helpful comments on the data and their interpretation. This work is supported by Sandia National Laboratories and the United States Department of Energy. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 91 TC 0 Z9 0 U1 12 U2 12 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD DEC PY 2016 VL 808 BP 116 EP 152 DI 10.1017/jfm.2016.540 PG 37 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA EB1UI UT WOS:000387140500009 ER PT J AU Shaw, JB Lin, TY Leach, FE Tolmachev, AV Tolic, N Robinson, EW Koppenaal, DW Pasa-Tolic, L AF Shaw, Jared B. Lin, Tzu-Yung Leach, Franklin E., III Tolmachev, Aleksey V. Tolic, Nikola Robinson, Errol W. Koppenaal, David W. Pasa-Tolic, Ljiljana TI 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE FTMS; Fourier transform mass spectrometry; FTICR; High resolution mass spectrometry; Monoclonal antibody ID TOP-DOWN PROTEOMICS; ULTRAVIOLET PHOTODISSOCIATION; SPECTRA; GENERATION AB We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700). C1 [Shaw, Jared B.; Lin, Tzu-Yung; Leach, Franklin E., III; Tolmachev, Aleksey V.; Tolic, Nikola; Robinson, Errol W.; Koppenaal, David W.; Pasa-Tolic, Ljiljana] Pacific Northwest Natl Lab, Environm Mol Sci Lab, 3335 Innovat Ave K8-98,POB 999, Richland, WA 99352 USA. RP Pasa-Tolic, L (reprint author), Pacific Northwest Natl Lab, Environm Mol Sci Lab, 3335 Innovat Ave K8-98,POB 999, Richland, WA 99352 USA. EM ljiljana.pasatolic@pnnl.gov FU Office of Biological and Environmental Research FX This research is part of the "High Resolution and Mass Accuracy Capability" development project at EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory in Richland, WA. The authors thank David P. A. Kilgour, Spencer A. Prost, Kenneth J. Auberry, Randolph V. Norheim, Gordon A. Anderson, Jean H. Futrell, James R. Ewing, and Mark R. Townsend for expert help with bioinformatic analyses, electronics, data acquisition workflows, and mechanical design and fabrication throughout this project. NR 26 TC 3 Z9 3 U1 8 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD DEC PY 2016 VL 27 IS 12 BP 1929 EP 1936 DI 10.1007/s13361-016-1507-9 PG 8 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA EB4IW UT WOS:000387335700006 PM 27734325 ER PT J AU Zhou, YF Yao, J Ding, YZ Yu, JC Hua, X Evans, JE Yu, XF Lao, DB Heldebrant, DJ Nune, SK Cao, B Bowden, ME Yu, XY Wang, XL Zhu, ZH AF Zhou, Yufan Yao, Juan Ding, Yuanzhao Yu, Jiachao Hua, Xin Evans, James E. Yu, Xiaofei Lao, David B. Heldebrant, David J. Nune, Satish K. Cao, Bin Bowden, Mark E. Yu, Xiao-Ying Wang, Xue-Lin Zhu, Zihua TI Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE In situ liquid SIMS; Solid-liquid interface; Molecular imaging; Ionic liquid; Biofilm; Cell; Electrolyte ID ELECTRODE-ELECTROLYTE INTERFACE; MASS-SPECTROMETRY; TOF-SIMS; WATER ICE; MICROSCOPY; SURFACES; BIOFILMS; BOMBARDMENT; CELL; BEAMS AB In situ liquid secondary ion mass spectrometry (SIMS) enabled by system for analysis at the liquid vacuum interface (SALVI) has proven to be a promising new tool to provide molecular information at solid-liquid and liquid-vacuum interfaces. However, the initial data showed that useful signals in positive ion spectra are too weak to be meaningful in most cases. In addition, it is difficult to obtain strong negative molecular ion signals when m/z > 200. These two drawbacks have been the biggest obstacle towards practical use of this new analytical approach. In this study, we report that strong and reliable positive and negative molecular signals are achievable after optimizing the SIMS experimental conditions. Four model systems, including a 1,8-diazabicycloundec-7-ene (DBU)-base switchable ionic liquid, a live Shewanella oneidensis biofilm, a hydrated mammalian epithelia cell, and an electrolyte popularly used in Li ion batteries were studied. A signal enhancement of about two orders of magnitude was obtained in comparison with non-optimized conditions. Therefore, molecular ion signal intensity has become very acceptable for use of in situ liquid SIMS to study solid-liquid and liquid-vacuum interfaces. C1 [Zhou, Yufan; Yu, Xiaofei; Wang, Xue-Lin] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China. [Zhou, Yufan; Yu, Xiaofei; Wang, Xue-Lin] Shandong Univ, MOE, Key Lab Particle Phys & Particle Irradiat, Jinan 250100, Peoples R China. [Zhou, Yufan; Evans, James E.; Yu, Xiaofei; Bowden, Mark E.; Zhu, Zihua] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, WR Wiley Environm Mol Sci Lab, Richland, WA 99354 USA. [Yao, Juan; Ding, Yuanzhao; Yu, Jiachao; Hua, Xin; Yu, Xiao-Ying] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99354 USA. [Ding, Yuanzhao; Cao, Bin] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore. [Ding, Yuanzhao; Cao, Bin] Nanyang Technol Univ, Singapore Ctr Environm Life Sci Engn, Singapore 639798, Singapore. [Lao, David B.; Heldebrant, David J.; Nune, Satish K.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Wang, XL (reprint author), Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Jinan 250100, Peoples R China.; Wang, XL (reprint author), Shandong Univ, MOE, Key Lab Particle Phys & Particle Irradiat, Jinan 250100, Peoples R China.; Zhu, ZH (reprint author), Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, WR Wiley Environm Mol Sci Lab, Richland, WA 99354 USA.; Yu, XY (reprint author), Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99354 USA. EM xiaoying.yu@pnnl.gov; xuelinwang@sdu.edu.cn; zihua.zhu@pnnl.gov RI Zhu, Zihua/K-7652-2012; Cao, Bin/H-2639-2012; OI Cao, Bin/0000-0002-9462-496X; wang, xue-lin/0000-0001-5750-6035 FU Laboratory Directed Research and Development (LDRD) programs of the Pacific Northwest National Laboratory (PNNL); Department of Energy's Office of Biological and Environmental Research located at PNNL FX This work was funded by Laboratory Directed Research and Development (LDRD) programs of the Pacific Northwest National Laboratory (PNNL), which include an FY16 Open Call LDRD, an EBSD FY16 Seed LDRD, and an MS3 LDRD. The work was performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL. We also appreciate Mr. Decarle Jin for his English editing. NR 41 TC 1 Z9 1 U1 7 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD DEC PY 2016 VL 27 IS 12 BP 2006 EP 2013 DI 10.1007/s13361-016-1478-x PG 8 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA EB4IW UT WOS:000387335700014 PM 27600576 ER PT J AU Brown, CS Zhang, H Kucukboyaci, V Sung, Y AF Brown, C. S. Zhang, H. Kucukboyaci, V. Sung, Y. TI Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID SENSITIVITY-ANALYSIS; METHODOLOGY; REACTOR AB VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was applied to simulate core behavior of a typical Westinghouse-designed 4-loop pressurized water reactor (PWR) with 17 x 17 fuel assemblies in response to two main steam line break (MSLB) accident scenarios initiated at hot zero power (HZP) at the end of the first fuel cycle with the most reactive rod cluster control assembly stuck out of the core. The reactor core boundary conditions at the most DNB limiting time step were determined by a system analysis code. The core inlet flow and temperature distributions were obtained from computational fluid dynamics (CFD) simulations. The two MSLB scenarios consisted of the high and low flow situations, where reactor coolant pumps either continue to operate with offsite power or do not continue to operate since offsite power is unavailable. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks' nonparametric statistical approach. In this demonstration of BEPU application, 59 full core simulations were performed for each accident scenario to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. A parametric goodness-of-fit approach was also applied to the results to obtain the MDNBR value at the 95/95 tolerance limit. Initial sensitivity analysis was performed with the 59 cases per accident scenario by use of Pearson correlation coefficients. The results show that this typical PWR core retains design margin with respect to the MDNBR safety limit for both of the MSLB accident scenarios. The scenario with available offsite power was more restrictive in terms of MDNBR than the scenario without offsite power. (C) 2016 Elsevier B.V. All rights reserved. C1 [Brown, C. S.] North Carolina State Univ, Dept Nucl Engn, 2500 Stinson Dr, Raleigh, NC 27695 USA. [Zhang, H.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. [Kucukboyaci, V.; Sung, Y.] Westinghouse Elect Co, 1000 Westinghouse Dr, Cranberry Township, PA 16066 USA. RP Zhang, H (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM csbrown3@ncsu.edu; Hongbin.Zhang@inl.gov; kucukbvn@westinghouse.com; sungy@westinghouse.com FU Office of Nuclear Energy of the U.S. Department of Energy [DE-AC07-05ID14517]; Battelle Energy Alliance, LLC [DE-AC07-05ID14517] FX This research made use of the resources of the High Performance Computing Center at Idaho National Laboratory, which is supported by the Office of Nuclear Energy of the U.S. Department of Energy under Contract No. DE-AC07-05ID14517. The authors would like to thank Andrew Godfrey, Mark Baird and Robert Salko at ORNL for their assistance with VERA-CS and Andy Detar, William Higby, Yiban Xu and Liping Cao of Westinghouse for their assistance in providing the system transient condition and the core inlet distributions. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 28 TC 1 Z9 1 U1 4 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 1 PY 2016 VL 309 BP 8 EP 22 DI 10.1016/j.nucengdes.2016.09.006 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EB8GQ UT WOS:000387629900002 ER PT J AU Jiang, H Wang, JAJ Wang, H AF Jiang, Hao Wang, Jy-An John Wang, Hong TI The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID RODS AB Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, K, flexural rigidity El can be estimated as EI = MIK. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets to the clad, which results in a reduction in composite rod system flexural rigidity. Therefore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data. (C) 2016 Elsevier B.V. All rights reserved. C1 [Jiang, Hao; Wang, Jy-An John; Wang, Hong] Oak Ridge Natl Lab, Mat Sci & Technol Div, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Jiang, H (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM jiangh@ornl.gov OI Wang, Jy-An/0000-0003-2402-3832 FU DOE UFDC; Oak Ridge National Laboratory [DE-AC05-000R22725]; UT-Battelle, LLC FX This research was sponsored by DOE UFDC and was conducted at Oak Ridge National Laboratory under contract DE-AC05-000R22725 with UT-Battelle, LLC. The authors would like to thank Program Managers Bruce Bevard and Rob Howard for providing guidance and support to this project; and Edgar Lara-Curzio for reviewing this article. NR 13 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 1 PY 2016 VL 309 BP 40 EP 52 DI 10.1016/j.nucengdes.2016.09.013 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EB8GQ UT WOS:000387629900004 ER PT J AU Spencer, KY Sudderth, L Brito, RA Evans, JA Hart, CS Hu, AB Jati, A Stern, K McDeavitt, SM AF Spencer, Kristina Yancey Sudderth, Laura Brito, Ryan A. Evans, Jordan A. Hart, Clifford S. Hu, Anbang Jati, Andi Stern, Karyn McDeavitt, Sean M. TI Sensitivity study for accident tolerant fuels: Property comparisons and behavior simulations in a simplified PWR to enable ATF development and design SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID ENHANCED THERMAL-CONDUCTIVITY; URANIUM NITRIDE FUEL; MECHANICAL-PROPERTIES; BERYLLIUM-OXIDE; SILICON-CARBIDE; COMPOSITE FUEL; MONONITRIDE; PERFORMANCE; DIOXIDE; UN AB Since the events at the Fukushima-Daiichi nuclear power plant, there has been increased interest in developing fuels to better withstand accidents for current light water reactors. Four accident tolerant fuel candidates are uranium oxide with beryllium oxide additives, uranium oxide with silicon carbide matrix additives, uranium nitride, and uranium nitride with uranium silicide composite. The first two candidates represent near-term high performance uranium oxide with high thermal conductivity and neutron transparency, and the second two represent mid-term high-density fuels with highly beneficial thermal properties. This study seeks to understand the benefits and drawbacks of each option in place of uranium dioxide. To assess the material properties for each of the fuel types, an extensive literature review was performed for material property data. Correlations were then made to evaluate the properties during reactor operation. Neutronics and thermal hydraulics studies were also completed to determine the impact of the use of each candidate in an AP1000 reactor. In most cases, the candidate fuels performed more desirably than uranium dioxide, but no fuel type performed better in all aspects. Much more research needs to be performed to build a complete model of the fuel performances, primarily experimental data for uranium silicide. Each of the fuels studied has its own benefits and drawbacks, and the comparisons discussed in this report can be used to aid in determining the most appropriate fuel depending on the desired specifications. (C) 2016 Elsevier B.V. All rights reserved. C1 [Spencer, Kristina Yancey; Sudderth, Laura; Brito, Ryan A.; Evans, Jordan A.; Hart, Clifford S.; Hu, Anbang; Jati, Andi; Stern, Karyn; McDeavitt, Sean M.] Texas A&M Univ, TAMU 3133, College Stn, TX 77843 USA. [Sudderth, Laura] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. RP Spencer, KY (reprint author), Texas A&M Univ, TAMU 3133, College Stn, TX 77843 USA. EM kristina.yancey@gmail.com; mcdeavitt@tamu.edu RI Sudderth, Laura/E-2784-2017; OI Sudderth, Laura/0000-0001-9587-7128; Yancey Spencer, Kristina/0000-0003-0448-0411 NR 51 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD DEC 1 PY 2016 VL 309 BP 197 EP 212 DI 10.1016/j.nucengdes.2016.09.009 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EB8GQ UT WOS:000387629900017 ER PT J AU Haynes, JA Unocic, KA Lance, MJ Pint, BA AF Haynes, J. A. Unocic, K. A. Lance, M. J. Pint, B. A. TI Influences of Superalloy Composition and Pt Content on the Oxidation Behavior of Gamma-Gamma Prime NiPtAl Bond Coatings SO OXIDATION OF METALS LA English DT Article DE Platinum; Diffusion coating; High-temperature oxidation; Bond coating; Gamma prime ID NI-BASED SUPERALLOYS; MODIFIED ALUMINIDE COATINGS; THERMAL BARRIER COATINGS; NICKEL-BASE SUPERALLOYS; WATER-VAPOR; SUBSTRATE COMPOSITION; FORMING ALLOYS; HOT CORROSION; PLATINUM; SCALES AB The effects of superalloy composition and Pt content on the high-temperature oxidation behavior of gamma-gamma' NiPtAl diffusion coatings were investigated over the temperature range of 1050-1150 A degrees C. Simple NiPtAl diffusion coatings with 7 or 12 A mu m electroplated Pt thickness were evaluated in 1-h cycles in dry O-2 for up to 2500 cycles on four superalloys: directionally solidified (DS) alloy 142, 1st generation single-crystal (SX) alloy 1483, and 2nd generation SX alloys X4 and N5. Coatings on high-Hf alloy 142 experienced severe internal oxidation of Hf at all temperatures. Coatings on similar to 5 at.% Ti alloy 1483 were protective at 1050 A degrees C, but exhibited severe scale spallation at 1100 A degrees C, with extensive formation of Ti- and Ni-rich oxides at the gas interface. Coatings with 7-A mu m Pt on X4 were extremely protective at 1100 A degrees C, but failed rapidly at 1150 A degrees C, which also was associated with the formation of Ti-rich oxides. Increasing the coating Pt content on X4 improved the 1150 A degrees C oxidation behavior. Coatings on Ti-free N5 showed the best performance at 1150 A degrees C, especially with 12-A mu m Pt. Although gamma-gamma' coatings can exhibit outstanding cyclic oxidation resistance with minimal Al depletion, they appear to be sensitive to substrate composition, as well as eventual Pt depletion due to interdiffusion. C1 [Haynes, J. A.; Unocic, K. A.; Lance, M. J.; Pint, B. A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Haynes, JA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM haynesa@ornl.gov FU U.S. Department of Energy, U.S. Assistant Secretary for Energy Efficiency and Renewable Energy, and Advanced Manufacturing Office FX The authors would like to thank G. Garner, T. Jordan, T. Lowe, and D. Leonard, for assistance with the experimental work. Capstone Turbine Corp., Siemens, General Electric Aircraft Engines, and Howmet provided the superalloys for these experiments and Prof. Y. Zhang at TTU assisted with the Pt plating. M. Brady and S. Dryepondt provided helpful comments on the manuscript. This research was sponsored by the U.S. Department of Energy, U.S. Assistant Secretary for Energy Efficiency and Renewable Energy, and Advanced Manufacturing Office (Combined Heat and Power Program). NR 65 TC 1 Z9 1 U1 13 U2 13 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X EI 1573-4889 J9 OXID MET JI Oxid. Met. PD DEC PY 2016 VL 86 IS 5-6 BP 453 EP 481 DI 10.1007/s11085-016-9646-8 PG 29 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA EB2YO UT WOS:000387228700005 ER PT J AU Zhou, MN White, R AF Zhou, Muni White, Roscoe TI Collisional dependence of Alfven mode saturation in tokamaks SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE Alfven modes; saturation; collisions; tokamaks ID ENERGETIC INJECTED BEAM; NONLINEAR EVOLUTION; WAVE PROBLEM; DRIVEN; INSTABILITY; PLASMAS AB Saturation of Alfven modes driven unstable by a distribution of high energy particles as a function of collisionality is investigated with a guiding center code, using numerical eigenfunctions produced by linear theory and numerical high energy particle distributions. The most important resonance is found and it is shown that when the resonance domain is bounded, not allowing particles to collisionlessly escape, the saturation amplitude is given by the balance of the resonance mixing time with the time for nearby particles to collisionally diffuse across the resonance width. Saturation amplitudes are in agreement with theoretical predictions as long as the mode amplitude is not so large that it produces stochastic loss from the resonance domain. C1 [Zhou, Muni] Zhejiang Univ, Dept Phys, Hangzhou, Zhejiang, Peoples R China. [White, Roscoe] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP White, R (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rwhite@pppl.gov FU U.S. Department of Energy [DE-AC02-09CH11466]; Zhejiang University FX This work was partially supported by the U.S. Department of Energy Grant DE-AC02-09CH11466. Muni Zhou acknowledges support of Zhejiang University for a visit to PPPL. The digital data for this paper can be found in http://arks.princeton.edu/ark:/88435/dsp018p58pg29j. NR 27 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2016 VL 58 IS 12 AR 125006 DI 10.1088/0741-3335/58/12/125006 PG 8 WC Physics, Fluids & Plasmas SC Physics GA EB3BH UT WOS:000387236000001 ER PT J AU Alekhin, S Altmannshofer, W Asaka, T Batell, B Bezrukov, F Bondarenko, K Boyarsky, A Choi, KY Corral, C Craig, N Curtin, D Davidson, S de Gouvea, A Dell'Oro, S deNiverville, P Dev, PSB Dreiner, H Drewes, M Eijima, S Essig, R Fradette, A Garbrecht, B Gavela, B Giudice, GF Goodsell, MD Gorbunov, D Gori, S Grojean, C Guffanti, A Hambye, T Hansen, SH Helo, JC Hernandez, P Ibarra, A Ivashko, A Izaguirre, E Jaeckel, J Jeong, YS Kahlhoefer, F Kahn, Y Katz, A Kim, CS Kovalenko, S Krnjaic, G Lyubovitskij, VE Marcocci, S Mccullough, M McKeen, D Mitselmakher, G Moch, SO Mohapatra, RN Morrissey, DE Ovchynnikov, M Paschos, E Pilaftsis, A Pospelov, M Reno, MH Ringwald, A Ritz, A Roszkowski, L Rubakov, V Ruchayskiy, O Schienbein, I Schmeier, D Schmidt-Hoberg, K Schwaller, P Senjanovic, G Seto, O Shaposhnikov, M Shchutska, L Shelton, J Shrock, R Shuve, B Spannowsky, M Spray, A Staub, F Stolarski, D Strassler, M Tello, V Tramontano, F Tripathi, A Tulin, S Vissani, F Winkler, MW Zurek, KM AF Alekhin, Sergey Altmannshofer, Wolfgang Asaka, Takehiko Batell, Brian Bezrukov, Fedor Bondarenko, Kyrylo Boyarsky, Alexey Choi, Ki-Young Corral, Cristobal Craig, Nathaniel Curtin, David Davidson, Sacha de Gouvea, Andre Dell'Oro, Stefano deNiverville, Patrick Dev, P. S. Bhupal Dreiner, Herbi Drewes, Marco Eijima, Shintaro Essig, Rouven Fradette, Anthony Garbrecht, Bjoern Gavela, Belen Giudice, Gian F. Goodsell, Mark D. Gorbunov, Dmitry Gori, Stefania Grojean, Christophe Guffanti, Alberto Hambye, Thomas Hansen, Steen H. Helo, Juan Carlos Hernandez, Pilar Ibarra, Alejandro Ivashko, Artem Izaguirre, Eder Jaeckel, Joerg Jeong, Yu Seon Kahlhoefer, Felix Kahn, Yonatan Katz, Andrey Kim, Choong Sun Kovalenko, Sergey Krnjaic, Gordan Lyubovitskij, Valery E. Marcocci, Simone Mccullough, Matthew McKeen, David Mitselmakher, Guenakh Moch, Sven-Olaf Mohapatra, Rabindra N. Morrissey, David E. Ovchynnikov, Maksym Paschos, Emmanuel Pilaftsis, Apostolos Pospelov, Maxim Reno, Mary Hall Ringwald, Andreas Ritz, Adam Roszkowski, Leszek Rubakov, Valery Ruchayskiy, Oleg Schienbein, Ingo Schmeier, Daniel Schmidt-Hoberg, Kai Schwaller, Pedro Senjanovic, Goran Seto, Osamu Shaposhnikov, Mikhail Shchutska, Lesya Shelton, Jessie Shrock, Robert Shuve, Brian Spannowsky, Michael Spray, Andy Staub, Florian Stolarski, Daniel Strassler, Matt Tello, Vladimir Tramontano, Francesco Tripathi, Anurag Tulin, Sean Vissani, Francesco Winkler, Martin W. Zurek, Kathryn M. TI A facility to search for hidden particles at the CERN SPS: the SHiP physics case SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review DE beyond the standard model physics; intensity frontier experiment; hidden sectors; heavy neutral leptons; dark photons ID DEEP-INELASTIC SCATTERING; HEAVY STERILE NEUTRINOS; DOUBLE-BETA DECAY; BEAM-DUMP EXPERIMENT; LEFT-RIGHT SYMMETRY; MODEL HIGGS-BOSON; ELECTROWEAK PHASE-TRANSITION; SURFACE BRIGHTNESS GALAXIES; INTERACTING DARK-MATTER; NUCLEAR-STRUCTURE FUNCTIONS AB This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, tau -> 3 mu and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation. C1 [Alekhin, Sergey] DESY, Platanenallee 6, D-15738 Zeuthen, Germany. [Alekhin, Sergey] Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Altmannshofer, Wolfgang; Gori, Stefania; Izaguirre, Eder; Krnjaic, Gordan; Pospelov, Maxim; Shuve, Brian] Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON, Canada. [Asaka, Takehiko] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Batell, Brian; Giudice, Gian F.; Katz, Andrey; Mccullough, Matthew; Schwaller, Pedro; Staub, Florian; Stolarski, Daniel] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland. [Bezrukov, Fedor] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Bezrukov, Fedor] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Bondarenko, Kyrylo; Boyarsky, Alexey; Ivashko, Artem] Leiden Univ, Inst Lorentz Theoret Phys, Niels Bohrweg 2, Leiden, Netherlands. [Choi, Ki-Young] Korea Astron & Space Sci Inst, Daejon 305348, South Korea. [Corral, Cristobal; Helo, Juan Carlos; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Dept Fis, Casilla 110-V, Valparaiso, Chile. [Corral, Cristobal; Helo, Juan Carlos; Kovalenko, Sergey] Ctr Cient Tecnol Valparaiso, Casilla 110-V, Valparaiso, Chile. [Craig, Nathaniel] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Curtin, David] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Davidson, Sacha] Univ Lyon 1, IPNL, CNRS IN2P3, 4 Rue Fermi, F-69622 Villeurbanne, France. [Davidson, Sacha] Univ Lyon, F-69622 Lyon, France. [de Gouvea, Andre] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Dell'Oro, Stefano; Marcocci, Simone; Vissani, Francesco] Gran Sasso Sci Inst, Viale Crispi 7, I-67100 Laquila, Italy. [deNiverville, Patrick; Fradette, Anthony; Pospelov, Maxim; Ritz, Adam] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 5C2, Canada. [Dev, P. S. Bhupal; Pilaftsis, Apostolos] Univ Manchester, Sch Phys & Astron, Consortium Fundamental Phys, Manchester M13 9PL, Lancs, England. [Dreiner, Herbi; Schmeier, Daniel] Bethe Ctr Theoret Phys, D-53115 Bonn, Germany. [Dreiner, Herbi; Schmeier, Daniel] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Drewes, Marco; Garbrecht, Bjoern; Ibarra, Alejandro] Tech Univ Munich, Dept Phys, James Franck Str, D-85748 Garching, Germany. [Eijima, Shintaro; Ruchayskiy, Oleg; Shaposhnikov, Mikhail] Ecole Polytech Fed Lausanne, FSB ITP LPPC, BSP, CH-1015 Lausanne, Switzerland. [Essig, Rouven] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Gavela, Belen] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Gavela, Belen] Univ Autonoma Madrid, IFT UAM CSIC, Inst Fis Teor, E-28049 Madrid, Spain. [Goodsell, Mark D.] UPMC Univ Paris 06, Sorbonne Univ, UMR 7589, LPTHE, F-75005 Paris, France. [Goodsell, Mark D.] CNRS, UMR 7589, LPTHE, F-75005 Paris, France. [Gorbunov, Dmitry; Rubakov, Valery] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Gorbunov, Dmitry] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia. [Grojean, Christophe] Univ Autonoma Barcelona, ICREA IFAE, E-08193 Bellaterra, Spain. [Grojean, Christophe; Kahlhoefer, Felix; Ringwald, Andreas; Schmidt-Hoberg, Kai] DESY, Notkestr 85, D-22607 Hamburg, Germany. [Guffanti, Alberto] Univ Copenhagen, Niels Bohr Inst, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Guffanti, Alberto] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Hambye, Thomas] Univ Libre Bruxelles, Serv Phys Theor, Bld Triomphe,CP225, B-1050 Brussels, Belgium. [Hansen, Steen H.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Helo, Juan Carlos] Univ La Serena, Fac Ciencias, Dept Fis, Ave Cisternas 1200, La Serena, Chile. [Hernandez, Pilar] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain. [Ivashko, Artem; Ovchynnikov, Maksym] Kiev Natl Taras Shevchenko Univ, Dept Phys, Glushkov Str 2 Bldg 6, UA-03022 Kiev, Ukraine. [Jaeckel, Joerg] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Jeong, Yu Seon; Kim, Choong Sun] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Jeong, Yu Seon; Kim, Choong Sun] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Kahn, Yonatan; Tripathi, Anurag] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Katz, Andrey] Univ Geneva, Dept Theoret Phys, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Katz, Andrey] Univ Geneva, CAP, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland. [Katz, Andrey; Strassler, Matt] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Ivashko, Artem; Lyubovitskij, Valery E.] Univ Tubingen, Kepler Ctr Astro & Particle Phys, Inst Theoret Phys, Morgenstelle 14, D-72076 Tubingen, Germany. [Lyubovitskij, Valery E.] Tomsk State Univ, Dept Phys, Tomsk 634050, Russia. [Lyubovitskij, Valery E.] Tomsk Polytech Univ, Dept Math Phys, Lenin Ave 30, Tomsk 634050, Russia. [McKeen, David] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Mitselmakher, Guenakh; Shchutska, Lesya] Univ Florida, Gainesville, FL USA. [Moch, Sven-Olaf] Univ Hamburg, Inst Theoret Phys 2, Luruper Chaussee 149, D-22761 Hamburg, Germany. [Mohapatra, Rabindra N.] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Mohapatra, Rabindra N.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Morrissey, David E.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Paschos, Emmanuel] Tech Univ Dortmund, Dept Phys, D-44221 Dortmund, Germany. [Reno, Mary Hall] Univ Iowa, Iowa City, IA 52242 USA. [Roszkowski, Leszek] Natl Ctr Nucl Res, Hoza 69, PL-00681 Warsaw, Poland. [Ruchayskiy, Oleg] Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Schienbein, Ingo] Univ Grenoble Alpes, CNRS IN2P3, LPSC, 53 Ave Martyrs, F-38026 Grenoble, France. [Senjanovic, Goran; Tello, Vladimir] Gran Sasso Sci Inst, Theory Grp, Viale Crispi 7, I-67100 Laquila, Italy. [Senjanovic, Goran] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Seto, Osamu] Hokkai Gakuen Univ, Dept Life Sci & Technol, Sapporo, Hokkaido 0628605, Japan. [Shelton, Jessie] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Shrock, Robert] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Spannowsky, Michael] Univ Durham, Inst Particle Phys Phenomenol, Dept Phys, Durham DH1 3LE, England. [Spray, Andy] Univ Melbourne, Sch Phys, ARC Ctr Excellence Particle Phys Terascale, Melbourne, Vic 3010, Australia. [Tramontano, Francesco; Tripathi, Anurag] Ist Nazl Fis Nucl, Sez Napoli, Complesso Monte St Angelo, Via Cintia, I-80126 Naples, Italy. [Tramontano, Francesco] Univ Napoli Federico II, Complesso Monte St Angelo, Via Cintia, I-80126 Naples, Italy. [Tulin, Sean] York Univ, Dept Phys & Astron, 4700 Keele St, Toronto, ON M3J 1P3, Canada. [Vissani, Francesco] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Winkler, Martin W.] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany. [Winkler, Martin W.] Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany. [Zurek, Kathryn M.] Lawrence Berkeley Natl Lab, Theory Grp, Berkeley, CA 94709 USA. [Winkler, Martin W.] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94709 USA. RP Ruchayskiy, O (reprint author), Ecole Polytech Fed Lausanne, FSB ITP LPPC, BSP, CH-1015 Lausanne, Switzerland.; Ruchayskiy, O (reprint author), Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. EM oleg.ruchayskiy@cern.ch RI Lyubovitskij, Valeriy/O-6698-2014; Tramontano, Francesco/L-9415-2015; OI Tramontano, Francesco/0000-0002-3629-7964; Marcocci, Simone/0000-0002-4516-3191; grojean, christophe/0000-0002-7196-7361; Dev, Bhupal/0000-0003-4655-2866 FU JSPS KAKENHI [25400249, 26105508]; Netherlands Science Foundation (NWO/OCW); CONICYT (Chile) [21130179]; Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC [ST/L000520/1]; Marie Curie Career Integration Grant [631962]; Spanish Ministry MICINN [FPA2010-17747]; Generalitat de Catalunya [2014-SGR-1450]; Swiss National Science Foundation; DFG cluster of excellence 'Origin and Structure of the Universe'; Danish National Research Foundation; Fondecyt (Chile) [11121557, 1150792]; European Research Council under the European Union's Seventh Framework Programme (FP) / ERC [226043]; National Research Foundation of Korea (NRF) grant - Korea government of the Ministry of Education, Science and Technology (MEST) [2011-0017430, 2011-0020333]; Institute of Physics and Applied Physics (IPAP); Tomsk State University Competitiveness Improvement Program; CERN COFUND Fellowship; Bundesministerium fur Bildung und Forschung [05H12GU8]; National Science Foundation [PHY-1315155]; US Department of Energy [DE-SC0010114]; Ministry of Education, Culture, Sports, Science and Technology in Japan [26105514]; NSF [NSF-PHY-13-16617]; 'The Dark Universe' (Deutsche Forschungsgemeinschaft) [SFB-Transregio TR33] FX The work of T Asaka was supported in part by JSPS KAKENHI Grant Numbers 25400249 and 26105508.r The research by K Bondarenko was supported by the Netherlands Science Foundation (NWO/OCW).r The work of C Corral was supported by CONICYT (Chile) under Grant No. 21130179.r The work of P S B Dev and A Pilaftsis is supported by the Lancaster-Manchester-Sheffield Consortium for Fundamental Physics under STFC grant ST/L000520/1.r The work of Christophe Grojean was supported in part by the Marie Curie Career Integration Grant 631962, by the Spanish Ministry MICINN under contract FPA2010-17747 and by the Generalitat de Catalunya grant 2014-SGR-1450.r The work of S Eijima, O Ruchayskiy and M Shaposhnikov was supported in part by the Swiss National Science Foundation.r A Ibarra acknowledges the support of DFG cluster of excellence 'Origin and Structure of the Universe'.r The Dark Cosmology Centre is funded by the Danish National Research Foundation.r The work of J C Helo was supported by Fondecyt (Chile) under Grant No. 11121557.r The work of A Ivashko was supported in part by funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement nr. 226043.r The work of C S Kim and Y S Jeong was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government of the Ministry of Education, Science and Technology (MEST) (No. 2011-0017430), (No. 2011-0020333) and Institute of Physics and Applied Physics (IPAP).r The work of S Kovalenko was supported by FONDECYT (Chile) under Grant No. 1150792.r The work of V E Lyubovitskij was supported by Tomsk State University Competitiveness Improvement Program.r M McCullough acknowledges support from a CERN COFUND Fellowship.r The work of S Moch has been supported by Bundesministerium fur Bildung und Forschung through contract (05H12GU8).r The work of R N Mohapatra was supported by the National Science Foundation grant No. PHY-1315155.r The work of M H Reno was supported in part by the US Department of Energy contract DE-SC0010114.r This work of Osamu Seto was supported in part by the Grant-in-Aid for Scientific Research on Innovative Areas No. 26105514 from the Ministry of Education, Culture, Sports, Science and Technology in Japan.r The work of R Shrock is partially supported by the NSF grant NSF-PHY-13-16617.r The work of Martin W Winkler was supported in part by SFB-Transregio TR33 'The Dark Universe' (Deutsche Forschungsgemeinschaft). NR 1074 TC 7 Z9 7 U1 14 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD DEC PY 2016 VL 79 IS 12 AR 124201 DI 10.1088/0034-4885/79/12/124201 PG 137 WC Physics, Multidisciplinary SC Physics GA EB0HR UT WOS:000387025400001 PM 27775925 ER PT J AU Yang, AJ Gao, J Li, BC Tan, JW Xiang, Y Gupta, T Li, L Suresh, S Idrobo, JC Lu, TM Rong, MZ Koratkar, N AF Yang, Aijun Gao, Jian Li, Baichang Tan, Jiawei Xiang, Yu Gupta, Tushar Li, Lu Suresh, Shravan Idrobo, Juan Carlos Lu, Toh-Ming Rong, Mingzhe Koratkar, Nikhil TI Humidity sensing using vertically oriented arrays of ReS2 nanosheets deposited on an interdigitated gold electrode SO 2D MATERIALS LA English DT Article DE humidity sensing; sensitivity; hysteresis; ReS2 nanosheets; chemical vapor deposition ID FIELD-EFFECT TRANSISTORS; CHEMICAL-VAPOR-DEPOSITION; GRAPHENE; SENSORS AB We report a novel humidity sensor featuring vertically oriented arrays of ReS2 nanosheets grown on an interdigitated gold electrode by chemical vapor deposition. The vertical orientation of the nanosheets is important since it maximizes the exposed surface area for water adsorption/desorption. We find that the resistance of the ReS2 film decreases sensitively with increasing relative humidity, which we attribute to charge transfer from the absorbed H2O molecules to the n-doped ReS2 nanosheets. In addition to high sensitivity, the ReS2 sensors exhibit fast response/recovery time and excellent reversibility with minimal hysteresis. Moreover, our fabrication approach involving the direct ( 1-step) growth of the ReS2 films on an interdigitated electrode ( without any transfer using wet chemistry or lithography) greatly simplifies the device architecture and has important practical benefits for the low-cost and scalable deployment of such sensor devices. C1 [Yang, Aijun; Gao, Jian; Li, Baichang; Tan, Jiawei; Koratkar, Nikhil] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA. [Yang, Aijun; Rong, Mingzhe] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China. [Xiang, Yu; Lu, Toh-Ming] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Gupta, Tushar; Li, Lu; Suresh, Shravan; Koratkar, Nikhil] Rensselaer Polytech Inst, Dept Mech Engn, Troy, NY 12180 USA. [Idrobo, Juan Carlos] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Lu, Toh-Ming] Rensselaer Polytech Inst, Ctr Mat Device & Integrated Syst, Troy, NY 12180 USA. RP Koratkar, N (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA.; Koratkar, N (reprint author), Rensselaer Polytech Inst, Dept Mech Engn, Troy, NY 12180 USA. EM koratn@rpi.edu FU USA National Science Foundation [1234641, 1435783, 1510828, 1608171]; National Key Basic Research Program of China (973Program) [2015CB251002]; National Science Foundation of China [51521065, 51221005]; China Postdoctoral Science Foundation [2015M572558]; State Key Laboratory of Electrical Insulation and Power Equipment [EIPE16307] FX NK and TML acknowledge funding support from the USA National Science Foundation (Award Numbers 1234641, 1435783, 1510828, and 1608171). Microscopy research was conducted as part of a user proposal through ORNL's Center for Nanophase Materials Sciences, which is a US Department of Energy, Office of Science User Facility (JCI). AY and MR acknowledge support from the National Key Basic Research Program of China (973Program) (2015CB251002), National Science Foundation of China (Grant No. 51521065 and 51221005), China Postdoctoral Science Foundation (2015M572558) and the State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE16307). NR 27 TC 0 Z9 0 U1 46 U2 46 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2053-1583 J9 2D MATER JI 2D Mater. PD DEC PY 2016 VL 3 IS 4 AR 045012 DI 10.1088/2053-1583/3/4/045012 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA EA4EG UT WOS:000386561400001 ER PT J AU Wu, W Gao, YF Li, N Parish, CM Liu, WJ Liaw, PK An, K AF Wu, Wei Gao, Yanfei Li, Nan Parish, Chad M. Liu, Wenjun Liaw, Peter K. An, Ke TI Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys SO ACTA MATERIALIA LA English DT Article DE Magnesium alloy; Twinning; Synchrotron X-ray; Deformation mechanism ID SITU NEUTRON-DIFFRACTION; CYCLIC DEFORMATION; ANISOTROPIC SOLIDS; STRAIN; BEHAVIOR; FATIGUE; MG; MECHANISMS; STRESS; AZ31B AB Deformation twinning plays a critical role on improving metals or alloys ductility, especially for hexagonal close-packed materials with low symmetry crystal structure. A rolled Mg alloy was selected as a model system to investigate the extension twinning behaviors and characteristics of parent-twin interactions by nondestructive in situ 3D synchrotron X-ray microbeam diffraction. Besides twinning-detwinning process, the "twinning-like" lattice reorientation process was captured within an individual grain inside a bulk material during the strain reversal. The distributions of parent, twin, and reorientated grains and sub-micron level strain variation across the twin boundary are revealed. A theoretical calculation of the lattice strain confirms that the internal strain distribution in parent and twinned grains correlates with the experimental setup, grain orientation of parent, twin, and surrounding grains, as well as the strain path changes. The study suggests a novel deformation mechanism within the hexagonal close-packed structure that cannot be determined from surface-based characterization methods. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wu, Wei; An, Ke] Oak Ridge Natl Lab, Chem & Engn Mat Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Gao, Yanfei; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Yanfei; Parish, Chad M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Li, Nan] AVIC Beijing Inst Aeronaut Mat, Beijing 100095, Peoples R China. [Liu, Wenjun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP An, K (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM kean@ornl.gov RI Gao, Yanfei/F-9034-2010; An, Ke/G-5226-2011; Parish, Chad/J-8381-2013; OI Gao, Yanfei/0000-0003-2082-857X; An, Ke/0000-0002-6093-429X; Wu, Wei/0000-0002-8596-9253 FU U.S. Department of Energy, Basic Energy Sciences, Scientific User Facilities Division; Laboratory Directed Research and Development (LDRD) project of ORNL [LDRD-6789]; National Science Foundation [CMMI 1300223, CMMI-1100080]; Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory [DE-FE-0008855, DE-FE-0024054, DE-FE-0011194] FX The synchrotron X-ray, neutron and EBSD works were carried out at the Advanced Photon Source (APS), Argonne National Laboratory (ANL), Spallation Neutron Source (SNS), Oak Ridge National Laboratory (ORNL), and Center for Nanophase Materials Sciences, ORNL, respectively, supported by the U.S. Department of Energy, Basic Energy Sciences, Scientific User Facilities Division. W.W. is supported by a Laboratory Directed Research and Development (LDRD) project (LDRD-6789) of ORNL. Y.F.G. acknowledges support from National Science Foundation CMMI 1300223. P.K.L. would like to acknowledge the Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855 and DE-FE-0024054, and DE-FE-0011194), with Mr. V. Cedro and Mr. R. Dunst as program managers. P.K.L. thanks the support from the project of DE-FE-0011194 with the program manager, Dr. J. Mullen. P.K.L. thanks the support from the National Science Foundation CMMI-1100080. NR 35 TC 2 Z9 2 U1 42 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD DEC PY 2016 VL 121 BP 15 EP 23 DI 10.1016/j.actamat.2016.08.058 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EA9SH UT WOS:000386984500002 ER PT J AU Wang, ZJ Allen, FI Shan, ZW Hosemann, P AF Wang, Zhang-Jie Allen, Frances I. Shan, Zhi-Wei Hosemann, Peter TI Mechanical behavior of copper containing a gas-bubble superlattice SO ACTA MATERIALIA LA English DT Article DE Nanoscale ion implantation; Helium gas-bubble superlattice; In-situ TEM; Ordinary dislocation plasticity; Deformation twinning ID IN-SITU; NANOTWINNED METALS; TWIN BOUNDARIES; HELIUM; IRRADIATION; IMPLANTATION; NANOWIRES AB Helium implantation can cause the formation of a helium gas-bubble superlattice in crystalline materials. Experimental studies of the mechanical response of a material hosting such a superlattice are lacking, especially at the microstructural level. By employing a novel, high-throughput, high-precision nanoscale helium implantation technique, in combination with in-situ transmission electron microscopy nano mechanical testing, we find that the helium-bubble superlattice structure in copper is disordered or maintained depending on whether the material's plasticity occurs by multiple ordinary full dislocations or by deformation twinning. In addition, helium implantation can harden the material significantly: the higher the dose, the larger the yield stress. The measured hardening behavior agrees well with the trend predicted by the Friedel-Kroupa-Hirsch model. Our findings shed new light on understanding the mechanical and microstructural properties of materials subjected to intense helium generation by neutron and alpha-particle bombardment in nuclear fusion, fission or spallation systems. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. C1 [Wang, Zhang-Jie; Hosemann, Peter] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Wang, Zhang-Jie; Shan, Zhi-Wei] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale CAMP Nano, Xian 710049, Peoples R China. [Wang, Zhang-Jie; Shan, Zhi-Wei] Xi An Jiao Tong Univ, Hysitron Appl Res Ctr China, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Allen, Frances I.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Allen, Frances I.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Mol Foundry, Berkeley, CA 94720 USA. RP Hosemann, P (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA.; Shan, ZW (reprint author), Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale CAMP Nano, Xian 710049, Peoples R China.; Shan, ZW (reprint author), Xi An Jiao Tong Univ, Hysitron Appl Res Ctr China, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. EM zwshan@mail.xjtu.edu.cn; peterh@berkeley.edu RI xjtu, campnano/Q-1904-2015; OI Hosemann, Peter/0000-0003-2281-2213 FU China Scholarship Council; DOE Office of Nuclear Energy's Nuclear Energy University Programs; Keck Foundation; Natural Science Foundation of China [51231005, 51401159, 11132006, 51321003]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The Authors thank The China Scholarship Council for providing funding for Z.W.'s stay at the University of California, Berkeley. This publication was made possible in part by NSF/DMR MRI1338139. The research was performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs and the Keck Foundation. Z.S. and Z.W. acknowledge support from the Natural Science Foundation of China (51231005, 51401159, 11132006 and 51321003). We thank Lei Lu's group (Institute of Metal Research, Chinese Academy of Science) for supplying nano twinned copper samples. The samples were FIB-milled and helium implanted at the Biomolecular Nanotechnology Center/QB3 at UC Berkeley. The TEM in-situ analysis was performed at The Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Authors thank Daryl Chrzan and Ian Stewart Winter (University of California, Berkeley) for useful discussions. NR 27 TC 1 Z9 1 U1 27 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD DEC PY 2016 VL 121 BP 78 EP 84 DI 10.1016/j.actamat.2016.08.085 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EA9SH UT WOS:000386984500008 ER PT J AU Odbadrakh, K Samolyuk, G Nicholson, D Osetsky, Y Stoller, RE Stocks, GM AF Odbadrakh, Kh. Samolyuk, G. Nicholson, D. Osetsky, Y. Stoller, R. E. Stocks, G. M. TI Decisive role of magnetism in the interaction of chromium and nickel solute atoms with 1/2 < 111 >-screw dislocation core in body-centered cubic iron SO ACTA MATERIALIA LA English DT Article DE Screw dislocation; Magnetic moment; Ferromagnetism ID BCC TRANSITION-METALS; MEAN-FIELD THEORY; SCREW DISLOCATIONS; FINITE TEMPERATURES; FERROMAGNETIC IRON; CRYSTAL-STRUCTURE; FERRITIC STEELS; ALLOYS; 1ST-PRINCIPLES; PSEUDOPOTENTIALS AB Resistance to swelling under irradiation and a low rate of corrosion in high temperature environments make Fe-Cr and Fe-Cr-Ni alloys promising structural materials for energy technologies. In this paper we report the results obtained using a combination of density functional theory (DFT) techniques: plane wave basis set solutions for pseudo-potentials and multiple scattering solutions for all electron potentials. We have found a very strong role of magnetism in the stability of screw dislocation cores in pure Fe and their interaction with Cr and Ni magnetic impurities. In particular, the screw dislocation quadrupole in Fe is stabilized only in the presence of ferromagnetism. In addition, Ni atoms, who's magnetic moment is oriented along the magnetization direction of the Fe matrix, prefer to occupy in core positions whereas Cr atoms, which couple anti-ferromagnetically with the Fe matrix, prefer out of the dislocation core positions. In effect, Ni impurities are attracted to, while Cr impurities are repelled by the dislocation core. Moreover, we demonstrate that this contrasting behavior can be explained only by the nature of magnetic coupling of the impurities to the Fe matrix. Specifically, Cr interaction with the dislocation core mirrors that of Ni if the Cr magnetic moment is constrained to be along the direction of Fe matrix magnetization. In addition, we have shown that the magnetic contribution can affect the impurity impurity interaction at distances up to a few Burgers vectors. In particular, the distance between Cr atoms in Fe matrix should be at least 3-4 lattice parameters in order to eliminate finite size effects. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Odbadrakh, Kh.] Univ Tennessee, Joint Inst Computat Sci, ORNL, Oak Ridge, TN 37831 USA. [Odbadrakh, Kh.] Natl Univ Mongolia, Dept Phys, Ulaanbaatar 14200, Mongol Peo Rep. [Samolyuk, G.; Osetsky, Y.; Stoller, R. E.; Stocks, G. M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Nicholson, D.] Univ North Carolina Asheville, Dept Phys, Asheville, NC 28804 USA. RP Samolyuk, G (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM samolyukgd@ornl.gov OI Osetskiy, Yury/0000-0002-8109-0030 FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX Research sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 63 TC 0 Z9 0 U1 16 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD DEC PY 2016 VL 121 BP 137 EP 143 DI 10.1016/j.actamat.2016.08.074 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EA9SH UT WOS:000386984500013 ER PT J AU Zhang, YB Andriollo, T Faester, S Liu, W Hattel, J Barabash, RI AF Zhang, Y. B. Andriollo, T. Faester, S. Liu, W. Hattel, J. Barabash, R. I. TI Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron SO ACTA MATERIALIA LA English DT Article DE Cast iron; Residual strain/stress; Plastic deformation; Differential aperture X-ray microscopy (DAXM); Finite element modeling ID METAL-MATRIX COMPOSITE; X-RAY-DIFFRACTION; PART I; INCLUSION; FRACTURE; STRAINS AB A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to characterize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic strains are measured with a maximum strain of similar to 6.5-8 x 10(-4) near the graphite nodules extending into the matrix about 20 gm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found but with a significant overprediction of the maximum strain. This is discussed in terms of stress relaxation during cooling or during storage by plastic deformation of the nodule, the matrix or both. Relaxation by plastic deformation of the ferrite is demonstrated by the formation of low energy dislocation cell structure also quantified by the DAXM technique. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Zhang, Y. B.; Faester, S.] Tech Univ Denmark, Dept Wind Energy, Sect Mat Sci & Adv Characterizat, Riso Campus, DK-4000 Roskilde, Denmark. [Andriollo, T.; Hattel, J.] Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark. [Liu, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Barabash, R. I.] Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. RP Zhang, YB (reprint author), Tech Univ Denmark, Dept Wind Energy, Sect Mat Sci & Adv Characterizat, Riso Campus, DK-4000 Roskilde, Denmark. EM yubz@dtu.dk RI Zhang, YuBin/A-6267-2017; OI Zhang, YuBin/0000-0002-6901-0309; Andriollo, Tito/0000-0002-1873-0031 FU Strategic Research Center "REWIND -Knowledge based engineering for improved reliability of critical wind turbine components," Danish Research Council for Strategic Research [10-093966]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Part of this work has been supported by the Strategic Research Center "REWIND -Knowledge based engineering for improved reliability of critical wind turbine components," Danish Research Council for Strategic Research, grant no. 10-093966. The authors thank Profs. D Juul Jensen and N. Hansen for the helpful and stimulating discussions and for the useful comments during the preparation of the manuscript. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 30 TC 0 Z9 0 U1 17 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD DEC PY 2016 VL 121 BP 173 EP 180 DI 10.1016/j.actamat.2016.09.009 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EA9SH UT WOS:000386984500017 ER PT J AU Jin, K Guo, W Lu, CY Ullah, MW Zhang, YW Weber, WJ Wang, LM Poplawsky, JD Bei, HB AF Jin, Ke Guo, Wei Lu, Chenyang Ullah, Mohammad W. Zhang, Yanwen Weber, William J. Wang, Lumin Poplawsky, Jonathan D. Bei, Hongbin TI Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni-Fe solid solution alloys SO ACTA MATERIALIA LA English DT Article DE Ion irradiation; Solid solution alloy; Nanoindentation; Ion channeling; Molecular dynamic simulation ID HIGH-ENTROPY ALLOYS; MATERIALS CHALLENGES; MULTICOMPONENT ALLOYS; MECHANICAL-PROPERTIES; STRUCTURAL-MATERIALS; MOLECULAR-DYNAMICS; EQUIATOMIC ALLOYS; FUSION ENERGY; FCC METALS; ATOM-PROBE AB Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. To systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0-60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 x 10(13) to 3 x 10(16) cm(-2) at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluence regime, which is consistent to the results from molecular dynamic simulations. No irradiation-induced compositional segregation was observed in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Jin, Ke; Ullah, Mohammad W.; Zhang, Yanwen; Weber, William J.; Bei, Hongbin] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Guo, Wei; Poplawsky, Jonathan D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Lu, Chenyang; Wang, Lumin] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Zhang, Yanwen; Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Bei, HB (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM beih@ornl.gov RI Weber, William/A-4177-2008; Ullah, Mohammad/E-1526-2017; OI Weber, William/0000-0002-9017-7365; Ullah, Mohammad/0000-0001-6190-591X; Bei, Hongbin/0000-0003-0283-7990 FU Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences FX This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Atom probe tomography was performed at ORNL's Center for Nanophase Materials Sciences (CNMS), which is DOE Office of Science User Facility. Ion beam works were performed at the UT-ORNL Ion Beam Materials Laboratory (IBML) located at the campus of the University of Tennessee, Knoxville. Authors thank Dr. Z. Wu in ORNL for showing us the tensile yield strength of the alloys. NR 54 TC 0 Z9 0 U1 51 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD DEC PY 2016 VL 121 BP 365 EP 373 DI 10.1016/j.actamat.2016.09.025 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA EA9SH UT WOS:000386984500035 ER EF